51
|
Liu Z, Spírek M, Thornton J, Butow RA. A novel degron-mediated degradation of the RTG pathway regulator, Mks1p, by SCFGrr1. Mol Biol Cell 2005; 16:4893-904. [PMID: 16093347 PMCID: PMC1237091 DOI: 10.1091/mbc.e05-06-0516] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Yeast cells respond to mitochondrial dysfunction by altering the expression of a subset of nuclear genes, a process known as retrograde signaling (RS). RS terminates with two transcription factors, Rtg1p and Rtg3p. One positive regulator, Rtg2p, and four negative regulators, Lst8p, Mks1p, and the redundant 14-3-3 proteins, Bmh1p and Bmh2p, control RS upstream of Rtg1/3p. Mks1p is negatively regulated by binding to Rtg2p and positively regulated when bound to Bmh1/2p. Here we report that Grr1p, a component of the SCF(Grr1) E3 ubiquitin ligase, modulates RS by affecting Mks1p levels. Grr1p polyubiquitinates Mks1p not bound to either Rtg2p or to Bmh1/2p, targeting it for degradation. An acidic domain region of Mks1p constitutes the portable Mks1p degron sequence. We have isolated dominant mutations in Grr1p leading to increased Mks1p degradation. These mutations result in a gain of positive charge on the concave surface of the leucine rich repeat (LRR) domain of Grr1p, the proposed substrate binding site. We propose that Mks1p is a central player of RS and is acted upon by multiple regulators of the pathway.
Collapse
Affiliation(s)
- Zhengchang Liu
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390-9148, USA
| | | | | | | |
Collapse
|
52
|
Queralt E, Igual JC. Functional distinction between Cln1p and Cln2p cyclins in the control of the Saccharomyces cerevisiae mitotic cycle. Genetics 2005; 168:129-40. [PMID: 15454532 PMCID: PMC1448118 DOI: 10.1534/genetics.104.029587] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Cln1p and Cln2p are considered as equivalent cyclins on the basis of sequence homology, regulation, and functional studies. Here we describe a functional distinction between the Cln1p and Cln2p cyclins in the control of the G1/S transition. Inactivation of CLN2, but not of CLN1, leads to a larger-than-normal cell size, whereas overexpression of CLN2, but not of CLN1, results in smaller-than-normal cells. Furthermore, mild ectopic expression of CLN2, but not of CLN1, suppresses the lethality of swi4swi6 and cdc28 mutant strains. In the absence of Cln1p, the kinetics of budding, initiation of DNA replication, and activation of the Start-transcription program are not affected; by contrast, loss of Cln2p causes a delay in bud emergence. A primary role for Cln2p but not for Cln1p in budding is reinforced by the observation that only the cln2 mutation is synthetic lethal with a cdc42 mutation, and only the cln2 mutant strain is hypersensitive to latrunculin B. In addition, we found that Cln1p showed a more prominent nuclear staining than Cln2p. Finally, chimeric proteins composed of Cln1p and Cln2p revealed that Cln2p integrity is required for its functional specificity.
Collapse
Affiliation(s)
- Ethel Queralt
- Departament de Bioquímica i Biologia Molecular, Universitat de València, 46100 Burjassot, Spain
| | | |
Collapse
|
53
|
Blondel M, Bach S, Bamps S, Dobbelaere J, Wiget P, Longaretti C, Barral Y, Meijer L, Peter M. Degradation of Hof1 by SCF(Grr1) is important for actomyosin contraction during cytokinesis in yeast. EMBO J 2005; 24:1440-52. [PMID: 15775961 PMCID: PMC1142548 DOI: 10.1038/sj.emboj.7600627] [Citation(s) in RCA: 95] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2004] [Accepted: 02/23/2005] [Indexed: 11/08/2022] Open
Abstract
SCF-type (SCF: Skp1-Cullin-F-box protein complex) E3 ligases regulate ubiquitin-dependent degradation of many cell cycle regulators, mainly at the G1/S transition. Here, we show that SCF(Grr1) functions during cytokinesis by degrading the PCH protein Hof1. While Hof1 is required early in mitosis to assemble a functional actomyosin ring, it is specifically degraded late in mitosis and remains unstable during the entire G1 phase of the cell cycle. Degradation of Hof1 depends on its PEST motif and a functional 26S proteasome. Interestingly, degradation of Hof1 is independent of APC(Cdh1), but instead requires the SCF(Grr1) E3 ligase. Grr1 is recruited to the mother-bud neck region after activation of the mitotic-exit network, and interacts with Hof1 in a PEST motif-dependent manner. Our results also show that downregulation of Hof1 at the end of mitosis is necessary to allow efficient contraction of the actomyosin ring and cell separation during cytokinesis. SCF(Grr1)-mediated degradation of Hof1 may thus represent a novel mechanism to couple exit from mitosis with initiation of cytokinesis.
Collapse
Affiliation(s)
- Marc Blondel
- CNRS, Station Biologique, UMR7150, Amyloids and Cell Division Cycle Laboratory, Place G Teissier, Roscoff, Bretagne, France.
| | | | | | | | | | | | | | | | | |
Collapse
|
54
|
Abstract
Cullin-RING complexes comprise the largest known class of ubiquitin ligases. Owing to the great diversity of their substrate-receptor subunits, it is possible that there are hundreds of distinct cullin-RING ubiquitin ligases in eukaryotic cells, which establishes these enzymes as key mediators of post-translational protein regulation. In this review, we focus on the composition, regulation and function of cullin-RING ligases, and describe how these enzymes can be characterized by a set of general principles.
Collapse
Affiliation(s)
- Matthew D Petroski
- Division of Biology and Howard Hughes Medical Institute, California Institute of Technology, 1200 East California Boulevard, Pasadena, California 91125, USA.
| | | |
Collapse
|
55
|
Willems AR, Schwab M, Tyers M. A hitchhiker's guide to the cullin ubiquitin ligases: SCF and its kin. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2005; 1695:133-70. [PMID: 15571813 DOI: 10.1016/j.bbamcr.2004.09.027] [Citation(s) in RCA: 375] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The SCF (Skp1-Cullin-F-box) E3 ubiquitin ligase family was discovered through genetic requirements for cell cycle progression in budding yeast. In these multisubunit enzymes, an invariant core complex, composed of the Skp1 linker protein, the Cdc53/Cul1 scaffold protein and the Rbx1/Roc1/Hrt1 RING domain protein, engages one of a suite of substrate adaptors called F-box proteins that in turn recruit substrates for ubiquitination by an associated E2 enzyme. The cullin-RING domain-adaptor architecture has diversified through evolution, such that in total many hundreds of distinct SCF and SCF-like complexes enable degradation of myriad substrates. Substrate recognition by adaptors often depends on posttranslational modification of the substrate, which thus places substrate stability under dynamic regulation by intracellular signaling events. SCF complexes control cell proliferation through degradation of critical regulators such as cyclins, CDK inhibitors and transcription factors. A plethora of other processes in development and disease are controlled by other SCF-like complexes, including those based on Cul2-SOCS-box adaptor protein and Cul3-BTB domain adaptor protein combinations. Recent structural insights into SCF-like complexes have begun to illuminate aspects of substrate recognition and catalytic reaction mechanisms.
Collapse
Affiliation(s)
- Andrew R Willems
- Samuel Lunenfeld Research Institute, Mount Sinai Hospital, 600 University Avenue, Toronto, Canada, M5G 1X5
| | | | | |
Collapse
|
56
|
Schweitzer K, Cocklin R, Garrett L, Desai F, Goebl M. The ubiquitin ligase SCFGrr1 is necessary for pheromone sensitivity inSaccharomyces cerevisiae. Yeast 2005; 22:553-64. [PMID: 15942932 DOI: 10.1002/yea.1234] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The presence of the appropriate pheromone induces alpha and a cells of the yeast Saccharomyces cerevisiae to activate both changes in transcriptional expression and cell polarity that eventually lead to the mating of alpha and a cells to form a/alpha diploid cells. A third response after exposure to mating pheromone is a transient cell cycle arrest, allowing synchronization of the two cell types in G1 prior to cell fusion. At least in part, this cell cycle arrest requires the inactivation of Cln-kinase activity through transcriptional inactivation of the CLN1 and CLN2 genes, degradation of the Cln proteins and direct inhibition of Cln-kinase complexes. Here we report that GRR1, which encodes a substrate recognition subunit of SCF complexes, is critical for pheromone sensitivity and likely for this arrest. Loss of SCF(Grr1) function by deletion of the GRR1 gene causes pheromone resistance. However, deletion of CLN1 and CLN2 restores pheromone sensitivity to grr1Delta cells. Thus, rapid loss of Cln-kinase activity during mating may require coordinated inactivation of the Cln-kinase complexes, inactivation of CLN transcription and SCF(Grr1)-dependent Cln degradation.
Collapse
Affiliation(s)
- Kelly Schweitzer
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | | | | | | | | |
Collapse
|
57
|
Schneider BL, Zhang J, Markwardt J, Tokiwa G, Volpe T, Honey S, Futcher B. Growth rate and cell size modulate the synthesis of, and requirement for, G1-phase cyclins at start. Mol Cell Biol 2004; 24:10802-13. [PMID: 15572683 PMCID: PMC533974 DOI: 10.1128/mcb.24.24.10802-10813.2004] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
In Saccharomyces cerevisiae, commitment to cell cycle progression occurs at Start. Progression past Start requires cell growth and protein synthesis, a minimum cell size, and G(1)-phase cyclins. We examined the relationships among these factors. Rapidly growing cells expressed, and required, dramatically more Cln protein than did slowly growing cells. To clarify the role of cell size, we expressed defined amounts of CLN mRNA in cells of different sizes. When Cln was expressed at nearly physiological levels, a critical threshold of Cln expression was required for cell cycle progression, and this critical threshold varied with both cell size and growth rate: as cells grew larger, they needed less CLN mRNA, but as cells grew faster, they needed more Cln protein. At least in part, large cells had a reduced requirement for CLN mRNA because large cells generated more Cln protein per unit of mRNA than did small cells. When Cln was overexpressed, it was capable of promoting Start rapidly, regardless of cell size or growth rate. In summary, the amount of Cln required for Start depends dramatically on both cell size and growth rate. Large cells generate more Cln1 or Cln2 protein for a given amount of CLN mRNA, suggesting the existence of a novel posttranscriptional size control mechanism.
Collapse
Affiliation(s)
- Brandt L Schneider
- Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Center, 3601 4th St., Lubbock, TX 79430, USA.
| | | | | | | | | | | | | |
Collapse
|
58
|
Spielewoy N, Flick K, Kalashnikova TI, Walker JR, Wittenberg C. Regulation and recognition of SCFGrr1 targets in the glucose and amino acid signaling pathways. Mol Cell Biol 2004; 24:8994-9005. [PMID: 15456873 PMCID: PMC517892 DOI: 10.1128/mcb.24.20.8994-9005.2004] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
SCFGrr1, one of several members of the SCF family of E3 ubiquitin ligases in budding Saccharomyces cerevisiae, is required for both regulation of the cell cycle and nutritionally controlled transcription. In addition to its role in degradation of Gic2 and the CDK targets Cln1 and Cln2, Grr1 is also required for induction of glucose- and amino acid-regulated genes. Induction of HXT genes by glucose requires the Grr1-dependent degradation of Mth1. We show that Mth1 is ubiquitinated in vivo and degraded via the proteasome. Furthermore, phosphorylated Mth1, targeted by the casein kinases Yck1/2, binds to Grr1. That binding depends upon the Grr1 leucine-rich repeat (LRR) domain but not upon the F-box or basic residues within the LRR that are required for recognition of Cln2 and Gic2. Those observations extend to a large number of Grr1-dependent genes, some targets of the amino acid-regulated SPS signaling system, which are properly regulated in the absence of those basic LRR residues. Finally, we show that regulation of the SPS targets requires the Yck1/2 casein kinases. We propose that casein kinase I plays a similar role in both nutritional signaling pathways by phosphorylating pathway components and targeting them for ubiquitination by SCFGrr1.
Collapse
Affiliation(s)
- Nathalie Spielewoy
- Department of Molecular Biology, MB-3, The Scripps Research Institute, 10550 North Torrey Pines Rd., La Jolla, CA 92037, USA
| | | | | | | | | |
Collapse
|
59
|
Abstract
Ubiquitin ligases are well suited to regulate molecular networks that operate on a post-translational timescale. The F-box family of proteins - which are the substrate-recognition components of the Skp1-Cul1-F-box-protein (SCF) ubiquitin ligase - are important players in many mammalian functions. Here we explore a unifying and structurally detailed view of SCF-mediated proteolytic control of cellular processes that has been revealed by recent studies.
Collapse
Affiliation(s)
- Timothy Cardozo
- Department of Pathology and New York University Cancer Institute, New York University Medical Center, 550 First Avenue, MSB 599, New York, New York 10016, USA
| | | |
Collapse
|
60
|
Tokarz S, Berset C, La Rue J, Friedman K, Nakayama KI, Nakayama K, Zhang DE, Lanker S. The ISG15 isopeptidase UBP43 is regulated by proteolysis via the SCFSkp2 ubiquitin ligase. J Biol Chem 2004; 279:46424-30. [PMID: 15342634 DOI: 10.1074/jbc.m403189200] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The Skp2 oncoprotein belongs to the family of F-box proteins that function as substrate recognition factors for SCF (Skp1, cullin, F-box protein) E3 ubiquitin-ligase complexes. Binding of the substrate to the SCFSkp2 complex catalyzes the conjugation of ubiquitin molecules to the bound substrate, resulting in multi-ubiquitination and rapid degradation by the 26 S proteasome. Using Skp2 as bait in a yeast two-hybrid screen, we have identified UBP43 as a novel substrate for Skp2. UBP43 belongs to the family of ubiquitin isopeptidases and specifically cleaves ISG15, a ubiquitin-like molecule that is induced by cellular stresses, such as type 1 interferons (IFN), nephrotoxic damage, and bacterial infection. UBP43 was originally identified as an up-regulated gene in knock-in mice expressing an acute myelogenous leukemia fusion protein, AML1-ETO, as well as in melanoma cell lines treated with IFN-beta. The phenotype of UBP43 knockout mice includes shortened life span, hypersensitivity to IFN, and neuronal damage, suggesting that tight regulation of ISG15 conjugation is critical for normal cellular function. In this study, we demonstrate that UBP43 is ubiquitinated in vivo and accumulates in cells treated with proteasome inhibitors. We also show that Skp2 promotes UBP43 ubiquitination and degradation, resulting in higher levels of ISG15 conjugates. In Skp2-/- mouse cells, levels of UBP43 are consistently up-regulated, whereas levels of ISG15 conjugates are reduced. Our results demonstrate that the SCFSkp2 is involved in controlling UBP43 protein levels and may therefore play an important role in modulating type 1 IFN signaling.
Collapse
Affiliation(s)
- Sara Tokarz
- Department of Molecular and Medical Genetics, School of Medicine, Oregon Health and Sciences University, Portland, Oregon 97239, USA
| | | | | | | | | | | | | | | |
Collapse
|
61
|
de Bruin RAM, McDonald WH, Kalashnikova TI, Yates J, Wittenberg C. Cln3 activates G1-specific transcription via phosphorylation of the SBF bound repressor Whi5. Cell 2004; 117:887-98. [PMID: 15210110 DOI: 10.1016/j.cell.2004.05.025] [Citation(s) in RCA: 294] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2003] [Revised: 04/21/2004] [Accepted: 04/22/2004] [Indexed: 11/15/2022]
Abstract
G1-specific transcriptional activation by Cln3/CDK initiates the budding yeast cell cycle. To identify targets of Cln3/CDK, we analyzed the SBF and MBF transcription factor complexes by multidimensional protein interaction technology (MudPIT). Whi5 was identified as a stably bound component of SBF but not MBF. Inactivation of Whi5 leads to premature expression of G1-specific genes and budding, whereas overexpression retards those processes. Whi5 inactivation bypasses the requirement for Cln3 both for transcriptional activation and cell cycle initiation. Whi5 associates with G1-specific promoters via SBF during early G1 phase, then dissociates coincident with transcriptional activation. Dissociation of Whi5 is promoted by Cln3 in vivo. Cln/CDK phosphorylation of Whi5 in vitro promotes its dissociation from SBF complexes. Mutation of putative CDK phosphorylation sites, at least five of which are phosphorylated in vivo, strongly reduces SBF-dependent transcription and delays cell cycle initiation. Like mammalian Rb, Whi5 is a G1-specific transcriptional repressor antagonized by CDK.
Collapse
Affiliation(s)
- Robertus A M de Bruin
- Department of Molecular Biology, 10550 North Torrey Pines Road, La Jolla, California 92037, USA
| | | | | | | | | |
Collapse
|
62
|
Spencer ML, Theodosiou M, Noonan DJ. NPDC-1, a novel regulator of neuronal proliferation, is degraded by the ubiquitin/proteasome system through a PEST degradation motif. J Biol Chem 2004; 279:37069-78. [PMID: 15229225 DOI: 10.1074/jbc.m402507200] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Neural proliferation and differentiation control protein-1 (NPDC-1) is a protein expressed primarily in brain and lung and whose expression can be correlated with the regulation of cellular proliferation and differentiation. Embryonic differentiation in brain and lung has classically been linked to retinoid signaling, and we have recently characterized NPDC-1 as a regulator of retinoic acid-mediated events. Regulators of differentiation and development are themselves highly regulated and usually through multiple mechanisms. One such mechanism, protein degradation via the ubiquitin/proteasome degradation pathway, has been linked to the expression of a number of proteins involved in control of proliferation or differentiation, including cyclin D1 and E2F-1. The data presented here demonstrate that NPDC-1 is likewise degraded by the ubiquitin/proteasome system. MG-132, a proteasome inhibitor, stabilized the expression of NPDC-1 and allowed detection of ubiquitinated NPDC-1 in vivo. A PEST motif (rich in proline, glutamine, serine, and threonine) located in the carboxyl terminus of NPDC-1 was shown to target the protein for degradation. Deletion of the PEST motif increased NPDC-1 protein stability and NPDC-1 inhibitory effect on retinoic acid-mediated transcription. NPDC-1 was phosphorylated by several kinases, including extracellular signal-regulated kinase. Phosphorylation of NPDC-1 increased the in vitro rate of NPDC-1 ubiquitination. The MEK inhibitor, PD-98059, an inhibitor of extracellular signal-regulated activation, also inhibited the formation of ubiquitinated NPDC-1 in vivo. Together these results suggest that retinoic acid signaling can be modulated by the presence of NPDC-1 and that the protein level and activity of NPDC-1 can be regulated by phosphorylation-mediated proteasomal degradation.
Collapse
Affiliation(s)
- Michael L Spencer
- Department of Molecular and Cellular Biochemistry, University of Kentucky Medical Center, 800 Rose Street, Lexington, KY 40536, USA
| | | | | |
Collapse
|
63
|
Chen KC, Calzone L, Csikasz-Nagy A, Cross FR, Novak B, Tyson JJ. Integrative analysis of cell cycle control in budding yeast. Mol Biol Cell 2004; 15:3841-62. [PMID: 15169868 PMCID: PMC491841 DOI: 10.1091/mbc.e03-11-0794] [Citation(s) in RCA: 370] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
The adaptive responses of a living cell to internal and external signals are controlled by networks of proteins whose interactions are so complex that the functional integration of the network cannot be comprehended by intuitive reasoning alone. Mathematical modeling, based on biochemical rate equations, provides a rigorous and reliable tool for unraveling the complexities of molecular regulatory networks. The budding yeast cell cycle is a challenging test case for this approach, because the control system is known in exquisite detail and its function is constrained by the phenotypic properties of >100 genetically engineered strains. We show that a mathematical model built on a consensus picture of this control system is largely successful in explaining the phenotypes of mutants described so far. A few inconsistencies between the model and experiments indicate aspects of the mechanism that require revision. In addition, the model allows one to frame and critique hypotheses about how the division cycle is regulated in wild-type and mutant cells, to predict the phenotypes of new mutant combinations, and to estimate the effective values of biochemical rate constants that are difficult to measure directly in vivo.
Collapse
Affiliation(s)
- Katherine C Chen
- Department of Biology, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061-0406, USA.
| | | | | | | | | | | |
Collapse
|
64
|
Kesti T, McDonald WH, Yates JR, Wittenberg C. Cell Cycle-dependent Phosphorylation of the DNA Polymerase Epsilon Subunit, Dpb2, by the Cdc28 Cyclin-dependent Protein Kinase. J Biol Chem 2004; 279:14245-55. [PMID: 14747467 DOI: 10.1074/jbc.m313289200] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
DNA polymerase epsilon (Polepsilon), one of the three major eukaryotic replicative polymerases, is comprised of the essential catalytic subunit, called Pol2 in budding yeast, and three accessory subunits, only one of which, Dpb2, is essential. Polepsilon is recruited to replication origins during late G(1) phase prior to activation of replication. In this work we show that the budding yeast Dpb2 is phosphorylated in a cell cycle-dependent manner during late G(1) phase. Phosphorylation results in the appearance of a lower mobility species. The appearance of that species in vivo is dependent upon the Cdc28 cyclin-dependent protein kinase (CDK), which can directly phosphorylate Dpb2 in vitro. Either G(1) cyclin (Cln) or B-type cyclin (Clb)-associated CDK is sufficient for phosphorylation. Mapping of phosphorylation sites by mass spectrometry using a novel gel-based proteolysis protocol shows that, of the three consensus CDK phosphorylation sites, at least two, Ser-144 and Ser-616, are phosphorylated in vivo. The Cdc28 CDK phosphorylates only Ser-144 in vitro. Using site-directed mutagenesis, we show that Ser-144 is sufficient for the formation of the lower mobility form of Dpb2 in vivo. In contrast, Ser-616 appears not to be phosphorylated by Cdc28. Finally, inactivation of all three CDK consensus sites in Dpb2 results in a synthetic phenotype with the pol2-11 mutation, leading to decreased spore viability, slow growth, and increased thermosensitivity. We suggest that phosphorylation of Dpb2 during late G(1) phase at CDK consensus sites facilitates the interaction with Pol2 or the activity of Polepsilon
Collapse
Affiliation(s)
- Tapio Kesti
- Departments of Molecular Biology and Cell Biology, The Scripps Research Institute, La Jolla, California 92037, USA
| | | | | | | |
Collapse
|
65
|
Prinz S, Avila-Campillo I, Aldridge C, Srinivasan A, Dimitrov K, Siegel AF, Galitski T. Control of yeast filamentous-form growth by modules in an integrated molecular network. Genome Res 2004; 14:380-90. [PMID: 14993204 PMCID: PMC353223 DOI: 10.1101/gr.2020604] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
On solid growth media with limiting nitrogen source, diploid budding-yeast cells differentiate from the yeast form to a filamentous, adhesive, and invasive form. Genomic profiles of mRNA levels in Saccharomyces cerevisiae yeast-form and filamentous-form cells were compared. Disparate data types, including genes implicated by expression change, filamentation genes known previously through a phenotype, protein-protein interaction data, and protein-metabolite interaction data were integrated as the nodes and edges of a filamentation-network graph. Application of a network-clustering method revealed 47 clusters in the data. The correspondence of the clusters to modules is supported by significant coordinated expression change among cluster co-member genes, and the quantitative identification of collective functions controlling cell properties. The modular abstraction of the filamentation network enables the association of filamentous-form cell properties with the activation or repression of specific biological processes, and suggests hypotheses. A module-derived hypothesis was tested. It was found that the 26S proteasome regulates filamentous-form growth.
Collapse
Affiliation(s)
- Susanne Prinz
- Institute for Systems Biology, Seattle, Washington 98103, USA
| | | | | | | | | | | | | |
Collapse
|
66
|
Taylor JS, Reid TS, Terry KL, Casey PJ, Beese LS. Structure of mammalian protein geranylgeranyltransferase type-I. EMBO J 2004; 22:5963-74. [PMID: 14609943 PMCID: PMC275430 DOI: 10.1093/emboj/cdg571] [Citation(s) in RCA: 108] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Protein geranylgeranyltransferase type-I (GGTase-I), one of two CaaX prenyltransferases, is an essential enzyme in eukaryotes. GGTase-I catalyzes C-terminal lipidation of >100 proteins, including many GTP- binding regulatory proteins. We present the first structural information for mammalian GGTase-I, including a series of substrate and product complexes that delineate the path of the chemical reaction. These structures reveal that all protein prenyltransferases share a common reaction mechanism and identify specific residues that play a dominant role in determining prenyl group specificity. This hypothesis was confirmed by converting farnesyltransferase (15-C prenyl substrate) into GGTase-I (20-C prenyl substrate) with a single point mutation. GGTase-I discriminates against farnesyl diphosphate (FPP) at the product turnover step through the inability of a 15-C FPP to displace the 20-C prenyl-peptide product. Understanding these key features of specificity is expected to contribute to optimization of anti-cancer and anti-parasite drugs.
Collapse
Affiliation(s)
- Jeffrey S Taylor
- Department of Biochemistry, Duke University Medical Center, Durham, NC 27710, USA
| | | | | | | | | |
Collapse
|
67
|
Gutzkow KB, Låhne HU, Naderi S, Torgersen KM, Skålhegg B, Koketsu M, Uehara Y, Blomhoff HK. Cyclic AMP inhibits translation of cyclin D3 in T lymphocytes at the level of elongation by inducing eEF2-phosphorylation. Cell Signal 2003; 15:871-81. [PMID: 12834812 DOI: 10.1016/s0898-6568(03)00038-x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The purpose of the present study was to understand the mechanism by which activated protein kinase A (PKA) leads to down-regulation of cyclin D3 in lymphocytes. By using Jurkat cells as a model system, we have been able to demonstrate that cyclin D3 is reduced at the level of translation by inhibition of elongation. One of the important factors involved in translational elongation is the eukaryotic elongation factor 2 (eEF2). eEF2 promotes translation in its unphosphorylated form, and we observed a rapid phosphorylation of the eEF2-protein upon forskolin treatment. When using specific inhibitors of the eEF2-kinase prior to forskolin treatment, we were able to inhibit the increased phosphorylation of eEF2. Furthermore, inhibition of eEF2-kinase prevented the forskolin-mediated down-regulation of cyclin D3. Taken together, it appears that activation of PKA in Jurkat cells reduces the expression of cyclin D3 at the level of translational elongation by increasing the phosphorylation of eEF2 and thereby inhibiting its activity.
Collapse
Affiliation(s)
- Kristine B Gutzkow
- Institute of Medical Biochemistry, University of Oslo, PO Box 1112, Blindern, N-0317, Oslo, Norway
| | | | | | | | | | | | | | | |
Collapse
|
68
|
Sizemore ST, Paietta JV. Cloning and characterization of scon-3+, a new member of the Neurospora crassa sulfur regulatory system. EUKARYOTIC CELL 2002; 1:875-83. [PMID: 12477788 PMCID: PMC138751 DOI: 10.1128/ec.1.6.875-883.2002] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2002] [Accepted: 08/21/2002] [Indexed: 11/20/2022]
Abstract
The sulfur regulatory system of Neurospora crassa consists of a group of sulfur-regulated structural genes (e.g., arylsulfatase) that are under coordinate control of the CYS3 positive regulator and sulfur controller (SCON) negative regulators. Here we report on the cloning of scon-3(+), which encodes a polypeptide of 171 amino acids and is a Skp1 family homolog. Repeat-induced point mutation of scon-3(+) resulted in a phenotype of constitutive expression of arylsulfatase, a phenotype consistent with other sulfur controller mutants. Northern analysis indicated that, unlike other members of the sulfur regulatory system, expression of scon-3(+) is not under the direct control of the CYS3 transcriptional activator. In particular, scon-3(+) mRNA was detectable under sulfur repressing or derepressing conditions in a Deltacys-3 mutant. In yeast, Skp1p and an F-box protein binding partner are core constituents of a class of E3 ubiquitin ligases known as SCF complexes. The N. crassa negative regulator SCON2 contains an F-box motif essential for the operation of the sulfur regulatory system and suggests a role for an SCF complex in the N. crassa sulfur regulatory system. A crucial set of experiments, by using a yeast two-hybrid approach with confirming coimmunoprecipitation assays, demonstrated that SCON3 interacts with SCON2 in a manner dependent upon the F-box motif of SCON2. The protein-protein interaction detected between SCON2 and SCON3 represents the initial demonstration in a filamentous fungus of functional interaction between putative core components of a SCF complex.
Collapse
Affiliation(s)
- Steven T Sizemore
- Department of Biochemistry and Molecular Biology, Wright State University, Dayton, Ohio 45435, USA
| | | |
Collapse
|
69
|
Zhu Z, Kirschner M. Regulated proteolysis of Xom mediates dorsoventral pattern formation during early Xenopus development. Dev Cell 2002; 3:557-68. [PMID: 12408807 DOI: 10.1016/s1534-5807(02)00270-8] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
To identify a regulatory role for proteolysis during early Xenopus development, we developed a biochemical screen for proteins that are degraded in an embryonic stage-specific manner. We found that Xom, a homeobox transcriptional repressor of dorsal-specific genes, was degraded precipitously during early gastrulation. Xom degradation is regulated by phosphorylation at a GSK3-like consensus site and is most likely mediated by the SCF-beta-TRCP complex. Expression of nondegradable Xom represses transcription of dorsal genes much more effectively than wild-type Xom and results in a more strongly ventralized phenotype. We propose that regulated Xom proteolysis plays an essential role in the establishment of the dorsoventral axis, by converting a gradient in BMP abundance into a sharp dorsoventral pattern.
Collapse
Affiliation(s)
- Zhenglun Zhu
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | | |
Collapse
|
70
|
Harper JW, Burton JL, Solomon MJ. The anaphase-promoting complex: it's not just for mitosis any more. Genes Dev 2002; 16:2179-206. [PMID: 12208841 DOI: 10.1101/gad.1013102] [Citation(s) in RCA: 372] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Affiliation(s)
- J Wade Harper
- Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, Texas 77030, USA.
| | | | | |
Collapse
|
71
|
Ulrich HD. Natural substrates of the proteasome and their recognition by the ubiquitin system. Curr Top Microbiol Immunol 2002; 268:137-74. [PMID: 12083004 DOI: 10.1007/978-3-642-59414-4_6] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The multitude of natural substrates of the 26S proteasome demonstrates convincingly the diversity and flexibility of the ubiquitin/proteasome system: at the same time, the number of pathways in which ubiquitin-dependent degradation is involved highlights the importance of regulated proteolysis for cellular metabolism. This review has addressed recent advances in our understanding of the principles that govern the recognition and targeting of potential substrates. While the mechanism of ubiquitin activation and conjugation is largely understood, the determination of substrate specificity by ubiquitin protein ligases remains a field of active research. Several conserved degradation signals within substrate proteins have been identified, and it is becoming increasingly clear that these serve as docking sites for specific sets of E3s, which in turn adhere to a number of well-defined strategies for the recognition of these motifs. In particular, RING finger proteins are now emerging as a new and apparently widespread class of ubiquitin ligases. The discovery of more and more E3s will undoubtedly reveal even better the common principles in architecture and mechanisms of this class of enzymes. In contrast to substrate recognition by the ubiquitin conjugation system, the way in which a ubiquitylated protein is delivered to the 26S proteasome is poorly understood. There is no doubt that multiubiquitin chains serve as the principal determinant for recognition by the proteasome, and a number of receptors and candidate targeting factors are known, some of which are associated with the proteasome itself; however, unresolved issues are the significance of the different geometries that alternatively linked multiubiquitin chains can adopt, the role of transport between subcellular compartments, as well as the participation of chaperones in the delivery step. Finally, the analysis of ubiquitin-independent, substrate-specific targeting mechanisms, such as the AZ-dependent degradation of ODC, may provide unexpected answers to questions about protein recognition by the 26S proteasome.
Collapse
Affiliation(s)
- H D Ulrich
- Max Planck Institute for Terrestrial Microbiology, Department of Organismic Interactions, Karl-von-Frisch-Strasse, 35043 Marburg/Lahn, Germany
| |
Collapse
|
72
|
Berset C, Griac P, Tempel R, La Rue J, Wittenberg C, Lanker S. Transferable domain in the G(1) cyclin Cln2 sufficient to switch degradation of Sic1 from the E3 ubiquitin ligase SCF(Cdc4) to SCF(Grr1). Mol Cell Biol 2002; 22:4463-76. [PMID: 12052857 PMCID: PMC133886 DOI: 10.1128/mcb.22.13.4463-4476.2002] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Degradation of Saccharomyces cerevisiae G(1) cyclins Cln1 and Cln2 is mediated by the ubiquitin-proteasome pathway and involves the SCF E3 ubiquitin-ligase complex containing the F-box protein Grr1 (SCF(Grr1)). Here we identify the domain of Cln2 that confers instability and describe the signals in Cln2 that result in binding to Grr1 and rapid degradation. We demonstrate that mutants of Cln2 that lack a cluster of four Cdc28 consensus phosphorylation sites are highly stabilized and fail to interact with Grr1 in vivo. Since one of the phosphorylation sites lies within the Cln2 PEST motif, a sequence rich in proline, aspartate or glutamate, serine, and threonine residues found in many unstable proteins, we fused various Cln2 C-terminal domains containing combinations of the PEST and the phosphoacceptor motifs to stable reporter proteins. We show that fusion of the Cln2 domain to a stabilized form of the cyclin-dependent kinase inhibitor Sic1 (Delta N-Sic1), a substrate of SCF(Cdc4), results in degradation in a phosphorylation-dependent manner. Fusion of Cln2 degradation domains to Delta N-Sic1 switches degradation of Sic1 from SCF(Cdc4) to SCF(Grr1). Delta N-Sic1 fused with a Cln2 domain containing the PEST motif and four phosphorylation sites binds to Grr1 and is unstable and ubiquitinated in vivo. Interestingly, the phosphoacceptor domain of Cln2 binds to Grr1 but is not ubiquitinated and is stable. In summary, we have identified a small transferable domain in Cln2 that can redirect a stabilized SCF(Cdc4) target for SCF(Grr1)-mediated degradation by the ubiquitin-proteasome pathway.
Collapse
Affiliation(s)
- Catherine Berset
- Department of Molecular and Medical Genetics, Oregon Health and Science University, Portland, Oregon 97201, USA
| | | | | | | | | | | |
Collapse
|
73
|
Calzada A, Bueno A. Genes involved in the initiation of DNA replication in yeast. INTERNATIONAL REVIEW OF CYTOLOGY 2002; 212:133-207. [PMID: 11804036 DOI: 10.1016/s0074-7696(01)12005-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/23/2023]
Abstract
Replication and segregation of the information contained in genomic DNA are strictly regulated processes that eukaryotic cells alternate to divide successfully. Experimental work on yeast has suggested that this alternation is achieved through oscillations in the activity of a serine/threonine kinase complex, CDK, which ensures the timely activation of DNA synthesis. At the same time, this CDK-mediated activation sets up the basis of the mechanism that ensures ploidy maintenance in eukaryotes. DNA synthesis is initiated at discrete sites of the genome called origins of replication on which a prereplicative complex (pre-RC) of different protein subunits is formed during the G1 phase of the cell division cycle. Only after pre-RCs are formed is the genome competent to be replicated. Several lines of evidence suggest that CDK activity prevents the assembly of pre-RCs ensuring single rounds of genome replication during each cell division cycle. This review offers a descriptive discussion of the main molecular events that a unicellular eukaryote such as the budding yeast Saccharomyces cerevisiae undergoes to initiate DNA replication.
Collapse
Affiliation(s)
- Arturo Calzada
- Instituto de Microbiología--Bioquímica/Centro de Investigación del Cancer, Departamento de Microbiología y Genética, Edificio Departamental, CSIC/Universidad de Salamanca, Spain
| | | |
Collapse
|
74
|
Sanz M, Trilla JA, Duran A, Roncero C. Control of chitin synthesis through Shc1p, a functional homologue of Chs4p specifically induced during sporulation. Mol Microbiol 2002; 43:1183-95. [PMID: 11918806 DOI: 10.1046/j.1365-2958.2002.02812.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The Saccharomyces cerevisiae SHC1 gene encodes a protein with a high homology to Chs4p, a positive regulator of chitin synthase III (CSIII) during vegetative growth. SHC1 is not expressed during vegetative growth but is strongly induced during sporulation as a mid-late gene. shc1/shc1 mutants do not show any defect in the total rate of sporulation and meiosis occurs normally. However, shc1/shc1 ascospores be-come highly permeable to DAPI, much more sensitive to glusulase treatment, and have very low levels of chitosan in their cell walls. All these observations indicate that Shc1p is required for proper maturation of the ascospore through its participation in the synthesis of the chitosan layer. Lack of SHC1 during sporulation can be partially compensated by over-expression of the CHS4 gene. During vegetative growth, SHC1 has no apparent function but, when ectopically overexpressed, it can substitute Chs4p as an activator of the CSIII activity; however, Shc1p fails to localize it properly, as Chs4p does. In conclusion, S. cerevisiae contains two functionally redundant genes in the control of CSIII activity: CHS4, whose function is restricted to vegetative growth because Chs4p is rapidly degraded during sporulation, and SHC1, whose function in cell wall ascospore assembly is transcriptionally restricted to the sporulation process.
Collapse
Affiliation(s)
- Maria Sanz
- Instituto de Microbiología Bioquímica, Consejo Superior de Investigaciones Científicas/Universidad de Salamanca, 37007-Salamanca, Spain
| | | | | | | |
Collapse
|
75
|
Abstract
Cellular changes in state can be dictated by complex all-or-nothing switches built from ultrasensitive protein kinase cascades, positive-feedback loops and other mechanisms. Recent work has established that phosphorylation-driven protein destruction through the SCF ubiquitin-ligase pathway can also occur in a switch-like manner. In this context, multiple phosphorylation events are used to set a threshold for substrate targeting, thereby providing a framework for understanding the inter-relationship between protein phosphorylation and ubiquitin-mediated proteolysis.
Collapse
|
76
|
Edgington NP, Futcher B. Relationship between the function and the location of G1 cyclins inS. cerevisiae. J Cell Sci 2001; 114:4599-611. [PMID: 11792824 DOI: 10.1242/jcs.114.24.4599] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The Saccharomyces cerevisiae cyclin-dependent kinase Cdc28 forms complexes with nine different cyclins to promote cell division. These nine cyclin-Cdc28 complexes have different roles, but share the same catalytic subunit; thus, it is not clear how substrate specificity is achieved. One possible mechanism is specific sub-cellular localization of specific complexes. We investigated the location of two G1 cyclins using fractionation and microscopy. In addition, we developed ‘forced localization’ cassettes, which direct proteins to particular locations, to test the importance of localization. Cln2 was found in both nucleus and cytoplasm. A substrate of Cln2, Sic1, was also in both compartments. Cytoplasmic Cln2 was concentrated at sites of polarized growth. Forced localization showed that some functions of Cln2 required a cytoplasmic location, while other functions required a nuclear location. In addition, one function apparently required shuttling between the two compartments. The G1 cyclin Cln3 required nuclear localization. An autonomous, nuclear localization sequence was found near the C-terminus of Cln3. Our data supports the hypothesis that Cln2 and Cln3 have distinct functions and locations, and the specificity of cyclin-dependent kinases is mediated in part by subcellular location.
Collapse
Affiliation(s)
- N P Edgington
- Department of Molecular Genetics and Microbiology, Life Sciences Bldg., SUNY at Stony Brook, Stony Brook, NY 11794-5222, USA
| | | |
Collapse
|
77
|
Nash P, Tang X, Orlicky S, Chen Q, Gertler FB, Mendenhall MD, Sicheri F, Pawson T, Tyers M. Multisite phosphorylation of a CDK inhibitor sets a threshold for the onset of DNA replication. Nature 2001; 414:514-21. [PMID: 11734846 DOI: 10.1038/35107009] [Citation(s) in RCA: 607] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
SCF ubiquitin ligases target phosphorylated substrates for ubiquitin-dependent proteolysis by means of adapter subunits called F-box proteins. The F-box protein Cdc4 captures phosphorylated forms of the cyclin-dependent kinase inhibitor Sic1 for ubiquitination in late G1 phase, an event necessary for the onset of DNA replication. The WD40 repeat domain of Cdc4 binds with high affinity to a consensus phosphopeptide motif (the Cdc4 phospho-degron, CPD), yet Sic1 itself has many sub-optimal CPD motifs that act in concert to mediate Cdc4 binding. The weak CPD sites in Sic1 establish a phosphorylation threshold that delays degradation in vivo, and thereby establishes a minimal G1 phase period needed to ensure proper DNA replication. Multisite phosphorylation may be a more general mechanism to set thresholds in regulated protein-protein interactions.
Collapse
Affiliation(s)
- P Nash
- Programme in Molecular Biology and Cancer, Samuel Lunenfeld Research Institute, Mount Sinai Hospital, 600 University Avenue, Toronto M5G 1X5, Canada
| | | | | | | | | | | | | | | | | |
Collapse
|
78
|
Ceccarelli E, Mann C. A Cdc28 mutant uncouples G1 cyclin phosphorylation and ubiquitination from G1 cyclin proteolysis. J Biol Chem 2001; 276:41725-32. [PMID: 11527976 DOI: 10.1074/jbc.m107087200] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Proteolysis of the yeast G(1) cyclins is triggered by their Cdc28-dependent phosphorylation. Phosphorylated Cln1 and Cln2 are ubiquitinated by the SCF-Grr1 complex and then degraded by the 26 S proteasome. In this study, we identified a cak1 allele in a genetic screen for mutants that stabilize the yeast G(1) cyclins. Further characterization showed that Cln2HA was hypophosphorylated, unable to bind Cdc28, and stabilized in cak1 mutants at the restrictive temperature. Hypophosphorylation of Cln2HA could thus explain its stabilization. To test this possibility, we expressed a Cak1-independent mutant of Cdc28 (Cdc28-43244) in cak1 mutants and found that Cln2HA phosphorylation was restored, but surprisingly, the phospho-Cln2HA was stabilized. When bound to Cdc28-43244, Cln2HA was recognized and polyubiquitinated by SCF-Grr1. The Cdc28-43244 mutant thus reveals an unexpected complexity in the degradation of polyubiquitinated Cln2HA by the proteasome.
Collapse
Affiliation(s)
- E Ceccarelli
- Service de Biochimie et de Génétique Moléculaire, CEA/Saclay, F-91191 Gif-sur-Yvette, Cedex, France
| | | |
Collapse
|
79
|
Miller ME, Cross FR. Mechanisms controlling subcellular localization of the G(1) cyclins Cln2p and Cln3p in budding yeast. Mol Cell Biol 2001; 21:6292-311. [PMID: 11509671 PMCID: PMC87357 DOI: 10.1128/mcb.21.18.6292-6311.2001] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Different G(1) cyclins confer functional specificity to the cyclin-dependent kinase (Cdk) Cdc28p in budding yeast. The Cln3p G(1) cyclin is localized primarily to the nucleus, while Cln2p is localized primarily to the cytoplasm. Both binding to Cdc28p and Cdc28p-dependent phosphorylation in the C-terminal region of Cln2p are independently required for efficient nuclear depletion of Cln2p, suggesting that this process may be physiologically regulated. The accumulation of hypophosphorylated Cln2 in the nucleus is an energy-dependent process, but may not involve the RAN GTPase. Phosphorylation of Cln2p is inefficient in small newborn cells obtained by elutriation, and this lowered phosphorylation correlates with reduced Cln2p nuclear depletion in newborn cells. Thus, Cln2p may have a brief period of nuclear residence early in the cell cycle. In contrast, the nuclear localization pattern of Cln3p is not influenced by Cdk activity. Cln3p localization requires a bipartite nuclear localization signal (NLS) located at the C terminus of the protein. This sequence is required for nuclear localization of Cln3p and is sufficient to confer nuclear localization to green fluorescent protein in a RAN-dependent manner. Mislocalized Cln3p, lacking the NLS, is much less active in genetic assays specific for Cln3p, but more active in assays normally specific for Cln2p, consistent with the idea that Cln3p localization explains a significant part of Clnp functional specificity.
Collapse
Affiliation(s)
- M E Miller
- The Rockefeller University, New York, New York 10021, USA
| | | |
Collapse
|
80
|
Abstract
Phosphorylation of proteins on serine and threonine residues has traditionally been viewed as a means to allosterically regulate catalytic activity. Research within the past five years, however, has revealed that serine/threonine phosphorylation can also directly result in the formation of multimolecular signaling complexes through specific interactions between phosphoserine/threonine (pSer/Thr)-binding modules and phosphorylated sequence motifs. pSer/Thr-binding proteins and domains currently include 14-3-3, WW domains, forkhead-associated domains, and, tentatively, WD40 repeats and leucine-rich regions. It seems likely that additional modules will be found in the future. The amino acid sequences recognized by these pSer/Thr-binding modules show partial overlap with the optimal phosphorylation motifs for different protein kinase subfamilies, allowing the formation of specific signaling complexes to be controlled through combinatorial interactions between particular upstream kinases and a particular binding module. The structural basis for pSer/Thr binding differs dramatically between 14-3-3 proteins, WW domains and forkhead-associated domains, suggesting that their pSer/Thr binding function was acquired through convergent evolution.
Collapse
Affiliation(s)
- M B Yaffe
- Center for Cancer Research E18-580, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, USA.
| | | |
Collapse
|
81
|
Hsiung YG, Chang HC, Pellequer JL, La Valle R, Lanker S, Wittenberg C. F-box protein Grr1 interacts with phosphorylated targets via the cationic surface of its leucine-rich repeat. Mol Cell Biol 2001; 21:2506-20. [PMID: 11259599 PMCID: PMC86883 DOI: 10.1128/mcb.21.7.2506-2520.2001] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The flexibility and specificity of ubiquitin-dependent proteolysis are mediated, in part, by the E3 ubiquitin ligases. One class of E3 enzymes, SKp1/cullin/F-box protein (SCF), derives its specificity from F-box proteins, a heterogeneous family of adapters for target protein recognition. Grr1, the F-box component of SCF(Grr1), mediates the interaction with phosphorylated forms of the G(1) cyclins Cln1 and Cln2. We show that binding of Cln2 by SCF(Grr1) was dependent upon its leucine-rich repeat (LRR) domain and its carboxy terminus. Our structural model for the Grr1 LRR predicted a high density of positive charge on the concave surface of the characteristic horseshoe structure. We hypothesized that specific basic residues on the predicted concave surface are important for recognition of phosphorylated Cln2. We show that point mutations that converted the basic residues on the concave surface but not those on the convex surface to neutral or acidic residues interfered with the capacity of Grr1 to bind to Cln2. The same mutations resulted in the stabilization of Cln2 and Gic2 and also in a spectrum of phenotypes characteristic of inactivation of GRR1, including hyperpolarization and enhancement of pseudohyphal growth. It was surprising that the same residues were not important for the role of Grr1 in nutrient-regulated transcription of HXT1 or AGP1. We concluded that the cationic nature of the concave surface of the Grr1 LRR is critical for the recognition of phosphorylated targets of SCF(Grr1) but that other properties of Grr1 are required for its other functions.
Collapse
Affiliation(s)
- Y G Hsiung
- Department of Molecular Biology, The Scripps Research Institute, La Jolla, California 92037, USA
| | | | | | | | | | | |
Collapse
|
82
|
Hautbergue G, Goguel V. Activation of the cyclin-dependent kinase CTDK-I requires the heterodimerization of two unstable subunits. J Biol Chem 2001; 276:8005-13. [PMID: 11118453 DOI: 10.1074/jbc.m010162200] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
RNA polymerase II CTD kinases are key elements in the control of mRNA synthesis. They constitute a family of cyclin-dependent kinases activated by C-type cyclins. Unlike most cyclin-dependent kinase complexes, which are composed of a catalytic and a regulatory subunit, the yeast CTD kinase I complex contains three specific subunits: a kinase subunit (Ctk1), a cyclin subunit (Ctk2), and a third subunit (Ctk3) of unknown function that does not exhibit any similarity to known proteins. Like the Ctk2 cyclin that is regulated at the level of protein turnover, Ctk3 is an unstable protein processed through a ubiquitin-proteasome pathway. Interestingly, Ctk2 and Ctk3 physical interaction is required to protect both subunits from degradation, pointing to a new mechanism for cyclin turnover regulation. We also show that Ctk2 and Ctk3 can each interact independently with the kinase. However, despite the formation of CDK/cyclin complexes in vitro, the Ctk2 cyclin is unable to activate its CDK: both Ctk2 and Ctk3 are required for Ctk1 CTD kinase activation. The different specific features governing CTDK-I regulation probably reflect requirement for the transcriptional response to multiple growth conditions.
Collapse
Affiliation(s)
- G Hautbergue
- Service de Biochimie et Génétique Moléculaire, CEA/Saclay, Gif sur Yvette 91191, France
| | | |
Collapse
|
83
|
Barette C, Jariel-Encontre I, Piechaczyk M, Piette J. Human cyclin C protein is stabilized by its associated kinase cdk8, independently of its catalytic activity. Oncogene 2001; 20:551-62. [PMID: 11313987 DOI: 10.1038/sj.onc.1204129] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2000] [Revised: 11/10/2000] [Accepted: 11/23/2000] [Indexed: 01/21/2023]
Abstract
Cyclin C belongs to the cyclin family of proteins that control cell cycle transitions through activation of specific catalytic subunits, the cyclin-dependent kinases (CDKs). However, there is as yet no evidence for any role of cyclin C and its partner, cdk8, in cell cycle regulation. Rather, the cyclin C-cdk8 complex was found associated with the RNA polymerase II transcription machinery. The periodic degradation of bona fide cyclins is crucial for cell-cycle progression and depends on the catalytic activity of the associated CDK. Here we show that endogenous cyclin C protein is quite stable with a half-life of 4 h. In contrast, exogenously expressed cyclin C is very unstable (half-life 15 min) and degraded by the ubiquitin-proteasome pathway. Co-expression with its associated cdk, however, strongly stabilizes cyclin C and results in a protein half-life near that of endogenous cyclin C. In stark contrast to data reported for other members of the cyclin family, both catalytically active and inactive cdk8 induce cyclin C stabilization. Moreover, this stabilization is accompanied in both cases by phosphorylation of the cyclin, which is not detectable when unstable. Our results indicate that cyclin C has apparently diverged from other cyclins in the regulation of its stability by its CDK partner.
Collapse
Affiliation(s)
- C Barette
- Institut de Genetique Moleculaire de Montpellier, CNRS UMR 5535, IFR24, 1919, route de Mende, 34293 Montpellier Cedex 5, France
| | | | | | | |
Collapse
|
84
|
Haase SB, Winey M, Reed SI. Multi-step control of spindle pole body duplication by cyclin-dependent kinase. Nat Cell Biol 2001; 3:38-42. [PMID: 11146624 DOI: 10.1038/35050543] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Organelles called centrosomes in metazoans or spindle pole bodies (SPBs) in yeast direct the assembly of a bipolar spindle that is essential for faithful segregation of chromosomes during mitosis. Abnormal accumulation of multiple centrosomes leads to genome instability, and has been observed in both tumour cells and cells with targeted mutations in tumour-suppressor genes. The defects that lead to centrosome amplification are not understood. We have recapitulated the multiple-centrosome phenotype in budding yeast by disrupting the activity of specific cyclin-dependent kinase (CDK) complexes. Our observations are reminiscent of mechanisms that govern DNA replication, and show that specific cyclin/CDK activities function both to promote SPB duplication and to prevent SPB reduplication.
Collapse
Affiliation(s)
- S B Haase
- Department of Molecular Biology, The Scripps Research Institute, La Jolla, California 94035, USA
| | | | | |
Collapse
|
85
|
Colón-Carmona A, Chen DL, Yeh KC, Abel S. Aux/IAA proteins are phosphorylated by phytochrome in vitro. PLANT PHYSIOLOGY 2000; 124:1728-38. [PMID: 11115889 PMCID: PMC59870 DOI: 10.1104/pp.124.4.1728] [Citation(s) in RCA: 164] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2000] [Revised: 09/18/2000] [Accepted: 09/25/2000] [Indexed: 05/18/2023]
Abstract
Auxin/indole-3-acetic acid (Aux/IAA) genes encode short-lived transcription factors that are induced as a primary response to the plant growth hormone IAA or auxin. Gain-of-function mutations in Arabidopsis genes, SHY2/IAA3, AXR3/IAA17, and AXR2/IAA7 cause pleiotropic phenotypes consistent with enhanced auxin responses, possibly by increasing Aux/IAA protein stability. Semidominant mutations shy2-1D, shy2-2, axr3-1, and axr2-1 induce ectopic light responses in dark-grown seedlings. Because genetic studies suggest that the shy2-1D and shy2-2 mutations bypass phytochrome requirement for certain aspects of photomorphogenesis, we tested whether SHY2/IAA3 and related Aux/IAA proteins interact directly with phytochrome and whether they are substrates for its protein kinase activity. Here we show that recombinant Aux/IAA proteins from Arabidopsis and pea (Pisum sativum) interact in vitro with recombinant phytochrome A from oat (Avena sativa). We further show that recombinant SHY2/IAA3, AXR3/IAA17, IAA1, IAA9, and Ps-IAA4 are phosphorylated by recombinant oat phytochrome A in vitro. Deletion analysis of Ps-IAA4 indicates that phytochrome A phosphorylation occurs on the N-terminal half of the protein. Metabolic labeling and immunoprecipitation studies with affinity-purified antibodies to IAA3 demonstrate increased in vivo steady-state levels of mutant IAA3 in shy2-2 plants and phosphorylation of the SHY2-2 protein in vivo. Phytochrome-dependent phosphorylation of Aux/IAA proteins is proposed to provide one molecular mechanism for integrating auxin and light signaling in plant development.
Collapse
Affiliation(s)
- A Colón-Carmona
- Department of Vegetable Crops, University of California, One Shields Avenue, Davis, California 95616, USA
| | | | | | | |
Collapse
|
86
|
Blondel M, Galan JM, Chi Y, Lafourcade C, Longaretti C, Deshaies RJ, Peter M. Nuclear-specific degradation of Far1 is controlled by the localization of the F-box protein Cdc4. EMBO J 2000; 19:6085-97. [PMID: 11080155 PMCID: PMC305831 DOI: 10.1093/emboj/19.22.6085] [Citation(s) in RCA: 105] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Far1 is a bifunctional protein that is required to arrest the cell cycle and establish cell polarity during yeast mating. Here we show that SCF(Cdc4) ubiquitylates Far1 in the nucleus, which in turn targets the multi-ubiquitylated protein to 26S proteasomes most likely located at the nuclear envelope. In response to mating pheromones, a fraction of Far1 was stabilized after its export into the cytoplasm by Ste21/Msn5. Preventing nuclear export destabilized Far1, while conversely cytoplasmic Far1 was stabilized, although the protein was efficiently phosphorylated in a Cdc28-Cln-dependent manner. The core SCF subunits Cdc53, Hrt1 and Skp1 were distributed in the nucleus and the cytoplasm, whereas the F-box protein Cdc4 was exclusively nuclear. A cytoplasmic form of Cdc4 was unable to complement the growth defect of cdc4-1 cells, but it was sufficient to degrade Far1 in the cytoplasm. Our results illustrate the importance of subcellular localization of F-box proteins, and provide an example of how an extracellular signal regulates protein stability at the level of substrate localization.
Collapse
Affiliation(s)
- M Blondel
- Swiss Institute for Experimental Cancer Research (ISREC), Chemin des Boveresses 155, 1066 Epalinges/VD, Institute of Biochemistry, University of Lausanne (UNIL), Chemin des Boveresses 155, 1066 Epalinges/VD, Switzerland
| | | | | | | | | | | | | |
Collapse
|
87
|
Abstract
Green fluorescent protein (GFP) has many advantages as a reporter molecule, but its stability makes it unsuitable for monitoring dynamic changes in gene expression, among other applications. Destabilized GFPs have been developed for bacterial and mammalian systems to counter this problem. Here, we extend such advances to the yeast model. We fused the PEST-rich 178 carboxyl-terminal residues of the G(1) cyclin Cln2 to the C terminus of yEGFP3 (a yeast- and FACS-optimized GFP variant), creating yEGFP3-Cln2(PEST). We tested the hybrid protein after integrating modules harbouring the yEGFP3 or yEGFP3-CLN2(PEST) ORFs into the Saccharomyces cerevisiae genome. yEGFP3- Cln2(PEST) had a markedly shorter half-life (t(1/2)) than yEGFP3; inhibition of protein synthesis with cycloheximide lead to a rapid decline in GFP content and fluorescence (t(1/2) approximately 30 min) in cells expressing yEGFP3-Cln2(PEST), whereas these parameters were quite stable in yEGFP3-expressing cells (t(1/2) approximately 7 h). We placed yEGFP3-CLN2(PEST) under the control of the CUP1 promoter, which is induced only transiently by copper. This transience was readily discernible with yEGFP3-Cln2(PEST), whereas yEGFP3 reported only on CUP1 switch-on, albeit more slowly than yEGFP3-Cln2(PEST). Cell cycle-regulated transcriptional activation/inactivation of the CLN2 promoter was also discernible with yEGFP3- Cln2(PEST), using cultures that were previously synchronized with nocodazole. In comparison to CLN2, expression from the ACT1 promoter was stable after release from nocodazole. We also applied a novel flow-cytometric technique for cell cycle analysis with asynchronous cultures. The marked periodicities of CLN2 and CLB2 (mitotic cyclin) transcription were readily evident from cellular yEGFP3-Cln2(PEST) levels with this non-perturbing approach. The results represent the first reported successful destabilization of a yeast-GFP. This new construct expands the range of GFP applications open to yeast workers.
Collapse
Affiliation(s)
- C Mateus
- Department of Biology, Georgia State University, University Plaza, Atlanta, GA 30303, USA
| | | |
Collapse
|
88
|
Reynard GJ, Reynolds W, Verma R, Deshaies RJ. Cks1 is required for G(1) cyclin-cyclin-dependent kinase activity in budding yeast. Mol Cell Biol 2000; 20:5858-64. [PMID: 10913169 PMCID: PMC86063 DOI: 10.1128/mcb.20.16.5858-5864.2000] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
p13(suc1) (Cks) proteins have been implicated in the regulation of cyclin-dependent kinase (CDK) activity. However, the mechanism by which Cks influences the function of cyclin-CDK complexes has remained elusive. We show here that Cks1 is required for the protein kinase activity of budding yeast G(1) cyclin-CDK complexes. Cln2 and Cdc28 subunits coexpressed in baculovirus-infected insect cells fail to exhibit protein kinase activity towards multiple substrates in the absence of Cks1. Cks1 can both stabilize Cln2-Cdc28 complexes and activate intact complexes in vitro, suggesting that it plays multiple roles in the biogenesis of active G(1) cyclin-CDK complexes. In contrast, Cdc28 forms stable, active complexes with the B-type cyclins Clb4 and Clb5 regardless of whether Cks1 is present. The levels of Cln2-Cdc28 and Cln3-Cdc28 protein kinase activity are severely reduced in cks1-38 cell extracts. Moreover, phosphorylation of G(1) cyclins, which depends on Cdc28 activity, is reduced in cks1-38 cells. The role of Cks1 in promoting G(1) cyclin-CDK protein kinase activity both in vitro and in vivo provides a simple molecular rationale for the essential role of CKS1 in progression through G(1) phase in budding yeast.
Collapse
Affiliation(s)
- G J Reynard
- Division of Biology, California Institute of Technology, Pasadena, California 91125, USA
| | | | | | | |
Collapse
|
89
|
Héricourt F, Blanc S, Redeker V, Jupin I. Evidence for phosphorylation and ubiquitinylation of the turnip yellow mosaic virus RNA-dependent RNA polymerase domain expressed in a baculovirus-insect cell system. Biochem J 2000; 349:417-25. [PMID: 10880340 PMCID: PMC1221164 DOI: 10.1042/0264-6021:3490417] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
All RNA viruses known to date encode an RNA-dependent RNA polymerase (RdRp) that is required for replication of the viral genome. We have expressed and purified the turnip yellow mosaic virus (TYMV) RdRp in insect cells using a recombinant baculovirus, either in its native form, or fused to an hexa-histidine tag. Phosphorylation of the protein was demonstrated by labelling experiments in vivo, as well as phosphatase treatment of the purified protein in vitro. Phospho amino acid analysis and immunoblotting experiments identified serine and threonine residues as being the subject of phosphorylation. Peptide mass mapping using MS analysis of a protein digest revealed that phosphorylation sites are localized within a putative PEST sequence [a sequence rich in proline (P), glutamic acid (E), serine (S) and threonine (T) residues] in the N-terminal region of the protein. Using monoclonal antibodies specific for ubiquitin conjugates, we were able to demonstrate that the TYMV RdRp is conjugated to ubiquitin molecules when expressed in insect cells. These observations suggest that the TYMV RdRp may be processed selectively by the ubiquitin/proteasome degradation system upon phosphorylation of the PEST sequence.
Collapse
Affiliation(s)
- F Héricourt
- Laboratoire de Virologie Moléculaire, Institut Jacques Monod, UMR 7592, CNRS-Universités Paris 6-Paris 7, 2 place Jussieu, 75251 Paris Cedex 05, France
| | | | | | | |
Collapse
|
90
|
Abstract
Ubiquitin-mediated proteolysis of cell cycle regulators is a crucial process during the cell cycle. The anaphase-promoting complex (APC) is a large, multiprotein complex whose E3-ubiquitin ligase activity is required for the ubiquitination of mitotic cyclins and other regulatory proteins that are targeted for destruction during cell division. The recent identification of new APC subunits and regulatory proteins has begun to reveal some of the intricate mechanisms that govern APC regulation. One mechanism is the use of specificity factors to impose temporal control over substrate degradation. A second mechanism is the APC-mediated proteolysis of specific APC regulators. Finally, components of both the APC and the SCF E3 ubiquitin-ligase complex contain several conserved sequence motifs, including WD-40 repeats and cullin homology domains, which suggest that both complexes may use a similar mechanism for substrate ubiquitination.
Collapse
Affiliation(s)
- A M Page
- Center for Molecular Medicine and Therapeutics, University of British Columbia, Vancouver, Canada.
| | | |
Collapse
|
91
|
Dutertre S, Ababou M, Onclercq R, Delic J, Chatton B, Jaulin C, Amor-Guéret M. Cell cycle regulation of the endogenous wild type Bloom's syndrome DNA helicase. Oncogene 2000; 19:2731-8. [PMID: 10851073 DOI: 10.1038/sj.onc.1203595] [Citation(s) in RCA: 92] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Bloom's syndrome (BS) is a rare human autosomal recessive disorder characterized by an increased risk to develop cancer of all types. BS cells are characterized by a generalized genetic instability including a high level of sister chromatid exchanges. BS arises through mutations in both alleles of the BLM gene which encodes a 3' - 5' DNA helicase identified as a member of the RecQ family. We developed polyclonal antibodies specific for the NH2- and COOH-terminal region of BLM. Using these antibodies, we analysed BLM expression during the cell cycle and showed that the BLM protein accumulates to high levels in S phase, persists in G2/M and sharply declines in G1, strongly suggestive of degradation during mitosis. The BLM protein is subject to post-translational modifications in mitosis, as revealed by slow migrating forms of BLM found in both demecolcine-treated cells and in mitotic cells isolated from non-treated asynchronous populations. Phosphatase treatment indicated that phosphorylation events were solely responsible for the appearance of the retarded moieties, a possible signal for subsequent degradation. Together, these results are consistent with a role of BLM in a replicative (S phase) and/or post-replicative (G2 phase) process. Oncogene (2000).
Collapse
Affiliation(s)
- S Dutertre
- Centre National de la Recherche Scientifique, Unité Mixte de Recherche 1598, Institut Gustave Roussy, 39 Rue Camille Desmoulins, 94 805 Villejuif Cedex, France
| | | | | | | | | | | | | |
Collapse
|
92
|
Ross KE, Kaldis P, Solomon MJ. Activating phosphorylation of the Saccharomyces cerevisiae cyclin-dependent kinase, cdc28p, precedes cyclin binding. Mol Biol Cell 2000; 11:1597-609. [PMID: 10793138 PMCID: PMC14870 DOI: 10.1091/mbc.11.5.1597] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Eukaryotic cell cycle progression is controlled by a family of protein kinases known as cyclin-dependent kinases (Cdks). Two steps are essential for Cdk activation: binding of a cyclin and phosphorylation on a conserved threonine residue by the Cdk-activating kinase (CAK). We have studied the interplay between these regulatory mechanisms during the activation of the major Saccharomyces cerevisiae Cdk, Cdc28p. We found that the majority of Cdc28p was phosphorylated on its activating threonine (Thr-169) throughout the cell cycle. The extent of Thr-169 phosphorylation was similar for monomeric Cdc28p and Cdc28p bound to cyclin. By varying the order of the addition of cyclin and Cak1p, we determined that Cdc28p was activated most efficiently when it was phosphorylated before cyclin binding. Furthermore, we found that a Cdc28p(T169A) mutant, which cannot be phosphorylated, bound cyclin less well than wild-type Cdc28p in vivo. These results suggest that unphosphorylated Cdc28p may be unable to bind tightly to cyclin. We propose that Cdc28p is normally phosphorylated by Cak1p before it binds cyclin. This activation pathway contrasts with that in higher eukaryotes, in which cyclin binding appears to precede activating phosphorylation.
Collapse
Affiliation(s)
- K E Ross
- Department of Cell Biology, Yale University School of Medicine, New Haven, Connecticut 06520-2114, USA
| | | | | |
Collapse
|
93
|
Calzada A, Sánchez M, Sánchez E, Bueno A. The stability of the Cdc6 protein is regulated by cyclin-dependent kinase/cyclin B complexes in Saccharomyces cerevisiae. J Biol Chem 2000; 275:9734-41. [PMID: 10734126 DOI: 10.1074/jbc.275.13.9734] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The Saccharomyces cerevisiae Cdc6 protein is necessary for the formation of prereplicative complexes that are a prerequisite for firing origins during DNA replication in the S phase. In budding yeast, the presence of Cdc6 protein is normally restricted to the G(1) phase of the cell cycle, at least partly because of its proteolytic degradation in the late G(1)/early S phase. Here we show that a Cdc28-dependent mechanism targets p57(CDC6) for degradation in mitotic-arrested budding yeast cells. Consistent with this observation, Cdc6-7 and Cdc6-8 proteins, mutants lacking Cdc28 phosphorylation sites, are stabilized relative to wild-type Cdc6. Our data also suggest a correlation between the absence of Cdc28/Clb kinase activity and Cdc6 protein stabilization, because a drop in Cdc28/Clb-associated kinase activity allows mitotic-arrested cells to accumulate Cdc6 protein. Finally, we also show that cdc28 temperature-sensitive G(1) mutants accumulate Cdc6 protein because of a post-transcriptional mechanism. Our data suggest that budding yeast cells target Cdc6 for degradation through a Cdc28-dependent mechanism in each cell cycle.
Collapse
Affiliation(s)
- A Calzada
- Instituto de Microbiología-Bioquímica/Centro de Investigación del Cáncer, Departamento de Microbiología y Genética, Edificio Departamental, Campus Miguel de Unamuno, Consejo Superior de Investigaciones Científicas/Universidad de Salamancas, Spain
| | | | | | | |
Collapse
|
94
|
Meimoun A, Holtzman T, Weissman Z, McBride HJ, Stillman DJ, Fink GR, Kornitzer D. Degradation of the transcription factor Gcn4 requires the kinase Pho85 and the SCF(CDC4) ubiquitin-ligase complex. Mol Biol Cell 2000; 11:915-27. [PMID: 10712509 PMCID: PMC14820 DOI: 10.1091/mbc.11.3.915] [Citation(s) in RCA: 113] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/1999] [Revised: 11/04/1999] [Accepted: 01/04/2000] [Indexed: 11/11/2022] Open
Abstract
Gcn4, a yeast transcriptional activator that promotes the expression of amino acid and purine biosynthesis genes, is rapidly degraded in rich medium. Here we report that SCF(CDC4), a recently characterized protein complex that acts in conjunction with the ubiquitin-conjugating enzyme Cdc34 to degrade cell cycle regulators, is also necessary for the degradation of the transcription factor Gcn4. Degradation of Gcn4 occurs throughout the cell cycle, whereas degradation of the known cell cycle substrates of Cdc34/SCF(CDC4) is cell cycle regulated. Gcn4 ubiquitination and degradation are regulated by starvation for amino acids, whereas the degradation of the cell cycle substrates of Cdc34/SCF(CDC4) is unaffected by starvation. We further show that unlike the cell cycle substrates of Cdc34/SCF(CDC4), which require phosphorylation by the kinase Cdc28, Gcn4 degradation requires the kinase Pho85. We identify the critical target site of Pho85 on Gcn4; a mutation of this site stabilizes the protein. A specific Pho85-Pcl complex that is able to phosphorylate Gcn4 on that site is inactive under conditions under which Gcn4 is stable. Thus, Cdc34/SCF(CDC4) activity is constitutive, and regulation of the stability of its various substrates occurs at the level of their phosphorylation.
Collapse
Affiliation(s)
- A Meimoun
- Department of Microbiology, Technion-B. Rappaport Faculty of Medicine, Haifa 31096, Israel
| | | | | | | | | | | | | |
Collapse
|
95
|
Yam CH, Siu WY, Lau A, Poon RY. Degradation of cyclin A does not require its phosphorylation by CDC2 and cyclin-dependent kinase 2. J Biol Chem 2000; 275:3158-67. [PMID: 10652300 DOI: 10.1074/jbc.275.5.3158] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Many cyclins are degraded by the ubiquitination/proteasome pathways involving the anaphase-promoting complex and SCF complexes. These degradations are frequently dependent on phosphorylation by cyclin-dependent kinases (CDKs), providing a self-limiting mechanism for CDK activity. Here we present evidence from in vitro and in vivo assay systems that the degradation of human cyclin A can be inhibited by kinase-inactive mutants of CDK2 and CDC2. One obvious interpretation of these results is that like other cyclins, CDK-dependent phosphorylation of the cyclin A may be involved in cyclin A degradation. Our data indicated that CDK2 can phosphorylate cyclin A on Ser-154. Site-directed mutagenesis of Ser-154 abolished the phosphorylation by recombinant CDK2 in vitro and the majority of cyclin A phosphorylation in the cell. Activation of CDK2 and binding to SKP2 or p27(KIP1) were not affected by the phosphorylation of Ser-154. Surprising, in marked contrast to cyclin E, where phosphorylation of Thr-380 by CDK2 is required for proteolysis, degradation of cyclin A was not affected by Ser-154 phosphorylation. It is likely that the stabilization of cyclin A by the kinase-inactive CDKs was mainly due to a cell cycle effect. These data suggest an important difference between the regulation of cyclin A and cyclin E.
Collapse
Affiliation(s)
- C H Yam
- Department of Biochemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | | | | | | |
Collapse
|
96
|
Rouillon A, Barbey R, Patton EE, Tyers M, Thomas D. Feedback-regulated degradation of the transcriptional activator Met4 is triggered by the SCF(Met30 )complex. EMBO J 2000; 19:282-94. [PMID: 10637232 PMCID: PMC305562 DOI: 10.1093/emboj/19.2.282] [Citation(s) in RCA: 145] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/1999] [Revised: 11/08/1999] [Accepted: 11/11/1999] [Indexed: 11/13/2022] Open
Abstract
Saccharomyces cerevisiae SCF(Met30) ubiquitin-protein ligase controls cell cycle function and sulfur amino acid metabolism. We report here that the SCF(Met30 )complex mediates the transcriptional repression of the MET gene network by triggering degradation of the transcriptional activator Met4p when intracellular S-adenosylmethionine (AdoMet) increases. This AdoMet-induced Met4p degradation is dependent upon the 26S proteasome function. Unlike Met4p, the other components of the specific transcriptional activation complexes that are assembled upstream of the MET genes do not appear to be regulated at the protein level. We provide evidence that the interaction between Met4p and the F-box protein Met30p occurs irrespective of the level of intracellular AdoMet, suggesting that the timing of Met4p degradation is not controlled by its interaction with the SCF(Met30) complex. We also demonstrate that Met30p is a short-lived protein, which localizes within the nucleus. Furthermore, transcription of the MET30 gene is regulated by intracellular AdoMet levels and is dependent upon the Met4p transcription activation function. Thus Met4p appears to control its own degradation by regulating the amount of assembled SCF(Met30) ubiquitin ligase.
Collapse
Affiliation(s)
- A Rouillon
- Centre de Génétique Moléculaire, Centre National de la Recherche Scientifique, 91198 Gif-sur-Yvette, France
| | | | | | | | | |
Collapse
|
97
|
Abstract
The ubiquitin-proteasome pathway is responsible for the major portion of specific cellular protein degradation. Ubiquitin-mediated degradation is involved in physiological regulation of many cellular processes, including cell cycle progression, differentiation, and signal transduction. Here, we review the basic mechanisms of the ubiquitin system and the various ways in which ubiquitin-mediated degradation can be modulated by physiological signals.
Collapse
Affiliation(s)
- D Kornitzer
- Department of Molecular Microbiology, The Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel.
| | | |
Collapse
|
98
|
Chen KC, Csikasz-Nagy A, Gyorffy B, Val J, Novak B, Tyson JJ. Kinetic analysis of a molecular model of the budding yeast cell cycle. Mol Biol Cell 2000; 11:369-91. [PMID: 10637314 PMCID: PMC14780 DOI: 10.1091/mbc.11.1.369] [Citation(s) in RCA: 297] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The molecular machinery of cell cycle control is known in more detail for budding yeast, Saccharomyces cerevisiae, than for any other eukaryotic organism. In recent years, many elegant experiments on budding yeast have dissected the roles of cyclin molecules (Cln1-3 and Clb1-6) in coordinating the events of DNA synthesis, bud emergence, spindle formation, nuclear division, and cell separation. These experimental clues suggest a mechanism for the principal molecular interactions controlling cyclin synthesis and degradation. Using standard techniques of biochemical kinetics, we convert the mechanism into a set of differential equations, which describe the time courses of three major classes of cyclin-dependent kinase activities. Model in hand, we examine the molecular events controlling "Start" (the commitment step to a new round of chromosome replication, bud formation, and mitosis) and "Finish" (the transition from metaphase to anaphase, when sister chromatids are pulled apart and the bud separates from the mother cell) in wild-type cells and 50 mutants. The model accounts for many details of the physiology, biochemistry, and genetics of cell cycle control in budding yeast.
Collapse
Affiliation(s)
- K C Chen
- Department of Biology, Virginia Polytechnic Institute and State University, Blacksburg Virginia 24061, USA
| | | | | | | | | | | |
Collapse
|
99
|
Abstract
Protein degradation is deployed to modulate the steady-state abundance of proteins and to switch cellular regulatory circuits from one state to another by abrupt elimination of control proteins. In eukaryotes, the bulk of the protein degradation that occurs in the cytoplasm and nucleus is carried out by the 26S proteasome. In turn, most proteins are thought to be targeted to the 26S proteasome by covalent attachment of a multiubiquitin chain. Ubiquitination of proteins requires a multienzyme system. A key component of ubiquitination pathways, the ubiquitin ligase, controls both the specificity and timing of substrate ubiquitination. This review is focused on a conserved ubiquitin ligase complex known as SCF that plays a key role in marking a variety of regulatory proteins for destruction by the 26S proteasome.
Collapse
Affiliation(s)
- R J Deshaies
- Department of Biology, California Institute of Technology, Pasadena 91125, USA.
| |
Collapse
|
100
|
Craig KL, Tyers M. The F-box: a new motif for ubiquitin dependent proteolysis in cell cycle regulation and signal transduction. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 1999; 72:299-328. [PMID: 10581972 DOI: 10.1016/s0079-6107(99)00010-3] [Citation(s) in RCA: 202] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The ubiquitin system of intracellular protein degradation controls the abundance of many critical regulatory proteins. Specificity in the ubiquitin system is determined largely at the level of substrate recognition, a step that is mediated by E3 ubiquitin ligases. Analysis of the mechanisms of phosphorylation directed proteolysis in cell cycle regulation has uncovered a new class of E3 ubiquitin ligases called SCF complexes, which are composed of the subunits Skp1, Rbx1, Cdc53 and any one of a large number of different F-box proteins. The substrate specificity of SCF complexes is determined by the interchangeable F-box protein subunit, which recruits a specific set of substrates for ubiquitination to the core complex composed of Skp1, Rbx1, Cdc53 and the E2 enzyme Cdc34. F-box proteins have a bipartite structure--the shared F-box motif links F-box proteins to Skp1 and the core complex, whereas divergent protein-protein interaction motifs selectively bind their cognate substrates. To date all known SCF substrates are recognised in a strictly phosphorylation dependent manner, thus linking intracellular signalling networks to the ubiquitin system. The plethora of different F-box proteins in databases suggests that many pathways will be governed by SCF-dependent proteolysis. Indeed, genetic analysis has uncovered roles for F-box proteins in a variety of signalling pathways, ranging from nutrient sensing in yeast to conserved developmental pathways in plants and animals. Moreover, structural analysis has revealed ancestral relationships between SCF complexes and two other E3 ubiquitin ligases, suggesting that the combinatorial use of substrate specific adaptor proteins has evolved to allow the regulation of many cellular processes. Here, we review the known signalling pathways that are regulated by SCF complexes and highlight current issues in phosphorylation dependent protein degradation.
Collapse
Affiliation(s)
- K L Craig
- Programme in Molecular Biology and Cancer, Samuel Lunenfeld Research Institute, Mount Sinai Hospital, Toronto, Canada
| | | |
Collapse
|