51
|
Martín-Galiano AJ, Díez-Fuertes F, McConnell MJ, López D. Predicted Epitope Abundance Supports Vaccine-Induced Cytotoxic Protection Against SARS-CoV-2 Variants of Concern. Front Immunol 2021; 12:732693. [PMID: 34899692 PMCID: PMC8656262 DOI: 10.3389/fimmu.2021.732693] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 11/08/2021] [Indexed: 11/13/2022] Open
Abstract
The effect of emerging SARS-CoV-2 variants on vaccine efficacy is of critical importance. In this study, the potential impact of mutations that facilitate escape from the cytotoxic cellular immune response in these new virus variants for the 551 most abundant HLA class I alleles was analyzed. Computational prediction showed that most of these alleles, that cover >90% of the population, contain enough epitopes without escape mutations in the principal SARS-CoV-2 variants. These data suggest that the cytotoxic cellular immune protection elicited by vaccination is not greatly affected by emerging SARS-CoV-2 variants.
Collapse
Affiliation(s)
- Antonio J Martín-Galiano
- Intrahospital Infection Laboratory, National Center of Microbiology, Instituto de Salud Carlos III, Majadahonda, Spain
| | - Francisco Díez-Fuertes
- Acquired Immune Deficiency Syndrome (AIDS) Immunopathology Unit, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Majadahonda, Spain
| | - Michael J McConnell
- Intrahospital Infection Laboratory, National Center of Microbiology, Instituto de Salud Carlos III, Majadahonda, Spain
| | - Daniel López
- Presentation and Immune Regulation Unit, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Majadahonda, Spain
| |
Collapse
|
52
|
Liu Z, Huang CJ, Huang YH, Pan MH, Lee MH, Yu KJ, Pfeiffer RM, Viard M, Yuki Y, Gao X, Carrington M, Chen CJ, Hildesheim A, Yang HI, REVEAL-HBV Study Group. HLA Zygosity Increases Risk of Hepatitis B Virus-Associated Hepatocellular Carcinoma. J Infect Dis 2021; 224:1796-1805. [PMID: 33852009 PMCID: PMC9633721 DOI: 10.1093/infdis/jiab207] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 04/13/2021] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Diversity in the HLA genes might be associated with disease outcomes-the heterozygote advantage hypothesis. We tested this hypothesis in relation to hepatitis B virus (HBV)-associated hepatocellular carcinoma (HCC). METHODS We utilized DNA from > 10 000 Taiwanese individuals with current or past HBV infection to examine the association between HLA diversity and critical natural history steps in the progression from HBV infection to HCC. Individuals were classified as homozygotes at a given locus when imputed to carry the same 4-digit allele for the 2 HLA alleles at that locus. RESULTS Increase in number of homozygous HLA class II loci was associated with an increased risk of chronic HBV infection (Ptrend = 1.18 × 10-7). Among chronic HBV carriers, increase in number of homozygous HLA class II loci was also associated with an increased risk of HBV-associated HCC (Ptrend = .031). For individual HLA loci, HLA-DQB1 homozygosity was significantly associated with HCC risk (adjusted hazard ratio = 1.40; 95% confidence interval, 1.06-1.84). We also found that zygosity affects risk of HCC through its ability to affect viral control. CONCLUSIONS Homozygosity at HLA class II loci, particularly HLA-DQB1, is associated with a higher risk of HBV-associated HCC.
Collapse
Affiliation(s)
- Zhiwei Liu
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, Maryland, USA
| | - Chih-Jen Huang
- Genomics Research Center, Academia Sinica, Taipei, Taiwan
| | - Yu-Han Huang
- Institute of Clinical Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Mei-Hung Pan
- Genomics Research Center, Academia Sinica, Taipei, Taiwan
| | - Mei-Hsuan Lee
- Institute of Clinical Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Kelly J Yu
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, Maryland, USA
| | - Ruth M Pfeiffer
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, Maryland, USA
| | - Mathias Viard
- Basic Science Program, Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA
| | - Yuko Yuki
- Basic Science Program, Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA
| | - Xiaojiang Gao
- Laboratory of Integrative Cancer Immunology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Mary Carrington
- Basic Science Program, Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology, and Harvard, Cambridge, Massachusetts, USA
| | - Chien-Jen Chen
- Genomics Research Center, Academia Sinica, Taipei, Taiwan
| | - Allan Hildesheim
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, Maryland, USA
| | - Hwai-I Yang
- Genomics Research Center, Academia Sinica, Taipei, Taiwan
- Institute of Clinical Medicine, National Yang-Ming University, Taipei, Taiwan
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | | |
Collapse
|
53
|
Collaboration of a Detrimental HLA-B*35:01 Allele with HLA-A*24:02 in Coevolution of HIV-1 with T Cells Leading to Poorer Clinical Outcomes. J Virol 2021; 95:e0125921. [PMID: 34523962 PMCID: PMC8577379 DOI: 10.1128/jvi.01259-21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Although mutant-specific T cells are elicited in some individuals infected with HIV-1 mutant viruses, the detailed characteristics of these T cells remain unknown. A recent study showed that the accumulation of strains expressing Nef135F, which were selected by HLA-A*24:02-restricted T cells, was associated with poor outcomes in individuals with the detrimental HLA-B*35:01 allele and that HLA-B*35:01-restricted NefYF9 (Nef135-143)-specific T cells failed to recognize target cells infected with Nef135F mutant viruses. Here, we investigated HLA-B*35:01-restricted T cells specific for the NefFF9 epitope incorporating the Nef135F mutation. Longitudinal T-cell receptor (TCR) clonotype analysis demonstrated that 3 types of HLA-B*35:01-restricted T cells (wild-type [WT] specific, mutant specific, and cross-reactive) with different T cell repertoires were elicited during the clinical course. HLA-B*35:01+ individuals possessing wild-type-specific T cells had a significantly lower plasma viral load (pVL) than those with mutant-specific and/or cross-reactive T cells, even though the latter T cells effectively recognized the mutant virus-infected cells. These results suggest that mutant-specific and cross-reactive T cells could only partially suppress HIV-1 replication in vivo. An ex vivo analysis of the T cells showed higher expression of PD-1 on cross-reactive T cells and lower expression of CD160/2B4 on the mutant-specific T cells than other T cells, implying that these inhibitory and stimulatory molecules are key to the reduced function of these T cells. In the present study, we demonstrate that mutant-specific and cross-reactive T cells do not contribute to the suppression of HIV-1 replication in HIV-1-infected individuals, even though they have the capacity to recognize mutant virus-infected cells. Thus, the collaboration of HLA-A*24:02 with the detrimental allele HLA-B*35:01 resulted in the coevolution of HIV-1 alongside virus-specific T cells, leading to poorer clinical outcomes. IMPORTANCE HIV-1 escape mutations are selected under pressure from HIV-1-specific CD8+ T cells. Accumulation of these mutations in circulating viruses impairs the control of HIV-1 by HIV-1-specific T cells. Although it is known that HIV-1-specific T cells recognizing mutant virus were elicited in some individuals infected with a mutant virus, the role of these T cells remains unclear. Accumulation of phenylalanine at HIV-1 Nef135 (Nef135F), which is selected by HLA-A*24:02-restricted T cells, led to poor clinical outcome in individuals carrying the detrimental HLA-B*35:01 allele. In the present study, we found that HLA-B*35:01-restricted mutant-specific and cross-reactive T cells were elicited in HLA-B*35:01+ individuals infected with the Nef135F mutant virus. These T cells could not effectively suppress HIV-1 replication in vivo even though they could recognize mutant virus-infected cells in vitro. Mutant-specific and cross-reactive T cells expressed lower levels of stimulatory molecules and higher levels of inhibitory molecules, respectively, suggesting a potential mechanism whereby these T cells fail to suppress HIV-1 replication in HIV-1-infected individuals.
Collapse
|
54
|
La Porta CAM, Zapperi S. Immune Profile of SARS-CoV-2 Variants of Concern. Front Digit Health 2021; 3:704411. [PMID: 34713175 PMCID: PMC8521889 DOI: 10.3389/fdgth.2021.704411] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Accepted: 06/17/2021] [Indexed: 01/11/2023] Open
Abstract
The spread of the current Sars-Cov-2 pandemics leads to the development of mutations that are constantly monitored because they could affect the efficacy of vaccines. Three recently identified mutated strains, known as variants of concern, are rapidly spreading worldwide. Here, we study possible effects of these mutations on the immune response to Sars-Cov-2 infection using NetTepi a computational method based on artificial neural networks that considers binding and stability of peptides obtained by proteasome degradation for widely represented HLA class I alleles present in human populations as well as the T-cell propensity of viral peptides that measures their immune response. Our results show variations in the number of potential highly ranked peptides ranging between 0 and 20% depending on the specific HLA allele. The results can be useful to design more specific vaccines.
Collapse
Affiliation(s)
- Caterina A M La Porta
- Center for Complexity and Biosystems, University of Milan, Milan, Italy.,Department of Environmental Science and Policy, University of Milan, Milan, Italy.,CNR - Consiglio Nazionale delle Ricerche, Istituto di Biofisica, Genoa, Italy
| | - Stefano Zapperi
- Center for Complexity and Biosystems, University of Milan, Milan, Italy.,Department of Physics, University of Milan, Milan, Italy.,CNR - Consiglio Nazionale delle Ricerche, Istituto di Chimica della Materia Condensata e di Tecnologie per l'Energia, Milan, Italy
| |
Collapse
|
55
|
Zhou YF, Xiao Y, Jin X, Di GH, Jiang YZ, Shao ZM. Integrated analysis reveals prognostic value of HLA-I LOH in triple-negative breast cancer. J Immunother Cancer 2021; 9:jitc-2021-003371. [PMID: 34615706 PMCID: PMC8496394 DOI: 10.1136/jitc-2021-003371] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/29/2021] [Indexed: 12/20/2022] Open
Abstract
Background Triple-negative breast cancers (TNBCs), especially those non-immune-inflamed tumors, have a poor prognosis and limited therapies. Human leukocyte antigen (HLA)-I not only contributes to antitumor immune response and the phenotype of the tumor microenvironment, but also is a negative predictor of outcomes after immunotherapy. However, the importance of HLA functional status in TNBCs remains poorly understood. Methods Using the largest original multiomics datasets on TNBCs, we systematically characterized the HLA-Ⅰ status of TNBCs from the perspective of HLA-Ⅰ homogeneity and loss of heterozygosity (LOH). The prognostic significance of HLA-I status was measured. To explain the potential mechanism of prognostic value in HLA-Ⅰ status, the mutational signature, copy number alteration, neoantigen and intratumoral heterogeneity were measured. Furthermore, the correlation between HLA-Ⅰ functional status and the tumor immune microenvironment was analyzed. Results LOH and homogeneity in HLA-I accounted for 18% and 21% of TNBCs, respectively. HLA-I LOH instead of HLA-I homogeneity was an independent prognostic biomarker in TNBCs. In particular, for patients with non-immune-inflamed tumors, HLA-I LOH indicated a worse prognosis than HLA-I non-LOH. Furthermore, integrated genomic and transcriptomic analysis showed that HLA-I LOH was accompanied by upregulated scores of mutational signature 3 and homologous recombination deficiency scores, which implied the failure of DNA double-strand break repair. Moreover, HLA-I LOH had higher mutation and neoantigen loads and more subclones than HLA-I non-LOH. These results indicated that although HLA-I LOH tumors with failure of DNA double-strand break repair were prone to produce neoantigens, their limited capacity for antigen presentation finally contributed to poor immune selection pressure. Conclusion Our study illustrates the genomic landscape of HLA-I functional status and stresses the prognostic significance of HLA-I LOH in TNBCs. For “cold” tumors in TNBCs, HLA-I LOH indicated a worse prognosis than HLA-I non-LOH.
Collapse
Affiliation(s)
- Yi-Fan Zhou
- Key Laboratory of Breast Cancer in Shanghai, Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai, People's Republic of China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China
| | - Yi Xiao
- Key Laboratory of Breast Cancer in Shanghai, Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai, People's Republic of China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China
| | - Xi Jin
- Key Laboratory of Breast Cancer in Shanghai, Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai, People's Republic of China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China
| | - Gen-Hong Di
- Key Laboratory of Breast Cancer in Shanghai, Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai, People's Republic of China .,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China
| | - Yi-Zhou Jiang
- Key Laboratory of Breast Cancer in Shanghai, Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai, People's Republic of China .,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China
| | - Zhi-Ming Shao
- Key Laboratory of Breast Cancer in Shanghai, Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai, People's Republic of China .,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China.,Institutes of Biomedical Sciences, Fudan University, Shanghai, People's Republic of China
| |
Collapse
|
56
|
Arnocky S, Hodges-Simeon C, Davis AC, Desmarais R, Greenshields A, Liwski R, Quillen EE, Cardenas R, Breedlove SM, Puts D. Heterozygosity of the major histocompatibility complex predicts later self-reported pubertal maturation in men. Sci Rep 2021; 11:19862. [PMID: 34615944 PMCID: PMC8494901 DOI: 10.1038/s41598-021-99334-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Accepted: 09/23/2021] [Indexed: 12/24/2022] Open
Abstract
Individual variation in the age of pubertal onset is linked to physical and mental health, yet the factors underlying this variation are poorly understood. Life history theory predicts that individuals at higher risk of mortality due to extrinsic causes such as infectious disease should sexually mature and reproduce earlier, whereas those at lower risk can delay puberty and continue to invest resources in somatic growth. We examined relationships between a genetic predictor of infectious disease resistance, heterozygosity of the major histocompatibility complex (MHC), referred to as the human leukocyte antigen (HLA) gene in humans, and self-reported pubertal timing. In a combined sample of men from Canada (n = 137) and the United States (n = 43), MHC heterozygosity predicted later self-reported pubertal development. These findings suggest a genetic trade-off between immunocompetence and sexual maturation in human males.
Collapse
Affiliation(s)
| | | | | | | | - Anna Greenshields
- Queen Elizabeth II Health Sciences Centre, Dalhousie University, Halifax, Canada
| | - Robert Liwski
- Queen Elizabeth II Health Sciences Centre, Dalhousie University, Halifax, Canada
| | | | | | | | - David Puts
- Pennsylvania State University, State College, USA
| |
Collapse
|
57
|
Féray C, Taupin JL, Sebagh M, Allain V, Demir Z, Allard MA, Desterke C, Coilly A, Saliba F, Vibert E, Azoulay D, Guettier C, Chatton A, Debray D, Caillat-Zucman S, Samuel D. Donor HLA Class 1 Evolutionary Divergence Is a Major Predictor of Liver Allograft Rejection : A Retrospective Cohort Study. Ann Intern Med 2021; 174:1385-1394. [PMID: 34424731 DOI: 10.7326/m20-7957] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
BACKGROUND The HLA evolutionary divergence (HED), a continuous metric quantifying the peptidic differences between 2 homologous HLA alleles, reflects the breadth of the immunopeptidome presented to T lymphocytes. OBJECTIVE To assess the potential effect of donor or recipient HED on liver transplant rejection. DESIGN Retrospective cohort study. SETTING Liver transplant units. PATIENTS 1154 adults and 113 children who had a liver transplant between 2004 and 2018. MEASUREMENTS Liver biopsies were done 1, 2, 5, and 10 years after the transplant and in case of liver dysfunction. Donor-specific anti-HLA antibodies (DSAs) were measured in children at the time of biopsy. The HED was calculated using the physicochemical Grantham distance for class I (HLA-A or HLA-B) and class II (HLA-DRB1 or HLA-DQB1) alleles. The influence of HED on the incidence of liver lesions was analyzed through the inverse probability weighting approach based on covariate balancing, generalized propensity scores. RESULTS In adults, class I HED of the donor was associated with acute rejection (hazard ratio [HR], 1.09 [95% CI, 1.03 to 1.16]), chronic rejection (HR, 1.20 [CI, 1.10 to 1.31]), and ductopenia of 50% or more (HR, 1.33 [CI, 1.09 to 1.62]) but not with other histologic lesions. In children, class I HED of the donor was also associated with acute rejection (HR, 1.16 [CI, 1.03 to 1.30]) independent of the presence of DSAs. There was no effect of either donor class II HED or recipient class I or class II HED on the incidence of liver lesions in adults and children. LIMITATION The DSAs were measured only in children. CONCLUSION Class I HED of the donor predicts acute or chronic rejection of liver transplant. This novel and accessible prognostic marker could orientate donor selection and guide immunosuppression. PRIMARY FUNDING SOURCE Institut National de la Santé et de la Recherche Médicale.
Collapse
Affiliation(s)
- Cyrille Féray
- Centre Hépato-Biliaire, Hôpital Paul-Brousse, Assistance Publique-Hôpitaux de Paris, Université Paris-Saclay, unité Institut National de la Santé et de la Recherche Médicale 1193, Villejuif, France (C.F., M.A., C.D., A.C., F.S., E.V., D.A., D.S.)
| | - Jean-Luc Taupin
- Laboratoire d'Immunologie et Histocompatibilité, Hôpital Saint-Louis, Assistance Publique-Hôpitaux de Paris, Université de Paris, and unité Institut National de la Santé et de la Recherche Médicale 976, Université de Paris, Paris, France (J.T., S.C.)
| | - Mylène Sebagh
- Laboratoire d'Anatomopathologie, Assistance Publique-Hôpitaux de Paris, Hôpital Paul-Brousse, Université Paris-Saclay, unité Institut National de la Santé et de la Recherche Médicale, Physiopathogénèse et traitement des maladies du Foie, and FHU Hepatinov, Villejuif, France (M.S., C.G.)
| | - Vincent Allain
- Hôpital Saint-Louis, Assistance Publique-Hôpitaux de Paris, Université de Paris, Laboratoire d'Immunologie et Histocompatibilité, and Institut National de la Santé et de la Recherche Médicale, Paris, France (V.A.)
| | - Zeynep Demir
- Hôpital Necker Enfants Malades, Assistance Publique-Hôpitaux de Paris, Université de Paris, and Unité d'Hépatologie pédiatrique, Paris, France (Z.D., D.D.)
| | - Marc-Antoine Allard
- Centre Hépato-Biliaire, Hôpital Paul-Brousse, Assistance Publique-Hôpitaux de Paris, Université Paris-Saclay, unité Institut National de la Santé et de la Recherche Médicale 1193, Villejuif, France (C.F., M.A., C.D., A.C., F.S., E.V., D.A., D.S.)
| | - Christophe Desterke
- Centre Hépato-Biliaire, Hôpital Paul-Brousse, Assistance Publique-Hôpitaux de Paris, Université Paris-Saclay, unité Institut National de la Santé et de la Recherche Médicale 1193, Villejuif, France (C.F., M.A., C.D., A.C., F.S., E.V., D.A., D.S.)
| | - Audrey Coilly
- Centre Hépato-Biliaire, Hôpital Paul-Brousse, Assistance Publique-Hôpitaux de Paris, Université Paris-Saclay, unité Institut National de la Santé et de la Recherche Médicale 1193, Villejuif, France (C.F., M.A., C.D., A.C., F.S., E.V., D.A., D.S.)
| | - Faouzi Saliba
- Centre Hépato-Biliaire, Hôpital Paul-Brousse, Assistance Publique-Hôpitaux de Paris, Université Paris-Saclay, unité Institut National de la Santé et de la Recherche Médicale 1193, Villejuif, France (C.F., M.A., C.D., A.C., F.S., E.V., D.A., D.S.)
| | - Eric Vibert
- Centre Hépato-Biliaire, Hôpital Paul-Brousse, Assistance Publique-Hôpitaux de Paris, Université Paris-Saclay, unité Institut National de la Santé et de la Recherche Médicale 1193, Villejuif, France (C.F., M.A., C.D., A.C., F.S., E.V., D.A., D.S.)
| | - Daniel Azoulay
- Centre Hépato-Biliaire, Hôpital Paul-Brousse, Assistance Publique-Hôpitaux de Paris, Université Paris-Saclay, unité Institut National de la Santé et de la Recherche Médicale 1193, Villejuif, France (C.F., M.A., C.D., A.C., F.S., E.V., D.A., D.S.)
| | - Catherine Guettier
- Laboratoire d'Anatomopathologie, Assistance Publique-Hôpitaux de Paris, Hôpital Paul-Brousse, Université Paris-Saclay, unité Institut National de la Santé et de la Recherche Médicale, Physiopathogénèse et traitement des maladies du Foie, and FHU Hepatinov, Villejuif, France (M.S., C.G.)
| | - Arthur Chatton
- Institut National de la Santé et de la Recherche Médicale UMR 1246-SPHERE, Nantes University, Tours University, Nantes, and IDBC, Pacé, France (A.C.)
| | - Dominique Debray
- Hôpital Necker Enfants Malades, Assistance Publique-Hôpitaux de Paris, Université de Paris, and Unité d'Hépatologie pédiatrique, Paris, France (Z.D., D.D.)
| | - Sophie Caillat-Zucman
- Laboratoire d'Immunologie et Histocompatibilité, Hôpital Saint-Louis, Assistance Publique-Hôpitaux de Paris, Université de Paris, and unité Institut National de la Santé et de la Recherche Médicale 976, Université de Paris, Paris, France (J.T., S.C.)
| | - Didier Samuel
- Centre Hépato-Biliaire, Hôpital Paul-Brousse, Assistance Publique-Hôpitaux de Paris, Université Paris-Saclay, unité Institut National de la Santé et de la Recherche Médicale 1193, Villejuif, France (C.F., M.A., C.D., A.C., F.S., E.V., D.A., D.S.)
| |
Collapse
|
58
|
Kyobe S, Mwesigwa S, Kisitu GP, Farirai J, Katagirya E, Mirembe AN, Ketumile L, Wayengera M, Katabazi FA, Kigozi E, Wampande EM, Retshabile G, Mlotshwa BC, Williams L, Morapedi K, Kasvosve I, Kyosiimire-Lugemwa J, Nsangi B, Tsimako-Johnstone M, Brown CW, Joloba M, Anabwani G, Bhekumusa L, Mpoloka SW, Mardon G, Matshaba M, Kekitiinwa A, Hanchard NA. Exome Sequencing Reveals a Putative Role for HLA-C*03:02 in Control of HIV-1 in African Pediatric Populations. Front Genet 2021; 12:720213. [PMID: 34512729 PMCID: PMC8428176 DOI: 10.3389/fgene.2021.720213] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Accepted: 08/05/2021] [Indexed: 12/28/2022] Open
Abstract
Human leucocyte antigen (HLA) class I molecules present endogenously processed antigens to T-cells and have been linked to differences in HIV-1 disease progression. HLA allelotypes show considerable geographical and inter-individual variation, as does the rate of progression of HIV-1 disease, with long-term non-progression (LTNP) of disease having most evidence of an underlying genetic contribution. However, most genetic analyses of LTNP have occurred in adults of European ancestry, limiting the potential transferability of observed associations to diverse populations who carry the burden of disease. This is particularly true of HIV-1 infected children. Here, using exome sequencing (ES) to infer HLA allelotypes, we determine associations with HIV-1 LTNP in two diverse African pediatric populations. We performed a case-control association study of 394 LTNPs and 420 rapid progressors retrospectively identified from electronic medical records of pediatric HIV-1 populations in Uganda and Botswana. We utilized high-depth ES to perform high-resolution HLA allelotyping and assessed evidence of association between HLA class I alleles and LTNP. Sixteen HLA alleles and haplotypes had significantly different frequencies between Uganda and Botswana, with allelic differences being more prominent in HLA-A compared to HLA-B and C allelotypes. Three HLA allelotypes showed association with LTNP, including a novel association in HLA-C (HLA-B∗57:03, aOR 3.21, Pc = 0.0259; B∗58:01, aOR 1.89, Pc = 0.033; C∗03:02, aOR 4.74, Pc = 0.033). Together, these alleles convey an estimated population attributable risk (PAR) of non-progression of 16.5%. We also observed novel haplotype associations with HLA-B∗57:03-C∗07:01 (aOR 5.40, Pc = 0.025) and HLA-B∗58:01-C∗03:02 (aOR 4.88, Pc = 0.011) with a PAR of 9.8%, as well as a previously unreported independent additive effect and heterozygote advantage of HLA-C∗03:02 with B∗58:01 (aOR 4.15, Pc = 0.005) that appears to limit disease progression, despite weak LD (r 2 = 0.18) between these alleles. These associations remained irrespective of gender or country. In one of the largest studies of HIV in Africa, we find evidence of a protective effect of canonical HLA-B alleles and a novel HLA-C association that appears to augment existing HIV-1 control alleles in pediatric populations. Our findings outline the value of using multi-ethnic populations in genetic studies and offer a novel HIV-1 association of relevance to ongoing vaccine studies.
Collapse
Affiliation(s)
- Samuel Kyobe
- Department of Medical Microbiology, College of Health Sciences, Makerere University, Kampala, Uganda
| | - Savannah Mwesigwa
- Department of Medical Microbiology, College of Health Sciences, Makerere University, Kampala, Uganda
- Department of Immunology and Molecular Biology, College of Health Sciences, Makerere University, Kampala, Uganda
| | - Grace P. Kisitu
- Baylor College of Medicine Children’s Foundation, Kampala, Uganda
| | - John Farirai
- Botswana-Baylor Children’s Clinical Centre of Excellence, Gaborone, Botswana
| | - Eric Katagirya
- Department of Immunology and Molecular Biology, College of Health Sciences, Makerere University, Kampala, Uganda
| | | | - Lesego Ketumile
- Botswana-Baylor Children’s Clinical Centre of Excellence, Gaborone, Botswana
| | - Misaki Wayengera
- Department of Immunology and Molecular Biology, College of Health Sciences, Makerere University, Kampala, Uganda
| | - Fred Ashaba Katabazi
- Department of Immunology and Molecular Biology, College of Health Sciences, Makerere University, Kampala, Uganda
| | - Edgar Kigozi
- Department of Immunology and Molecular Biology, College of Health Sciences, Makerere University, Kampala, Uganda
| | - Edward M. Wampande
- Department of Immunology and Molecular Biology, College of Health Sciences, Makerere University, Kampala, Uganda
| | - Gaone Retshabile
- School of Allied Health Professions, Faculty of Health Sciences, University of Botswana, Gaborone, Botswana
| | - Busisiwe C. Mlotshwa
- School of Allied Health Professions, Faculty of Health Sciences, University of Botswana, Gaborone, Botswana
| | - Lesedi Williams
- School of Allied Health Professions, Faculty of Health Sciences, University of Botswana, Gaborone, Botswana
| | - Koketso Morapedi
- School of Allied Health Professions, Faculty of Health Sciences, University of Botswana, Gaborone, Botswana
| | - Ishmael Kasvosve
- School of Allied Health Professions, Faculty of Health Sciences, University of Botswana, Gaborone, Botswana
| | | | - Betty Nsangi
- Baylor College of Medicine Children’s Foundation, Kampala, Uganda
| | | | - Chester W. Brown
- University of Tennessee Health Science Center, Memphis, TN, United States
| | - Moses Joloba
- Department of Immunology and Molecular Biology, College of Health Sciences, Makerere University, Kampala, Uganda
| | - Gabriel Anabwani
- Botswana-Baylor Children’s Clinical Centre of Excellence, Gaborone, Botswana
| | - Lukhele Bhekumusa
- Eswatini - Baylor College of Medicine Children’s Foundation, Mbabane, Eswatini
| | - Sununguko W. Mpoloka
- School of Allied Health Professions, Faculty of Health Sciences, University of Botswana, Gaborone, Botswana
| | - Graeme Mardon
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, United States
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX, United States
| | - Mogomotsi Matshaba
- Botswana-Baylor Children’s Clinical Centre of Excellence, Gaborone, Botswana
- Pediatric Retrovirology, Department of Pediatrics, Baylor College of Medicine, Houston, TX, United States
| | - Adeodata Kekitiinwa
- Baylor College of Medicine Children’s Foundation, Kampala, Uganda
- Pediatric Retrovirology, Department of Pediatrics, Baylor College of Medicine, Houston, TX, United States
| | - Neil A. Hanchard
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, United States
| |
Collapse
|
59
|
Aguiar VRC, Augusto DG, Castelli EC, Hollenbach JA, Meyer D, Nunes K, Petzl-Erler ML. An immunogenetic view of COVID-19. Genet Mol Biol 2021; 44:e20210036. [PMID: 34436508 PMCID: PMC8388242 DOI: 10.1590/1678-4685-gmb-2021-0036] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 06/12/2021] [Indexed: 02/06/2023] Open
Abstract
Meeting the challenges brought by the COVID-19 pandemic requires an interdisciplinary approach. In this context, integrating knowledge of immune function with an understanding of how genetic variation influences the nature of immunity is a key challenge. Immunogenetics can help explain the heterogeneity of susceptibility and protection to the viral infection and disease progression. Here, we review the knowledge developed so far, discussing fundamental genes for triggering the innate and adaptive immune responses associated with a viral infection, especially with the SARS-CoV-2 mechanisms. We emphasize the role of the HLA and KIR genes, discussing what has been uncovered about their role in COVID-19 and addressing methodological challenges of studying these genes. Finally, we comment on questions that arise when studying admixed populations, highlighting the case of Brazil. We argue that the interplay between immunology and an understanding of genetic associations can provide an important contribution to our knowledge of COVID-19.
Collapse
Affiliation(s)
- Vitor R. C. Aguiar
- Universidade de São Paulo, Departamento de Genética e Biologia
Evolutiva, São Paulo, SP, Brazil
| | - Danillo G. Augusto
- University of California, UCSF Weill Institute for Neurosciences,
Department of Neurology, San Francisco, CA, USA
- Universidade Federal do Paraná, Departamento de Genética, Curitiba,
PR, Brazil
| | - Erick C. Castelli
- Universidade Estadual Paulista, Faculdade de Medicina de Botucatu,
Departamento de Patologia, Botucatu, SP, Brazil
| | - Jill A. Hollenbach
- University of California, UCSF Weill Institute for Neurosciences,
Department of Neurology, San Francisco, CA, USA
| | - Diogo Meyer
- Universidade de São Paulo, Departamento de Genética e Biologia
Evolutiva, São Paulo, SP, Brazil
| | - Kelly Nunes
- Universidade de São Paulo, Departamento de Genética e Biologia
Evolutiva, São Paulo, SP, Brazil
| | | |
Collapse
|
60
|
Ahmad SM, Bhat B, Bhat SA, Yaseen M, Mir S, Raza M, Iquebal MA, Shah RA, Ganai NA. SNPs in Mammary Gland Epithelial Cells Unraveling Potential Difference in Milk Production Between Jersey and Kashmiri Cattle Using RNA Sequencing. Front Genet 2021; 12:666015. [PMID: 34413874 PMCID: PMC8369411 DOI: 10.3389/fgene.2021.666015] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 07/06/2021] [Indexed: 11/13/2022] Open
Abstract
Deep RNA sequencing experiment was employed to detect putative single nucleotide polymorphisms (SNP) in mammary epithelial cells between two diverse cattle breeds (Jersey and Kashmiri) to understand the variations in the coding regions that reflect differences in milk production traits. The low milk-producing Kashmiri cattle are being replaced by crossbreeding practices with Jersey cattle with the aim of improving milk production. However, crossbred animals are prone to infections and various other diseases resulting in unsustainable milk production. In this study, we tend to identify high-impact SNPs from Jersey and Kashmiri cows (utilizing RNA-Seq data) to delineate key pathways mediating milk production traits in both breeds. A total of 607 (442 SNPs and 169 INDELs) and 684 (464 SNPs and 220 INDELs) high-impact variants were found specific to Jersey and Kashmir cattle, respectively. Based on our results, we conclude that in Jersey cattle, genes with high-impact SNPs were enriched in nucleotide excision repair pathway, ABC transporter, and metabolic pathways like glycerolipid metabolism, pyrimidine metabolism, and amino acid synthesis (glycine, serine, and threonine). Whereas, in Kashmiri cattle, the most enriched pathways include endocytosis pathway, innate immunity pathway, antigen processing pathway, insulin resistance pathway, and signaling pathways like TGF beta and AMPK which could be a possible defense mechanism against mammary gland infections. A varied set of SNPs in both breeds, suggests a clear differentiation at the genomic level; further analysis of high-impact SNPs are required to delineate their effect on these pathways.
Collapse
Affiliation(s)
- Syed Mudasir Ahmad
- Division of Animal Biotechnology, Faculty of Veterinary Sciences and Animal Husbandry, Sher-e-Kashmir University of Agricultural Sciences and Technology, Srinagar, India
| | - Basharat Bhat
- Division of Animal Biotechnology, Faculty of Veterinary Sciences and Animal Husbandry, Sher-e-Kashmir University of Agricultural Sciences and Technology, Srinagar, India
| | - Shakil Ahmad Bhat
- Division of Animal Biotechnology, Faculty of Veterinary Sciences and Animal Husbandry, Sher-e-Kashmir University of Agricultural Sciences and Technology, Srinagar, India
| | - Mifftha Yaseen
- Division of Food Science, Faculty of Horticulture, Sher-e-Kashmir University of Agricultural Sciences and Technology, Srinagar, India
| | - Shabir Mir
- Division of Animal Genetics and Breeding, Faculty of Veterinary Sciences and Animal Husbandry, Sher-e-Kashmir University of Agricultural Sciences and Technology, Srinagar, India
| | - Mustafa Raza
- Centre for Agricultural Bioinformatics (CABin), ICAR-Indian Agricultural Statistics Research Institute, New Delhi, India
| | - Mir Asif Iquebal
- Centre for Agricultural Bioinformatics (CABin), ICAR-Indian Agricultural Statistics Research Institute, New Delhi, India
| | - Riaz Ahmad Shah
- Division of Animal Biotechnology, Faculty of Veterinary Sciences and Animal Husbandry, Sher-e-Kashmir University of Agricultural Sciences and Technology, Srinagar, India
| | - Nazir Ahmad Ganai
- Directorate Planning and Monitoring, Sher-e-Kashmir University of Agricultural Sciences and Technology, Srinagar, India
| |
Collapse
|
61
|
Phillips KP, Cable J, Mohammed RS, Chmielewski S, Przesmycka KJ, van Oosterhout C, Radwan J. Functional immunogenetic variation, rather than local adaptation, predicts ectoparasite infection intensity in a model fish species. Mol Ecol 2021; 30:5588-5604. [PMID: 34415650 PMCID: PMC9292977 DOI: 10.1111/mec.16135] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 07/07/2021] [Accepted: 08/11/2021] [Indexed: 11/28/2022]
Abstract
Natural host populations differ in their susceptibility to infection by parasites, and these intrapopulation differences are still an incompletely understood component of host‐parasite dynamics. In this study, we used controlled infection experiments with wild‐caught guppies (Poecilia reticulata) and their ectoparasite Gyrodactylus turnbulli to investigate the roles of local adaptation and host genetic composition (immunogenetic and neutral) in explaining differences in susceptibility to infection. We found differences between our four study host populations that were consistent between two parasite source populations, with no indication of local adaptation by either host or parasite at two tested spatial scales. Greater values of host population genetic variability metrics broadly aligned with lower population mean infection intensity, with the best alignments associated with major histocompatibility complex (MHC) “supertypes”. Controlling for intrapopulation differences and potential inbreeding variance, we found a significant negative relationship between individual‐level functional MHC variability and infection: fish carrying more MHC supertypes experienced infections of lower severity, with limited evidence for supertype‐specific effects. We conclude that population‐level differences in host infection susceptibility probably reflect variation in parasite selective pressure and/or host evolutionary potential, underpinned by functional immunogenetic variation.
Collapse
Affiliation(s)
- Karl P Phillips
- Evolutionary Biology Group, Faculty of Biology, Adam Mickiewicz University, Poznań, Poland.,School of Biological Earth & Environmental Sciences, University College Cork, Cork, Ireland.,Marine Institute, Newport, Co. Mayo, Ireland
| | - Joanne Cable
- School of Biosciences, Cardiff University, Cardiff, UK
| | - Ryan S Mohammed
- Evolutionary Biology Group, Faculty of Biology, Adam Mickiewicz University, Poznań, Poland.,Department of Life Sciences, The University of the West Indies, St. Augustine, Trinidad and Tobago
| | - Sebastian Chmielewski
- Evolutionary Biology Group, Faculty of Biology, Adam Mickiewicz University, Poznań, Poland
| | - Karolina J Przesmycka
- Evolutionary Biology Group, Faculty of Biology, Adam Mickiewicz University, Poznań, Poland
| | - Cock van Oosterhout
- School of Environmental Sciences, University of East Anglia, Norwich Research Park, Norwich, UK
| | - Jacek Radwan
- Evolutionary Biology Group, Faculty of Biology, Adam Mickiewicz University, Poznań, Poland
| |
Collapse
|
62
|
Liu Z, Hildesheim A. Association Between Human Leukocyte Antigen Class I and II Diversity and Non-virus-associated Solid Tumors. Front Genet 2021; 12:675860. [PMID: 34421988 PMCID: PMC8371526 DOI: 10.3389/fgene.2021.675860] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 05/28/2021] [Indexed: 11/29/2022] Open
Abstract
Homozygosity at human leukocyte antigen (HLA) loci might lead to reduced immunosurveillance and increased disease risk, including cancers caused by infection or of hematopoietic origin. To investigate the association between HLA zygosity and risk of non-virus-associated solid tumors, we leveraged genome-wide association study (GWAS) data from over 28,000 individuals of European ancestry who participated in studies of 12 cancer sites (bladder, brain, breast, colon, endometrial, kidney, lung, ovary, pancreas, prostate, skin, and testis). Information on HLA zygosity was obtained by imputation; individuals were classified as homozygotes at a given locus when imputed to carry the same four-digit allele at that locus. We observed no evidence for an association between zygosity at six HLA loci and all cancers combined. Increase in number of homozygous at HLA class I loci, class II loci, or class I and II loci was also not associated with cancer overall (P trend = 0.28), with adjusted odds ratios (ORs) for risk-per-locus of 1.00 [95% confidence intervals (CIs) = 0.97, 1.03], 1.02 (0.99, 1.04), and 1.01 (0.99, 1.02), respectively. This study does not support a strong role for HLA zygosity on risk of non-virus-associated solid tumors.
Collapse
Affiliation(s)
- Zhiwei Liu
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, United States
| | | |
Collapse
|
63
|
D’Souza G, Bhondoekhan F, Benning L, Margolick JB, Adedimeji AA, Adimora AA, Alcaide ML, Cohen MH, Detels R, Friedman MR, Holman S, Konkle-Parker DJ, Merenstein D, Ofotokun I, Palella F, Altekruse S, Brown TT, Tien PC. Characteristics of the MACS/WIHS Combined Cohort Study: Opportunities for Research on Aging With HIV in the Longest US Observational Study of HIV. Am J Epidemiol 2021; 190:1457-1475. [PMID: 33675224 PMCID: PMC8484936 DOI: 10.1093/aje/kwab050] [Citation(s) in RCA: 89] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 02/07/2021] [Accepted: 02/23/2021] [Indexed: 01/16/2023] Open
Abstract
In 2019, the National Institutes of Health combined the Multicenter AIDS Cohort Study (MACS) and the Women's Interagency HIV Study (WIHS) into the MACS/WIHS Combined Cohort Study (MWCCS). In this paper, participants who made a study visit during October 2018-September 2019 (targeted for MWCCS enrollment) are described by human immunodeficiency virus (HIV) serostatus and compared with people living with HIV (PLWH) in the United States. Participants include 2,115 women and 1,901 men with a median age of 56 years (interquartile range, 48-63); 62% are PLWH. Study sites encompass the South (18%), the Mid-Atlantic/Northeast (45%), the West Coast (22%), and the Midwest (15%). Participant race/ethnicity approximates that of PLWH throughout the United States. Longitudinal data and specimens collected for 35 years (men) and 25 years (women) were combined. Differences in data collection and coding were reviewed, and key risk factor and comorbidity data were harmonized. For example, recent use of alcohol (62%) and tobacco (28%) are common, as are dyslipidemia (64%), hypertension (56%), obesity (42%), mildly or severely impaired daily activities (31%), depressive symptoms (28%), and diabetes (22%). The MWCCS repository includes serum, plasma, peripheral blood mononuclear cells, cell pellets, urine, cervicovaginal lavage samples, oral samples, B-cell lines, stool, and semen specimens. Demographic differences between the MACS and WIHS can confound analyses by sex. The merged MWCCS is both an ongoing observational cohort study and a valuable resource for harmonized longitudinal data and specimens for HIV-related research.
Collapse
Affiliation(s)
- Gypsyamber D’Souza
- Correspondence to Dr. Gypsyamber D’Souza, Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, 615 N. Wolfe Street, Room E6132, Baltimore, MD 21205 (e-mail: ); Dr. Phyllis Tien, Division of Infectious Disease, San Francisco VA Medical Center, 4150 Clement Street, 111W, San Francisco, CA 94121 (e-mail: ); Dr. Todd Brown, Division of Endocrinology, Diabetes, and Metabolism, Johns Hopkins Medical Institutions, 1830 East Monument Street, Suite 333, Baltimore, MD 21287 (e-mail: ); or Dr. Sean Altekruse, Epidemiology Branch, Division of Cardiovascular Sciences, National Heart, Lung, and Blood Institute, 6705 Rockledge Drive, Rockledge I, Suite 305-A2, Bethesda, MD 20892 (e-mail: )
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Sean Altekruse
- Correspondence to Dr. Gypsyamber D’Souza, Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, 615 N. Wolfe Street, Room E6132, Baltimore, MD 21205 (e-mail: ); Dr. Phyllis Tien, Division of Infectious Disease, San Francisco VA Medical Center, 4150 Clement Street, 111W, San Francisco, CA 94121 (e-mail: ); Dr. Todd Brown, Division of Endocrinology, Diabetes, and Metabolism, Johns Hopkins Medical Institutions, 1830 East Monument Street, Suite 333, Baltimore, MD 21287 (e-mail: ); or Dr. Sean Altekruse, Epidemiology Branch, Division of Cardiovascular Sciences, National Heart, Lung, and Blood Institute, 6705 Rockledge Drive, Rockledge I, Suite 305-A2, Bethesda, MD 20892 (e-mail: )
| | - Todd T Brown
- Correspondence to Dr. Gypsyamber D’Souza, Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, 615 N. Wolfe Street, Room E6132, Baltimore, MD 21205 (e-mail: ); Dr. Phyllis Tien, Division of Infectious Disease, San Francisco VA Medical Center, 4150 Clement Street, 111W, San Francisco, CA 94121 (e-mail: ); Dr. Todd Brown, Division of Endocrinology, Diabetes, and Metabolism, Johns Hopkins Medical Institutions, 1830 East Monument Street, Suite 333, Baltimore, MD 21287 (e-mail: ); or Dr. Sean Altekruse, Epidemiology Branch, Division of Cardiovascular Sciences, National Heart, Lung, and Blood Institute, 6705 Rockledge Drive, Rockledge I, Suite 305-A2, Bethesda, MD 20892 (e-mail: )
| | - Phyllis C Tien
- Correspondence to Dr. Gypsyamber D’Souza, Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, 615 N. Wolfe Street, Room E6132, Baltimore, MD 21205 (e-mail: ); Dr. Phyllis Tien, Division of Infectious Disease, San Francisco VA Medical Center, 4150 Clement Street, 111W, San Francisco, CA 94121 (e-mail: ); Dr. Todd Brown, Division of Endocrinology, Diabetes, and Metabolism, Johns Hopkins Medical Institutions, 1830 East Monument Street, Suite 333, Baltimore, MD 21287 (e-mail: ); or Dr. Sean Altekruse, Epidemiology Branch, Division of Cardiovascular Sciences, National Heart, Lung, and Blood Institute, 6705 Rockledge Drive, Rockledge I, Suite 305-A2, Bethesda, MD 20892 (e-mail: )
| |
Collapse
|
64
|
De Marco R, Faria TC, Mine KL, Cristelli M, Medina‐Pestana JO, Tedesco‐Silva H, Gerbase‐DeLima M. HLA-A homozygosis is associated with susceptibility to COVID-19. HLA 2021; 98:122-131. [PMID: 34165257 PMCID: PMC8446943 DOI: 10.1111/tan.14349] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 06/01/2021] [Accepted: 06/14/2021] [Indexed: 12/11/2022]
Abstract
The purpose of this single center retrospective study was to investigate the relationship between HLA and ABO polymorphisms and COVID-19 susceptibility and severity in kidney transplant recipients. It included 720 recipients who had COVID-19 and 1680 controls composed by recipients in follow-up who did not contact the transplantation center for COVID-19 symptoms, up to the moment of their inclusion in the study. HLA-A, -B, and -DRB1 allele groups and ABO frequencies were compared between recipients with COVID-19 (all cases, or separately mild/moderate and severe disease) and controls. The HLA association study was conducted in two case-control series and only associations that showed a p-value <0.05 in both series were considered. No HLA association regarding COVID-19 occurrence or severity met this criterion. Homozygosity at HLA-A locus was associated with COVID-19 susceptibility (odds ratio 1.4) but not severity. Blood groups A and O were associated with susceptibility and resistance to COVID-19, respectively. COVID-19 severity was associated only with older age and cardiac disease, in a multivariate analysis. We conclude that an influence of HLA on COVID-19 susceptibility is supported by the association with homozygosity at HLA-A locus but that there is no evidence for a role of any particular HLA-A, -B, or -DRB1 polymorphism. Thus, we suggest that what matters is the overall capability of an individual's HLA molecules to present SARS-CoV-2 peptides to T cells, a factor that might have a great influence on the breadth of the immune response.
Collapse
Affiliation(s)
- Renato De Marco
- Instituto de ImunogenéticaAssociação Fundo de Incentivo à PesquisaSão PauloBrazil
| | - Tathyane C. Faria
- Instituto de ImunogenéticaAssociação Fundo de Incentivo à PesquisaSão PauloBrazil
| | - Karina L. Mine
- Instituto de ImunogenéticaAssociação Fundo de Incentivo à PesquisaSão PauloBrazil
| | - Marina Cristelli
- Nephrology DivisionHospital do Rim, Universidade Federal de São PauloSão PauloBrazil
| | | | - Hélio Tedesco‐Silva
- Nephrology DivisionHospital do Rim, Universidade Federal de São PauloSão PauloBrazil
| | - Maria Gerbase‐DeLima
- Instituto de ImunogenéticaAssociação Fundo de Incentivo à PesquisaSão PauloBrazil
| |
Collapse
|
65
|
Schetelig J, Heidenreich F, Baldauf H, Trost S, Falk B, Hoßbach C, Real R, Roers A, Lindemann D, Dalpke A, Kolditz M, de With K, Bornhäuser M, Bonifacio EE, Rücker-Braun E, Lange V, Markert J, Barth R, Hofmann JA, Sauter J, Bernas SN, Schmidt AH. Individual HLA-A, -B, -C, and -DRB1 Genotypes Are No Major Factors Which Determine COVID-19 Severity. Front Immunol 2021; 12:698193. [PMID: 34381451 PMCID: PMC8350391 DOI: 10.3389/fimmu.2021.698193] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 07/02/2021] [Indexed: 01/02/2023] Open
Abstract
HLA molecules are key restrictive elements to present intracellular antigens at the crossroads of an effective T-cell response against SARS-CoV-2. To determine the impact of the HLA genotype on the severity of SARS-CoV-2 courses, we investigated data from 6,919 infected individuals. HLA-A, -B, and -DRB1 allotypes grouped into HLA supertypes by functional or predicted structural similarities of the peptide-binding grooves did not predict COVID-19 severity. Further, we did not observe a heterozygote advantage or a benefit from HLA diplotypes with more divergent physicochemical peptide-binding properties. Finally, numbers of in silico predicted viral T-cell epitopes did not correlate with the severity of SARS-CoV-2 infections. These findings suggest that the HLA genotype is no major factor determining COVID-19 severity. Moreover, our data suggest that the spike glycoprotein alone may allow for abundant T-cell epitopes to mount robust T-cell responses not limited by the HLA genotype.
Collapse
Affiliation(s)
- Johannes Schetelig
- Clinical Trials Unit, DKMS, Dresden, Germany.,Division of Hematology, Department of Internal Medicine I, University Hospital Carl Gustav Carus, Technische Universität (TU), Dresden, Dresden, Germany
| | - Falk Heidenreich
- Clinical Trials Unit, DKMS, Dresden, Germany.,Division of Hematology, Department of Internal Medicine I, University Hospital Carl Gustav Carus, Technische Universität (TU), Dresden, Dresden, Germany
| | | | - Sarah Trost
- Clinical Trials Unit, DKMS, Dresden, Germany
| | - Bose Falk
- Clinical Trials Unit, DKMS, Dresden, Germany
| | | | - Ruben Real
- Clinical Trials Unit, DKMS, Dresden, Germany
| | - Axel Roers
- Institute for Immunology, TU Dresden, Dresden, Germany
| | - Dirk Lindemann
- Institute of Medical Microbiology and Virology, University Hospital Carl Gustav Carus, TU Dresden, Dresden, Germany
| | - Alexander Dalpke
- Institute of Medical Microbiology and Virology, University Hospital Carl Gustav Carus, TU Dresden, Dresden, Germany
| | - Martin Kolditz
- Division of Pulmonology, Department of Internal Medicine I, University Hospital Carl Gustav Carus, TU Dresden, Dresden, Germany
| | - Katja de With
- Division of Infectious Diseases, TU Dresden, Dresden, Germany
| | - Martin Bornhäuser
- Division of Hematology, Department of Internal Medicine I, University Hospital Carl Gustav Carus, Technische Universität (TU), Dresden, Dresden, Germany
| | - Ezio E Bonifacio
- Center for Regenerative Therapies Dresden (CRTD), TU Dresden, Dresden, Germany
| | - Elke Rücker-Braun
- Clinical Trials Unit, DKMS, Dresden, Germany.,Division of Hematology, Department of Internal Medicine I, University Hospital Carl Gustav Carus, Technische Universität (TU), Dresden, Dresden, Germany
| | | | - Jan Markert
- DKMS, Stem Cell Donor Registry, Tübingen, Germany
| | - Ralf Barth
- DKMS, Stem Cell Donor Registry, Tübingen, Germany
| | | | | | | | - Alexander H Schmidt
- Clinical Trials Unit, DKMS, Dresden, Germany.,DKMS Life Science Lab, Dresden, Germany.,DKMS, Stem Cell Donor Registry, Tübingen, Germany
| |
Collapse
|
66
|
Scherman K, Råberg L, Westerdahl H. Borrelia Infection in Bank Voles Myodes glareolus Is Associated With Specific DQB Haplotypes Which Affect Allelic Divergence Within Individuals. Front Immunol 2021; 12:703025. [PMID: 34381454 PMCID: PMC8350566 DOI: 10.3389/fimmu.2021.703025] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 07/01/2021] [Indexed: 11/17/2022] Open
Abstract
The high polymorphism of Major Histocompatibility Complex (MHC) genes is generally considered to be a result of pathogen-mediated balancing selection. Such selection may operate in the form of heterozygote advantage, and/or through specific MHC allele–pathogen interactions. Specific MHC allele–pathogen interactions may promote polymorphism via negative frequency-dependent selection (NFDS), or selection that varies in time and/or space because of variability in the composition of the pathogen community (fluctuating selection; FS). In addition, divergent allele advantage (DAA) may act on top of these forms of balancing selection, explaining the high sequence divergence between MHC alleles. DAA has primarily been thought of as an extension of heterozygote advantage. However, DAA could also work in concert with NFDS though this is yet to be tested explicitly. To evaluate the importance of DAA in pathogen-mediated balancing selection, we surveyed allelic polymorphism of MHC class II DQB genes in wild bank voles (Myodes glareolus) and tested for associations between DQB haplotypes and infection by Borrelia afzelii, a tick-transmitted bacterium causing Lyme disease in humans. We found two significant associations between DQB haplotypes and infection status: one haplotype was associated with lower risk of infection (resistance), while another was associated with higher risk of infection (susceptibility). Interestingly, allelic divergence within individuals was higher for voles with the resistance haplotype compared to other voles. In contrast, allelic divergence was lower for voles with the susceptibility haplotype than other voles. The pattern of higher allelic divergence in individuals with the resistance haplotype is consistent with NFDS favouring divergent alleles in a natural population, hence selection where DAA works in concert with NFDS.
Collapse
Affiliation(s)
- Kristin Scherman
- Molecular Ecology and Evolution Lab, Department of Biology, Lund University, Lund, Sweden
| | - Lars Råberg
- Functional Zoology, Department of Biology, Lund University, Lund, Sweden
| | - Helena Westerdahl
- Molecular Ecology and Evolution Lab, Department of Biology, Lund University, Lund, Sweden
| |
Collapse
|
67
|
Kang M, Ahn B, Youk S, Cho HS, Choi M, Hong K, Do JT, Song H, Jiang H, Kennedy LJ, Park C. High Allelic Diversity of Dog Leukocyte Antigen Class II in East Asian Dogs: Identification of New Alleles and Haplotypes. J MAMM EVOL 2021. [DOI: 10.1007/s10914-021-09560-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
68
|
Migdal M, Ruan DF, Forrest WF, Horowitz A, Hammer C. MiDAS-Meaningful Immunogenetic Data at Scale. PLoS Comput Biol 2021; 17:e1009131. [PMID: 34228721 PMCID: PMC8284797 DOI: 10.1371/journal.pcbi.1009131] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 07/16/2021] [Accepted: 05/30/2021] [Indexed: 12/15/2022] Open
Abstract
Human immunogenetic variation in the form of HLA and KIR types has been shown to be strongly associated with a multitude of immune-related phenotypes. However, association studies involving immunogenetic loci most commonly involve simple analyses of classical HLA allelic diversity, resulting in limitations regarding the interpretability and reproducibility of results. We here present MiDAS, a comprehensive R package for immunogenetic data transformation and statistical analysis. MiDAS recodes input data in the form of HLA alleles and KIR types into biologically meaningful variables, allowing HLA amino acid fine mapping, analyses of HLA evolutionary divergence as well as experimentally validated HLA-KIR interactions. Further, MiDAS enables comprehensive statistical association analysis workflows with phenotypes of diverse measurement scales. MiDAS thus closes the gap between the inference of immunogenetic variation and its efficient utilization to make relevant discoveries related to immune and disease biology. It is freely available under a MIT license.
Collapse
Affiliation(s)
- Maciej Migdal
- Roche Global IT Solution Centre (RGITSC), Warsaw, Poland
| | - Dan Fu Ruan
- Department of Oncological Sciences, Precision Immunology Institute, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
| | - William F. Forrest
- Department of OMNI Bioinformatics, Genentech, South San Francisco, California, United States of America
| | - Amir Horowitz
- Department of Oncological Sciences, Precision Immunology Institute, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
| | - Christian Hammer
- Department of Cancer Immunology, Genentech, South San Francisco, California, United States of America
- Department of Human Genetics, Genentech, South San Francisco, California, United States of America
| |
Collapse
|
69
|
Ateya AI, Hendam BM, Radwan HA, Abo Elfadl EA, Al-Sharif MM. Using Linear Discriminant Analysis to Characterize Novel Single Nucleotide Polymorphisms and Expression Profile Changes in Genes of Three Breeds of Rabbit ( Oryctolagus cuniculus). Comp Med 2021; 71:222-234. [PMID: 34034856 DOI: 10.30802/aalas-cm-20-000103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
The objectives of this study were to investigate polymorphisms and changes in expression patterns of the genes FGF5, PGAM2, TLR2 and IL10 in V-line, Baladi Black and Baladi Red rabbits. Blood samples were collected from 180 healthy rabbits (n = 60 for each breed) for DNA extraction and DNA sequencing. At 3 mo of age, 20 randomly selected females from each breed were euthanized for gene expression quantification in muscle and spleen samples. PCR-DNA sequencing revealed single nucleotide polymorphisms (SNPs) among the 3 breeds that provided a monomorphic pattern for 3 of the 4 genes analyzed. Linear discriminant analysis (LDA) was used to classify the SNPs of these genes in the 3 breeds. The overall percentage of correctly classified cases for the model was 75%, with percentages of 100% for FGF5, 63% for IL10, and 100% for TLR2. Breed was a significant predictor for gene classification with estimation (1.00). Expression profiles of the genes were higher in V-line as compared with Baladi Black or Baladi Red. The LDA discriminated the 3 breeds using results of the gene expression profile as predictors for classification. Overall, 73% of the cases were correctly classified by gene expression. The identified SNPs, along with changes in mRNA levels of FGF5, PGAM2, TLR2, and IL10, could provide a biomarker for efficient characterization of rabbit breeds and could thus help develop marker assisted selection for growth and immune traits in rabbits.
Collapse
Affiliation(s)
- Ahmed I Ateya
- Department of Husbandry and Development of Animal Wealth, Faculty of Veterinary Medicine, Mansoura University, Gomhoria St., Mansoura, Mansoura, Egypt;,
| | - Basma M Hendam
- Department of Husbandry and Development of Animal Wealth, Faculty of Veterinary Medicine, Mansoura University, Gomhoria St., Mansoura, Mansoura, Egypt
| | - Hend A Radwan
- Department of Husbandry and Development of Animal Wealth, Faculty of Veterinary Medicine, Mansoura University, Gomhoria St., Mansoura, Mansoura, Egypt
| | - Eman A Abo Elfadl
- Department of Husbandry and Development of Animal Wealth, Faculty of Veterinary Medicine, Mansoura University, Gomhoria St., Mansoura, Mansoura, Egypt
| | - Mona M Al-Sharif
- Department of Biology, College of Science, Jeddah University, Jeddah, Saudi Arabia
| |
Collapse
|
70
|
Optimal Maturation of the SIV-Specific CD8 + T Cell Response after Primary Infection Is Associated with Natural Control of SIV: ANRS SIC Study. Cell Rep 2021; 32:108174. [PMID: 32966788 DOI: 10.1016/j.celrep.2020.108174] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Revised: 07/10/2020] [Accepted: 08/28/2020] [Indexed: 12/30/2022] Open
Abstract
Highly efficient CD8+ T cells are associated with natural HIV control, but it has remained unclear how these cells are generated and maintained. We have used a macaque model of spontaneous SIVmac251 control to monitor the development of efficient CD8+ T cell responses. Our results show that SIV-specific CD8+ T cells emerge during primary infection in all animals. The ability of CD8+ T cells to suppress SIV is suboptimal in the acute phase but increases progressively in controller macaques before the establishment of sustained low-level viremia. Controller macaques develop optimal memory-like SIV-specific CD8+ T cells early after infection. In contrast, a persistently skewed differentiation phenotype characterizes memory SIV-specific CD8+ T cells in non-controller macaques. Accordingly, the phenotype of SIV-specific CD8+ T cells defined early after infection appears to favor the development of protective immunity in controllers, whereas SIV-specific CD8+ T cells in non-controllers fail to gain antiviral potency, feasibly as a consequence of early defects imprinted in the memory pool.
Collapse
|
71
|
Yu Y, Wang K, Fahira A, Yang Q, Sun R, Li Z, Wang Z, Shi Y. Systematic comparative study of computational methods for HLA typing from next-generation sequencing. HLA 2021; 97:481-492. [PMID: 33655664 DOI: 10.1111/tan.14244] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 02/21/2021] [Accepted: 02/25/2021] [Indexed: 12/25/2022]
Abstract
The human leukocyte antigen (HLA) system plays an important role in hematopoietic stem cell transplantation (HSCT) and organ transplantations, immune disorders as well as oncological immunotherapy. However, HLA typing remains a challenging task due to the high level of polymorphism and homology among HLA genes. Based on the high-throughput next-generation sequencing data, new HLA typing algorithms and software tools were developed. But there is still a deficit of systematic comparative studies to assist in the selection of the optimal analytical approaches under different conditions. Here, we present a detailed comparison of eight software tools for HLA typing on different real datasets (whole-genome sequencing, whole-exome sequencing and transcriptomic sequencing data) and in-silico samples with different sequencing lengths, depths, and error rates. We figure out the algorithms with the best efficiency in different scenarios, and demonstrate the effect of different raw reads on analytical performances. Our results provide a comprehensive picture of specifications and performances of the eight existing HLA genotyping algorithms, which could assist researchers in selecting the most appropriate tool for specific raw datasets.
Collapse
Affiliation(s)
- Yuechun Yu
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Collaborative Innovation Center for Brain Science, Shanghai Jiao Tong University, Shanghai, China
| | - Ke Wang
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Collaborative Innovation Center for Brain Science, Shanghai Jiao Tong University, Shanghai, China
| | - Aamir Fahira
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Collaborative Innovation Center for Brain Science, Shanghai Jiao Tong University, Shanghai, China
| | - Qiangzhen Yang
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Collaborative Innovation Center for Brain Science, Shanghai Jiao Tong University, Shanghai, China
| | - Renliang Sun
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Collaborative Innovation Center for Brain Science, Shanghai Jiao Tong University, Shanghai, China
| | - Zhiqiang Li
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Collaborative Innovation Center for Brain Science, Shanghai Jiao Tong University, Shanghai, China
| | - Zhuo Wang
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Collaborative Innovation Center for Brain Science, Shanghai Jiao Tong University, Shanghai, China
| | - Yongyong Shi
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Collaborative Innovation Center for Brain Science, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
72
|
Ekenberg C, Reekie J, Zucco AG, Murray DD, Sharma S, Macpherson CR, Babiker A, Kan V, Lane HC, Neaton JD, Lundgren JD. The association of human leukocyte antigen alleles with clinical disease progression in HIV-positive cohorts with varied treatment strategies. AIDS 2021; 35:783-789. [PMID: 33587436 PMCID: PMC7969421 DOI: 10.1097/qad.0000000000002800] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
OBJECTIVES The Strategic Timing of AntiRetroviral Treatment (START) and Strategies for Management of Antiretroviral Therapy (SMART) trials demonstrated that ART can partly reverse clinically defined immune dysfunction induced by HIV replication. As control of HIV replication is influenced by the HLA region, we explored whether HLA alleles independently influence the risk of clinical events in HIV+ individuals. DESIGN Cohort study. METHODS In START and SMART participants, associations between imputed HLA alleles and AIDS, infection-related cancer, herpes virus-related AIDS events, chronic inflammation-related conditions, and bacterial pneumonia were assessed. Cox regression was used to estimate hazard ratios for the risk of events among allele carriers versus noncarriers. Models were adjusted for sex, age, geography, race, time-updated CD4+ T-cell counts and HIV viral load and stratified by treatment group within trials. HLA class I and II alleles were analyzed separately. The Benjamini--Hochberg procedure was used to limit the false discovery rate to less than 5% (i.e. q value <0.05). RESULTS Among 4829 participants, there were 132 AIDS events, 136 chronic inflammation-related conditions, 167 bacterial pneumonias, 45 infection-related cancers, and 49 herpes virus-related AIDS events. Several associations with q value less than 0.05 were found: HLA-DQB1∗06:04 and HLA-DRB1∗13:02 with AIDS (adjusted HR [95% CI] 2.63 [1.5-4.6] and 2.25 [1.4-3.7], respectively), HLA-B∗15:17 and HLA-DPB1∗15:01 with bacterial pneumonia (4.93 [2.3-10.7] and 4.33 [2.0-9.3], respectively), and HLA-A∗69:01 with infection-related cancer (15.26 [3.5-66.7]). The carriage frequencies of these alleles were 10% or less. CONCLUSION This hypothesis-generating study suggests that certain HLA alleles may influence the risk of immune dysfunction-related events irrespective of viral load and CD4+ T-cell count.
Collapse
Affiliation(s)
- Christina Ekenberg
- Centre of Excellence for Health, Immunity and Infections (CHIP), Department of Infectious Diseases, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Joanne Reekie
- Centre of Excellence for Health, Immunity and Infections (CHIP), Department of Infectious Diseases, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Adrian G Zucco
- Centre of Excellence for Health, Immunity and Infections (CHIP), Department of Infectious Diseases, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Daniel D Murray
- Centre of Excellence for Health, Immunity and Infections (CHIP), Department of Infectious Diseases, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
- Kirby Institute, UNSW Sydney, Sydney, New South Wales, Australia
| | - Shweta Sharma
- Division of Biostatistics, School of Public Health, University of Minnesota, Minneapolis, Minnesota, USA
| | - Cameron R Macpherson
- Centre of Excellence for Health, Immunity and Infections (CHIP), Department of Infectious Diseases, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Abdel Babiker
- Medical Research Council, Clinical Trials Unit in University College London, London, United Kingdom
| | - Virginia Kan
- Veterans Affairs Medical Center and George Washington University, Washington DC
| | - H Clifford Lane
- National Institute of Allergy and Infectious Diseases, Division of Clinical Research, Bethesda, Maryland, USA
| | - James D Neaton
- Division of Biostatistics, School of Public Health, University of Minnesota, Minneapolis, Minnesota, USA
| | - Jens D Lundgren
- Centre of Excellence for Health, Immunity and Infections (CHIP), Department of Infectious Diseases, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
73
|
Makinde J, Nduati EW, Freni-Sterrantino A, Streatfield C, Kibirige C, Dalel J, Black SL, Hayes P, Macharia G, Hare J, McGowan E, Abel B, King D, Joseph S, Hunter E, Sanders EJ, Price M, Gilmour J. A Novel Sample Selection Approach to Aid the Identification of Factors That Correlate With the Control of HIV-1 Infection. Front Immunol 2021; 12:634832. [PMID: 33777023 PMCID: PMC7991997 DOI: 10.3389/fimmu.2021.634832] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Accepted: 02/08/2021] [Indexed: 12/11/2022] Open
Abstract
Individuals infected with HIV display varying rates of viral control and disease progression, with a small percentage of individuals being able to spontaneously control infection in the absence of treatment. In attempting to define the correlates associated with natural protection against HIV, extreme heterogeneity in the datasets generated from systems methodologies can be further complicated by the inherent variability encountered at the population, individual, cellular and molecular levels. Furthermore, such studies have been limited by the paucity of well-characterised samples and linked epidemiological data, including duration of infection and clinical outcomes. To address this, we selected 10 volunteers who rapidly and persistently controlled HIV, and 10 volunteers each, from two control groups who failed to control (based on set point viral loads) from an acute and early HIV prospective cohort from East and Southern Africa. A propensity score matching approach was applied to control for the influence of five factors (age, risk group, virus subtype, gender, and country) known to influence disease progression on causal observations. Fifty-two plasma proteins were assessed at two timepoints in the 1st year of infection. We independently confirmed factors known to influence disease progression such as the B*57 HLA Class I allele, and infecting virus Subtype. We demonstrated associations between circulating levels of MIP-1α and IL-17C, and the ability to control infection. IL-17C has not been described previously within the context of HIV control, making it an interesting target for future studies to understand HIV infection and transmission. An in-depth systems analysis is now underway to fully characterise host, viral and immunological factors contributing to control.
Collapse
Affiliation(s)
- Julia Makinde
- IAVI Human Immunology Laboratory, Imperial College London, London, United Kingdom
| | - Eunice W Nduati
- Kenya Medical Research Institute-Wellcome Trust Research Programme, Kilifi, Kenya
| | - Anna Freni-Sterrantino
- Department of Epidemiology and Biostatistics, MRC-PHE Centre for Environment and Health, Imperial College London, London, United Kingdom
| | - Claire Streatfield
- IAVI Human Immunology Laboratory, Imperial College London, London, United Kingdom
| | - Catherine Kibirige
- IAVI Human Immunology Laboratory, Imperial College London, London, United Kingdom
| | - Jama Dalel
- IAVI Human Immunology Laboratory, Imperial College London, London, United Kingdom
| | - S Lucas Black
- IAVI Human Immunology Laboratory, Imperial College London, London, United Kingdom
| | - Peter Hayes
- IAVI Human Immunology Laboratory, Imperial College London, London, United Kingdom
| | - Gladys Macharia
- IAVI Human Immunology Laboratory, Imperial College London, London, United Kingdom
| | - Jonathan Hare
- IAVI Human Immunology Laboratory, Imperial College London, London, United Kingdom
| | - Edward McGowan
- IAVI Human Immunology Laboratory, Imperial College London, London, United Kingdom
| | - Brian Abel
- IAVI Human Immunology Laboratory, Imperial College London, London, United Kingdom
| | - Deborah King
- IAVI Human Immunology Laboratory, Imperial College London, London, United Kingdom
| | - Sarah Joseph
- IAVI Human Immunology Laboratory, Imperial College London, London, United Kingdom
| | | | - Eric Hunter
- Emory Vaccine Centre, Yerkes National Primate Research Centre, Emory University, Atlanta, GA, United States.,Zambia-Emory HIV Research Project, Lusaka, Zambia
| | - Eduard J Sanders
- Kenya Medical Research Institute-Wellcome Trust Research Programme, Kilifi, Kenya
| | - Matt Price
- IAVI, New York, NY, United States.,Department of Epidemiology and Biostatistics, University of California, San Francisco, San Francisco, CA, United States
| | - Jill Gilmour
- IAVI Human Immunology Laboratory, Imperial College London, London, United Kingdom
| |
Collapse
|
74
|
Diallo MS, Samri A, Charpentier C, Bertine M, Cheynier R, Thiébaut R, Matheron S, Collin F, Braibant M, Candotti D, Brun-Vézinet F, Autran B, Appay V, Autran B, Brun-Vezinet F, Chaghil N, Descamps D, Hosmalin A, Pancino G, Manel N, Marchand L, Pedroza-Martins L, Sàez-Cirion A, Vieillard V, Agut H, Clauvel JP, Costagliola D, Debré P, Theodorou I, Sicard D, Viard JP, Barin F, Vieillard V, Autran B. A Comparison of Cell Activation, Exhaustion, and Expression of HIV Coreceptors and Restriction Factors in HIV-1- and HIV-2-Infected Nonprogressors. AIDS Res Hum Retroviruses 2021; 37:214-223. [PMID: 33050708 DOI: 10.1089/aid.2020.0084] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Human immunodeficiency viruses induce rare attenuated diseases due either to HIV-1 in the exceptional long-term nonprogressors (LTNPs) or to HIV-2 in West Africa. To better understand characteristics of these two disease types we performed a multiplex comparative analysis of cell activation, exhaustion, and expression of coreceptors and restriction factors in CD4 T cells susceptible to harbor those viruses. We analyzed by flow cytometry the expression of HLA-DR, PD1, CCR5, CXCR6, SAMHD1, Blimp-1, and TRIM5α on CD4 T cell subsets from 10 HIV-1+ LTNPs and 14 HIV-2+ (12 nonprogressors and 2 progressors) of the ANRS CO-15 and CO-5 cohorts, respectively, and 12 HIV- healthy donors (HD). The V3 loop of the HIV-1 envelope from 6 HIV-1+ LTNPs was sequenced to determine the CXCR6-binding capacity. Proportions of HLA-DR+ and PD1+ cells were higher in memory CD4 T subsets from HIV-1 LTNPs compared with HIV-2 and HD. Similar findings were observed for CCR5+ cells although limited to central-memory CD4 T cell (TCM) and follicular helper T cell subsets, whereas all major subsets from HIV-1 LTNPs contained less CXCR6+ cells compared with HIV-2. All six V3 loop sequences from HIV-1 LTNPs contained a proline at position 326. Proportions of SAMHD1+ cells were higher in all resting CD4 T subsets from HIV-1 LTNPs compared with the other groups, whereas Blimp-1+ and Trim5α+ cells did not differ. The CD4 T cell subsets from HIV-1 LTNPs differ from those of HIV-2-infected subjects by higher levels of activation, exhaustion, and SAMHD1 expression that can reflect the distinct patterns of host/virus relationships.
Collapse
Affiliation(s)
- Mariama Sadjo Diallo
- Inserm 1135, Centre d'Immunologie et des Maladies Infectieuses, Cimi-Paris, Sorbonne Université, Paris, France
| | - Assia Samri
- Inserm 1135, Centre d'Immunologie et des Maladies Infectieuses, Cimi-Paris, Sorbonne Université, Paris, France
| | - Charlotte Charpentier
- IAME, UMR 1137, Inserm, Université Paris Diderot, Sorbonne Paris Cité, Laboratoire de Virologie, Hôpital Bichat, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Mélanie Bertine
- IAME, UMR 1137, Inserm, Université Paris Diderot, Sorbonne Paris Cité, Laboratoire de Virologie, Hôpital Bichat, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Rémi Cheynier
- Institut Cochin, Inserm, U1016, CNRS, UMR8104, Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Rodolphe Thiébaut
- Inserm U1219 Bordeaux Population Health, INRIA SISTM, University of Bordeaux, Bordeaux, France
| | - Sophie Matheron
- Inserm, IAME, UMR 1137, University of Paris Diderot, Sorbonne Paris Cité, Assistance Publique -Hôpitaux de Paris, Service des Maladies Infectieuses et Tropicales, Hôpital Bichat, HUPNVS, Paris, France
| | - Fidéline Collin
- Inserm, IAME, UMR 1137, University of Paris Diderot, Sorbonne Paris Cité, Assistance Publique -Hôpitaux de Paris, Service des Maladies Infectieuses et Tropicales, Hôpital Bichat, HUPNVS, Paris, France
| | - Martine Braibant
- Université François-Rabelais, Inserm U1259 & CHRU de Tours, Tours, France
| | | | | | - Brigitte Autran
- Inserm 1135, Centre d'Immunologie et des Maladies Infectieuses, Cimi-Paris, Sorbonne Université, Paris, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
75
|
Shkurnikov M, Nersisyan S, Jankevic T, Galatenko A, Gordeev I, Vechorko V, Tonevitsky A. Association of HLA Class I Genotypes With Severity of Coronavirus Disease-19. Front Immunol 2021; 12:641900. [PMID: 33732261 PMCID: PMC7959787 DOI: 10.3389/fimmu.2021.641900] [Citation(s) in RCA: 92] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 02/02/2021] [Indexed: 01/11/2023] Open
Abstract
Human leukocyte antigen (HLA) class I molecules play a crucial role in the development of a specific immune response to viral infections by presenting viral peptides at the cell surface where they will be further recognized by T cells. In the present manuscript, we explored whether HLA class I genotypes can be associated with the critical course of Coronavirus Disease-19 by searching possible connections between genotypes of deceased patients and their age at death. HLA-A, HLA-B, and HLA-C genotypes of n = 111 deceased patients with COVID-19 (Moscow, Russia) and n = 428 volunteers were identified with next-generation sequencing. Deceased patients were split into two groups according to age at the time of death: n = 26 adult patients aged below 60 and n = 85 elderly patients over 60. With the use of HLA class I genotypes, we developed a risk score (RS) which was associated with the ability to present severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) peptides by the HLA class I molecule set of an individual. The resulting RS was significantly higher in the group of deceased adults compared to elderly adults [p = 0.00348, area under the receiver operating characteristic curve (AUC ROC = 0.68)]. In particular, presence of HLA-A*01:01 allele was associated with high risk, while HLA-A*02:01 and HLA-A*03:01 mainly contributed to low risk. The analysis of patients with homozygosity strongly highlighted these results: homozygosity by HLA-A*01:01 accompanied early deaths, while only one HLA-A*02:01 homozygote died before 60 years of age. Application of the constructed RS model to an independent Spanish patients cohort (n = 45) revealed that the score was also associated with the severity of the disease. The obtained results suggest the important role of HLA class I peptide presentation in the development of a specific immune response to COVID-19.
Collapse
Affiliation(s)
- Maxim Shkurnikov
- Faculty of Biology and Biotechnology, HSE University, Moscow, Russia
| | - Stepan Nersisyan
- Faculty of Biology and Biotechnology, HSE University, Moscow, Russia
| | - Tatjana Jankevic
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Pirogov Russian National Research Medical University, Moscow, Russia
| | - Alexei Galatenko
- Faculty of Biology and Biotechnology, HSE University, Moscow, Russia
- Faculty of Mechanics and Mathematics, Lomonosov Moscow State University, Moscow, Russia
| | - Ivan Gordeev
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Pirogov Russian National Research Medical University, Moscow, Russia
- O.M. Filatov City Clinical Hospital, Moscow, Russia
| | | | - Alexander Tonevitsky
- Faculty of Biology and Biotechnology, HSE University, Moscow, Russia
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
76
|
Dilthey AT. State-of-the-art genome inference in the human MHC. Int J Biochem Cell Biol 2021; 131:105882. [PMID: 33189874 DOI: 10.1016/j.biocel.2020.105882] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 10/29/2020] [Accepted: 11/04/2020] [Indexed: 12/20/2022]
Abstract
The Major Histocompatibility Complex (MHC) on the short arm of chromosome 6 is associated with more diseases than any other region of the genome; it encodes the antigen-presenting Human Leukocyte Antigen (HLA) proteins and is one of the key immunogenetic regions of the genome. Accurate genome inference and interpretation of MHC association signals have traditionally been hampered by the region's uniquely complex features, such as high levels of polymorphism; inter-gene sequence homologies; structural variation; and long-range haplotype structures. Recent algorithmic and technological advances have, however, significantly increased the accessibility of genetic variation in the MHC; these developments include (i) accurate SNP-based HLA type imputation; (ii) genome graph approaches for variation-aware genome inference from next-generation sequencing data; (iii) long-read-based diploid de novo assembly of the MHC; (iv) cost-effective targeted MHC sequencing methods. Applied to hundreds of thousands of samples over the last years, these technologies have already enabled significant biological discoveries, for example in the field of autoimmune disease genetics. Remaining challenges concern the development of integrated methods that leverage haplotype-resolved de novo assembly of the MHC for the development of improved MHC genotyping methods for short reads and the construction of improved reference panels for SNP-based imputation. Improved genome inference in the MHC can crucially contribute to an improved genetic and functional understanding of many immune-related phenotypes and diseases.
Collapse
Affiliation(s)
- Alexander T Dilthey
- Institute of Medical Statistics and Computational Biology, University of Cologne, Cologne, Germany; Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany; Institute of Medical Microbiology and Hospital Hygiene, Heinrich Heine University Düsseldorf, Düsseldorf, Germany.
| |
Collapse
|
77
|
Martin GE, Pace M, Shearer FM, Zilber E, Hurst J, Meyerowitz J, Thornhill JP, Lwanga J, Brown H, Robinson N, Hopkins E, Olejniczak N, Nwokolo N, Fox J, Fidler S, Willberg CB, Frater J. Levels of Human Immunodeficiency Virus DNA Are Determined Before ART Initiation and Linked to CD8 T-Cell Activation and Memory Expansion. J Infect Dis 2021; 221:1135-1145. [PMID: 31776569 PMCID: PMC7075410 DOI: 10.1093/infdis/jiz563] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2019] [Indexed: 01/31/2023] Open
Abstract
Initiation of antiretroviral therapy (ART) in early compared with chronic human immunodeficiency virus (HIV) infection is associated with a smaller HIV reservoir. This longitudinal analysis of 60 individuals who began ART during primary HIV infection (PHI) investigates which pre- and posttherapy factors best predict HIV DNA levels (a correlate of reservoir size) after treatment initiation during PHI. The best predictor of HIV DNA at 1 year was pre-ART HIV DNA, which was in turn significantly associated with CD8 memory T-cell differentiation (effector memory, naive, and T-bet−Eomes− subsets), CD8 T-cell activation (CD38 expression) and T-cell immunoglobulin and mucin-domain containing-3 (Tim-3) expression on memory T cells. No associations were found for any immunological variables after 1 year of ART. Levels of HIV DNA are determined around the time of ART initiation in individuals treated during PHI. CD8 T-cell activation and memory expansion are linked to HIV DNA levels, suggesting the importance of the initial host-viral interplay in eventual reservoir size.
Collapse
Affiliation(s)
- Genevieve E Martin
- Peter Medawar Building for Pathogen Research, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Matthew Pace
- Peter Medawar Building for Pathogen Research, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Freya M Shearer
- Big Data Institute, Li Ka Shing Centre for Health Information and Discovery, University of Oxford, Oxford, United Kingdom
| | - Eva Zilber
- Peter Medawar Building for Pathogen Research, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Jacob Hurst
- Peter Medawar Building for Pathogen Research, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Jodi Meyerowitz
- Peter Medawar Building for Pathogen Research, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - John P Thornhill
- Peter Medawar Building for Pathogen Research, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom.,Division of Medicine, Wright Fleming Institute, Imperial College, London, United Kingdom
| | - Julianne Lwanga
- Department of Genitourinary Medicine and Infectious Disease, Guy's and St Thomas' NHS Foundation Trust, London, United Kingdom
| | - Helen Brown
- Peter Medawar Building for Pathogen Research, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Nicola Robinson
- Peter Medawar Building for Pathogen Research, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Emily Hopkins
- Peter Medawar Building for Pathogen Research, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Natalia Olejniczak
- Peter Medawar Building for Pathogen Research, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Nneka Nwokolo
- Chelsea and Westminster Hospital, London, United Kingdom
| | - Julie Fox
- Department of Genitourinary Medicine and Infectious Disease, Guy's and St Thomas' NHS Foundation Trust, London, United Kingdom.,King's College National Institute for Health Research Biomedical Research Centre, London, United Kingdom
| | - Sarah Fidler
- Division of Medicine, Wright Fleming Institute, Imperial College, London, United Kingdom.,Imperial College National Institute for Health Research Biomedical Research Centre, London, United Kingdom
| | - Christian B Willberg
- Peter Medawar Building for Pathogen Research, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom.,National Institute of Health Research Biomedical Research Centre, Oxford, United Kingdom
| | - John Frater
- Peter Medawar Building for Pathogen Research, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom.,National Institute of Health Research Biomedical Research Centre, Oxford, United Kingdom
| |
Collapse
|
78
|
Abstract
Over the past four decades, research on the natural history of HIV infection has described how HIV wreaks havoc on human immunity and causes AIDS. HIV host genomic research, which aims to understand how human genetic variation affects our response to HIV infection, has progressed from early candidate gene studies to recent multi-omic efforts, benefiting from spectacular advances in sequencing technology and data science. In addition to invading cells and co-opting the host machinery for replication, HIV also stably integrates into our own genome. The study of the complex interactions between the human and retroviral genomes has improved our understanding of pathogenic mechanisms and suggested novel preventive and therapeutic approaches against HIV infection.
Collapse
Affiliation(s)
- Paul J. McLaren
- grid.415368.d0000 0001 0805 4386National HIV and Retrovirology Laboratory at the JC Wilt Infectious Diseases Research Centre, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, MB Canada ,grid.21613.370000 0004 1936 9609Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, MB Canada
| | - Jacques Fellay
- grid.5333.60000000121839049School of Life Sciences, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland ,grid.419765.80000 0001 2223 3006Swiss Institute of Bioinformatics, Lausanne, Switzerland ,grid.8515.90000 0001 0423 4662Precision Medicine Unit, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
79
|
Murakoshi H, Chikata T, Akahoshi T, Zou C, Borghan MA, Van Tran G, Nguyen TV, Van Nguyen K, Kuse N, Takiguchi M. Critical effect of Pol escape mutations associated with detrimental allele HLA-C*15: 05 on clinical outcome in HIV-1 subtype A/E infection. AIDS 2021; 35:33-43. [PMID: 33031103 PMCID: PMC7752225 DOI: 10.1097/qad.0000000000002704] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 09/15/2020] [Accepted: 09/22/2020] [Indexed: 01/15/2023]
Abstract
OBJECTIVE The mechanism explaining the role of detrimental HLA alleles in HIV-1 infections has been investigated in very few studies. HLA-A*29:01-B*07:05-C*15:05 is a detrimental haplotype in HIV-1 subtype A/E-infected Vietnamese individuals. The accumulation of mutations at Pol 653/657 is associated with a poor clinical outcome in these individuals. However, the detrimental HLA allele and the mechanism responsible for its detrimental effect remains unknown. Therefore, in this current study we identified the detrimental HLA allele and investigated the mechanism responsible for the detrimental effect. DESIGN AND METHODS A T-cell epitope including Pol 653/657 and its HLA restriction were identified by using overlapping HIV-1 peptides and cell lines expressing a single HLA. The effect of the mutations on the T-cell recognition of HIV-1-infected cells was investigated by using target cells infected with the mutant viruses. The effect of these mutations on the clinical outcome was analyzed in 74 HLA-C*15:05 Vietnamese infected with the subtype A/E virus. RESULTS We identified HLA-C*15:05-restricted SL9 epitope including Pol 653/657. PolS653A/T/L mutations within this epitope critically impaired the T-cell recognition of HIV-1-infected cells, indicating that these mutations had escaped from the T cells. T-cell responders infected with these mutants showed significantly lower CD4 T-cell counts than those with the wild-type virus or Pol S653K/Q mutants, which are not associated with HLA-C*15:05. CONCLUSION The accumulation of Pol S653A/T/L escape mutants critically affected the control of HIV-1 by SL9-specific T cells and led to a poor clinical outcome in the subtype A/E-infected individuals having the detrimental HLA-C*15:05 allele.
Collapse
Affiliation(s)
- Hayato Murakoshi
- Joint Research Center for Human Retrovirus Infection
- Center for AIDS Research, Kumamoto University, Kumamoto, Japan
| | - Takayuki Chikata
- Joint Research Center for Human Retrovirus Infection
- Center for AIDS Research, Kumamoto University, Kumamoto, Japan
| | | | - Chengcheng Zou
- Center for AIDS Research, Kumamoto University, Kumamoto, Japan
| | - Mohamed Ali Borghan
- Department of Physiology and Biophysics, College of Medicine and Health Sciences, National University of Science and Technology, Sohar, Sultanate of Oman
| | - Giang Van Tran
- Center for AIDS Research, Kumamoto University, Kumamoto, Japan
- National Hospital of Tropical Diseases
- Hanoi Medical University, Hanoi, Vietnam
| | - Trung Vu Nguyen
- National Hospital of Tropical Diseases
- Hanoi Medical University, Hanoi, Vietnam
| | | | - Nozomi Kuse
- Joint Research Center for Human Retrovirus Infection
- Center for AIDS Research, Kumamoto University, Kumamoto, Japan
| | - Masafumi Takiguchi
- Joint Research Center for Human Retrovirus Infection
- Center for AIDS Research, Kumamoto University, Kumamoto, Japan
| |
Collapse
|
80
|
[In vivo protective mechanisms of neutralizing antibodies against simian immunodeficiency virus replicatio]. Uirusu 2021; 71:87-96. [PMID: 35526999 DOI: 10.2222/jsv.71.87] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Identifying protective adaptive immune responses against human immunodeficiency virus type 1 (HIV-1), mainly comprising CD8+ cytotoxic T lymphocyte (CTL) and neutralizing antibody (NAb) responses, is crucial for understanding in vivo mechanisms of viral persistence and developing prophylactic/intervention strategies. In HIV-1 and pathogenic simian immunodeficiency virus (SIV) infections, CTL responses play the canonical role in primary viral replication control, whereas NAb responses are impaired. This NAb impairment in early infection conversely highlights the necessity of elucidating anti-HIV/SIV antibody defense/induction mechanisms, and one approach to analyze the impact of NAbs on HIV/SIV infection is passive immunization. We have analyzed a simian AIDS model of highly pathogenic SIVmac239-infected rhesus macaques, and characterized that a single acute-phase passive infusion of SIV-specific polyclonal NAbs drives a synergistic qualitative boosting of virus-specific T-cell responses, resulting in sustained SIV replication control. This in vivo functional augmentation of virus-specific T cells by NAbs in the SIV model provides insights into the design of protective immunity against HIV-1 infection.
Collapse
|
81
|
Hakkarainen TJ, Krams I, Coetzee V, Skrinda I, Kecko S, Krama T, Ilonen J, Rantala MJ. MHC Class II Heterozygosity Associated With Attractiveness of Men and Women. EVOLUTIONARY PSYCHOLOGY 2021; 19:1474704921991994. [PMID: 33715474 PMCID: PMC10303478 DOI: 10.1177/1474704921991994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 01/05/2021] [Indexed: 11/15/2022] Open
Abstract
The genes of the Major Histocompatibility Complex (MHC), which plays a fundamental role in the immune system, are some of the most diverse genes in vertebrates and have been connected to mate choice in several species, including humans. While studies suggest a positive relationship between MHC diversity and male facial attractiveness, the connection of MHC diversity to other visual traits and female attractiveness is still unclear. The purpose of this study was to investigate further whether MHC heterozygosity, indicating genetic quality, is associated with visual traits affecting mate preferences in humans. In total 74 Latvian men and 49 women were genotyped for several MHC loci and rated for facial and, in men, also body attractiveness. The results indicate a preference for MHC heterozygous female and male faces. However, the initially positive relationship between MHC heterozygosity and facial attractiveness becomes non-significant in females, when controlling for multiple testing, and in males, when age and fat content is taken into account, referring to the importance of adiposity in immune function and thus also attractiveness. Thus overall the effect of MHC heterozygosity on attractiveness seems weak. When considering separate loci, we show that the main gene related to facial attractiveness is the MHC class II DQB1; a gene important also in viral infections and autoimmune diseases. Indeed, in our study, heterozygous individuals are rated significantly more attractive than their homozygous counterparts, only in relation to gene DQB1. This study is the first to indicate a link between DQB1 and attractiveness in humans.
Collapse
Affiliation(s)
| | - Indrikis Krams
- Department of Biology, Section of Ecology, University of Turku, Finland
- Institute of Ecology and Earth Sciences,
University of Tartu, Estonia
- Institute of Life Sciences and Technologies, Daugavpils University, Latvia
- Department of Zoology and Animal Ecology,
Faculty of Biology, University of Latvia, Rīga, Latvia
| | - Vinet Coetzee
- Department of Genetics, 56410University of
Pretoria, Hatfield, South Africa
| | - Ilona Skrinda
- Department of Biology, Section of Ecology, University of Turku, Finland
- Daugavpils Regional Hospital, Daugavpils,
Latvia
| | - Sanita Kecko
- Institute of Life Sciences and Technologies, Daugavpils University, Latvia
| | - Tatjana Krama
- Institute of Ecology and Earth Sciences,
University of Tartu, Estonia
- Institute of Life Sciences and Technologies, Daugavpils University, Latvia
| | - Jorma Ilonen
- Immunogenetics Laboratory, Institute of
Biomedicine, University of Turku, Finland
- Clinical Microbiology, Turku University
Hospital, Finland
| | - Markus J. Rantala
- Department of Biology, Section of Ecology, University of Turku, Finland
| |
Collapse
|
82
|
Smallbone W, Ellison A, Poulton S, van Oosterhout C, Cable J. Depletion of MHC supertype during domestication can compromise immunocompetence. Mol Ecol 2020; 30:736-746. [PMID: 33274493 PMCID: PMC7898906 DOI: 10.1111/mec.15763] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Revised: 11/23/2020] [Accepted: 11/26/2020] [Indexed: 12/27/2022]
Abstract
The major histocompatibility complex (MHC) plays an important role in infectious disease resistance. The presence of certain MHC alleles and functionally similar groups of MHC alleles (i.e., supertypes) has been associated with resistance to particular parasite species. Farmed and domesticated fish stocks are often depleted in their MHC alleles and supertype diversity, possibly as a consequence of artificial selection for desirable traits, inbreeding (loss of heterozygosity), genetic drift (loss of allelic diversity) and/or reduced parasite biodiversity. Here we quantify the effects of depletion of MHC class II genotype and supertype variation on resistance to the parasite Gyrodactylus turnbulli in guppies (Poecilia reticulata). Compared to the descendants of wild‐caught guppies, ornamental fish had a significantly reduced MHC variation (i.e., the numbers of MHC alleles and supertypes per individual, and per population). In addition, ornamental fish were significantly more susceptible to G. turnbulli infections, accumulating peak intensity 10 times higher than that of their wildtype counterparts. Four out of 13 supertypes were associated with a significantly reduced parasite load, and the presence of some supertypes had a dramatic effect on the intensity of infection. Remarkably, the ornamental and wildtype fish differed in the supertypes that were associated with parasite resistance. Analysis with a genetic algorithm showed that resistance‐conferring supertypes of the wildtype and ornamental fish shared two unique amino acids in the peptide‐binding region of the MHC that were not found in any other alleles. These data show that the supertype demarcation captures some, but not all, of the variation in the immune function of the alleles. This study highlights the importance of managing functional MHC diversity in livestock, and suggests there might be some immunological redundancy among MHC supertypes.
Collapse
Affiliation(s)
| | - Amy Ellison
- School of Biosciences, Cardiff University, Cardiff, UK
| | - Simon Poulton
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, UK
| | - Cock van Oosterhout
- School of Environmental Sciences, University of East Anglia, Norwich Research Park, Norwich, UK
| | - Joanne Cable
- School of Biosciences, Cardiff University, Cardiff, UK
| |
Collapse
|
83
|
Host genetics and infectious disease: new tools, insights and translational opportunities. Nat Rev Genet 2020; 22:137-153. [PMID: 33277640 PMCID: PMC7716795 DOI: 10.1038/s41576-020-00297-6] [Citation(s) in RCA: 110] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/14/2020] [Indexed: 12/22/2022]
Abstract
Understanding how human genetics influence infectious disease susceptibility offers the opportunity for new insights into pathogenesis, potential drug targets, risk stratification, response to therapy and vaccination. As new infectious diseases continue to emerge, together with growing levels of antimicrobial resistance and an increasing awareness of substantial differences between populations in genetic associations, the need for such work is expanding. In this Review, we illustrate how our understanding of the host–pathogen relationship is advancing through holistic approaches, describing current strategies to investigate the role of host genetic variation in established and emerging infections, including COVID-19, the need for wider application to diverse global populations mirroring the burden of disease, the impact of pathogen and vector genetic diversity and a broad array of immune and inflammation phenotypes that can be mapped as traits in health and disease. Insights from study of inborn errors of immunity and multi-omics profiling together with developments in analytical methods are further advancing our knowledge of this important area. Infectious diseases are an ever-present global threat. In this Review, Kwok, Mentzer and Knight discuss our latest understanding of how human genetics influence susceptibility to disease. Furthermore, they discuss emerging progress in the interplay between host and pathogen genetics, molecular responses to infection and vaccination, and opportunities to bring these aspects together for rapid responses to emerging diseases such as COVID-19.
Collapse
|
84
|
Leen G, Stein JE, Robinson J, Maldonado Torres H, Marsh SGE. The HLA diversity of the Anthony Nolan register. HLA 2020; 97:15-29. [PMID: 33128327 PMCID: PMC7756289 DOI: 10.1111/tan.14127] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 09/15/2020] [Accepted: 10/23/2020] [Indexed: 12/22/2022]
Abstract
While the success of allogeneic stem cell transplantation depends on a high degree of HLA compatibility between donor and patient, finding a suitable donor remains challenging due to the hyperpolymorphic nature of HLA genes. We calculated high-resolution allele, haplotype and phenotype frequencies for HLA-A, -C, -B, -DRB1 and -DQB1 for 10 subpopulations of the Anthony Nolan (AN) register using an in-house expectation-maximisation (EM) algorithm run on mixed resolution HLA data, covering 676 155 individuals. Sample sizes range from 599 410 for British/Irish North West European (BINWE) individuals, the largest subpopulation in the United Kingdom to 1105 for the British Bangladeshi population. Calculation of genetic distance between the subpopulations based on haplotype frequencies shows three broad clusters, each following a major continental group: European, African and Asian. We further analysed the HLA haplotype and phenotype diversity of each subpopulation, and found that 35.52% of BINWE individuals ranging to 98.34% of Middle Eastern individuals on the register had a unique phenotype within their subpopulation. These analyses and the allele, haplotype and phenotype frequency data of the subpopulation on the AN register are a valuable resource in understanding the HLA diversity in the United Kingdom and can be used to improve the accuracy of match likelihoods and to inform future donor recruitment strategies.
Collapse
Affiliation(s)
- Gayle Leen
- Anthony Nolan Research Institute, Royal Free Campus, London, UK.,UCL Cancer Institute, Royal Free Campus, London, UK
| | - Jeremy E Stein
- Anthony Nolan Research Institute, Royal Free Campus, London, UK
| | - James Robinson
- Anthony Nolan Research Institute, Royal Free Campus, London, UK.,UCL Cancer Institute, Royal Free Campus, London, UK
| | - Hazael Maldonado Torres
- Anthony Nolan Research Institute, Royal Free Campus, London, UK.,UCL Cancer Institute, Royal Free Campus, London, UK
| | - Steven G E Marsh
- Anthony Nolan Research Institute, Royal Free Campus, London, UK.,UCL Cancer Institute, Royal Free Campus, London, UK
| |
Collapse
|
85
|
Bashirova AA, Viard M, Naranbhai V, Grifoni A, Garcia-Beltran W, Akdag M, Yuki Y, Gao X, O'hUigin C, Raghavan M, Wolinsky S, Bream JH, Duggal P, Martinson J, Michael NL, Kirk GD, Buchbinder SP, Haas D, Goedert JJ, Deeks SG, Fellay J, Walker B, Goulder P, Cresswell P, Elliott T, Sette A, Carlson J, Carrington M. HLA tapasin independence: broader peptide repertoire and HIV control. Proc Natl Acad Sci U S A 2020; 117:28232-28238. [PMID: 33097667 PMCID: PMC7668082 DOI: 10.1073/pnas.2013554117] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Human leukocyte antigen (HLA) class I allotypes vary in their ability to present peptides in the absence of tapasin, an essential component of the peptide loading complex. We quantified tapasin dependence of all allotypes that are common in European and African Americans (n = 97), which revealed a broad continuum of values. Ex vivo examination of cytotoxic T cell responses to the entire HIV-1 proteome from infected subjects indicates that tapasin-dependent allotypes present a more limited set of distinct peptides than do tapasin-independent allotypes, data supported by computational predictions. This suggests that variation in tapasin dependence may impact the strength of the immune responses by altering peptide repertoire size. In support of this model, we observed that individuals carrying HLA class I genotypes characterized by greater tapasin independence progress more slowly to AIDS and maintain lower viral loads, presumably due to increased breadth of peptide presentation. Thus, tapasin dependence level, like HLA zygosity, may serve as a means to restrict or expand breadth of the HLA-I peptide repertoire across humans, ultimately influencing immune responses to pathogens and vaccines.
Collapse
Affiliation(s)
- Arman A Bashirova
- Basic Science Program, Frederick National Laboratory for Cancer Research, Frederick, MD 21702
| | - Mathias Viard
- Basic Science Program, Frederick National Laboratory for Cancer Research, Frederick, MD 21702
| | - Vivek Naranbhai
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215
| | - Alba Grifoni
- Division of Vaccine Discovery, La Jolla Institute for Immunology, La Jolla, CA 92037
| | - Wilfredo Garcia-Beltran
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University, Cambridge, MA 02139
| | - Marjan Akdag
- Basic Science Program, Frederick National Laboratory for Cancer Research, Frederick, MD 21702
| | - Yuko Yuki
- Basic Science Program, Frederick National Laboratory for Cancer Research, Frederick, MD 21702
| | - Xiaojiang Gao
- Basic Science Program, Frederick National Laboratory for Cancer Research, Frederick, MD 21702
| | - Colm O'hUigin
- Basic Science Program, Frederick National Laboratory for Cancer Research, Frederick, MD 21702
| | - Malini Raghavan
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI 48109
| | - Steven Wolinsky
- Division of Infectious Diseases, The Feinberg School of Medicine, Northwestern University, Chicago, IL 60611
| | - Jay H Bream
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205
| | - Priya Duggal
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205
| | - Jeremy Martinson
- Department of Infectious Diseases and Microbiology, University of Pittsburgh Graduate School of Public Health, Pittsburgh, PA 15261
| | - Nelson L Michael
- US Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD 20910
| | - Gregory D Kirk
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205
| | - Susan P Buchbinder
- HIV Research Section, San Francisco Department of Public Health, San Francisco, CA 94102
| | - David Haas
- Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, TN 37204
| | - James J Goedert
- Infections and Immunoepidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Rockville, MD 20850
| | - Steven G Deeks
- Department of Medicine, University of California, San Francisco, CA 94110
| | - Jacques Fellay
- School of Life Sciences, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
- Swiss Institute of Bioinformatics, 1015 Lausanne, Switzerland
| | - Bruce Walker
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University, Cambridge, MA 02139
| | - Philip Goulder
- Department of Paediatrics, University of Oxford, Oxford, OX1 4AJ, United Kingdom
| | - Peter Cresswell
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06520
| | - Tim Elliott
- Institute for Life Sciences, University of Southampton, Southampton, SO17 1BJ, United Kingdom
- Centre for Cancer Immunology, University of Southampton, Southampton SO16 6YD, United Kingdom
| | - Alessandro Sette
- Division of Vaccine Discovery, La Jolla Institute for Immunology, La Jolla, CA 92037
- Department of Medicine, University of California San Diego, La Jolla, CA 92093
| | | | - Mary Carrington
- Basic Science Program, Frederick National Laboratory for Cancer Research, Frederick, MD 21702;
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University, Cambridge, MA 02139
| |
Collapse
|
86
|
Sullivan S, Fairchild PJ, Marsh SGE, Müller CR, Turner ML, Song J, Turner D. Haplobanking induced pluripotent stem cells for clinical use. Stem Cell Res 2020; 49:102035. [PMID: 33221677 DOI: 10.1016/j.scr.2020.102035] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 07/20/2020] [Accepted: 10/05/2020] [Indexed: 02/08/2023] Open
Abstract
The development of induced pluripotent stem cells (iPSCs) by Shinya Yamanaka and colleagues in 2006 has led to a potential new paradigm in cellular therapeutics, including the possibility of producing patient-specific, disease-specific and immune matched allogeneic cell therapies. One can envisage two routes to immunologically compatible iPSC therapies: using genetic modification to generate a 'universal donor' with reduced expression of Human Leukocyte Antigens (HLA) and other immunological targets or developing a haplobank containing iPSC lines specifically selected to provide HLA matched products to large portions of the population. HLA matched lines can be stored in a designated physical or virtual global bank termed a 'haplobank'. The process of 'iPSC haplobanking' refers to the banking of iPSC cell lines, selected to be homozygous for different HLA haplotypes, from which therapeutic products can be derived and matched immunologically to patient populations. By matching iPSC and derived products to a patient's HLA class I and II molecules, one would hope to significantly reduce the risk of immune rejection and the use of immunosuppressive medication. Immunosuppressive drugs are used in several conditions (including autoimmune disease and in transplantation procedures) to reduce rejection of infused cells, or transplanted tissue and organs, due to major and minor histocompatibility differences between donor and recipient. Such regimens can lead to immune compromise and pathological consequences such as opportunistic infections or malignancies due to decreased cancer immune surveillance. In this article, we will discuss what is practically involved if one is developing and executing an iPSC haplobanking strategy.
Collapse
Affiliation(s)
- Stephen Sullivan
- Global Alliance for iPSC Therapies, Jack Copland Centre, Heriot-Watt Research Park, Edinburgh, UK.
| | - Paul J Fairchild
- University of Oxford, Sir William Dunn School of Pathology, South Parks Road, Oxford OX1 3RE, UK
| | - Steven G E Marsh
- HLA Informatics Group, Anthony Nolan Research Institute, Royal Free Campus, London, UK; UCL Cancer Institute, University College London, London, UK
| | - Carlheinz R Müller
- Zentrales Knochenmarkspender-Register Deutschland (ZKRD), Helmholtzstraße, 1089081 Ulm, Germany
| | - Marc L Turner
- Global Alliance for iPSC Therapies, Jack Copland Centre, Heriot-Watt Research Park, Edinburgh, UK; Advanced Therapeutics, Scottish National Blood Transfusion Service, Edinburgh, UK
| | - Jihwan Song
- Global Alliance for iPSC Therapies, Jack Copland Centre, Heriot-Watt Research Park, Edinburgh, UK; Department of Biomedical Science, CHA Stem Cell Institute, CHA University, Seongnam-si, Gyeonggi-do, Republic of Korea
| | - David Turner
- Global Alliance for iPSC Therapies, Jack Copland Centre, Heriot-Watt Research Park, Edinburgh, UK; Histocompatibility and Immunogenetics Laboratory, Royal Infirmary of Edinburgh, Edinburgh, UK
| |
Collapse
|
87
|
Hosseini-Moghaddam SM, Xu Q, Jevnikar AM, House AA, Luke P, Campigotto A, Kum JJY, Singh G, Alharbi H, Speechley MR. The effect of human leukocyte antigen A1 and B35-Cw4 on sustained BK polyomavirus DNAemia after renal transplantation. Clin Transplant 2020; 34:e14110. [PMID: 33053214 DOI: 10.1111/ctr.14110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 10/01/2020] [Accepted: 10/03/2020] [Indexed: 11/30/2022]
Abstract
Human leukocyte antigen (HLA) class I presentation pathway plays a central role in natural killer (NK) cell and cytotoxic T-cell activities against BK polyomavirus (BKPyV) DNAemia. We determined the risk of sustained BKPyV DNAemia in 175 consecutive renal transplant recipients considering the simultaneous effect of donor/recipient HLA class I antigens and pre- or post-transplant variables. Median (IQR) age was 53 (44-64) years, and 37% of patients were female. 40 patients (22.9%) developed sustained BKPyV DNAemia [median (IQR) viral load: 9740 (4350-17 125) copies/ml]. In the Cox proportional hazard analysis, HLA-A1 (HR: 3.06, 95% CI: 1.51-6.17) and HLA-B35-Cw4 (HR: 4.63, 95% CI: 2.12-10.14) significantly increased the risk of sustained BKPyV DNAemia, while 2 HLA-C mismatches provided a marginally protective effect (HR: 0.32, 95% CI: 0.10-0.98). HLA-Cw4 is a ligand for NK cell inhibitory receptor, and HLA-B35 is in strong linkage disequilibrium with the HLA-Cw4 allele. The association between HLA-B35-Cw4 expression and sustained BKPyV DNAemia supports the important role of cytotoxic T cells and NK cells that would normally control BKPyV activation through engagement with immunoglobulin-like killer receptors (KIRs). Further studies are required to investigate the effect of HLA-C alleles along with NK cell activity against BKPyV DNAemia.
Collapse
Affiliation(s)
- Seyed M Hosseini-Moghaddam
- Division of Infectious Diseases, Department of Medicine, University Health Network, University of Toronto, Toronto, ON, Canada.,Department of Epidemiology and Biostatistics, Western University, London, ON, Canada.,Multiorgan Transplant Program, London Health Sciences Centre, Western University, London, ON, Canada
| | - Qingyong Xu
- Multiorgan Transplant Program, London Health Sciences Centre, Western University, London, ON, Canada.,Histocompatibility Laboratory, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Anthony M Jevnikar
- Multiorgan Transplant Program, London Health Sciences Centre, Western University, London, ON, Canada
| | - Andrew A House
- Multiorgan Transplant Program, London Health Sciences Centre, Western University, London, ON, Canada
| | - Patrick Luke
- Multiorgan Transplant Program, London Health Sciences Centre, Western University, London, ON, Canada
| | - Aaron Campigotto
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | - Jina J Y Kum
- Multiorgan Transplant Program, London Health Sciences Centre, Western University, London, ON, Canada.,Department of Pathology and Laboratory Medicine, London Health Sciences Centre, Western University, London, ON, Canada
| | - Gagandeep Singh
- Multiorgan Transplant Program, London Health Sciences Centre, Western University, London, ON, Canada
| | - Hajed Alharbi
- Multiorgan Transplant Program, London Health Sciences Centre, Western University, London, ON, Canada
| | - Mark R Speechley
- Department of Epidemiology and Biostatistics, Western University, London, ON, Canada
| |
Collapse
|
88
|
DiNatale RG, Hakimi AA, Chan TA. Genomics-based immuno-oncology: bridging the gap between immunology and tumor biology. Hum Mol Genet 2020; 29:R214-R225. [PMID: 33029628 PMCID: PMC7574960 DOI: 10.1093/hmg/ddaa203] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2020] [Revised: 09/05/2020] [Accepted: 09/08/2020] [Indexed: 12/14/2022] Open
Abstract
The first hypotheses about how the immune system affects cancers were proposed in the early 20th century. These early concepts about cancer immunosurveillance were further developed in the decades that followed, but a detailed understanding of cancer immunity remained elusive. It was only recently, through the advent of high-throughput technologies, that scientists gained the ability to profile tumors with a resolution that allowed for granular assessment of both tumor cells and the tumor microenvironment. The advent of immune checkpoint inhibitors (ICIs), which have proven to be effective cancer therapies in many malignancies, has spawned great interest in developing biomarkers for efficacy, an endeavor that highlighted the value of dissecting tumor immunity using large-scale methods. Response to ICI therapy has been shown to be a highly complex process, where the dynamics of tumor and immune cells is key to success. The need to understand the biologic mechanisms at the tumor-immune interface has given rise to the field of cancer immunogenomics, a discipline that aims to bridge the gap between cancer genomics and classical immunology. We provide a broad overview of this emerging branch of translational science, summarizing common platforms used and recent discoveries in the field, which are having direct clinical implications. Our discussion will be centered around the genetic foundations governing tumor immunity and molecular determinants associated with clinical benefit from ICI therapy. We emphasize the importance of molecular diversity as a driver of anti-tumor immunity and discuss how these factors can be probed using genomic approaches.
Collapse
Affiliation(s)
- Renzo G DiNatale
- Immunogenomics and Precision Oncology Platform, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
- Urology Department, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - A Ari Hakimi
- Urology Department, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Timothy A Chan
- Immunogenomics and Precision Oncology Platform, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
- Center for Immunotherapy and Precision Immuno-Oncology, Cleveland Clinic, Cleveland, OH 44195, USA
- Lerner Research Institute and Taussig Cancer Center, Cleveland Clinic, Cleveland, OH 44195, USA
| |
Collapse
|
89
|
Camacho-Bydume C, Wang T, Sees JA, Fernandez-Viña M, Abid MB, Askar M, Beitinjaneh A, Brown V, Castillo P, Chhabra S, Gadalla SM, Hsu JM, Kamoun M, Lazaryan A, Nishihori T, Page K, Schetelig J, Fleischhauer K, Marsh SGE, Paczesny S, Spellman SR, Lee SJ, Hsu KC. Specific Class I HLA Supertypes but Not HLA Zygosity or Expression Are Associated with Outcomes following HLA-Matched Allogeneic Hematopoietic Cell Transplant: HLA Supertypes Impact Allogeneic HCT Outcomes. Transplant Cell Ther 2020; 27:142.e1-142.e11. [PMID: 33053450 DOI: 10.1016/j.bbmt.2020.10.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 09/30/2020] [Accepted: 10/07/2020] [Indexed: 12/12/2022]
Abstract
Maximizing the probability of antigen presentation to T cells through diversity in HLAs can enhance immune responsiveness and translate into improved clinical outcomes, as evidenced by the association of heterozygosity and supertypes at HLA class I loci with improved survival in patients with advanced solid tumors treated with immune checkpoint inhibitors. We investigated the impact of HLA heterozygosity, supertypes, and surface expression on outcomes in adult and pediatric patients with acute myeloid leukemia (AML), myelodysplastic syndrome, acute lymphoblastic leukemia, and non-Hodgkin lymphoma who underwent 8/8 HLA-matched, T cell replete, unrelated, allogeneic hematopoietic cell transplant (HCT) from 2000 to 2015 using patient data reported to the Center for International Blood and Marrow Transplant Research. HLA class I heterozygosity and HLA expression were not associated with overall survival, relapse, transplant-related mortality (TRM), disease-free survival (DFS), and acute graft-versus-host disease following HCT. The HLA-B62 supertype was associated with decreased TRM in the entire patient cohort (hazard ratio [HR], 0.79; 95% CI, 0.69 to 0.90; P = .00053). The HLA-B27 supertype was associated with worse DFS in patients with AML (HR = 1.21; 95% CI, 1.10 to 1.32; P = .00005). These findings suggest that the survival benefit of HLA heterozygosity seen in solid tumor patients receiving immune checkpoint inhibitors does not extend to patients undergoing allogeneic HCT. Certain HLA supertypes, however, are associated with TRM and DFS, suggesting that similarities in peptide presentation between supertype members play a role in these outcomes. Beyond implications for prognosis following HCT, these findings support the further investigation of these HLA supertypes and the specific immune peptides important for transplant outcomes.
Collapse
Affiliation(s)
| | - Tao Wang
- Division of Biostatistics, Medical College of Wisconsin, Milwaukee, WI
| | - Jennifer A Sees
- Center for International Blood and Marrow Transplant Research, National Marrow Donor Program/Be The Match, Minneapolis, MN
| | | | - Muhammad Bilal Abid
- Divisions of Hematology/Oncology and Infectious Diseases, Department of Medicine, Medical College of Wisconsin, Milwaukee, WI
| | - Medhat Askar
- Department of Pathology and Laboratory Medicine, Baylor University Medical Center, Dallas, Texas
| | - Amer Beitinjaneh
- Department of Medicine, Division of Transplantation and Cellular Therapy, University of Miami, Miami, Florida
| | - Valerie Brown
- Division of Pediatric Hematology/Oncology, Department of Pediatrics, Penn State Hershey Children's Hospital and College of Medicine, Hershey, Pennsylvania
| | - Paul Castillo
- Division of Pediatric Hematology/Oncology, Department of Pediatrics, University of Florida Health Shands Children's Hospital, Gainesville, FL
| | - Saurabh Chhabra
- Division of Hematology/Oncology, Department of Medicine, Medical College of Wisconsin, Milwaukee, WI
| | - Shahinaz M Gadalla
- Division of Cancer Epidemiology & Genetics, NIH-NCI Clinical Genetics Branch, Rockville, Maryland
| | - Jing-Mei Hsu
- Division of Hematology/Oncology, Department of Medicine, Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine/New York Presbyterian Hospital, New York, NY
| | - Malek Kamoun
- Deparment of Pathology and Laboratory Medicine, Perelman School of Medicine, Hospital of the University of Pennsylvania, Philadelphia, PA
| | - Aleksandr Lazaryan
- Department of Blood and Marrow Transplant and Cellular Immunotherapy (BMT CI), Moffitt Cancer Center, Tampa, Florida
| | - Taiga Nishihori
- Department of Blood and Marrow Transplant and Cellular Immunotherapy (BMT CI), Moffitt Cancer Center, Tampa, Florida
| | - Kristin Page
- Division of Pediatric Blood and Marrow Transplantation, Duke University Medical Center, Durham, North Carolina
| | - Johannes Schetelig
- Department of Internal Medicine I, University Hospital Carl Gustav Carus Dresden, Dresden, Germany
| | | | - Steven G E Marsh
- Anthony Nolan Research Institute, Royal Free Hospital, London, UK; UCL Cancer Institute, London, UK
| | - Sophie Paczesny
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC
| | - Stephen R Spellman
- Center for International Blood and Marrow Transplant Research, National Marrow Donor Program/Be The Match, Minneapolis, MN
| | - Stephanie J Lee
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington; Department of Medicine, University of Washington, Seattle, WA
| | - Katharine C Hsu
- Department of Medicine, Adult Bone Marrow Transplantation Service, Memorial Sloan Kettering Cancer Center, New York, New York; Department of Medicine, Weill Cornell Medical College, New York, New York; Human Oncology & Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York.
| |
Collapse
|
90
|
Role of Escape Mutant-Specific T Cells in Suppression of HIV-1 Replication and Coevolution with HIV-1. J Virol 2020; 94:JVI.01151-20. [PMID: 32699092 PMCID: PMC7495385 DOI: 10.1128/jvi.01151-20] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Accepted: 07/18/2020] [Indexed: 12/20/2022] Open
Abstract
Escape mutant-specific CD8+ T cells were elicited in some individuals infected with escape mutants, but it is still unknown whether these CD8+ T cells can suppress HIV-1 replication. We clarified that Gag280V mutation were selected by HLA-B*52:01-restricted CD8+ T cells specific for the GagRI8 protective epitope, whereas the Gag280V virus could frequently elicit GagRI8-6V mutant-specific CD8+ T cells. GagRI8-6V mutant-specific T cells had a strong ability to suppress the replication of the Gag280V mutant virus both in vitro and in vivo. In addition, these T cells contributed to the selection of wild-type virus in HLA-B*52:01+ Japanese individuals. We for the first time demonstrated that escape mutant-specific CD8+ T cells can suppress HIV-1 replication and play an important role in the coevolution with HIV-1. Thus, the present study highlighted an important role of escape mutant-specific T cells in the control of HIV-1 and coevolution with HIV-1. The accumulation of HIV-1 escape mutations affects HIV-1 control by HIV-1-specific T cells. Some of these mutations can elicit escape mutant-specific T cells, but it still remains unclear whether they can suppress the replication of HIV-1 mutants. It is known that HLA-B*52:01-restricted RI8 (Gag 275 to 282; RMYSPTSI) is a protective T cell epitope in HIV-1 subtype B-infected Japanese individuals, though 3 Gag280A/S/V mutations are found in 26% of them. Gag280S and Gag280A were HLA-B*52:01-associated mutations, whereas Gag280V was not, implying a different mechanism for the accumulation of Gag280 mutations. In this study, we investigated the coevolution of HIV-1 with RI8-specific T cells and suppression of HIV-1 replication by its escape mutant-specific T cells both in vitro and in vivo. HLA-B*52:01+ individuals infected with Gag280A/S mutant viruses failed to elicit these mutant epitope-specific T cells, whereas those with the Gag280V mutant one effectively elicited RI8-6V mutant-specific T cells. These RI8-6V-specific T cells suppressed the replication of Gag280V virus and selected wild-type virus, suggesting a mechanism affording no accumulation of the Gag280V mutation in the HLA-B*52:01+ individuals. The responders to wild-type (RI8-6T) and RI8-6V mutant peptides had significantly higher CD4 counts than nonresponders, indicating that the existence of not only RI8-6T-specific T cells but also RI8-6V-specific ones was associated with a good clinical outcome. The present study clarified the role of escape mutant-specific T cells in HIV-1 evolution and in the control of HIV-1. IMPORTANCE Escape mutant-specific CD8+ T cells were elicited in some individuals infected with escape mutants, but it is still unknown whether these CD8+ T cells can suppress HIV-1 replication. We clarified that Gag280V mutation were selected by HLA-B*52:01-restricted CD8+ T cells specific for the GagRI8 protective epitope, whereas the Gag280V virus could frequently elicit GagRI8-6V mutant-specific CD8+ T cells. GagRI8-6V mutant-specific T cells had a strong ability to suppress the replication of the Gag280V mutant virus both in vitro and in vivo. In addition, these T cells contributed to the selection of wild-type virus in HLA-B*52:01+ Japanese individuals. We for the first time demonstrated that escape mutant-specific CD8+ T cells can suppress HIV-1 replication and play an important role in the coevolution with HIV-1. Thus, the present study highlighted an important role of escape mutant-specific T cells in the control of HIV-1 and coevolution with HIV-1.
Collapse
|
91
|
La Porta CAM, Zapperi S. Estimating the Binding of Sars-CoV-2 Peptides to HLA Class I in Human Subpopulations Using Artificial Neural Networks. Cell Syst 2020; 11:412-417.e2. [PMID: 32916095 PMCID: PMC7488596 DOI: 10.1016/j.cels.2020.08.011] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Revised: 06/06/2020] [Accepted: 08/13/2020] [Indexed: 12/15/2022]
Abstract
Epidemiological studies show that SARS-CoV-2 infection leads to severe symptoms only in a fraction of patients, but the determinants of individual susceptibility to the virus are still unknown. The major histocompatibility complex (MHC) class I exposes viral peptides in all nucleated cells and is involved in the susceptibility to many human diseases. Here, we use artificial neural networks to analyze the binding of SARS-CoV-2 peptides with polymorphic human MHC class I molecules. In this way, we identify two sets of haplotypes present in specific human populations: the first displays weak binding with SARS-CoV-2 peptides, while the second shows strong binding and T cell propensity. Our work offers a useful support to identify the individual susceptibility to COVID-19 and illustrates a mechanism underlying variations in the immune response to SARS-CoV-2. A record of this paper’s transparent peer review process is included in the Supplemental Information. Binding of SARS-CoV-2 peptides to HLA molecules is computed Weakly or strongly binding haplotypes are identified in human populations Results explain variations in the individual immune response to SARS-CoV-2
Collapse
Affiliation(s)
- Caterina A M La Porta
- Center for Complexity and Biosystems, Department of Environmental Science and Policy, University of Milan, via Celoria 26, Milano 20133, Italy; CNR - Consiglio Nazionale delle Ricerche, Istituto di Biofisica, via Celoria 26, Milano 20133, Italy.
| | - Stefano Zapperi
- Center for Complexity and Biosystems, Department of Physics, University of Milan, via Celoria 16, Milano 20133, Italy; CNR - Consiglio Nazionale delle Ricerche, Istituto di Chimica della Materia Condensata e di Tecnologie per l'Energia, via R. Cozzi 53, Milano 20125, Italy
| |
Collapse
|
92
|
Krishna C, Chowell D, Gönen M, Elhanati Y, Chan TA. Genetic and environmental determinants of human TCR repertoire diversity. Immun Ageing 2020; 17:26. [PMID: 32944053 PMCID: PMC7487954 DOI: 10.1186/s12979-020-00195-9] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 08/06/2020] [Indexed: 12/22/2022]
Abstract
T cell discrimination of self and non-self is the foundation of the adaptive immune response, and is orchestrated by the interaction between T cell receptors (TCRs) and their cognate ligands presented by major histocompatibility (MHC) molecules. However, the impact of host immunogenetic variation on the diversity of the TCR repertoire remains unclear. Here, we analyzed a cohort of 666 individuals with TCR repertoire sequencing. We show that TCR repertoire diversity is positively associated with polymorphism at the human leukocyte antigen class I (HLA-I) loci, and diminishes with age and cytomegalovirus (CMV) infection. Moreover, our analysis revealed that HLA-I polymorphism and age independently shape the repertoire in healthy individuals. Our data elucidate key determinants of human TCR repertoire diversity, and suggest a mechanism underlying the evolutionary fitness advantage of HLA-I heterozygosity.
Collapse
Affiliation(s)
- Chirag Krishna
- Computational and Systems Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065 USA
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065 USA
| | - Diego Chowell
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065 USA
- Immunogenomics and Precision Oncology Platform, Memorial Sloan Kettering Cancer Center, New York, NY 10065 USA
| | - Mithat Gönen
- Department of Epidemiology and Biostatistics, Sloan Kettering Institute for Cancer Research, New York, NY 10065 USA
| | - Yuval Elhanati
- Department of Epidemiology and Biostatistics, Sloan Kettering Institute for Cancer Research, New York, NY 10065 USA
- Immunogenomics and Precision Oncology Platform, Memorial Sloan Kettering Cancer Center, New York, NY 10065 USA
| | - Timothy A. Chan
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065 USA
- Immunogenomics and Precision Oncology Platform, Memorial Sloan Kettering Cancer Center, New York, NY 10065 USA
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY 10065 USA
- Weill Cornell School of Medicine, New York, NY 10065 USA
- Center for Immunotherapy and Precision Immuno-Oncology, Cleveland Clinic, Cleveland, OH 44195 USA
| |
Collapse
|
93
|
Zanoni M, Palesch D, Pinacchio C, Statzu M, Tharp GK, Paiardini M, Chahroudi A, Bosinger SE, Yoon J, Cox B, Silvestri G, Kulpa DA. Innate, non-cytolytic CD8+ T cell-mediated suppression of HIV replication by MHC-independent inhibition of virus transcription. PLoS Pathog 2020; 16:e1008821. [PMID: 32941545 PMCID: PMC7523993 DOI: 10.1371/journal.ppat.1008821] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 09/29/2020] [Accepted: 07/18/2020] [Indexed: 12/31/2022] Open
Abstract
MHC-I-restricted, virus-specific cytotoxic CD8+ T cells (CTLs) may control human immunodeficiency virus (HIV) and simian immunodeficiency virus (SIV) replication via the recognition and killing of productively infected CD4+ T cells. Several studies in SIV-infected macaques suggest that CD8+ T cells may also decrease virus production by suppressing viral transcription. Here, we show that non-HIV-specific, TCR-activated non-cytolytic CD8+ T cells suppress HIV transcription via a virus- and MHC-independent immunoregulatory mechanism that modulates CD4+ T cell proliferation and activation. We also demonstrate that this CD8+ T cell-mediated effect promotes the survival of infected CD4+ T cells harboring integrated, inducible virus. Finally, we used RNA sequencing and secretome analyses to identify candidate cellular pathways that are involved in the virus-silencing mediated by these CD8+ T cells. This study characterizes a previously undescribed mechanism of immune-mediated HIV silencing that may be involved in the establishment and maintenance of the reservoir under antiretroviral therapy and therefore represent a major obstacle to HIV eradication.
Collapse
Affiliation(s)
- Michelle Zanoni
- Division of Microbiology and Immunology, Yerkes National Primate Research Center, and Emory Vaccine Center Emory University, Atlanta, Georgia, United States of America
| | - David Palesch
- Division of Microbiology and Immunology, Yerkes National Primate Research Center, and Emory Vaccine Center Emory University, Atlanta, Georgia, United States of America
| | - Claudia Pinacchio
- Division of Microbiology and Immunology, Yerkes National Primate Research Center, and Emory Vaccine Center Emory University, Atlanta, Georgia, United States of America
| | - Maura Statzu
- Division of Microbiology and Immunology, Yerkes National Primate Research Center, and Emory Vaccine Center Emory University, Atlanta, Georgia, United States of America
| | - Gregory K. Tharp
- Division of Microbiology and Immunology, Yerkes National Primate Research Center, and Emory Vaccine Center Emory University, Atlanta, Georgia, United States of America
| | - Mirko Paiardini
- Division of Microbiology and Immunology, Yerkes National Primate Research Center, and Emory Vaccine Center Emory University, Atlanta, Georgia, United States of America
| | - Ann Chahroudi
- Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia, United States of America
| | - Steven E. Bosinger
- Division of Microbiology and Immunology, Yerkes National Primate Research Center, and Emory Vaccine Center Emory University, Atlanta, Georgia, United States of America
| | - Jack Yoon
- Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia, United States of America
| | - Bryan Cox
- Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia, United States of America
| | - Guido Silvestri
- Division of Microbiology and Immunology, Yerkes National Primate Research Center, and Emory Vaccine Center Emory University, Atlanta, Georgia, United States of America
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, Georgia, United States of America
| | - Deanna A. Kulpa
- Division of Microbiology and Immunology, Yerkes National Primate Research Center, and Emory Vaccine Center Emory University, Atlanta, Georgia, United States of America
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, Georgia, United States of America
| |
Collapse
|
94
|
Orenbuch R, Filip I, Comito D, Shaman J, Pe'er I, Rabadan R. arcasHLA: high-resolution HLA typing from RNAseq. Bioinformatics 2020; 36:33-40. [PMID: 31173059 PMCID: PMC6956775 DOI: 10.1093/bioinformatics/btz474] [Citation(s) in RCA: 121] [Impact Index Per Article: 24.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Revised: 05/13/2019] [Accepted: 06/03/2019] [Indexed: 12/16/2022] Open
Abstract
MOTIVATION The human leukocyte antigen (HLA) locus plays a critical role in tissue compatibility and regulates the host response to many diseases, including cancers and autoimmune di3orders. Recent improvements in the quality and accessibility of next-generation sequencing have made HLA typing from standard short-read data practical. However, this task remains challenging given the high level of polymorphism and homology between HLA genes. HLA typing from RNA sequencing is further complicated by post-transcriptional modifications and bias due to amplification. RESULTS Here, we present arcasHLA: a fast and accurate in silico tool that infers HLA genotypes from RNA-sequencing data. Our tool outperforms established tools on the gold-standard benchmark dataset for HLA typing in terms of both accuracy and speed, with an accuracy rate of 100% at two-field resolution for Class I genes, and over 99.7% for Class II. Furthermore, we evaluate the performance of our tool on a new biological dataset of 447 single-end total RNA samples from nasopharyngeal swabs, and establish the applicability of arcasHLA in metatranscriptome studies. AVAILABILITY AND IMPLEMENTATION arcasHLA is available at https://github.com/RabadanLab/arcasHLA. SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Rose Orenbuch
- Department of Systems Biology, Columbia University, New York, NY 10032, USA.,Department of Computer Science, Columbia University, New York, NY 10027, USA
| | - Ioan Filip
- Department of Systems Biology, Columbia University, New York, NY 10032, USA
| | - Devon Comito
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, NY 10032, USA
| | - Jeffrey Shaman
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, NY 10032, USA
| | - Itsik Pe'er
- Department of Computer Science, Columbia University, New York, NY 10027, USA
| | - Raul Rabadan
- Department of Systems Biology, Columbia University, New York, NY 10032, USA
| |
Collapse
|
95
|
Elahi S, Shahbaz S, Houston S. Selective Upregulation of CTLA-4 on CD8+ T Cells Restricted by HLA-B*35Px Renders them to an Exhausted Phenotype in HIV-1 infection. PLoS Pathog 2020; 16:e1008696. [PMID: 32760139 PMCID: PMC7410205 DOI: 10.1371/journal.ppat.1008696] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Accepted: 06/09/2020] [Indexed: 12/11/2022] Open
Abstract
HLA-B*35Px is associated with HIV-1 disease rapid progression to AIDS. However, the mechanism(s) underlying this deleterious effect of this HLA allele on HIV-1 infection outcome has not fully understood. CD8+ T cells play a crucial role to control the viral replication but impaired CD8+ T cells represent a major hallmark of HIV-1 infection. Here, we examined the effector functions of CD8+ T cells restricted by HLA-B*35Px (HLA-B*35:03 and HLA-B*35:02), HLA-B*27/B57 and non-HLA-B*27/B57 (e.g. HLA-A*01, A*02, A*03, A*11, A*24, A*26, B*40, B*08, B*38, B*44). CD8+ T cells restricted by HLA-B*35Px exhibited an impaired phenotype compared with those restricted by HLA-B*27/B57 and even non-HLA-B*27/B57. CD8+ T cells restricted by non-HLA-B*27/B57 when encountered their cognate epitopes upregulated TIM-3 and thus became suppressed by regulatory T cells (Tregs) via TIM-3: Galectin-9 (Gal-9). Strikingly, CD8+ T cells restricted by HLA-B*35Px expressed fewer TIM-3 and therefore did not get suppressed by Tregs, which was similar to CD8+ T cells restricted by HLA-B*27/B57. Instead, CD8+ T cells restricted by HLA-B*35Px upon recognition of their cognate epitopes upregulated CTLA-4. The transcriptional and impaired phenotype (e.g. poor effector functions) of HIV-specific CD8+ T cells restricted by HLA-B*35 was related to persistent CTLA-4, elevated Eomes and blimp-1 but poor T-bet expression. As such, anti-CTLA-4 antibody, Ipilimumab, reversed the impaired proliferative capacity of antigen-specific CD8+ T cells restricted by HLA-B*35Px but not others. This study supports the concept that CD8+ T resistance to Tregs-mediated suppression is related to allele restriction rather than the epitope specificity. Our results aid to explain a novel mechanism for the inability of HIV-specific CD8+ T cells restricted by HLA-B*35Px to control viral replication. A rare group of HIV-infected individuals with HLA-B*35Px rapidly progress to AIDS but those with HLA-B*27 and HLA-B*57 spare disease progression. Previous studies have suggested that viral mutation may prevent a robust immune response against the virus in these with HLA-B*35Px. However, the functionality of HIV-specific CD8+ T cells restricted by HLA-B*35Px remains unclear. In this study, we demonstrate that HIV-specific CD8+ T cells restricted by HLA-B*35Px (HLA-B*35:03 and HLA-B*35:02) exhibit an impaired phenotype (e.g. low proliferative capacity, poor cytotoxic molecules expression and, poor cytokine production ability). Interestingly, CD8+ T cells restricted by HLA-B*27/B*57 evade regulatory T cells (Tregs) suppression but not those restricted by non-HLA-B*27/B*57. CD8+ T cells restricted by non-HLA-B*27/B*57 when encountering their epitopes upregulate TIM-3 but not those restricted by HLA-B*27/B*57 and HLA-B*35Px. As a result, CD8+ T cells restricted by non-HLA-B*27/B*57 become suppressed by Tregs via TIM-3: Galectin-9 interactions. Strikingly, CD8+ T cells restricted by HLA-B*35Px upregulate CTLA-4 when encountering their epitopes, which render them to an exhausted phenotype. This differential response is linked to the up-regulation of Eomes, Blimp-1 but low T-bet expression in CD8+ T cells restricted by HLA-B*35Px. These results implicate that reinvigoration of these cells might be feasible using an anti-CTLA-4 antibody.
Collapse
Affiliation(s)
- Shokrollah Elahi
- School of Dentistry, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Canada
- Department of Oncology, Cross Cancer Institute, University of Alberta, Edmonton, Canada
- Department of Medical Microbiology and Immunology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Canada
- Li Ka Shing Institute of Virology, University of Alberta, Edmonton, Canada
- * E-mail:
| | - Shima Shahbaz
- School of Dentistry, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Canada
| | - Stan Houston
- Department of Medicine, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Canada
| |
Collapse
|
96
|
Zhu Y, Grueber C, Li Y, He M, Hu L, He K, Liu H, Zhang H, Wu H. MHC-associated Baylisascaris schroederi load informs the giant panda reintroduction program. INTERNATIONAL JOURNAL FOR PARASITOLOGY-PARASITES AND WILDLIFE 2020; 12:113-120. [PMID: 32528846 PMCID: PMC7283101 DOI: 10.1016/j.ijppaw.2020.05.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 05/24/2020] [Accepted: 05/24/2020] [Indexed: 12/27/2022]
Abstract
Reintroducing captive giant pandas (Ailuropoda melanoleuca) to the wild is the ultimate goal of their ex situ conservation. Choosing higher fitness candidates to train prior to release is the first step in the giant panda reintroduction program. Disease resistance is one important index of individual fitness and presumed to be related to variation at major histocompatibility complex genes (MHC). Here, we used seven polymorphic functional MHC genes (Aime-C, Aime-I, Aime-L, Aime-DQA1, Aime-DQA2, Aime-DQB1 and Aime-DRB3) and estimate their relationship with Baylisascaris schroederi (Ascarididae) infection in giant panda. We found that DQA1 heterozygous pandas were less frequently infected than homozygotes. The presence of one MHC genotype and one MHC allele were also associated with B. schroederi infection: Aime-C*0203 and Aime-L*08 were both associated with B. schroederi resistance. Our results indicate that both heterozygosity and certain MHC variants are important for panda disease resistance, and should therefore be considered in future reintroduction programs for this species alongside conventional selection criteria (such as physical condition and pedigree-based information). MHC heterozygous pandas were less frequently infected by Baylisascaris schroederi than homozygotes. Presence of Aime-C*0203 and Aime-L*08 are associated with Baylisascaris schroederi resistance. MHC types are important for panda parasite resistance.
Collapse
Affiliation(s)
- Ying Zhu
- Sichuan Province Laboratory for Natural Resources Protection and Sustainable Utilization, Sichuan Provincial Academy of Natural Resource Sciences, Chengdu, China.,Faculty of Science, School of Life and Environmental Sciences, The University of Sydney, Sydney, Australia
| | - Catherine Grueber
- Faculty of Science, School of Life and Environmental Sciences, The University of Sydney, Sydney, Australia
| | - Yudong Li
- Sichuan Province Laboratory for Natural Resources Protection and Sustainable Utilization, Sichuan Provincial Academy of Natural Resource Sciences, Chengdu, China
| | - Ming He
- China Conservation and Research Center for the Giant Panda, Dujiangyan, Sichuan, China
| | - Lan Hu
- China Conservation and Research Center for the Giant Panda, Dujiangyan, Sichuan, China
| | - Ke He
- College of Animal Sciences & Technology, Zhejiang A & F University, Hangzhou, China
| | - Hongyi Liu
- College of Biology and the Environment, Nanjing Forestry University, Nanjing, China
| | - Hemin Zhang
- China Conservation and Research Center for the Giant Panda, Dujiangyan, Sichuan, China
| | - Honglin Wu
- China Conservation and Research Center for the Giant Panda, Dujiangyan, Sichuan, China
| |
Collapse
|
97
|
Ekenberg C, Tang MH, Zucco AG, Murray DD, MacPherson CR, Hu X, Sherman BT, Losso MH, Wood R, Paredes R, Molina JM, Helleberg M, Jina N, Kityo CM, Florence E, Polizzotto MN, Neaton JD, Lane HC, Lundgren JD. Association Between Single-Nucleotide Polymorphisms in HLA Alleles and Human Immunodeficiency Virus Type 1 Viral Load in Demographically Diverse, Antiretroviral Therapy-Naive Participants From the Strategic Timing of AntiRetroviral Treatment Trial. J Infect Dis 2020; 220:1325-1334. [PMID: 31219150 DOI: 10.1093/infdis/jiz294] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Accepted: 06/05/2019] [Indexed: 12/18/2022] Open
Abstract
The impact of variation in host genetics on replication of human immunodeficiency virus type 1 (HIV-1) in demographically diverse populations remains uncertain. In the current study, we performed a genome-wide screen for associations of single-nucleotide polymorphisms (SNPs) to viral load (VL) in antiretroviral therapy-naive participants (n = 2440) with varying demographics from the Strategic Timing of AntiRetroviral Treatment (START) trial. Associations were assessed using genotypic data generated by a customized SNP array, imputed HLA alleles, and multiple linear regression. Genome-wide significant associations between SNPs and VL were observed in the major histocompatibility complex class I region (MHC I), with effect sizes ranging between 0.14 and 0.39 log10 VL (copies/mL). Supporting the SNP findings, we identified several HLA alleles significantly associated with VL, extending prior observations that the (MHC I) is a major host determinant of HIV-1 control with shared genetic variants across diverse populations and underscoring the limitations of genome-wide association studies as being merely a screening tool.
Collapse
Affiliation(s)
- Christina Ekenberg
- Centre of Excellence for Health, Immunity and Infections, Department of Infectious Diseases, Rigshospitalet, University of Copenhagen, Denmark
| | - Man-Hung Tang
- Centre of Excellence for Health, Immunity and Infections, Department of Infectious Diseases, Rigshospitalet, University of Copenhagen, Denmark
| | - Adrian G Zucco
- Centre of Excellence for Health, Immunity and Infections, Department of Infectious Diseases, Rigshospitalet, University of Copenhagen, Denmark
| | - Daniel D Murray
- Centre of Excellence for Health, Immunity and Infections, Department of Infectious Diseases, Rigshospitalet, University of Copenhagen, Denmark
| | - Cameron Ross MacPherson
- Centre of Excellence for Health, Immunity and Infections, Department of Infectious Diseases, Rigshospitalet, University of Copenhagen, Denmark
| | - Xiaojun Hu
- Laboratory of Human Retrovirology and Immunoinformatics, Leidos Biomedical Research, Frederick National Laboratory for Cancer Research, Bethesda, Maryland
| | - Brad T Sherman
- Laboratory of Human Retrovirology and Immunoinformatics, Leidos Biomedical Research, Frederick National Laboratory for Cancer Research, Bethesda, Maryland
| | - Marcelo H Losso
- Hospital General de Agudos JM Ramos, Buenos Aires, Argentina
| | - Robin Wood
- Desmond Tutu HIV Foundation Clinical Trials Unit, Cape Town, South Africa
| | - Roger Paredes
- Infectious Diseases Service and irsiCaixa AIDS Research Institute, Hospital Universitari Germans Trias i Pujol, Barcelona, Spain
| | - Jean-Michel Molina
- Department of Infectious Diseases, University of Paris Diderot, Sorbonne Paris Cité, and Hôpital Saint-Louis, Assistance Publique-Hôpitaux de Paris, France
| | - Marie Helleberg
- Centre of Excellence for Health, Immunity and Infections, Department of Infectious Diseases, Rigshospitalet, University of Copenhagen, Denmark
| | - Nureen Jina
- Clinical HIV Research Unit, Wits Health Consortium, Department of Medicine, University of the Witwatersrand, Helen Joseph Hospital, Themba Lethu Clinic, Johannesburg, South Africa
| | | | | | | | - James D Neaton
- Division of Biostatistics, School of Public Health, University of Minnesota, Minneapolis
| | - H Clifford Lane
- National Institute of Allergy and Infectious Diseases, Division of Clinical Research, Bethesda, Maryland
| | - Jens D Lundgren
- Centre of Excellence for Health, Immunity and Infections, Department of Infectious Diseases, Rigshospitalet, University of Copenhagen, Denmark
| |
Collapse
|
98
|
Tandoh KZ, Kusi KA, Archampong TN, Boamah I, Quaye O. Hepatitis B infection outcome is associated with novel human leukocyte antigen variants in Ghanaian cohort. Exp Biol Med (Maywood) 2020; 245:815-822. [PMID: 32349537 DOI: 10.1177/1535370220921118] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
IMPACT STATEMENT Genetic association studies can determine the effect size of gene loci on disease outcomes. In the arena of HBV infections, HLA alleles that associate with HBV outcomes can be used in clinical management decisions. This potential translational utility can shape the future management of HBV infections by identifying at-risk individuals and tailoring medical interventions accordingly. This precision medicine motif is currently only a nascent idea. However, it has stakes that may well override the current "wait and see" approach of clinical management of HBV infections. Here, we have identified HLA alleles associated with HBV outcome in a Ghanaian cohort. Our findings support the motif that HLA alleles associate with HBV outcome along geo-ethnic lines. This buttresses the need for further population pivoted studies. In the long term, our findings add to efforts towards the development of an HLA molecular-based algorithm for predicting HBV infection outcomes.
Collapse
Affiliation(s)
- Kwesi Z Tandoh
- West African Centre for Cell Biology of Infectious Pathogens, College of Basic and Applied Sciences, University of Ghana, Legon LG54, Ghana
- Department of Biochemistry, Cell and Molecular Biology, College of Basic and Applied Sciences, University of Ghana, Legon LG54, Ghana
| | - Kwadwo A Kusi
- West African Centre for Cell Biology of Infectious Pathogens, College of Basic and Applied Sciences, University of Ghana, Legon LG54, Ghana
- Department of Biochemistry, Cell and Molecular Biology, College of Basic and Applied Sciences, University of Ghana, Legon LG54, Ghana
- Department of Immunology, Noguchi Memorial Institute for Medical Research, University of Ghana, Legon LG 581, Ghana
| | - Timothy N Archampong
- Department of Medicine and Therapeutics, School of Medicine and Dentistry, University of Ghana, Accra 4236, Ghana
| | - Isaac Boamah
- Department of Microbiology, School of Medicine and Dentistry, University of Ghana, Accra Box 4236, Ghana
| | - Osbourne Quaye
- West African Centre for Cell Biology of Infectious Pathogens, College of Basic and Applied Sciences, University of Ghana, Legon LG54, Ghana
- Department of Biochemistry, Cell and Molecular Biology, College of Basic and Applied Sciences, University of Ghana, Legon LG54, Ghana
| |
Collapse
|
99
|
Sng XYX, Li J, Zareie P, Assmus LM, Lee JKC, Jones CM, Turner SJ, Daley SR, Quinn KM, La Gruta NL. The Impact of MHC Class I Dose on Development and Maintenance of the Polyclonal Naive CD8+ T Cell Repertoire. THE JOURNAL OF IMMUNOLOGY 2020; 204:3108-3116. [DOI: 10.4049/jimmunol.2000081] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Accepted: 04/02/2020] [Indexed: 12/14/2022]
|
100
|
HIV Transmission Chains Exhibit Greater HLA-B Homogeneity Than Randomly Expected. J Acquir Immune Defic Syndr 2020; 81:508-515. [PMID: 31107301 DOI: 10.1097/qai.0000000000002077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND HIV's capacity to escape immune recognition by human leukocyte antigen (HLA) is a core component of HIV pathogenesis. A better understanding of the distribution of HLA class I in HIV-infected patients would improve our knowledge of pathogenesis in relation to the host HLA type and could better improve therapeutic strategies against HIV. MATERIALS AND METHODS Three hundred one to 325 transmission pairs and 469-496 clusters were identified for analysis among Swiss HIV Cohort Study (SHCS) participants using HIV pol sequences from the drug resistance database. HLA class I data were compiled at 3 specificity levels: 4-digit, 2-digit alleles, and HLA-B supertype. The analysis tabulated HLA-I homogeneity as 2 measures: the proportion of transmission pairs, which are HLA concordant, and the average percentage of allele matches within all clusters. These measures were compared with the mean value across randomizations with randomly assorted individuals. RESULTS We repeated the analysis for different HLA classification levels and separately for HLA-A, -B, and -C. Subanalyses by the risk group were performed for HLA-B. HLA-B showed significantly greater homogeneity in the transmission chains (2-digit clusters: 0.291 vs. 0.251, P value = 0.009; supertype clusters: 0.659 vs. 0.611, P value = 0.002; supertype pairs: 0.655 vs. 0.608, P value = 0.014). Risk group restriction caused the effect to disappear for men-who-have-sex-with-men but not for other risk groups. We also examined if protective HLA alleles B27 and B57 were under- or overrepresented in the transmission chains, although this yielded no significant pattern. CONCLUSIONS The HLA-B alleles of patients within HIV-1 transmission chains segregate in homogenous clusters/pairs, potentially indicating preferential transmission among HLA-B concordant individuals.
Collapse
|