51
|
Sharma Y, Gupta JK, Babu MA, Singh S, Sindhu RK. Signaling Pathways Concerning Mitochondrial Dysfunction: Implications in Neurodegeneration and Possible Molecular Targets. J Mol Neurosci 2024; 74:101. [PMID: 39466510 DOI: 10.1007/s12031-024-02269-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 09/16/2024] [Indexed: 10/30/2024]
Abstract
Mitochondrion is an important organelle present in our cells responsible for meeting energy requirements. All higher organisms rely on efficient mitochondrial bioenergetic machinery to sustain life. No other respiratory process can produce as much power as generated by mitochondria in the form of ATPs. This review is written in order to get an insight into the magnificent working of mitochondrion and its implications in cellular homeostasis, bioenergetics, redox, calcium signaling, and cell death. However, if this machinery gets faulty, it may lead to several disease states. Mitochondrial dysfunctioning is of growing concern today as it is seen in the pathogenesis of several diseases which includes neurodegenerative disorders, cardiovascular disorders, diabetes mellitus, skeletal muscle defects, liver diseases, and so on. To cover all these aspects is beyond the scope of this article; hence, our study is restricted to neurodegenerative disorders only. Moreover, faulty functioning of this organelle can be one of the causes of early ageing in individuals. This review emphasizes mutations in the mitochondrial DNA, defects in oxidative phosphorylation, generation of ROS, and apoptosis. Researchers have looked into new approaches that might be able to control mitochondrial failure and show a lot of promise as treatments.
Collapse
Affiliation(s)
- Yati Sharma
- Institute of Pharmaceutical Research, GLA University, Mathura, Uttar Pradesh, 281406, India
| | - Jeetendra Kumar Gupta
- Institute of Pharmaceutical Research, GLA University, Mathura, Uttar Pradesh, 281406, India
| | - M Arockia Babu
- Institute of Pharmaceutical Research, GLA University, Mathura, Uttar Pradesh, 281406, India
| | - Sumitra Singh
- Department of Pharmaceutical Sciences, Guru Jambheshwar University of Science and Technology, Hisar, Haryana, 125001, India
| | - Rakesh K Sindhu
- School of Pharmacy, Sharda University, Gautam Buddha Nagar, Greater Noida, Uttar Paresdh, 201310, India.
| |
Collapse
|
52
|
Interlandi C, Spadola F, Neve VC, Tabbì M, Di Pietro S, Giudice E, Macrì D, Costa GL. Use of butorphanol as a local anaesthetic for pain management in calves undergoing umbilical hernia repair. Front Vet Sci 2024; 11:1470957. [PMID: 39421832 PMCID: PMC11483350 DOI: 10.3389/fvets.2024.1470957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Accepted: 09/23/2024] [Indexed: 10/19/2024] Open
Abstract
The aim of the study was to compare the analgesic efficacy of butorphanol and lidocaine, alone or in combination, in calves undergoing surgical repair of umbilical hernia. The study was conducted in 60 calves of different breeds. Xylazine 0.3 mg/kg was administered intramuscularly to all animals in the study. The animals were then divided into three groups (n = 20) that received different treatments with lidocaine at 4.5 mg/kg and butorphanol at 0.02 mg/kg. The L group received lidocaine both by infiltration of the surgical planes and intraperitoneally, the B group received butorphanol both by infiltration of the surgical planes and intraperitoneally, and finally the LB group received lidocaine by infiltration of the surgical planes and butorphanol intraperitoneally. Heart and respiratory rates, haemoglobin oxygen saturation, non-invasive blood pressure and temperature were recorded during surgery. Response to the surgical stimulus was scored on a cumulative numerical scale that included percentage changes in HR, RR and SAP. Postoperative pain was assessed by three independent observers, blinded to treatment, using the UNESP-Botucatu Unidimensional Composite Pain Scale (UNESP-Botucatu UCPS-IV) for the assessment of postoperative pain in cattle. The course of physiological variables was appropriate for patients under anaesthesia. No subject required rescue intraoperative analgesia. In group L, 4 subjects at 40 m and 5 subjects at 50 m required postoperative rescue analgesia. Both butorphanol alone and the combination of butorphanol and lidocaine showed excellent intraoperative and postoperative scores. Furthermore, this combination did not cause any cardiopulmonary or other adverse effects. Based on the results of this study, both butorphanol alone and the co-administration of butorphanol and lidocaine administered locally proved to be safe and effective in providing adequate and long-lasting analgesia in calves, helping to reduce postoperative discomfort and maintaining adequate animal welfare.
Collapse
Affiliation(s)
- Claudia Interlandi
- Department of Veterinary Sciences, University of Messina, Messina, Italy
| | - Filippo Spadola
- Department of Veterinary Sciences, University of Messina, Messina, Italy
| | - Veronica C. Neve
- Department of Veterinary Sciences, University of Messina, Messina, Italy
| | - Marco Tabbì
- Department of Veterinary Sciences, University of Messina, Messina, Italy
| | - Simona Di Pietro
- Department of Veterinary Sciences, University of Messina, Messina, Italy
| | - Elisabetta Giudice
- Department of Veterinary Sciences, University of Messina, Messina, Italy
| | - Daniele Macrì
- Experimental Zooprophylactic Institute of Sicily (IZSSi), Palermo, Italy
| | - Giovanna L. Costa
- Department of Veterinary Sciences, University of Messina, Messina, Italy
| |
Collapse
|
53
|
Pepper CG, Mikhaeil JS, Khan JS. Perioperative Regional Anesthesia on Persistent Opioid Use and Chronic Pain after Noncardiac Surgery: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. Anesth Analg 2024; 139:711-722. [PMID: 39231035 DOI: 10.1213/ane.0000000000006947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/06/2024]
Abstract
BACKGROUND Whether regional anesthesia impacts the development of chronic postsurgical pain is currently debateable, and few studies have evaluated an effect on prolonged opioid use. We sought to systematically review the effect of regional anesthesia for adults undergoing noncardiac elective surgery on these outcomes. METHODS A systematic search was conducted in MEDLINE, EMBASE, CENTRAL, and CINHAL for randomized controlled trials (from inception to April 2022) of adult patients undergoing elective noncardiac surgeries that evaluated any regional technique and included one of our primary outcomes: (1) prolonged opioid use after surgery (continued opioid use ≥2 months postsurgery) and (2) chronic postsurgical pain (pain ≥3 months postsurgery). We conducted a random-effects meta-analysis on the specified outcomes and used the Grading of Recommendations, Assessment, Development, and Evaluations (GRADE) approach to rate the quality of evidence. RESULTS Thirty-seven studies were included in the review. Pooled estimates indicated that regional anesthesia had a significant effect on reducing prolonged opioid use (relative risk [RR] 0.48, 95% CI, 0.24-0.96, P = .04, I 2 0%, 5 trials, n = 348 patients, GRADE low quality). Pooled estimates for chronic pain also indicated a significant effect favoring regional anesthesia at 3 (RR, 0.74, 95% CI, 0.59-0.93, P = .01, I 2 77%, 15 trials, n = 1489 patients, GRADE moderate quality) and 6 months (RR, 0.72, 95% CI, 0.61-0.85, P < .001, I 2 54%, 19 trials, n = 3457 patients, GRADE moderate quality) after surgery. No effect was found in the pooled analysis at 12 months postsurgery (RR, 0.44, 95% CI, 0.16-1.17, P = .10). CONCLUSIONS The results of this study suggest that regional anesthesia potentially reduces chronic postsurgical pain up to 6 months after surgery. Our findings also suggest a potential decrease in the development of persistent opioid use.
Collapse
Affiliation(s)
- Connor G Pepper
- From the Department of Anesthesia, McMaster University, Hamilton, ON, Canada
| | - John S Mikhaeil
- Department of Anesthesia and Pain Medicine, University of Toronto, Toronto, ON, Canada
| | - James S Khan
- Department of Anesthesia and Pain Medicine, University of Toronto, Toronto, ON, Canada
- Wasser Pain Management Center, Mount Sinai Hospital, Toronto, ON, Canada
| |
Collapse
|
54
|
Talotta R, Porcello M, Restuccia R, Magaudda L. Mental effects of physical activity in patients with fibromyalgia: A narrative review. J Bodyw Mov Ther 2024; 40:2190-2204. [PMID: 39593584 DOI: 10.1016/j.jbmt.2024.10.067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 10/13/2024] [Accepted: 10/22/2024] [Indexed: 11/28/2024]
Abstract
INTRODUCTION Fibromyalgia (FM) is a multifaceted disease that is often associated with neuropsychiatric disorders and is burdened by a high degree of psychological distress. Non-pharmacological interventions, including physical exercise and complementary therapies, have shown satisfactory results for either physical or psychological FM symptoms. METHODS In this narrative review, we analyzed scientific evidence of moderate to high quality regarding the psychological and neurocognitive effects of physical therapies for FM. A total of 29 studies were selected after searching the PubMed and Google Scholar databases using the combination of terms « fibromyalgia», «psychological distress», «fibrofog», mental disorder», «aerobic exercise», «strength exercise», «Pilates», «Tai chi» and «Yoga». RESULTS Aerobic exercise can improve depression, anxiety, stress, mental function and mood, thanks to the remodulation of neurotransmitters and hormones. Strength training, on the other hand, has been shown to alleviate mental confusion, anger and depression. Finally, mind-body disciplines appear to be effective for depression, anxiety, catastrophizing, memory and coping strategies. Based on these findings, we devised an ideal exercise program that could relieve the psychological distress of FM patients, thus interrupting the pathogenic neuroendocrine circuits that lead to the exacerbation of pain and other FM-related symptoms. CONCLUSIONS Thanks to neuroendocrine remodulation, physical exercise may simultaneously improve the physical and mental health of FM patients. This narrative review collects current evidence on the effects of specific physical interventions on psychological and neurocognitive domains of FM patients and additionally provides an evidence-based training program that could be prescribed to FM patients with high psychological distress or neuropsychiatric symptoms.
Collapse
Affiliation(s)
- R Talotta
- Rheumatology Unit, Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy.
| | - M Porcello
- Degree Course of Theory and Methods of Preventive and Adapted Physical Activities, BIOMORF Department, University of Messina, Messina, Italy.
| | - R Restuccia
- Postgraduate School of Sport and Physical Exercise Medicine, BIOMORF Department, University of Messina, Messina, Italy.
| | - L Magaudda
- Degree Course of Theory and Methods of Preventive and Adapted Physical Activities, BIOMORF Department, University of Messina, Messina, Italy; Postgraduate School of Sport and Physical Exercise Medicine, BIOMORF Department, University of Messina, Messina, Italy.
| |
Collapse
|
55
|
Ren YM, Hou WY, Fan BY, Duan YH, Sun YB, Yang T, Zhang HJ, Sun TW, Tian MQ. Causality of genetically determined serum metabolites on lower back pain or/and sciatica: a comprehensive Mendelian randomized study. FRONTIERS IN PAIN RESEARCH 2024; 5:1370704. [PMID: 39385756 PMCID: PMC11461461 DOI: 10.3389/fpain.2024.1370704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Accepted: 09/12/2024] [Indexed: 10/12/2024] Open
Abstract
Background There is an urgent need to confirm biomarkers reflecting the pathogenesis and targeted drugs of lower back pain or/and sciatica in clinical practice. This study aimed to conduct a two sample bidirectional Mendelian randomization (MR) analysis to explore the causal link between 486 serum metabolites and lower back pain or/and sciatica. Methods All data come from two public shared databases of European ancestry and single nucleotide polymorphisms (SNPs) for lower back pain or/and sciatica acted as instrumental variables. The traditional inverse variance weighting (IVW) method, weighted-median method, MR-Egger methodand other methods were used to estimate causality. The horizontal pleiotropy, heterogeneities were also verified through the MR-Egger intercept test, Cochran's Q test, MR-PRESSO test and the leave-one-out sensitivity analysis. Reverse MR analysis was employed to evaluate the direct impact of metabolites on lower back pain or/and sciatica. Additionally, we conducted the colocalization analysis to reflect the causality deeply. Furthermore, metabolic pathway analysis was performed. Results 28 metabolites (18 known metabolites, 1 identified metabolites and 9 unknown metabolites) relevant to the risk of sciatica or/and lower back pain after using genetic variants as probes at PIVW < 0.05 were identifed. Among them, 8 serum metabolites decreased risk of sciatica or/and lower back pain significantly (P < 0.05), and 14 serum metabolites increased risk of sciatica or/and lower back pain significantly (P < 0.05). No reverse causal association was found between 28 metabolites and sciatica or/and lower back pain. Colocalization analysis results showed that the associations between sciatica or/and lower back pain and the 28 identified metabolites were not due to shared causal variant sites. Moreover, pathway enrichment analysis identifed 11 signifcant metabolic pathways, which are mainly involved in the pathological mechanism of sciatica or/and lower back pain (P < 0.05). There was no horizontal pleiotropy or heterogeneity in the other analyses. Conclusion Our analyses provided robust evidence of causal associations between blood metabolites on sciatica or/and lower back pain. However, the underlying mechanisms remain to be further investigated.
Collapse
Affiliation(s)
- Yi-Ming Ren
- Department of Orthopaedics, International Science and Technology Cooperation Base of Spinal Cord Injury, Tianjin Key Laboratory of Spine and Spinal Cord Injury, Tianjin Medical University General Hospital, Tianjin, China
- Department of Joint and Sport Medicine, Tianjin Union Medical Center, Nankai University Affiliated People’s Hospital, Tianjin, China
| | - Wei-Yu Hou
- Department of Joint and Sport Medicine, Tianjin Union Medical Center, Nankai University Affiliated People’s Hospital, Tianjin, China
| | - Bao-You Fan
- Department of Orthopaedics, International Science and Technology Cooperation Base of Spinal Cord Injury, Tianjin Key Laboratory of Spine and Spinal Cord Injury, Tianjin Medical University General Hospital, Tianjin, China
| | - Yuan-Hui Duan
- Department of Joint and Sport Medicine, Tianjin Union Medical Center, Nankai University Affiliated People’s Hospital, Tianjin, China
| | - Yun-Bo Sun
- Department of Joint and Sport Medicine, Tianjin Union Medical Center, Nankai University Affiliated People’s Hospital, Tianjin, China
| | - Tao Yang
- Department of Joint and Sport Medicine, Tianjin Union Medical Center, Nankai University Affiliated People’s Hospital, Tianjin, China
| | - Han-Ji Zhang
- Department of Joint and Sport Medicine, Tianjin Union Medical Center, Nankai University Affiliated People’s Hospital, Tianjin, China
| | - Tian-Wei Sun
- Department of Spine Surgery, Tianjin Union Medical Center, Nankai University Affiliated People’s Hospital, Tianjin, China
| | - Meng-Qiang Tian
- Department of Joint and Sport Medicine, Tianjin Union Medical Center, Nankai University Affiliated People’s Hospital, Tianjin, China
| |
Collapse
|
56
|
Della Porta D, Scheirman E, Legrain V. Top-down attention does not modulate mechanical hypersensitivity consecutive to central sensitization: insights from an experimental analysis. Pain 2024; 165:2098-2110. [PMID: 38595183 DOI: 10.1097/j.pain.0000000000003225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 02/08/2024] [Indexed: 04/11/2024]
Abstract
ABSTRACT According to the neurocognitive model of attention to pain, when the attentional resources invested in a task unrelated to pain are high, limited cognitive resources can be directed toward the pain. This is supported by experimental studies showing that diverting people's attention away from acute pain leads to experiencing less pain. Theoretical work has suggested that this phenomenon may present a top-down modulatory mechanism for persistent pain as well. However, conclusive empirical evidence is lacking. To fill this gap, we used a preregistered, double-blind, between-subject study design to investigate whether performing a tailored, demanding, and engaging working memory task unrelated to pain (difficult) vs a task that requires less mental effort to be performed (easy), could lead to lower development of secondary hypersensitivity-a hallmark of central sensitization. Eighty-five healthy volunteers, randomly assigned to one of the 2 conditions, performed a visual task with a different cognitive load (difficult vs easy), while secondary hypersensitivity was induced on their nondominant forearm using high-frequency stimulation. To assess the development of secondary hypersensitivity, sensitivity to mechanical stimuli was measured 3 times: T0, for baseline and 20 (T1) and 40 (T2) minutes after the procedure. We did not observe any significant difference in the development of secondary hypersensitivity between the 2 groups, neither in terms of the intensity of mechanical sensitivity nor its spatial extent. Our results suggest that a top-down modulation through attention might not be sufficient to affect pain sensitization and the development of secondary hypersensitivity.
Collapse
Affiliation(s)
- Delia Della Porta
- Institute of Neuroscience, Université catholique de Louvain, Brussels, Belgium
- Psychological Sciences Research Institute, Université catholique de Louvain, Louvain-la-Neuve, Belgium
| | - Eléonore Scheirman
- Institute of Neuroscience, Université catholique de Louvain, Brussels, Belgium
| | - Valéry Legrain
- Institute of Neuroscience, Université catholique de Louvain, Brussels, Belgium
- Psychological Sciences Research Institute, Université catholique de Louvain, Louvain-la-Neuve, Belgium
- Louvain Bionics, Université catholique de Louvain, Louvain-la-Neuve, Belgium
| |
Collapse
|
57
|
Stone TW, Williams RO. Tryptophan metabolism as a 'reflex' feature of neuroimmune communication: Sensor and effector functions for the indoleamine-2, 3-dioxygenase kynurenine pathway. J Neurochem 2024; 168:3333-3357. [PMID: 38102897 DOI: 10.1111/jnc.16015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 10/16/2023] [Accepted: 11/08/2023] [Indexed: 12/17/2023]
Abstract
Although the central nervous system (CNS) and immune system were regarded as independent entities, it is now clear that immune system cells can influence the CNS, and neuroglial activity influences the immune system. Despite the many clinical implications for this 'neuroimmune interface', its detailed operation at the molecular level remains unclear. This narrative review focuses on the metabolism of tryptophan along the kynurenine pathway, since its products have critical actions in both the nervous and immune systems, placing it in a unique position to influence neuroimmune communication. In particular, since the kynurenine pathway is activated by pro-inflammatory mediators, it is proposed that physical and psychological stressors are the stimuli of an organismal protective reflex, with kynurenine metabolites as the effector arm co-ordinating protective neural and immune system responses. After a brief review of the neuroimmune interface, the general perception of tryptophan metabolism along the kynurenine pathway is expanded to emphasize this environmentally driven perspective. The initial enzymes in the kynurenine pathway include indoleamine-2,3-dioxygenase (IDO1), which is induced by tissue damage, inflammatory mediators or microbial products, and tryptophan-2,3-dioxygenase (TDO), which is induced by stress-induced glucocorticoids. In the immune system, kynurenic acid modulates leucocyte differentiation, inflammatory balance and immune tolerance by activating aryl hydrocarbon receptors and modulates pain via the GPR35 protein. In the CNS, quinolinic acid activates N-methyl-D-aspartate (NMDA)-sensitive glutamate receptors, whereas kynurenic acid is an antagonist: the balance between glutamate, quinolinic acid and kynurenic acid is a significant regulator of CNS function and plasticity. The concept of kynurenine and its metabolites as mediators of a reflex coordinated protection against stress helps to understand the variety and breadth of their activity. It should also help to understand the pathological origin of some psychiatric and neurodegenerative diseases involving the immune system and CNS, facilitating the development of new pharmacological strategies for treatment.
Collapse
Affiliation(s)
- Trevor W Stone
- The Kennedy Institute of Rheumatology, NDORMS, University of Oxford, Oxford, UK
| | - Richard O Williams
- The Kennedy Institute of Rheumatology, NDORMS, University of Oxford, Oxford, UK
| |
Collapse
|
58
|
Hung 洪瑋辰 WC, Chen 陳志成 CC, Yen 嚴震東 CT, Min 閔明源 MY. Presynaptic Enhancement of Transmission from Nociceptors Expressing Nav1.8 onto Lamina-I Spinothalamic Tract Neurons by Spared Nerve Injury in Mice. eNeuro 2024; 11:ENEURO.0087-24.2024. [PMID: 39256039 PMCID: PMC11391502 DOI: 10.1523/eneuro.0087-24.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 08/19/2024] [Accepted: 08/23/2024] [Indexed: 09/12/2024] Open
Abstract
Alteration of synaptic function in the dorsal horn (DH) has been implicated as a cellular substrate for the development of neuropathic pain, but certain details remain unclear. In particular, the lack of information on the types of synapses that undergo functional changes hinders the understanding of disease pathogenesis from a synaptic plasticity perspective. Here, we addressed this issue by using optogenetic and retrograde tracing ex vivo to selectively stimulate first-order nociceptors expressing Nav1.8 (NRsNav1.8) and record the responses of spinothalamic tract neurons in spinal lamina I (L1-STTNs). We found that spared nerve injury (SNI) increased excitatory postsynaptic currents (EPSCs) in L1-STTNs evoked by photostimulation of NRsNav1.8 (referred to as Nav1.8-STTN EPSCs). This effect was accompanied by a significant change in the failure rate and paired-pulse ratio of synaptic transmission from NRsNav1.8 to L1-STTN and in the frequency (not amplitude) of spontaneous EPSCs recorded in L1-STTNs. However, no change was observed in the ratio of AMPA to NMDA receptor-mediated components of Nav1.8-STTN EPSCs or in the amplitude of unitary EPSCs constituting Nav1.8-STTN EPSCs recorded with extracellular Ca2+ replaced by Sr2+ In addition, there was a small increase (approximately 10%) in the number of L1-STTNs showing immunoreactivity for phosphorylated extracellular signal-regulated kinases in mice after SNI compared with sham. Similarly, only a small percentage of L1-STTNs showed a lower action potential threshold after SNI. In conclusion, our results show that SNI induces presynaptic modulation at NRNav1.8 (consisting of both peptidergic and nonpeptidergic nociceptors) synapses on L1-STTNs forming the lateral spinothalamic tract.
Collapse
Affiliation(s)
- Wei-Chen Hung 洪瑋辰
- Department of Life Science, College of Life Science, National Taiwan University, Taipei 10617, Taiwan
- Neurobiology and Cognitive Science Centre, National Taiwan University, Taipei 10617, Taiwan
| | | | - Cheng-Tung Yen 嚴震東
- Department of Life Science, College of Life Science, National Taiwan University, Taipei 10617, Taiwan
- Neurobiology and Cognitive Science Centre, National Taiwan University, Taipei 10617, Taiwan
| | - Ming-Yuan Min 閔明源
- Department of Life Science, College of Life Science, National Taiwan University, Taipei 10617, Taiwan
- Neurobiology and Cognitive Science Centre, National Taiwan University, Taipei 10617, Taiwan
| |
Collapse
|
59
|
Liu Y, Qi Q, Jiang Y, Zhao P, Chen L, Ma X, Shi Y, Xu J, Li J, Chen F, Chen J, Zhang L, Wu Y, Jiang X, Jin D, Xu T, Bu W. Ion Current Rectification Activity Induced by Boron Hydride Nanosheets to Enhance Magnesium Analgesia. Angew Chem Int Ed Engl 2024; 63:e202405131. [PMID: 38845566 DOI: 10.1002/anie.202405131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Indexed: 07/23/2024]
Abstract
The limited analgesic efficiency of magnesium restricts its application in pain management. Here, we report boron hydride (BH) with ion currents rectification activity that can enhance the analgesic efficiency of magnesium without the risks of drug tolerance or addiction. We synthesize MgB2, comprising hexagonal boron sheets alternating with Mg2+. In pathological environment, Mg2+ is exchanged by H+, forming two-dimensional borophene-analogue BH sheets. BH interacts with the charged cations via cation-pi interaction, leading to dynamic modulation of sodium and potassium ion currents around neurons. Additionally, released Mg2+ competes Ca2+ to inhibit its influx and neuronal excitation. In vitro cultured dorsal root neurons show a remarkable increase in threshold potential from the normal -35.9 mV to -5.9 mV after the addition of MgB2, indicating potent analgesic effect. In three typical pain models, including CFA-induced inflammatory pain, CINP- or CCI-induced neuropathic pain, MgB2 exhibits analgesic efficiency approximately 2.23, 3.20, and 2.0 times higher than clinical MgSO4, respectively, and even about 1.04, 1.66, and 1.95 times higher than morphine, respectively. The development of magnesium based intermetallic compounds holds promise in addressing the non-opioid medical need for pain relief.
Collapse
Affiliation(s)
- Yanyan Liu
- Department of Materials Science and State Key Laboratory of Molecular Engineering of Polymers, Academy for Engineering and Technology, Fudan University, Shanghai, 200433, China
| | - Qi Qi
- Department of Anesthesiology, Shanghai Sixth Peoples Hospital Affiliated to Shanghai Jiao tong University, Shanghai, 200233, China
| | - Yaqin Jiang
- Department of Materials Science and State Key Laboratory of Molecular Engineering of Polymers, Academy for Engineering and Technology, Fudan University, Shanghai, 200433, China
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, China
| | - Peiran Zhao
- Department of Materials Science and State Key Laboratory of Molecular Engineering of Polymers, Academy for Engineering and Technology, Fudan University, Shanghai, 200433, China
| | - Lijie Chen
- Department of Materials Science and State Key Laboratory of Molecular Engineering of Polymers, Academy for Engineering and Technology, Fudan University, Shanghai, 200433, China
| | - Xiaqing Ma
- Department of Anesthesiology, Shanghai Sixth Peoples Hospital Affiliated to Shanghai Jiao tong University, Shanghai, 200233, China
| | - Yuhan Shi
- Baylor College of medicine, Houston, TX 77030, USA
| | - Jianxun Xu
- Department of Materials Science and State Key Laboratory of Molecular Engineering of Polymers, Academy for Engineering and Technology, Fudan University, Shanghai, 200433, China
| | - Jinjin Li
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, China
| | - Feixiang Chen
- Department of Materials Science and State Key Laboratory of Molecular Engineering of Polymers, Academy for Engineering and Technology, Fudan University, Shanghai, 200433, China
| | - Jian Chen
- Department of Materials Science and State Key Laboratory of Molecular Engineering of Polymers, Academy for Engineering and Technology, Fudan University, Shanghai, 200433, China
| | - Le Zhang
- Institute for Biomedical Materials and Devices (IBMD), Faculty of Science, University of Technology Sydney, Sydney, New South Wales, 2007, Australia
| | - Yelin Wu
- Department of Medical Ultrasound, Shanghai Tenth people's hospital, Tongji University School of Medicine, Shanghai, 200072, China
| | - Xingwu Jiang
- Department of Materials Science and State Key Laboratory of Molecular Engineering of Polymers, Academy for Engineering and Technology, Fudan University, Shanghai, 200433, China
| | - Dayong Jin
- Institute for Biomedical Materials and Devices (IBMD), Faculty of Science, University of Technology Sydney, Sydney, New South Wales, 2007, Australia
| | - Tao Xu
- Department of Anesthesiology, Shanghai Sixth Peoples Hospital Affiliated to Shanghai Jiao tong University, Shanghai, 200233, China
| | - Wenbo Bu
- Department of Materials Science and State Key Laboratory of Molecular Engineering of Polymers, Academy for Engineering and Technology, Fudan University, Shanghai, 200433, China
| |
Collapse
|
60
|
Zhao YY, Wu ZJ, Hao SJ, Dong BB, Zheng YX, Liu B, Li J. Common alterations in parallel metabolomic profiling of serum and spinal cord and mechanistic studies on neuropathic pain following PPARα administration. Neuropharmacology 2024; 254:109988. [PMID: 38744401 DOI: 10.1016/j.neuropharm.2024.109988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 04/17/2024] [Accepted: 05/02/2024] [Indexed: 05/16/2024]
Abstract
Neuropathic pain (NP) is usually treated with analgesics and symptomatic therapy with poor efficacy and numerous side effects, highlighting the urgent need for effective treatment strategies. Recent studies have reported an important role for peroxisome proliferator-activated receptor alpha (PPARα) in regulating metabolism as well as inflammatory responses. Through pain behavioral assessment, we found that activation of PPARα prevented chronic constriction injury (CCI)-induced mechanical allodynia and thermal hyperalgesia. In addition, PPARα ameliorated inflammatory cell infiltration at the injury site and decreased microglial activation, NOD-like receptor protein 3 (NLRP3) inflammasome production, and spinal dendritic spine density, as well as improved serum and spinal cord metabolic levels in mice. Administration of PPARα antagonists eliminates the analgesic effect of PPARα agonists. PPARα relieves NP by inhibiting neuroinflammation and functional synaptic plasticity as well as modulating metabolic mechanisms, suggesting that PPARα may be a potential molecular target for NP alleviation. However, the effects of PPARα on neuroinflammation and synaptic plasticity should be further explored.
Collapse
Affiliation(s)
- Yu-Ying Zhao
- Department of Anesthesiology, Tianjin Medical University General Hospital, Tianjin, 300052, China; Tianjin Research Institute of Anesthesiology, Tianjin, 300052, China
| | - Zi-Jun Wu
- Department of Anesthesiology, Tianjin Medical University General Hospital, Tianjin, 300052, China; Tianjin Research Institute of Anesthesiology, Tianjin, 300052, China
| | - Shu-Jing Hao
- Department of Anesthesiology, Tianjin Medical University General Hospital, Tianjin, 300052, China; Tianjin Research Institute of Anesthesiology, Tianjin, 300052, China
| | - Bei-Bei Dong
- Department of Anesthesiology, Tianjin Medical University General Hospital, Tianjin, 300052, China; Tianjin Research Institute of Anesthesiology, Tianjin, 300052, China
| | - Yu-Xin Zheng
- Department of Anesthesiology, Tianjin Medical University General Hospital, Tianjin, 300052, China; Tianjin Research Institute of Anesthesiology, Tianjin, 300052, China
| | - Bin Liu
- Department of Critical Care Medicine, General Hospital of Tianjin Medical University, Tianjin, 300052, China; Center for Critical Care Medicine, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Tianjin, 300020, China.
| | - Jing Li
- Department of Anesthesiology, Tianjin Medical University General Hospital, Tianjin, 300052, China; Tianjin Research Institute of Anesthesiology, Tianjin, 300052, China.
| |
Collapse
|
61
|
Liu Q, Han J, Zhang X. Peripheral and central pathogenesis of postherpetic neuralgia. Skin Res Technol 2024; 30:e13867. [PMID: 39101621 PMCID: PMC11299165 DOI: 10.1111/srt.13867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 06/22/2024] [Indexed: 08/06/2024]
Abstract
BACKGROUND Postherpetic neuralgia (PHN) is a classic chronic condition with multiple signs of peripheral and central neuropathy. Unfortunately, the pathogenesis of PHN is not well defined, limiting clinical treatment and disease management. OBJECTIVE To describe the peripheral and central pathological axes of PHN, including peripheral nerve injury, inflammation induction, central nervous system sensitization, and brain functional and structural network activity. METHODS A bibliographic survey was carried out, selecting relevant articles that evaluated the characterization of the pathogenesis of PHN, including peripheral and central pathological axes. RESULTS Currently, due to the complexity of the pathophysiological mechanisms of PHN and the incomplete understanding of the exact mechanism of neuralgia. CONCLUSION It is essential to conduct in-depth research to clarify the origins of PHN pathogenesis and explore effective and comprehensive therapies for PHN.
Collapse
Affiliation(s)
- Qiuping Liu
- First Teaching Hospital of Tianjin University of Traditional Chinese MedicineTianjinChina
- National Clinical Research Center for Chinese Medicine Acupuncture and MoxibustionTianjinChina
- Department of Rheumatology and ImmunologyFirst Affiliated Hospital of Army Medical UniversityChongqingChina
| | - Jingxian Han
- First Teaching Hospital of Tianjin University of Traditional Chinese MedicineTianjinChina
- National Clinical Research Center for Chinese Medicine Acupuncture and MoxibustionTianjinChina
| | - Xuezhu Zhang
- First Teaching Hospital of Tianjin University of Traditional Chinese MedicineTianjinChina
- National Clinical Research Center for Chinese Medicine Acupuncture and MoxibustionTianjinChina
| |
Collapse
|
62
|
Sartori F, Fagnani PLF, Monne-Guasch L, La Cagnina G, Picañol J, Puig-Diví A. Ultrasound-guided gluteal nerves electrical stimulation to enhance strength and power in individuals with chronic knee pain: a randomized controlled pilot trial. Front Med (Lausanne) 2024; 11:1410495. [PMID: 39021827 PMCID: PMC11251890 DOI: 10.3389/fmed.2024.1410495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 05/22/2024] [Indexed: 07/20/2024] Open
Abstract
Introduction Various pathophysiological contexts can be accompanied by weakness, arthrogenic muscle inhibition, and even disability. In this scenario, peripheral nerve stimulation has been studied not only for pain management but also for the improvement of neuromuscular parameters. For this purpose, the use of Transcutaneous Electrical Nerve Stimulation (TENS) has typically been investigated, but recently, the use of ultrasound-guided percutaneous peripheral nerve stimulation (pPNS) has gained popularity. In this regard, electrical stimulation has a predisposition to activate Type II muscle fibers and has been shown to be capable of generating short-term potentiation by increasing calcium sensitivity. However, the evidence of pPNS applied in humans investigating such variables is rather limited. Objectives This pilot study aimed to assess the feasibility of the methodology and explore the potential of pPNS in enhancing hip extension performance in individuals suffering from knee pain, comparing it with TENS. Methods Twelve participants were divided into pPNS and TENS groups, undergoing pre- and post-intervention assessments of peak concentric power (W), strength (N), execution speed (m/s), and one-repetition maximum (1RM) (kg) estimation. For pPNS, two needles were positioned adjacent to the superior and inferior gluteal nerves under ultrasound guidance. For TENS, electrodes were positioned between the posterosuperior iliac spine and the ischial tuberosity, and halfway between the posterosuperior iliac spine and the greater trochanter. The interventions consisted of 10 stimulations of 10 s at a frequency of 10 Hz with a pulse width of 240 μs, with rest intervals of 10 s between stimulations. Results Peripheral nerve stimulation significantly improved concentric power at 30% (p = 0.03) and 50% (p = 0.03) of 1RM, surpassing TENS, which showed minimal changes. No significant strength differences were observed post-intervention in either group. Conclusion This work presents evidence where pPNS applied to the gluteal nerves results in an enhanced performance of hip extension at submaximal loads. However, this improvement does not seem to be reflected in short-term changes in the estimation of the 1RM by the force-velocity profile.
Collapse
Affiliation(s)
- Francesco Sartori
- Blanquerna School of Health Sciences, Ramon Llull University, Barcelona, Spain
| | | | - Laia Monne-Guasch
- Blanquerna School of Health Sciences, Ramon Llull University, Barcelona, Spain
| | | | - Javier Picañol
- Department of Health Sciences, Tecnocampus, Pompeu Fabra University, Mataró, Spain
| | - Albert Puig-Diví
- Blanquerna School of Health Sciences, Ramon Llull University, Barcelona, Spain
| |
Collapse
|
63
|
Merces L, Ferro LMM, Nawaz A, Sonar P. Advanced Neuromorphic Applications Enabled by Synaptic Ion-Gating Vertical Transistors. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2305611. [PMID: 38757653 PMCID: PMC11251569 DOI: 10.1002/advs.202305611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 12/07/2023] [Indexed: 05/18/2024]
Abstract
Bioinspired synaptic devices have shown great potential in artificial intelligence and neuromorphic electronics. Low energy consumption, multi-modal sensing and recording, and multifunctional integration are critical aspects limiting their applications. Recently, a new synaptic device architecture, the ion-gating vertical transistor (IGVT), has been successfully realized and timely applied to perform brain-like perception, such as artificial vision, touch, taste, and hearing. In this short time, IGVTs have already achieved faster data processing speeds and more promising memory capabilities than many conventional neuromorphic devices, even while operating at lower voltages and consuming less power. This work focuses on the cutting-edge progress of IGVT technology, from outstanding fabrication strategies to the design and realization of low-voltage multi-sensing IGVTs for artificial-synapse applications. The fundamental concepts of artificial synaptic IGVTs, such as signal processing, transduction, plasticity, and multi-stimulus perception are discussed comprehensively. The contribution draws special attention to the development and optimization of multi-modal flexible sensor technologies and presents a roadmap for future high-end theoretical and experimental advancements in neuromorphic research that are mostly achievable by the synaptic IGVTs.
Collapse
Affiliation(s)
- Leandro Merces
- Research Center for MaterialsArchitectures, and Integration of Nanomembranes (MAIN)Chemnitz University of Technology09126ChemnitzGermany
| | - Letícia Mariê Minatogau Ferro
- Research Center for MaterialsArchitectures, and Integration of Nanomembranes (MAIN)Chemnitz University of Technology09126ChemnitzGermany
| | - Ali Nawaz
- Center for Sensors and DevicesBruno Kessler Foundation (FBK)Trento38123Italy
| | - Prashant Sonar
- School of Chemistry and PhysicsQueensland University of Technology (QUT)BrisbaneQLD4000Australia
- Centre for Materials ScienceQueensland University of Technology2 George StreetBrisbaneQLD4000Australia
| |
Collapse
|
64
|
Hodkinson DJ, Drabek MM, Jung J, Lankappa ST, Auer DP. Theta Burst Stimulation of the Human Motor Cortex Modulates Secondary Hyperalgesia to Punctate Mechanical Stimuli. Neuromodulation 2024; 27:812-823. [PMID: 37952136 DOI: 10.1016/j.neurom.2023.10.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 09/19/2023] [Accepted: 10/03/2023] [Indexed: 11/14/2023]
Abstract
OBJECTIVES Many chronic pain conditions show evidence of dysregulated synaptic plasticity, including the development and maintenance of central sensitization. This provides a strong rationale for neuromodulation therapies for the relief of chronic pain. However, variability in responses and low fidelity across studies remain an issue for both clinical trials and pain management, demonstrating insufficient mechanistic understanding of effective treatment protocols. MATERIALS AND METHODS In a randomized counterbalanced crossover designed study, we evaluated two forms of patterned repetitive transcranial magnetic stimulation, known as continuous theta burst stimulation (TBS) and intermittent TBS, during normal and central sensitization states. Secondary hyperalgesia (a form of use-dependent central sensitization) was induced using a well-established injury-free pain model and assessed by standardized quantitative sensory testing involving light touch and pinprick pain thresholds in addition to stimulus-response functions. RESULTS We found that continuous TBS of the human motor cortex has a facilitatory (pronociceptive) effect on the magnitude of perceived pain to secondary hyperalgesia, which may rely on induction and expression of neural plasticity through heterosynaptic long-term potentiation-like mechanisms. CONCLUSIONS By defining the underlying mechanisms of TBS-driven synaptic plasticity in the nociceptive system, we offer new insight into disease mechanisms and provide targets for promoting functional recovery and repair in chronic pain. For clinical applications, this knowledge is critical for development of more efficacious and mechanisms-based neuromodulation protocols, which are urgently needed to address the chronic pain and opioid epidemics.
Collapse
Affiliation(s)
- Duncan J Hodkinson
- Division of Mental Health and Clinical Neuroscience, School of Medicine, University of Nottingham, Nottingham, UK; Sir Peter Mansfield Imaging Center, School of Medicine, University of Nottingham, Nottingham, UK; National Institute for Health Research, Nottingham Biomedical Research Center, Queens Medical Center, Nottingham, UK.
| | - Marianne M Drabek
- Division of Mental Health and Clinical Neuroscience, School of Medicine, University of Nottingham, Nottingham, UK; Sir Peter Mansfield Imaging Center, School of Medicine, University of Nottingham, Nottingham, UK; National Institute for Health Research, Nottingham Biomedical Research Center, Queens Medical Center, Nottingham, UK
| | - JeYoung Jung
- School of Psychology, University of Nottingham, Nottingham, UK
| | - Sudheer T Lankappa
- Nottinghamshire Healthcare National Health Service Foundation Trust, Nottingham, UK
| | - Dorothee P Auer
- Division of Mental Health and Clinical Neuroscience, School of Medicine, University of Nottingham, Nottingham, UK; Sir Peter Mansfield Imaging Center, School of Medicine, University of Nottingham, Nottingham, UK; National Institute for Health Research, Nottingham Biomedical Research Center, Queens Medical Center, Nottingham, UK
| |
Collapse
|
65
|
Tam TH, Zhang W, Tu Y, Hicks JL, Farcas S, Kim D, Salter MW. Pain hypersensitivity is dependent on autophagy protein Beclin 1 in males but not females. Cell Rep 2024; 43:114293. [PMID: 38814784 DOI: 10.1016/j.celrep.2024.114293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Revised: 03/28/2024] [Accepted: 05/14/2024] [Indexed: 06/01/2024] Open
Abstract
Chronic pain is associated with alterations in fundamental cellular processes. Here, we investigate whether Beclin 1, a protein essential for initiating the cellular process of autophagy, is involved in pain processing and is targetable for pain relief. We find that monoallelic deletion of Becn1 increases inflammation-induced mechanical hypersensitivity in male mice. However, in females, loss of Becn1 does not affect inflammation-induced mechanical hypersensitivity. In males, intrathecal delivery of a Beclin 1 activator, tat-beclin 1, reverses inflammation- and nerve injury-induced mechanical hypersensitivity and prevents mechanical hypersensitivity induced by brain-derived neurotrophic factor (BDNF), a mediator of inflammatory and neuropathic pain. Pain signaling pathways converge on the enhancement of N-methyl-D-aspartate receptors (NMDARs) in spinal dorsal horn neurons. The loss of Becn1 upregulates synaptic NMDAR-mediated currents in dorsal horn neurons from males but not females. We conclude that inhibition of Beclin 1 in the dorsal horn is critical in mediating inflammatory and neuropathic pain signaling pathways in males.
Collapse
Affiliation(s)
- Theresa H Tam
- Neurosciences & Mental Health Program, Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Department of Physiology, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Wenbo Zhang
- Neurosciences & Mental Health Program, Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - YuShan Tu
- Neurosciences & Mental Health Program, Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Janice L Hicks
- Neurosciences & Mental Health Program, Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Sophia Farcas
- Neurosciences & Mental Health Program, Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Doyeon Kim
- Neurosciences & Mental Health Program, Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Michael W Salter
- Neurosciences & Mental Health Program, Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Department of Physiology, University of Toronto, Toronto, ON M5S 1A8, Canada.
| |
Collapse
|
66
|
Mei J, Hu Y. Degree centrality-based resting-state functional magnetic resonance imaging explores central mechanisms in lumbar disc herniation patients with chronic low back pain. Front Neurol 2024; 15:1370398. [PMID: 38919971 PMCID: PMC11197982 DOI: 10.3389/fneur.2024.1370398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 05/28/2024] [Indexed: 06/27/2024] Open
Abstract
Objective To investigate the central mechanism of lumbar disc herniation in patients with chronic low back pain (LDHCP) using resting-state functional magnetic resonance imaging (rs-fMRI) utilizing the Degree Centrality (DC) method. Methods Twenty-five LDHCP and twenty-two healthy controls (HCs) were enrolled, and rs-fMRI data from their brains were collected. We compared whole-brain DC values between the LDHCP and HC groups, and examined correlations between DC values within the LDHCP group and the Visual Analogue Score (VAS), Oswestry Dysfunction Index (ODI), and disease duration. Diagnostic efficacy was evaluated using receiver operating characteristic (ROC) curve analysis. Results LDHCP patients exhibited increased DC values in the bilateral cerebellum and brainstem, whereas decreased DC values were noted in the left middle temporal gyrus and right post-central gyrus when compared with HCs. The DC values of the left middle temporal gyrus were positively correlated with VAS (r = 0.416, p = 0.039) and ODI (r = 0.405, p = 0.045), whereas there was no correlation with disease duration (p > 0.05). Other brain regions showed no significant correlations with VAS, ODI, or disease duration (p > 0.05). Furthermore, the results obtained from ROC curve analysis demonstrated that the Area Under the Curve (AUC) for the left middle temporal gyrus was 0.929. Conclusion The findings indicated local abnormalities in spontaneous neural activity and functional connectivity in the bilateral cerebellum, bilateral brainstem, left middle temporal gyrus, and right postcentral gyrus among LDHCP patients.
Collapse
Affiliation(s)
| | - Yong Hu
- Department of Radiology, Yongchuan Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
67
|
Chen Z, Gao C, Zhang Y, Gao Y, Zhang L, Zhao S, Zhang H, Zhao X, Jin Y. Effects of Ultrasound-Guided Thoracic Paravertebral Nerve Block Combined with Perineural or IV Dexmedetomidine on Acute and Chronic Pain After Thoracoscopic Resection of Lung Lesions: A Double-Blind Randomized Trial. Drug Des Devel Ther 2024; 18:2089-2101. [PMID: 38882043 PMCID: PMC11177863 DOI: 10.2147/dddt.s457334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Accepted: 05/22/2024] [Indexed: 06/18/2024] Open
Abstract
Background Thoracic paravertebral block (TPVB) analgesia can be prolonged by local anesthetic adjuvants such as dexmedetomidine. This study aimed to evaluate the two administration routes of dexmedetomidine on acute pain and chronic neuropathic pain (NeuP) prevention compared with no dexmedetomidine. Methods A total of 216 patients were randomized to receive TPVB using 0.4% ropivacaine alone (R Group), with perineural dexmedetomidine 0.5 μg·kg-1 (RD0.5 Group) or 1.0 μg·kg-1 (RD1.0 Group), or intravenous (IV) dexmedetomidine 0.5 μg·kg-1·h-1 (RDiv Group). The primary outcome was the incidence of chronic NeuP, defined as a Leeds Assessment of Neuropathic Symptoms and Signs (LANSS) pain score > 12 points at 3-month after surgery. Results (1) For the primary outcome, RD0.5 Group and RD1.0 Group demonstrated a decreased incidence of chronic NeuP at 3-month after surgery; (2) Compared with R Group, RDiv Group, RD0.5 Group, and RD1.0 Group can reduce VAS scores at rest and movement and Prince-Henry Pain scores at 12 and 24-h after surgery, the consumption of oral morphine equivalent (OME) and improve QOD-15 at POD1; (3) Compared with RDiv Group, RD0.5 Group and RD1.0 Group can reduce VAS scores at rest and movement and Prince-Henry Pain scores at 12 and 24-h after surgery, the consumption of postoperative OME and improve QOD-15 at POD1; (4) Compared with RD0.5 Group, RD1.0 Group effectively reduced VAS scores at rest at 12 and 24-h after surgery, VAS scores in movement and Prince-Henry Pain scores at 12-h after surgery. However, RD1.0 Group showed an increased incidence of drowsiness. Conclusion Perineural or IV dexmedetomidine are similarly effective in reducing acute pain, but only perineural dexmedetomidine reduced chronic NeuP. Moreover, considering postoperative complications such as drowsiness, perineural dexmedetomidine (0.5 μg·kg-1) may be a more appropriate choice. Clinical Trial Registration Chinese Clinical Trial Registry (ChiCTR2200058982).
Collapse
Affiliation(s)
- Zheping Chen
- Department of Anesthesiology, the Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, People’s Republic of China
| | - Changli Gao
- Department of Anesthesiology, the Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, People’s Republic of China
- Department of Anesthesiology, Laoling People Hospital, Laoling, People’s Republic of China
| | - Yingchao Zhang
- Department of Anesthesiology, the Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, People’s Republic of China
- Department of Anesthesiology, Shouguang People Hospital, Weifang, People’s Republic of China
| | - Yongxu Gao
- Department of Anesthesiology, the Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, People’s Republic of China
- Department of Anesthesiology, Jinan Third People’s Hospital, Laoling, People’s Republic of China
| | - Le Zhang
- Department of Anesthesiology, the Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, People’s Republic of China
| | - Shanshan Zhao
- Department of Anesthesiology, the Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, People’s Republic of China
| | - He Zhang
- Department of Anesthesiology, the Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, People’s Republic of China
| | - Xin Zhao
- Department of Anesthesiology, the Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, People’s Republic of China
| | - Yanwu Jin
- Department of Anesthesiology, the Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, People’s Republic of China
| |
Collapse
|
68
|
Vigotsky AD, Cong O, Pinto CB, Barroso J, Perez J, Petersen KK, Arendt-Nielsen L, Hardt KD, Manning D, Apkarian AV, Branco P. Prognostic value of preoperative mechanical hyperalgesia and neuropathic pain qualities for postoperative pain after total knee replacement. Eur J Pain 2024. [PMID: 38850090 DOI: 10.1002/ejp.2295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 04/26/2024] [Accepted: 05/20/2024] [Indexed: 06/09/2024]
Abstract
BACKGROUND Total knee replacement (TKR) is the gold standard treatment for end-stage chronic osteoarthritis pain, yet many patients report chronic postoperative pain after TKR. The search for preoperative predictors for chronic postoperative pain following TKR has been studied with inconsistent findings. METHODS This study investigates the predictive value of quantitative sensory testing (QST) and PainDETECT for postoperative pain 3, 6 and 12 months post-TKR. We assessed preoperative and postoperative (3 and 6 months) QST measures in 77 patients with knee OA (KOA) and 41 healthy controls, along with neuropathic pain scores in patients (PainDETECT). QST parameters included pressure pain pressure threshold (PPT), pain tolerance threshold (PTT), conditioned pain modulation (CPM) and temporal summation (TS) using cuff algometry, alongside mechanical hyperalgesia and temporal summation to repeated pinprick stimulation. RESULTS Compared to healthy controls, KOA patients at baseline demonstrated hyperalgesia to pinprick stimulation at the medial knee undergoing TKR, and cuff pressure at the calf. Lower cuff algometry PTT and mechanical pinprick hyperalgesia were associated with preoperative KOA pain intensity. Moreover, preoperative pinprick pain hyperalgesia explained 25% of variance in pain intensity 12 months post-TKR and preoperative neuropathic pain scores also captured 30% and 20% of the variance in postoperative pain at 6 and 12 months respectively. A decrease in mechanical pinprick hyperalgesia from before surgery to 3 months after TKR was associated with lower postoperative pain at the 12 months post-TKR follow-up. CONCLUSION Our findings suggest that preoperative pinprick hyperalgesia and neuropathic-like pain symptoms show predictive value for the development of chronic post-TKR pain. SIGNIFICANCE STATEMENT This study's findings hold significant implications for chronic pain management in knee osteoarthritis patients, particularly those undergoing total knee replacement surgery (TKR). Mechanical hyperalgesia and neuropathic pain-like characteristics predict postoperative pain 1 year after TKR, emphasizing the importance of understanding pain phenotypes in OA for selecting appropriate pain management strategies. The normalization of hyperalgesia after surgery correlates with better long-term outcomes, further highlighting the therapeutic potential of addressing abnormal pain processing mechanisms pre- and post-TKR.
Collapse
Affiliation(s)
- Andrew D Vigotsky
- Center for Translational Pain Research, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
- Department of Biomedical Engineering and Statistics, Northwestern University, Evanston, Illinois, USA
| | - Olivia Cong
- Center for Translational Pain Research, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
- Department of Neuroscience, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Camila B Pinto
- Center for Translational Pain Research, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
- Department of Neuroscience, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Joana Barroso
- Department of Anesthesiology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Jennifer Perez
- Center for Translational Pain Research, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
- Department of Neuroscience, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Kristian Kjaer Petersen
- Department of Health Science and Technology, Center for Neuroplasticity and Pain (CNAP), SMI, Faculty of Medicine, Aalborg University, Aalborg, Denmark
- Department of Material and Production, Center for Mathematical Modeling of Knee Osteoarthritis (MathKOA), Faculty of Engineering and Science, Aalborg University, Aalborg, Denmark
| | - Lars Arendt-Nielsen
- Department of Health Science and Technology, Center for Neuroplasticity and Pain (CNAP), SMI, Faculty of Medicine, Aalborg University, Aalborg, Denmark
- Department of Material and Production, Center for Mathematical Modeling of Knee Osteoarthritis (MathKOA), Faculty of Engineering and Science, Aalborg University, Aalborg, Denmark
- Department of Medical Gastroenterology, Mech-Sense, Aalborg University Hospital, Aalborg, Denmark
- Steno Diabetes Center North Denmark, Clinical Institute, Aalborg University Hospital, Aalborg, Denmark
| | - Kevin D Hardt
- Department of Orthopedic Surgery, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - David Manning
- Department of Orthopedic Surgery, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - A Vania Apkarian
- Center for Translational Pain Research, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
- Department of Neuroscience, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
- Department of Anesthesiology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Paulo Branco
- Center for Translational Pain Research, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
- Department of Neuroscience, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
- Department of Anesthesiology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| |
Collapse
|
69
|
Zyryanov SK, Baybulatova EA. [Current challenges for therapy of comorbid patients: a new look at celecoxib. A review]. TERAPEVT ARKH 2024; 96:531-542. [PMID: 38829816 DOI: 10.26442/00403660.2024.05.202769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 05/29/2024] [Indexed: 06/05/2024]
Abstract
The use of non-steroidal anti-inflammatory drugs (NSAIDs) for a wide range of diseases is increasing, in part due to an increasing elderly population. Elderly patients are more vulnerable to adverse drug reactions, including side effects and adverse effects of drug-drug interactions, often occurring in this category of patients due to multimorbidity and polypharmacy. One of the most popular NSAIDs in the world is celecoxib. It is a selective cyclooxygenase (COX)-2 inhibitor with 375 times more COX-2 inhibitory activity than COX-1. As a result, celecoxib has a better gastrointestinal tract safety profile than non-selective NSAIDs. Gastrointestinal tolerance is an essential factor that physicians should consider when selecting NSAIDs for elderly patients. Celecoxib can be used in a wide range of diseases of the musculoskeletal system and rheumatological diseases, for the treatment of acute pain in women with primary dysmenorrhea, etc. It is also increasingly used as part of a multimodal perioperative analgesia regimen. There is strong evidence that COX-2 is actively involved in the pathogenesis of ischemic brain damage, as well as in the development and progression of neurodegenerative diseases, such as Alzheimer's disease. NSAIDs are first-line therapy in the treatment of acute migraine attacks. Celecoxib is well tolerated in patients with risk factors for NSAID-associated nephropathy. It does not decrease the glomerular filtration rate in elderly patients and patients with chronic renal failure. Many meta-analyses and epidemiological studies have not confirmed the increased risk of cardiovascular events reported in previous clinical studies and have not shown an increased risk of cardiovascular events with celecoxib, irrespective of dose. COX-2 activation is one of the key factors contributing to obesity-related inflammation. Specific inhibition of COX-2 by celecoxib increases insulin sensitivity in overweight or obese patients. Combination therapies may be a promising new area of treatment for obesity and diabetes.
Collapse
Affiliation(s)
- S K Zyryanov
- Peoples' Friendship University of Russia named after Patrice Lumumba
| | - E A Baybulatova
- Peoples' Friendship University of Russia named after Patrice Lumumba
| |
Collapse
|
70
|
Zhan D, Zhang J, Su S, Ren X, Zhao S, Zang W, Cao J. TET1 Participates in Complete Freund's Adjuvant-induced Trigeminal Inflammatory Pain by Regulating Kv7.2 in a Mouse Model. Neurosci Bull 2024; 40:707-718. [PMID: 37973721 PMCID: PMC11178721 DOI: 10.1007/s12264-023-01139-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 07/10/2023] [Indexed: 11/19/2023] Open
Abstract
Trigeminal inflammatory pain is one of the most severe pain-related disorders in humans; however, the underlying mechanisms remain largely unknown. In this study, we investigated the possible contribution of interaction between ten-eleven translocation methylcytosine dioxygenase 1 (TET1) and the voltage-gated K+ channel Kv7.2 (encoded by Kcnq2) to orofacial inflammatory pain in mice. We found that complete Freund's adjuvant (CFA) injection reduced the expression of Kcnq2/Kv7.2 in the trigeminal ganglion (TG) and induced orofacial inflammatory pain. The involvement of Kv7.2 in CFA-induced orofacial pain was further confirmed by Kv7.2 knockdown or overexpression. Moreover, TET1 knockdown in Tet1flox/flox mice significantly reduced the expression of Kv7.2 and M currents in the TG and led to pain-like behaviors. Conversely, TET1 overexpression by lentivirus rescued the CFA-induced decreases of Kcnq2 and M currents and alleviated mechanical allodynia. Our data suggest that TET1 is implicated in CFA-induced trigeminal inflammatory pain by positively regulating Kv7.2 in TG neurons.
Collapse
Affiliation(s)
- Dengcheng Zhan
- Department of Human Anatomy, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, China
- Neuroscience Research Institute, Zhengzhou University, Zhengzhou, 450001, China
| | - Jingjing Zhang
- Department of Human Anatomy, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, China
- Neuroscience Research Institute, Zhengzhou University, Zhengzhou, 450001, China
| | - Songxue Su
- Department of Human Anatomy, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Xiuhua Ren
- Department of Human Anatomy, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Sen Zhao
- Department of Human Anatomy, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, China
- Neuroscience Research Institute, Zhengzhou University, Zhengzhou, 450001, China
| | - Weidong Zang
- Department of Human Anatomy, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, China.
- Neuroscience Research Institute, Zhengzhou University, Zhengzhou, 450001, China.
| | - Jing Cao
- Department of Human Anatomy, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, China.
- Neuroscience Research Institute, Zhengzhou University, Zhengzhou, 450001, China.
| |
Collapse
|
71
|
Huang CT, Wang LK, Lue JH, Chen SH, Tsai YJ. Lactobacillus Plantarum intake mitigates neuropathic pain behavior via enhancing macrophage M2 polarization in a rat model of peripheral neuropathy. Biomed Pharmacother 2024; 175:116769. [PMID: 38776678 DOI: 10.1016/j.biopha.2024.116769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 05/17/2024] [Accepted: 05/17/2024] [Indexed: 05/25/2024] Open
Abstract
Pro-inflammatory macrophages (M1-polarized) play a crucial role in neuroinflammation and neuropathic pain following nerve injury. Redirecting macrophage polarization toward anti-inflammatory (M2-polarized) phenotypes offers a promising therapeutic strategy. Recognized for their anti-inflammatory and immunomodulatory properties, probiotics are becoming a focal point of research. This study investigated the effects of Lactobacillus plantarum on macrophage polarization, nerve protection, and neuropathic pain behavior following chronic constriction injury (CCI) of the median nerve. Rats received daily oral doses of L. plantarum for 28 days before and 14 days after CCI. Subsequently, behavioral and electrophysiological assessments were performed. The M1 marker CD86 levels, M2 marker CD206 levels, and concentrations of pro-inflammatory and anti-inflammatory cytokines in the injured median nerve were assessed. L. plantarum administration effectively reduced neuropathic pain behavior and the Firmicutes to Bacteroidetes ratio after CCI. Moreover, L. plantarum treatment increased serum short-chain fatty acids (SCFAs) levels, preserved myelination of the injured median nerve, and suppressed injury-induced discharges. In CCI rats treated with L. plantarum, there was a reduction in CD86 and pro-inflammatory cytokine levels, accompanied by an increase in CD206 and the release of anti-inflammatory cytokines. Furthermore, receptors for anti-inflammatory cytokines were localized on Schwann cells, and their expression was significantly upregulated in the injured nerves of CCI rats receiving L. plantarum. In conclusion, L. plantarum shifts macrophage phenotypes from M1 to M2 by promoting the production of SCFAs and enhancing the release of anti-inflammatory cytokines. Ultimately, this process preserves nerve fiber integrity and impedes the onset of neuropathic pain.
Collapse
Affiliation(s)
- Chun-Ta Huang
- Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan, Republic of China; Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan, Republic of China
| | - Li-Kai Wang
- Department of Anesthesiology, Chi Mei Medical Center, Tainan, Taiwan, Republic of China
| | - June-Horng Lue
- Department of Anatomy and Cell Biology, College of Medicine, National Taiwan University, Taipei, Taiwan, Republic of China
| | - Seu-Hwa Chen
- Department of Anatomy and Cell Biology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan, Republic of China
| | - Yi-Ju Tsai
- School of Medicine, College of Medicine, Fu Jen Catholic University, New Taipei City, Taiwan, Republic of China.
| |
Collapse
|
72
|
Pedersen A, Hyytiäinen HK, Rhodin M, Forterre F, Penell J, Bergh A. Effect of Transcutaneous Electrical Nerve Stimulation on Gait Parameters in Dogs with Osteoarthritis. Animals (Basel) 2024; 14:1626. [PMID: 38891673 PMCID: PMC11171175 DOI: 10.3390/ani14111626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 05/02/2024] [Accepted: 05/28/2024] [Indexed: 06/21/2024] Open
Abstract
Osteoarthritis is a common degenerative disease in dogs, often manifested as pain, joint swelling, and lameness. Despite the lack of scientific evidence for its treatment efficacy, transcutaneous electrical nerve stimulation (TENS) is used in dogs as a pain-relieving treatment. This randomised single-blinded cross-over study investigated the effect of TENS on gait parameters in fifteen dogs with osteoarthritis. Stance time, swing time, stride time, stride length, peak vertical force (%BW), vertical impulse (%BW*sec), and symmetry indices were obtained using a pressure-sensitive mat. TENS treatment of 80 Hz and 100 µs with an individually selected amplitude was conducted for 45 min once daily for a treatment period of seven or ten days. No significant differences were seen between TENS and placebo for any of the gait parameters. Hence, in this study, TENS did not affect gait parameters, compared to placebo. Further studies are needed to confirm the observations.
Collapse
Affiliation(s)
- Anja Pedersen
- Department of Clinical Sciences, Swedish University of Agricultural Sciences, 750 07 Uppsala, Sweden; (M.R.); (F.F.); (J.P.); (A.B.)
| | - Heli K. Hyytiäinen
- Department of Equine and Small Animal Medicine, Faculty of Veterinary Medicine, University of Helsinki, P.O. Box 57, 00014 Helsinki, Finland;
| | - Marie Rhodin
- Department of Clinical Sciences, Swedish University of Agricultural Sciences, 750 07 Uppsala, Sweden; (M.R.); (F.F.); (J.P.); (A.B.)
| | - Franck Forterre
- Department of Clinical Sciences, Swedish University of Agricultural Sciences, 750 07 Uppsala, Sweden; (M.R.); (F.F.); (J.P.); (A.B.)
| | - Johanna Penell
- Department of Clinical Sciences, Swedish University of Agricultural Sciences, 750 07 Uppsala, Sweden; (M.R.); (F.F.); (J.P.); (A.B.)
| | - Anna Bergh
- Department of Clinical Sciences, Swedish University of Agricultural Sciences, 750 07 Uppsala, Sweden; (M.R.); (F.F.); (J.P.); (A.B.)
| |
Collapse
|
73
|
Vega-Ramírez MT, Becerril-Villanueva E, Maldonado-García JL, Pavón L, Pérez-Sánchez G. S100 proteins: a new frontier in fibromyalgia research. Mol Brain 2024; 17:29. [PMID: 38797848 PMCID: PMC11129469 DOI: 10.1186/s13041-024-01102-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 05/18/2024] [Indexed: 05/29/2024] Open
Abstract
Fibromyalgia (FM) is a chronic condition that causes widespread pain, fatigue, and other symptoms that significantly affect quality of life. The underlying mechanisms of fibromyalgia involve both the immune system and the central nervous system. It has been proposed that changes in multiple ascending and descending pathways in the central nervous system may contribute to increased pain sensitivity in individuals with this condition. Recent research has identified S100 proteins as a new area of interest in fibromyalgia studies. These proteins are a group of small molecular weight proteins involved in inflammation and various functions inside and outside of cells, and they may play a critical role in the development and progression of FM. Although S100B has been the most studied in FM patients, other studies have reported that S100A7, S100A8, S100A9, and S100A12 may also be useful as potential biomarkers or for a deeper understanding of FM pathophysiology. The potential role of S100 proteins in the pathophysiology of fibromyalgia could be mediated by RAGE and TLR4, which signal through JNK, ERK, and p38 to activate AP-1 and NF-κB and induce the release of proinflammatory cytokines, thereby producing the inflammation, fatigue, and chronic pain characteristic of fibromyalgia. To gain new perspectives on targeted therapeutic approaches, it is crucial to understand how S100 proteins could impact the pathophysiology of fibromyalgia. This review examines the potential role of S100 proteins in fibromyalgia and their impact on improving our comprehension of the condition, as well as facilitating further research on this interesting topic.
Collapse
Affiliation(s)
- María Teresa Vega-Ramírez
- Laboratorio de Psicoinmunología, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Colonia San Lorenzo Huipulco, Tlalpan, Ciudad de México, 14370, México
| | - Enrique Becerril-Villanueva
- Laboratorio de Psicoinmunología, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Colonia San Lorenzo Huipulco, Tlalpan, Ciudad de México, 14370, México
| | - José Luis Maldonado-García
- Departamento de Inmunología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Miguel Hidalgo, Ciudad de México, México
- Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México, Coyoacán, Ciudad de México, México
| | - Lenin Pavón
- Laboratorio de Psicoinmunología, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Colonia San Lorenzo Huipulco, Tlalpan, Ciudad de México, 14370, México.
| | - Gilberto Pérez-Sánchez
- Laboratorio de Psicoinmunología, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Colonia San Lorenzo Huipulco, Tlalpan, Ciudad de México, 14370, México.
| |
Collapse
|
74
|
Mata JZ, Azkue JJ, Bialosky JE, Saez M, López ED, Arrieta MA, Lascurain-Aguirrebeña I. Restoration of normal central pain processing following manual therapy in nonspecific chronic neck pain. PLoS One 2024; 19:e0294100. [PMID: 38781273 PMCID: PMC11115211 DOI: 10.1371/journal.pone.0294100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 04/23/2024] [Indexed: 05/25/2024] Open
Abstract
OBJECTIVE To determine if a 4-week manual therapy treatment restores normal functioning of central pain processing mechanisms in non-specific chronic neck pain (NSCNP), as well as the existence of a possible relationship between changes in pain processing mechanisms and clinical outcome. DESIGN Cohort study. METHODS Sixty-three patients with NSCNP, comprising 79% female, with a mean age of 45.8 years (standard deviation: 14.3), received four treatment sessions (once a week) of manual therapy including articular passive mobilizations, soft tissue mobilization and trigger point treatment. Pressure pain thresholds (PPTs), conditioned pain modulation (CPM) and temporal summation of pain (TSP) were evaluated at baseline and after treatment completion. Therapy outcome was measured using the Global Rating of Change Scale (GROC), the Neck disability Index (NDI), intensity of pain during the last 24 hours, Tampa Scale of Kinesiophobia (TSK) and Pain Catastrophizing Scale (PCS). Two sets of generalized linear mixed models with Gaussian response and the identity link were employed to evaluate the effect of the intervention on clinical, psychological and psychophysical measures and the association between psychophysical and clinical outcomes. RESULTS Following treatment, an increased CPM response (Coefficient: 0.89; 95% credibility interval = 0.14 to 1.65; P = .99) and attenuated TSP (Coefficient: -0.63; 95% credibility interval = -0.82 to -0.43; P = 1.00) were found, along with amelioration of pain and improved clinical status. PPTs at trapezius muscle on the side of neck pain were increased after therapy (Coefficient: 0.22; 95% credibility interval = 0.03 to 0.42; P = .98), but not those on the contralateral trapezius and tibialis anterior muscles. Only minor associations were found between normalization of TSP/CPM and measures of clinical outcome. CONCLUSION Clinical improvement after manual therapy is accompanied by restoration of CPM and TSP responses to normal levels in NSCNP patients. The existence of only minor associations between changes in central pain processing and clinical outcome suggests multiple mechanisms of action of manual therapy in NSCNP.
Collapse
Affiliation(s)
- Josu Zabala Mata
- Department of Physical Therapy, Deusto Physical Therapiker, Faculty of Health Science, University of Deusto, San Sebastian, Spain
- Department of Neurosciences, Faculty of Medicine and Nursing, University of the Basque Country UPV/EHU, Leioa, Spain
| | - Jon Jatsu Azkue
- Department of Neurosciences, Faculty of Medicine and Nursing, University of the Basque Country UPV/EHU, Leioa, Spain
| | - Joel E. Bialosky
- Department of Physical Therapy, University of Florida, Gainsville, Florida, United States of America
- Clinical Research Center, Brooks Rehabilitation, Jacksonville, Florida, United States of America
| | - Marc Saez
- Research Group on Statistics, Econometrics and Health (GRECS), University of Girona, Girona, Spain
- CIBER of Epidemiology and Public Health (CIBERESP), Madrid, Spain
| | - Estíbaliz Dominguez López
- Department of Neurosciences, Faculty of Medicine and Nursing, University of the Basque Country UPV/EHU, Leioa, Spain
| | - Maialen Araolaza Arrieta
- Department of Physical Therapy, Deusto Physical Therapiker, Faculty of Health Science, University of Deusto, San Sebastian, Spain
| | - Ion Lascurain-Aguirrebeña
- Physiotherapy, Department of Physiology, Faculty of Medicine and Nursing, University of the Basque Country UPV/EHU, Leioa, Spain
| |
Collapse
|
75
|
Khan JS, Gilron I, Devereaux PJ, Clarke H, Ayach N, Tomlinson G, Quan ML, Ladha KS, Choi S, Munro A, Brull R, Lim DW, Avramescu S, Richebé P, Hodgson N, Paul J, McIsaac DI, Derzi S, Zbitnew GL, Easson AM, Siddiqui NT, Miles SJ, Karkouti K. Prevention of persistent pain with lidocaine infusions in breast cancer surgery (PLAN): study protocol for a multicenter randomized controlled trial. Trials 2024; 25:337. [PMID: 38773653 PMCID: PMC11110187 DOI: 10.1186/s13063-024-08151-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 05/07/2024] [Indexed: 05/24/2024] Open
Abstract
BACKGROUND Persistent pain is a common yet debilitating complication after breast cancer surgery. Given the pervasive effects of this pain disorder on the patient and healthcare system, post-mastectomy pain syndrome (PMPS) is becoming a larger population health problem, especially as the prognosis and survivorship of breast cancer increases. Interventions that prevent persistent pain after breast surgery are needed to improve the quality of life of breast cancer survivors. An intraoperative intravenous lidocaine infusion has emerged as a potential intervention to decrease the incidence of PMPS. We aim to determine the definitive effects of this intervention in patients undergoing breast cancer surgery. METHODS PLAN will be a multicenter, parallel-group, blinded, 1:1 randomized, placebo-controlled trial of 1,602 patients undergoing breast cancer surgery. Adult patients scheduled for a lumpectomy or mastectomy will be randomized to receive an intravenous 2% lidocaine bolus of 1.5 mg/kg with induction of anesthesia, followed by a 2.0 mg/kg/h infusion until the end of surgery, or placebo solution (normal saline) at the same volume. The primary outcome will be the incidence of persistent pain at 3 months. Secondary outcomes include the incidence of pain and opioid consumption at 1 h, 1-3 days, and 12 months after surgery, as well as emotional, physical, and functional parameters, and cost-effectiveness. DISCUSSION This trial aims to provide definitive evidence on an intervention that could potentially prevent persistent pain after breast cancer surgery. If this trial is successful, lidocaine infusion would be integrated as standard of care in breast cancer management. This inexpensive, widely available, and easily administered intervention has the potential to reduce pain and suffering in an already afflicted patient population, decrease the substantial costs of chronic pain management, potentially decrease opioid use, and improve the quality of life in patients. TRIAL REGISTRATION This trial has been registered on clinicaltrials.gov (NCT04874038, Dr. James Khan. Date of registration: May 5, 2021).
Collapse
MESH Headings
- Humans
- Lidocaine/administration & dosage
- Lidocaine/adverse effects
- Breast Neoplasms/surgery
- Female
- Pain, Postoperative/prevention & control
- Pain, Postoperative/etiology
- Pain, Postoperative/diagnosis
- Mastectomy/adverse effects
- Anesthetics, Local/administration & dosage
- Anesthetics, Local/adverse effects
- Infusions, Intravenous
- Multicenter Studies as Topic
- Randomized Controlled Trials as Topic
- Treatment Outcome
- Pain Measurement
- Quality of Life
- Chronic Pain/prevention & control
- Chronic Pain/etiology
- Mastectomy, Segmental/adverse effects
- Time Factors
- Analgesics, Opioid/administration & dosage
- Analgesics, Opioid/therapeutic use
- Analgesics, Opioid/adverse effects
- Cost-Benefit Analysis
Collapse
Affiliation(s)
- James S Khan
- Department of Anesthesiology & Pain Medicine, Mount Sinai Hospital, University of Toronto, Toronto, ON, Canada.
| | - Ian Gilron
- Departments of Anesthesiology & Perioperative Medicine, and Biomedical & Molecular Sciences, Centre for Neuroscience Studies, and School of Policy Studies, Queen's University and Kingston Health Sciences Centre, Kingston, ON, Canada
| | - P J Devereaux
- Population Health Research Institute, McMaster University, Hamilton Health Sciences Corporation, Hamilton, ON, Canada
| | - Hance Clarke
- Department of Anesthesiology and Pain Medicine, University of Toronto, Toronto, ON, Canada
- Transitional Pain Service, Toronto General Hospital, Toronto, ON, Canada
| | - Nour Ayach
- Department of Anesthesiology & Pain Medicine, University of Toronto, Toronto, ON, Canada
| | - George Tomlinson
- Department of Medicine, University Health Network and Mount Sinai Hospital, Toronto, ON, Canada
- University of Toronto, Toronto, ON, Canada
| | - May Lynn Quan
- Department of Surgery/Oncology, University of Calgary, Calgary, AB, Canada
| | - Karim S Ladha
- Department of Anesthesiology and Pain Medicine, University of Toronto, Toronto, ON, Canada
- Department of Anesthesia at St. Michael's Hospital, Toronto, ON, Canada
| | - Stephen Choi
- Department of Anesthesiology and Pain Medicine, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, ON, Canada
| | - Allana Munro
- Department of Anesthesia, Pain Management, and Perioperative Medicine, Dalhousie University, Halifax, NS, Canada
| | - Richard Brull
- Department of Anesthesiology and Pain Medicine, Women's College Hospital, University of Toronto, Toronto, ON, Canada
| | - David W Lim
- Women's College Research Institute & Department Surgery, Women's College Hospital, Toronto, ON, Canada
| | - Sinziana Avramescu
- Department of Anesthesiology and Pain Medicine, Humber River Hospital, University of Toronto, Toronto, ON, Canada
| | - Philippe Richebé
- Department of Anesthesiology and Pain Medicine, Maisonneuve-Rosemont Hospital, CIUSSS de L'Est de L'Ile de Montreal (CEMTL), University of Montreal, Montreal, QC, Canada
| | - Nicole Hodgson
- Department of Surgery, McMaster University, Hamilton, ON, Canada
| | - James Paul
- Department of Anesthesia, McMaster University, Hamilton, ON, Canada
| | - Daniel I McIsaac
- Departments of Anesthesiology & Pain Medicine and School of Epidemiology & Public Health, The Ottawa Hospital, University of Ottawa, Ottawa, ON, Canada
| | - Simone Derzi
- Department of Anesthesiology & Pain Medicine, University of Alberta, Edmonton, AB, Canada
| | - Geoff L Zbitnew
- Department of Anesthesiology, Memorial University, St. John's, NF, Canada
| | - Alexandra M Easson
- Department of Surgery and Institute of Health, Policy, Management and Evaluation (HPME), Mount Sinai Hospital and Princess Margaret Cancer Centre, University of Toronto, Toronto, ON, Canada
| | - Naveed T Siddiqui
- Department of Anesthesiology & Pain Medicine, Mount Sinai Hospital, University of Toronto, Toronto, ON, Canada
| | - Sarah J Miles
- Department of Anesthesia and Pain Medicine, University of Toronto, Toronto, ON, Canada
| | - Keyvan Karkouti
- Department of Anesthesia and Pain Medicine, University of Toronto, Toronto, ON, Canada
- Department of Anesthesia and Pain Management, University Health Network, Sinai Health System, and Women's College Hospital, Toronto, ON, Canada
| |
Collapse
|
76
|
Dócs K, Balázs A, Papp I, Szücs P, Hegyi Z. Reactive spinal glia convert 2-AG to prostaglandins to drive aberrant astroglial calcium signaling. Front Cell Neurosci 2024; 18:1382465. [PMID: 38784707 PMCID: PMC11112260 DOI: 10.3389/fncel.2024.1382465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 04/23/2024] [Indexed: 05/25/2024] Open
Abstract
The endogenous cannabinoid 2-arachidonoylglycerol (2-AG) influences neurotransmission in the central nervous system mainly by activating type 1 cannabinoid receptor (CB1). Following its release, 2-AG is broken down by hydrolases to yield arachidonic acid, which may subsequently be metabolized by cyclooxygenase-2 (COX-2). COX-2 converts arachidonic acid and also 2-AG into prostanoids, well-known inflammatory and pro-nociceptive mediators. Here, using immunohistochemical and biochemical methods and pharmacological manipulations, we found that reactive spinal astrocytes and microglia increase the expression of COX-2 and the production of prostaglandin E2 when exposed to 2-AG. Both 2-AG and PGE2 evoke calcium transients in spinal astrocytes, but PGE2 showed 30% more efficacy and 55 times more potency than 2-AG. Unstimulated spinal dorsal horn astrocytes responded to 2-AG with calcium transients mainly through the activation of CB1. 2-AG induced exaggerated calcium transients in reactive astrocytes, but this increase in the frequency and area under the curve of calcium signals was only partially dependent on CB1. Instead, aberrant calcium transients were almost completely abolished by COX-2 inhibition. Our results suggest that both reactive spinal astrocytes and microglia perform an endocannabinoid-prostanoid switch to produce PGE2 at the expense of 2-AG. PGE2 in turn is responsible for the induction of aberrant astroglial calcium signals which, together with PGE2 production may play role in the development and maintenance of spinal neuroinflammation-associated disturbances such as central sensitization.
Collapse
Affiliation(s)
- Klaudia Dócs
- Department of Anatomy, Histology and Embryology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Anita Balázs
- Department of Theoretical and Integrative Health Sciences, Institute of Health Sciences, Faculty of Health Sciences, University of Debrecen, Debrecen, Hungary
| | - Ildikó Papp
- Department of Anatomy, Histology and Embryology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Peter Szücs
- Department of Anatomy, Histology and Embryology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
- HUN-REN-DE Neuroscience Research Group, University of Debrecen, Debrecen, Hungary
| | - Zoltán Hegyi
- Department of Anatomy, Histology and Embryology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| |
Collapse
|
77
|
Parameshwarappa V, Siponen MI, Watabe I, Karkaba A, Galazyuk A, Noreña AJ. Noise-induced hearing loss alters potassium-chloride cotransporter KCC2 and GABA inhibition in the auditory centers. Sci Rep 2024; 14:10689. [PMID: 38724641 PMCID: PMC11082187 DOI: 10.1038/s41598-024-60858-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 04/29/2024] [Indexed: 05/12/2024] Open
Abstract
Homeostatic plasticity, the ability of neurons to maintain their averaged activity constant around a set point value, is thought to account for the central hyperactivity after hearing loss. Here, we investigated the putative role of GABAergic neurotransmission in this mechanism after a noise-induced hearing loss larger than 50 dB in high frequencies in guinea pigs. The effect of GABAergic inhibition is linked to the normal functioning of K + -Cl- co-transporter isoform 2 (KCC2) which maintains a low intracellular concentration of chloride. The expression of membrane KCC2 were investigated before and after noise trauma in the ventral and dorsal cochlear nucleus (VCN and DCN, respectively) and in the inferior colliculus (IC). Moreover, the effect of gabazine (GBZ), a GABA antagonist, was also studied on the neural activity in IC. We show that KCC2 is downregulated in VCN, DCN and IC 3 days after noise trauma, and in DCN and IC 30 days after the trauma. As expected, GBZ application in the IC of control animals resulted in an increase of spontaneous and stimulus-evoked activity. In the noise exposed animals, on the other hand, GBZ application decreased the stimulus-evoked activity in IC neurons. The functional implications of these central changes are discussed.
Collapse
Affiliation(s)
- V Parameshwarappa
- Laboratory of Cognitive Neurosciences, Centre National de la Recherche Scientifique, Aix-Marseille University, 3 Place Victor Hugo, 13003, Marseille, France
| | - M I Siponen
- Laboratory of Cognitive Neurosciences, Centre National de la Recherche Scientifique, Aix-Marseille University, 3 Place Victor Hugo, 13003, Marseille, France
| | - I Watabe
- Laboratory of Cognitive Neurosciences, Centre National de la Recherche Scientifique, Aix-Marseille University, 3 Place Victor Hugo, 13003, Marseille, France
| | - A Karkaba
- Laboratory of Cognitive Neurosciences, Centre National de la Recherche Scientifique, Aix-Marseille University, 3 Place Victor Hugo, 13003, Marseille, France
| | - A Galazyuk
- Department of Anatomy and Neurobiology, Northeast Ohio Medical University, Rootstown, OH, USA
| | - A J Noreña
- Laboratory of Cognitive Neurosciences, Centre National de la Recherche Scientifique, Aix-Marseille University, 3 Place Victor Hugo, 13003, Marseille, France.
| |
Collapse
|
78
|
Zhang W, Jiao B, Yu S, Zhang C, Zhang K, Liu B, Zhang X. Histone deacetylase as emerging pharmacological therapeutic target for neuropathic pain: From epigenetic to selective drugs. CNS Neurosci Ther 2024; 30:e14745. [PMID: 38715326 PMCID: PMC11077000 DOI: 10.1111/cns.14745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 04/02/2024] [Accepted: 04/17/2024] [Indexed: 05/12/2024] Open
Abstract
BACKGROUND Neuropathic pain remains a formidable challenge for modern medicine. The first-line pharmacological therapies exhibit limited efficacy and unfavorable side effect profiles, highlighting an unmet need for effective therapeutic medications. The past decades have witnessed an explosion in efforts to translate epigenetic concepts into pain therapy and shed light on epigenetics as a promising avenue for pain research. Recently, the aberrant activity of histone deacetylase (HDAC) has emerged as a key mechanism contributing to the development and maintenance of neuropathic pain. AIMS In this review, we highlight the distinctive role of specific HDAC subtypes in a cell-specific manner in pain nociception, and outline the recent experimental evidence supporting the therapeutic potential of HDACi in neuropathic pain. METHODS We have summarized studies of HDAC in neuropathic pain in Pubmed. RESULTS HDACs, widely distributed in the neuronal and non-neuronal cells of the dorsal root ganglion and spinal cord, regulate gene expression by deacetylation of histone or non-histone proteins and involving in increased neuronal excitability and neuroinflammation, thus promoting peripheral and central sensitization. Importantly, pharmacological manipulation of aberrant acetylation using HDAC-targeted inhibitors (HDACi) has shown promising pain-relieving properties in various preclinical models of neuropathic pain. Yet, many of which exhibit low-specificity that may induce off-target toxicities, underscoring the necessity for the development of isoform-selective HDACi in pain management. CONCLUSIONS Abnormally elevated HDACs promote neuronal excitability and neuroinflammation by epigenetically modulating pivotal gene expression in neuronal and immune cells, contributing to peripheral and central sensitization in the progression of neuropathic pain, and HDACi showed significant efficacy and great potential for alleviating neuropathic pain.
Collapse
Affiliation(s)
- Wencui Zhang
- Department of Anesthesiology and Pain Medicine, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric AnesthesiaTongji Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhanChina
| | - Bo Jiao
- Department of Anesthesiology and Pain Medicine, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric AnesthesiaTongji Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhanChina
| | - Shangchen Yu
- Department of Anesthesiology and Pain Medicine, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric AnesthesiaTongji Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhanChina
| | - Caixia Zhang
- Department of Anesthesiology and Pain Medicine, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric AnesthesiaTongji Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhanChina
| | - Kaiwen Zhang
- Department of Anesthesiology and Pain Medicine, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric AnesthesiaTongji Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhanChina
| | - Baowen Liu
- Department of Anesthesiology and Pain Medicine, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric AnesthesiaTongji Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhanChina
| | - Xianwei Zhang
- Department of Anesthesiology and Pain Medicine, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric AnesthesiaTongji Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhanChina
| |
Collapse
|
79
|
Liang Z, Li L, Bai L, Gao Y, Qiao Y, Wang X, Yv L, Xu JT. Spinal nerve transection-induced upregulation of SAP97 via promoting membrane trafficking of GluA1-containing AMPA receptors in the dorsal horn contributes to the pathogenesis of neuropathic pain. Neurobiol Dis 2024; 194:106471. [PMID: 38461868 DOI: 10.1016/j.nbd.2024.106471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 03/07/2024] [Accepted: 03/07/2024] [Indexed: 03/12/2024] Open
Abstract
Emerging evidence has implicated an important role of synapse-associated protein-97 (SAP97)-regulated GluA1-containing AMPARs membrane trafficking in cocaine restate and in contextual episodic memory of schizophrenia. Herein, we investigated the role of SAP97 in neuropathic pain following lumbar 5 spinal nerve transection (SNT) in rats. Our results showed that SNT led to upregulation of SAP97, enhanced the interaction between SAP97 and GluA1, and increased GluA1-containing AMPARs membrane trafficking in the dorsal horn. Microinjection of AAV-EGFP-SAP97 shRNA in lumbar 5 spinal dorsal horn inhibited SAP97 production, decreased SAP97-GluA1 interaction, reduced the membrane trafficking of GluA1-containing AMPARs, and partially attenuated neuropathic pain following SNT. Intrathecal injections of SAP97 siRNA or NASPM, an antagonist of GluA1-containing AMPARs, also partially reversed neuropathic pain on day 7, but not on day 14, after SNT. Spinal overexpression of SAP97 by AAV-EGFP-SAP97 enhanced SAP97-GluA1 interaction, increased the membrane insertion of GluA1-containing AMPARs, and induced abnormal pain in naïve rats. In addition, treatment with SAP97 siRNA or NASPM i.t. injection alleviated SNT-induced allodynia and hyperalgesia and exhibited a longer effect in female rats. Together, our results indicate that the SNT-induced upregulation of SAP97 via promoting GluA1-containing AMPARs membrane trafficking in the dorsal horn contributes to the pathogenesis of neuropathic pain. Targeting spinal SAP97 might be a promising therapeutic strategy to treatment of chronic pain.
Collapse
Affiliation(s)
- Zongyi Liang
- Department of Physiology and Neurobiology, School of Basic Medical Sciences, Zhengzhou University, 100 Science Avenue, Zhengzhou 450001, China
| | - Liren Li
- Department of Physiology and Neurobiology, School of Basic Medical Sciences, Zhengzhou University, 100 Science Avenue, Zhengzhou 450001, China
| | - Liying Bai
- Department of Physiology and Neurobiology, School of Basic Medical Sciences, Zhengzhou University, 100 Science Avenue, Zhengzhou 450001, China; Department of Anesthesiology, Pain and Perioperative Medicine, The First Affiliated Hospital, Zhengzhou University, 1 Jianshe East Road, Zhengzhou 450052, China
| | - Yan Gao
- Department of Physiology and Neurobiology, School of Basic Medical Sciences, Zhengzhou University, 100 Science Avenue, Zhengzhou 450001, China
| | - Yiming Qiao
- Department of Physiology and Neurobiology, School of Basic Medical Sciences, Zhengzhou University, 100 Science Avenue, Zhengzhou 450001, China
| | - Xueli Wang
- Department of Physiology and Neurobiology, School of Basic Medical Sciences, Zhengzhou University, 100 Science Avenue, Zhengzhou 450001, China
| | - Lili Yv
- Department of Physiology and Neurobiology, School of Basic Medical Sciences, Zhengzhou University, 100 Science Avenue, Zhengzhou 450001, China
| | - Ji-Tian Xu
- Department of Physiology and Neurobiology, School of Basic Medical Sciences, Zhengzhou University, 100 Science Avenue, Zhengzhou 450001, China; Neuroscience Research Institute, Zhengzhou University, 100 Science Avenue, Zhengzhou 450001, China.
| |
Collapse
|
80
|
Chen X, Cha L, Xuan Z, Zhang W. The effect of joint position sense therapy on chronic shoulder pain with central sensitization. Medicine (Baltimore) 2024; 103:e37786. [PMID: 38608097 PMCID: PMC11018202 DOI: 10.1097/md.0000000000037786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 03/13/2024] [Indexed: 04/14/2024] Open
Abstract
BACKGROUND Chronic shoulder pain is a common musculoskeletal problem associated with unreleased pain and functional dysfunction that can evolve into central sensitization. Some forms of manual therapy may exacerbate pain and central sensitization. This study investigated the impact of joint position sense therapy (JPST), a moderate joint proprioception training technique, on central sensitization, shoulder functional dysfunction, and pain in patients with chronic shoulder pain compared with more intense exercises or aggressive manual therapies. METHODS We assessed the pressure pain threshold (PPT) in 30 patients with and 30 patients without chronic shoulder pain. The assessment focused on 4 muscle sites: deltoid, upper trapezius, brachioradialis, and tibialis anterior. Thirty patients with chronic shoulder pain were randomly divided into the JPST and control groups. The JPST group underwent additional shoulder joint position-sense training. The efficiency outcomes were the disabilities of the arm, shoulder, and hand questionnaire, visual analog scale (VAS), and PPT, evaluated at baseline and after the intervention. RESULTS Significant differences were observed in the PPT values at the brachioradialis (P < .05), deltoid (P < .01), and trapezius (P < .001) among the non-chronic and chronic groups, but not in the tibialis anterior muscle (P > .05). Although both control and JPST interventions effectively improved the disabilities of the arm, shoulder, and hand questionnaire score, pain intensity, and PPT values in the upper limb, the outcomes in the JPST group were significantly different from those in the control group. CONCLUSIONS Generalized hyperalgesia changes limited to the upper limbs were observed in patients with chronic shoulder pain. JPST has beneficial effects on pain control and functional dysfunction in patients with chronic shoulder pain.
Collapse
Affiliation(s)
- Xin Chen
- Department of Rehabilitation Medicine, Ruijin Hospital, Shanghai Jiao Tong University Medical School, Shanghai, China
| | - Lisi Cha
- Department of Rehabilitation Therapy, Shanghai Ruijin Rehabilitation Hospital, Shanghai, China
| | - Zhi Xuan
- Department of Rehabilitation Therapy, Shanghai Ruijin Rehabilitation Hospital, Shanghai, China
| | - Weiming Zhang
- Department of Rehabilitation Medicine, Ruijin Hospital, Shanghai Jiao Tong University Medical School, Shanghai, China
- Department of Rehabilitation Therapy, Shanghai Ruijin Rehabilitation Hospital, Shanghai, China
| |
Collapse
|
81
|
Chen X, Gan Y, Au NPB, Ma CHE. Current understanding of the molecular mechanisms of chemotherapy-induced peripheral neuropathy. Front Mol Neurosci 2024; 17:1345811. [PMID: 38660386 PMCID: PMC11039947 DOI: 10.3389/fnmol.2024.1345811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 03/25/2024] [Indexed: 04/26/2024] Open
Abstract
Chemotherapy-induced peripheral neuropathy (CIPN) is the most common off-target adverse effects caused by various chemotherapeutic agents, such as cisplatin, oxaliplatin, paclitaxel, vincristine and bortezomib. CIPN is characterized by a substantial loss of primary afferent sensory axonal fibers leading to sensory disturbances in patients. An estimated of 19-85% of patients developed CIPN during the course of chemotherapy. The lack of preventive measures and limited treatment options often require a dose reduction or even early termination of life-saving chemotherapy, impacting treatment efficacy and patient survival. In this Review, we summarized the current understanding on the pathogenesis of CIPN. One prominent change induced by chemotherapeutic agents involves the disruption of neuronal cytoskeletal architecture and axonal transport dynamics largely influenced by the interference of microtubule stability in peripheral neurons. Due to an ineffective blood-nerve barrier in our peripheral nervous system, exposure to some chemotherapeutic agents causes mitochondrial swelling in peripheral nerves, which lead to the opening of mitochondrial permeability transition pore and cytochrome c release resulting in degeneration of primary afferent sensory fibers. The exacerbated nociceptive signaling and pain transmission in CIPN patients is often linked the increased neuronal excitability largely due to the elevated expression of various ion channels in the dorsal root ganglion neurons. Another important contributing factor of CIPN is the neuroinflammation caused by an increased infiltration of immune cells and production of inflammatory cytokines. In the central nervous system, chemotherapeutic agents also induce neuronal hyperexcitability in the spinal dorsal horn and anterior cingulate cortex leading to the development of central sensitization that causes CIPN. Emerging evidence suggests that the change in the composition and diversity of gut microbiota (dysbiosis) could have direct impact on the development and progression of CIPN. Collectively, all these aspects contribute to the pathogenesis of CIPN. Recent advances in RNA-sequencing offer solid platform for in silico drug screening which enable the identification of novel therapeutic agents or repurpose existing drugs to alleviate CIPN, holding immense promises for enhancing the quality of life for cancer patients who undergo chemotherapy and improve their overall treatment outcomes.
Collapse
Affiliation(s)
- Xinyu Chen
- Department of Neuroscience, Hong Kong Special Administrative Region (HKSAR), City University of Hong Kong, Kowloon, Hong Kong SAR, China
| | - Yumeng Gan
- Department of Neuroscience, Hong Kong Special Administrative Region (HKSAR), City University of Hong Kong, Kowloon, Hong Kong SAR, China
| | - Ngan Pan Bennett Au
- Department of Neuroscience, Hong Kong Special Administrative Region (HKSAR), City University of Hong Kong, Kowloon, Hong Kong SAR, China
- School of Pharmacy and Biomedical Sciences, University of Portsmouth, Portsmouth, United Kingdom
- Institute of Life Sciences and Healthcare, University of Portsmouth, Portsmouth, United Kingdom
| | - Chi Him Eddie Ma
- Department of Neuroscience, Hong Kong Special Administrative Region (HKSAR), City University of Hong Kong, Kowloon, Hong Kong SAR, China
| |
Collapse
|
82
|
Giri SS, Tripathi AS, Erkekoğlu P, Zaki MEA. Molecular pathway of pancreatic cancer-associated neuropathic pain. J Biochem Mol Toxicol 2024; 38:e23638. [PMID: 38613466 DOI: 10.1002/jbt.23638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 11/29/2023] [Accepted: 12/21/2023] [Indexed: 04/15/2024]
Abstract
The pancreas is a heterocrine gland that has both exocrine and endocrine parts. Most pancreatic cancer begins in the cells that line the ducts of the pancreas and is called pancreatic ductal adenocarcinoma (PDAC). PDAC is the most encountered pancreatic cancer type. One of the most important characteristic features of PDAC is neuropathy which is primarily due to perineural invasion (PNI). PNI develops tumor microenvironment which includes overexpression of fibroblasts cells, macrophages, as well as angiogenesis which can be responsible for neuropathy pain. In tumor microenvironment inactive fibroblasts are converted into an active form that is cancer-associated fibroblasts (CAFs). Neurotrophins they also increase the level of Substance P, calcitonin gene-related peptide which is also involved in pain. Matrix metalloproteases are the zinc-associated proteases enzymes which activates proinflammatory interleukin-1β into its activated form and are responsible for release and activation of Substance P which is responsible for neuropathic pain by transmitting pain signal via dorsal root ganglion. All the molecules and their role in being responsible for neuropathic pain are described below.
Collapse
Affiliation(s)
| | - Alok Shiomurti Tripathi
- Department of Pharmacology, Era College of Pharmacy, Era University, Lucknow, Uttar Pradesh, India
| | - Pınar Erkekoğlu
- Department of Pharmaceutical Toxicology, Faculty of Pharmacy, Hacettepe University, Ankara, Turkey
| | - Magdi E A Zaki
- Department of Chemistry, Faculty of Science, Imam Mohammad lbn Saud Islamic University, Riyadh, Saudi Arabia
| |
Collapse
|
83
|
Abouarab AH, Brülle R, Aboukilila MY, Weibel S, Schnabel A. Efficacy and safety of perioperative ketamine for the prevention of chronic postsurgical pain: A meta-analysis. Pain Pract 2024; 24:553-566. [PMID: 37971167 DOI: 10.1111/papr.13314] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Revised: 09/23/2023] [Accepted: 10/19/2023] [Indexed: 11/19/2023]
Abstract
STUDY OBJECTIVE Assessment of the efficacy and safety of perioperative intravenous ketamine in reducing incidence and severity of chronic postsurgical pain. STUDY DESIGN A systematic review and meta-analysis of randomized controlled trials (RCTs). DATA SOURCES The following data sources were systematically searched: MEDLINE, CENTRAL, and EMBASE (till 02/2021). PATIENTS Adult patients undergoing any surgery. INTERVENTIONS Perioperative use of intravenous ketamine as an additive analgesic drug compared to placebo, no active control treatment, and other additive drugs. MEASUREMENTS Primary outcomes were number of patients with chronic postsurgical pain after 6 months and ketamine related adverse effects. Secondary outcomes were chronic postsurgical pain incidence after 3 and 12 months, chronic postsurgical neuropathic pain incidence, chronic postsurgical moderate to severe pain incidence, intensity of chronic postsurgical pain at rest, and during movement, oral morphine consumption after 3, 6, and 12 months and incidence of opioid-related adverse effects. MAIN RESULTS Thirty-six RCTs were included with a total of 3572 patients. Ketamine compared to placebo may result in no difference in the number of patients with chronic postsurgical pain after 6 months (risk ratio (RR) 0.86, 95% confidence interval (CI) 0.71-1.05; I2 = 34%; 16 studies; low-certainty evidence). Ketamine may reduce the incidence of chronic postsurgical neuropathic pain after 3 months in comparison to placebo (RR 0.78, 95% CI 0.62-0.99, I2 = 31%, seven trials, low-certainty evidence). Ketamine compared to placebo may increase the risk for postoperative nystagmus (RR 9.04, 95% CI 1.15-70.90, I2 30%, two trials, low-certainty evidence) and postoperative visual disturbances (RR 2.29, 95% CI 1.05-4.99, I2 10%, seven trials, low-certainty evidence). CONCLUSIONS There is low-certainty evidence that perioperative ketamine has no effect on chronic postsurgical pain in adult patients. Low-certainty evidence suggests that ketamine compared to placebo may reduce incidence of chronic postsurgical neuropathic pain after 3 months. Questions like ideal dosing, treatment duration and more patient-related outcome measures remain unanswered, which warrants further studies. PROTOCOL REGISTRATION Prospero CRD42021223625, 07.01.2021.
Collapse
Affiliation(s)
- Ahmed H Abouarab
- Department of Anaesthesiology, Intensive Care and Pain Medicine, University Hospital of Muenster, Muenster, Germany
| | - Rebecca Brülle
- Department of Anaesthesiology, Intensive Care and Pain Medicine, University Hospital of Muenster, Muenster, Germany
| | | | - Stephanie Weibel
- Department of Anaesthesiology, Intensive Care, Emergency and Pain Medicine, University Hospital of Würzburg, Würzburg, Germany
| | - Alexander Schnabel
- Department of Anaesthesiology, Intensive Care and Pain Medicine, University Hospital of Muenster, Muenster, Germany
| |
Collapse
|
84
|
Gold MS, Loeza-Alcocer E. Experimental colitis-induced visceral hypersensitivity is attenuated by GABA treatment in mice. Am J Physiol Gastrointest Liver Physiol 2024; 326:G252-G263. [PMID: 38193198 PMCID: PMC11211035 DOI: 10.1152/ajpgi.00012.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 12/21/2023] [Accepted: 12/26/2023] [Indexed: 01/10/2024]
Abstract
Ulcerative colitis (UC) is linked with inflammation of the large intestine due to an overactive response of the colon-immune system. UC is associated with weight loss, rectal bleeding, diarrhea, and abdominal pain. Given that γ-amino butyric acid (GABA) suppresses immune cell activity and the excitability of colonic afferents, and that there is a decrease in colonic GABA during UC, we hypothesized that UC pain is due to a decrease in the inhibition of colonic afferents. Thus, restoring GABA in the colon will attenuate inflammatory hypersensitivity. We tested this hypothesis in a mouse model of colitis. Colon inflammation was induced with seven days of dextran sodium sulfate (DSS, 3%) in the drinking water. GABA (40 mg/kg) was administered orally for the same period as DSS, and body weight, colon length, colon permeability, clinical progression of colitis (disease activity index or DAI), and colon histological score (HS) were assessed to determine the effects of GABA on colitis. A day after the end of GABA treatment, visceral sensitivity was assessed with balloon distention (of the colon)-evoked visceromotor response and colon samples were collected for the measurement of GABA and cytokines. Treatment with GABA reduced the DSS-induced increase in the colon permeability, DAI, HS, and decrease in body weight and colon length. Furthermore, GABA inhibited the DSS-induced increase in the proinflammatory cytokines tumor necrosis factor-α (TNF-α), interferon-γ (IFN-γ), interleukin-12 (IL-12), and increased the expression of the anti-inflammatory cytokine IL-10 in the colon tissue. Importantly, GABA reduced DSS-induced visceral hypersensitivity. These data suggest that increasing gastrointestinal levels of GABA may be useful for the treatment of colitis.NEW & NOTEWORTHY GABA treatment reduces the severity of colitis and inflammation and produces inhibition of visceral hypersensitivity in colon-inflamed mice. These results raise the promising possibility that GABA treatment may be an effective therapeutic strategy for the management of symptoms associated with colitis. However, clinical studies are required to corroborate whether this mouse-model data translates to human colon.
Collapse
Affiliation(s)
- Michael S Gold
- Department of Neurobiology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States
| | - Emanuel Loeza-Alcocer
- Department of Neurobiology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States
| |
Collapse
|
85
|
Rozo JA, Martínez-Gallego I, Rodríguez-Moreno A. Cajal, the neuronal theory and the idea of brain plasticity. Front Neuroanat 2024; 18:1331666. [PMID: 38440067 PMCID: PMC10910026 DOI: 10.3389/fnana.2024.1331666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 01/17/2024] [Indexed: 03/06/2024] Open
Abstract
This paper reviews the importance of Cajal's neuronal theory (the Neuron Doctrine) and the origin and importance of the idea of brain plasticity that emerges from this theory. We first comment on the main Cajal's discoveries that gave rise and confirmed his Neuron Doctrine: the improvement of staining techniques, his approach to morphological laws, the concepts of dynamic polarisation, neurogenesis and neurotrophic theory, his first discoveries of the nerve cell as an independent cell, his research on degeneration and regeneration and his fight against reticularism. Second, we review Cajal's ideas on brain plasticity and the years in which they were published, to finally focus on the debate on the origin of the term plasticity and its conceptual meaning, and the originality of Cajal's proposal compared to those of other authors of the time.
Collapse
Affiliation(s)
- Jairo A. Rozo
- Laboratory of Cellular Neuroscience and Plasticity, Universidad Pablo de Olavide, Seville, Spain
- Iván Pávlov Laboratory, Faculty of Psychology, Los Libertadores University Foundation, Bogotá, Colombia
| | - Irene Martínez-Gallego
- Laboratory of Cellular Neuroscience and Plasticity, Universidad Pablo de Olavide, Seville, Spain
| | - Antonio Rodríguez-Moreno
- Laboratory of Cellular Neuroscience and Plasticity, Universidad Pablo de Olavide, Seville, Spain
| |
Collapse
|
86
|
Lai HHH, Yang H, Tasian GE, Harper JD, Desai AC, McCune RD, Kirkali Z, Al-Khalidi HR, Scales CD, Curatolo M. Contribution of Hypersensitivity to Postureteroscopy Ureteral Stent Pain: Findings From Study to Enhance Understanding of Stent-associated Symptoms. Urology 2024; 184:32-39. [PMID: 38070834 PMCID: PMC11215756 DOI: 10.1016/j.urology.2023.10.039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 09/25/2023] [Accepted: 10/16/2023] [Indexed: 01/13/2024]
Abstract
OBJECTIVE To examine the relationships between preoperative hypersensitivity to pain and central sensitization, and postoperative ureteral stent pain after ureteroscopy (URS) for urinary stones. METHODS Adults enrolled in the STudy to Enhance uNderstanding of sTent-associated Symptoms (STENTS) underwent quantitative sensory testing (QST) prior to URS and stent placement. Hypersensitivity to mechanical pain was assessed using a pressure algometer. Participants rated their pain intensity to pressure applied to the ipsilateral flank area and lower abdominal quadrant on the side of planned stent placement, and the contralateral forearm (control). Pressure pain thresholds were also assessed. Central sensitization was assessed by applying a pointed stimulator (pinprick) and calculating the temporal summation. Postoperative stent pain intensity and interference were assessed using PROMIS questionnaires. Data were analyzed using repeated-measures mixed-effects linear models. RESULTS Among the 412 participants, the median age was 54.0years, and 46% were female. Higher preoperative pain ratings to 2 kg and 4 kg mechanical pressure to the ipsilateral flank and abdominal areas were associated with higher postoperative stent pain intensity with the stent in situ. Greater degree of central sensitization preoperatively, manifesting as higher temporal summation, was associated with higher postoperative pain intensity. Factors associated with preoperative hypersensitivity on QST included female sex, presence of chronic pain conditions, widespread pain, and depression. CONCLUSION Hypersensitivity to pain and central sensitization preoperatively was associated with postoperative ureteral stent pain, suggesting a physiologic basis for stent symptom variation. QST may identify patients more likely to develop stent pain after URS and could inform selection for preventive and interventional strategies.
Collapse
Affiliation(s)
- Hing Hung Henry Lai
- Division of Urologic Surgery, Departments of Surgery and Anesthesiology, Washington University School of Medicine, St. Louis, MO.
| | - Hongqui Yang
- Department of Biostatistics and Bioinformatics, Duke Clinical Research Institute, Duke University School of Medicine, Durham, NC
| | - Gregory E Tasian
- Division of Urology and Clinical Futures, Children's Hospital of Philadelphia, Philadelphia, PA; Department of Biostatistics, Epidemiology, and Informatics, University of Pennsylvania, Philadelphia, PA
| | | | - Alana C Desai
- Division of Urologic Surgery, Department of Surgery, Washington University School of Medicine, St. Louis, MO
| | - Rebecca D McCune
- Division of Urology and Clinical Futures, Children's Hospital of Philadelphia, Philadelphia, PA
| | - Ziya Kirkali
- National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD
| | - Hussein R Al-Khalidi
- Department of Biostatistics and Bioinformatics, Duke Clinical Research Institute, Duke University School of Medicine, Durham, NC
| | - Charles D Scales
- Departments of Surgery (Urology) and Population Health Science, Duke Clinical Research Institute, Duke University School of Medicine, Durham, NC
| | - Michele Curatolo
- Department of Anesthesiology and Pain Medicine, University of Washington, Seattle, WA; Harborview Injury Preventions and Research Center, University of Washington, Seattle, WA; Center for Sensory-Motor Interaction, University of Aalborg, Aalborg, Denmark
| |
Collapse
|
87
|
Song Q, Wei A, Xu H, Gu Y, Jiang Y, Dong N, Zheng C, Wang Q, Gao M, Sun S, Duan X, Chen Y, Wang B, Huo J, Yao J, Wu H, Li H, Wu X, Jing Z, Liu X, Yang Y, Hu S, Zhao A, Wang H, Cheng X, Qin Y, Qu Q, Chen T, Zhou Z, Chai Z, Kang X, Wei F, Wang C. An ACC-VTA-ACC positive-feedback loop mediates the persistence of neuropathic pain and emotional consequences. Nat Neurosci 2024; 27:272-285. [PMID: 38172439 DOI: 10.1038/s41593-023-01519-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Accepted: 11/04/2023] [Indexed: 01/05/2024]
Abstract
The central mechanisms underlying pain chronicity remain elusive. Here, we identify a reciprocal neuronal circuit in mice between the anterior cingulate cortex (ACC) and the ventral tegmental area (VTA) that mediates mutual exacerbation between hyperalgesia and allodynia and their emotional consequences and, thereby, the chronicity of neuropathic pain. ACC glutamatergic neurons (ACCGlu) projecting to the VTA indirectly inhibit dopaminergic neurons (VTADA) by activating local GABAergic interneurons (VTAGABA), and this effect is reinforced after nerve injury. VTADA neurons in turn project to the ACC and synapse to the initial ACCGlu neurons to convey feedback information from emotional changes. Thus, an ACCGlu-VTAGABA-VTADA-ACCGlu positive-feedback loop mediates the progression to and maintenance of persistent pain and comorbid anxiodepressive-like behavior. Disruption of this feedback loop relieves hyperalgesia and anxiodepressive-like behavior in a mouse model of neuropathic pain, both acutely and in the long term.
Collapse
Affiliation(s)
- Qian Song
- Neuroscience Research Center, Institute of Mitochondrial Biology and Medicine, Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology and Core Facilities Sharing Platform, Xi'an Jiaotong University, Xi'an, China
- Department of Neurology, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Anqi Wei
- Neuroscience Research Center, Institute of Mitochondrial Biology and Medicine, Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology and Core Facilities Sharing Platform, Xi'an Jiaotong University, Xi'an, China
| | - Huadong Xu
- Neuroscience Research Center, Institute of Mitochondrial Biology and Medicine, Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology and Core Facilities Sharing Platform, Xi'an Jiaotong University, Xi'an, China
- Key Laboratory of Medical Electrophysiology, Ministry of Education of China, Collaborative Innovation Center for Prevention and Treatment of Cardiovascular Disease and the Institute of Cardiovascular Research, Southwest Medical University, Luzhou, China
| | - Yuhao Gu
- Neuroscience Research Center, Institute of Mitochondrial Biology and Medicine, Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology and Core Facilities Sharing Platform, Xi'an Jiaotong University, Xi'an, China
| | - Yong Jiang
- Department of Neurosurgery, the Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Nan Dong
- Neuroscience Research Center, Institute of Mitochondrial Biology and Medicine, Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology and Core Facilities Sharing Platform, Xi'an Jiaotong University, Xi'an, China
| | - Chaowen Zheng
- Neuroscience Research Center, Institute of Mitochondrial Biology and Medicine, Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology and Core Facilities Sharing Platform, Xi'an Jiaotong University, Xi'an, China
| | - Qinglong Wang
- State Key Laboratory of Membrane Biology and Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine, College of Future Technology; Peking-Tsinghua Center for Life Sciences; and PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing, China
| | - Min Gao
- State Key Laboratory of Membrane Biology and Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine, College of Future Technology; Peking-Tsinghua Center for Life Sciences; and PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing, China
| | - Suhua Sun
- State Key Laboratory of Membrane Biology and Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine, College of Future Technology; Peking-Tsinghua Center for Life Sciences; and PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing, China
| | - Xueting Duan
- Neuroscience Research Center, Institute of Mitochondrial Biology and Medicine, Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology and Core Facilities Sharing Platform, Xi'an Jiaotong University, Xi'an, China
| | - Yang Chen
- Neuroscience Research Center, Institute of Mitochondrial Biology and Medicine, Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology and Core Facilities Sharing Platform, Xi'an Jiaotong University, Xi'an, China
| | - Bianbian Wang
- Neuroscience Research Center, Institute of Mitochondrial Biology and Medicine, Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology and Core Facilities Sharing Platform, Xi'an Jiaotong University, Xi'an, China
| | - Jingxiao Huo
- Neuroscience Research Center, Institute of Mitochondrial Biology and Medicine, Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology and Core Facilities Sharing Platform, Xi'an Jiaotong University, Xi'an, China
| | - Jingyu Yao
- Neuroscience Research Center, Institute of Mitochondrial Biology and Medicine, Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology and Core Facilities Sharing Platform, Xi'an Jiaotong University, Xi'an, China
| | - Hao Wu
- Neuroscience Research Center, Institute of Mitochondrial Biology and Medicine, Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology and Core Facilities Sharing Platform, Xi'an Jiaotong University, Xi'an, China
| | - Hua Li
- Neuroscience Research Center, Institute of Mitochondrial Biology and Medicine, Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology and Core Facilities Sharing Platform, Xi'an Jiaotong University, Xi'an, China
| | - Xuanang Wu
- Neuroscience Research Center, Institute of Mitochondrial Biology and Medicine, Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology and Core Facilities Sharing Platform, Xi'an Jiaotong University, Xi'an, China
| | - Zexin Jing
- Neuroscience Research Center, Institute of Mitochondrial Biology and Medicine, Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology and Core Facilities Sharing Platform, Xi'an Jiaotong University, Xi'an, China
| | - Xiaoying Liu
- Neuroscience Research Center, Institute of Mitochondrial Biology and Medicine, Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology and Core Facilities Sharing Platform, Xi'an Jiaotong University, Xi'an, China
| | - Yuxin Yang
- Neuroscience Research Center, Institute of Mitochondrial Biology and Medicine, Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology and Core Facilities Sharing Platform, Xi'an Jiaotong University, Xi'an, China
- College of Life Sciences, Liaocheng University, Liaocheng, China
| | - Shaoqin Hu
- Neuroscience Research Center, Institute of Mitochondrial Biology and Medicine, Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology and Core Facilities Sharing Platform, Xi'an Jiaotong University, Xi'an, China
| | - Anran Zhao
- Neuroscience Research Center, Institute of Mitochondrial Biology and Medicine, Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology and Core Facilities Sharing Platform, Xi'an Jiaotong University, Xi'an, China
| | - Hongyan Wang
- Key Laboratory of Medical Electrophysiology, Ministry of Education of China, Collaborative Innovation Center for Prevention and Treatment of Cardiovascular Disease and the Institute of Cardiovascular Research, Southwest Medical University, Luzhou, China
- College of Life Sciences, Liaocheng University, Liaocheng, China
| | - Xu Cheng
- Key Laboratory of Medical Electrophysiology, Ministry of Education of China, Collaborative Innovation Center for Prevention and Treatment of Cardiovascular Disease and the Institute of Cardiovascular Research, Southwest Medical University, Luzhou, China
| | - Yuhao Qin
- Key Laboratory of Medical Electrophysiology, Ministry of Education of China, Collaborative Innovation Center for Prevention and Treatment of Cardiovascular Disease and the Institute of Cardiovascular Research, Southwest Medical University, Luzhou, China
| | - Qiumin Qu
- Department of Neurology, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Tao Chen
- Department of Human Anatomy, Histology and Embryology and K.K. Leung Brain Research Centre, the Fourth Military Medical University, Xi'an, China
| | - Zhuan Zhou
- State Key Laboratory of Membrane Biology and Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine, College of Future Technology; Peking-Tsinghua Center for Life Sciences; and PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing, China
| | - Zuying Chai
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| | - Xinjiang Kang
- Key Laboratory of Medical Electrophysiology, Ministry of Education of China, Collaborative Innovation Center for Prevention and Treatment of Cardiovascular Disease and the Institute of Cardiovascular Research, Southwest Medical University, Luzhou, China.
- Department of Neurosurgery, the Affiliated Hospital of Southwest Medical University, Luzhou, China.
- College of Life Sciences, Liaocheng University, Liaocheng, China.
| | - Feng Wei
- Department of Neural and Pain Sciences, School of Dentistry; Program in Neuroscience, Center to Advance Chronic Pain Research, University of Maryland, Baltimore, MD, USA.
| | - Changhe Wang
- Neuroscience Research Center, Institute of Mitochondrial Biology and Medicine, Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology and Core Facilities Sharing Platform, Xi'an Jiaotong University, Xi'an, China.
- Department of Neurology, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.
- Key Laboratory of Medical Electrophysiology, Ministry of Education of China, Collaborative Innovation Center for Prevention and Treatment of Cardiovascular Disease and the Institute of Cardiovascular Research, Southwest Medical University, Luzhou, China.
- Department of Neurosurgery, the Affiliated Hospital of Southwest Medical University, Luzhou, China.
| |
Collapse
|
88
|
Wang TY, Liang YY, Liu Q, Wang D, Sun Q, Li RT, Yang H, Jiang YM, Ye J. Effect of spirocyclopiperazinium salt compound LXM-15 on spinal nerve injury in rats. Eur J Pain 2024; 28:297-309. [PMID: 37668323 DOI: 10.1002/ejp.2181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Revised: 08/15/2023] [Accepted: 08/25/2023] [Indexed: 09/06/2023]
Abstract
BACKGROUND Currently available therapies for neuropathic pain show limited efficacy. This study aimed to investigate the anti-nociceptive effect of the spirocyclopiperazinium salt compound LXM-15 in spinal nerve ligation (SNL) rats and to explore the potential mechanisms. METHODS Mechanical allodynia and thermal hyperalgesia tests were used to evaluate the effects of LXM-15 in SNL rats. The expression of CaMKIIα, CREB, JAK2, STAT3, c-fos and TNF-α was detected by western blotting, ELISA or qRT-PCR analysis. Receptor blocking test was performed to explore possible target. RESULTS Administration of LXM-15 (1, 0.5, 0.25 mg/kg, i.g.) dose-dependently attenuated mechanical allodynia and thermal hyperalgesia in rats subjected to SNL (p < 0.01, p < 0.05), and the effects were completely blocked by peripheral α7 nicotinic or M4 muscarinic receptor antagonist (p > 0.05). LXM-15 significantly decreased the overexpression of phosphorylated CaMKIIα, CREB, JAK2 and STAT3 proteins and the mRNA levels of TNF-α and c-fos (p < 0.01, p < 05). All of the effects could be blocked by α7 or M4 receptor antagonist. Furthermore, LXM-15 reduced the protein expression of TNF-α and c-fos (p < 0.01, p < 0.05). No significant acute toxicity or abnormal hepatorenal function was observed. CONCLUSIONS This is the first study to report that LXM-15 exerts significant anti-nociceptive effect on SNL rats. This effect may occur by activating peripheral α7 nicotinic and M4 muscarinic receptors, further inhibiting the CaMKIIα/CREB and JAK2/STAT3 signalling pathways, and finally inhibiting the expression of TNF-α and c-fos. SIGNIFICANCE Existing treatments for neuropathic pain show limited efficacy with severe adverse reactions. This paper is the first to report that LXM-15, a new spirocyclopiperazinium salt compound, exerts a significant anti-nociception in SNL rats without obvious toxicity. The underlying mechanisms include activating peripheral α7 nicotinic and M4 muscarinic receptors, then inhibiting the signalling pathways of CaMKIIα/CREB and JAK2/STAT3 and the expressions of TNF-α and c-fos. This study sheds new light on the development of novel analgesic drugs with fewer side effects.
Collapse
Affiliation(s)
- Tian Yu Wang
- Department of Molecular and Cellular Pharmacology, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Ying Ying Liang
- Department of Molecular and Cellular Pharmacology, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Qin Liu
- Department of Molecular and Cellular Pharmacology, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Ding Wang
- Department of Molecular and Cellular Pharmacology, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Qi Sun
- Department of Chemical Biology, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Run Tao Li
- Department of Chemical Biology, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Hua Yang
- Department of Molecular and Cellular Pharmacology, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Yi Min Jiang
- Medical and Healthy Analysis Center, Peking University, Beijing, China
| | - Jia Ye
- Department of Molecular and Cellular Pharmacology, School of Pharmaceutical Sciences, Peking University, Beijing, China
| |
Collapse
|
89
|
Khan JS, Dana E, Xiao MZX, Rao V, Djaiani G, Seltzer Z, Ladha K, Huang A, McRae K, Cypel M, Katz J, Wong D, Clarke H. Prevalence and Risk Factors for Chronic Postsurgical Pain After Thoracic Surgery: A Prospective Cohort Study. J Cardiothorac Vasc Anesth 2024; 38:490-498. [PMID: 39093584 DOI: 10.1053/j.jvca.2023.09.042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 09/05/2023] [Accepted: 09/27/2023] [Indexed: 08/04/2024]
Abstract
OBJECTIVE Thoracic surgery is associated with one of the highest rates of chronic postsurgical pain (CPSP) among all surgical subtypes. Chronic postsurgical pain carries significant medical, psychological, and economic consequences, and further interventions are needed to prevent its development. This study aimed to determine the prevalence, characteristics, and risk factors associated with CPSP after thoracic surgery. DESIGN A prospective cohort study. SETTING Single-center tertiary care hospital. PARTICIPANTS This study included 285 adult patients who underwent thoracic surgery at Toronto General Hospital in Toronto, Canada, between 2012 and 2020. MEASUREMENTS AND MAIN RESULTS Demographic, psychological, and clinical data were collected perioperatively, and follow-up evaluations were administered at 3, 6, and 12 months after surgery to assess CPSP. Chronic postsurgical pain was reported in 32.4%, 25.4%, and 18.2% of patients at 3, 6, and 12 months postoperatively, respectively. Average CPSP pain intensity was rated to be 3.37 (SD 1.82) at 3 months. Features of neuropathic pain were present in 48.7% of patients with CPSP at 3 months and 71% at 1 year. Multivariate logistic regression models indicated that independent predictors for CPSP at 3 months were scores on the Hospital Anxiety and Depression Scale (adjusted odds ratio [aOR] of 1.07, 95% CI of 1.02 to 1.14, p = 0.012) and acute postoperative pain (aOR of 2.75, 95% CI of 1.19 to 6.36, p = 0.018). INTERVENTIONS None. CONCLUSIONS Approximately 1 in 3 patients will continue to have pain at 3 months after surgery, with a large proportion reporting neuropathic features. Risk factors for pain at 3 months may include preoperative anxiety and depression and acute postoperative pain.
Collapse
Affiliation(s)
- James S Khan
- Department of Anesthesiology and Pain Medicine, University of Toronto, Toronto, Ontario, Canada.
| | - Elad Dana
- Department of Anesthesiology and Pain Medicine, University of Toronto, Toronto, Ontario, Canada; Department of Anesthesia, Intensive Care and Pain Medicine, Meir Medical Center, Kfar Saba, Israel. Affiliated with the Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Maggie Z X Xiao
- Department of Anesthesiology and Pain Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Vivek Rao
- Division of Cardiovascular Surgery, University of Toronto, Toronto, Ontario, Canada
| | - George Djaiani
- Department of Anesthesiology and Pain Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Ze'ev Seltzer
- Centre for the Study of Pain, University of Toronto Centre for the Study of Pain, Toronto, Ontario, Canada
| | - Karim Ladha
- Department of Anesthesiology and Pain Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Alexander Huang
- Department of Anesthesiology and Pain Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Karen McRae
- Department of Anesthesiology and Pain Medicine, University of Toronto, Toronto, Ontario, Canada; Department of Anesthesia and Pain Management, Toronto General Hospital, Toronto, Ontario, Canada
| | - Marcelo Cypel
- Division of Thoracic Surgery, Department of Surgery, University of Toronto, Toronto, Ontario, Canada
| | - Joel Katz
- Department of Anesthesiology and Pain Medicine, University of Toronto, Toronto, Ontario, Canada; Centre for the Study of Pain, University of Toronto Centre for the Study of Pain, Toronto, Ontario, Canada; Department of Anesthesia and Pain Management, Toronto General Hospital, Toronto, Ontario, Canada; Department of Psychology, York University, Toronto, Ontario, Canada
| | - Dorothy Wong
- Department of Anesthesiology and Pain Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Hance Clarke
- Department of Anesthesiology and Pain Medicine, University of Toronto, Toronto, Ontario, Canada; Department of Anesthesia and Pain Management, Toronto General Hospital, Toronto, Ontario, Canada
| |
Collapse
|
90
|
Dams L, Van der Gucht E, Haenen V, Devoogdt N, Smeets A, Bernar K, Morlion B, Moloney N, Fieuws S, De Groef A, Meeus M. Effectiveness of pain neuroscience education on somatosensory functioning after surgery for breast cancer: A double-blinded randomized controlled trial. Anat Rec (Hoboken) 2024; 307:248-272. [PMID: 36594663 DOI: 10.1002/ar.25127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 11/07/2022] [Accepted: 11/14/2022] [Indexed: 01/04/2023]
Abstract
Pain is one of the most prevalent and long-term adverse effects described by people who have undergone breast cancer surgery. Non-helpful perceptions and thoughts about pain may contribute to the transition of acute to persistent pain. Adding educational interventions to the current physical therapy program in this population may help to improve or prevent persistent pain. Pain neuroscience education (PNE) is a type of educational intervention that addresses the experience of pain in a broader sense by explaining pain not only from a biomedical perspective, but also from a psychological and social perspective. A double-blinded randomized controlled trial (EduCan trial) investigated whether PNE, in addition to a standard physiotherapy program immediately after surgery for breast cancer, was more effective on somatosensory functioning in the short (4 months postoperatively) and long term (18 months postoperatively), than providing a biomedical explanation for pain. Somatosensory functioning was evaluated using a self-reported questionnaire as well as a comprehensive quantitative sensory testing evaluation. The findings of this study revealed that adding six sessions of PNE to a standard physical therapy program (n = 184) did not result in a significantly different course of somatosensory functioning up to 18 months postoperatively as compared to biomedical pain education. These findings provide an interesting basis for future research into who should receive PNE after surgery for breast cancer (e.g., patient profiling or phenotyping) and how we can tailor it to the individual to increase its effectiveness.
Collapse
Affiliation(s)
- Lore Dams
- Faculty of Medicine and Health Sciences, Department of Rehabilitation Sciences and Physiotherapy, MOVANT, University of Antwerp, Antwerp, Belgium
- Department of Rehabilitation Sciences, KU Leuven - University of Leuven, Leuven, Belgium
- Pain In Motion International Research Group, Brussels, Belgium
| | - Elien Van der Gucht
- Faculty of Medicine and Health Sciences, Department of Rehabilitation Sciences and Physiotherapy, MOVANT, University of Antwerp, Antwerp, Belgium
- Department of Rehabilitation Sciences, KU Leuven - University of Leuven, Leuven, Belgium
- Pain In Motion International Research Group, Brussels, Belgium
| | - Vincent Haenen
- Faculty of Medicine and Health Sciences, Department of Rehabilitation Sciences and Physiotherapy, MOVANT, University of Antwerp, Antwerp, Belgium
- Department of Rehabilitation Sciences, KU Leuven - University of Leuven, Leuven, Belgium
| | - Nele Devoogdt
- Department of Rehabilitation Sciences, KU Leuven - University of Leuven, Leuven, Belgium
- Department of Vascular Surgery and Department of Physical Medicine and Rehabilitation, Center for Lymphedema, UZ Leuven - University Hospitals Leuven, Leuven, Belgium
| | - Ann Smeets
- Department of Surgical Oncology, University Hospitals Leuven, KUL Leuven, Leuven, Belgium
| | - Koen Bernar
- The Leuven Centre for Algology and Pain Management, University Hospitals Leuven, Leuven, Belgium
| | - Bart Morlion
- The Leuven Centre for Algology and Pain Management, University Hospitals Leuven, Leuven, Belgium
- Department of Cardiovascular Sciences, Section Anaesthesiology and Algology, KU Leuven - University of Leuven, Leuven, Belgium
| | - Niamh Moloney
- Department of Exercise Sciences, University of Auckland, Auckland, New Zealand
| | - Steffen Fieuws
- Interuniversity Center for Biostatistics and Statistical Bioinformatics, University of Leuven and University of Hasselt, Leuven, Belgium
| | - An De Groef
- Faculty of Medicine and Health Sciences, Department of Rehabilitation Sciences and Physiotherapy, MOVANT, University of Antwerp, Antwerp, Belgium
- Department of Rehabilitation Sciences, KU Leuven - University of Leuven, Leuven, Belgium
- Pain In Motion International Research Group, Brussels, Belgium
| | - Mira Meeus
- Faculty of Medicine and Health Sciences, Department of Rehabilitation Sciences and Physiotherapy, MOVANT, University of Antwerp, Antwerp, Belgium
- Pain In Motion International Research Group, Brussels, Belgium
- Department of Rehabilitation Sciences and Physiotherapy, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
| |
Collapse
|
91
|
McAllister BB, Stokes-Heck S, Harding EK, van den Hoogen NJ, Trang T. Targeting Pannexin-1 Channels: Addressing the 'Gap' in Chronic Pain. CNS Drugs 2024; 38:77-91. [PMID: 38353876 DOI: 10.1007/s40263-024-01061-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/07/2024] [Indexed: 02/22/2024]
Abstract
Chronic pain complicates many diseases and is notoriously difficult to treat. In search of new therapeutic targets, pannexin-1 (Panx1) channels have sparked intense interest as a key mechanism involved in a variety of chronic pain conditions. Panx1 channels are transmembrane proteins that release ions and small molecules, such as adenosine triphosphate (ATP). They are expressed along important nodes of the pain pathway, modulating activity of diverse cell types implicated in the development and progression of chronic pain caused by injury or pathology. This review highlights advances that have unlocked the core structure and machinery controlling Panx1 function with a focus on understanding and treating chronic pain.
Collapse
Affiliation(s)
- Brendan B McAllister
- Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, T2N 4N1, Canada
- Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, AB, T2N 4N1, Canada
- Hotchkiss Brain Institute, University of Calgary, 3330 Hospital Drive, Calgary, AB, T2N 4N1, Canada
| | - Sierra Stokes-Heck
- Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, T2N 4N1, Canada
- Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, AB, T2N 4N1, Canada
- Hotchkiss Brain Institute, University of Calgary, 3330 Hospital Drive, Calgary, AB, T2N 4N1, Canada
| | - Erika K Harding
- Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, T2N 4N1, Canada
- Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, AB, T2N 4N1, Canada
- Hotchkiss Brain Institute, University of Calgary, 3330 Hospital Drive, Calgary, AB, T2N 4N1, Canada
| | - Nynke J van den Hoogen
- Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, T2N 4N1, Canada
- Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, AB, T2N 4N1, Canada
- Hotchkiss Brain Institute, University of Calgary, 3330 Hospital Drive, Calgary, AB, T2N 4N1, Canada
| | - Tuan Trang
- Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, T2N 4N1, Canada.
- Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, AB, T2N 4N1, Canada.
- Hotchkiss Brain Institute, University of Calgary, 3330 Hospital Drive, Calgary, AB, T2N 4N1, Canada.
| |
Collapse
|
92
|
Haenen V, Dams L, Meeus M, De Groef A. Altered somatosensory functioning and mechanism-based classification in breast cancer patients with persistent pain. Anat Rec (Hoboken) 2024; 307:273-284. [PMID: 36398947 DOI: 10.1002/ar.25121] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 10/27/2022] [Accepted: 11/02/2022] [Indexed: 11/20/2022]
Abstract
Pain is one of the most frequent and persistent side effects of breast cancer treatment. Besides pain, breast cancer survivors (BCS) are prone to experience a myriad of other signs and symptoms related to altered somatosensory function, including for example, hypoesthesia, allodynia, and hyperalgesia, both at the local site of cancer and in remote body parts. Different breast cancer treatments can have a direct effect on somatosensory functioning, resulting in a wide range of these signs and symptoms. To our knowledge, currently no comprehensive overview exists on altered somatosensory functioning and resulting signs and symptoms in BCS with persistent pain. Investigating altered somatosensory functioning in this population could provide more insights in the underpinning pathophysiological mechanisms and consequently improve prevention and treatment in the future. Therefore, in this paper, first, normal somatosensory functioning is described. Second, quantitative sensory testing is presented as the recommend method to evaluate somatosensory functioning. Third, existing evidence on altered somatosensory functioning in BCS with persistent pain is summarized. Altered somatosensory functioning related to the most common cancer treatment modalities, including surgery and radiotherapy, hormone therapy, and chemotherapy are discussed. In addition, evidence on the presence of nociplastic pain as pain resulting from altered somatosensory functioning without evidence for nociception and/or neuropathy in BCS is summarized. At last, a discussion on this available evidence, limitations, and perspectives for clinical practice and for research are made.
Collapse
Affiliation(s)
- Vincent Haenen
- Department of Rehabilitation Sciences and Physiotherapy, MOVANT, University of Antwerp, Antwerp, Belgium
- Department of Rehabilitation Sciences, KU Leuven - University of Leuven, Leuven, Belgium
- Pain in Motion International Research Group, Brussels, Belgium
| | - Lore Dams
- Department of Rehabilitation Sciences and Physiotherapy, MOVANT, University of Antwerp, Antwerp, Belgium
- Pain in Motion International Research Group, Brussels, Belgium
| | - Mira Meeus
- Department of Rehabilitation Sciences and Physiotherapy, MOVANT, University of Antwerp, Antwerp, Belgium
- Pain in Motion International Research Group, Brussels, Belgium
- Department of Rehabilitation Sciences, Faculty of Medicine and Health Sciences, University of Ghent, Ghent, Belgium
| | - An De Groef
- Department of Rehabilitation Sciences and Physiotherapy, MOVANT, University of Antwerp, Antwerp, Belgium
- Department of Rehabilitation Sciences, KU Leuven - University of Leuven, Leuven, Belgium
- Pain in Motion International Research Group, Brussels, Belgium
| |
Collapse
|
93
|
Vigotsky AD, Cong O, Pinto CB, Barroso J, Perez J, Petersen KK, Arendt-Nielsen L, Hardt K, Manning D, Apkarian AV, Branco P. Mechanical hyperalgesia and neuropathic pain qualities impart risk for chronic postoperative pain after total knee replacement. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.01.16.24301372. [PMID: 38293074 PMCID: PMC10827245 DOI: 10.1101/2024.01.16.24301372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2024]
Abstract
Total knee replacement (TKR) is the gold-standard treatment for end-stage chronic osteoarthritis pain, yet many patients report chronic postoperative pain after TKR. The search for preoperative predictors for chronic postoperative pain following TKR has been studied with inconsistent findings. This study investigates the predictive value of quantitative sensory testing (QST) and PainDETECT for postoperative pain 3, 6, and 12 months post-TKR. We assessed baseline and postoperative (3- and 6-months) QST measures in 77 patients with knee OA (KOA) and 41 healthy controls, along with neuropathic pain scores in patients (PainDETECT). QST parameters included pressure pain pressure threshold (PPT), pain tolerance threshold (PTT), conditioned pain modulation (CPM), and temporal summation (TS) using cuff algometry, alongside mechanical hyperalgesia, and mechanical temporal summation to repeated pinprick stimulation. Compared to healthy controls, KOA patients at baseline demonstrated hyperalgesia to pinprick stimulation at the medial OA-affected knee and cuff pressure on the ipsilateral calf. Lower cuff algometry PTT and mechanical pinprick hyperalgesia were associated with baseline KOA pain intensity. Moreover, baseline pinprick pain hyperalgesia explained 25% of variance in pain intensity 12 months post-TKR and preoperative neuropathic pain scores also captured 30% and 20% of the variance in postoperative pain at 6- and 12-months, respectively. A decrease in mechanical pinprick hyperalgesia from before surgery to 3 months after TKR was associated with lower postoperative pain at the 12 months post-TKR follow-up, and vice-versa. Our findings suggest that preoperative pinprick hyperalgesia and PainDETECT neuropathic-like pain symptoms show predictive value for the development of chronic post-TKR pain.
Collapse
Affiliation(s)
- Andrew D. Vigotsky
- Center for Translational Pain Research, Northwestern University Feinberg School of Medicine. Chicago, IL. 60610, USA
- Departments of Biomedical Engineering and Statistics, Northwestern University, Evanston, IL. 60208, USA
| | - Olivia Cong
- Center for Translational Pain Research, Northwestern University Feinberg School of Medicine. Chicago, IL. 60610, USA
- Department of Neuroscience, Northwestern University Feinberg School of Medicine. Chicago, IL. 60610, USA
| | - Camila B Pinto
- Center for Translational Pain Research, Northwestern University Feinberg School of Medicine. Chicago, IL. 60610, USA
- Department of Neuroscience, Northwestern University Feinberg School of Medicine. Chicago, IL. 60610, USA
| | - Joana Barroso
- Department of Anesthesiology, Northwestern University Feinberg School of Medicine. Chicago, IL. 60610, USA
| | - Jennifer Perez
- Center for Translational Pain Research, Northwestern University Feinberg School of Medicine. Chicago, IL. 60610, USA
- Department of Neuroscience, Northwestern University Feinberg School of Medicine. Chicago, IL. 60610, USA
| | - Kristian Kjaer Petersen
- Center for Neuroplasticity and Pain (CNAP), SMI, Department of Health Science and Technology, Faculty of Medicine, Aalborg University, Aalborg, Denmark
- Center for Mathematical Modeling of Knee Osteoarthritis (MathKOA), Department of Material and Production, Faculty of Engineering and Science, Aalborg University, Aalborg, Denmark
| | - Lars Arendt-Nielsen
- Center for Neuroplasticity and Pain (CNAP), SMI, Department of Health Science and Technology, Faculty of Medicine, Aalborg University, Aalborg, Denmark
- Center for Mathematical Modeling of Knee Osteoarthritis (MathKOA), Department of Material and Production, Faculty of Engineering and Science, Aalborg University, Aalborg, Denmark
- Department of Medical Gastroenterology, Mech-Sense, Aalborg University Hospital, Aalborg, Denmark
- Steno Diabetes Center North Denmark, Clinical Institute, Aalborg University Hospital, Aalborg, Denmark
| | - Kevin Hardt
- Department of Orthopaedic Surgery, Northwestern University Feinberg School of Medicine. Chicago, IL. 60611, USA
| | - David Manning
- Department of Orthopaedic Surgery, Northwestern University Feinberg School of Medicine. Chicago, IL. 60611, USA
| | - A. Vania Apkarian
- Center for Translational Pain Research, Northwestern University Feinberg School of Medicine. Chicago, IL. 60610, USA
- Department of Neuroscience, Northwestern University Feinberg School of Medicine. Chicago, IL. 60610, USA
- Department of Anesthesiology, Northwestern University Feinberg School of Medicine. Chicago, IL. 60610, USA
| | - Paulo Branco
- Center for Translational Pain Research, Northwestern University Feinberg School of Medicine. Chicago, IL. 60610, USA
- Department of Neuroscience, Northwestern University Feinberg School of Medicine. Chicago, IL. 60610, USA
- Department of Anesthesiology, Northwestern University Feinberg School of Medicine. Chicago, IL. 60610, USA
| |
Collapse
|
94
|
Clarke H, Bueno M, Harding E, Trang T, McDougall JJ. The Future Is Bright: Highlighting Trainee Contributions to the Canadian Journal of Pain. Can J Pain 2024; 7:2287032. [PMID: 38239825 PMCID: PMC10795778 DOI: 10.1080/24740527.2023.2287032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2024]
Affiliation(s)
- Hance Clarke
- Department of Anaesthesia and Pain Management, Toronto General Hospital, Toronto, Ontario, Canada
- Transitional Pain Service, Department of Anaesthesia and Pain Management, Toronto General Hospital, Toronto, Ontario, Canada
- Department of Anesthesiology and Pain Medicine, University of Toronto, Toronto, Ontario, Canada
- University of Toronto Centre for the Study of Pain, University of Toronto, Toronto, Ontario, Canada
| | - Mariana Bueno
- University of Toronto Centre for the Study of Pain, University of Toronto, Toronto, Ontario, Canada
- The Hospital for Sick Children Toronto, Toronto, Ontario, Canada
| | - Erika Harding
- Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada
- Department of Physiology and Pharmacology, Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
| | - Tuan Trang
- Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada
- Department of Physiology and Pharmacology, Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
| | - Jason J. McDougall
- Department of Pharmacology, Dalhousie University, Halifax, Nova Scotia, Canada
- Department of Anaesthesia, Pain Management, and Perioperative Medicine, Dalhousie University, Halifax, Nova Scotia, Canada
| |
Collapse
|
95
|
Xiong HY, Hendrix J, Schabrun S, Wyns A, Campenhout JV, Nijs J, Polli A. The Role of the Brain-Derived Neurotrophic Factor in Chronic Pain: Links to Central Sensitization and Neuroinflammation. Biomolecules 2024; 14:71. [PMID: 38254671 PMCID: PMC10813479 DOI: 10.3390/biom14010071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 01/02/2024] [Accepted: 01/03/2024] [Indexed: 01/24/2024] Open
Abstract
Chronic pain is sustained, in part, through the intricate process of central sensitization (CS), marked by maladaptive neuroplasticity and neuronal hyperexcitability within central pain pathways. Accumulating evidence suggests that CS is also driven by neuroinflammation in the peripheral and central nervous system. In any chronic disease, the search for perpetuating factors is crucial in identifying therapeutic targets and developing primary preventive strategies. The brain-derived neurotrophic factor (BDNF) emerges as a critical regulator of synaptic plasticity, serving as both a neurotransmitter and neuromodulator. Mounting evidence supports BDNF's pro-nociceptive role, spanning from its pain-sensitizing capacity across multiple levels of nociceptive pathways to its intricate involvement in CS and neuroinflammation. Moreover, consistently elevated BDNF levels are observed in various chronic pain disorders. To comprehensively understand the profound impact of BDNF in chronic pain, we delve into its key characteristics, focusing on its role in underlying molecular mechanisms contributing to chronic pain. Additionally, we also explore the potential utility of BDNF as an objective biomarker for chronic pain. This discussion encompasses emerging therapeutic approaches aimed at modulating BDNF expression, offering insights into addressing the intricate complexities of chronic pain.
Collapse
Affiliation(s)
- Huan-Yu Xiong
- Pain in Motion Research Group (PAIN), Department of Physiotherapy, Human Physiology and Anatomy, Faculty of Physical Education & Physiotherapy, Vrije Universiteit Brussel, 1090 Brussels, Belgium; (H.-Y.X.); (J.H.); (A.W.); (J.V.C.); (A.P.)
| | - Jolien Hendrix
- Pain in Motion Research Group (PAIN), Department of Physiotherapy, Human Physiology and Anatomy, Faculty of Physical Education & Physiotherapy, Vrije Universiteit Brussel, 1090 Brussels, Belgium; (H.-Y.X.); (J.H.); (A.W.); (J.V.C.); (A.P.)
- Department of Public Health and Primary Care, Centre for Environment & Health, KU Leuven, 3000 Leuven, Belgium
- Research Foundation—Flanders (FWO), 1000 Brussels, Belgium
| | - Siobhan Schabrun
- The School of Physical Therapy, University of Western Ontario, London, ON N6A 3K7, Canada;
- The Gray Centre for Mobility and Activity, Parkwood Institute, London, ON N6A 4V2, Canada
| | - Arne Wyns
- Pain in Motion Research Group (PAIN), Department of Physiotherapy, Human Physiology and Anatomy, Faculty of Physical Education & Physiotherapy, Vrije Universiteit Brussel, 1090 Brussels, Belgium; (H.-Y.X.); (J.H.); (A.W.); (J.V.C.); (A.P.)
| | - Jente Van Campenhout
- Pain in Motion Research Group (PAIN), Department of Physiotherapy, Human Physiology and Anatomy, Faculty of Physical Education & Physiotherapy, Vrije Universiteit Brussel, 1090 Brussels, Belgium; (H.-Y.X.); (J.H.); (A.W.); (J.V.C.); (A.P.)
| | - Jo Nijs
- Pain in Motion Research Group (PAIN), Department of Physiotherapy, Human Physiology and Anatomy, Faculty of Physical Education & Physiotherapy, Vrije Universiteit Brussel, 1090 Brussels, Belgium; (H.-Y.X.); (J.H.); (A.W.); (J.V.C.); (A.P.)
- Chronic Pain Rehabilitation, Department of Physical Medicine and Physiotherapy, University Hospital Brussels, 1090 Brussels, Belgium
- Department of Health and Rehabilitation, Unit of Physiotherapy, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, 41390 Göterbog, Sweden
| | - Andrea Polli
- Pain in Motion Research Group (PAIN), Department of Physiotherapy, Human Physiology and Anatomy, Faculty of Physical Education & Physiotherapy, Vrije Universiteit Brussel, 1090 Brussels, Belgium; (H.-Y.X.); (J.H.); (A.W.); (J.V.C.); (A.P.)
- Department of Public Health and Primary Care, Centre for Environment & Health, KU Leuven, 3000 Leuven, Belgium
- Research Foundation—Flanders (FWO), 1000 Brussels, Belgium
| |
Collapse
|
96
|
Pessano S, Gloeck NR, Tancredi L, Ringsten M, Hohlfeld A, Ebrahim S, Albertella M, Kredo T, Bruschettini M. Ibuprofen for acute postoperative pain in children. Cochrane Database Syst Rev 2024; 1:CD015432. [PMID: 38180091 PMCID: PMC10767793 DOI: 10.1002/14651858.cd015432.pub2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/06/2024]
Abstract
BACKGROUND Children often require pain management following surgery to avoid suffering. Effective pain management has consequences for healing time and quality of life. Ibuprofen, a frequently used non-steroidal anti-inflammatory drug (NSAID) administered to children, is used to treat pain and inflammation in the postoperative period. OBJECTIVES 1) To assess the efficacy and safety of ibuprofen (any dose) for acute postoperative pain management in children compared with placebo or other active comparators. 2) To compare ibuprofen administered at different doses, routes (e.g. oral, intravenous, etc.), or strategies (e.g. as needed versus as scheduled). SEARCH METHODS We used standard Cochrane search methods. We searched CENTRAL, MEDLINE, Embase, CINAHL and trials registries in August 2023. SELECTION CRITERIA We included randomised controlled trials (RCTs) in children aged 17 years and younger, treated for acute postoperative or postprocedural pain, that compared ibuprofen to placebo or any active comparator. We included RCTs that compared different administration routes, doses of ibuprofen and schedules. DATA COLLECTION AND ANALYSIS We adhered to standard Cochrane methods for data collection and analysis. Our primary outcomes were pain relief reported by the child, pain intensity reported by the child, adverse events, and serious adverse events. We present results using risk ratios (RR) and standardised mean differences (SMD), with the associated confidence intervals (CI). We used GRADE to assess the certainty of the evidence. MAIN RESULTS We included 43 RCTs that enroled 4265 children (3935 children included in this review). We rated the overall risk of bias at the study level as high or unclear for 37 studies that had one or several unclear or high risk of bias judgements across the domains. We judged six studies as having a low risk of bias across all domains. Ibuprofen versus placebo (35 RCTs) No studies reported pain relief reported by the child or a third party, or serious adverse events. Ibuprofen probably reduces child-reported pain intensity less than two hours postintervention compared to placebo (SMD -1.12, 95% CI -1.39 to -0.86; 3 studies, 259 children; moderate-certainty evidence). Ibuprofen may reduce child-reported pain intensity, two hours to less than 24 hours postintervention (SMD -1.01, 95% CI -1.24 to -0.78; 5 studies, 345 children; low-certainty evidence). Ibuprofen may result in little to no difference in adverse events compared to placebo (RR 0.79, 95% CI 0.51 to 1.23; 5 studies, 384 children; low-certainty evidence). Ibuprofen versus paracetamol (21 RCTs) No studies reported pain relief reported by the child or a third party, or serious adverse events. Ibuprofen likely reduces child-reported pain intensity less than two hours postintervention compared to paracetamol (SMD -0.42, 95% CI -0.82 to -0.02; 2 studies, 100 children; moderate-certainty evidence). Ibuprofen may slightly reduce child-reported pain intensity two hours to 24 hours postintervention (SMD -0.21, 95% CI -0.40 to -0.02; 6 studies, 422 children; low-certainty evidence). Ibuprofen may result in little to no difference in adverse events (0 events in each group; 1 study, 44 children; low-certainty evidence). Ibuprofen versus morphine (1 RCT) No studies reported pain relief or pain intensity reported by the child or a third party, or serious adverse events. Ibuprofen likely results in a reduction in adverse events compared to morphine (RR 0.58, 95% CI 0.40 to 0.83; risk difference (RD) -0.25, 95% CI -0.40 to -0.09; number needed to treat for an additional beneficial outcome (NNTB) 4; 1 study, 154 children; moderate-certainty evidence). Ibuprofen versus ketorolac (1 RCT) No studies reported pain relief or pain intensity reported by the child, or serious adverse events. Ibuprofen may result in a reduction in adverse events compared to ketorolac (RR 0.51, 95% CI 0.27 to 0.96; RD -0.29, 95% CI -0.53 to -0.04; NNTB 4; 1 study, 59 children; low-certainty evidence). AUTHORS' CONCLUSIONS Despite identifying 43 RCTs, we remain uncertain about the effect of ibuprofen compared to placebo or active comparators for some critical outcomes and in the comparisons between different doses, schedules and routes for ibuprofen administration. This is largely due to poor reporting on important outcomes such as serious adverse events, and poor study conduct or reporting that reduced our confidence in the results, along with small underpowered studies. Compared to placebo, ibuprofen likely results in pain reduction less than two hours postintervention, however, the efficacy might be lower at two hours to 24 hours. Compared to paracetamol, ibuprofen likely results in pain reduction up to 24 hours postintervention. We could not explore if there was a different effect in different kinds of surgeries or procedures. Ibuprofen likely results in a reduction in adverse events compared to morphine, and in little to no difference in bleeding when compared to paracetamol. We remain mostly uncertain about the safety of ibuprofen compared to other drugs.
Collapse
Affiliation(s)
- Sara Pessano
- Pediatric Clinic and Endocrinology Unit, IRCCS Istituto G. Gaslini, Genoa, Italy
| | - Natasha R Gloeck
- Health Systems Research Unit, South African Medical Research Council, Cape Town, South Africa
| | - Luca Tancredi
- Geriatrie, Hessing Stiftung, Augsburg, Germany
- Medical School, Regiomed, Coburg, Germany
| | - Martin Ringsten
- Cochrane Sweden, Department of Research and Education, Skåne University Hospital, Lund University, Lund, Sweden
| | - Ameer Hohlfeld
- Health Systems Research Unit, South African Medical Research Council, Cape Town, South Africa
| | - Sumayyah Ebrahim
- Health Systems Research Unit, South African Medical Research Council, Cape Town, South Africa
- Department of Surgery, School of Clinical Medicine, University of KwaZulu-Natal, Durban, South Africa
| | | | - Tamara Kredo
- Health Systems Research Unit, South African Medical Research Council, Cape Town, South Africa
- Cochrane South Africa, South African Medical Research Council, Cape Town, South Africa
- Division of Clinical Pharmacology, Department of Medicine and Division of Epidemiology and Biostatistics, Department of Global Health, Stellenbosch University, Cape Town, South Africa
| | - Matteo Bruschettini
- Cochrane Sweden, Department of Research and Education, Skåne University Hospital, Lund University, Lund, Sweden
- Paediatrics, Department of Clinical Sciences Lund, Lund University, Skåne University Hospital, Lund, Sweden
| |
Collapse
|
97
|
Sparling T, Iyer L, Pasquina P, Petrus E. Cortical Reorganization after Limb Loss: Bridging the Gap between Basic Science and Clinical Recovery. J Neurosci 2024; 44:e1051232024. [PMID: 38171645 PMCID: PMC10851691 DOI: 10.1523/jneurosci.1051-23.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 08/28/2023] [Accepted: 09/29/2023] [Indexed: 01/05/2024] Open
Abstract
Despite the increasing incidence and prevalence of amputation across the globe, individuals with acquired limb loss continue to struggle with functional recovery and chronic pain. A more complete understanding of the motor and sensory remodeling of the peripheral and central nervous system that occurs postamputation may help advance clinical interventions to improve the quality of life for individuals with acquired limb loss. The purpose of this article is to first provide background clinical context on individuals with acquired limb loss and then to provide a comprehensive review of the known motor and sensory neural adaptations from both animal models and human clinical trials. Finally, the article bridges the gap between basic science researchers and clinicians that treat individuals with limb loss by explaining how current clinical treatments may restore function and modulate phantom limb pain using the underlying neural adaptations described above. This review should encourage the further development of novel treatments with known neurological targets to improve the recovery of individuals postamputation.Significance Statement In the United States, 1.6 million people live with limb loss; this number is expected to more than double by 2050. Improved surgical procedures enhance recovery, and new prosthetics and neural interfaces can replace missing limbs with those that communicate bidirectionally with the brain. These advances have been fairly successful, but still most patients experience persistent problems like phantom limb pain, and others discontinue prostheses instead of learning to use them daily. These problematic patient outcomes may be due in part to the lack of consensus among basic and clinical researchers regarding the plasticity mechanisms that occur in the brain after amputation injuries. Here we review results from clinical and animal model studies to bridge this clinical-basic science gap.
Collapse
Affiliation(s)
- Tawnee Sparling
- Department of Physical Medicine and Rehabilitation, Uniformed Services University of the Health Sciences, Bethesda, Maryland 20814
| | - Laxmi Iyer
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, Maryland 20817
| | - Paul Pasquina
- Department of Physical Medicine and Rehabilitation, Uniformed Services University of the Health Sciences, Bethesda, Maryland 20814
| | - Emily Petrus
- Department of Anatomy, Physiology and Genetics, Uniformed Services University, Bethesda, Maryland 20814
| |
Collapse
|
98
|
Bieganowski T, Kugelman DN, Feng JE, Schwarzkopf R, Rozell JC. Opioid Consumption and Mobilization in Staged Bilateral Total Joint Arthroplasty: Did We Learn Our Lesson the First Time? J Arthroplasty 2024; 39:49-53. [PMID: 37331439 DOI: 10.1016/j.arth.2023.06.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 06/06/2023] [Accepted: 06/09/2023] [Indexed: 06/20/2023] Open
Abstract
BACKGROUND In patients who require bilateral total hip arthroplasty (THA) or total knee arthroplasty (TKA), staged procedures are a reasonable option for treatment of bilateral osteoarthritis. We sought to determine whether perioperative outcomes differed between first and second total joint arthroplasty (TJA). METHODS This was a retrospective review of all patients who underwent staged, bilateral THA or TKA between January 30, 2017, and April 8, 2021. All patients who were included underwent their second procedure within 1 year of the first. Patients were separated based on whether both their procedures took place before or subsequently after an institution-wide opioid-sparing protocol that was implemented on October 1, 2018. A total of 961 patients who underwent 1,922 procedures met the inclusion criteria for this study. For THA, 388 unique patients comprised 776 procedures, while 573 unique patients comprised 1,146 TKAs. Opioid prescriptions were prospectively documented on nursing opioid administration flowsheets and converted to morphine milligram equivalents (MME) for comparison. Activity measure scores for postacute care (AM-PAC) were used as a measurement of physical therapy progression. RESULTS Hospital stays, home discharges, perioperative opioid usages, pain scores, and AM-PAC scores were not significantly different for the second THA or TKA compared to first procedure, regardless of timing in relation to the opioid-sparing protocol. CONCLUSION Patients experienced similar outcomes following their first versus their second TJA. Limited opioid prescriptions following TJA do not negatively impact pain and functional outcomes. These protocols can safely be instituted to help mitigate the opioid epidemic. LEVEL III EVIDENCE Retrospective Cohort Study.
Collapse
Affiliation(s)
- Thomas Bieganowski
- Department of Orthopedic Surgery, NYU Langone Orthopedic Hospital, NYU Langone Health, New York, New York
| | - David N Kugelman
- Department of Orthopedic Surgery, NYU Langone Orthopedic Hospital, NYU Langone Health, New York, New York
| | - James E Feng
- Department of Orthopedic Surgery, NYU Langone Orthopedic Hospital, NYU Langone Health, New York, New York
| | - Ran Schwarzkopf
- Department of Orthopedic Surgery, NYU Langone Orthopedic Hospital, NYU Langone Health, New York, New York
| | - Joshua C Rozell
- Department of Orthopedic Surgery, NYU Langone Orthopedic Hospital, NYU Langone Health, New York, New York
| |
Collapse
|
99
|
Andreev VV. [Control of neuropathic pain in lumbosacral dorsalgia]. Zh Nevrol Psikhiatr Im S S Korsakova 2024; 124:152-157. [PMID: 39690563 DOI: 10.17116/jnevro2024124111152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2024]
Abstract
The literature sources devoted to the problem of the formation of neuropathic pain in lumbosacral dorsalgia and the effective treatment regimens used are analyzed. The clinical and pathogenetic justification of the appointment of complex drug treatment is presented, taking into account the most significant causes of acute and chronic nonspecific back pain - radicular, facet, musculotonic syndromes. It has been shown that the most effective drugs are antiepileptic drugs, nonsteroidal anti-inflammatory drugs, muscle relaxants of central prologued action. It has been shown that the intensity of neuropathic pain decreases with the administration of pregabalin. In acute nonspecific back pain, the use of aceclofenac is effective. The severity of musculotonic pain syndrome is significantly reduced when using tolperizone (Midocalm-long). The results of the analyzed studies confirm the effectiveness and safety of the combination.
Collapse
Affiliation(s)
- V V Andreev
- Academian I.P. Pavlov First Saint Petersburg State Medical University, St. Petersburg, Russia
| |
Collapse
|
100
|
Jang K, Garraway SM. A review of dorsal root ganglia and primary sensory neuron plasticity mediating inflammatory and chronic neuropathic pain. NEUROBIOLOGY OF PAIN (CAMBRIDGE, MASS.) 2024; 15:100151. [PMID: 38314104 PMCID: PMC10837099 DOI: 10.1016/j.ynpai.2024.100151] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 01/04/2024] [Accepted: 01/19/2024] [Indexed: 02/06/2024]
Abstract
Pain is a sensory state resulting from complex integration of peripheral nociceptive inputs and central processing. Pain consists of adaptive pain that is acute and beneficial for healing and maladaptive pain that is often persistent and pathological. Pain is indeed heterogeneous, and can be expressed as nociceptive, inflammatory, or neuropathic in nature. Neuropathic pain is an example of maladaptive pain that occurs after spinal cord injury (SCI), which triggers a wide range of neural plasticity. The nociceptive processing that underlies pain hypersensitivity is well-studied in the spinal cord. However, recent investigations show maladaptive plasticity that leads to pain, including neuropathic pain after SCI, also exists at peripheral sites, such as the dorsal root ganglia (DRG), which contains the cell bodies of sensory neurons. This review discusses the important role DRGs play in nociceptive processing that underlies inflammatory and neuropathic pain. Specifically, it highlights nociceptor hyperexcitability as critical to increased pain states. Furthermore, it reviews prior literature on glutamate and glutamate receptors, voltage-gated sodium channels (VGSC), and brain-derived neurotrophic factor (BDNF) signaling in the DRG as important contributors to inflammatory and neuropathic pain. We previously reviewed BDNF's role as a bidirectional neuromodulator of spinal plasticity. Here, we shift focus to the periphery and discuss BDNF-TrkB expression on nociceptors, non-nociceptor sensory neurons, and non-neuronal cells in the periphery as a potential contributor to induction and persistence of pain after SCI. Overall, this review presents a comprehensive evaluation of large bodies of work that individually focus on pain, DRG, BDNF, and SCI, to understand their interaction in nociceptive processing.
Collapse
Affiliation(s)
- Kyeongran Jang
- Department of Cell Biology, Emory University, School of Medicine, Atlanta, GA, 30322, USA
| | - Sandra M. Garraway
- Department of Cell Biology, Emory University, School of Medicine, Atlanta, GA, 30322, USA
| |
Collapse
|