51
|
Cao Z, Huang Y, Xiao J, Cao H, Peng Y, Chen Z, Liu F, Wang H, Liao X, Lu H. Exposure to diclofop-methyl induces cardiac developmental toxicity in zebrafish embryos. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 259:113926. [PMID: 31935613 DOI: 10.1016/j.envpol.2020.113926] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Revised: 01/03/2020] [Accepted: 01/05/2020] [Indexed: 06/10/2023]
Abstract
Diclofop-methyl (DM) is one of the most widely used herbicides in agriculture production and has been frequently detected in both freshwater and environments, even agricultural products. However, the potential toxic effects of DM on organisms and the underlying mechanisms are still poorly understood. In this study, we utilized zebrafish to evaluate the toxicity of DM during the cardiovascular developmental process. Exposure of zebrafish embryos to 0.75, 1.0 and 1.25 mg/L DM induced cardiac defects, such as pericardial edema, slow heart rate and long SV-BA distance but the vascular development in zebrafish larvae was not influenced by DM treatment. The expression of cardiac-related genes were disordered and DM exposure initiated disordering cardiogenesis from the period of precardiac mesoderm formation. Moreover, the apoptosis and proliferation of cardiomyocytes were not influenced but the levels of oxidative stress were upregulated by DM exposure. Fullerenes and astaxanthin was able to rescue cardiac defects caused by DM via downregulating oxidative stress. Wnt signaling was downregulated after DM treatment and activation of Wnt signaling could rescue cardiac defects. Therefore, our results suggest that DM has the potential to induce cardiac developmental toxicity through upregulation of Wnt-Mediated (reactive oxygen species) ROS generation in zebrafish larvae.
Collapse
Affiliation(s)
- Zigang Cao
- Jiangxi Engineering Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases, Jiangxi Key Laboratory of Developmental Biology of Organs, Affiliated Hospital of Jinggangshan University, College of Life Sciences, Jinggangshan University, Ji'an, 343009, Jiangxi, China
| | - Yong Huang
- Jiangxi Engineering Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases, Jiangxi Key Laboratory of Developmental Biology of Organs, Affiliated Hospital of Jinggangshan University, College of Life Sciences, Jinggangshan University, Ji'an, 343009, Jiangxi, China; College of Chemistry and Chemical Engineering, Gannan Normal University, Ganzhou, 341000, Jiangxi, China
| | - Juhua Xiao
- Department of Ultrasound, Jiangxi Provincial Maternal and Child Health Hospital, Nanchang, 330006, Jiangxi, China
| | - Hao Cao
- Jiangxi Engineering Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases, Jiangxi Key Laboratory of Developmental Biology of Organs, Affiliated Hospital of Jinggangshan University, College of Life Sciences, Jinggangshan University, Ji'an, 343009, Jiangxi, China
| | - Yuyang Peng
- Jiangxi Engineering Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases, Jiangxi Key Laboratory of Developmental Biology of Organs, Affiliated Hospital of Jinggangshan University, College of Life Sciences, Jinggangshan University, Ji'an, 343009, Jiangxi, China
| | - Zhiyong Chen
- Jiangxi Engineering Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases, Jiangxi Key Laboratory of Developmental Biology of Organs, Affiliated Hospital of Jinggangshan University, College of Life Sciences, Jinggangshan University, Ji'an, 343009, Jiangxi, China
| | - Fasheng Liu
- Jiangxi Engineering Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases, Jiangxi Key Laboratory of Developmental Biology of Organs, Affiliated Hospital of Jinggangshan University, College of Life Sciences, Jinggangshan University, Ji'an, 343009, Jiangxi, China
| | - Honglei Wang
- Jiangxi Engineering Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases, Jiangxi Key Laboratory of Developmental Biology of Organs, Affiliated Hospital of Jinggangshan University, College of Life Sciences, Jinggangshan University, Ji'an, 343009, Jiangxi, China
| | - Xinjun Liao
- Jiangxi Engineering Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases, Jiangxi Key Laboratory of Developmental Biology of Organs, Affiliated Hospital of Jinggangshan University, College of Life Sciences, Jinggangshan University, Ji'an, 343009, Jiangxi, China
| | - Huiqiang Lu
- Jiangxi Engineering Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases, Jiangxi Key Laboratory of Developmental Biology of Organs, Affiliated Hospital of Jinggangshan University, College of Life Sciences, Jinggangshan University, Ji'an, 343009, Jiangxi, China.
| |
Collapse
|
52
|
Sirbu IO, Chiş AR, Moise AR. Role of carotenoids and retinoids during heart development. Biochim Biophys Acta Mol Cell Biol Lipids 2020; 1865:158636. [PMID: 31978553 DOI: 10.1016/j.bbalip.2020.158636] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 01/15/2020] [Accepted: 01/16/2020] [Indexed: 02/08/2023]
Abstract
The nutritional requirements of the developing embryo are complex. In the case of dietary vitamin A (retinol, retinyl esters and provitamin A carotenoids), maternal derived nutrients serve as precursors to signaling molecules such as retinoic acid, which is required for embryonic patterning and organogenesis. Despite variations in the composition and levels of maternal vitamin A, embryonic tissues need to generate a precise amount of retinoic acid to avoid congenital malformations. Here, we summarize recent findings regarding the role and metabolism of vitamin A during heart development and we survey the association of genes known to affect retinoid metabolism or signaling with various inherited disorders. A better understanding of the roles of vitamin A in the heart and of the factors that affect retinoid metabolism and signaling can help design strategies to meet nutritional needs and to prevent birth defects and disorders associated with altered retinoid metabolism. This article is part of a Special Issue entitled Carotenoids recent advances in cell and molecular biology edited by Johannes von Lintig and Loredana Quadro.
Collapse
Affiliation(s)
- Ioan Ovidiu Sirbu
- Biochemistry Department, Victor Babes University of Medicine and Pharmacy, Eftimie Murgu Nr. 2, 300041 Timisoara, Romania; Timisoara Institute of Complex Systems, V. Lucaciu 18, 300044 Timisoara, Romania.
| | - Aimée Rodica Chiş
- Biochemistry Department, Victor Babes University of Medicine and Pharmacy, Eftimie Murgu Nr. 2, 300041 Timisoara, Romania
| | - Alexander Radu Moise
- Medical Sciences Division, Northern Ontario School of Medicine, Sudbury, ON P3E 2C6, Canada; Department of Chemistry and Biochemistry, Biology and Biomolecular Sciences Program, Laurentian University, Sudbury, ON P3E 2C6, Canada.
| |
Collapse
|
53
|
Witman N, Zhou C, Grote Beverborg N, Sahara M, Chien KR. Cardiac progenitors and paracrine mediators in cardiogenesis and heart regeneration. Semin Cell Dev Biol 2019; 100:29-51. [PMID: 31862220 DOI: 10.1016/j.semcdb.2019.10.011] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Revised: 10/13/2019] [Accepted: 10/21/2019] [Indexed: 12/17/2022]
Abstract
The mammalian hearts have the least regenerative capabilities among tissues and organs. As such, heart regeneration has been and continues to be the ultimate goal in the treatment against acquired and congenital heart diseases. Uncovering such a long-awaited therapy is still extremely challenging in the current settings. On the other hand, this desperate need for effective heart regeneration has developed various forms of modern biotechnologies in recent years. These involve the transplantation of pluripotent stem cell-derived cardiac progenitors or cardiomyocytes generated in vitro and novel biochemical molecules along with tissue engineering platforms. Such newly generated technologies and approaches have been shown to effectively proliferate cardiomyocytes and promote heart repair in the diseased settings, albeit mainly preclinically. These novel tools and medicines give somehow credence to breaking down the barriers associated with re-building heart muscle. However, in order to maximize efficacy and achieve better clinical outcomes through these cell-based and/or cell-free therapies, it is crucial to understand more deeply the developmental cellular hierarchies/paths and molecular mechanisms in normal or pathological cardiogenesis. Indeed, the morphogenetic process of mammalian cardiac development is highly complex and spatiotemporally regulated by various types of cardiac progenitors and their paracrine mediators. Here we discuss the most recent knowledge and findings in cardiac progenitor cell biology and the major cardiogenic paracrine mediators in the settings of cardiogenesis, congenital heart disease, and heart regeneration.
Collapse
Affiliation(s)
- Nevin Witman
- Department of Cell and Molecular Biology, Karolinska Institutet, SE-171 77 Stockholm, Sweden; Department of Medicine, Karolinska Institutet, SE-171 77 Stockholm, Sweden
| | - Chikai Zhou
- Department of Cell and Molecular Biology, Karolinska Institutet, SE-171 77 Stockholm, Sweden
| | - Niels Grote Beverborg
- Department of Cell and Molecular Biology, Karolinska Institutet, SE-171 77 Stockholm, Sweden; Department of Cardiology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Makoto Sahara
- Department of Cell and Molecular Biology, Karolinska Institutet, SE-171 77 Stockholm, Sweden; Department of Medicine, Karolinska Institutet, SE-171 77 Stockholm, Sweden; Department of Surgery, Yale University School of Medicine, CT, USA.
| | - Kenneth R Chien
- Department of Cell and Molecular Biology, Karolinska Institutet, SE-171 77 Stockholm, Sweden; Department of Medicine, Karolinska Institutet, SE-171 77 Stockholm, Sweden.
| |
Collapse
|
54
|
Ooizumi Y, Katoh H, Yokota M, Watanabe M, Yamashita K. Epigenetic silencing of HOPX is critically involved in aggressive phenotypes and patient prognosis in papillary thyroid cancer. Oncotarget 2019; 10:5906-5918. [PMID: 31666923 PMCID: PMC6800262 DOI: 10.18632/oncotarget.27187] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Accepted: 08/12/2019] [Indexed: 01/14/2023] Open
Abstract
HOPX is involved in multiple organ development and acts as a tumor suppressor in various cancers. Epigenetic silencing of HOPX via its promoter methylation has been shown frequent and cancer-specific in human cancers. The proliferation of thyroid cancer cells and cancer progression are strongly influenced by epigenetic alterations as well as genetic changes. Papillary thyroid cancer (PTC) comprises the vast majority of thyroid cancers and exhibits slow progression. However, ~10% of patients still show disease recurrence and refractoriness to treatment. Accordingly, it is important approach to research epigenetic mechanisms in PTC progression to find useful biomarkers. Here, we aimed to seek into the roles and clinical impact of epigenetic silencing of HOPX in PTC. The promoter methylation of HOPX was observed in five of six human thyroid cancer cell lines. Down-regulation of HOPX was seen in three cell lines including PTC line K1, and demethylating agents restored HOPX expression. The promoter methylation was observed with high sensitivity and specificity in human PTC tissues. HOPX promoter methylation independently predicted disease recurrence in PTC patients. Epigenetic silencing of HOPX was associated with Ki-67 expression. Of note, HOPX promoter methylation was dramatically associated with worse prognosis especially in patients with stage I PTC. Forced HOPX expression suppressed cell proliferation, invasive activities, and anchorage-independent growth in vitro. HOPX promoter methylation is frequent and cancer-specific event, leading to aggressive phenotype in PTC. Epigenetic silencing of HOPX may be a clue to tackle cancer progression and have clinical impact as a novel biomarker in PTC.
Collapse
Affiliation(s)
- Yosuke Ooizumi
- Department of Surgery, Kitasato University Hospital, Kanagawa, Japan
| | - Hiroshi Katoh
- Breast and Endocrine Surgery, Kitasato University Hospital, Kanagawa, Japan
| | - Mitsuo Yokota
- Department of Surgery, Kitasato University Hospital, Kanagawa, Japan.,Breast and Endocrine Surgery, Kitasato University Hospital, Kanagawa, Japan
| | - Masahiko Watanabe
- Department of Surgery, Kitasato University Hospital, Kanagawa, Japan
| | - Keishi Yamashita
- Department of Surgery, Kitasato University Hospital, Kanagawa, Japan.,Division of Advanced Surgical Oncology, Research and Development Center for New Medical Frontiers, Kitasato University Hospital, Kanagawa, Japan
| |
Collapse
|
55
|
Hermkens DMA, Stam OCG, de Wit NM, Fontijn RD, Jongejan A, Moerland PD, Mackaaij C, Waas ISE, Daemen MJAP, de Vries HE. Profiling the unique protective properties of intracranial arterial endothelial cells. Acta Neuropathol Commun 2019; 7:151. [PMID: 31610812 PMCID: PMC6792251 DOI: 10.1186/s40478-019-0805-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Accepted: 09/07/2019] [Indexed: 02/07/2023] Open
Abstract
Cardiovascular disorders, like atherosclerosis and hypertension, are increasingly known to be associated with vascular cognitive impairment (VCI). In particular, intracranial atherosclerosis is one of the main causes of VCI, although plaque development occurs later in time and is structurally different compared to atherosclerosis in extracranial arteries. Recent data suggest that endothelial cells (ECs) that line the intracranial arteries may exert anti-atherosclerotic effects due to yet unidentified pathways. To gain insights into underlying mechanisms, we isolated post-mortem endothelial cells from both the intracranial basilar artery (BA) and the extracranial common carotid artery (CCA) from the same individual (total of 15 individuals) with laser capture microdissection. RNA sequencing revealed a distinct molecular signature of the two endothelial cell populations of which the most prominent ones were validated by means of qPCR. Our data reveal for the first time that intracranial artery ECs exert an immune quiescent phenotype. Secondly, genes known to be involved in the response of ECs to damage (inflammation, differentiation, adhesion, proliferation, permeability and oxidative stress) are differentially expressed in intracranial ECs compared to extracranial ECs. Finally, Desmoplakin (DSP) and Hop Homeobox (HOPX), two genes expressed at a higher level in intracranial ECs, and Sodium Voltage-Gated Channel Beta Subunit 3 (SCN3B), a gene expressed at a lower level in intracranial ECs compared to extracranial ECs, were shown to be responsive to shear stress and/or hypoxia. With our data we present a set of intracranial-specific endothelial genes that may contribute to its protective phenotype, thereby supporting proper perfusion and consequently may preserve cognitive function. Deciphering the molecular regulation of the vascular bed in the brain may lead to the identification of novel potential intervention strategies to halt vascular associated disorders, such as atherosclerosis and vascular cognitive dysfunction.
Collapse
|
56
|
Miklas JW, Clark E, Levy S, Detraux D, Leonard A, Beussman K, Showalter MR, Smith AT, Hofsteen P, Yang X, Macadangdang J, Manninen T, Raftery D, Madan A, Suomalainen A, Kim DH, Murry CE, Fiehn O, Sniadecki NJ, Wang Y, Ruohola-Baker H. TFPa/HADHA is required for fatty acid beta-oxidation and cardiolipin re-modeling in human cardiomyocytes. Nat Commun 2019; 10:4671. [PMID: 31604922 PMCID: PMC6789043 DOI: 10.1038/s41467-019-12482-1] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Accepted: 09/10/2019] [Indexed: 02/07/2023] Open
Abstract
Mitochondrial trifunctional protein deficiency, due to mutations in hydratase subunit A (HADHA), results in sudden infant death syndrome with no cure. To reveal the disease etiology, we generated stem cell-derived cardiomyocytes from HADHA-deficient hiPSCs and accelerated their maturation via an engineered microRNA maturation cocktail that upregulated the epigenetic regulator, HOPX. Here we report, matured HADHA mutant cardiomyocytes treated with an endogenous mixture of fatty acids manifest the disease phenotype: defective calcium dynamics and repolarization kinetics which results in a pro-arrhythmic state. Single cell RNA-seq reveals a cardiomyocyte developmental intermediate, based on metabolic gene expression. This intermediate gives rise to mature-like cardiomyocytes in control cells but, mutant cells transition to a pathological state with reduced fatty acid beta-oxidation, reduced mitochondrial proton gradient, disrupted cristae structure and defective cardiolipin remodeling. This study reveals that HADHA (tri-functional protein alpha), a monolysocardiolipin acyltransferase-like enzyme, is required for fatty acid beta-oxidation and cardiolipin remodeling, essential for functional mitochondria in human cardiomyocytes.
Collapse
Affiliation(s)
- Jason W Miklas
- Institute for Stem Cell and Regenerative Medicine, University of Washington, School of Medicine, Seattle, WA, 98109, USA
- Department of Bioengineering, University of Washington, Seattle, WA, 98195, USA
| | - Elisa Clark
- Institute for Stem Cell and Regenerative Medicine, University of Washington, School of Medicine, Seattle, WA, 98109, USA
- Department of Bioengineering, University of Washington, Seattle, WA, 98195, USA
| | - Shiri Levy
- Institute for Stem Cell and Regenerative Medicine, University of Washington, School of Medicine, Seattle, WA, 98109, USA
- Department of Biochemistry, University of Washington, School of Medicine, Seattle, WA, 98195, USA
| | - Damien Detraux
- Institute for Stem Cell and Regenerative Medicine, University of Washington, School of Medicine, Seattle, WA, 98109, USA
- Department of Biochemistry, University of Washington, School of Medicine, Seattle, WA, 98195, USA
| | - Andrea Leonard
- Institute for Stem Cell and Regenerative Medicine, University of Washington, School of Medicine, Seattle, WA, 98109, USA
- Department of Mechanical Engineering, University of Washington, Seattle, WA, 98195, USA
- Center for Cardiovascular Biology, University of Washington, Seattle, WA, 98109, USA
| | - Kevin Beussman
- Institute for Stem Cell and Regenerative Medicine, University of Washington, School of Medicine, Seattle, WA, 98109, USA
- Department of Mechanical Engineering, University of Washington, Seattle, WA, 98195, USA
- Center for Cardiovascular Biology, University of Washington, Seattle, WA, 98109, USA
| | - Megan R Showalter
- NIH West Coast Metabolomics Center, University of California Davis, Davis, CA, 95616, USA
| | - Alec T Smith
- Department of Bioengineering, University of Washington, Seattle, WA, 98195, USA
| | - Peter Hofsteen
- Institute for Stem Cell and Regenerative Medicine, University of Washington, School of Medicine, Seattle, WA, 98109, USA
- Center for Cardiovascular Biology, University of Washington, Seattle, WA, 98109, USA
- Department of Pathology, University of Washington, Seattle, WA, 98109, USA
| | - Xiulan Yang
- Institute for Stem Cell and Regenerative Medicine, University of Washington, School of Medicine, Seattle, WA, 98109, USA
- Center for Cardiovascular Biology, University of Washington, Seattle, WA, 98109, USA
- Department of Pathology, University of Washington, Seattle, WA, 98109, USA
| | - Jesse Macadangdang
- Institute for Stem Cell and Regenerative Medicine, University of Washington, School of Medicine, Seattle, WA, 98109, USA
- Department of Bioengineering, University of Washington, Seattle, WA, 98195, USA
| | - Tuula Manninen
- Helsinki University Hospital, 00290, Helsinki, Finland
- Research Programs Unit, Stem Cells and Metabolism, University of Helsinki, 00290, Helsinki, Finland
| | - Daniel Raftery
- Department of Anesthesiology and Pain Medicine, Mitochondria and Metabolism Center, University of Washington, Seattle, WA, 98109, USA
| | - Anup Madan
- Covance Genomics Laboratory, Redmond, WA, 98052, USA
| | - Anu Suomalainen
- Helsinki University Hospital, 00290, Helsinki, Finland
- Research Programs Unit, Stem Cells and Metabolism, University of Helsinki, 00290, Helsinki, Finland
- Neuroscience Center, University of Helsinki, 00290, Helsinki, Finland
| | - Deok-Ho Kim
- Institute for Stem Cell and Regenerative Medicine, University of Washington, School of Medicine, Seattle, WA, 98109, USA
- Department of Bioengineering, University of Washington, Seattle, WA, 98195, USA
| | - Charles E Murry
- Institute for Stem Cell and Regenerative Medicine, University of Washington, School of Medicine, Seattle, WA, 98109, USA
- Department of Bioengineering, University of Washington, Seattle, WA, 98195, USA
- Center for Cardiovascular Biology, University of Washington, Seattle, WA, 98109, USA
- Department of Pathology, University of Washington, Seattle, WA, 98109, USA
- Department of Medicine/Cardiology, University of Washington, Seattle, WA, 98109, USA
| | - Oliver Fiehn
- NIH West Coast Metabolomics Center, University of California Davis, Davis, CA, 95616, USA
- Biochemistry Department, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Nathan J Sniadecki
- Institute for Stem Cell and Regenerative Medicine, University of Washington, School of Medicine, Seattle, WA, 98109, USA
- Department of Bioengineering, University of Washington, Seattle, WA, 98195, USA
- Department of Mechanical Engineering, University of Washington, Seattle, WA, 98195, USA
- Department of Pathology, University of Washington, Seattle, WA, 98109, USA
| | - Yuliang Wang
- Institute for Stem Cell and Regenerative Medicine, University of Washington, School of Medicine, Seattle, WA, 98109, USA
- Paul G. Allen School of Computer Science & Engineering, University of Washington, Seattle, WA, 98195, USA
| | - Hannele Ruohola-Baker
- Institute for Stem Cell and Regenerative Medicine, University of Washington, School of Medicine, Seattle, WA, 98109, USA.
- Department of Bioengineering, University of Washington, Seattle, WA, 98195, USA.
- Department of Biochemistry, University of Washington, School of Medicine, Seattle, WA, 98195, USA.
| |
Collapse
|
57
|
Boogerd CJ, Zhu X, Aneas I, Sakabe N, Zhang L, Sobreira DR, Montefiori L, Bogomolovas J, Joslin AC, Zhou B, Chen J, Nobrega MA, Evans SM. Tbx20 Is Required in Mid-Gestation Cardiomyocytes and Plays a Central Role in Atrial Development. Circ Res 2019; 123:428-442. [PMID: 29903739 PMCID: PMC6092109 DOI: 10.1161/circresaha.118.311339] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
Supplemental Digital Content is available in the text. Rationale: Mutations in the transcription factor TBX20 (T-box 20) are associated with congenital heart disease. Germline ablation of Tbx20 results in abnormal heart development and embryonic lethality by embryonic day 9.5. Because Tbx20 is expressed in multiple cell lineages required for myocardial development, including pharyngeal endoderm, cardiogenic mesoderm, endocardium, and myocardium, the cell type–specific requirement for TBX20 in early myocardial development remains to be explored. Objective: Here, we investigated roles of TBX20 in midgestation cardiomyocytes for heart development. Methods and Results: Ablation of Tbx20 from developing cardiomyocytes using a doxycycline inducible cTnTCre transgene led to embryonic lethality. The circumference of developing ventricular and atrial chambers, and in particular that of prospective left atrium, was significantly reduced in Tbx20 conditional knockout mutants. Cell cycle analysis demonstrated reduced proliferation of Tbx20 mutant cardiomyocytes and their arrest at the G1-S phase transition. Genome-wide transcriptome analysis of mutant cardiomyocytes revealed differential expression of multiple genes critical for cell cycle regulation. Moreover, atrial and ventricular gene programs seemed to be aberrantly regulated. Putative direct TBX20 targets were identified using TBX20 ChIP-Seq (chromatin immunoprecipitation with high throughput sequencing) from embryonic heart and included key cell cycle genes and atrial and ventricular specific genes. Notably, TBX20 bound a conserved enhancer for a gene key to atrial development and identity, COUP-TFII/Nr2f2 (chicken ovalbumin upstream promoter transcription factor 2/nuclear receptor subfamily 2, group F, member 2). This enhancer interacted with the NR2F2 promoter in human cardiomyocytes and conferred atrial specific gene expression in a transgenic mouse in a TBX20-dependent manner. Conclusions: Myocardial TBX20 directly regulates a subset of genes required for fetal cardiomyocyte proliferation, including those required for the G1-S transition. TBX20 also directly downregulates progenitor-specific genes and, in addition to regulating genes that specify chamber versus nonchamber myocardium, directly activates genes required for establishment or maintenance of atrial and ventricular identity. TBX20 plays a previously unappreciated key role in atrial development through direct regulation of an evolutionarily conserved COUPT-FII enhancer.
Collapse
Affiliation(s)
- Cornelis J. Boogerd
- From the Skaggs School of Pharmacy and Pharmaceutical Sciences (C.J.B., X.Z., L.Z., S.M.E.)
| | - Xiaoming Zhu
- From the Skaggs School of Pharmacy and Pharmaceutical Sciences (C.J.B., X.Z., L.Z., S.M.E.)
| | - Ivy Aneas
- University of California, San Diego, La Jolla; Department of Human Genetics, University of Chicago, IL (I.A., N.S., D.R.S., L.M., A.C.J., M.A.N.)
| | - Noboru Sakabe
- University of California, San Diego, La Jolla; Department of Human Genetics, University of Chicago, IL (I.A., N.S., D.R.S., L.M., A.C.J., M.A.N.)
| | - Lunfeng Zhang
- From the Skaggs School of Pharmacy and Pharmaceutical Sciences (C.J.B., X.Z., L.Z., S.M.E.)
| | - Debora R. Sobreira
- University of California, San Diego, La Jolla; Department of Human Genetics, University of Chicago, IL (I.A., N.S., D.R.S., L.M., A.C.J., M.A.N.)
| | - Lindsey Montefiori
- University of California, San Diego, La Jolla; Department of Human Genetics, University of Chicago, IL (I.A., N.S., D.R.S., L.M., A.C.J., M.A.N.)
| | - Julius Bogomolovas
- Department of Medicine (J.B., J.C., S.M.E.)
- Department of Cognitive and Clinical Neuroscience, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany (J.B.)
| | - Amelia C. Joslin
- University of California, San Diego, La Jolla; Department of Human Genetics, University of Chicago, IL (I.A., N.S., D.R.S., L.M., A.C.J., M.A.N.)
| | - Bin Zhou
- Department of Genetics, Medicine and Pediatrics, Albert Einstein College of Medicine of Yeshiva University, New York, NY (B.Z.)
| | - Ju Chen
- Department of Medicine (J.B., J.C., S.M.E.)
| | - Marcelo A. Nobrega
- University of California, San Diego, La Jolla; Department of Human Genetics, University of Chicago, IL (I.A., N.S., D.R.S., L.M., A.C.J., M.A.N.)
| | - Sylvia M. Evans
- From the Skaggs School of Pharmacy and Pharmaceutical Sciences (C.J.B., X.Z., L.Z., S.M.E.)
- Department of Medicine (J.B., J.C., S.M.E.)
- Department of Pharmacology (S.M.E.)
| |
Collapse
|
58
|
Yokota K, Tanaka Y, Harada H, Kaida T, Nakamoto S, Soeno T, Fujiyama Y, Yokota M, Kojo K, Miura H, Yamanashi T, Sato T, Nakamura T, Watanabe M, Yamashita K. WiNTRLINC1/ASCL2/c-Myc Axis Characteristics of Colon Cancer with Differentiated Histology at Young Onset and Essential for Cell Viability. Ann Surg Oncol 2019; 26:4826-4834. [DOI: 10.1245/s10434-019-07780-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Indexed: 12/20/2022]
|
59
|
Abstract
The function of the mammalian heart depends on the interplay between different cardiac cell types. The deployment of these cells, with precise spatiotemporal regulation, is also important during development to establish the heart structure. In this Review, we discuss the diverse origins of cardiac cell types and the lineage relationships between cells of a given type that contribute to different parts of the heart. The emerging lineage tree shows the progression of cell fate diversification, with patterning cues preceding cell type segregation, as well as points of convergence, with overlapping lineages contributing to a given tissue. Several cell lineage markers have been identified. However, caution is required with genetic-tracing experiments in comparison with clonal analyses. Genetic studies on cell populations provided insights into the mechanisms for lineage decisions. In the past 3 years, results of single-cell transcriptomics are beginning to reveal cell heterogeneity and early developmental trajectories. Equating this information with the in vivo location of cells and their lineage history is a current challenge. Characterization of the progenitor cells that form the heart and of the gene regulatory networks that control their deployment is of major importance for understanding the origin of congenital heart malformations and for producing cardiac tissue for use in regenerative medicine.
Collapse
|
60
|
Wang Y, Zhu P, Luo J, Wang J, Liu Z, Wu W, Du Y, Ye B, Wang D, He L, Ren W, Wang J, Sun X, Chen R, Tian Y, Fan Z. LncRNA HAND2-AS1 promotes liver cancer stem cell self-renewal via BMP signaling. EMBO J 2019; 38:e101110. [PMID: 31334575 DOI: 10.15252/embj.2018101110] [Citation(s) in RCA: 114] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Revised: 06/07/2019] [Accepted: 06/13/2019] [Indexed: 12/30/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is the most prevalent liver cancer, characterized by a high rate of recurrence and heterogeneity. Liver cancer stem cells (CSCs) may well contribute to both of these pathological properties, but the mechanism underlying their self-renewal maintenance is poorly understood. Here, we identified a long noncoding RNA (lncRNA) termed HAND2-AS1 that is highly expressed in liver CSCs. Human HAND2-AS1 and its mouse ortholog lncHand2 display a high level of conservation. HAND2-AS1 is required for the self-renewal maintenance of liver CSCs to initiate HCC development. Mechanistically, HAND2-AS1 recruits the INO80 chromatin-remodeling complex to the promoter of BMPR1A, thereby inducing its expression and leading to the activation of BMP signaling. Importantly, interfering with expression of HAND2-AS1 by antisense oligonucleotides (ASOs) and BMPR1A by siRNAs has synergistic anti-tumorigenic effects on humanized HCC models. Moreover, knockout of lncHand2 or Bmpr1a in mouse hepatocytes impairs BMP signaling and suppresses the initiation of liver cancer. Our findings reveal that HAND2-AS1 promotes the self-renewal of liver CSCs and drives liver oncogenesis, offering a potential new target for HCC therapy.
Collapse
Affiliation(s)
- Yanying Wang
- CAS Key Laboratory of Infection and Immunity, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Pingping Zhu
- CAS Key Laboratory of Infection and Immunity, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Jianjun Luo
- CAS Key Laboratory of RNA Biology, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Jing Wang
- CAS Key Laboratory of Infection and Immunity, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Zhiwei Liu
- Department of Hepatobiliary Surgery, PLA General Hospital, Beijing, China
| | - Wei Wu
- CAS Key Laboratory of RNA Biology, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Ying Du
- CAS Key Laboratory of Infection and Immunity, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Buqing Ye
- CAS Key Laboratory of Infection and Immunity, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Dongpeng Wang
- CAS Key Laboratory of RNA Biology, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Lei He
- Department of Hepatobiliary Surgery, PLA General Hospital, Beijing, China
| | - Weizheng Ren
- Department of Hepatobiliary Surgery, PLA General Hospital, Beijing, China
| | - Jianyi Wang
- CAS Key Laboratory of Infection and Immunity, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Xianhui Sun
- CAS Key Laboratory of RNA Biology, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Runsheng Chen
- CAS Key Laboratory of RNA Biology, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Yong Tian
- CAS Key Laboratory of RNA Biology, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Zusen Fan
- CAS Key Laboratory of Infection and Immunity, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
61
|
Doyle MJ, Magli A, Estharabadi N, Amundsen D, Mills LJ, Martin CM. Sox7 Regulates Lineage Decisions in Cardiovascular Progenitor Cells. Stem Cells Dev 2019; 28:1089-1103. [PMID: 31154937 DOI: 10.1089/scd.2019.0040] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Specification of the mesodermal lineages requires a complex set of morphogenetic events orchestrated by interconnected signaling pathways and gene regulatory networks. The transcription factor Sox7 has critical functions in differentiation of multiple mesodermal lineages, including cardiac, endothelial, and hematopoietic. Using a doxycycline-inducible mouse embryonic stem cell line, we have previously shown that expression of Sox7 in cardiovascular progenitor cells promotes expansion of endothelial progenitor cells (EPCs). In this study, we show that the ability of Sox7 to promote endothelial cell fate occurs at the expense of the cardiac lineage. Using ChIP-Seq coupled with ATAC-Seq we identify downstream target genes of Sox7 in cardiovascular progenitor cells and by integrating these data with transcriptomic analyses, we define Sox7-dependent gene programs specific to cardiac and EPCs. Furthermore, we demonstrate a protein-protein interaction between SOX7 and GATA4 and provide evidence that SOX7 interferes with the transcriptional activity of GATA4 on cardiac genes. In addition, we show that Sox7 modulates WNT and BMP signaling during cardiovascular differentiation. Our data represent the first genome-wide analysis of Sox7 function and reveal a critical role for Sox7 in regulating signaling pathways that affect cardiovascular progenitor cell differentiation.
Collapse
Affiliation(s)
- Michelle J Doyle
- 1Department of Medicine, University of Minnesota, Minneapolis, Minnesota.,2Lillehei Heart Institute, University of Minnesota, Minneapolis, Minnesota
| | - Alessandro Magli
- 2Lillehei Heart Institute, University of Minnesota, Minneapolis, Minnesota.,3Stem Cell Institute, University of Minnesota, Minneapolis, Minnesota
| | - Nima Estharabadi
- 1Department of Medicine, University of Minnesota, Minneapolis, Minnesota.,2Lillehei Heart Institute, University of Minnesota, Minneapolis, Minnesota
| | - Danielle Amundsen
- 1Department of Medicine, University of Minnesota, Minneapolis, Minnesota.,2Lillehei Heart Institute, University of Minnesota, Minneapolis, Minnesota
| | - Lauren J Mills
- 4Department of Pediatrics, University of Minnesota, Minneapolis, Minnesota
| | - Cindy M Martin
- 1Department of Medicine, University of Minnesota, Minneapolis, Minnesota.,2Lillehei Heart Institute, University of Minnesota, Minneapolis, Minnesota
| |
Collapse
|
62
|
Mouse HSA+ immature cardiomyocytes persist in the adult heart and expand after ischemic injury. PLoS Biol 2019; 17:e3000335. [PMID: 31246945 PMCID: PMC6619826 DOI: 10.1371/journal.pbio.3000335] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Revised: 07/10/2019] [Accepted: 06/05/2019] [Indexed: 12/14/2022] Open
Abstract
The assessment of the regenerative capacity of the heart has been compromised by the lack of surface signatures to characterize cardiomyocytes (CMs). Here, combined multiparametric surface marker analysis with single-cell transcriptional profiling and in vivo transplantation identify the main mouse fetal cardiac populations and their progenitors (PRGs). We found that CMs at different stages of differentiation coexist during development. We identified a population of immature heat stable antigen (HSA)/ cluster of differentiation 24 (CD24)+ CMs that persists throughout life and that, unlike other CM subsets, actively proliferates up to 1 week of age and engrafts cardiac tissue upon transplantation. In the adult heart, a discrete population of HSA/CD24+ CMs appears as mononucleated cells that increase in frequency after infarction. Our work identified cell surface signatures that allow the prospective isolation of CMs at all developmental stages and the detection of a subset of immature CMs throughout life that, although at reduced frequencies, are poised for activation in response to ischemic stimuli. This work opens new perspectives in the understanding and treatment of heart pathologies.
Collapse
|
63
|
Xiong H, Luo Y, Yue Y, Zhang J, Ai S, Li X, Wang X, Zhang YL, Wei Y, Li HH, Hu X, Li C, He A. Single-Cell Transcriptomics Reveals Chemotaxis-Mediated Intraorgan Crosstalk During Cardiogenesis. Circ Res 2019; 125:398-410. [PMID: 31221018 DOI: 10.1161/circresaha.119.315243] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
RATIONALE We hypothesized that the differentiation processes of cardiac progenitor cell (CP) from first and second heart fields (FHF and SHF) may undergo the unique instructive gene regulatory networks or signaling pathways, and the precise SHF progression is contingent on the FHF signaling developmental cues. OBJECTIVE We investigated how the intraorgan communications control sequential building of discrete anatomic regions of the heart at single-cell resolution. METHODS AND RESULTS By single-cell transcriptomic analysis of Nkx2-5 (NK2 homeobox 5) and Isl1 (ISL LIM homeobox 1) lineages at embryonic day 7.75, embryonic day 8.25, embryonic day 8.75, and embryonic day 9.25, we present a panoramic view of distinct CP differentiation hierarchies. Computational identifications of FHF- and SHF-CP descendants revealed that SHF differentiation toward cardiomyocytes underwent numerous step-like transitions, whereas earlier FHF progressed toward cardiomyocytes in a wave-like manner. Importantly, single-cell pairing analysis demonstrated that SHF-CPs were attracted to and expanded FHF-populated heart tube region through interlineage communications mediated by the chemotactic guidance (MIF [macrophage migration inhibitory factor]-CXCR2 [C-X-C motif chemokine receptor 2]). This finding was verified by pharmacological blockade of this chemotaxis in embryos manifesting limited SHF cell migration and contribution to the growth of the outflow tract and right ventricle but undetectable effects on the left ventricle or heart tube initiation. Genetic loss-of-function assay of Cxcr2 showed that the expression domain of CXCR4 was expanded predominantly at SHF. Furthermore, double knockout of Cxcr2/Cxcr4 exhibited defective SHF development, corroborating the redundant function. Mechanistically, NKX2-5 directly bound the Cxcr2 and Cxcr4 genomic loci and activated their transcription in SHF. CONCLUSIONS Collectively, we propose a model in which the chemotaxis-mediated intraorgan crosstalk spatiotemporally guides the successive process of positioning SHF-CP and promoting primary heart expansion and patterning upon FHF-derived heart tube initiation.
Collapse
Affiliation(s)
- Haiqing Xiong
- From the Institute of Molecular Medicine, Beijing Key Laboratory of Cardiometabolic Molecular Medicine (H.X., Y.L., Y.Y., J.Z., S.A., X.L., X.W., X.H., A.H.), Peking University, China.,Peking-Tsinghua Center for Life Sciences (H.X., Y.L., A.H.), Peking University, China.,Academy for Advanced Interdisciplinary Studies (H.X., Y.L.), Peking University, China
| | - Yingjie Luo
- From the Institute of Molecular Medicine, Beijing Key Laboratory of Cardiometabolic Molecular Medicine (H.X., Y.L., Y.Y., J.Z., S.A., X.L., X.W., X.H., A.H.), Peking University, China.,Peking-Tsinghua Center for Life Sciences (H.X., Y.L., A.H.), Peking University, China.,Academy for Advanced Interdisciplinary Studies (H.X., Y.L.), Peking University, China
| | - Yanzhu Yue
- From the Institute of Molecular Medicine, Beijing Key Laboratory of Cardiometabolic Molecular Medicine (H.X., Y.L., Y.Y., J.Z., S.A., X.L., X.W., X.H., A.H.), Peking University, China
| | - Jiejie Zhang
- From the Institute of Molecular Medicine, Beijing Key Laboratory of Cardiometabolic Molecular Medicine (H.X., Y.L., Y.Y., J.Z., S.A., X.L., X.W., X.H., A.H.), Peking University, China
| | - Shanshan Ai
- From the Institute of Molecular Medicine, Beijing Key Laboratory of Cardiometabolic Molecular Medicine (H.X., Y.L., Y.Y., J.Z., S.A., X.L., X.W., X.H., A.H.), Peking University, China
| | - Xin Li
- From the Institute of Molecular Medicine, Beijing Key Laboratory of Cardiometabolic Molecular Medicine (H.X., Y.L., Y.Y., J.Z., S.A., X.L., X.W., X.H., A.H.), Peking University, China
| | - Xuelian Wang
- From the Institute of Molecular Medicine, Beijing Key Laboratory of Cardiometabolic Molecular Medicine (H.X., Y.L., Y.Y., J.Z., S.A., X.L., X.W., X.H., A.H.), Peking University, China
| | - Yun-Long Zhang
- Department of Cardiology, Institute of Cardiovascular Diseases, First Affiliated Hospital of Dalian Medical University, China (Y.-L.Z., H.-H.L.)
| | - Yusheng Wei
- School of Life Sciences (Y.W., C.L.), Peking University, China
| | - Hui-Hua Li
- Department of Cardiology, Institute of Cardiovascular Diseases, First Affiliated Hospital of Dalian Medical University, China (Y.-L.Z., H.-H.L.)
| | - Xinli Hu
- From the Institute of Molecular Medicine, Beijing Key Laboratory of Cardiometabolic Molecular Medicine (H.X., Y.L., Y.Y., J.Z., S.A., X.L., X.W., X.H., A.H.), Peking University, China
| | - Cheng Li
- School of Life Sciences (Y.W., C.L.), Peking University, China.,Center for Statistical Science, Center for Bioinformatics (C.L.), Peking University, China
| | - Aibin He
- From the Institute of Molecular Medicine, Beijing Key Laboratory of Cardiometabolic Molecular Medicine (H.X., Y.L., Y.Y., J.Z., S.A., X.L., X.W., X.H., A.H.), Peking University, China.,Peking-Tsinghua Center for Life Sciences (H.X., Y.L., A.H.), Peking University, China
| |
Collapse
|
64
|
Abstract
The vertebrate heart tube forms from epithelial progenitor cells in the early embryo and subsequently elongates by progressive addition of second heart field (SHF) progenitor cells from adjacent splanchnic mesoderm. Failure to maximally elongate the heart results in a spectrum of morphological defects affecting the cardiac poles, including outflow tract alignment and atrioventricular septal defects, among the most common congenital birth anomalies. SHF cells constitute an atypical apicobasally polarized epithelium with dynamic basal filopodia, located in the dorsal wall of the pericardial cavity. Recent studies have highlighted the importance of epithelial architecture and cell adhesion in the SHF, particularly for signaling events that control the progenitor cell niche during heart tube elongation. The 22q11.2 deletion syndrome gene Tbx1 regulates progenitor cell status through modulating cell shape and filopodial activity and is required for SHF contributions to both cardiac poles. Noncanonical Wnt signaling and planar cell polarity pathway genes control epithelial polarity in the dorsal pericardial wall, as progenitor cells differentiate in a transition zone at the arterial pole. Defects in these pathways lead to outflow tract shortening. Moreover, new biomechanical models of heart tube elongation have been proposed based on analysis of tissue-wide forces driving epithelial morphogenesis in the SHF, including regional cell intercalation, cell cohesion, and epithelial tension. Regulation of the epithelial properties of SHF cells is thus emerging as a key step during heart tube elongation, adding a new facet to our understanding of the mechanisms underlying both heart morphogenesis and congenital heart defects.
Collapse
Affiliation(s)
- Claudio Cortes
- From Aix-Marseille University, CNRS UMR 7288, Developmental Biology Institute of Marseille, France
| | - Alexandre Francou
- From Aix-Marseille University, CNRS UMR 7288, Developmental Biology Institute of Marseille, France
| | - Christopher De Bono
- From Aix-Marseille University, CNRS UMR 7288, Developmental Biology Institute of Marseille, France
| | - Robert G Kelly
- From Aix-Marseille University, CNRS UMR 7288, Developmental Biology Institute of Marseille, France.
| |
Collapse
|
65
|
Liang H, Wang C, Gao K, Li J, Jia R. ΜicroRNA‑421 promotes the progression of non‑small cell lung cancer by targeting HOPX and regulating the Wnt/β‑catenin signaling pathway. Mol Med Rep 2019; 20:151-161. [PMID: 31115507 PMCID: PMC6580023 DOI: 10.3892/mmr.2019.10226] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Accepted: 11/14/2018] [Indexed: 12/16/2022] Open
Abstract
MicroRNAs (miRNAs) function as key regulators of numerous types of cancers. miRNA (miR)-421 expression is dysregulated in a variety of tumors; however, its role in non-small cell lung cancer (NSCLC) remains unclear. In the present study, the role and molecular mechanism of miR-421 in NSCLC was investigated. In this study, miRNA (miR)-421 was upregulated in NSCLC tissues and cell lines used the reverse transcriptase quantitative polymerase chain reaction. Ectopic expression of miR-421 significantly promoted cell proliferation in vitro and tumor growth in vivo by promoting cell cycle progression via CCK-8, colony formation, EdU assay, xenograft model and cell cycle assay. In addition, miR-421 inhibited NSCLC cell apoptosis by flow cytometry apoptosis assay, as evidenced by anti-apoptosis gene Bcl-2 and apoptosis gene cleaved caspase-3 and cleaved PARP using western blot assay. Furthermore, miR-421 promoted cell migration and invasion through EMT process using Transwell and western blot assay. It was also demonstrated that miR-421 can directly target HOPX by the EGFP reporter assay and western blot assay. MiR-421 overexpression promoted the protein expression levels of β-catenin, cyclin D1 and c-myc by western blot assay, which are the downstream genes of Wnt pathway. These data indicated that miR-421 may act as an oncogene through the effects of HOPX on the Wnt/β-catenin signaling pathway and may provide insight into the mechanisms underlying carcinogenesis and the identification of potential biomarkers associated with NSCLC.
Collapse
Affiliation(s)
- Huagang Liang
- Department of Thoracic Surgery, The First Hospital of Qinhuangdao, Qinhuangdao, Hebei 066000, P.R. China
| | - Chao Wang
- Department of Thoracic Surgery, The First Hospital of Qinhuangdao, Qinhuangdao, Hebei 066000, P.R. China
| | - Kun Gao
- Department of Thoracic Surgery, The First Hospital of Qinhuangdao, Qinhuangdao, Hebei 066000, P.R. China
| | - Jian Li
- Department of Thoracic Surgery, The First Hospital of Qinhuangdao, Qinhuangdao, Hebei 066000, P.R. China
| | - Rui Jia
- Department of Thoracic Surgery, The First Hospital of Qinhuangdao, Qinhuangdao, Hebei 066000, P.R. China
| |
Collapse
|
66
|
Low-dose exposure to triclosan disrupted osteogenic differentiation of mouse embryonic stem cells via BMP/ERK/Smad/Runx-2 signalling pathway. Food Chem Toxicol 2019; 127:1-10. [DOI: 10.1016/j.fct.2019.02.038] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Revised: 02/20/2019] [Accepted: 02/25/2019] [Indexed: 01/13/2023]
|
67
|
Abstract
PURPOSE OF REVIEW Human genome is pervasively transcribed, producing coding and noncoding RNAs. Recent studies have revealed the roles of a class of noncoding RNAs, the long noncoding RNAs (lncRNAs), in heart failure and other cardiovascular diseases. This review provides a brief summary of recent findings on lncRNA function. RECENT FINDINGS Recent studies have documented the roles of lncRNAs in cardiac regeneration, conduction, hypertrophy/dysfunction, and endothelial function. LncRNAs perform these functions through acting as competing RNA (by binding and sequestering MicroRNAs) or acting as guides to protein targeting. A few lncRNAs also encode small peptides (e.g., Dwarf Open Reading Frame RNA) and in the context of heart regulate cardiac calcium homeostasis. SUMMARY Noncoding RNA provides a versatile mechanism of gene regulation and thereby present as novel targets for intervention in various cardiovascular disease. Future studies aimed at defining the context-dependent lncRNA mechanisms will be required to advance our understanding and relish the goal of RNA therapeutics.
Collapse
Affiliation(s)
- Priyatansh Gurha
- Center for Cardiovascular Genetics, Institute of Molecular Medicine and Department of Medicine, University of Texas Health Sciences Center at Houston, and Texas Heart Institute, Houston, TX 77030., Tel: +1 713-500-2335,
| |
Collapse
|
68
|
Prediction of onset of remnant gastric cancer by promoter DNA methylation of CDO1/ HOPX/ Reprimo/ E-cadherin. Oncotarget 2019; 10:2423-2434. [PMID: 31069006 PMCID: PMC6497431 DOI: 10.18632/oncotarget.26814] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Accepted: 01/19/2019] [Indexed: 12/12/2022] Open
Abstract
Background Early detection of remnant gastric cancer (RGC) is required to reduce the risk of death, but long-term endoscopic surveillance is difficult after gastrectomy. In this study, data for the methylation status of 4 methylation genes (CDO1, HOPX, Reprimo, and E-cadherin) to predict the onset of RGC are presented. Results The 4 genes showed hypermethylation in RGC tumors in contrast to the corresponding non-cancerous mucosa tissues. The methylation level in the non-cancerous mucosa tissues of the initial surgery was obviously high in initial malignant disease for CDO1 (P = 0.0001), while in initial benign one for E-cadherin (P = 0.003). Promoter DNA methylation status in the remnant non-cancerous mucosa tissues together with the basic clinical data in turn predicted either initial malignant disease or initial benign disease with a high AUC score of 0.94, suggesting that methylation events are differentially recognized between the initial malignant and benign disease. We then finally confirmed that 4 genes hypermethylation of the non-cancerous tissues by biopsy prior to onset of RGC could predict terms until RGC occurred (P < 0.0001). Methods A total of 58 RGC patients were used to establish the model. The 4 genes promoter methylation were analyzed for DNA obtained from the patient's specimens using quantitative methylation specific polymerase chain reaction. Conclusions This risk model would help provide guidance for endoscopic surveillance plan of RGC after gastrectomy.
Collapse
|
69
|
Population and Single-Cell Analysis of Human Cardiogenesis Reveals Unique LGR5 Ventricular Progenitors in Embryonic Outflow Tract. Dev Cell 2019; 48:475-490.e7. [PMID: 30713072 DOI: 10.1016/j.devcel.2019.01.005] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Revised: 12/18/2018] [Accepted: 12/31/2018] [Indexed: 02/08/2023]
Abstract
The morphogenetic process of mammalian cardiac development is complex and highly regulated spatiotemporally by multipotent cardiac stem/progenitor cells (CPCs). Mouse studies have been informative for understanding mammalian cardiogenesis; however, similar insights have been poorly established in humans. Here, we report comprehensive gene expression profiles of human cardiac derivatives from multipotent CPCs to intermediates and mature cardiac cells by population and single-cell RNA-seq using human embryonic stem cell-derived and embryonic/fetal heart-derived cardiac cells micro-dissected from specific heart compartments. Importantly, we discover a uniquely human subset of cono-ventricular region-specific CPCs, marked by LGR5. At 4 to 5 weeks of fetal age, the LGR5+ population appears to emerge specifically in the proximal outflow tract of human embryonic hearts and thereafter promotes cardiac development and alignment through expansion of the ISL1+TNNT2+ intermediates. The current study contributes to a deeper understanding of human cardiogenesis, which may uncover the putative origins of certain human congenital cardiac malformations.
Collapse
|
70
|
Friedman CE, Nguyen Q, Lukowski SW, Helfer A, Chiu HS, Miklas J, Levy S, Suo S, Han JDJ, Osteil P, Peng G, Jing N, Baillie GJ, Senabouth A, Christ AN, Bruxner TJ, Murry CE, Wong ES, Ding J, Wang Y, Hudson J, Ruohola-Baker H, Bar-Joseph Z, Tam PPL, Powell JE, Palpant NJ. Single-Cell Transcriptomic Analysis of Cardiac Differentiation from Human PSCs Reveals HOPX-Dependent Cardiomyocyte Maturation. Cell Stem Cell 2018; 23:586-598.e8. [PMID: 30290179 PMCID: PMC6220122 DOI: 10.1016/j.stem.2018.09.009] [Citation(s) in RCA: 190] [Impact Index Per Article: 27.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2017] [Revised: 05/30/2018] [Accepted: 09/13/2018] [Indexed: 11/25/2022]
Abstract
Cardiac differentiation of human pluripotent stem cells (hPSCs) requires orchestration of dynamic gene regulatory networks during stepwise fate transitions but often generates immature cell types that do not fully recapitulate properties of their adult counterparts, suggesting incomplete activation of key transcriptional networks. We performed extensive single-cell transcriptomic analyses to map fate choices and gene expression programs during cardiac differentiation of hPSCs and identified strategies to improve in vitro cardiomyocyte differentiation. Utilizing genetic gain- and loss-of-function approaches, we found that hypertrophic signaling is not effectively activated during monolayer-based cardiac differentiation, thereby preventing expression of HOPX and its activation of downstream genes that govern late stages of cardiomyocyte maturation. This study therefore provides a key transcriptional roadmap of in vitro cardiac differentiation at single-cell resolution, revealing fundamental mechanisms underlying heart development and differentiation of hPSC-derived cardiomyocytes.
Collapse
Affiliation(s)
- Clayton E Friedman
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia; Centre for Cardiac and Vascular Biology, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Quan Nguyen
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Samuel W Lukowski
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Abbigail Helfer
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia; Centre for Cardiac and Vascular Biology, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Han Sheng Chiu
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia; Centre for Cardiac and Vascular Biology, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Jason Miklas
- Departments of Pathology, Biochemistry, Bioengineering and Medicine/Cardiology, Institute for Stem Cell and Regenerative Medicine, The University of Washington, Seattle, WA 98195, USA
| | - Shiri Levy
- Departments of Pathology, Biochemistry, Bioengineering and Medicine/Cardiology, Institute for Stem Cell and Regenerative Medicine, The University of Washington, Seattle, WA 98195, USA
| | - Shengbao Suo
- Key Laboratory of Computational Biology, Chinese Academy of Sciences-Max Planck Partner Institute for Computational Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 320 Yue Yang Road, Shanghai 200031, China
| | - Jing-Dong Jackie Han
- Key Laboratory of Computational Biology, Chinese Academy of Sciences-Max Planck Partner Institute for Computational Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 320 Yue Yang Road, Shanghai 200031, China
| | - Pierre Osteil
- Embryology Unit, Children's Medical Research Institute, The University of Sydney, Westmead, NSW 2145, Australia
| | - Guangdun Peng
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences; University of Chinese Academy of Sciences, 320 Yue Yang Road, Shanghai 200031, China
| | - Naihe Jing
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences; University of Chinese Academy of Sciences, 320 Yue Yang Road, Shanghai 200031, China; School of Life Science and Technology, ShanghaiTech University, 100 Haike Road, Shanghai 201210, China
| | - Greg J Baillie
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Anne Senabouth
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Angelika N Christ
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Timothy J Bruxner
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Charles E Murry
- Departments of Pathology, Biochemistry, Bioengineering and Medicine/Cardiology, Institute for Stem Cell and Regenerative Medicine, The University of Washington, Seattle, WA 98195, USA
| | - Emily S Wong
- School of Biomedical Sciences, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Jun Ding
- Computational Biology Department, School of Computer Science, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | - Yuliang Wang
- Departments of Pathology, Biochemistry, Bioengineering and Medicine/Cardiology, Institute for Stem Cell and Regenerative Medicine, The University of Washington, Seattle, WA 98195, USA; Paul G. Allen School of Computer Science & Engineering, University of Washington, Seattle, WA 98195, USA
| | - James Hudson
- Queensland Institute for Medical Research, Brisbane, QLD 4006, Australia
| | - Hannele Ruohola-Baker
- Departments of Pathology, Biochemistry, Bioengineering and Medicine/Cardiology, Institute for Stem Cell and Regenerative Medicine, The University of Washington, Seattle, WA 98195, USA
| | - Ziv Bar-Joseph
- Computational Biology Department, School of Computer Science, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | - Patrick P L Tam
- Embryology Unit, Children's Medical Research Institute, The University of Sydney, Westmead, NSW 2145, Australia; School of Medical Sciences, Sydney Medical School, University of Sydney, NSW 2006, Australia
| | - Joseph E Powell
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia; Garvan-Weizmann Centre for Cellular Genomics, Garvan Institute for Medical Research, Sydney, NSW 2010, Australia.
| | - Nathan J Palpant
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia; Centre for Cardiac and Vascular Biology, The University of Queensland, Brisbane, QLD 4072, Australia; School of Biomedical Sciences, The University of Queensland, Brisbane, QLD 4072, Australia.
| |
Collapse
|
71
|
HOPX Defines Heterogeneity of Postnatal Subventricular Zone Neural Stem Cells. Stem Cell Reports 2018; 11:770-783. [PMID: 30174314 PMCID: PMC6135899 DOI: 10.1016/j.stemcr.2018.08.006] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Revised: 08/03/2018] [Accepted: 08/05/2018] [Indexed: 12/16/2022] Open
Abstract
The largest diversity of neural lineages generated from the subventricular zone (SVZ) occurs early after birth and is regulated in a spatiotemporal manner depending on the expression of specific transcriptional cues. Transcriptomics and fate-mapping approaches were employed to explore the relationship between regional expression of transcription factors by neural stem cells (NSCs) and the specification of distinct neural lineages. Our results support an early priming of NSCs for the genesis of defined cell types depending on their spatial location in the SVZ and identify HOPX as a marker of a subpopulation primed toward astrocytic fates. Manipulation of HOPX expression, however, showed no effect on astrogenesis but resulted in marked changes in the number of NSCs and of their progenies. Taken together, our results highlight transcriptional and spatial heterogeneity of postnatal NSCs and reveal a key role for HOPX in controlling SVZ germinal activity.
Collapse
|
72
|
Abstract
This review by Jain and Epstein discusses the developmental processes that influence cardiac lineage decisions and cellular competence and advances our understanding of cardiac cell specification, gene regulation, and chromatin organization and how they impact cardiac development. The mature heart is composed primarily of four different cell types: cardiac myocytes, endothelium, smooth muscle, and fibroblasts. These cell types derive from pluripotent progenitors that become progressively restricted with regard to lineage potential, giving rise to multipotent cardiac progenitor cells and, ultimately, the differentiated cell types of the heart. Recent studies have begun to shed light on the defining characteristics of the intermediary cell types that exist transiently during this developmental process and the extrinsic and cell-autonomous factors that influence cardiac lineage decisions and cellular competence. This information will shape our understanding of congenital and adult cardiac disease and guide regenerative therapeutic approaches. In addition, cardiac progenitor specification can serve as a model for understanding basic mechanisms regulating the acquisition of cellular identity. In this review, we present the concept of “chromatin competence” that describes the potential for three-dimensional chromatin organization to function as the molecular underpinning of the ability of a progenitor cell to respond to inductive lineage cues and summarize recent studies advancing our understanding of cardiac cell specification, gene regulation, and chromatin organization and how they impact cardiac development.
Collapse
Affiliation(s)
- Rajan Jain
- Department of Medicine, Department of Cell and Developmental Biology, Institute for Regenerative Medicine, Penn Cardiovascular Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Jonathan A Epstein
- Department of Medicine, Department of Cell and Developmental Biology, Institute for Regenerative Medicine, Penn Cardiovascular Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| |
Collapse
|
73
|
Chung MI, Bujnis M, Barkauskas CE, Kobayashi Y, Hogan BLM. Niche-mediated BMP/SMAD signaling regulates lung alveolar stem cell proliferation and differentiation. Development 2018; 145:dev163014. [PMID: 29752282 PMCID: PMC5992594 DOI: 10.1242/dev.163014] [Citation(s) in RCA: 208] [Impact Index Per Article: 29.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Accepted: 04/04/2018] [Indexed: 12/14/2022]
Abstract
The bone morphogenetic protein (BMP) signaling pathway, including antagonists, functions in lung development and regeneration of tracheal epithelium from basal stem cells. Here, we explore its role in the alveolar region, where type 2 epithelial cells (AT2s) and Pdgfrα+ type 2-associated stromal cells (TASCs) are components of the stem cell niche. We use organoids and in vivo alveolar regrowth after pneumonectomy (PNX) - a process that requires proliferation of AT2s and differentiation into type 1 cells (AT1s). BMP signaling is active in AT2s and TASCs, transiently declines post-PNX in association with upregulation of antagonists, and is restored during differentiation of AT2s to AT1s. In organoids, BMP4 inhibits AT2 proliferation, whereas antagonists (follistatin, noggin) promote AT2 self-renewal at the expense of differentiation. Gain- and loss-of-function genetic manipulation reveals that reduced BMP signaling in AT2s after PNX allows self-renewal but reduces differentiation; conversely, increased BMP signaling promotes AT1 formation. Constitutive BMP signaling in Pdgfrα+ cells reduces their AT2 support function, both after PNX and in organoid culture. Our data reveal multiple cell-type-specific roles for BMP signaling during alveolar regeneration.
Collapse
Affiliation(s)
- Mei-I Chung
- Department of Cell Biology, Duke University Medical School, Durham, NC 27710, USA
| | - Melissa Bujnis
- Department of Cell Biology, Duke University Medical School, Durham, NC 27710, USA
| | - Christina E Barkauskas
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, Duke University Medical School, Durham, NC 27710, USA
| | - Yoshihiko Kobayashi
- Department of Cell Biology, Duke University Medical School, Durham, NC 27710, USA
| | - Brigid L M Hogan
- Department of Cell Biology, Duke University Medical School, Durham, NC 27710, USA
| |
Collapse
|
74
|
Palpant NJ, Wang Y, Hadland B, Zaunbrecher RJ, Redd M, Jones D, Pabon L, Jain R, Epstein J, Ruzzo WL, Zheng Y, Bernstein I, Margolin A, Murry CE. Chromatin and Transcriptional Analysis of Mesoderm Progenitor Cells Identifies HOPX as a Regulator of Primitive Hematopoiesis. Cell Rep 2018; 20:1597-1608. [PMID: 28813672 DOI: 10.1016/j.celrep.2017.07.067] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Revised: 06/05/2017] [Accepted: 07/24/2017] [Indexed: 11/30/2022] Open
Abstract
We analyzed chromatin dynamics and transcriptional activity of human embryonic stem cell (hESC)-derived cardiac progenitor cells (CPCs) and KDR+/CD34+ endothelial cells generated from different mesodermal origins. Using an unbiased algorithm to hierarchically rank genes modulated at the level of chromatin and transcription, we identified candidate regulators of mesodermal lineage determination. HOPX, a non-DNA-binding homeodomain protein, was identified as a candidate regulator of blood-forming endothelial cells. Using HOPX reporter and knockout hESCs, we show that HOPX regulates blood formation. Loss of HOPX does not impact endothelial fate specification but markedly reduces primitive hematopoiesis, acting at least in part through failure to suppress Wnt/β-catenin signaling. Thus, chromatin state analysis permits identification of regulators of mesodermal specification, including a conserved role for HOPX in governing primitive hematopoiesis.
Collapse
Affiliation(s)
- Nathan J Palpant
- Department of Pathology, University of Washington School of Medicine, Seattle, WA 98109, USA; Center for Cardiovascular Biology, University of Washington School of Medicine, Seattle, WA 98109, USA; Institute for Stem Cell and Regenerative Medicine, University of Washington School of Medicine, Seattle, WA 98109, USA.
| | - Yuliang Wang
- Department of Computer Science, University of Washington School of Medicine, Seattle, WA 98109, USA
| | - Brandon Hadland
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Rebecca J Zaunbrecher
- Department of Bioengineering, University of Washington School of Medicine, Seattle, WA 98109, USA; Center for Cardiovascular Biology, University of Washington School of Medicine, Seattle, WA 98109, USA; Institute for Stem Cell and Regenerative Medicine, University of Washington School of Medicine, Seattle, WA 98109, USA
| | - Meredith Redd
- Department of Bioengineering, University of Washington School of Medicine, Seattle, WA 98109, USA; Center for Cardiovascular Biology, University of Washington School of Medicine, Seattle, WA 98109, USA; Institute for Stem Cell and Regenerative Medicine, University of Washington School of Medicine, Seattle, WA 98109, USA
| | - Daniel Jones
- Department of Computer Science, University of Washington School of Medicine, Seattle, WA 98109, USA
| | - Lil Pabon
- Department of Pathology, University of Washington School of Medicine, Seattle, WA 98109, USA; Center for Cardiovascular Biology, University of Washington School of Medicine, Seattle, WA 98109, USA; Institute for Stem Cell and Regenerative Medicine, University of Washington School of Medicine, Seattle, WA 98109, USA
| | - Rajan Jain
- Department of Cell and Developmental Biology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Jonathan Epstein
- Department of Cell and Developmental Biology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Walter L Ruzzo
- Department of Computer Science, University of Washington School of Medicine, Seattle, WA 98109, USA
| | - Ying Zheng
- Department of Bioengineering, University of Washington School of Medicine, Seattle, WA 98109, USA; Center for Cardiovascular Biology, University of Washington School of Medicine, Seattle, WA 98109, USA; Institute for Stem Cell and Regenerative Medicine, University of Washington School of Medicine, Seattle, WA 98109, USA
| | - Irwin Bernstein
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Adam Margolin
- Department of Biomedical Engineering, Oregon Health & Science University, Portland, OR 97239, USA
| | - Charles E Murry
- Department of Pathology, University of Washington School of Medicine, Seattle, WA 98109, USA; Department of Bioengineering, University of Washington School of Medicine, Seattle, WA 98109, USA; Department of Medicine/Cardiology, University of Washington School of Medicine, Seattle, WA 98109, USA; Center for Cardiovascular Biology, University of Washington School of Medicine, Seattle, WA 98109, USA; Institute for Stem Cell and Regenerative Medicine, University of Washington School of Medicine, Seattle, WA 98109, USA.
| |
Collapse
|
75
|
Kugathasan K, Halford MM, Farlie PG, Bates D, Smith DP, Zhang YF, Roy JP, Macheda ML, Zhang D, Wilkinson JL, Kirby ML, Newgreen DF, Stacker SA. Deficiency of the Wnt receptor Ryk causes multiple cardiac and outflow tract defects. Growth Factors 2018; 36:58-68. [PMID: 30035654 DOI: 10.1080/08977194.2018.1491848] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
Ryk is a member of the receptor tyrosine kinase (RTK) family of proteins that control and regulate cellular processes. It is distinguished by binding Wnt ligands and having no detectable intrinsic protein tyrosine kinase activity suggesting Ryk is a pseudokinase. Here, we show an essential role for Ryk in directing morphogenetic events required for normal cardiac development through the examination of Ryk-deficient mice. We employed vascular corrosion casting, vascular perfusion with contrast dye, and immunohistochemistry to characterize cardiovascular and pharyngeal defects in Ryk-/- embryos. Ryk-/- mice exhibit a variety of malformations of the heart and outflow tract that resemble human congenital heart defects. This included stenosis and interruption of the aortic arch, ventriculoarterial malalignment, ventricular septal defects and abnormal pharyngeal arch artery remodelling. This study therefore defines a key intersection between a subset of growth factor receptors involved in planar cell polarity signalling, the Wnt family and mammalian cardiovascular development.
Collapse
Affiliation(s)
- Kumudhini Kugathasan
- a Ludwig Institute for Cancer Research , Royal Melbourne Hospital , Melbourne , Australia
- b Department of Surgery, Royal Melbourne Hospital , University of Melbourne , Parkville , Australia
| | - Michael M Halford
- a Ludwig Institute for Cancer Research , Royal Melbourne Hospital , Melbourne , Australia
- c Tumour Angiogenesis and Microenvironment Program , Peter MacCallum Cancer Centre , Melbourne , Australia
| | - Peter G Farlie
- d Craniofacial Development Laboratory , Murdoch Children's Research Institute , Parkville , Australia
| | - Damien Bates
- e Embryology Research Group , Murdoch Children's Research Institute , Parkville , Australia
| | - Darrin P Smith
- a Ludwig Institute for Cancer Research , Royal Melbourne Hospital , Melbourne , Australia
| | - You Fang Zhang
- a Ludwig Institute for Cancer Research , Royal Melbourne Hospital , Melbourne , Australia
- c Tumour Angiogenesis and Microenvironment Program , Peter MacCallum Cancer Centre , Melbourne , Australia
| | - James P Roy
- c Tumour Angiogenesis and Microenvironment Program , Peter MacCallum Cancer Centre , Melbourne , Australia
- f Sir Peter MacCallum Department of Oncology , University of Melbourne , Parkville , Australia
| | - Maria L Macheda
- a Ludwig Institute for Cancer Research , Royal Melbourne Hospital , Melbourne , Australia
- c Tumour Angiogenesis and Microenvironment Program , Peter MacCallum Cancer Centre , Melbourne , Australia
| | - Dong Zhang
- e Embryology Research Group , Murdoch Children's Research Institute , Parkville , Australia
| | - James L Wilkinson
- e Embryology Research Group , Murdoch Children's Research Institute , Parkville , Australia
| | - Margaret L Kirby
- g The Neonatal Perinatal Research Institute, Division of Neonatology , Duke University Medical Center , Durham , NC , USA
| | - Donald F Newgreen
- e Embryology Research Group , Murdoch Children's Research Institute , Parkville , Australia
| | - Steven A Stacker
- a Ludwig Institute for Cancer Research , Royal Melbourne Hospital , Melbourne , Australia
- b Department of Surgery, Royal Melbourne Hospital , University of Melbourne , Parkville , Australia
- c Tumour Angiogenesis and Microenvironment Program , Peter MacCallum Cancer Centre , Melbourne , Australia
- f Sir Peter MacCallum Department of Oncology , University of Melbourne , Parkville , Australia
| |
Collapse
|
76
|
Abstract
Major cardiovascular events including myocardial infarction (MI) continue to dominate morbidity rates in the developed world. Although multiple device therapies and various pharmacological agents have been shown to improve patient care and reduce mortality rates, clinicians and researchers alike still lack a true panacea to regenerate damaged cardiac tissue. Over the previous two to three decades, cardiovascular stem cell therapies have held great promise. Several stem cell-based approaches have now been shown to improve ventricular function and are documented in preclinical animal models as well as phase I and phase II clinical trials. More recently, the cardiac progenitor cell has begun to gain momentum as an ideal candidate for stem cell therapy in heart disease. Here, we will highlight the most recent advances in cardiac stem/progenitor cell biology in regard to both the basics and applied settings.
Collapse
|
77
|
Métais A, Lamsoul I, Melet A, Uttenweiler-Joseph S, Poincloux R, Stefanovic S, Valière A, Gonzalez de Peredo A, Stella A, Burlet-Schiltz O, Zaffran S, Lutz PG, Moog-Lutz C. Asb2α-Filamin A Axis Is Essential for Actin Cytoskeleton Remodeling During Heart Development. Circ Res 2018; 122:e34-e48. [PMID: 29374072 DOI: 10.1161/circresaha.117.312015] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2017] [Revised: 01/18/2018] [Accepted: 01/24/2018] [Indexed: 11/16/2022]
Abstract
RATIONALE Heart development involves differentiation of cardiac progenitors and assembly of the contractile sarcomere apparatus of cardiomyocytes. However, little is known about the mechanisms that regulate actin cytoskeleton remodeling during cardiac cell differentiation. OBJECTIVE The Asb2α (Ankyrin repeat-containing protein with a suppressor of cytokine signaling box 2) CRL5 (cullin 5 RING E3 ubiquitin ligase) triggers polyubiquitylation and subsequent degradation by the proteasome of FLNs (filamins). Here, we investigate the role of Asb2α in heart development and its mechanisms of action. METHODS AND RESULTS Using Asb2 knockout embryos, we show that Asb2 is an essential gene, critical to heart morphogenesis and function, although its loss does not interfere with the overall patterning of the embryonic heart tube. We show that the Asb2α E3 ubiquitin ligase controls Flna stability in immature cardiomyocytes. Importantly, Asb2α-mediated degradation of the actin-binding protein Flna marks a previously unrecognized intermediate step in cardiac cell differentiation characterized by cell shape changes and actin cytoskeleton remodeling. We further establish that in the absence of Asb2α, myofibrils are disorganized and that heartbeats are inefficient, leading to embryonic lethality in mice. CONCLUSIONS These findings identify Asb2α as an unsuspected key regulator of cardiac cell differentiation and shed light on the molecular and cellular mechanisms determining the onset of myocardial cell architecture and its link with early cardiac function. Although Flna is known to play roles in cytoskeleton organization and to be required for heart function, this study now reveals that its degradation mediated by Asb2α ensures essential functions in differentiating cardiac progenitors.
Collapse
Affiliation(s)
- Arnaud Métais
- From the Institut de Pharmacologie et de Biologie Structurale, IPBS, Université de Toulouse, CNRS, UPS, France (A. Métais, I.L., A. Melet, S.U.-J., R.P., A.V., A.G.d.P., A.S., O.B.-S., P.G.L., C.M.-L.); CNRS UMR8601, Université Paris Descartes, France (A. Melet); and Aix Marseille Univ, INSERM, MMG, France (S.S., S.Z.)
| | - Isabelle Lamsoul
- From the Institut de Pharmacologie et de Biologie Structurale, IPBS, Université de Toulouse, CNRS, UPS, France (A. Métais, I.L., A. Melet, S.U.-J., R.P., A.V., A.G.d.P., A.S., O.B.-S., P.G.L., C.M.-L.); CNRS UMR8601, Université Paris Descartes, France (A. Melet); and Aix Marseille Univ, INSERM, MMG, France (S.S., S.Z.)
| | - Armelle Melet
- From the Institut de Pharmacologie et de Biologie Structurale, IPBS, Université de Toulouse, CNRS, UPS, France (A. Métais, I.L., A. Melet, S.U.-J., R.P., A.V., A.G.d.P., A.S., O.B.-S., P.G.L., C.M.-L.); CNRS UMR8601, Université Paris Descartes, France (A. Melet); and Aix Marseille Univ, INSERM, MMG, France (S.S., S.Z.)
| | - Sandrine Uttenweiler-Joseph
- From the Institut de Pharmacologie et de Biologie Structurale, IPBS, Université de Toulouse, CNRS, UPS, France (A. Métais, I.L., A. Melet, S.U.-J., R.P., A.V., A.G.d.P., A.S., O.B.-S., P.G.L., C.M.-L.); CNRS UMR8601, Université Paris Descartes, France (A. Melet); and Aix Marseille Univ, INSERM, MMG, France (S.S., S.Z.)
| | - Renaud Poincloux
- From the Institut de Pharmacologie et de Biologie Structurale, IPBS, Université de Toulouse, CNRS, UPS, France (A. Métais, I.L., A. Melet, S.U.-J., R.P., A.V., A.G.d.P., A.S., O.B.-S., P.G.L., C.M.-L.); CNRS UMR8601, Université Paris Descartes, France (A. Melet); and Aix Marseille Univ, INSERM, MMG, France (S.S., S.Z.)
| | - Sonia Stefanovic
- From the Institut de Pharmacologie et de Biologie Structurale, IPBS, Université de Toulouse, CNRS, UPS, France (A. Métais, I.L., A. Melet, S.U.-J., R.P., A.V., A.G.d.P., A.S., O.B.-S., P.G.L., C.M.-L.); CNRS UMR8601, Université Paris Descartes, France (A. Melet); and Aix Marseille Univ, INSERM, MMG, France (S.S., S.Z.)
| | - Amélie Valière
- From the Institut de Pharmacologie et de Biologie Structurale, IPBS, Université de Toulouse, CNRS, UPS, France (A. Métais, I.L., A. Melet, S.U.-J., R.P., A.V., A.G.d.P., A.S., O.B.-S., P.G.L., C.M.-L.); CNRS UMR8601, Université Paris Descartes, France (A. Melet); and Aix Marseille Univ, INSERM, MMG, France (S.S., S.Z.)
| | - Anne Gonzalez de Peredo
- From the Institut de Pharmacologie et de Biologie Structurale, IPBS, Université de Toulouse, CNRS, UPS, France (A. Métais, I.L., A. Melet, S.U.-J., R.P., A.V., A.G.d.P., A.S., O.B.-S., P.G.L., C.M.-L.); CNRS UMR8601, Université Paris Descartes, France (A. Melet); and Aix Marseille Univ, INSERM, MMG, France (S.S., S.Z.)
| | - Alexandre Stella
- From the Institut de Pharmacologie et de Biologie Structurale, IPBS, Université de Toulouse, CNRS, UPS, France (A. Métais, I.L., A. Melet, S.U.-J., R.P., A.V., A.G.d.P., A.S., O.B.-S., P.G.L., C.M.-L.); CNRS UMR8601, Université Paris Descartes, France (A. Melet); and Aix Marseille Univ, INSERM, MMG, France (S.S., S.Z.)
| | - Odile Burlet-Schiltz
- From the Institut de Pharmacologie et de Biologie Structurale, IPBS, Université de Toulouse, CNRS, UPS, France (A. Métais, I.L., A. Melet, S.U.-J., R.P., A.V., A.G.d.P., A.S., O.B.-S., P.G.L., C.M.-L.); CNRS UMR8601, Université Paris Descartes, France (A. Melet); and Aix Marseille Univ, INSERM, MMG, France (S.S., S.Z.)
| | - Stéphane Zaffran
- From the Institut de Pharmacologie et de Biologie Structurale, IPBS, Université de Toulouse, CNRS, UPS, France (A. Métais, I.L., A. Melet, S.U.-J., R.P., A.V., A.G.d.P., A.S., O.B.-S., P.G.L., C.M.-L.); CNRS UMR8601, Université Paris Descartes, France (A. Melet); and Aix Marseille Univ, INSERM, MMG, France (S.S., S.Z.)
| | - Pierre G Lutz
- From the Institut de Pharmacologie et de Biologie Structurale, IPBS, Université de Toulouse, CNRS, UPS, France (A. Métais, I.L., A. Melet, S.U.-J., R.P., A.V., A.G.d.P., A.S., O.B.-S., P.G.L., C.M.-L.); CNRS UMR8601, Université Paris Descartes, France (A. Melet); and Aix Marseille Univ, INSERM, MMG, France (S.S., S.Z.).
| | - Christel Moog-Lutz
- From the Institut de Pharmacologie et de Biologie Structurale, IPBS, Université de Toulouse, CNRS, UPS, France (A. Métais, I.L., A. Melet, S.U.-J., R.P., A.V., A.G.d.P., A.S., O.B.-S., P.G.L., C.M.-L.); CNRS UMR8601, Université Paris Descartes, France (A. Melet); and Aix Marseille Univ, INSERM, MMG, France (S.S., S.Z.).
| |
Collapse
|
78
|
Sun C, Kontaridis MI. Physiology of Cardiac Development: From Genetics to Signaling to Therapeutic Strategies. CURRENT OPINION IN PHYSIOLOGY 2017. [PMID: 29532042 DOI: 10.1016/j.cophys.2017.09.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The heart is one of the first organs to form and function during embryonic development. It is comprised of multiple cell lineages, each integral for proper cardiac development, and include cardiomyocytes, endothelial cells, epicardial cells and neural crest cells. The molecular mechanisms regulating cardiac development and morphogenesis are dependent on signaling crosstalk between multiple lineages through paracrine interactions, cell-ECM interactions, and cell-cell interactions, which together, help facilitate survival, growth, proliferation, differentiation and migration of cardiac tissue. Aberrant regulation of any of these processes can induce developmental disorders and pathological phenotypes. Here, we will discuss each of these processes, the genetic factors that contribute to each step of cardiac development, as well as the current and future therapeutic targets and mechanisms of heart development and disease. Understanding the complex interactions that regulate cardiac development, proliferation and differentiation is not only vital to understanding the causes of congenital heart defects, but to also finding new therapeutics that can treat both pediatric and adult cardiac disease in the near future.
Collapse
Affiliation(s)
- Cheng Sun
- Department of Medicine, Division of Cardiology, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Maria I Kontaridis
- Department of Medicine, Division of Cardiology, Beth Israel Deaconess Medical Center, Boston, MA, USA.,Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
79
|
Ivanovitch K, Temiño S, Torres M. Live imaging of heart tube development in mouse reveals alternating phases of cardiac differentiation and morphogenesis. eLife 2017; 6:30668. [PMID: 29202929 PMCID: PMC5731822 DOI: 10.7554/elife.30668] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2017] [Accepted: 11/26/2017] [Indexed: 12/15/2022] Open
Abstract
During vertebrate heart development, two progenitor populations, first and second heart fields (FHF, SHF), sequentially contribute to longitudinal subdivisions of the heart tube (HT), with the FHF contributing the left ventricle and part of the atria, and the SHF the rest of the heart. Here, we study the dynamics of cardiac differentiation and morphogenesis by tracking individual cells in live analysis of mouse embryos. We report that during an initial phase, FHF precursors differentiate rapidly to form a cardiac crescent, while limited morphogenesis takes place. In a second phase, no differentiation occurs while extensive morphogenesis, including splanchnic mesoderm sliding over the endoderm, results in HT formation. In a third phase, cardiac precursor differentiation resumes and contributes to SHF-derived regions and the dorsal closure of the HT. These results reveal tissue-level coordination between morphogenesis and differentiation during HT formation and provide a new framework to understand heart development. We all start life as a single cell, which – over the course of nine months – multiplies to generate the billions of cells that can be found in a newborn. As an embryo develops, the cells need to achieve two major tasks: they need to diversify into different types of cells, such as blood cells or muscle cells, and they need to organize themselves in space to form tissues and organs. The heart of an embryo, for example, first forms a simple structure called the heart tube that can pump blood and later develops into the four chambers that we see in adults. The tube is made up of cells from two different origins, known as the first and second heart fields. Unlike other organs, the heart has to start beating while it is still developing, and until now, it was unclear how the heart manages this difficult task. Here, Ivanovich et al. studied mouse embryos grown outside the womb by using a combination of advanced microscopy and genetic labeling to track how single cells turn into beating cells and move while the heart forms. The results showed that specializing into beating cells and forming the heart tube shape happened during alternating phases. The first heart-field cells turned into beating cells and began to contract at an early stage before the heart tube was formed. Next, the cells of the second heart field did not instantly develop into beating cells, but instead, helped the first heart-field cells to acquire the shape of a heart tube. Once this was completed, the second heart-field cells started to specialize into beating cells and created the additional parts of the more complex adult heart. This research shows that the second heart field plays an active role in helping the heart tube form. The alternating phases of cell specialization and tissue formation allow the heart to become active whilst it is still developing. A better insight into how the heart forms may help us to create new treatments for various genetic heart conditions. The methods used here could also help to study how cells build other organs.
Collapse
Affiliation(s)
- Kenzo Ivanovitch
- Developmental Biology Program, Centro Nacional de Investigaciones Cardiovasculares, Madrid, Spain
| | - Susana Temiño
- Developmental Biology Program, Centro Nacional de Investigaciones Cardiovasculares, Madrid, Spain
| | - Miguel Torres
- Developmental Biology Program, Centro Nacional de Investigaciones Cardiovasculares, Madrid, Spain
| |
Collapse
|
80
|
Piven OO, Winata CL. The canonical way to make a heart: β-catenin and plakoglobin in heart development and remodeling. Exp Biol Med (Maywood) 2017; 242:1735-1745. [PMID: 28920469 PMCID: PMC5714149 DOI: 10.1177/1535370217732737] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Accepted: 08/29/2017] [Indexed: 12/12/2022] Open
Abstract
The main mediator of the canonical Wnt pathway, β-catenin, is a major effector of embryonic development, postnatal tissue homeostasis, and adult tissue regeneration. The requirement for β-catenin in cardiogenesis and embryogenesis has been well established. However, many questions regarding the molecular mechanisms by which β-catenin and canonical Wnt signaling regulate these developmental processes remain unanswered. An interesting question that emerged from our studies concerns how β-catenin signaling is modulated through interaction with other factors. Recent experimental data implicate new players in canonical Wnt signaling, particularly those which modulate β-catenin function in many its biological processes, including cardiogenesis. One of the interesting candidates is plakoglobin, a little-studied member of the catenin family which shares several mechanistic and functional features with its close relative, β-catenin. Here we have focused on the function of β-catenin in cardiogenesis. We also summarize findings on plakoglobin signaling function and discuss possible interplays between β-catenin and plakoglobin in the regulation of embryonic heart development. Impact statement Heart development, function, and remodeling are complex processes orchestrated by multiple signaling networks. This review examines our current knowledge of the role of canonical Wnt signaling in cardiogenesis and heart remodeling, focusing primarily on the mechanistic action of its effector β-catenin. We summarize the generally accepted understanding of the field based on experimental in vitro and in vivo data, and address unresolved questions in the field, specifically relating to the role of canonical Wnt signaling in heart maturation and regeneration. What are the modulators of canonical Wnt, and particularly what are the potential roles of plakoglobin, a close relative of β-catenin, in regulating Wnt signaling?Answers to these questions will enhance our understanding of the mechanism by which the canonical Wnt signaling regulates development of the heart and its regeneration after damage.
Collapse
Affiliation(s)
- Oksana O Piven
- Institute of Molecular Biology and Genetic, Kyiv 0314, Ukraine
| | - Cecilia L Winata
- International Institute of Molecular and Cell Biology, 02-109 Warsaw, Poland
- Max Planck Institute for Heart and Lung Research, D-61231 Bad Nauheim, Germany
| |
Collapse
|
81
|
Growth and Morphogenesis during Early Heart Development in Amniotes. J Cardiovasc Dev Dis 2017; 4:jcdd4040020. [PMID: 29367549 PMCID: PMC5753121 DOI: 10.3390/jcdd4040020] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2017] [Revised: 11/17/2017] [Accepted: 11/17/2017] [Indexed: 11/17/2022] Open
Abstract
In this review, we will focus on the growth and morphogenesis of the developing heart, an aspect of cardiovascular development to which Antoon Moorman and colleagues have extensively contributed. Over the last decades, genetic studies and characterization of regionally regulated gene programs have provided abundant novel insights into heart development essential to understand the basis of congenital heart disease. Heart morphogenesis, however, is inherently a complex and dynamic three-dimensional process and we are far from understanding its cellular basis. Here, we discuss recent advances in studying heart morphogenesis and regionalization under the light of the pioneering work of Moorman and colleagues, which allowed the reinterpretation of regional gene expression patterns under a new morphogenetic framework. Two aspects of early heart formation will be discussed in particular: (1) the initial formation of the heart tube and (2) the formation of the cardiac chambers by the ballooning process. Finally, we emphasize that in addition to analyses based on fixed samples, new approaches including clonal analysis, single-cell sequencing, live-imaging and quantitative analysis of the data generated will likely lead to novel insights in understanding early heart tube regionalization and morphogenesis in the near future.
Collapse
|
82
|
Yue Y, Jiang M, He L, Zhang Z, Zhang Q, Gu C, Liu M, Li N, Zhao Q. The transcription factor Foxc1a in zebrafish directly regulates expression of nkx2.5, encoding a transcriptional regulator of cardiac progenitor cells. J Biol Chem 2017; 293:638-650. [PMID: 29162723 DOI: 10.1074/jbc.ra117.000414] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Revised: 11/17/2017] [Indexed: 01/19/2023] Open
Abstract
Cardiogenesis is a tightly controlled biological process required for formation of a functional heart. The transcription factor Foxc1 not only plays a crucial role in outflow tract development in mice, but is also involved in cardiac structure formation and normal function in humans. However, the molecular mechanisms by which Foxc1 controls cardiac development remain poorly understood. Previously, we reported that zebrafish embryos deficient in foxc1a, an ortholog of mammalian Foxc1, display pericardial edemas and die 9-10 days postfertilization. To further investigate Foxc1a's role in zebrafish cardiogenesis and identify its downstream target genes during early heart development, we comprehensively analyzed the cardiovascular phenotype of foxc1a-null zebrafish embryos. Our results confirmed that foxc1a-null mutants exhibit disrupted cardiac morphology, structure, and function. Performing transcriptome analysis on the foxc1a mutants, we found that the expression of the cardiac progenitor marker gene nkx2.5 was significantly decreased, but the expression of germ layer-patterning genes was unaffected. Dual-fluorescence in situ hybridization assays revealed that foxc1a and nkx2.5 are co-expressed in the anterior lateral plate mesoderm at the somite stage. Chromatin immunoprecipitation and promoter truncation assays disclosed that Foxc1a regulates nkx2.5 expression via direct binding to two noncanonical binding sites in the proximal nkx2.5 promoter. Moreover, functional rescue experiments revealed that developmental stage-specific nkx2.5 overexpression partially rescues the cardiac defects of the foxc1a-null embryos. Taken together, our results indicate that during zebrafish cardiogenesis, Foxc1a is active directly upstream of nkx2.5.
Collapse
Affiliation(s)
- Yunyun Yue
- From the Model Animal Research Center, Ministry of Education Key Laboratory of Model Animal for Disease Study, Nanjing University, 12 Xuefu Road, Pukou High-tech Development Zone, Nanjing 210061, China
| | - Mingyang Jiang
- From the Model Animal Research Center, Ministry of Education Key Laboratory of Model Animal for Disease Study, Nanjing University, 12 Xuefu Road, Pukou High-tech Development Zone, Nanjing 210061, China
| | - Luqingqing He
- From the Model Animal Research Center, Ministry of Education Key Laboratory of Model Animal for Disease Study, Nanjing University, 12 Xuefu Road, Pukou High-tech Development Zone, Nanjing 210061, China
| | - Zhaojunjie Zhang
- From the Model Animal Research Center, Ministry of Education Key Laboratory of Model Animal for Disease Study, Nanjing University, 12 Xuefu Road, Pukou High-tech Development Zone, Nanjing 210061, China
| | - Qinxin Zhang
- From the Model Animal Research Center, Ministry of Education Key Laboratory of Model Animal for Disease Study, Nanjing University, 12 Xuefu Road, Pukou High-tech Development Zone, Nanjing 210061, China
| | - Chun Gu
- From the Model Animal Research Center, Ministry of Education Key Laboratory of Model Animal for Disease Study, Nanjing University, 12 Xuefu Road, Pukou High-tech Development Zone, Nanjing 210061, China
| | - Meijing Liu
- From the Model Animal Research Center, Ministry of Education Key Laboratory of Model Animal for Disease Study, Nanjing University, 12 Xuefu Road, Pukou High-tech Development Zone, Nanjing 210061, China
| | - Nan Li
- From the Model Animal Research Center, Ministry of Education Key Laboratory of Model Animal for Disease Study, Nanjing University, 12 Xuefu Road, Pukou High-tech Development Zone, Nanjing 210061, China
| | - Qingshun Zhao
- From the Model Animal Research Center, Ministry of Education Key Laboratory of Model Animal for Disease Study, Nanjing University, 12 Xuefu Road, Pukou High-tech Development Zone, Nanjing 210061, China
| |
Collapse
|
83
|
Poleshko A, Shah PP, Gupta M, Babu A, Morley MP, Manderfield LJ, Ifkovits JL, Calderon D, Aghajanian H, Sierra-Pagán JE, Sun Z, Wang Q, Li L, Dubois NC, Morrisey EE, Lazar MA, Smith CL, Epstein JA, Jain R. Genome-Nuclear Lamina Interactions Regulate Cardiac Stem Cell Lineage Restriction. Cell 2017; 171:573-587.e14. [PMID: 29033129 DOI: 10.1016/j.cell.2017.09.018] [Citation(s) in RCA: 146] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2017] [Revised: 08/25/2017] [Accepted: 09/12/2017] [Indexed: 01/15/2023]
Abstract
Progenitor cells differentiate into specialized cell types through coordinated expression of lineage-specific genes and modification of complex chromatin configurations. We demonstrate that a histone deacetylase (Hdac3) organizes heterochromatin at the nuclear lamina during cardiac progenitor lineage restriction. Specification of cardiomyocytes is associated with reorganization of peripheral heterochromatin, and independent of deacetylase activity, Hdac3 tethers peripheral heterochromatin containing lineage-relevant genes to the nuclear lamina. Deletion of Hdac3 in cardiac progenitor cells releases genomic regions from the nuclear periphery, leading to precocious cardiac gene expression and differentiation into cardiomyocytes; in contrast, restricting Hdac3 to the nuclear periphery rescues myogenesis in progenitors otherwise lacking Hdac3. Our results suggest that availability of genomic regions for activation by lineage-specific factors is regulated in part through dynamic chromatin-nuclear lamina interactions and that competence of a progenitor cell to respond to differentiation signals may depend upon coordinated movement of responding gene loci away from the nuclear periphery.
Collapse
Affiliation(s)
- Andrey Poleshko
- Departments of Medicine and Cell and Developmental Biology, Institute for Regenerative Medicine, and the Penn Cardiovascular Institute, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Parisha P Shah
- Departments of Medicine and Cell and Developmental Biology, Institute for Regenerative Medicine, and the Penn Cardiovascular Institute, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Mudit Gupta
- Departments of Medicine and Cell and Developmental Biology, Institute for Regenerative Medicine, and the Penn Cardiovascular Institute, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Apoorva Babu
- Departments of Medicine and Cell and Developmental Biology, Institute for Regenerative Medicine, and the Penn Cardiovascular Institute, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Michael P Morley
- Departments of Medicine and Cell and Developmental Biology, Institute for Regenerative Medicine, and the Penn Cardiovascular Institute, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Lauren J Manderfield
- Departments of Medicine and Cell and Developmental Biology, Institute for Regenerative Medicine, and the Penn Cardiovascular Institute, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Jamie L Ifkovits
- Departments of Medicine and Cell and Developmental Biology, Institute for Regenerative Medicine, and the Penn Cardiovascular Institute, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Damelys Calderon
- Department of Cell, Developmental, and Regenerative Biology, Mindich Child Health and Development Institute, and Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Haig Aghajanian
- Departments of Medicine and Cell and Developmental Biology, Institute for Regenerative Medicine, and the Penn Cardiovascular Institute, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Javier E Sierra-Pagán
- Departments of Medicine and Cell and Developmental Biology, Institute for Regenerative Medicine, and the Penn Cardiovascular Institute, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Zheng Sun
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine and the Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Qiaohong Wang
- Departments of Medicine and Cell and Developmental Biology, Institute for Regenerative Medicine, and the Penn Cardiovascular Institute, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Li Li
- Departments of Medicine and Cell and Developmental Biology, Institute for Regenerative Medicine, and the Penn Cardiovascular Institute, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Nicole C Dubois
- Department of Cell, Developmental, and Regenerative Biology, Mindich Child Health and Development Institute, and Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Edward E Morrisey
- Departments of Medicine and Cell and Developmental Biology, Institute for Regenerative Medicine, and the Penn Cardiovascular Institute, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Mitchell A Lazar
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine and the Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Cheryl L Smith
- Departments of Medicine and Cell and Developmental Biology, Institute for Regenerative Medicine, and the Penn Cardiovascular Institute, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Jonathan A Epstein
- Departments of Medicine and Cell and Developmental Biology, Institute for Regenerative Medicine, and the Penn Cardiovascular Institute, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA.
| | - Rajan Jain
- Departments of Medicine and Cell and Developmental Biology, Institute for Regenerative Medicine, and the Penn Cardiovascular Institute, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
84
|
Asp M, Salmén F, Ståhl PL, Vickovic S, Felldin U, Löfling M, Fernandez Navarro J, Maaskola J, Eriksson MJ, Persson B, Corbascio M, Persson H, Linde C, Lundeberg J. Spatial detection of fetal marker genes expressed at low level in adult human heart tissue. Sci Rep 2017; 7:12941. [PMID: 29021611 PMCID: PMC5636908 DOI: 10.1038/s41598-017-13462-5] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Accepted: 09/25/2017] [Indexed: 11/09/2022] Open
Abstract
Heart failure is a major health problem linked to poor quality of life and high mortality rates. Hence, novel biomarkers, such as fetal marker genes with low expression levels, could potentially differentiate disease states in order to improve therapy. In many studies on heart failure, cardiac biopsies have been analyzed as uniform pieces of tissue with bulk techniques, but this homogenization approach can mask medically relevant phenotypes occurring only in isolated parts of the tissue. This study examines such spatial variations within and between regions of cardiac biopsies. In contrast to standard RNA sequencing, this approach provides a spatially resolved transcriptome- and tissue-wide perspective of the adult human heart, and enables detection of fetal marker genes expressed by minor subpopulations of cells within the tissue. Analysis of patients with heart failure, with preserved ejection fraction, demonstrated spatially divergent expression of fetal genes in cardiac biopsies.
Collapse
Affiliation(s)
- Michaela Asp
- Division of Gene Technology, KTH Royal Institute of Technology, Science for Life Laboratory, Stockholm, Sweden
| | - Fredrik Salmén
- Division of Gene Technology, KTH Royal Institute of Technology, Science for Life Laboratory, Stockholm, Sweden
| | - Patrik L Ståhl
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| | - Sanja Vickovic
- Division of Gene Technology, KTH Royal Institute of Technology, Science for Life Laboratory, Stockholm, Sweden
| | - Ulrika Felldin
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | - Marie Löfling
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | | | - Jonas Maaskola
- Division of Gene Technology, KTH Royal Institute of Technology, Science for Life Laboratory, Stockholm, Sweden
| | - Maria J Eriksson
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
- Department of Clinical Physiology, Karolinska University Hospital, Stockholm, Sweden
| | - Bengt Persson
- Department of Molecular Biology, Uppsala University, Science for Life Laboratory, Uppsala, Sweden
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Science for Life Laboratory, Stockholm, Sweden
| | - Matthias Corbascio
- Department of Cardiothoracic Surgery and Anesthesiology, Karolinska University Hospital, Solna, Sweden
| | - Hans Persson
- Department of Cardiology, Danderyd Hospital, Stockholm, Sweden
- Department of Clinical Sciences, Danderyd Hospital, Karolinska Institutet, Stockholm, Sweden
| | - Cecilia Linde
- Department of Medicine, Karolinska Institutet, Stockholm, Sweden
- Department of Cardiology, Karolinska University Hospital, Stockholm, Sweden
| | - Joakim Lundeberg
- Division of Gene Technology, KTH Royal Institute of Technology, Science for Life Laboratory, Stockholm, Sweden.
| |
Collapse
|
85
|
Aghajanian H, Cho YK, Rizer NW, Wang Q, Li L, Degenhardt K, Jain R. Pdgfrα functions in endothelial-derived cells to regulate neural crest cells and the development of the great arteries. Dis Model Mech 2017; 10:1101-1108. [PMID: 28714851 PMCID: PMC5611965 DOI: 10.1242/dmm.029710] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Accepted: 07/05/2017] [Indexed: 12/16/2022] Open
Abstract
Originating as a single vessel emerging from the embryonic heart, the truncus arteriosus must septate and remodel into the aorta and pulmonary artery to support postnatal life. Defective remodeling or septation leads to abnormalities collectively known as conotruncal defects, which are associated with significant mortality and morbidity. Multiple populations of cells must interact to coordinate outflow tract remodeling, and the cardiac neural crest has emerged as particularly important during this process. Abnormalities in the cardiac neural crest have been implicated in the pathogenesis of multiple conotruncal defects, including persistent truncus arteriosus, double outlet right ventricle and tetralogy of Fallot. However, the role of the neural crest in the pathogenesis of another conotruncal abnormality, transposition of the great arteries, is less well understood. In this report, we demonstrate an unexpected role of Pdgfra in endothelial cells and their derivatives during outflow tract development. Loss of Pdgfra in endothelium and endothelial-derived cells results in double outlet right ventricle and transposition of the great arteries. Our data suggest that loss of Pdgfra in endothelial-derived mesenchyme in the outflow tract endocardial cushions leads to a secondary defect in neural crest migration during development. Summary: Loss of Pdgfrα in endothelial-derived mesenchyme results in defective neural crest behavior and is associated with conotruncal defects including, surprisingly, transposition of the great arteries.
Collapse
Affiliation(s)
- Haig Aghajanian
- Departments of Medicine and Cell and Developmental Biology, Penn Cardiovascular Institute, Institute for Regenerative Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Young Kuk Cho
- Department of Pediatrics, Chonnam National University Medical School, Gwangju, 61186, South Korea
| | - Nicholas W Rizer
- Departments of Medicine and Cell and Developmental Biology, Penn Cardiovascular Institute, Institute for Regenerative Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Qiaohong Wang
- Departments of Medicine and Cell and Developmental Biology, Penn Cardiovascular Institute, Institute for Regenerative Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Li Li
- Departments of Medicine and Cell and Developmental Biology, Penn Cardiovascular Institute, Institute for Regenerative Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Karl Degenhardt
- Children's Hospital of Philadelphia, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Rajan Jain
- Departments of Medicine and Cell and Developmental Biology, Penn Cardiovascular Institute, Institute for Regenerative Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
86
|
Imag(in)ing growth and form. Mech Dev 2017; 145:13-21. [DOI: 10.1016/j.mod.2017.03.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Revised: 03/21/2017] [Accepted: 03/23/2017] [Indexed: 01/03/2023]
|
87
|
Galdos FX, Guo Y, Paige SL, VanDusen NJ, Wu SM, Pu WT. Cardiac Regeneration: Lessons From Development. Circ Res 2017; 120:941-959. [PMID: 28302741 DOI: 10.1161/circresaha.116.309040] [Citation(s) in RCA: 111] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Revised: 12/14/2016] [Accepted: 12/15/2016] [Indexed: 02/06/2023]
Abstract
Palliative surgery for congenital heart disease has allowed patients with previously lethal heart malformations to survive and, in most cases, to thrive. However, these procedures often place pressure and volume loads on the heart, and over time, these chronic loads can cause heart failure. Current therapeutic options for initial surgery and chronic heart failure that results from failed palliation are limited, in part, by the mammalian heart's low inherent capacity to form new cardiomyocytes. Surmounting the heart regeneration barrier would transform the treatment of congenital, as well as acquired, heart disease and likewise would enable development of personalized, in vitro cardiac disease models. Although these remain distant goals, studies of heart development are illuminating the path forward and suggest unique opportunities for heart regeneration, particularly in fetal and neonatal periods. Here, we review major lessons from heart development that inform current and future studies directed at enhancing cardiac regeneration.
Collapse
Affiliation(s)
- Francisco X Galdos
- From the Cardiovascular Institute, School of Medicine, Stanford University, CA (F.X.G., S.L.P., S.M.W.); Department of Cardiology, Boston Children's Hospital, MA (Y.G., N.J.V., W.T.P.); Division of Pediatric Cardiology, Department of Pediatrics (S.L.P.), Division of Cardiovascular Medicine, Department of Medicine (S.M.W.), and Institute of Stem Cell and Regenerative Biology, School of Medicine, Stanford, CA (F.X.G., S.L.P., S.M.W.); and Harvard Stem Cell Institute, Harvard University, Cambridge, MA (W.T.P.)
| | - Yuxuan Guo
- From the Cardiovascular Institute, School of Medicine, Stanford University, CA (F.X.G., S.L.P., S.M.W.); Department of Cardiology, Boston Children's Hospital, MA (Y.G., N.J.V., W.T.P.); Division of Pediatric Cardiology, Department of Pediatrics (S.L.P.), Division of Cardiovascular Medicine, Department of Medicine (S.M.W.), and Institute of Stem Cell and Regenerative Biology, School of Medicine, Stanford, CA (F.X.G., S.L.P., S.M.W.); and Harvard Stem Cell Institute, Harvard University, Cambridge, MA (W.T.P.)
| | - Sharon L Paige
- From the Cardiovascular Institute, School of Medicine, Stanford University, CA (F.X.G., S.L.P., S.M.W.); Department of Cardiology, Boston Children's Hospital, MA (Y.G., N.J.V., W.T.P.); Division of Pediatric Cardiology, Department of Pediatrics (S.L.P.), Division of Cardiovascular Medicine, Department of Medicine (S.M.W.), and Institute of Stem Cell and Regenerative Biology, School of Medicine, Stanford, CA (F.X.G., S.L.P., S.M.W.); and Harvard Stem Cell Institute, Harvard University, Cambridge, MA (W.T.P.)
| | - Nathan J VanDusen
- From the Cardiovascular Institute, School of Medicine, Stanford University, CA (F.X.G., S.L.P., S.M.W.); Department of Cardiology, Boston Children's Hospital, MA (Y.G., N.J.V., W.T.P.); Division of Pediatric Cardiology, Department of Pediatrics (S.L.P.), Division of Cardiovascular Medicine, Department of Medicine (S.M.W.), and Institute of Stem Cell and Regenerative Biology, School of Medicine, Stanford, CA (F.X.G., S.L.P., S.M.W.); and Harvard Stem Cell Institute, Harvard University, Cambridge, MA (W.T.P.)
| | - Sean M Wu
- From the Cardiovascular Institute, School of Medicine, Stanford University, CA (F.X.G., S.L.P., S.M.W.); Department of Cardiology, Boston Children's Hospital, MA (Y.G., N.J.V., W.T.P.); Division of Pediatric Cardiology, Department of Pediatrics (S.L.P.), Division of Cardiovascular Medicine, Department of Medicine (S.M.W.), and Institute of Stem Cell and Regenerative Biology, School of Medicine, Stanford, CA (F.X.G., S.L.P., S.M.W.); and Harvard Stem Cell Institute, Harvard University, Cambridge, MA (W.T.P.).
| | - William T Pu
- From the Cardiovascular Institute, School of Medicine, Stanford University, CA (F.X.G., S.L.P., S.M.W.); Department of Cardiology, Boston Children's Hospital, MA (Y.G., N.J.V., W.T.P.); Division of Pediatric Cardiology, Department of Pediatrics (S.L.P.), Division of Cardiovascular Medicine, Department of Medicine (S.M.W.), and Institute of Stem Cell and Regenerative Biology, School of Medicine, Stanford, CA (F.X.G., S.L.P., S.M.W.); and Harvard Stem Cell Institute, Harvard University, Cambridge, MA (W.T.P.).
| |
Collapse
|
88
|
Furtado MB, Wilmanns JC, Chandran A, Perera J, Hon O, Biben C, Willow TJ, Nim HT, Kaur G, Simonds S, Wu Q, Willians D, Salimova E, Plachta N, Denegre JM, Murray SA, Fatkin D, Cowley M, Pearson JT, Kaye D, Ramialison M, Harvey RP, Rosenthal NA, Costa MW. Point mutations in murine Nkx2-5 phenocopy human congenital heart disease and induce pathogenic Wnt signaling. JCI Insight 2017; 2:e88271. [PMID: 28352650 DOI: 10.1172/jci.insight.88271] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Mutations in the Nkx2-5 gene are a main cause of congenital heart disease. Several studies have addressed the phenotypic consequences of disrupting the Nkx2-5 gene locus, although animal models to date failed to recapitulate the full spectrum of the human disease. Here, we describe a new Nkx2-5 point mutation murine model, akin to its human counterpart disease-generating mutation. Our model fully reproduces the morphological and physiological clinical presentations of the disease and reveals an understudied aspect of Nkx2-5-driven pathology, a primary right ventricular dysfunction. We further describe the molecular consequences of disrupting the transcriptional network regulated by Nkx2-5 in the heart and show that Nkx2-5-dependent perturbation of the Wnt signaling pathway promotes heart dysfunction through alteration of cardiomyocyte metabolism. Our data provide mechanistic insights on how Nkx2-5 regulates heart function and metabolism, a link in the study of congenital heart disease, and confirms that our models are the first murine genetic models to our knowledge to present all spectra of clinically relevant adult congenital heart disease phenotypes generated by NKX2-5 mutations in patients.
Collapse
Affiliation(s)
- Milena B Furtado
- The Jackson Laboratory, Bar Harbor, Maine, USA.,Australian Regenerative Medicine Institute, Monash University, Clayton, Australia
| | - Julia C Wilmanns
- Australian Regenerative Medicine Institute, Monash University, Clayton, Australia.,Department of Cardiology and Angiology, Medical School Hannover, Hannover, Germany
| | - Anjana Chandran
- Australian Regenerative Medicine Institute, Monash University, Clayton, Australia
| | - Joelle Perera
- Australian Regenerative Medicine Institute, Monash University, Clayton, Australia
| | - Olivia Hon
- The Jackson Laboratory, Bar Harbor, Maine, USA
| | - Christine Biben
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Australia
| | | | - Hieu T Nim
- Australian Regenerative Medicine Institute, Monash University, Clayton, Australia
| | - Gurpreet Kaur
- Australian Regenerative Medicine Institute, Monash University, Clayton, Australia
| | | | - Qizhu Wu
- Monash Biomedical Imaging, Monash University, Clayton, Australia
| | - David Willians
- Heart Failure Research Group, Baker IDI Heart and Diabetes Institute, Melbourne, Australia
| | - Ekaterina Salimova
- Australian Regenerative Medicine Institute, Monash University, Clayton, Australia
| | | | | | | | - Diane Fatkin
- Molecular Cardiology, Victor Chang Cardiac Research Institute, Darlinghurst, Australia.,Faculty of Medicine and School of Biological and Biomolecular Sciences, University of New South Wales, Kensington, Australia.,Cardiology Department, St. Vincent's Hospital, Darlinghurst, Australia
| | | | - James T Pearson
- Department of Physiology.,Monash Biomedical Imaging, Monash University, Clayton, Australia
| | - David Kaye
- Heart Failure Research Group, Baker IDI Heart and Diabetes Institute, Melbourne, Australia
| | - Mirana Ramialison
- Australian Regenerative Medicine Institute, Monash University, Clayton, Australia
| | - Richard P Harvey
- Faculty of Medicine and School of Biological and Biomolecular Sciences, University of New South Wales, Kensington, Australia.,Stem Cell Biology Division, Victor Chang Cardiac Research Institute, Darlinghurst, Australia
| | - Nadia A Rosenthal
- The Jackson Laboratory, Bar Harbor, Maine, USA.,Australian Regenerative Medicine Institute, Monash University, Clayton, Australia.,National Heart and Lung Institute, Imperial College, London, United Kingdom
| | - Mauro W Costa
- The Jackson Laboratory, Bar Harbor, Maine, USA.,Australian Regenerative Medicine Institute, Monash University, Clayton, Australia
| |
Collapse
|
89
|
Foxa2 identifies a cardiac progenitor population with ventricular differentiation potential. Nat Commun 2017; 8:14428. [PMID: 28195173 PMCID: PMC5316866 DOI: 10.1038/ncomms14428] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Accepted: 12/22/2016] [Indexed: 12/18/2022] Open
Abstract
The recent identification of progenitor populations that contribute to the developing heart in a distinct spatial and temporal manner has fundamentally improved our understanding of cardiac development. However, the mechanisms that direct atrial versus ventricular specification remain largely unknown. Here we report the identification of a progenitor population that gives rise primarily to cardiovascular cells of the ventricles and only to few atrial cells (<5%) of the differentiated heart. These progenitors are specified during gastrulation, when they transiently express Foxa2, a gene not previously implicated in cardiac development. Importantly, Foxa2+ cells contribute to previously identified progenitor populations in a defined pattern and ratio. Lastly, we describe an analogous Foxa2+ population during differentiation of embryonic stem cells. Together, these findings provide insight into the developmental origin of ventricular and atrial cells, and may lead to the establishment of new strategies for generating chamber-specific cell types from pluripotent stem cells.
Collapse
|
90
|
Generation of PDGFRα + Cardioblasts from Pluripotent Stem Cells. Sci Rep 2017; 7:41840. [PMID: 28165490 PMCID: PMC5292955 DOI: 10.1038/srep41840] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Accepted: 12/28/2016] [Indexed: 12/24/2022] Open
Abstract
Isolating actively proliferating cardioblasts is the first crucial step for cardiac regeneration through cell implantation. However, the origin and identity of putative cardioblasts are still unclear. Here, we uncover a novel class of cardiac lineage cells, PDGFRα+Flk1− cardioblasts (PCBs), from mouse and human pluripotent stem cells induced using CsAYTE, a combination of the small molecules Cyclosporin A, the rho-associated coiled-coil kinase inhibitor Y27632, the antioxidant Trolox, and the ALK5 inhibitor EW7197. This novel population of actively proliferating cells is cardiac lineage–committed but in a morphologically and functionally immature state compared to mature cardiomyocytes. Most important, most of CsAYTE-induced PCBs spontaneously differentiated into functional αMHC+ cardiomyocytes (M+CMs) and could be a potential cellular resource for cardiac regeneration.
Collapse
|
91
|
Ren X, Yang X, Cheng B, Chen X, Zhang T, He Q, Li B, Li Y, Tang X, Wen X, Zhong Q, Kang T, Zeng M, Liu N, Ma J. HOPX hypermethylation promotes metastasis via activating SNAIL transcription in nasopharyngeal carcinoma. Nat Commun 2017; 8:14053. [PMID: 28146149 PMCID: PMC5296651 DOI: 10.1038/ncomms14053] [Citation(s) in RCA: 90] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Accepted: 11/22/2016] [Indexed: 12/24/2022] Open
Abstract
Nasopharyngeal carcinoma (NPC) is characterized by a high rate of local invasion and early distant metastasis. Increasing evidence indicates that epigenetic abnormalities play important roles in NPC development. However, the epigenetic mechanisms underlying NPC metastasis remain unclear. Here we investigate aberrantly methylated transcription factors in NPC tissues, and we identify the HOP homeobox HOPX as the most significantly hypermethylated gene. Consistently, we find that HOXP expression is downregulated in NPC tissues and NPC cell lines. Restoring HOPX expression suppresses metastasis and enhances chemosensitivity of NPC cells. These effects are mediated by HOPX-mediated epigenetic silencing of SNAIL transcription through the enhancement of histone H3K9 deacetylation in the SNAIL promoter. Moreover, we find that patients with high methylation levels of HOPX exhibit poor clinical outcomes in both the training and validation cohorts. In summary, HOPX acts as a tumour suppressor via the epigenetic regulation of SNAIL transcription, which provides a novel prognostic biomarker for NPC metastasis and therapeutic target for NPC treatment.
Collapse
Affiliation(s)
- Xianyue Ren
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, 651 Dongfeng Road East, Guangzhou, Guangdong 510060, China.,Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, 56 Lingyuan Road west, Guangzhou, Guangdong 510055, China
| | - Xiaojing Yang
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, 651 Dongfeng Road East, Guangzhou, Guangdong 510060, China
| | - Bin Cheng
- Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, 56 Lingyuan Road west, Guangzhou, Guangdong 510055, China
| | - Xiaozhong Chen
- Department of Radiation Oncology, Zhejiang Cancer Hospital, 38 Guangji Road, Hangzhou, Zhejiang 310022, China
| | - Tianpeng Zhang
- Key Laboratory of Gene Engineering of the Ministry of Education, State Key Laboratory of Biocontrol, School of Life Science, Sun Yat-sen University, 132 Waihuan Road East, Guangzhou, Guangdong 510006, China
| | - Qingmei He
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, 651 Dongfeng Road East, Guangzhou, Guangdong 510060, China
| | - Bin Li
- Department of Radiation Oncology, Zhejiang Cancer Hospital, 38 Guangji Road, Hangzhou, Zhejiang 310022, China
| | - Yingqin Li
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, 651 Dongfeng Road East, Guangzhou, Guangdong 510060, China
| | - Xinran Tang
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, 651 Dongfeng Road East, Guangzhou, Guangdong 510060, China
| | - Xin Wen
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, 651 Dongfeng Road East, Guangzhou, Guangdong 510060, China
| | - Qian Zhong
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, 651 Dongfeng Road East, Guangzhou, Guangdong 510060, China
| | - Tiebang Kang
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, 651 Dongfeng Road East, Guangzhou, Guangdong 510060, China
| | - Musheng Zeng
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, 651 Dongfeng Road East, Guangzhou, Guangdong 510060, China
| | - Na Liu
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, 651 Dongfeng Road East, Guangzhou, Guangdong 510060, China
| | - Jun Ma
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, 651 Dongfeng Road East, Guangzhou, Guangdong 510060, China
| |
Collapse
|
92
|
Loh KM, Chen A, Koh PW, Deng TZ, Sinha R, Tsai JM, Barkal AA, Shen KY, Jain R, Morganti RM, Shyh-Chang N, Fernhoff NB, George BM, Wernig G, Salomon REA, Chen Z, Vogel H, Epstein JA, Kundaje A, Talbot WS, Beachy PA, Ang LT, Weissman IL. Mapping the Pairwise Choices Leading from Pluripotency to Human Bone, Heart, and Other Mesoderm Cell Types. Cell 2017; 166:451-467. [PMID: 27419872 DOI: 10.1016/j.cell.2016.06.011] [Citation(s) in RCA: 327] [Impact Index Per Article: 40.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2015] [Revised: 04/25/2016] [Accepted: 06/01/2016] [Indexed: 01/04/2023]
Abstract
Stem-cell differentiation to desired lineages requires navigating alternating developmental paths that often lead to unwanted cell types. Hence, comprehensive developmental roadmaps are crucial to channel stem-cell differentiation toward desired fates. To this end, here, we map bifurcating lineage choices leading from pluripotency to 12 human mesodermal lineages, including bone, muscle, and heart. We defined the extrinsic signals controlling each binary lineage decision, enabling us to logically block differentiation toward unwanted fates and rapidly steer pluripotent stem cells toward 80%-99% pure human mesodermal lineages at most branchpoints. This strategy enabled the generation of human bone and heart progenitors that could engraft in respective in vivo models. Mapping stepwise chromatin and single-cell gene expression changes in mesoderm development uncovered somite segmentation, a previously unobservable human embryonic event transiently marked by HOPX expression. Collectively, this roadmap enables navigation of mesodermal development to produce transplantable human tissue progenitors and uncover developmental processes. VIDEO ABSTRACT.
Collapse
Affiliation(s)
- Kyle M Loh
- Department of Developmental Biology, Institute for Stem Cell Biology & Regenerative Medicine, Ludwig Center for Cancer Stem Cell Biology and Medicine, Stanford University School of Medicine, CA 94305, USA
| | - Angela Chen
- Department of Developmental Biology, Institute for Stem Cell Biology & Regenerative Medicine, Ludwig Center for Cancer Stem Cell Biology and Medicine, Stanford University School of Medicine, CA 94305, USA
| | - Pang Wei Koh
- Departments of Genetics and Computer Science, Stanford University School of Medicine, CA 94305, USA
| | - Tianda Z Deng
- Department of Developmental Biology, Institute for Stem Cell Biology & Regenerative Medicine, Ludwig Center for Cancer Stem Cell Biology and Medicine, Stanford University School of Medicine, CA 94305, USA
| | - Rahul Sinha
- Department of Developmental Biology, Institute for Stem Cell Biology & Regenerative Medicine, Ludwig Center for Cancer Stem Cell Biology and Medicine, Stanford University School of Medicine, CA 94305, USA
| | - Jonathan M Tsai
- Department of Developmental Biology, Institute for Stem Cell Biology & Regenerative Medicine, Ludwig Center for Cancer Stem Cell Biology and Medicine, Stanford University School of Medicine, CA 94305, USA
| | - Amira A Barkal
- Department of Developmental Biology, Institute for Stem Cell Biology & Regenerative Medicine, Ludwig Center for Cancer Stem Cell Biology and Medicine, Stanford University School of Medicine, CA 94305, USA
| | - Kimberle Y Shen
- Department of Developmental Biology, Institute for Stem Cell Biology & Regenerative Medicine, Ludwig Center for Cancer Stem Cell Biology and Medicine, Stanford University School of Medicine, CA 94305, USA
| | - Rajan Jain
- Department of Cell and Developmental Biology, Cardiovascular Institute, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Rachel M Morganti
- Department of Developmental Biology, Institute for Stem Cell Biology & Regenerative Medicine, Ludwig Center for Cancer Stem Cell Biology and Medicine, Stanford University School of Medicine, CA 94305, USA
| | - Ng Shyh-Chang
- Stem Cell & Regenerative Biology Group, Genome Institute of Singapore, Singapore 138672, Singapore
| | - Nathaniel B Fernhoff
- Department of Developmental Biology, Institute for Stem Cell Biology & Regenerative Medicine, Ludwig Center for Cancer Stem Cell Biology and Medicine, Stanford University School of Medicine, CA 94305, USA
| | - Benson M George
- Department of Developmental Biology, Institute for Stem Cell Biology & Regenerative Medicine, Ludwig Center for Cancer Stem Cell Biology and Medicine, Stanford University School of Medicine, CA 94305, USA
| | - Gerlinde Wernig
- Department of Pathology, Stanford University School of Medicine, CA 94305, USA
| | - Rachel E A Salomon
- Department of Developmental Biology, Institute for Stem Cell Biology & Regenerative Medicine, Ludwig Center for Cancer Stem Cell Biology and Medicine, Stanford University School of Medicine, CA 94305, USA
| | - Zhenghao Chen
- Department of Developmental Biology, Institute for Stem Cell Biology & Regenerative Medicine, Ludwig Center for Cancer Stem Cell Biology and Medicine, Stanford University School of Medicine, CA 94305, USA
| | - Hannes Vogel
- Department of Pathology, Stanford University School of Medicine, CA 94305, USA
| | - Jonathan A Epstein
- Department of Cell and Developmental Biology, Cardiovascular Institute, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Anshul Kundaje
- Departments of Genetics and Computer Science, Stanford University School of Medicine, CA 94305, USA
| | - William S Talbot
- Department of Developmental Biology, Institute for Stem Cell Biology & Regenerative Medicine, Ludwig Center for Cancer Stem Cell Biology and Medicine, Stanford University School of Medicine, CA 94305, USA
| | - Philip A Beachy
- Department of Developmental Biology, Institute for Stem Cell Biology & Regenerative Medicine, Ludwig Center for Cancer Stem Cell Biology and Medicine, Stanford University School of Medicine, CA 94305, USA; Department of Biochemistry, Howard Hughes Medical Institute, Stanford University School of Medicine, CA 94305, USA
| | - Lay Teng Ang
- Stem Cell & Regenerative Biology Group, Genome Institute of Singapore, Singapore 138672, Singapore.
| | - Irving L Weissman
- Department of Developmental Biology, Institute for Stem Cell Biology & Regenerative Medicine, Ludwig Center for Cancer Stem Cell Biology and Medicine, Stanford University School of Medicine, CA 94305, USA.
| |
Collapse
|
93
|
Wang X, Chen D, Chen K, Jubran A, Ramirez A, Astrof S. Endothelium in the pharyngeal arches 3, 4 and 6 is derived from the second heart field. Dev Biol 2016; 421:108-117. [PMID: 27955943 DOI: 10.1016/j.ydbio.2016.12.010] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Revised: 11/18/2016] [Accepted: 12/03/2016] [Indexed: 12/22/2022]
Abstract
Oxygenated blood from the heart is directed into the systemic circulation through the aortic arch arteries (AAAs). The AAAs arise by remodeling of three symmetrical pairs of pharyngeal arch arteries (PAAs), which connect the heart with the paired dorsal aortae at mid-gestation. Aberrant PAA formation results in defects frequently observed in patients with lethal congenital heart disease. How the PAAs form in mammals is not understood. The work presented in this manuscript shows that the second heart field (SHF) is the major source of progenitors giving rise to the endothelium of the pharyngeal arches 3 - 6, while the endothelium in the pharyngeal arches 1 and 2 is derived from a different source. During the formation of the PAAs 3 - 6, endothelial progenitors in the SHF extend cellular processes toward the pharyngeal endoderm, migrate from the SHF and assemble into a uniform vascular plexus. This plexus then undergoes remodeling, whereby plexus endothelial cells coalesce into a large PAA in each pharyngeal arch. Taken together, our studies establish a platform for investigating cellular and molecular mechanisms regulating PAA formation and alterations that lead to disease.
Collapse
Affiliation(s)
- Xia Wang
- Thomas Jefferson University, Department of Medicine, Center for Translational Medicine, 1020 Locust Street, Philadelphia, PA, 19107, USA
| | - Dongying Chen
- Thomas Jefferson University, Department of Medicine, Center for Translational Medicine, 1020 Locust Street, Philadelphia, PA, 19107, USA; Graduate Program in Cell & Developmental Biology, Thomas Jefferson University, Philadelphia, PA, USA
| | - Kelley Chen
- Thomas Jefferson University, Department of Medicine, Center for Translational Medicine, 1020 Locust Street, Philadelphia, PA, 19107, USA; Jefferson Medical College of Thomas Jefferson University, Clinical & Translational Research Track, USA
| | - Ali Jubran
- Thomas Jefferson University, Department of Medicine, Center for Translational Medicine, 1020 Locust Street, Philadelphia, PA, 19107, USA; The Master's of Science Program in Cell & Developmental Biology, Thomas Jefferson University, Philadelphia, PA, USA
| | - AnnJosette Ramirez
- Thomas Jefferson University, Department of Medicine, Center for Translational Medicine, 1020 Locust Street, Philadelphia, PA, 19107, USA; Graduate Program in Cell & Developmental Biology, Thomas Jefferson University, Philadelphia, PA, USA
| | - Sophie Astrof
- Thomas Jefferson University, Department of Medicine, Center for Translational Medicine, 1020 Locust Street, Philadelphia, PA, 19107, USA; Graduate Program in Cell & Developmental Biology, Thomas Jefferson University, Philadelphia, PA, USA.
| |
Collapse
|
94
|
DeLaughter DM, Bick AG, Wakimoto H, McKean D, Gorham JM, Kathiriya IS, Hinson JT, Homsy J, Gray J, Pu W, Bruneau BG, Seidman JG, Seidman CE. Single-Cell Resolution of Temporal Gene Expression during Heart Development. Dev Cell 2016; 39:480-490. [PMID: 27840107 PMCID: PMC5198784 DOI: 10.1016/j.devcel.2016.10.001] [Citation(s) in RCA: 317] [Impact Index Per Article: 35.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2015] [Revised: 03/30/2016] [Accepted: 09/30/2016] [Indexed: 12/29/2022]
Abstract
Activation of complex molecular programs in specific cell lineages governs mammalian heart development, from a primordial linear tube to a four-chamber organ. To characterize lineage-specific, spatiotemporal developmental programs, we performed single-cell RNA sequencing of >1,200 murine cells isolated at seven time points spanning embryonic day 9.5 (primordial heart tube) to postnatal day 21 (mature heart). Using unbiased transcriptional data, we classified cardiomyocytes, endothelial cells, and fibroblast-enriched cells, thus identifying markers for temporal and chamber-specific developmental programs. By harnessing these datasets, we defined developmental ages of human and mouse pluripotent stem-cell-derived cardiomyocytes and characterized lineage-specific maturation defects in hearts of mice with heterozygous mutations in Nkx2.5 that cause human heart malformations. This spatiotemporal transcriptome analysis of heart development reveals lineage-specific gene programs underlying normal cardiac development and congenital heart disease.
Collapse
Affiliation(s)
| | - Alexander G. Bick
- Department of Genetics, Harvard Medical School, Boston, Massachusetts, USA
| | - Hiroko Wakimoto
- Department of Genetics, Harvard Medical School, Boston, Massachusetts, USA
| | - David McKean
- Department of Genetics, Harvard Medical School, Boston, Massachusetts, USA
| | - Joshua M. Gorham
- Department of Genetics, Harvard Medical School, Boston, Massachusetts, USA
| | - Irfan S. Kathiriya
- Gladstone Institute of Cardiovascular Disease, San Francisco, CA
- Department of Anesthesia and Perioperative Care, University of California, San Francisco
| | - John T. Hinson
- Division of Cardiovascular Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Jason Homsy
- Department of Genetics, Harvard Medical School, Boston, Massachusetts, USA
| | - Jesse Gray
- Department of Genetics, Harvard Medical School, Boston, Massachusetts, USA
| | - William Pu
- Department of Cardiology, Harvard Medical School, Boston Children's Hospital, Boston, Massachusetts, USA
- Harvard Stem Cell Institute, Harvard University, Cambridge, Massachusetts, USA
| | - Benoit G. Bruneau
- Gladstone Institute of Cardiovascular Disease, San Francisco, CA
- Cardiovascular Research Institute and Department of Pediatrics, University of California, San Francisco
| | - J. G. Seidman
- Department of Genetics, Harvard Medical School, Boston, Massachusetts, USA
| | - Christine E. Seidman
- Department of Genetics, Harvard Medical School, Boston, Massachusetts, USA
- Howard Hughes Medical Institute and Cardiovascular Division, Brigham and Women's Hospital, Boston, MA, USA
| |
Collapse
|
95
|
He Z, Grunewald M, Dor Y, Keshet E. VEGF regulates relative allocation of Isl1 + cardiac progenitors to myocardial and endocardial lineages. Mech Dev 2016; 142:40-49. [PMID: 27794491 DOI: 10.1016/j.mod.2016.10.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Revised: 10/18/2016] [Accepted: 10/24/2016] [Indexed: 01/07/2023]
Abstract
A fundamental issue in organogenesis is how dichotomous fate decisions are made securing proper allocation of multipotent progenitors to their respective descendants. Previous lineage tracing analyses showing Isl1+/VEGFR2+ cardiac progenitors in the second heart field give rise to both endocardium and myocardium suggest VEGF plays a role in this fate decision, conceivably promoting an endocardial fate. Isl1+ multipotent progenitors and lineage-committed descendants thereof were visualized and quantified within their transition zone in the outflow tract. Forced VEGF expression during the critical E8.5-E10.5 interval tilted the balance between myocardial- and endocardial-committed progenitors towards the latter, culminating in generation of surplus endocardium developing at the expense of a much thinner myocardium. Experiments ruled-out that surplus endocardium is due to VEGF-induced endocardial proliferation and that reduced myocardium is due to myocardial apoptosis. Inducing VEGF after most Isl1+ progenitors have been exhausted had no effect on the normal endocardia/myocardial ratio but instead produced an unrelated coronary phenotype. Together, these results uncover a novel role for VEGF in controlling proper allocation of Isl1+ cardiac progenitors to their respective descending lineages.
Collapse
Affiliation(s)
- Zhiheng He
- Department of Molecular Biology, Hebrew University-Hadassah Medical School, Jerusalem 91120, Israel.
| | - Myriam Grunewald
- Department of Molecular Biology, Hebrew University-Hadassah Medical School, Jerusalem 91120, Israel
| | - Yuval Dor
- Department of Molecular Biology, Hebrew University-Hadassah Medical School, Jerusalem 91120, Israel
| | - Eli Keshet
- Department of Molecular Biology, Hebrew University-Hadassah Medical School, Jerusalem 91120, Israel.
| |
Collapse
|
96
|
Kikuchi M, Katoh H, Waraya M, Tanaka Y, Ishii S, Tanaka T, Nishizawa N, Yokoi K, Minatani N, Ema A, Kosaka Y, Tanino H, Yamashita K, Watanabe M. Epigenetic silencing of HOPX contributes to cancer aggressiveness in breast cancer. Cancer Lett 2016; 384:70-78. [PMID: 27756570 DOI: 10.1016/j.canlet.2016.10.017] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Revised: 10/06/2016] [Accepted: 10/06/2016] [Indexed: 01/18/2023]
Abstract
Epigenetic silencing of HOPX has been shown to be frequent and specific in human cancers. HOPX is thought as a tumor suppressor gene and its promoter methylation is the main mechanism of down-regulation. In non-hereditary breast cancer, since roles of epigenetic modifications are more critical than in other cancers, the aim of this study is to seek into the roles and clinical relevance of epigenetic silencing of HOPX. Down-regulation of HOPX was observed in all human breast cancer cell lines tested. The promoter methylation was found in six of seven cell lines, and demethylating agents restored HOPX expression. The promoter methylation was cancer-specific in human breast tissues. Forced expression of HOPX attenuated anchorage-independent growth in vitro. HOPX promoter methylation independently predicted worse prognosis of breast cancer patients. Of note, HOPX promoter methylation was significantly associated with HER2 positivity as well as advanced lymph node metastasis. HOPX promoter methylation is not only frequent and cancer-specific but also associated with aggressive phenotype in breast cancer. Epigenetic silencing of HOPX may have clinical potential as a biomarker in the treatment strategy of breast cancer patients.
Collapse
Affiliation(s)
- Mariko Kikuchi
- Department of Surgery, Kitasato University School of Medicine, Kanagawa, Japan
| | - Hiroshi Katoh
- Department of Surgery, Kitasato University School of Medicine, Kanagawa, Japan
| | - Mina Waraya
- Department of Surgery, Kitasato University School of Medicine, Kanagawa, Japan
| | - Yoko Tanaka
- Department of Surgery, Kitasato University School of Medicine, Kanagawa, Japan
| | - Satoru Ishii
- Department of Surgery, Kitasato University School of Medicine, Kanagawa, Japan
| | - Toshimichi Tanaka
- Department of Surgery, Kitasato University School of Medicine, Kanagawa, Japan
| | - Nobuyuki Nishizawa
- Department of Surgery, Kitasato University School of Medicine, Kanagawa, Japan
| | - Keigo Yokoi
- Department of Surgery, Kitasato University School of Medicine, Kanagawa, Japan
| | - Naoko Minatani
- Department of Surgery, Kitasato University School of Medicine, Kanagawa, Japan
| | - Akira Ema
- Department of Surgery, Kitasato University School of Medicine, Kanagawa, Japan
| | - Yoshimasa Kosaka
- Department of Surgery, Kitasato University School of Medicine, Kanagawa, Japan
| | - Hirokazu Tanino
- Department of Surgery, Kitasato University School of Medicine, Kanagawa, Japan
| | - Keishi Yamashita
- Department of Surgery, Kitasato University School of Medicine, Kanagawa, Japan
| | - Masahiko Watanabe
- Department of Surgery, Kitasato University School of Medicine, Kanagawa, Japan.
| |
Collapse
|
97
|
Calderon D, Bardot E, Dubois N. Probing early heart development to instruct stem cell differentiation strategies. Dev Dyn 2016; 245:1130-1144. [PMID: 27580352 DOI: 10.1002/dvdy.24441] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Revised: 08/20/2016] [Accepted: 08/20/2016] [Indexed: 12/19/2022] Open
Abstract
Scientists have studied organs and their development for centuries and, along that path, described models and mechanisms explaining the developmental principles of organogenesis. In particular, with respect to the heart, new fundamental discoveries are reported continuously that keep changing the way we think about early cardiac development. These discoveries are driven by the need to answer long-standing questions regarding the origin of the earliest cells specified to the cardiac lineage, the differentiation potential of distinct cardiac progenitor cells, and, very importantly, the molecular mechanisms underlying these specification events. As evidenced by numerous examples, the wealth of developmental knowledge collected over the years has had an invaluable impact on establishing efficient strategies to generate cardiovascular cell types ex vivo, from either pluripotent stem cells or via direct reprogramming approaches. The ability to generate functional cardiovascular cells in an efficient and reliable manner will contribute to therapeutic strategies aimed at alleviating the increasing burden of cardiovascular disease and morbidity. Here we will discuss the recent discoveries in the field of cardiac progenitor biology and their translation to the pluripotent stem cell model to illustrate how developmental concepts have instructed regenerative model systems in the past and promise to do so in the future. Developmental Dynamics 245:1130-1144, 2016. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Damelys Calderon
- Department of Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, NY, USA.,Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, NY, USA.,Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, NY, USA
| | - Evan Bardot
- Department of Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, NY, USA.,Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, NY, USA.,Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, NY, USA
| | - Nicole Dubois
- Department of Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, NY, USA.,Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, NY, USA.,Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, NY, USA
| |
Collapse
|
98
|
Plaisance I, Perruchoud S, Fernandez-Tenorio M, Gonzales C, Ounzain S, Ruchat P, Nemir M, Niggli E, Pedrazzini T. Cardiomyocyte Lineage Specification in Adult Human Cardiac Precursor Cells Via Modulation of Enhancer-Associated Long Noncoding RNA Expression. JACC Basic Transl Sci 2016; 1:472-493. [PMID: 29707678 PMCID: PMC5916868 DOI: 10.1016/j.jacbts.2016.06.008] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Human CPCs produce predominantly smooth muscle cells. CPCs can be redirected to the cardiomyocyte fate by transient activation followed by inhibition of NOTCH signaling. Inhibition of NOTCH signaling during differentiation represses MIR-143/145 expression and blocks smooth muscle differentiation. Expression of the microRNAs is under control of CARMEN, a long noncoding RNA associated with an enhancer located in the MIR-143/145 locus and target of NOTCH signaling. The CARMEN/MIR-145/143 locus represents a promising therapeutic target to favor production of cardiomyocytes in cell replacement therapies.
The mechanisms controlling differentiation in adult cardiac precursor cells (CPCs) are still largely unknown. In this study, CPCs isolated from the human heart were found to produce predominantly smooth muscle cells but could be redirected to the cardiomyocyte fate by transient activation followed by inhibition of NOTCH signaling. NOTCH inhibition repressed MIR-143/145 expression, and blocked smooth muscle differentiation. Expression of the microRNAs is under control of CARMEN, a long noncoding RNA associated with an enhancer located in the MIR-143/145 locus and target of NOTCH signaling. The CARMEN/MIR-145/143 axis represents, therefore, a promising target to favor production of cardiomyocytes in cell replacement therapies.
Collapse
Affiliation(s)
- Isabelle Plaisance
- Experimental Cardiology Unit, Department of Medicine, University of Lausanne Medical School, Lausanne, Switzerland
| | - Stéphanie Perruchoud
- Experimental Cardiology Unit, Department of Medicine, University of Lausanne Medical School, Lausanne, Switzerland
| | | | - Christine Gonzales
- Experimental Cardiology Unit, Department of Medicine, University of Lausanne Medical School, Lausanne, Switzerland
| | - Samir Ounzain
- Experimental Cardiology Unit, Department of Medicine, University of Lausanne Medical School, Lausanne, Switzerland
| | - Patrick Ruchat
- Department of Cardiovascular Surgery, University of Lausanne Medical School, Lausanne, Switzerland
| | - Mohamed Nemir
- Experimental Cardiology Unit, Department of Medicine, University of Lausanne Medical School, Lausanne, Switzerland
| | - Ernst Niggli
- Department of Physiology, University of Bern, Bern, Switzerland
| | - Thierry Pedrazzini
- Experimental Cardiology Unit, Department of Medicine, University of Lausanne Medical School, Lausanne, Switzerland
- Reprint requests and correspondence: Dr. Thierry Pedrazzini, Experimental Cardiology Unit, Department of Medicine, University of Lausanne Medical School, CH-1011 Lausanne, Switzerland.
| |
Collapse
|
99
|
Munnamalai V, Fekete DM. Notch-Wnt-Bmp crosstalk regulates radial patterning in the mouse cochlea in a spatiotemporal manner. Development 2016; 143:4003-4015. [PMID: 27633988 DOI: 10.1242/dev.139469] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2016] [Accepted: 09/01/2016] [Indexed: 01/04/2023]
Abstract
The sensory cells of the mammalian organ of Corti assume a precise mosaic arrangement during embryonic development. Manipulation of Wnt signaling can modulate the proliferation of cochlear progenitors, but whether Wnts are responsible for patterning compartments, or specific hair cells within them, is unclear. To address how the precise timing of Wnt signaling impacts patterning across the radial axis, mouse cochlear cultures were initiated at embryonic day 12.5 and subjected to pharmacological treatments at different stages. Early changes in major patterning genes were assessed to understand the mechanisms underlying alterations of compartments. Results show that Wnt activation can promote medial cell fates by regulating medially expressed Notch genes in a spatiotemporal manner. Wnts can also suppress lateral cell fates by antagonizing Bmp4 expression. Perturbation of the Notch and Bmp pathways revealed which secondary effects were linked to these pathways. Importantly, these effects on cochlear development are dependent on the timing of drug delivery. In conclusion, Wnt signaling in the cochlea influences patterning through complex crosstalk with the Notch and Bmp pathways at several stages of embryonic development.
Collapse
Affiliation(s)
- Vidhya Munnamalai
- Department of Biological Sciences, Purdue University, West Lafayette, IN 47907, USA.,Purdue Institute for Integrative Neuroscience, Purdue University, West Lafayette, IN 47907, USA
| | - Donna M Fekete
- Department of Biological Sciences, Purdue University, West Lafayette, IN 47907, USA .,Purdue Institute for Integrative Neuroscience, Purdue University, West Lafayette, IN 47907, USA.,Purdue University Center for Cancer Research, Purdue University, West Lafayette, IN 47907, USA
| |
Collapse
|
100
|
Spatiotemporal regulation of enhancers during cardiogenesis. Cell Mol Life Sci 2016; 74:257-265. [PMID: 27497925 PMCID: PMC5219004 DOI: 10.1007/s00018-016-2322-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2016] [Revised: 07/20/2016] [Accepted: 08/02/2016] [Indexed: 01/02/2023]
Abstract
With the advance in chromatin immunoprecipitation followed by high-throughput sequencing, there has been a dramatic increase in our understanding of distal enhancer function. In the developing heart, the identification and characterisation of such enhancers have deepened our knowledge of the mechanisms of transcriptional regulation that drives cardiac differentiation. With next-generation sequencing techniques becoming widely accessible, the quantity of data describing the genome-wide distribution of cardiac-specific transcription factor and chromatin modifiers has rapidly increased and it is now becoming clear that the usage of enhancers is highly dynamic and complex, both during the development and in the adult. The identification of those enhancers has revealed new insights into the transcriptional mechanisms of how tissue-specific gene expression patterns are established, maintained, and change dynamically during development and upon physiological stress.
Collapse
|