51
|
Zhang L, Zhao Y, Gao Y, Wu L, Gao R, Zhang Q, Wang Y, Wu C, Wu F, Gurcha SS, Veerapen N, Batt SM, Zhao W, Qin L, Yang X, Wang M, Zhu Y, Zhang B, Bi L, Zhang X, Yang H, Guddat LW, Xu W, Wang Q, Li J, Besra GS, Rao Z. Structures of cell wall arabinosyltransferases with the anti-tuberculosis drug ethambutol. Science 2020; 368:1211-1219. [PMID: 32327601 DOI: 10.1126/science.aba9102] [Citation(s) in RCA: 97] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 02/06/2020] [Accepted: 04/14/2020] [Indexed: 11/02/2022]
Abstract
The arabinosyltransferases EmbA, EmbB, and EmbC are involved in Mycobacterium tuberculosis cell wall synthesis and are recognized as targets for the anti-tuberculosis drug ethambutol. In this study, we determined cryo-electron microscopy and x-ray crystal structures of mycobacterial EmbA-EmbB and EmbC-EmbC complexes in the presence of their glycosyl donor and acceptor substrates and with ethambutol. These structures show how the donor and acceptor substrates bind in the active site and how ethambutol inhibits arabinosyltransferases by binding to the same site as both substrates in EmbB and EmbC. Most drug-resistant mutations are located near the ethambutol binding site. Collectively, our work provides a structural basis for understanding the biochemical function and inhibition of arabinosyltransferases and the development of new anti-tuberculosis agents.
Collapse
Affiliation(s)
- Lu Zhang
- Shanghai Institute for Advanced Immunochemical Studies, iHuman Institute, School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China.,State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Center for Cell Response, College of Life Sciences, College of Pharmacy, Nankai University, Tianjin 300353, China
| | - Yao Zhao
- Shanghai Institute for Advanced Immunochemical Studies, iHuman Institute, School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China.,CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai 200031, China.,University of Chinese Academy of Sciences, Beijing 100101, China
| | - Yan Gao
- Laboratory of Structural Biology, Tsinghua University, Beijing 100084, China
| | - Lijie Wu
- Shanghai Institute for Advanced Immunochemical Studies, iHuman Institute, School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Ruogu Gao
- University of Chinese Academy of Sciences, Beijing 100101, China.,National Laboratory of Biomacromolecules and Key Laboratory of RNA Biology, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, CAS, Beijing 100101, China
| | - Qi Zhang
- Shanghai Institute for Advanced Immunochemical Studies, iHuman Institute, School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Yinan Wang
- Shanghai Institute for Advanced Immunochemical Studies, iHuman Institute, School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China.,University of Chinese Academy of Sciences, Beijing 100101, China
| | - Chengyao Wu
- Shanghai Institute for Advanced Immunochemical Studies, iHuman Institute, School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Fangyu Wu
- State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Center for Cell Response, College of Life Sciences, College of Pharmacy, Nankai University, Tianjin 300353, China
| | - Sudagar S Gurcha
- Institute of Microbiology and Infection, School of Biosciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Natacha Veerapen
- Institute of Microbiology and Infection, School of Biosciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Sarah M Batt
- Institute of Microbiology and Infection, School of Biosciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Wei Zhao
- State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Center for Cell Response, College of Life Sciences, College of Pharmacy, Nankai University, Tianjin 300353, China
| | - Ling Qin
- Shanghai Institute for Advanced Immunochemical Studies, iHuman Institute, School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Xiuna Yang
- Shanghai Institute for Advanced Immunochemical Studies, iHuman Institute, School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Manfu Wang
- Shanghai Institute for Advanced Immunochemical Studies, iHuman Institute, School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Yan Zhu
- Shanghai Institute for Advanced Immunochemical Studies, iHuman Institute, School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Bing Zhang
- Shanghai Institute for Advanced Immunochemical Studies, iHuman Institute, School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Lijun Bi
- National Laboratory of Biomacromolecules and Key Laboratory of RNA Biology, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, CAS, Beijing 100101, China
| | - Xian'en Zhang
- National Laboratory of Biomacromolecules and Key Laboratory of RNA Biology, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, CAS, Beijing 100101, China
| | - Haitao Yang
- Shanghai Institute for Advanced Immunochemical Studies, iHuman Institute, School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Luke W Guddat
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Wenqing Xu
- Shanghai Institute for Advanced Immunochemical Studies, iHuman Institute, School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Quan Wang
- Shanghai Institute for Advanced Immunochemical Studies, iHuman Institute, School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China. .,National Laboratory of Biomacromolecules and Key Laboratory of RNA Biology, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, CAS, Beijing 100101, China
| | - Jun Li
- Shanghai Institute for Advanced Immunochemical Studies, iHuman Institute, School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China.
| | - Gurdyal S Besra
- Institute of Microbiology and Infection, School of Biosciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK.
| | - Zihe Rao
- Shanghai Institute for Advanced Immunochemical Studies, iHuman Institute, School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China. .,State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Center for Cell Response, College of Life Sciences, College of Pharmacy, Nankai University, Tianjin 300353, China.,Laboratory of Structural Biology, Tsinghua University, Beijing 100084, China.,National Laboratory of Biomacromolecules and Key Laboratory of RNA Biology, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, CAS, Beijing 100101, China
| |
Collapse
|
52
|
Huang J, Li C, Song J, Velkov T, Wang L, Zhu Y, Li J. Regulating polymyxin resistance in Gram-negative bacteria: roles of two-component systems PhoPQ and PmrAB. Future Microbiol 2020; 15:445-459. [PMID: 32250173 DOI: 10.2217/fmb-2019-0322] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Polymyxins (polymyxin B and colistin) are last-line antibiotics against multidrug-resistant Gram-negative pathogens. Polymyxin resistance is increasing worldwide, with resistance most commonly regulated by two-component systems such as PmrAB and PhoPQ. This review discusses the regulatory mechanisms of PhoPQ and PmrAB in mediating polymyxin resistance, from receiving an external stimulus through to activation of genes responsible for lipid A modifications. By analyzing the reported nonsynonymous substitutions in each two-component system, we identified the domains that are critical for polymyxin resistance. Notably, for PmrB 71% of resistance-conferring nonsynonymous mutations occurred in the HAMP (present in histidine kinases, adenylate cyclases, methyl accepting proteins and phosphatase) linker and DHp (dimerization and histidine phosphotransfer) domains. These results enhance our understanding of the regulatory mechanisms underpinning polymyxin resistance and may assist with the development of new strategies to minimize resistance emergence.
Collapse
Affiliation(s)
- Jiayuan Huang
- Biomedicine Discovery Institute & Department of Microbiology, Monash University, Melbourne 3800, Australia
| | - Chen Li
- Biomedicine Discovery Institute & Department of Biochemistry & Molecular Biology, Monash University, Melbourne 3800, Australia.,Department of Biology, Institute of Molecular Systems Biology, ETH Zurich, Zurich 8093, Switzerland
| | - Jiangning Song
- Biomedicine Discovery Institute & Department of Biochemistry & Molecular Biology, Monash University, Melbourne 3800, Australia
| | - Tony Velkov
- Department of Pharmacology & Therapeutics, School of Biomedical Sciences, Faculty of Medicine, Dentistry & Health Sciences, The University of Melbourne, Melbourne 3010, Australia
| | - Lushan Wang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China
| | - Yan Zhu
- Biomedicine Discovery Institute & Department of Microbiology, Monash University, Melbourne 3800, Australia
| | - Jian Li
- Biomedicine Discovery Institute & Department of Microbiology, Monash University, Melbourne 3800, Australia
| |
Collapse
|
53
|
Chen L, Hou WT, Fan T, Liu B, Pan T, Li YH, Jiang YL, Wen W, Chen ZP, Sun L, Zhou CZ, Chen Y. Cryo-electron Microscopy Structure and Transport Mechanism of a Wall Teichoic Acid ABC Transporter. mBio 2020; 11:e02749-19. [PMID: 32184247 PMCID: PMC7078476 DOI: 10.1128/mbio.02749-19] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Accepted: 02/21/2020] [Indexed: 01/24/2023] Open
Abstract
The wall teichoic acid (WTA) is a major cell wall component of Gram-positive bacteria, such as methicillin-resistant Staphylococcus aureus (MRSA), a common cause of fatal clinical infections in humans. Thus, the indispensable ABC transporter TarGH, which flips WTA from cytoplasm to extracellular space, becomes a promising target of anti-MRSA drugs. Here, we report the 3.9-Å cryo-electron microscopy (cryo-EM) structure of a 50% sequence-identical homolog of TarGH from Alicyclobacillus herbarius at an ATP-free and inward-facing conformation. Structural analysis combined with activity assays enables us to clearly decode the binding site and inhibitory mechanism of the anti-MRSA inhibitor Targocil, which targets TarGH. Moreover, we propose a "crankshaft conrod" mechanism utilized by TarGH, which can be applied to similar ABC transporters that translocate a rather big substrate through relatively subtle conformational changes. These findings provide a structural basis for the rational design and optimization of antibiotics against MRSA.IMPORTANCE The wall teichoic acid (WTA) is a major component of cell wall and a pathogenic factor in methicillin-resistant Staphylococcus aureus (MRSA). The ABC transporter TarGH is indispensable for flipping WTA precursor from cytoplasm to the extracellular space, thus making it a promising drug target for anti-MRSA agents. The 3.9-Å cryo-EM structure of a TarGH homolog helps us to decode the binding site and inhibitory mechanism of a recently reported inhibitor, Targocil, and provides a structural platform for rational design and optimization of potential antibiotics. Moreover, we propose a "crankshaft conrod" mechanism to explain how a big substrate is translocated through subtle conformational changes of type II exporters. These findings advance our understanding of anti-MRSA drug design and ABC transporters.
Collapse
Affiliation(s)
- Li Chen
- Hefei National Laboratory for Physical Sciences at the Microscale and School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, China
| | - Wen-Tao Hou
- Hefei National Laboratory for Physical Sciences at the Microscale and School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, China
| | - Tao Fan
- School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui, China
| | - Banghui Liu
- Hefei National Laboratory for Physical Sciences at the Microscale and School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, China
| | - Ting Pan
- Hefei National Laboratory for Physical Sciences at the Microscale and School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, China
| | - Yu-Hui Li
- School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui, China
| | - Yong-Liang Jiang
- Hefei National Laboratory for Physical Sciences at the Microscale and School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, China
| | - Wen Wen
- Hefei National Laboratory for Physical Sciences at the Microscale and School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, China
| | - Zhi-Peng Chen
- Hefei National Laboratory for Physical Sciences at the Microscale and School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, China
| | - Linfeng Sun
- Hefei National Laboratory for Physical Sciences at the Microscale and School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, China
- CAS Centre for Excellence in Molecular Cell Science, University of Science and Technology of China, Hefei, Anhui, China
| | - Cong-Zhao Zhou
- Hefei National Laboratory for Physical Sciences at the Microscale and School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, China
| | - Yuxing Chen
- Hefei National Laboratory for Physical Sciences at the Microscale and School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, China
| |
Collapse
|
54
|
Structure and mechanism of the ER-based glucosyltransferase ALG6. Nature 2020; 579:443-447. [PMID: 32103179 DOI: 10.1038/s41586-020-2044-z] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Accepted: 01/06/2020] [Indexed: 01/03/2023]
Abstract
In eukaryotic protein N-glycosylation, a series of glycosyltransferases catalyse the biosynthesis of a dolichylpyrophosphate-linked oligosaccharide before its transfer onto acceptor proteins1. The final seven steps occur in the lumen of the endoplasmic reticulum (ER) and require dolichylphosphate-activated mannose and glucose as donor substrates2. The responsible enzymes-ALG3, ALG9, ALG12, ALG6, ALG8 and ALG10-are glycosyltransferases of the C-superfamily (GT-Cs), which are loosely defined as containing membrane-spanning helices and processing an isoprenoid-linked carbohydrate donor substrate3,4. Here we present the cryo-electron microscopy structure of yeast ALG6 at 3.0 Å resolution, which reveals a previously undescribed transmembrane protein fold. Comparison with reported GT-C structures suggests that GT-C enzymes contain a modular architecture with a conserved module and a variable module, each with distinct functional roles. We used synthetic analogues of dolichylphosphate-linked and dolichylpyrophosphate-linked sugars and enzymatic glycan extension to generate donor and acceptor substrates using purified enzymes of the ALG pathway to recapitulate the activity of ALG6 in vitro. A second cryo-electron microscopy structure of ALG6 bound to an analogue of dolichylphosphate-glucose at 3.9 Å resolution revealed the active site of the enzyme. Functional analysis of ALG6 variants identified a catalytic aspartate residue that probably acts as a general base. This residue is conserved in the GT-C superfamily. Our results define the architecture of ER-luminal GT-C enzymes and provide a structural basis for understanding their catalytic mechanisms.
Collapse
|
55
|
Kerner L, Kosma P. Synthesis of C-glycosyl phosphonate derivatives of 4-amino-4-deoxy-α-ʟ-arabinose. Beilstein J Org Chem 2020; 16:9-14. [PMID: 31976011 PMCID: PMC6964659 DOI: 10.3762/bjoc.16.2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Accepted: 12/06/2019] [Indexed: 01/13/2023] Open
Abstract
The incorporation of basic substituents into the structurally conserved domains of cell wall lipopolysaccharides has been identified as a major mechanism contributing to antimicrobial resistance of Gram-negative pathogenic bacteria. Inhibition of the corresponding enzymatic steps, specifically the transfer of 4-amino-4-deoxy-ʟ-arabinose, would thus restore the activity of cationic antimicrobial peptides and several antimicrobial drugs. C-glycosidically-linked phospholipid derivatives of 4-amino-4-deoxy-ʟ-arabinose have been prepared as hydrolytically stable and chain-shortened analogues of the native undecaprenyl donor. The C-phosphonate unit was installed via a Wittig reaction of benzyl-protected 1,5-arabinonic acid lactone with the lithium salt of dimethyl methylphosphonate followed by an elimination step of the resulting hemiketal, leading to the corresponding exo- and endo-glycal derivatives. The ensuing selective monodemethylation and hydrogenolysis of the benzyl groups and reduction of the 4-azido group gave the α-ʟ-anomeric arabino- and ribo-configured methyl phosphonate esters. In addition, the monomethyl phosphonate glycal intermediates were converted into n-octyl derivatives followed by subsequent selective removal of the methyl phosphonate ester group and hydrogenation to give the octylphosphono derivatives. These intermediates will be of value for their future conversion into transition state analogues as well as for the introduction of various lipid extensions at the anomeric phosphonate moiety.
Collapse
Affiliation(s)
- Lukáš Kerner
- University of Natural Resources and Life Sciences, Vienna Department of Chemistry, Muthgasse 18, A-1190 Vienna, Austria
| | - Paul Kosma
- University of Natural Resources and Life Sciences, Vienna Department of Chemistry, Muthgasse 18, A-1190 Vienna, Austria
| |
Collapse
|
56
|
Bencivenga-Barry NA, Lim B, Herrera CM, Trent MS, Goodman AL. Genetic Manipulation of Wild Human Gut Bacteroides. J Bacteriol 2020; 202:e00544-19. [PMID: 31712278 PMCID: PMC6964735 DOI: 10.1128/jb.00544-19] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Accepted: 11/01/2019] [Indexed: 12/30/2022] Open
Abstract
Bacteroides is one of the most prominent genera in the human gut microbiome, and study of this bacterial group provides insights into gut microbial ecology and pathogenesis. In this report, we introduce a negative selection system for rapid and efficient allelic exchange in wild Bacteroides species that does not require any alterations to the genetic background or a nutritionally defined culture medium. In this approach, dual antibacterial effectors normally delivered via type VI secretion are targeted to the bacterial periplasm under the control of tightly regulated anhydrotetracycline (aTC)-inducible promoters. Introduction of aTC selects for recombination events producing the desired genetic modification, and the dual effector design allows for broad applicability across strains that may have immunity to one counterselection effector. We demonstrate the utility of this approach across 21 human gut Bacteroides isolates representing diverse species, including strains isolated directly from human donors. We use this system to establish that antimicrobial peptide resistance in Bacteroides vulgatus is determined by the product of a gene that is not included in the genomes of previously genetically tractable members of the human gut microbiome.IMPORTANCE Human gut Bacteroides species exhibit strain-level differences in their physiology, ecology, and impact on human health and disease. However, existing approaches for genetic manipulation generally require construction of genetically modified parental strains for each microbe of interest or defined medium formulations. In this report, we introduce a robust and efficient strategy for targeted genetic manipulation of diverse wild-type Bacteroides species from the human gut. This system enables genetic investigation of members of human and animal microbiomes beyond existing model organisms.
Collapse
Affiliation(s)
- Natasha A Bencivenga-Barry
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, Connecticut, USA
- Microbial Sciences Institute, Yale University, West Haven, Connecticut, USA
| | - Bentley Lim
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, Connecticut, USA
- Microbial Sciences Institute, Yale University, West Haven, Connecticut, USA
| | - Carmen M Herrera
- Department of Infectious Diseases, University of Georgia at Athens, College of Veterinary Medicine, Athens, Georgia, USA
- Center for Vaccines and Immunology, University of Georgia at Athens, College of Veterinary Medicine, Athens, Georgia, USA
| | - M Stephen Trent
- Department of Infectious Diseases, University of Georgia at Athens, College of Veterinary Medicine, Athens, Georgia, USA
- Center for Vaccines and Immunology, University of Georgia at Athens, College of Veterinary Medicine, Athens, Georgia, USA
- Department of Microbiology, University of Georgia at Athens, College of Arts and Sciences, Athens, Georgia, USA
| | - Andrew L Goodman
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, Connecticut, USA
- Microbial Sciences Institute, Yale University, West Haven, Connecticut, USA
| |
Collapse
|
57
|
Olagnon C, Monjaras Feria J, Grünwald‐Gruber C, Blaukopf M, Valvano MA, Kosma P. Synthetic Phosphodiester-Linked 4-Amino-4-deoxy-l-arabinose Derivatives Demonstrate that ArnT is an Inverting Aminoarabinosyl Transferase. Chembiochem 2019; 20:2936-2948. [PMID: 31233657 PMCID: PMC6902282 DOI: 10.1002/cbic.201900349] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Indexed: 12/22/2022]
Abstract
4-Amino-4-deoxy-l-arabinopyranose (Ara4N) residues have been linked to antibiotic resistance due to reduction of the negative charge in the lipid A and core regions of the bacterial lipopolysaccharide (LPS). To study the enzymatic transfer of Ara4N onto lipid A, which is catalysed by the ArnT transferase, we chemically synthesised a series of anomeric phosphodiester-linked lipid Ara4N derivatives containing linear aliphatic chains as well as E- and Z-configured monoterpene units. Coupling reactions were based on sugar-derived H-phosphonates, followed by oxidation and global deprotection. The enzymatic Ara4N transfer was performed in vitro with crude membranes from a deep-rough mutant from Escherichia coli as acceptor. Product formation was detected by TLC and LC-ESI-QTOF mass spectrometry. Out of seven analogues tested, only the α-neryl derivative was accepted by the Burkholderia cenocepacia ArnT protein, leading to substitution of the Kdo2 -lipid A acceptor and thus affording evidence that ArnT is an inverting glycosyl transferase that requires the Z-configured double bond next to the anomeric phosphate moiety. This approach provides an easily accessible donor substrate for biochemical studies relating to modifications of bacterial LPS that modulate antibiotic resistance and immune recognition.
Collapse
Affiliation(s)
- Charlotte Olagnon
- Department of ChemistryUniversity of Natural Resources and Life Sciences–ViennaMuthgasse 181190ViennaAustria
| | - Julia Monjaras Feria
- Wellcome-Wolfson Institute of Experimental MedicineQueen's University Belfast97 Lisburn RoadBT9 7BLBelfastUK
| | - Clemens Grünwald‐Gruber
- Department of ChemistryUniversity of Natural Resources and Life Sciences–ViennaMuthgasse 181190ViennaAustria
| | - Markus Blaukopf
- Department of ChemistryUniversity of Natural Resources and Life Sciences–ViennaMuthgasse 181190ViennaAustria
| | - Miguel A. Valvano
- Wellcome-Wolfson Institute of Experimental MedicineQueen's University Belfast97 Lisburn RoadBT9 7BLBelfastUK
| | - Paul Kosma
- Department of ChemistryUniversity of Natural Resources and Life Sciences–ViennaMuthgasse 181190ViennaAustria
| |
Collapse
|
58
|
Panta PR, Kumar S, Stafford CF, Billiot CE, Douglass MV, Herrera CM, Trent MS, Doerrler WT. A DedA Family Membrane Protein Is Required for Burkholderia thailandensis Colistin Resistance. Front Microbiol 2019; 10:2532. [PMID: 31827463 PMCID: PMC6849406 DOI: 10.3389/fmicb.2019.02532] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Accepted: 10/21/2019] [Indexed: 12/15/2022] Open
Abstract
Colistin is a “last resort” antibiotic for treatment of infections caused by some multidrug resistant Gram-negative bacterial pathogens. Resistance to colistin varies between bacterial species. Some Gram-negative bacteria such as Burkholderia spp. are intrinsically resistant to very high levels of colistin with minimal inhibitory concentrations (MIC) often above 0.5 mg/ml. We have previously shown DedA family proteins YqjA and YghB are conserved membrane transporters required for alkaline tolerance and resistance to several classes of dyes and antibiotics in Escherichia coli. Here, we show that a DedA family protein in Burkholderia thailandensis (DbcA; DedA of Burkholderia required for colistin resistance) is a membrane transporter required for resistance to colistin. Mutation of dbcA results in >100-fold greater sensitivity to colistin. Colistin resistance is often conferred via covalent modification of lipopolysaccharide (LPS) lipid A. Mass spectrometry of lipid A of ΔdbcA showed a sharp reduction of aminoarabinose in lipid A compared to wild type. Complementation of colistin sensitivity of B. thailandensis ΔdbcA was observed by expression of dbcA, E. coli yghB or E. coli yqjA. Many proton-dependent transporters possess charged amino acids in transmembrane domains that take part in the transport mechanism and are essential for function. Site directed mutagenesis of conserved and predicted membrane embedded charged amino acids suggest that DbcA functions as a proton-dependent transporter. Direct measurement of membrane potential shows that B. thailandensis ΔdbcA is partially depolarized suggesting that loss of protonmotive force can lead to alterations in LPS structure and severe colistin sensitivity in this species.
Collapse
Affiliation(s)
- Pradip R Panta
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA, United States
| | - Sujeet Kumar
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA, United States
| | - Caroline F Stafford
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA, United States
| | - Caitlin E Billiot
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA, United States
| | - Martin V Douglass
- Department of Infectious Diseases, University of Georgia College of Veterinary Medicine, Athens, GA, United States.,Center for Vaccines and Immunology, University of Georgia College of Veterinary Medicine, Athens, GA, United States
| | - Carmen M Herrera
- Department of Infectious Diseases, University of Georgia College of Veterinary Medicine, Athens, GA, United States.,Center for Vaccines and Immunology, University of Georgia College of Veterinary Medicine, Athens, GA, United States
| | - M Stephen Trent
- Department of Infectious Diseases, University of Georgia College of Veterinary Medicine, Athens, GA, United States.,Center for Vaccines and Immunology, University of Georgia College of Veterinary Medicine, Athens, GA, United States
| | - William T Doerrler
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA, United States
| |
Collapse
|
59
|
Anandan A, Vrielink A. Structure and function of lipid A-modifying enzymes. Ann N Y Acad Sci 2019; 1459:19-37. [PMID: 31553069 DOI: 10.1111/nyas.14244] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 08/26/2019] [Accepted: 09/05/2019] [Indexed: 12/30/2022]
Abstract
Lipopolysaccharides are complex molecules found in the cell envelop of many Gram-negative bacteria. The toxic activity of these molecules has led to the terminology of endotoxins. They provide bacteria with structural integrity and protection from external environmental conditions, and they interact with host signaling receptors to induce host immune responses. Bacteria have evolved enzymes that act to modify lipopolysaccharides, particularly the lipid A region of the molecule, to enable the circumvention of host immune system responses. These modifications include changes to lipopolysaccharide by the addition of positively charged sugars, such as N-Ara4N, and phosphoethanolamine (pEtN). Other modifications include hydroxylation, acylation, and deacylation of fatty acyl chains. We review the two-component regulatory mechanisms for enzymes that carry out these modifications and provide details of the structures of four enzymes (PagP, PagL, pEtN transferases, and ArnT) that modify the lipid A portion of lipopolysaccharides. We focus largely on the three-dimensional structures of these enzymes, which provide an understanding of how their substrate binding and catalytic activities are mediated. A structure-function-based understanding of these enzymes provides a platform for the development of novel therapeutics to treat antibiotic resistance.
Collapse
Affiliation(s)
- Anandhi Anandan
- School of Molecular Sciences, University of Western Australia, Perth, Western Australia, Australia
| | - Alice Vrielink
- School of Molecular Sciences, University of Western Australia, Perth, Western Australia, Australia
| |
Collapse
|
60
|
Zhang H, Srinivas S, Xu Y, Wei W, Feng Y. Genetic and Biochemical Mechanisms for Bacterial Lipid A Modifiers Associated with Polymyxin Resistance. Trends Biochem Sci 2019; 44:973-988. [PMID: 31279652 DOI: 10.1016/j.tibs.2019.06.002] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Revised: 06/02/2019] [Accepted: 06/05/2019] [Indexed: 01/29/2023]
Abstract
Polymyxins are a group of detergent-like antimicrobial peptides that are the ultimate line of defense against carbapenem-resistant pathogens in clinical settings. Polymyxin resistance primarily originates from structural remodeling of lipid A anchored on bacterial surfaces. We integrate genetic, structural, and biochemical aspects of three major types of lipid A modifiers that have been shown to confer intrinsic colistin resistance. Namely, we highlight ArnT, a glycosyltransferase, EptA, a phosphoethanolamine transferase, and the AlmEFG tripartite system, which is restricted to EI Tor biotype of Vibrio cholerae O1. We also discuss the growing family of mobile colistin resistance (MCR) enzymes, each of which is analogous to EptA, and which pose great challenges to global public health.
Collapse
Affiliation(s)
- Huimin Zhang
- Department of Pathogen Biology and Microbiology, and Department of General Intensive Care Unit of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China; Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Swaminath Srinivas
- Department of Pathogen Biology and Microbiology, and Department of General Intensive Care Unit of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China; Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Yongchang Xu
- Department of Pathogen Biology and Microbiology, and Department of General Intensive Care Unit of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
| | - Wenhui Wei
- Department of Pathogen Biology and Microbiology, and Department of General Intensive Care Unit of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
| | - Youjun Feng
- Department of Pathogen Biology and Microbiology, and Department of General Intensive Care Unit of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China; College of Animal Sciences, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China.
| |
Collapse
|
61
|
Bacterial carbohydrate diversity - a Brave New World. Curr Opin Chem Biol 2019; 53:1-8. [PMID: 31176085 DOI: 10.1016/j.cbpa.2019.04.026] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 04/29/2019] [Accepted: 04/30/2019] [Indexed: 12/11/2022]
Abstract
Glycans and glycoconjugates feature on the 'front line' of bacterial cells, playing critical roles in the mechanical and chemical stability of the microorganisms, and orchestrating interactions with the environment and all other living organisms. To negotiate such central tasks, bacterial glycomes incorporate a dizzying array of carbohydrate building blocks and non-carbohydrate modifications, which create opportunities for infinite structural variation. This review highlights some of the challenges and opportunities for the chemical biology community in the field of bacterial glycobiology.
Collapse
|
62
|
Zhang H, Zong Z, Lei S, Srinivas S, Sun J, Feng Y, Huang M, Feng Y. A Genomic, Evolutionary, and Mechanistic Study of MCR-5 Action Suggests Functional Unification across the MCR Family of Colistin Resistance. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2019; 6:1900034. [PMID: 31179217 PMCID: PMC6548960 DOI: 10.1002/advs.201900034] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/05/2019] [Revised: 03/14/2019] [Indexed: 02/05/2023]
Abstract
A growing number of mobile colistin resistance (MCR) proteins is threatening the renewed interest of colistin as a "last-resort" defense against carbapenem-resistant pathogens. Here, the comparative genomics of a large plasmid harboring mcr-5 from Aeromonas hydrophila and the structural/functional perspectives of MCR-5 action are reported. Whole genome sequencing has identified the loss of certain parts of the Tn3-type transposon typically associated with mcr-5, providing a clue toward its mobilization. Phylogeny of MCR-5 suggests that it is distinct from the MCR-1/2 sub-lineage, but might share a common ancestor of MCR-3/4. Domain-swapping analysis of MCR-5 elucidates that its two structural motifs (transmembrane domain and catalytic domain) are incompatible with its counterparts in MCR-1/2. Like the rest of the MCR family, MCR-5 exhibits a series of conservative features, including zinc-dependent active sites, phosphatidylethanolamine-binding cavity, and the mechanism of enzymatic action. In vitro and in vivo evidence that MCR-5 catalyzes the addition of phosphoethanolamine to the suggestive 4'-phosphate of lipid A moieties is integrated, and results in the consequent polymyxin resistance. In addition, MCR-5 alleviates the colistin-induced formation of reactive oxygen species in E. coli. Taken together, the finding suggests that a growing body of MCR family resistance enzymes are functionally unified.
Collapse
Affiliation(s)
- Huimin Zhang
- Department of Pathogen Biology & Microbiology and Department of General Intensive Care Unit of the Second Affiliated HospitalZhejiang University School of MedicineHangzhouZhejiang310058China
- Carl R. Woese Institute for Genomic Biology and Department of BiochemistryUniversity of Illinois at Urbana‐ChampaignUrbanaIL61801USA
| | - Zhiyong Zong
- Center of Infectious DiseasesWest China HospitalSichuan UniversityChengdu610041China
| | - Sheng Lei
- Department of Pathogen Biology & Microbiology and Department of General Intensive Care Unit of the Second Affiliated HospitalZhejiang University School of MedicineHangzhouZhejiang310058China
| | - Swaminath Srinivas
- Carl R. Woese Institute for Genomic Biology and Department of BiochemistryUniversity of Illinois at Urbana‐ChampaignUrbanaIL61801USA
| | - Jian Sun
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original BacteriaSouth China Agricultural UniversityGuangzhou510642China
| | - Yu Feng
- Center of Infectious DiseasesWest China HospitalSichuan UniversityChengdu610041China
| | - Man Huang
- Department of Pathogen Biology & Microbiology and Department of General Intensive Care Unit of the Second Affiliated HospitalZhejiang University School of MedicineHangzhouZhejiang310058China
| | - Youjun Feng
- Department of Pathogen Biology & Microbiology and Department of General Intensive Care Unit of the Second Affiliated HospitalZhejiang University School of MedicineHangzhouZhejiang310058China
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original BacteriaSouth China Agricultural UniversityGuangzhou510642China
- College of Animal SciencesZhejiang UniversityHangzhouZhejiang310058China
| |
Collapse
|
63
|
Enkavi G, Javanainen M, Kulig W, Róg T, Vattulainen I. Multiscale Simulations of Biological Membranes: The Challenge To Understand Biological Phenomena in a Living Substance. Chem Rev 2019; 119:5607-5774. [PMID: 30859819 PMCID: PMC6727218 DOI: 10.1021/acs.chemrev.8b00538] [Citation(s) in RCA: 196] [Impact Index Per Article: 32.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Indexed: 12/23/2022]
Abstract
Biological membranes are tricky to investigate. They are complex in terms of molecular composition and structure, functional over a wide range of time scales, and characterized by nonequilibrium conditions. Because of all of these features, simulations are a great technique to study biomembrane behavior. A significant part of the functional processes in biological membranes takes place at the molecular level; thus computer simulations are the method of choice to explore how their properties emerge from specific molecular features and how the interplay among the numerous molecules gives rise to function over spatial and time scales larger than the molecular ones. In this review, we focus on this broad theme. We discuss the current state-of-the-art of biomembrane simulations that, until now, have largely focused on a rather narrow picture of the complexity of the membranes. Given this, we also discuss the challenges that we should unravel in the foreseeable future. Numerous features such as the actin-cytoskeleton network, the glycocalyx network, and nonequilibrium transport under ATP-driven conditions have so far received very little attention; however, the potential of simulations to solve them would be exceptionally high. A major milestone for this research would be that one day we could say that computer simulations genuinely research biological membranes, not just lipid bilayers.
Collapse
Affiliation(s)
- Giray Enkavi
- Department
of Physics, University of
Helsinki, P.O. Box 64, FI-00014 Helsinki, Finland
| | - Matti Javanainen
- Department
of Physics, University of
Helsinki, P.O. Box 64, FI-00014 Helsinki, Finland
- Institute
of Organic Chemistry and Biochemistry of the Czech Academy
of Sciences, Flemingovo naḿesti 542/2, 16610 Prague, Czech Republic
- Computational
Physics Laboratory, Tampere University, P.O. Box 692, FI-33014 Tampere, Finland
| | - Waldemar Kulig
- Department
of Physics, University of
Helsinki, P.O. Box 64, FI-00014 Helsinki, Finland
| | - Tomasz Róg
- Department
of Physics, University of
Helsinki, P.O. Box 64, FI-00014 Helsinki, Finland
- Computational
Physics Laboratory, Tampere University, P.O. Box 692, FI-33014 Tampere, Finland
| | - Ilpo Vattulainen
- Department
of Physics, University of
Helsinki, P.O. Box 64, FI-00014 Helsinki, Finland
- Computational
Physics Laboratory, Tampere University, P.O. Box 692, FI-33014 Tampere, Finland
- MEMPHYS-Center
for Biomembrane Physics
| |
Collapse
|
64
|
Moosavian M, Emam N. The first report of emerging mobilized colistin-resistance ( mcr) genes and ERIC-PCR typing in Escherichia coli and Klebsiella pneumoniae clinical isolates in southwest Iran. Infect Drug Resist 2019; 12:1001-1010. [PMID: 31118706 PMCID: PMC6500874 DOI: 10.2147/idr.s192597] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2018] [Accepted: 02/20/2019] [Indexed: 01/11/2023] Open
Abstract
Background: The emergence of the plasmid-mediated mcr colistin-resistance gene in bacteria poses a potential threat for treatment of patients, especially when hospitalized. The aims of this study were to search for the presence of mcr-1 and mcr-2 genes among colistin-resistant Escherichia coli (E. coli) and Klebsiella pneumoniae (K. pneumoniae) isolates from clinical specimens and to determine the fingerprint of strains by enterobacterial repetitive intergenic consensus sequences PCR (ERIC-PCR) method. Methods: In this study, 712 nonduplicate Enterobacteriaceae isolates from clinical specimens were examined. All of the isolates were subcultured on suitable media, and the isolated colonies were identified by standard biochemical tests. Antimicrobial susceptibility test on 7 antibiotics was performed by disk diffusion method, and minimal inhibitory concentration (MIC) of isolates to colistin was determined by the E-test method. These isolates were typed by ERIC-PCR method, and the presence of mcr-1 and mcr-2 genes was investigated by PCR method. Results: Out of 712 nonduplicate Enterobacteriaceae, 470 isolates, including 351 (74.7%) E. coli and 119 (25.3%) K. pneumoniae, were detected. The results of antibiogram tests showed that most of the isolates (81.3%) were resistant to ceftazidime; however, the most susceptibility among of E. coli and K. pneumoniae isolates was observed (81.5%) to colistin. The typing results by ERIC-PCR method showed 36 and 23 fingerprint patterns for colistin-resistant E. coli and K. pneumoniae strains, respectively. Among 64 (13.6%) colistin-phenotypically-resistant Enterobacteriaceae, 8 isolates (1.7%) had mcr-1 gene. These 8 isolates were attributed to E. coli and K. pneumoniae with 6 and 2 isolates, respectively. Whereas no isolates carrying the mcr-2 gene was found. These colistin-resistant isolates displayed colistin MIC values >2 μg/ml in the antibiotic concentration by E-test method. Conclusion: Spreading of Enterobacteriaceae strains harboring plasmid-mediated mcr could fail the colistin-included therapy regimen as the last line of treatment against multidrug-resistant bacterial infections.
Collapse
Affiliation(s)
- Mojtaba Moosavian
- Infectious and Tropical Diseases Research Center, Health Research Institue, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.,Department of Microbiology, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Nasrin Emam
- Department of Microbiology, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| |
Collapse
|
65
|
Allen KN, Imperiali B. Structural and mechanistic themes in glycoconjugate biosynthesis at membrane interfaces. Curr Opin Struct Biol 2019; 59:81-90. [PMID: 31003021 DOI: 10.1016/j.sbi.2019.03.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2019] [Revised: 03/07/2019] [Accepted: 03/08/2019] [Indexed: 12/29/2022]
Abstract
Peripheral and integral membrane proteins feature in stepwise assembly of complex glycans and glycoconjugates. Catalysis on membrane-bound substrates features challenges with substrate solubility and active-site accessibility. However, advantages in enzyme and substrate orientation and control of lateral membrane diffusion provide order to the multistep processes. Recent glycosyltransferase (GT) studies show that substrate diversity is met by the selection of folds which do not converge upon a common mechanism. Examples of polyprenol phosphate phosphoglycosyl transferases (PGTs) highlight that divergent fold families catalyze the same reaction with different mechanisms. Lipid A biosynthesis enzymes illustrate that variations on the robust Rossmann fold allow substrate diversity. Improved understanding of GT and PGT structure and function holds promise for better function prediction and improvement of therapeutic inhibitory ligands.
Collapse
Affiliation(s)
- Karen N Allen
- Department of Chemistry, Boston University, Boston, MA 02215, United States; Program in Biomolecular Pharmacology, Boston University School of Medicine, Boston, MA 02118, United States.
| | - Barbara Imperiali
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, United States; Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, United States.
| |
Collapse
|
66
|
Larsen ISB, Narimatsu Y, Clausen H, Joshi HJ, Halim A. Multiple distinct O-Mannosylation pathways in eukaryotes. Curr Opin Struct Biol 2019; 56:171-178. [PMID: 30999272 DOI: 10.1016/j.sbi.2019.03.003] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Revised: 02/26/2019] [Accepted: 03/01/2019] [Indexed: 12/29/2022]
Abstract
Protein O-mannosylation (O-Man), originally discovered in yeast five decades ago, is an important post-translational modification (PTM) conserved from bacteria to humans, but not found in plants or nematodes. Until recently, the homologous family of ER-located protein O-mannosyl transferases (PMT1-7 in yeast; POMT1/POMT2 in humans), were the only known enzymes involved in directing O-Man biosynthesis in eukaryotes. However, recent studies demonstrate the existence of multiple distinct O-Man glycosylation pathways indicating that the genetic and biosynthetic regulation of O-Man in eukaryotes is more complex than previously envisioned. Introduction of sensitive glycoproteomics strategies provided an expansion of O-Man glycoproteomes in eukaryotes (yeast and mammalian cell lines) leading to the discovery of O-Man glycosylation on important mammalian cell adhesion (cadherin superfamily) and signaling (plexin family) macromolecules, and to the discovery of unique nucleocytoplasmic O-Man glycosylation in yeast. It is now evident that eukaryotes have multiple distinct O-Man glycosylation pathways including: i) the classical PMT1-7 and POMT1/POMT2 pathway conserved in all eukaryotes apart from plants; ii) a yet uncharacterized nucleocytoplasmic pathway only found in yeast; iii) an ER-located pathway directed by the TMTC1-4 genes found in metazoans and protists and primarily dedicated to the cadherin superfamily; and iv) a yet uncharacterized pathway found in metazoans primarily dedicated to plexins. O-Man glycosylation is thus emerging as a much more widespread and evolutionary diverse PTM with complex genetic and biosynthetic regulation. While deficiencies in the POMT1/POMT2 O-Man pathway underlie muscular dystrophies, the TMTC1-4 pathway appear to be involved in distinct congenital disorders with neurodevelopmental phenotypes. Here, we review and discuss the recent discoveries of the new non-classical O-Man glycosylation pathways, their substrates, functions and roles in disease.
Collapse
Affiliation(s)
- Ida Signe Bohse Larsen
- Copenhagen Center for Glycomics, Departments of Cellular and Molecular Medicine, Faculty of Health Sciences, University of Copenhagen, Blegdamsvej 3, DK-2200 Copenhagen N, Denmark
| | - Yoshiki Narimatsu
- Copenhagen Center for Glycomics, Departments of Cellular and Molecular Medicine, Faculty of Health Sciences, University of Copenhagen, Blegdamsvej 3, DK-2200 Copenhagen N, Denmark
| | - Henrik Clausen
- Copenhagen Center for Glycomics, Departments of Cellular and Molecular Medicine, Faculty of Health Sciences, University of Copenhagen, Blegdamsvej 3, DK-2200 Copenhagen N, Denmark
| | - Hiren J Joshi
- Copenhagen Center for Glycomics, Departments of Cellular and Molecular Medicine, Faculty of Health Sciences, University of Copenhagen, Blegdamsvej 3, DK-2200 Copenhagen N, Denmark.
| | - Adnan Halim
- Copenhagen Center for Glycomics, Departments of Cellular and Molecular Medicine, Faculty of Health Sciences, University of Copenhagen, Blegdamsvej 3, DK-2200 Copenhagen N, Denmark.
| |
Collapse
|
67
|
Caffalette CA, Corey RA, Sansom MSP, Stansfeld PJ, Zimmer J. A lipid gating mechanism for the channel-forming O antigen ABC transporter. Nat Commun 2019; 10:824. [PMID: 30778065 PMCID: PMC6379404 DOI: 10.1038/s41467-019-08646-8] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Accepted: 01/23/2019] [Indexed: 12/15/2022] Open
Abstract
Extracellular glycan biosynthesis is a widespread microbial protection mechanism. In Gram-negative bacteria, the O antigen polysaccharide represents the variable region of outer membrane lipopolysaccharides. Fully assembled lipid-linked O antigens are translocated across the inner membrane by the WzmWzt ABC transporter for ligation to the lipopolysaccharide core, with the transporter forming a continuous transmembrane channel in a nucleotide-free state. Here, we report its structure in an ATP-bound conformation. Large structural changes within the nucleotide-binding and transmembrane regions push conserved hydrophobic residues at the substrate entry site towards the periplasm and provide a model for polysaccharide translocation. With ATP bound, the transporter forms a large transmembrane channel with openings toward the membrane and periplasm. The channel's periplasmic exit is sealed by detergent molecules that block solvent permeation. Molecular dynamics simulation data suggest that, in a biological membrane, lipid molecules occupy this periplasmic exit and prevent water flux in the transporter's resting state.
Collapse
Affiliation(s)
- Christopher A Caffalette
- Molecular Physiology and Biological Physics, University of Virginia School of Medicine, Charlottesville, VA, 22908, USA
| | - Robin A Corey
- Department of Biochemistry, University of Oxford, Oxford, OX1 3QU, UK
| | - Mark S P Sansom
- Department of Biochemistry, University of Oxford, Oxford, OX1 3QU, UK
| | | | - Jochen Zimmer
- Molecular Physiology and Biological Physics, University of Virginia School of Medicine, Charlottesville, VA, 22908, USA.
| |
Collapse
|
68
|
Shiraishi T, Nishiyama M, Kuzuyama T. Biosynthesis of the uridine-derived nucleoside antibiotic A-94964: identification and characterization of the biosynthetic gene cluster provide insight into the biosynthetic pathway. Org Biomol Chem 2019; 17:461-466. [PMID: 30570639 DOI: 10.1039/c8ob02765j] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The natural product A-94964 is a uridine-derived nucleoside antibiotic isolated from Streptomyces sp. SANK 60404. In this study, we propose a biosynthetic pathway for A-94964 using gene deletion experiments coupled with in silico analysis of the biosynthetic gene cluster. This study provides insights into the unique biosynthetic pathway for A-94964.
Collapse
Affiliation(s)
- Taro Shiraishi
- Biotechnology Research Center and Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, 1-1-1, Yayoi, Bunkyo-ku, Tokyo, 113-8567, Japan.
| | | | | |
Collapse
|
69
|
Zhao Y, Meng Q, Lai Y, Wang L, Zhou D, Dou C, Gu Y, Nie C, Wei Y, Cheng W. Structural and mechanistic insights into polymyxin resistance mediated by EptC originating from Escherichia coli. FEBS J 2018; 286:750-764. [PMID: 30537137 DOI: 10.1111/febs.14719] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Revised: 11/08/2018] [Accepted: 12/03/2018] [Indexed: 02/05/2023]
Abstract
Gram-negative bacteria defend against the toxicity of polymyxins by modifying their outer membrane lipopolysaccharide (LPS). This modification mainly occurs through the addition of cationic molecules such as phosphoethanolamine (PEA). EcEptC is a PEA transferase from Escherichia coli (E. coli). However, unlike its homologs CjEptC (Campylobacter jejuni) and MCR-1, EcEptC is unable to mediate polymyxin resistance when overexpressed in E. coli. Here, we report crystal structures of the C-terminal putative catalytic domain (EcEptCΔN, 205-577 aa) of EcEptC in apo and Zn2+ -bound states at 2.10 and 2.60 Å, respectively. EcEptCΔN is arranged into an α-β-α fold and equipped with the zinc ion in a conserved mode. Coupled with isothermal titration calorimetry (ITC) data, we provide insights into the mechanism by which EcEptC recognizes Zn2+ . Furthermore, structure comparison analysis indicated that disulfide bonds, which play a key role in polymyxin resistance, were absent in EcEptCΔN. Supported by structural and biochemical evidence, we reveal mechanistic implications for disulfide bonds in PEA transferase-mediated polymyxin resistance. Significantly, because the structural effects exhibited by disulfide bonds are absent in EcEptC, it is impossible for this protein to participate in polymyxin resistance in E. coli. DATABASE: Structural data are available in the PDB under the accession numbers 6A82 and 6A83. ENZYME: EC 2.7.8.43.
Collapse
Affiliation(s)
- Yanqun Zhao
- Division of Respiratory and Critical Care Medicine, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, China
| | - Qiang Meng
- Division of Respiratory and Critical Care Medicine, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, China
| | - Yujie Lai
- Division of Respiratory and Critical Care Medicine, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, China
| | - Li Wang
- Division of Respiratory and Critical Care Medicine, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, China
| | - Dan Zhou
- Division of Respiratory and Critical Care Medicine, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, China
| | - Chao Dou
- Division of Respiratory and Critical Care Medicine, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, China
| | - Yijun Gu
- Shanghai Synchrotron Radiation Facility, Zhangjiang Lab, Pudong District, Shanghai, China
| | - Chunlai Nie
- Division of Respiratory and Critical Care Medicine, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, China
| | - Yuquan Wei
- Division of Respiratory and Critical Care Medicine, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, China
| | - Wei Cheng
- Division of Respiratory and Critical Care Medicine, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, China.,Department of Pathophysiology, the Key Laboratory of Xinjiang Endemic and Ethnic Diseases, Shihezi University School of Medicine, Shihezi, China
| |
Collapse
|
70
|
Sun M, Qu A, Hao C, Wu X, Xu L, Xu C, Kuang H. Chiral Upconversion Heterodimers for Quantitative Analysis and Bioimaging of Antibiotic-Resistant Bacteria In Vivo. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2018; 30:e1804241. [PMID: 30318824 DOI: 10.1002/adma.201804241] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Revised: 09/17/2018] [Indexed: 05/20/2023]
Abstract
Heterodimers of upconversion nanoparticles (UCNPs) and gold yolk-shell nanoparticles are fabricated for the quantification of polymyxin-B-resistant Escherichia coli. They produce two signals, circular dichroism (CD) and upconversion luminescence (UCL). Interestingly, due to the different affinity of polymyxin B for sensitive and resistant strain, as the concentration of polymyxin B increases, the amount of UCNPs in sensitive bacteria increases sharply, increasing the intracellular UCL signal at a low polymyxin B concentration immobilized on the UCNP. The CD intensity is correspondingly reduced as the amount of UCNPs in solution decreased. Meanwhile, for polymyxin-B-resistant strain, the intracellular UCL increases slowly even in a high polymyxin B concentration, and the CD intensity in solution is also enhanced because of the inefficient entering of UCNP. Therefore, based on the concentration of polymyxin B coupled to the UCNPs, the levels of polymyxin-B-resistant bacteria can be detected with dual signals. Importantly, with 980 nm irradiation, both polymyxin-B-sensitive strains and polymyxin-resistant bacteria used to induce infection in mice are detected with UCL imaging in vivo and treated well with photodynamic therapy. This novel dual-mode heterodimer has potential utility for the advanced surveillance and control of drug-resistant bacteria.
Collapse
Affiliation(s)
- Maozhong Sun
- State Key Lab of Food Science and Technology, Wuxi, Jiangsu, 214122, P. R. China
- International Joint Research Laboratory for Biointerface and Biodetection, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, P. R. China
| | - Aihua Qu
- State Key Lab of Food Science and Technology, Wuxi, Jiangsu, 214122, P. R. China
- International Joint Research Laboratory for Biointerface and Biodetection, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, P. R. China
| | - Changlong Hao
- State Key Lab of Food Science and Technology, Wuxi, Jiangsu, 214122, P. R. China
- International Joint Research Laboratory for Biointerface and Biodetection, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, P. R. China
| | - Xiaoling Wu
- State Key Lab of Food Science and Technology, Wuxi, Jiangsu, 214122, P. R. China
- International Joint Research Laboratory for Biointerface and Biodetection, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, P. R. China
| | - Liguang Xu
- State Key Lab of Food Science and Technology, Wuxi, Jiangsu, 214122, P. R. China
- International Joint Research Laboratory for Biointerface and Biodetection, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, P. R. China
| | - Chuanlai Xu
- State Key Lab of Food Science and Technology, Wuxi, Jiangsu, 214122, P. R. China
- International Joint Research Laboratory for Biointerface and Biodetection, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, P. R. China
| | - Hua Kuang
- State Key Lab of Food Science and Technology, Wuxi, Jiangsu, 214122, P. R. China
- International Joint Research Laboratory for Biointerface and Biodetection, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, P. R. China
| |
Collapse
|
71
|
Kahler CM, Sarkar-Tyson M, Kibble EA, Stubbs KA, Vrielink A. Enzyme targets for drug design of new anti-virulence therapeutics. Curr Opin Struct Biol 2018; 53:140-150. [PMID: 30223251 DOI: 10.1016/j.sbi.2018.08.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Revised: 08/30/2018] [Accepted: 08/30/2018] [Indexed: 12/19/2022]
Abstract
Society has benefitted greatly from the use of antibiotics. Unfortunately, the misuse of these valuable molecules has resulted in increased levels of antibiotic resistance, a major global and public health issue. This resistance and the reliance on a small number of biological targets for the development of antibiotics emphasizes the need for new targets. A critical aspect guiding the development of new antimicrobials through a rational structure-guided approach is to understand the molecular structures of specific biological targets of interest. Here we give an overview of the structures of bacterial virulence enzyme targets involved in protein folding, peptidoglycan biosynthesis and cell wall modification. These include enzymes of the thiol-disulphide oxidoreductase pathway (DSB enzymes), peptidyl-proly cis/trans isomerases (Mips), enzymes from the Mur pathway and enzymes involved in lipopolysaccharide modification (EptA and ArnT). We also present progress towards inhibitor design of these targets for the development of novel anti-virulence therapeutic agents.
Collapse
Affiliation(s)
- Charlene M Kahler
- Marshall Centre for Infectious Disease Research and Training, School of Biomedical Sciences, University of Western Australia, 35 Stirling Highway, Crawley, WA, 6009, Australia
| | - Mitali Sarkar-Tyson
- Marshall Centre for Infectious Disease Research and Training, School of Biomedical Sciences, University of Western Australia, 35 Stirling Highway, Crawley, WA, 6009, Australia
| | - Emily A Kibble
- Marshall Centre for Infectious Disease Research and Training, School of Biomedical Sciences, University of Western Australia, 35 Stirling Highway, Crawley, WA, 6009, Australia
| | - Keith A Stubbs
- School of Molecular Sciences, University of Western Australia, 35 Stirling Highway, Crawley, WA, 6009, Australia
| | - Alice Vrielink
- School of Molecular Sciences, University of Western Australia, 35 Stirling Highway, Crawley, WA, 6009, Australia; Marshall Centre for Infectious Disease Research and Training, School of Biomedical Sciences, University of Western Australia, 35 Stirling Highway, Crawley, WA, 6009, Australia.
| |
Collapse
|
72
|
Wei W, Srinivas S, Lin J, Tang Z, Wang S, Ullah S, Kota VG, Feng Y. Defining ICR-Mo, an intrinsic colistin resistance determinant from Moraxella osloensis. PLoS Genet 2018; 14:e1007389. [PMID: 29758020 PMCID: PMC5983563 DOI: 10.1371/journal.pgen.1007389] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Revised: 06/01/2018] [Accepted: 05/02/2018] [Indexed: 11/19/2022] Open
Abstract
Polymyxin is the last line of defense against severe infections caused by carbapenem-resistant gram-negative pathogens. The emergence of transferable MCR-1/2 polymyxin resistance greatly challenges the renewed interest in colistin (polymyxin E) for clinical treatments. Recent studies have suggested that Moraxella species are a putative reservoir for MCR-1/2 genetic determinants. Here, we report the functional definition of ICR-Mo from M. osloensis, a chromosomally encoded determinant of colistin resistance, in close relation to current MCR-1/2 family. ICR-Mo transmembrane protein was prepared and purified to homogeneity. Taken along with an in vitro enzymatic detection, MALDI-TOF mass spectrometry of bacterial lipid A pools determined that the ICR-Mo enzyme might exploit a possible "ping-pong" mechanism to accept the phosphoethanolamine (PEA) moiety from its donor phosphatidylethanolamine (PE) and then transfer it to the 1(or 4')-phosphate position of lipid A via an ICR-Mo-bound PEA adduct. Structural decoration of LPS-lipid A by ICR-Mo renders the recipient strain of E. coli resistant to polymyxin. Domain swapping assays indicate that the two domains of ICR-Mo cannot be functionally-exchanged with its counterparts in MCR-1/2 and EptA, validating its phylogenetic position in a distinct set of MCR-like genes. Structure-guided functional mapping of ICR-Mo reveals a PE lipid substrate recognizing cavity having a role in enzymatic catalysis and the resultant conference of antibiotic resistance. Expression of icr-Mo in E. coli significantly prevents the formation of reactive oxygen species (ROS) induced by colistin. Taken together, our results define a member of a group of intrinsic colistin resistance genes phylogenetically close to the MCR-1/2 family, highlighting the evolution of transferable colistin resistance.
Collapse
Affiliation(s)
- Wenhui Wei
- Department of Medical Microbiology & Parasitology, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Swaminath Srinivas
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Illinois, United States of America
| | - Jingxia Lin
- Department of Medical Microbiology & Parasitology, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Zichen Tang
- Department of Medical Microbiology & Parasitology, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Shihua Wang
- School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Saif Ullah
- Department of Medical Microbiology & Parasitology, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Vishnu Goutham Kota
- Department of Medical Microbiology & Parasitology, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Youjun Feng
- Department of Medical Microbiology & Parasitology, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| |
Collapse
|
73
|
Abstract
As a protective envelope surrounding the bacterial cell, the peptidoglycan sacculus is a site of vulnerability and an antibiotic target. Peptidoglycan components, assembled in the cytoplasm, are shuttled across the membrane in a cycle that uses undecaprenyl-phosphate. A product of peptidoglycan synthesis, undecaprenyl-pyrophosphate, is converted to undecaprenyl-phosphate for reuse in the cycle by the membrane integral pyrophosphatase, BacA. To understand how BacA functions, we determine its crystal structure at 2.6 Å resolution. The enzyme is open to the periplasm and to the periplasmic leaflet via a pocket that extends into the membrane. Conserved residues map to the pocket where pyrophosphorolysis occurs. BacA incorporates an interdigitated inverted topology repeat, a topology type thus far only reported in transporters and channels. This unique topology raises issues regarding the ancestry of BacA, the possibility that BacA has alternate active sites on either side of the membrane and its possible function as a flippase. Bacterial cell wall components are assembled in a transmembrane cycle that involves the membrane integral pyrophosphorylase, BacA. Here the authors solve the crystal structure of BacA which shows an interdigitated inverted topology repeat that hints towards a flippase function for BacA.
Collapse
|
74
|
Feng Y. Transferability of MCR-1/2 Polymyxin Resistance: Complex Dissemination and Genetic Mechanism. ACS Infect Dis 2018; 4:291-300. [PMID: 29397687 DOI: 10.1021/acsinfecdis.7b00201] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Polymyxins, a group of cationic antimicrobial polypeptides, act as a last-resort defense against lethal infections by carbapenem-resistant Gram-negative pathogens. Recent emergence and fast spread of mobilized colistin resistance determinant mcr-1 argue the renewed interest of colistin in clinical therapies, threatening global public health and agriculture production. This mini-review aims to present an updated overview of mcr-1, covering its global dissemination, the diversity of its hosts/plasmid reservoirs, the complexity in the genetic environment adjacent to mcr-1, the appearance of new mcr-like genes, and the molecular mechanisms for mobilized colistin resistance determinant 1/2 (MCR-1/2).
Collapse
Affiliation(s)
- Youjun Feng
- Department of Medical Microbiology and Parasitology, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
- College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
| |
Collapse
|
75
|
Abstract
Antibiotic resistance has become a global public health priority. Polymyxins, a family of cationic polypeptide antibiotics, act as a final line of refuge against severe infections by Gram-negative pathogens with pan-drug resistance. Unfortunately, this last-resort antibiotic has been challenged by the emergence and global spread of mobilized colistin resistance determinants (mcr). Given the fact that it has triggered extensive concerns worldwide, we present here an updated view of MCR-like colistin resistance. These studies provide a basic framework for understanding the molecular epidemiology and resistance mechanism of MCR-like genes. However, further large-scale epidemiology and functional studies are urgently needed to better understand the biology of this clinically important antibiotic resistance.
Collapse
Affiliation(s)
- Jian Sun
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou 510642, China; Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou 510642, China; These authors contributed equally to this work
| | - Huimin Zhang
- Department of Medical Microbiology & Parasitology, Zhejiang University School of Medicine, Hangzhou 310058, China; These authors contributed equally to this work
| | - Ya-Hong Liu
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou 510642, China; Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou 510642, China.
| | - Youjun Feng
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou 510642, China; Department of Medical Microbiology & Parasitology, Zhejiang University School of Medicine, Hangzhou 310058, China; College of Animal Sciences, Zhejiang University, Hangzhou 310058, China; Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
76
|
Xu Y, Lin J, Cui T, Srinivas S, Feng Y. Mechanistic insights into transferable polymyxin resistance among gut bacteria. J Biol Chem 2018; 293:4350-4365. [PMID: 29462787 DOI: 10.1074/jbc.ra117.000924] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Revised: 02/05/2018] [Indexed: 12/15/2022] Open
Abstract
Polymyxins such as colistin are antibiotics used as a final line of defense in the management of infections with multidrug-resistant Gram-negative bacteria. Although natural resistance to polymyxins is rare, the discovery of a mobilized colistin resistance gene (mcr-1) in gut bacteria has raised significant concern. As an intramembrane enzyme, MCR-1 catalyzes the transfer of phosphoethanolamine (PEA) to the 1 (or 4')-phosphate group of the lipid A moiety of lipopolysaccharide, thereby conferring colistin resistance. However, the structural and biochemical mechanisms used by this integral membrane enzyme remain poorly understood. Here, we report the modeled structure of the full-length MCR-1 membrane protein. Together with molecular docking, our structural and functional dissection of the complex of MCR-1 with its phosphatidylethanolamine (PE) substrate suggested the presence of a 12 residue-containing cavity for substrate entry, which is critical for both enzymatic activity and its resultant phenotypic resistance to colistin. More importantly, two periplasm-facing helices (PH2 and PH2') of the trans-membrane domain were essential for MCR-1 activity. MALDI-TOF MS and thin-layer chromatography assays provide both in vivo and in vitro evidence that MCR-1 catalyzes the transfer of PEA from the PE donor substrate to its recipient substrate lipid A. Also, the chemical modification of lipid A species was detected in clinical species of bacteria carrying mcr-1 Our results provide mechanistic insights into transferable MCR-1 polymyxin resistance, raising the prospect of rational design of small molecules that reverse bacterial polymyxin resistance, as a last-resort clinical option to combat pathogens with carbapenem resistance.
Collapse
Affiliation(s)
- Yongchang Xu
- From the Department of Medical Microbiology and Parasitology, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
| | - Jingxia Lin
- From the Department of Medical Microbiology and Parasitology, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
| | - Tao Cui
- the School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shannxi 710072, China, and
| | - Swaminath Srinivas
- the Department of Biochemistry, University of Illinois, Urbana, Illinois 61801
| | - Youjun Feng
- From the Department of Medical Microbiology and Parasitology, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China, .,the College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
| |
Collapse
|
77
|
Kohda D. Structural Basis of Protein Asn-Glycosylation by Oligosaccharyltransferases. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1104:171-199. [PMID: 30484249 DOI: 10.1007/978-981-13-2158-0_9] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
Glycosylation of asparagine residues is a ubiquitous protein modification. This N-glycosylation is essential in Eukaryotes, but principally nonessential in Prokaryotes (Archaea and Eubacteria), although it facilitates their survival and pathogenicity. In many reviews, Archaea have received far less attention than Eubacteria, but this review will cover the N-glycosylation in the three domains of life. The oligosaccharide chain is preassembled on a lipid-phospho carrier to form a donor substrate, lipid-linked oligosaccharide (LLO). The en bloc transfer of an oligosaccharide from LLO to selected Asn residues in the Asn-X-Ser/Thr (X≠Pro) sequons in a polypeptide chain is catalyzed by a membrane-bound enzyme, oligosaccharyltransferase (OST). Over the last 10 years, the three-dimensional structures of the catalytic subunits of the Stt3/AglB/PglB proteins, with an acceptor peptide and a donor LLO, have been determined by X-ray crystallography, and recently the complex structures with other subunits have been determined by cryo-electron microscopy . Structural comparisons within the same species and across the different domains of life yielded a unified view of the structures and functions of OSTs. A catalytic structure in the TM region accounts for the amide bond twisting, which increases the reactivity of the side-chain nitrogen atom of the acceptor Asn residue in the sequon. The Ser/Thr-binding pocket in the C-terminal domain explains the requirement for hydroxy amino acid residues in the sequon. As expected, the two functional structures are formed by the involvement of short amino acid motifs conserved across the three domains of life.
Collapse
Affiliation(s)
- Daisuke Kohda
- Division of Structural Biology, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan.
| |
Collapse
|
78
|
Discovery of an O-mannosylation pathway selectively serving cadherins and protocadherins. Proc Natl Acad Sci U S A 2017; 114:11163-11168. [PMID: 28973932 DOI: 10.1073/pnas.1708319114] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The cadherin (cdh) superfamily of adhesion molecules carry O-linked mannose (O-Man) glycans at highly conserved sites localized to specific β-strands of their extracellular cdh (EC) domains. These O-Man glycans do not appear to be elongated like O-Man glycans found on α-dystroglycan (α-DG), and we recently demonstrated that initiation of cdh/protocadherin (pcdh) O-Man glycosylation is not dependent on the evolutionary conserved POMT1/POMT2 enzymes that initiate O-Man glycosylation on α-DG. Here, we used a CRISPR/Cas9 genetic dissection strategy combined with sensitive and quantitative O-Man glycoproteomics to identify a homologous family of four putative protein O-mannosyltransferases encoded by the TMTC1-4 genes, which were found to be imperative for cdh and pcdh O-Man glycosylation. KO of all four TMTC genes in HEK293 cells resulted in specific loss of cdh and pcdh O-Man glycosylation, whereas combined KO of TMTC1 and TMTC3 resulted in selective loss of O-Man glycans on specific β-strands of EC domains, suggesting that each isoenzyme serves a different function. In addition, O-Man glycosylation of IPT/TIG domains of plexins and hepatocyte growth factor receptor was not affected in TMTC KO cells, suggesting the existence of yet another O-Man glycosylation machinery. Our study demonstrates that regulation of O-mannosylation in higher eukaryotes is more complex than envisioned, and the discovery of the functions of TMTCs provide insight into cobblestone lissencephaly caused by deficiency in TMTC3.
Collapse
|
79
|
Gandini R, Reichenbach T, Tan TC, Divne C. Structural basis for dolichylphosphate mannose biosynthesis. Nat Commun 2017; 8:120. [PMID: 28743912 PMCID: PMC5526996 DOI: 10.1038/s41467-017-00187-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2017] [Accepted: 06/06/2017] [Indexed: 12/21/2022] Open
Abstract
Protein glycosylation is a critical protein modification. In biogenic membranes of eukaryotes and archaea, these reactions require activated mannose in the form of the lipid conjugate dolichylphosphate mannose (Dol-P-Man). The membrane protein dolichylphosphate mannose synthase (DPMS) catalyzes the reaction whereby mannose is transferred from GDP-mannose to the dolichol carrier Dol-P, to yield Dol-P-Man. Failure to produce or utilize Dol-P-Man compromises organism viability, and in humans, several mutations in the human dpm1 gene lead to congenital disorders of glycosylation (CDG). Here, we report three high-resolution crystal structures of archaeal DPMS from Pyrococcus furiosus, in complex with nucleotide, donor, and glycolipid product. The structures offer snapshots along the catalytic cycle, and reveal how lipid binding couples to movements of interface helices, metal binding, and acceptor loop dynamics to control critical events leading to Dol-P-Man synthesis. The structures also rationalize the loss of dolichylphosphate mannose synthase function in dpm1-associated CDG. The generation of glycolipid dolichylphosphate mannose (Dol-P-Man) is a critical step for protein glycosylation and GPI anchor synthesis. Here the authors report the structure of dolichylphosphate mannose synthase in complex with bound nucleotide and donor to provide insight into the mechanism of Dol-P-Man synthesis.
Collapse
Affiliation(s)
- Rosaria Gandini
- School of Biotechnology, KTH Royal Institute of Technology, S-10691, Stockholm, Sweden
| | - Tom Reichenbach
- School of Biotechnology, KTH Royal Institute of Technology, S-10691, Stockholm, Sweden
| | - Tien-Chye Tan
- School of Biotechnology, KTH Royal Institute of Technology, S-10691, Stockholm, Sweden
| | - Christina Divne
- School of Biotechnology, KTH Royal Institute of Technology, S-10691, Stockholm, Sweden.
| |
Collapse
|
80
|
Wang Q, Sun J, Li J, Ding Y, Li XP, Lin J, Hassan B, Feng Y. Expanding landscapes of the diversified mcr-1-bearing plasmid reservoirs. MICROBIOME 2017; 5:70. [PMID: 28683827 PMCID: PMC5500976 DOI: 10.1186/s40168-017-0288-0] [Citation(s) in RCA: 88] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Accepted: 06/19/2017] [Indexed: 06/07/2023]
Abstract
BACKGROUND Polymyxin is a cationic polypeptide antibiotic that can disrupt bacterial cell membrane by interacting with its lipopolysaccharide molecules and is used as a last resort drug against lethal infections by the carbapenem-resistant superbugs (like NDM-1). However, global discovery of the MCR-1 colistin resistance dramatically challenges the newly renewed interest in colistin for clinical use. METHODS The mcr-1-harboring plasmids were acquired from swine and human Escherichia coli isolated in China, from 2015 to 2016, and subjected to Illumina PacBio RSII and Hi-Seq2000 for full genome sequencing. PCR was applied to close the gap of the assembled contigs. Ori-Finder was employed to predict the replication origin (oriC) in plasmids. The phenotype of MCR-1-producing isolates was evaluated on the LBA plates with various level of colistin. Genetic deletion was used to test the requirement of the initial "ATG" codon for the MCR-1 function. RESULTS Here, we report full genomes of over 10 mcr-1-harboring plasmids with diversified replication incompatibilities. A novel hybrid IncI2/IncFIB plasmid pGD17-2 was discovered and characterized from a swine isolate with colistin resistance. Intriguingly, co-occurrence of two unique mcr-1-bearing plasmids (pGD65-3, IncI2, and pGD65-5, IncX4) was detected in a single isolate GD65, which might accelerate dissemination of the mcr-1 under environmental selection pressure. Genetic analyses of these plasmids mapped mobile elements in the context of antibiotic resistance and determined two insertion sequences (ISEcp1 and ISApl1) that are responsible for the mobilization of mcr-1. Gene deletion also proved that the first ATG codon is redundant in the mcr-1 gene. CONCLUSIONS Collectively, our results extend landscapes of the diversified mcr-1-bearing plasmid reservoirs.
Collapse
Affiliation(s)
- Qingjing Wang
- Department of Medical Microbiology and Parasitology, Zhejiang University School of Medicine, Hangzhou, 310058, Zhejiang, China
| | - Jian Sun
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, Guangdong, China
| | - Jun Li
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, Zhejiang, China
| | - Youfa Ding
- Lishui People's Hospital, Lishui, 323000, Zhejiang, China
| | - Xing-Ping Li
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, Guangdong, China
| | - Jingxia Lin
- Department of Medical Microbiology and Parasitology, Zhejiang University School of Medicine, Hangzhou, 310058, Zhejiang, China
| | | | - Youjun Feng
- Department of Medical Microbiology and Parasitology, Zhejiang University School of Medicine, Hangzhou, 310058, Zhejiang, China.
| |
Collapse
|
81
|
Lee HS, Im W. Transmembrane motions of PglB induced by LLO are coupled with EL5 loop conformational changes necessary for OST activity. Glycobiology 2017; 27:734-742. [PMID: 28575441 DOI: 10.1093/glycob/cwx052] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Revised: 05/24/2017] [Accepted: 05/27/2017] [Indexed: 11/14/2022] Open
Abstract
N-linked glycosylation is an enzymatic reaction in which an oligosaccharide is transferred en bloc onto an asparagine residue of an acceptor polypeptide, catalyzed by oligosaccharyltransferase (OST). Despite the available crystal structures, the role of the external loop EL5, which is critical for the catalytic cycle, is enigmatic as EL5 in the crystal structures is partially absent or blocks a pathway of lipid-linked oligosaccharide to the active site. Here we report the molecular origin of EL5 conformational changes through a series of molecular dynamics simulations of a bacterial OST, Campylobacter lari PglB. The simulations reveal that the isoprenoid moiety of lipid-linked oligosaccharide favorably binds to a hydrophobic groove of the PglB transmembrane domain. This binding triggers the conformational changes of the transmembrane domain and subsequently impairs the structural stability of EL5, leading to disordered EL5 with open conformations that are required for correct placement of the oligosaccharide in the active site.
Collapse
Affiliation(s)
- Hui Sun Lee
- Department of Biological Sciences and Bioengineering Program, Lehigh University, 111 Research Drive, Bethlehem, PA 18015, USA
| | | |
Collapse
|
82
|
Albesa-Jové D, Romero-García J, Sancho-Vaello E, Contreras FX, Rodrigo-Unzueta A, Comino N, Carreras-González A, Arrasate P, Urresti S, Biarnés X, Planas A, Guerin ME. Structural Snapshots and Loop Dynamics along the Catalytic Cycle of Glycosyltransferase GpgS. Structure 2017. [PMID: 28625787 DOI: 10.1016/j.str.2017.05.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Glycosyltransferases (GTs) play a central role in nature. They catalyze the transfer of a sugar moiety to a broad range of acceptor substrates. GTs are highly selective enzymes, allowing the recognition of subtle structural differences in the sequences and stereochemistry of their sugar and acceptor substrates. We report here a series of structural snapshots of the reaction center of the retaining glucosyl-3-phosphoglycerate synthase (GpgS). During this sequence of events, we visualize how the enzyme guides the substrates into the reaction center where the glycosyl transfer reaction takes place, and unveil the mechanism of product release, involving multiple conformational changes not only in the substrates/products but also in the enzyme. The structural data are further complemented by metadynamics free-energy calculations, revealing how the equilibrium of loop conformations is modulated along these itineraries. The information reported here represent an important contribution for the understanding of GT enzymes at the molecular level.
Collapse
Affiliation(s)
- David Albesa-Jové
- Structural Biology Unit, CIC bioGUNE, Bizkaia Technology Park, Ed. 801A, 48160 Derio, Spain; Unidad de Biofísica, Centro Mixto Consejo Superior de Investigaciones Científicas - Universidad del País Vasco/Euskal Herriko Unibertsitatea (CSIC-UPV/EHU), Barrio Sarriena s/n, Leioa, Bizkaia 48940, Spain; Departamento de Bioquímica, Universidad del País Vasco, 48080 Bilbao, Spain; IKERBASQUE, Basque Foundation for Science, 48011 Bilbao, Spain
| | - Javier Romero-García
- Laboratory of Biochemistry, Bioengineering Department, Institut Químic de Sarrià, Universitat Ramon Llull, Barcelona 08017, Spain
| | - Enea Sancho-Vaello
- Structural Biology Unit, CIC bioGUNE, Bizkaia Technology Park, Ed. 801A, 48160 Derio, Spain; Unidad de Biofísica, Centro Mixto Consejo Superior de Investigaciones Científicas - Universidad del País Vasco/Euskal Herriko Unibertsitatea (CSIC-UPV/EHU), Barrio Sarriena s/n, Leioa, Bizkaia 48940, Spain
| | - F-Xabier Contreras
- Unidad de Biofísica, Centro Mixto Consejo Superior de Investigaciones Científicas - Universidad del País Vasco/Euskal Herriko Unibertsitatea (CSIC-UPV/EHU), Barrio Sarriena s/n, Leioa, Bizkaia 48940, Spain; Departamento de Bioquímica, Universidad del País Vasco, 48080 Bilbao, Spain; IKERBASQUE, Basque Foundation for Science, 48011 Bilbao, Spain
| | - Ane Rodrigo-Unzueta
- Structural Biology Unit, CIC bioGUNE, Bizkaia Technology Park, Ed. 801A, 48160 Derio, Spain; Unidad de Biofísica, Centro Mixto Consejo Superior de Investigaciones Científicas - Universidad del País Vasco/Euskal Herriko Unibertsitatea (CSIC-UPV/EHU), Barrio Sarriena s/n, Leioa, Bizkaia 48940, Spain
| | - Natalia Comino
- Structural Biology Unit, CIC bioGUNE, Bizkaia Technology Park, Ed. 801A, 48160 Derio, Spain; Unidad de Biofísica, Centro Mixto Consejo Superior de Investigaciones Científicas - Universidad del País Vasco/Euskal Herriko Unibertsitatea (CSIC-UPV/EHU), Barrio Sarriena s/n, Leioa, Bizkaia 48940, Spain; Departamento de Bioquímica, Universidad del País Vasco, 48080 Bilbao, Spain
| | - Ana Carreras-González
- Structural Biology Unit, CIC bioGUNE, Bizkaia Technology Park, Ed. 801A, 48160 Derio, Spain
| | - Pedro Arrasate
- Structural Biology Unit, CIC bioGUNE, Bizkaia Technology Park, Ed. 801A, 48160 Derio, Spain; Unidad de Biofísica, Centro Mixto Consejo Superior de Investigaciones Científicas - Universidad del País Vasco/Euskal Herriko Unibertsitatea (CSIC-UPV/EHU), Barrio Sarriena s/n, Leioa, Bizkaia 48940, Spain
| | - Saioa Urresti
- Structural Biology Unit, CIC bioGUNE, Bizkaia Technology Park, Ed. 801A, 48160 Derio, Spain; Unidad de Biofísica, Centro Mixto Consejo Superior de Investigaciones Científicas - Universidad del País Vasco/Euskal Herriko Unibertsitatea (CSIC-UPV/EHU), Barrio Sarriena s/n, Leioa, Bizkaia 48940, Spain
| | - Xevi Biarnés
- Laboratory of Biochemistry, Bioengineering Department, Institut Químic de Sarrià, Universitat Ramon Llull, Barcelona 08017, Spain
| | - Antoni Planas
- Laboratory of Biochemistry, Bioengineering Department, Institut Químic de Sarrià, Universitat Ramon Llull, Barcelona 08017, Spain
| | - Marcelo E Guerin
- Structural Biology Unit, CIC bioGUNE, Bizkaia Technology Park, Ed. 801A, 48160 Derio, Spain; Unidad de Biofísica, Centro Mixto Consejo Superior de Investigaciones Científicas - Universidad del País Vasco/Euskal Herriko Unibertsitatea (CSIC-UPV/EHU), Barrio Sarriena s/n, Leioa, Bizkaia 48940, Spain; Departamento de Bioquímica, Universidad del País Vasco, 48080 Bilbao, Spain; IKERBASQUE, Basque Foundation for Science, 48011 Bilbao, Spain.
| |
Collapse
|
83
|
Abstract
Antibiotic resistance is a prevalent problem in public health worldwide. In general, the carbapenem β-lactam antibiotics are considered a final resort against lethal infections by multidrug-resistant bacteria. Colistin is a cationic polypeptide antibiotic and acts as the last line of defense for treatment of carbapenem-resistant bacteria. Very recently, a new plasmid-borne colistin resistance gene, mcr-2, was revealed soon after the discovery of the paradigm gene mcr-1, which has disseminated globally. However, the molecular mechanisms for MCR-2 colistin resistance are poorly understood. Here we show a unique transposon unit that facilitates the acquisition and transfer of mcr-2 Evolutionary analyses suggested that both MCR-2 and MCR-1 might be traced to their cousin phosphoethanolamine (PEA) lipid A transferase from a known polymyxin producer, Paenibacillus Transcriptional analyses showed that the level of mcr-2 transcripts is relatively higher than that of mcr-1 Genetic deletions revealed that the transmembrane regions (TM1 and TM2) of both MCR-1 and MCR-2 are critical for their location and function in bacterial periplasm, and domain swapping indicated that the TM2 is more efficient than TM1. Matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) confirmed that all four MCR proteins (MCR-1, MCR-2, and two chimeric versions [TM1-MCR-2 and TM2-MCR-1]) can catalyze chemical modification of lipid A moiety anchored on lipopolysaccharide (LPS) with the addition of phosphoethanolamine to the phosphate group at the 4' position of the sugar. Structure-guided site-directed mutagenesis defined an essential 6-residue-requiring zinc-binding/catalytic motif for MCR-2 colistin resistance. The results further our mechanistic understanding of transferable colistin resistance, providing clues to improve clinical therapeutics targeting severe infections by MCR-2-containing pathogens.IMPORTANCE Carbapenem and colistin are the last line of refuge in fighting multidrug-resistant Gram-negative pathogens. MCR-2 is a newly emerging variant of the mobilized colistin resistance protein MCR-1, posing a potential challenge to public health. Here we report transfer of the mcr-2 gene by a unique transposal event and its possible origin. Distribution of MCR-2 in bacterial periplasm is proposed to be a prerequisite for its role in the context of biochemistry and the colistin resistance. We also define the genetic requirement of a zinc-binding/catalytic motif for MCR-2 colistin resistance. This represents a glimpse of transferable colistin resistance by MCR-2.
Collapse
|
84
|
Xu Y, Smith R, Vivoli M, Ema M, Goos N, Gehrke S, Harmer NJ, Wagner GK. Covalent inhibitors of LgtC: A blueprint for the discovery of non-substrate-like inhibitors for bacterial glycosyltransferases. Bioorg Med Chem 2017; 25:3182-3194. [PMID: 28462843 DOI: 10.1016/j.bmc.2017.04.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Revised: 04/01/2017] [Accepted: 04/04/2017] [Indexed: 12/31/2022]
Abstract
Non-substrate-like inhibitors of glycosyltransferases are sought after as chemical tools and potential lead compounds for medicinal chemistry, chemical biology and drug discovery. Here, we describe the discovery of a novel small molecular inhibitor chemotype for LgtC, a retaining α-1,4-galactosyltransferase involved in bacterial lipooligosaccharide biosynthesis. The new inhibitors, which are structurally unrelated to both the donor and acceptor of LgtC, have low micromolar inhibitory activity, comparable to the best substrate-based inhibitors. We provide experimental evidence that these inhibitors react covalently with LgtC. Results from detailed enzymological experiments with wild-type and mutant LgtC suggest the non-catalytic active site residue Cys246 as a likely target residue for these inhibitors. Analysis of available sequence and structural data reveals that non-catalytic cysteines are a common motif in the active site of many bacterial glycosyltransferases. Our results can therefore serve as a blueprint for the rational design of non-substrate-like, covalent inhibitors against a broad range of other bacterial glycosyltransferases.
Collapse
Affiliation(s)
- Yong Xu
- King's College London, Department of Chemistry, Faculty of Natural & Mathematical Sciences, Britannia House, 7 Trinity Street, London SE1 1DB, UK
| | - Ruth Smith
- King's College London, Institute of Pharmaceutical Science, 150 Stamford Street, London SE1 9NH, UK
| | - Mirella Vivoli
- University of Exeter, Henry Wellcome Building for Biocatalysis, Stocker Road, Exeter EX4 4QD, UK
| | - Masaki Ema
- King's College London, Department of Chemistry, Faculty of Natural & Mathematical Sciences, Britannia House, 7 Trinity Street, London SE1 1DB, UK
| | - Niina Goos
- King's College London, Institute of Pharmaceutical Science, 150 Stamford Street, London SE1 9NH, UK
| | - Sebastian Gehrke
- King's College London, Institute of Pharmaceutical Science, 150 Stamford Street, London SE1 9NH, UK; University of East Anglia, School of Pharmacy, Earlham Road, Norwich NR4 7TJ, UK
| | - Nicholas J Harmer
- University of Exeter, Henry Wellcome Building for Biocatalysis, Stocker Road, Exeter EX4 4QD, UK
| | - Gerd K Wagner
- King's College London, Department of Chemistry, Faculty of Natural & Mathematical Sciences, Britannia House, 7 Trinity Street, London SE1 1DB, UK.
| |
Collapse
|
85
|
Interplay between Penicillin-binding proteins and SEDS proteins promotes bacterial cell wall synthesis. Sci Rep 2017; 7:43306. [PMID: 28233869 PMCID: PMC5324115 DOI: 10.1038/srep43306] [Citation(s) in RCA: 83] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Accepted: 01/06/2017] [Indexed: 11/14/2022] Open
Abstract
Bacteria utilize specialized multi-protein machineries to synthesize the essential peptidoglycan (PG) cell wall during growth and division. The divisome controls septal PG synthesis and separation of daughter cells. In E. coli, the lipid II transporter candidate FtsW is thought to work in concert with the PG synthases penicillin-binding proteins PBP3 and PBP1b. Yet, the exact molecular mechanisms of their function in complexes are largely unknown. We show that FtsW interacts with PBP1b and lipid II and that PBP1b, FtsW and PBP3 co-purify suggesting that they form a trimeric complex. We also show that the large loop between transmembrane helices 7 and 8 of FtsW is important for the interaction with PBP3. Moreover, we found that FtsW, but not the other flippase candidate MurJ, impairs lipid II polymerization and peptide cross-linking activities of PBP1b, and that PBP3 relieves these inhibitory effects. All together the results suggest that FtsW interacts with lipid II preventing its polymerization by PBP1b unless PBP3 is also present, indicating that PBP3 facilitates lipid II release and/or its transfer to PBP1b after transport across the cytoplasmic membrane. This tight regulatory mechanism is consistent with the cell’s need to ensure appropriate use of the limited pool of lipid II.
Collapse
|
86
|
Structure of a lipid A phosphoethanolamine transferase suggests how conformational changes govern substrate binding. Proc Natl Acad Sci U S A 2017; 114:2218-2223. [PMID: 28193899 DOI: 10.1073/pnas.1612927114] [Citation(s) in RCA: 108] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Multidrug-resistant (MDR) gram-negative bacteria have increased the prevalence of fatal sepsis in modern times. Colistin is a cationic antimicrobial peptide (CAMP) antibiotic that permeabilizes the bacterial outer membrane (OM) and has been used to treat these infections. The OM outer leaflet is comprised of endotoxin containing lipid A, which can be modified to increase resistance to CAMPs and prevent clearance by the innate immune response. One type of lipid A modification involves the addition of phosphoethanolamine to the 1 and 4' headgroup positions by phosphoethanolamine transferases. Previous structural work on a truncated form of this enzyme suggested that the full-length protein was required for correct lipid substrate binding and catalysis. We now report the crystal structure of a full-length lipid A phosphoethanolamine transferase from Neisseria meningitidis, determined to 2.75-Å resolution. The structure reveals a previously uncharacterized helical membrane domain and a periplasmic facing soluble domain. The domains are linked by a helix that runs along the membrane surface interacting with the phospholipid head groups. Two helices located in a periplasmic loop between two transmembrane helices contain conserved charged residues and are implicated in substrate binding. Intrinsic fluorescence, limited proteolysis, and molecular dynamics studies suggest the protein may sample different conformational states to enable the binding of two very different- sized lipid substrates. These results provide insights into the mechanism of endotoxin modification and will aid a structure-guided rational drug design approach to treating multidrug-resistant bacterial infections.
Collapse
|
87
|
Hollaus R, Kosma P, Zamyatina A. Stereoselective Synthesis of α- and β-l-Ara4N Glycosyl H-Phosphonates and a Neoglycoconjugate Comprising Glycosyl Phosphodiester Linked β-l-Ara4N. Org Lett 2016; 19:78-81. [PMID: 28009171 PMCID: PMC5223274 DOI: 10.1021/acs.orglett.6b03358] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
![]()
Stereoselective synthesis
of variably protected α- and β-l-Ara4N glycosyl
H-phosphonates as key intermediates in the
syntheses of β-l-Ara4N-modified LPS structures and
α-l-Ara4N-containing biosynthetic precursors is reported.
A facile one-pot approach toward β-l-Ara4N glycosyl
H-phosphonates includes anomeric deallylation of protected 4-azido
β-l-Ara4N via terminal olefin isomerization followed
by ozonolysis and methanolysis of formyl groups to furnish exclusively
β-configured lactols that are phosphitylated with retention
of configuration. The carbohydrate epitope of β-l-Ara4N-modified
Lipid A, βGlcN(1→6)αGlcN(1→P←1)β-l-Ara4N, was stereoselectively synthesized and linked to maleimide-activated
bovine serum albumin.
Collapse
Affiliation(s)
- Ralph Hollaus
- Department of Chemistry, University of Natural Resources and Life Sciences , Muthgasse 18, A-1190 Vienna, Austria
| | - Paul Kosma
- Department of Chemistry, University of Natural Resources and Life Sciences , Muthgasse 18, A-1190 Vienna, Austria
| | - Alla Zamyatina
- Department of Chemistry, University of Natural Resources and Life Sciences , Muthgasse 18, A-1190 Vienna, Austria
| |
Collapse
|
88
|
Dufrisne MB, Petrou VI, Clarke OB, Mancia F. Structural basis for catalysis at the membrane-water interface. Biochim Biophys Acta Mol Cell Biol Lipids 2016; 1862:1368-1385. [PMID: 27913292 DOI: 10.1016/j.bbalip.2016.11.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Revised: 11/22/2016] [Accepted: 11/23/2016] [Indexed: 11/27/2022]
Abstract
The membrane-water interface forms a uniquely heterogeneous and geometrically constrained environment for enzymatic catalysis. Integral membrane enzymes sample three environments - the uniformly hydrophobic interior of the membrane, the aqueous extramembrane region, and the fuzzy, amphipathic interfacial region formed by the tightly packed headgroups of the components of the lipid bilayer. Depending on the nature of the substrates and the location of the site of chemical modification, catalysis may occur in each of these environments. The availability of structural information for alpha-helical enzyme families from each of these classes, as well as several beta-barrel enzymes from the bacterial outer membrane, has allowed us to review here the different ways in which each enzyme fold has adapted to the nature of the substrates, products, and the unique environment of the membrane. Our focus here is on enzymes that process lipidic substrates. This article is part of a Special Issue entitled: Bacterial Lipids edited by Russell E. Bishop.
Collapse
Affiliation(s)
- Meagan Belcher Dufrisne
- Department of Physiology and Cellular Biophysics, Columbia University, New York, NY 10032, USA
| | - Vasileios I Petrou
- Department of Physiology and Cellular Biophysics, Columbia University, New York, NY 10032, USA
| | - Oliver B Clarke
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA
| | - Filippo Mancia
- Department of Physiology and Cellular Biophysics, Columbia University, New York, NY 10032, USA.
| |
Collapse
|
89
|
Structural basis of phosphatidyl-myo-inositol mannosides biosynthesis in mycobacteria. Biochim Biophys Acta Mol Cell Biol Lipids 2016; 1862:1355-1367. [PMID: 27826050 DOI: 10.1016/j.bbalip.2016.11.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Revised: 10/29/2016] [Accepted: 11/02/2016] [Indexed: 11/22/2022]
Abstract
Phosphatidyl-myo-inositol mannosides (PIMs) are glycolipids of unique chemical structure found in the inner and outer membranes of the cell envelope of all Mycobacterium species. The PIM family of glycolipids comprises phosphatidyl-myo-inositol mono-, di-, tri-, tetra-, penta-, and hexamannosides with different degrees of acylation. PIMs are considered not only essential structural components of the cell envelope but also the precursors of lipomannan and lipoarabinomannan, two major lipoglycans implicated in host-pathogen interactions. Since the description of the complete chemical structure of PIMs, major efforts have been committed to defining the molecular bases of its biosynthetic pathway. The structural characterization of the integral membrane phosphatidyl-myo-inositol phosphate synthase (PIPS), and that of three enzymes working at the protein-membrane interface, the phosphatidyl-myo-inositol mannosyltransferases A and B, and the acyltransferase PatA, established the basis of the early steps of the PIM pathway at the molecular level. This article is part of a Special Issue entitled: Bacterial Lipids edited by Russell E. Bishop.
Collapse
|
90
|
Albesa-Jové D, Guerin ME. The conformational plasticity of glycosyltransferases. Curr Opin Struct Biol 2016; 40:23-32. [DOI: 10.1016/j.sbi.2016.07.007] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Revised: 05/23/2016] [Accepted: 07/08/2016] [Indexed: 12/22/2022]
|
91
|
Stojanoski V, Sankaran B, Prasad BVV, Poirel L, Nordmann P, Palzkill T. Structure of the catalytic domain of the colistin resistance enzyme MCR-1. BMC Biol 2016; 14:81. [PMID: 27655155 PMCID: PMC5031297 DOI: 10.1186/s12915-016-0303-0] [Citation(s) in RCA: 92] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Accepted: 08/31/2016] [Indexed: 11/18/2022] Open
Abstract
Background Due to the paucity of novel antibiotics, colistin has become a last resort antibiotic for treating multidrug resistant bacteria. Colistin acts by binding the lipid A component of lipopolysaccharides and subsequently disrupting the bacterial membrane. The recently identified plasmid-encoded MCR-1 enzyme is the first transmissible colistin resistance determinant and is a cause for concern for the spread of this resistance trait. MCR-1 is a phosphoethanolamine transferase that catalyzes the addition of phosphoethanolamine to lipid A to decrease colistin affinity. Results The structure of the catalytic domain of MCR-1 at 1.32 Å reveals the active site is similar to that of related phosphoethanolamine transferases. Conclusions The putative nucleophile for catalysis, threonine 285, is phosphorylated in cMCR-1 and a zinc is present at a conserved site in addition to three zincs more peripherally located in the active site. As noted for catalytic domains of other phosphoethanolamine transferases, binding sites for the lipid A and phosphatidylethanolamine substrates are not apparent in the cMCR-1 structure, suggesting that they are present in the membrane domain. Electronic supplementary material The online version of this article (doi:10.1186/s12915-016-0303-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Vlatko Stojanoski
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX, 77030, USA.,Department of Pharmacology, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Banumathi Sankaran
- Berkeley Center for Structural Biology, Molecular Biophysics and Integrated Bioimaging, Lawrence Berkeley Laboratory, 1 Cyclotron Road, Berkeley, CA, 94720, USA
| | - B V Venkataram Prasad
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Laurent Poirel
- Department of Medicine, Medical and Molecular Microbiology "Emerging Antibiotic Resistance" Unit and European INSERM Laboratory, IAME, University of Fribourg, Fribourg, Switzerland
| | - Patrice Nordmann
- Department of Medicine, Medical and Molecular Microbiology "Emerging Antibiotic Resistance" Unit and European INSERM Laboratory, IAME, University of Fribourg, Fribourg, Switzerland.,University of Lausanne, University Hospital Center, Lausanne, Switzerland
| | - Timothy Palzkill
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX, 77030, USA. .,Department of Pharmacology, Baylor College of Medicine, Houston, TX, 77030, USA.
| |
Collapse
|
92
|
Patel MB, Garrad EC, Stavri A, Gokel MR, Negin S, Meisel JW, Cusumano Z, Gokel GW. Hydraphiles enhance antimicrobial potency against Escherichia coli, Pseudomonas aeruginosa, and Bacillus subtilis. Bioorg Med Chem 2016; 24:2864-70. [PMID: 27166575 DOI: 10.1016/j.bmc.2016.04.058] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Revised: 04/19/2016] [Accepted: 04/27/2016] [Indexed: 10/21/2022]
Abstract
Hydraphiles are synthetic amphiphiles that form ion-conducting pores in liposomal membranes. These pores exhibit open-close behavior when studied by planar bilayer conductance techniques. In previous work, we showed that when co-administered with various antibiotics to the DH5α strain of Escherichia coli, they enhanced the drug's potency. We report here potency enhancements at low concentrations of hydraphiles for the structurally and mechanistically unrelated antibiotics erythromycin, kanamycin, rifampicin, and tetracycline against Gram negative E. coli (DH5α and K-12) and Pseudomonas aeruginosa, as well as Gram positive Bacillus subtilis. Earlier work suggested that potency increases correlated to ion transport function. The data presented here comport with the function of hydraphiles to enhance membrane permeability in addition to, or instead of, their known function as ion conductors.
Collapse
Affiliation(s)
- Mohit B Patel
- Center for Nanoscience, University of Missouri-St. Louis, 1 University Blvd., St. Louis, MO 63121, USA; Department of Biology, University of Missouri-St. Louis, 1 University Blvd., St. Louis, MO 63121, USA
| | - Evan C Garrad
- Department of Biology, University of Missouri-St. Louis, 1 University Blvd., St. Louis, MO 63121, USA
| | - Ariel Stavri
- Department of Biology, University of Missouri-St. Louis, 1 University Blvd., St. Louis, MO 63121, USA
| | - Michael R Gokel
- Upaya Pharmaceuticals, LLC, 4633 World Pkwy. Cir., Berkeley, MO 63134, USA; Center for Nanoscience, University of Missouri-St. Louis, 1 University Blvd., St. Louis, MO 63121, USA
| | - Saeedeh Negin
- Center for Nanoscience, University of Missouri-St. Louis, 1 University Blvd., St. Louis, MO 63121, USA; Department of Chemistry & Biochemistry, University of Missouri-St. Louis, 1 University Blvd., St. Louis, MO 63121, USA
| | - Joseph W Meisel
- Center for Nanoscience, University of Missouri-St. Louis, 1 University Blvd., St. Louis, MO 63121, USA; Department of Chemistry & Biochemistry, University of Missouri-St. Louis, 1 University Blvd., St. Louis, MO 63121, USA
| | - Zachary Cusumano
- Department of Cell Biology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - George W Gokel
- Center for Nanoscience, University of Missouri-St. Louis, 1 University Blvd., St. Louis, MO 63121, USA; Department of Chemistry & Biochemistry, University of Missouri-St. Louis, 1 University Blvd., St. Louis, MO 63121, USA; Department of Biology, University of Missouri-St. Louis, 1 University Blvd., St. Louis, MO 63121, USA; Upaya Pharmaceuticals, LLC, 4633 World Pkwy. Cir., Berkeley, MO 63134, USA.
| |
Collapse
|
93
|
Brown DG. Drug discovery strategies to outer membrane targets in Gram-negative pathogens. Bioorg Med Chem 2016; 24:6320-6331. [PMID: 27178386 DOI: 10.1016/j.bmc.2016.05.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Revised: 04/22/2016] [Accepted: 05/03/2016] [Indexed: 11/26/2022]
Abstract
This review will cover selected recent examples of drug discovery strategies which target the outer membrane (OM) of Gram-negative bacteria either by disruption of outer membrane function or by inhibition of essential gene products necessary for outer membrane assembly. Significant advances in pathway elucidation, structural biology and molecular inhibitor designs have created new opportunities for drug discovery within this target-class space.
Collapse
Affiliation(s)
- Dean G Brown
- AstraZeneca Neurosciences, Innovative Medicines and Early Development Unit, 141 Portland St., 10th Floor, Cambridge, MA 02139, USA.
| |
Collapse
|