51
|
Upshur MA, Vega MM, Bé AG, Chase HM, Zhang Y, Tuladhar A, Chase ZA, Fu L, Ebben CJ, Wang Z, Martin ST, Geiger FM, Thomson RJ. Synthesis and surface spectroscopy of α-pinene isotopologues and their corresponding secondary organic material. Chem Sci 2019; 10:8390-8398. [PMID: 31803417 PMCID: PMC6844218 DOI: 10.1039/c9sc02399b] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Accepted: 07/21/2019] [Indexed: 12/02/2022] Open
Abstract
The synthesis and surface-specific spectroscopic analysis of α-pinene isotopologues and their corresponding secondary organic material is reported.
Atmospheric aerosol–cloud interactions remain among the least understood processes within the climate system, leaving large uncertainties in the prediction of future climates. In particular, the nature of the surfaces of aerosol particles formed from biogenic terpenes, such as α-pinene, is poorly understood despite the importance of surface phenomena in their formation, growth, radiative properties, and ultimate fate. Herein we report the coupling of a site-specific deuterium labeling strategy with vibrational sum frequency generation (SFG) spectroscopy to probe the surface C–H oscillators in α-pinene-derived secondary organic aerosol material (SOM) generated in an atmospheric flow tube reactor. Three α-pinene isotopologues with methylene bridge, bridgehead methine, allylic, and vinyl deuteration were synthesized and their vapor phase SFG spectra were compared to that of unlabeled α-pinene. Subsequent analysis of the SFG spectra of their corresponding SOM revealed that deuteration of the bridge methylene C–H oscillators present on the cyclobutane ring in α-pinene leads to a considerable signal intensity decrease (ca. 30–40%), meriting speculation that the cyclobutane moiety remains largely intact within the surface bound species present in the SOM formed upon α-pinene oxidation. These insights provide further clues as to the complexity of aerosol particle surfaces, and establish a framework for future investigations of the heterogeneous interactions between precursor terpenes and particle surfaces that lead to aerosol particle growth under dynamically changing conditions in the atmosphere.
Collapse
Affiliation(s)
- Mary Alice Upshur
- Department of Chemistry , Northwestern University , Evanston , IL 60208 , USA . ;
| | - Marvin M Vega
- Department of Chemistry , Northwestern University , Evanston , IL 60208 , USA . ;
| | - Ariana Gray Bé
- Department of Chemistry , Northwestern University , Evanston , IL 60208 , USA . ;
| | - Hilary M Chase
- Department of Chemistry , Northwestern University , Evanston , IL 60208 , USA . ;
| | - Yue Zhang
- John A. Paulson School of Engineering and Applied Sciences , Harvard University , Cambridge , MA 02138 , USA
| | - Aashish Tuladhar
- William R. Wiley Environmental Molecular Sciences Laboratory , Pacific Northwest National Laboratory , Richland , WA 99352 , USA
| | - Zizwe A Chase
- William R. Wiley Environmental Molecular Sciences Laboratory , Pacific Northwest National Laboratory , Richland , WA 99352 , USA
| | - Li Fu
- William R. Wiley Environmental Molecular Sciences Laboratory , Pacific Northwest National Laboratory , Richland , WA 99352 , USA
| | - Carlena J Ebben
- Department of Chemistry , Northwestern University , Evanston , IL 60208 , USA . ;
| | - Zheming Wang
- William R. Wiley Environmental Molecular Sciences Laboratory , Pacific Northwest National Laboratory , Richland , WA 99352 , USA
| | - Scot T Martin
- John A. Paulson School of Engineering and Applied Sciences , Harvard University , Cambridge , MA 02138 , USA.,Department of Earth and Planetary Sciences , Harvard University , Cambridge , MA 02138 , USA
| | - Franz M Geiger
- Department of Chemistry , Northwestern University , Evanston , IL 60208 , USA . ;
| | - Regan J Thomson
- Department of Chemistry , Northwestern University , Evanston , IL 60208 , USA . ;
| |
Collapse
|
52
|
Lee WC, Chen J, Budisulistiorini SH, Itoh M, Shiodera S, Kuwata M. Polarity-Dependent Chemical Characteristics of Water-Soluble Organic Matter from Laboratory-Generated Biomass-Burning Revealed by 1-Octanol-Water Partitioning. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:8047-8056. [PMID: 31194524 DOI: 10.1021/acs.est.9b01691] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Polarity distribution of water-soluble organic matter (WSOM) is an important factor in determining the hygroscopic and cloud nucleation abilities of organic aerosol particles. We applied a novel framework to quantitatively classify WSOM based on the 1-octanol-water partition coefficient (KOW), which often serves as a proxy of polarity. In this study, WSOM was generated in a laboratory biomass-burning experiment by smoldering of Indonesian peat and vegetation samples. The fractionated WSOM was analyzed using a UV-visible spectrophotometer, spectrofluorometer, and time-of-flight aerosol chemical speciation monitor. Several deconvolution methods, including positive matrix factorization, parallel factor analysis, and least-squares analysis, were applied to the measured spectra, resulting in three classes of WSOM. The highly polar fraction of WSOM, which predominantly exists in the range of log KOW < 0, is highly oxygenated and exhibits similar optical properties as those of light-absorbing humic-like substances (HULIS, termed after the humic substances due to the similarity in chemical characteristics). WSOM in the least-polar fraction, which mainly distributes in log KOW > 1, mostly consists of hydrocarbon-like and high molecular weight species. In between the most- and least-polar fraction, WSOM in the marginally polar fraction likely contains aromatic compounds. The analyses have also suggested the existence of HULIS with different polarities. Comparison with previous studies indicates that only WSOM in the highly polar fraction (log KOW < 0) likely contributes to water uptake.
Collapse
Affiliation(s)
| | - Jing Chen
- Campus for Research Excellence and Technological Enterprise (CREATE) Programme , Singapore 138602
| | | | - Masayuki Itoh
- Center for Southeast Asian Studies , Kyoto University , Kyoto 606-8501 , Japan
- School of Human Science and Environment , University of Hyogo , Hyogo 651-2103 , Japan
| | - Satomi Shiodera
- Center for Southeast Asian Studies , Kyoto University , Kyoto 606-8501 , Japan
- Research Institute for Humanity and Nature , Kyoto 603-8047 , Japan
| | - Mikinori Kuwata
- Campus for Research Excellence and Technological Enterprise (CREATE) Programme , Singapore 138602
- Center for Southeast Asian Studies , Kyoto University , Kyoto 606-8501 , Japan
- Asian School of the Environment , Nanyang Technological University , Singapore 639798
| |
Collapse
|
53
|
Jacobs MI, Xu B, Kostko O, Wiegel AA, Houle FA, Ahmed M, Wilson KR. Using Nanoparticle X-ray Spectroscopy to Probe the Formation of Reactive Chemical Gradients in Diffusion-Limited Aerosols. J Phys Chem A 2019; 123:6034-6044. [DOI: 10.1021/acs.jpca.9b04507] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Michael I. Jacobs
- Department of Chemistry, University of California, Berkeley, California 94720, United States
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Bo Xu
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Oleg Kostko
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Aaron A. Wiegel
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Frances A. Houle
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Musahid Ahmed
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Kevin R. Wilson
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| |
Collapse
|
54
|
Blanco YS, Topel Ö, Bajnóczi ÉG, Werner J, Björneholm O, Persson I. Chemical equilibria of aqueous ammonium-carboxylate systems in aqueous bulk, close to and at the water-air interface. Phys Chem Chem Phys 2019; 21:12434-12445. [PMID: 31143906 DOI: 10.1039/c9cp02449b] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Previous studies have shown that the water-air interface and a number of water molecule layers just below it, the surface region, have significantly different physico-chemical properties, such as lower relative permittivity and density, than bulk water. The properties in the surface region of water favor weakly hydrated species as neutral molecules, while ions requiring strong hydration and shielding of their charge are disfavored. In this study the equilibria NH4+(aq) + RCOO-(aq) ⇌ NH3(aq) + RCOOH(aq) are investigated for R = CnH2n+1, n = 0-8, as open systems, where ammonia and small carboxylic acids in the gas phase above the water surface are removed from the system by a gentle controlled flow of nitrogen to mimic the transport of volatile compounds from water droplets into air. It is shown that this non-equilibrium transport of chemicals can be sufficiently large to cause a change of the chemical content of the aqueous bulk. Furthermore, X-ray photoelectron spectroscopy (XPS) has been used to determine the relative concentration of alkyl carboxylic acids and their conjugated alkyl carboxylates in aqueous surfaces using a micro-jet. These studies confirm that neutral alkyl carboxylic acids are accumulated in the surface region, while charged species, as alkyl carboxylates, are depleted. The XPS studies show also that the hydrophobic alkyl chains are oriented upwards into regions with lower relative permittivity and density, thus perpendicular to the aqueous surface. These combined results show that there are several chemical equilibria between the aqueous bulk and the surface region. The analytical studies show that the release of mainly ammonia is dependent on its concentration in the surface region, as long as the solubility of the carboxylic acid in the surface region is sufficiently high to avoid a precipitation in/on the water-air interface. However, for n-octyl- and n-nonylcarboxylic acid the solubility is sufficiently low to cause precipitation. The combined analytical and surface speciation studies in this work show that the equilibria involving the surface region are fast. The results from this study increase the knowledge about the distribution of chemical species in the surface region at and close to the water-air interface, and the transport of chemicals from water to air in open systems.
Collapse
Affiliation(s)
- Yina Salamanca Blanco
- Department of Molecular Sciences, Swedish University of Agricultural Sciences, P.O. Box 7015, SE-750 07 Uppsala, Sweden.
| | - Önder Topel
- Department of Molecular Sciences, Swedish University of Agricultural Sciences, P.O. Box 7015, SE-750 07 Uppsala, Sweden.
| | - Éva G Bajnóczi
- Department of Molecular Sciences, Swedish University of Agricultural Sciences, P.O. Box 7015, SE-750 07 Uppsala, Sweden.
| | - Josephina Werner
- Department of Molecular Sciences, Swedish University of Agricultural Sciences, P.O. Box 7015, SE-750 07 Uppsala, Sweden. and Department of Physics and Astronomy, Uppsala University, P.O. Box 516, SE-751 20 Uppsala, Sweden
| | - Olle Björneholm
- Department of Physics and Astronomy, Uppsala University, P.O. Box 516, SE-751 20 Uppsala, Sweden
| | - Ingmar Persson
- Department of Molecular Sciences, Swedish University of Agricultural Sciences, P.O. Box 7015, SE-750 07 Uppsala, Sweden.
| |
Collapse
|
55
|
Qiu J, Ishizuka S, Tonokura K, Enami S. Interfacial vs Bulk Ozonolysis of Nerolidol. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:5750-5757. [PMID: 31017766 DOI: 10.1021/acs.est.9b00364] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Ozone readily reacts with olefins with the formation of more reactive Criegee intermediates (CIs). The transient CIs impact HO x cycles, and they play a role in new particle formation in the troposphere. Oxidation by O3 occurs both in the gas-phase, in the liquid phase, and at air-water and air-aerosol interfaces. In light of the importance of O3 in environmental and engineered chemical transformations, we have investigated the ozonolysis mechanisms of a triolefin C15-alcohol, nerolidol (Nero, a biogenic sesquiterpene), at the air-water interface in the presence of acetonitrile. Surface-sensitive pneumatic ionization mass spectrometric detection of α-hydroxy-hydroperoxides and functionalized carboxylates, generated by the hydration and isomerization of CIs, respectively, enables us to evaluate the relative reactivity of each C=C toward O3. In addition, we compare bulk-phase ozonolysis chemistry to similar reactions taking place at the air-water interface. Our experimental results show that O3 reacts primarily with the (CH3)2C=CH- and -(CH3)C=CH- moieties (>∼98%), while the O3 attack on the terminal -HC=CH2 site (<∼2%) is a minor pathway during both interfacial and bulk ozonolysis. The presence of functionalized-carboxylates on interfaces but not in bulk-phase reactions with O3 indicates that the isomerization of the CIs is not hindered at the air-water interface due to the lower availability of water .
Collapse
Affiliation(s)
- Junting Qiu
- Graduate School of Frontier Sciences , The University of Tokyo , 5-1-5 Kashiwanoha , Kashiwa 277-8563 , Japan
| | - Shinnosuke Ishizuka
- National Institute for Environmental Studies , 16-2 Onogawa , Tsukuba 305-8506 , Japan
| | - Kenichi Tonokura
- Graduate School of Frontier Sciences , The University of Tokyo , 5-1-5 Kashiwanoha , Kashiwa 277-8563 , Japan
| | - Shinichi Enami
- National Institute for Environmental Studies , 16-2 Onogawa , Tsukuba 305-8506 , Japan
| |
Collapse
|
56
|
Zhong J, Li H, Kumar M, Liu J, Liu L, Zhang X, Zeng XC, Francisco JS. Mechanistic Insight into the Reaction of Organic Acids with SO
3
at the Air–Water Interface. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201900534] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Jie Zhong
- Department of Chemistry University of Nebraska-Lincoln Lincoln NE 68588 USA
| | - Hao Li
- Key Laboratory of Cluster Science Ministy of Education of China School of Chemistry Beijing Inistitute of Technology Beijing 100081 China
| | - Manoj Kumar
- Department of Chemistry University of Nebraska-Lincoln Lincoln NE 68588 USA
| | - Jiarong Liu
- Key Laboratory of Cluster Science Ministy of Education of China School of Chemistry Beijing Inistitute of Technology Beijing 100081 China
| | - Ling Liu
- Key Laboratory of Cluster Science Ministy of Education of China School of Chemistry Beijing Inistitute of Technology Beijing 100081 China
| | - Xiuhui Zhang
- Key Laboratory of Cluster Science Ministy of Education of China School of Chemistry Beijing Inistitute of Technology Beijing 100081 China
| | - Xiao Cheng Zeng
- Department of Chemistry University of Nebraska-Lincoln Lincoln NE 68588 USA
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering Beijing University of Chemical Technology Beijing 100029 China
| | - Joseph S. Francisco
- Department of Chemistry University of Nebraska-Lincoln Lincoln NE 68588 USA
- Department of Earth and Environmental Science and Department of Chemistry University of Pennsylvania Philadelphia PA 19104-6316 USA
| |
Collapse
|
57
|
Zhong J, Li H, Kumar M, Liu J, Liu L, Zhang X, Zeng XC, Francisco JS. Mechanistic Insight into the Reaction of Organic Acids with SO
3
at the Air–Water Interface. Angew Chem Int Ed Engl 2019; 58:8351-8355. [DOI: 10.1002/anie.201900534] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Revised: 03/03/2019] [Indexed: 11/08/2022]
Affiliation(s)
- Jie Zhong
- Department of Chemistry University of Nebraska-Lincoln Lincoln NE 68588 USA
| | - Hao Li
- Key Laboratory of Cluster Science Ministy of Education of China School of Chemistry Beijing Inistitute of Technology Beijing 100081 China
| | - Manoj Kumar
- Department of Chemistry University of Nebraska-Lincoln Lincoln NE 68588 USA
| | - Jiarong Liu
- Key Laboratory of Cluster Science Ministy of Education of China School of Chemistry Beijing Inistitute of Technology Beijing 100081 China
| | - Ling Liu
- Key Laboratory of Cluster Science Ministy of Education of China School of Chemistry Beijing Inistitute of Technology Beijing 100081 China
| | - Xiuhui Zhang
- Key Laboratory of Cluster Science Ministy of Education of China School of Chemistry Beijing Inistitute of Technology Beijing 100081 China
| | - Xiao Cheng Zeng
- Department of Chemistry University of Nebraska-Lincoln Lincoln NE 68588 USA
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering Beijing University of Chemical Technology Beijing 100029 China
| | - Joseph S. Francisco
- Department of Chemistry University of Nebraska-Lincoln Lincoln NE 68588 USA
- Department of Earth and Environmental Science and Department of Chemistry University of Pennsylvania Philadelphia PA 19104-6316 USA
| |
Collapse
|
58
|
Miles REH, Glerum MWJ, Boyer HC, Walker JS, Dutcher CS, Bzdek BR. Surface Tensions of Picoliter Droplets with Sub-Millisecond Surface Age. J Phys Chem A 2019; 123:3021-3029. [PMID: 30864798 DOI: 10.1021/acs.jpca.9b00903] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Aerosols are key components of the atmosphere and play important roles in many industrial processes. Because aerosol particles have high surface-to-volume ratios, their surface properties are especially important. However, direct measurement of the surface properties of aerosol particles is challenging. In this work, we describe an approach to measure the surface tension of picoliter volume droplets with surface age <1 ms by resolving their dynamic oscillations in shape immediately after ejection from a microdroplet dispenser. Droplet shape oscillations are monitored by highly time-resolved (500 ns) stroboscopic imaging, and droplet surface tension is accurately retrieved across a wide range of droplet sizes (10-25 μm radius) and surface ages (down to ∼100 μs). The approach is validated for droplets containing sodium chloride, glutaric acid, and water, which all show no variation in surface tension with surface age. Experimental results from the microdroplet dispenser approach are compared to complementary surface tension measurements of 5-10 μm radius droplets with aged surfaces using a holographic optical tweezers approach and predictions of surface tension using a statistical thermodynamic model. These approaches combined will allow investigation of droplet surface tension across a wide range of droplet sizes, compositions, and surface ages.
Collapse
Affiliation(s)
- Rachael E H Miles
- School of Chemistry , University of Bristol , Cantock's Close , Bristol BS8 1TS , United Kingdom
| | - Michael W J Glerum
- School of Chemistry , University of Bristol , Cantock's Close , Bristol BS8 1TS , United Kingdom
| | - Hallie C Boyer
- Department of Mechanical Engineering , University of Minnesota, Twin Cities , Minneapolis , Minnesota 55455 , United States
| | - Jim S Walker
- School of Chemistry , University of Bristol , Cantock's Close , Bristol BS8 1TS , United Kingdom
| | - Cari S Dutcher
- Department of Mechanical Engineering , University of Minnesota, Twin Cities , Minneapolis , Minnesota 55455 , United States
| | - Bryan R Bzdek
- School of Chemistry , University of Bristol , Cantock's Close , Bristol BS8 1TS , United Kingdom
| |
Collapse
|
59
|
Fan H, Wenyika Masaya T, Goulay F. Effect of surface-bulk partitioning on the heterogeneous oxidation of aqueous saccharide aerosols. Phys Chem Chem Phys 2019; 21:2992-3001. [PMID: 30672531 DOI: 10.1039/c8cp06785f] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The OH-initiated heterogeneous oxidation of mixed saccharide aqueous aerosols is investigated using an atmospheric-pressure flow tube coupled to off-line analysis of the particle composition. For equimolar monosaccharide/disaccharide aqueous aerosol mixtures, the decay of the disaccharide is found to be significantly slower than that of the monosaccharide. Molecular dynamics simulations of the mixed aqueous solutions reveal the formation of a ∼10 Å disaccharide exclusion layer below the water surface. A simple chemical model is developed to discuss the possible effect of the disaccharide surface partitioning on the heterogeneous kinetics. The observed decays are consistent with a poor spatial overlap of the OH radical at the interface with the disaccharide in the particle bulk. The effect of partitioning on the heterogeneous oxidation of atmospheric organic aerosols is discussed.
Collapse
Affiliation(s)
- Hanyu Fan
- Department of Chemistry, West Virginia University, Morgantown, West Virginia 26506, USA.
| | | | | |
Collapse
|
60
|
Marsh A, Rovelli G, Song YC, Pereira KL, Willoughby RE, Bzdek BR, Hamilton JF, Orr-Ewing AJ, Topping DO, Reid JP. Accurate representations of the physicochemical properties of atmospheric aerosols: when are laboratory measurements of value? Faraday Discuss 2018; 200:639-661. [PMID: 28574570 DOI: 10.1039/c7fd00008a] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Laboratory studies can provide important insights into the processes that occur at the scale of individual particles in ambient aerosol. We examine the accuracies of measurements of core physicochemical properties of aerosols that can be made in single particle studies and explore the impact of these properties on the microscopic processes that occur in ambient aerosol. Presenting new measurements, we examine here the refinements in our understanding of aerosol hygroscopicity, surface tension, viscosity and optical properties that can be gained from detailed laboratory measurements for complex mixtures through to surrogates for secondary organic atmospheric aerosols.
Collapse
|
61
|
Malila J, Prisle NL. A Monolayer Partitioning Scheme for Droplets of Surfactant Solutions. JOURNAL OF ADVANCES IN MODELING EARTH SYSTEMS 2018; 10:3233-3251. [PMID: 31007837 PMCID: PMC6472654 DOI: 10.1029/2018ms001456] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Revised: 12/04/2018] [Accepted: 12/04/2018] [Indexed: 06/09/2023]
Abstract
Bulk-surface partitioning of surface active species affects both cloud droplet activation by aerosol particles and heterogeneous atmospheric chemistry. Various approaches are given in the literature to capture this effect in atmospheric models. Here we present a simple, yet physically self-contained, monolayer model for prediction of both composition and thickness of the surface layer of an aqueous droplet. The monolayer surface model is based on assuming a finite surface layer and mass balance of all species within the droplet. Model predictions are presented for binary and ternary aqueous surfactant model systems and compared to both experimental and model data from the literature and predictions using a common Gibbsian model approach. Deviations from Gibbsian surface thermodynamics due to volume constraints imposed by the finite monolayer lead to stronger predicted surface tension reduction at smaller droplet sizes with the monolayer model. Process dynamics of the presented monolayer model are also contrasted to other recently proposed approaches to treating surface partitioning in droplets, with different underlying assumptions.
Collapse
Affiliation(s)
- J. Malila
- Nano and Molecular Systems Research UnitUniversity of OuluOuluFinland
| | - N. L. Prisle
- Nano and Molecular Systems Research UnitUniversity of OuluOuluFinland
| |
Collapse
|
62
|
Night-Time Oxidation of a Monolayer Model for the Air–Water Interface of Marine Aerosols—A Study by Simultaneous Neutron Reflectometry and in Situ Infra-Red Reflection Absorption Spectroscopy (IRRAS). ATMOSPHERE 2018. [DOI: 10.3390/atmos9120471] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
This paper describes experiments on the ageing of a monolayer model for the air–water interface of marine aerosols composed of a typical glycolipid, galactocerebroside (GCB). Lipopolysaccharides have been observed in marine aerosols, and GCB is used as a proxy for these more complex lipopolysaccharides. GCB monolayers are investigated as pure films, as mixed films with palmitic acid, which is abundant in marine aerosols and forms a stable attractively mixed film with GCB, particularly with divalent salts present in the subphase, and as mixed films with palmitoleic acid, an unsaturated analogue of palmitic acid. Such mixed films are more realistic models of atmospheric aerosols than simpler single-component systems. Neutron reflectometry (NR) has been combined in situ with Fourier transform infra-red reflection absorption spectroscopy (IRRAS) in a pioneering analysis and reaction setup designed by us specifically to study mixed organic monolayers at the air–water interface. The two techniques in combination allow for more sophisticated observation of multi-component monolayers than has previously been possible. The structure at the air–water interface was also investigated by complementary Brewster angle microscopy (BAM). This study looks specifically at the oxidation of the organic films by nitrate radicals (NO3•), the key atmospheric oxidant present at night. We conclude that NO3• oxidation cannot fully remove a cerebroside monolayer from the surface on atmospherically relevant timescales, leaving its saturated tail at the interface. This is true for pure and salt water subphases, as well as for single- and two-component films. The behaviour of the unsaturated tail section of the molecule is more variable and is affected by interactions with co-deposited species. Most surprisingly, we found that the presence of CaCl2 in the subphase extends the lifetime of the unsaturated tail substantially—a new explanation for longer residence times of materials in the atmosphere compared to lifetimes based on laboratory studies of simplified model systems. It is thus likely that aerosols produced from the sea-surface microlayer at night will remain covered in surfactant molecules on atmospherically relevant timescales with impact on the droplet’s surface tension and on the transport of chemical species across the air–water interface.
Collapse
|
63
|
Li J, Li S, Cheng S, Tsona NT, Du L. Emerging investigator series: exploring the surface properties of aqueous aerosols coated with mixed surfactants. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2018; 20:1500-1511. [PMID: 30371711 DOI: 10.1039/c8em00419f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Mixed Langmuir monolayers of cholesterol with both saturated and unsaturated fatty acids, stearic acid (SA), and oleic acid (OA) spread at the air-seawater surface were studied. The phase behavior, molecular interaction, and conformational order of the monolayers were investigated by surface pressure-area (π-A) isotherms and infrared reflection-absorption spectroscopy (IRRAS) measurements. The thermodynamic parameters of the mixed films, including excess molecular area and excess Gibbs free energy were calculated by using the isotherm data. The interaction between SA (or OA) and cholesterol varied with the molar fraction of the fatty acids and surface pressure. OA/chol monolayers showed the characteristics of miscibility, but they acted as nonideal systems. Cholesterol has been observed to have a stabilizing effect on OA monolayers. The negative values of the excess Gibbs free energy in the entire composition range demonstrated that mixed OA/chol monolayers were thermodynamically stable. IRRAS spectra showed that mixing with cholesterol changes the ordering of fatty acid monolayers at the air-seawater surface. The findings provide general information regarding the structural changes in the monolayer induced by lateral packing. These results help in the understanding of the mixing behavior of fatty acids and cholesterol and provide insights into the fate of the mixed-monolayer-coated sea salt aerosol in the ocean environment.
Collapse
Affiliation(s)
- Junyao Li
- Environment Research Institute, Shandong University, Binhai Road 72, Qingdao, 266237, China.
| | | | | | | | | |
Collapse
|
64
|
Lin JJ, Malila J, Prisle NL. Cloud droplet activation of organic-salt mixtures predicted from two model treatments of the droplet surface. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2018; 20:1611-1629. [PMID: 30398264 PMCID: PMC6716451 DOI: 10.1039/c8em00345a] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Accepted: 10/09/2018] [Indexed: 06/08/2023]
Abstract
The droplet surface plays important roles in the interaction between organic aerosols with clouds and climate. Surface active organic compounds can partition to the droplet surface, depleting the solute from the droplet bulk or depressing the droplet surface tension. This may in turn affect the shape of the droplet growth curve, threshold of aerosol activation into cloud droplets, activated droplet size distributions, and cloud radiative effects. In this work, a new monolayer model along with a traditional Gibbs adsorption isotherm model was used in conjunction with equilibrium Köhler theory to predict cloud condensation nuclei (CCN) activation of both simple and complex surface active model aerosol systems. For the surface active aerosol considered, the monolayer droplet model produces similar results to the Gibbs model as well as comparable results to CCN measurements from the literature, even for systems where specific molecular identities and aqueous properties are unknown. The monolayer model is self-contained and fully prognostic, and provides a versatile, conceptually simple, yet physically based model for understanding the role of organic surfactants in cloud droplet formation.
Collapse
Affiliation(s)
- Jack J. Lin
- Nano and Molecular Systems Research Unit
, FI-90014 University of Oulu
,
P. O. Box 3000
, Oulu
, Finland
.
| | - Jussi Malila
- Nano and Molecular Systems Research Unit
, FI-90014 University of Oulu
,
P. O. Box 3000
, Oulu
, Finland
.
| | - Nønne L. Prisle
- Nano and Molecular Systems Research Unit
, FI-90014 University of Oulu
,
P. O. Box 3000
, Oulu
, Finland
.
| |
Collapse
|
65
|
Li S, Du L, Zhang Q, Wang W. Stabilizing mixed fatty acid and phthalate ester monolayer on artificial seawater. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2018; 242:626-633. [PMID: 30014940 DOI: 10.1016/j.envpol.2018.07.043] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Revised: 07/09/2018] [Accepted: 07/10/2018] [Indexed: 06/08/2023]
Abstract
Phthalate esters which are widely used as industrial chemicals have become widespread contaminants in the marine environment. However, little information is available on the interfacial behavior of phthalate esters in the seawater, where contaminants generally occur at elevated concentrations and have the potential to transfer into the atmosphere through wave breaking on sea surface. We used artificial seawater coated with fatty acids to simulate sea surface microlayer in a Langmuir trough. The interactions of saturated fatty acids (stearic acid (SA) and palmitic acid (PA)) with one of the most abundant phthalate esters (di-(2-ethylhexyl) phthalate (DEHP)), were investigated under artificial seawater and pure water conditions. Pure DEHP monolayer was not stable, while more stable mixed monolayers were formed by SA and DEHP on the artificial seawater at relatively low surface pressure. Sea salts in the subphase can lower the excess Gibbs free energy to form more stable mixed monolayer. Among the ten components in the sea salts, Ca2+ ions played the major role in condensation of mixed monolayer. The condensed characteristic of the mixed SA (or PA)/DEHP monolayers suggested that the hydrocarbon chains were ordered on artificial seawater. By means of infrared reflection-absorption spectroscopy (IRRAS), we found that multiple sea salt mixtures induced deprotonated forms of fatty acids at the air-water interface. Sea salts can improve the stability and lifetime of mixed fatty acid and phthalate ester monolayer on aqueous droplets in the atmosphere. Interfacial properties of mixed fatty acid and phthalate ester monolayers at the air-ocean interface are important to help understand their behavior and fate in the marine environment.
Collapse
Affiliation(s)
- Siyang Li
- Environment Research Institute, Shandong University, Binhai Road 72, Qingdao, 266237, China
| | - Lin Du
- Environment Research Institute, Shandong University, Binhai Road 72, Qingdao, 266237, China.
| | - Qingzhu Zhang
- Environment Research Institute, Shandong University, Binhai Road 72, Qingdao, 266237, China
| | - Wenxing Wang
- Environment Research Institute, Shandong University, Binhai Road 72, Qingdao, 266237, China
| |
Collapse
|
66
|
Ekholm V, Caleman C, Bjärnhall Prytz N, Walz MM, Werner J, Öhrwall G, Rubensson JE, Björneholm O. Strong enrichment of atmospherically relevant organic ions at the aqueous interface: the role of ion pairing and cooperative effects. Phys Chem Chem Phys 2018; 20:27185-27191. [PMID: 30339167 DOI: 10.1039/c8cp04525a] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Surface affinity, orientation and ion pairing are investigated in mixed and single solute systems of aqueous sodium hexanoate and hexylammonium chloride. The surface sensitive X-ray photoelectron spectroscopy technique has been used to acquire the experimental results, while the computational data have been calculated using molecular dynamics simulations. By comparing the single solute solutions with the mixed one, we observe a non-linear surface enrichment and reorientation of the organic ions with their alkyl chains pointing out of the aqueous surface. We ascribe this effect to ion paring between the charged functional groups on the respective organic ion and hydrophobic expulsion of the alkyl chains from the surface in combination with van der Waals interactions between the alkyl chains. These cooperative effects lead to a substantial surface enrichment of organic ions, with consequences for aerosol surface properties.
Collapse
Affiliation(s)
- Victor Ekholm
- Dep. of Phys. & Astron., Uppsala University, Box 516, SE-751 20 Uppsala, Sweden.
| | | | | | | | | | | | | | | |
Collapse
|
67
|
Resolving the mechanisms of hygroscopic growth and cloud condensation nuclei activity for organic particulate matter. Nat Commun 2018; 9:4076. [PMID: 30287821 PMCID: PMC6172236 DOI: 10.1038/s41467-018-06622-2] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Accepted: 09/14/2018] [Indexed: 12/02/2022] Open
Abstract
Hygroscopic growth and cloud condensation nuclei activation are key processes for accurately modeling the climate impacts of organic particulate matter. Nevertheless, the microphysical mechanisms of these processes remain unresolved. Here we report complex thermodynamic behaviors, including humidity-dependent hygroscopicity, diameter-dependent cloud condensation nuclei activity, and liquid–liquid phase separation in the laboratory for biogenically derived secondary organic material representative of similar atmospheric organic particulate matter. These behaviors can be explained by the non-ideal mixing of water with hydrophobic and hydrophilic organic components. The non-ideality-driven liquid–liquid phase separation further enhances water uptake and induces lowered surface tension at high relative humidity, which result in a lower barrier to cloud condensation nuclei activation. By comparison, secondary organic material representing anthropogenic sources does not exhibit complex thermodynamic behavior. The combined results highlight the importance of detailed thermodynamic representations of the hygroscopicity and cloud condensation nuclei activity in models of the Earth’s climate system. The interactions between organic particulate matter and water vapour affect climate predictions, yet the mechanisms of these interactions remain unresolved. Here, the authors propose a phase separation mechanism that reconciles the observed hygroscopicity and cloud condensation nuclei activity.
Collapse
|
68
|
Kroflič A, Frka S, Simmel M, Wex H, Grgić I. Size-Resolved Surface-Active Substances of Atmospheric Aerosol: Reconsideration of the Impact on Cloud Droplet Formation. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2018; 52:9179-9187. [PMID: 30048123 DOI: 10.1021/acs.est.8b02381] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Our current understanding of the importance of surface-active substances (SAS) on atmospheric aerosol cloud-forming efficiency is limited, as explicit data on the content of size-resolved ambient aerosol SAS, which are responsible for lowering the surface tension (σ) of activating droplets, are not available. We report on the first data comprising seasonal variability of size-segregated SAS concentrations in ambient aerosol particulate matter (PM). To assess the impact of SAS distribution within PM on cloud droplet activation and growth, a concept of surfactant activity was adopted and a parametrization developed; i.e., surfactant activity factor (SAF) was defined, which allowed translation of experimental data for use in cloud parcel modeling. The results show that SAS-induced σ depression during cloud activation may affect droplet number ( Nd) as much as a 2-fold increase in particle number, whereas by considering also the size distribution of particulate SAS, Nd may increase for another 10%. This study underscores the importance of size-resolved SAS perspective on cloud activation, as data typically obtained from aqueous extracts of PM2.5 and PM10 may result in misleading conclusions about droplet growth due to large mass fractions of supermicron particles with SAS deficit and little or no influence on CCN and Nd.
Collapse
Affiliation(s)
- Ana Kroflič
- Department of Analytical Chemistry , National Institute of Chemistry , Ljubljana 1000 , Slovenia
- Atmospheric Chemistry , Leibniz Institute for Tropospheric Research , Leipzig 04318 , Germany
| | - Sanja Frka
- Department of Analytical Chemistry , National Institute of Chemistry , Ljubljana 1000 , Slovenia
- Division for Marine and Environmental Research , Ruđer Bošković Institute , Zagreb 10000 , Croatia
| | - Martin Simmel
- Modelling of Atmospheric Processes , Leibniz Institute for Tropospheric Research , Leipzig 04318 , Germany
| | - Heike Wex
- Experimental Aerosol and Cloud Microphysics , Leibniz Institute for Tropospheric Research , Leipzig 04318 , Germany
| | - Irena Grgić
- Department of Analytical Chemistry , National Institute of Chemistry , Ljubljana 1000 , Slovenia
| |
Collapse
|
69
|
Wang B, Li SQ, Dong SJ, Xin RB, Jin RZ, Zhang YM, Dong KJ, Jiang YC. A New Fine Particle Removal Technology: Cloud-Air-Purifying. Ind Eng Chem Res 2018. [DOI: 10.1021/acs.iecr.8b03034] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Bo Wang
- Key Laboratory of Western China’s Environmental Systems (Ministry of Education) and Engineering Research Center of Fine Particle Pollution Control Technology and Equipment, Gansu Province, College of Earth and Environmental Sciences, Lanzhou University, Lanzhou 730000, P. R. China
| | - Si-Qing Li
- Key Laboratory of Western China’s Environmental Systems (Ministry of Education) and Engineering Research Center of Fine Particle Pollution Control Technology and Equipment, Gansu Province, College of Earth and Environmental Sciences, Lanzhou University, Lanzhou 730000, P. R. China
| | - Si-Jie Dong
- Key Laboratory of Western China’s Environmental Systems (Ministry of Education) and Engineering Research Center of Fine Particle Pollution Control Technology and Equipment, Gansu Province, College of Earth and Environmental Sciences, Lanzhou University, Lanzhou 730000, P. R. China
| | - Ru-Bin Xin
- Key Laboratory of Western China’s Environmental Systems (Ministry of Education) and Engineering Research Center of Fine Particle Pollution Control Technology and Equipment, Gansu Province, College of Earth and Environmental Sciences, Lanzhou University, Lanzhou 730000, P. R. China
| | - Rui-Zhi Jin
- Center for Infrastructure Engineering, Western Sydney University, Penrith, New South Wales 2751, Australia
| | - Yu-Meng Zhang
- Key Laboratory of Western China’s Environmental Systems (Ministry of Education) and Engineering Research Center of Fine Particle Pollution Control Technology and Equipment, Gansu Province, College of Earth and Environmental Sciences, Lanzhou University, Lanzhou 730000, P. R. China
| | - Ke-Jun Dong
- Center for Infrastructure Engineering, Western Sydney University, Penrith, New South Wales 2751, Australia
| | - Yun-Chao Jiang
- Key Laboratory of Western China’s Environmental Systems (Ministry of Education) and Engineering Research Center of Fine Particle Pollution Control Technology and Equipment, Gansu Province, College of Earth and Environmental Sciences, Lanzhou University, Lanzhou 730000, P. R. China
| |
Collapse
|
70
|
Huang Y, Barraza KM, Kenseth CM, Zhao R, Wang C, Beauchamp JL, Seinfeld JH. Probing the OH Oxidation of Pinonic Acid at the Air–Water Interface Using Field-Induced Droplet Ionization Mass Spectrometry (FIDI-MS). J Phys Chem A 2018; 122:6445-6456. [DOI: 10.1021/acs.jpca.8b05353] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Yuanlong Huang
- Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, California 91125, United States
| | - Kevin M. Barraza
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States
| | - Christopher M. Kenseth
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States
| | - Ran Zhao
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States
| | - Chen Wang
- Department of Chemistry and Department of Physical and Environmental Sciences, University of Toronto, Toronto, Ontario M1C 1A4, Canada
| | - J. L. Beauchamp
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States
| | - John H. Seinfeld
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States
- Division of Engineering and Applied Science, California Institute of Technology, Pasadena, California 91125, United States
| |
Collapse
|
71
|
Influence of Common Assumptions Regarding Aerosol Composition and Mixing State on Predicted CCN Concentration. ATMOSPHERE 2018. [DOI: 10.3390/atmos9020054] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
72
|
Hoyermann K, Mauß F, Olzmann M, Welz O, Zeuch T. Exploring the chemical kinetics of partially oxidized intermediates by combining experiments, theory, and kinetic modeling. Phys Chem Chem Phys 2018; 19:18128-18146. [PMID: 28681879 DOI: 10.1039/c7cp02759a] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Partially oxidized intermediates play a central role in combustion and atmospheric chemistry. In this perspective, we focus on the chemical kinetics of alkoxy radicals, peroxy radicals, and Criegee intermediates, which are key species in both combustion and atmospheric environments. These reactive intermediates feature a broad spectrum of chemical diversity. Their reactivity is central to our understanding of how volatile organic compounds are degraded in the atmosphere and converted into secondary organic aerosol. Moreover, they sensitively determine ignition timing in internal combustion engines. The intention of this perspective article is to provide the reader with information about the general mechanisms of reactions initiated by addition of atomic and molecular oxygen to alkyl radicals and ozone to alkenes. We will focus on critical branching points in the subsequent reaction mechanisms and discuss them from a consistent point of view. As a first example of our integrated approach, we will show how experiment, theory, and kinetic modeling have been successfully combined in the first infrared detection of Criegee intermediates during the gas phase ozonolysis. As a second example, we will examine the ignition timing of n-heptane/air mixtures at low and intermediate temperatures. Here, we present a reduced, fuel size independent kinetic model of the complex chemistry initiated by peroxy radicals that has been successfully applied to simulate standard n-heptane combustion experiments.
Collapse
Affiliation(s)
- Karlheinz Hoyermann
- Georg-August-Universität Göttingen, Institut für Physikalische Chemie, Tammannstraße 6, 37077 Göttingen, Germany.
| | | | | | | | | |
Collapse
|
73
|
Wiegel AA, Liu MJ, Hinsberg WD, Wilson KR, Houle FA. Diffusive confinement of free radical intermediates in the OH radical oxidation of semisolid aerosols. Phys Chem Chem Phys 2018; 19:6814-6830. [PMID: 28218326 DOI: 10.1039/c7cp00696a] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Multiphase chemical reactions (gas + solid/liquid) involve a complex interplay between bulk and interface chemistry, diffusion, evaporation, and condensation. Reactions of atmospheric aerosols are an important example of this type of chemistry: the rich array of particle phase states and multiphase transformation pathways produce diverse but poorly understood interactions between chemistry and transport. Their chemistry is of intrinsic interest because of their role in controlling climate. Their characteristics also make them useful models for the study of principles of reactivity of condensed materials under confined conditions. In previous work, we have reported a computational study of the oxidation chemistry of a liquid aliphatic aerosol. In this study, we extend the calculations to investigate nearly the same reactions at a semisolid gas-aerosol interface. A reaction-diffusion model for heterogeneous oxidation of triacontane by hydroxyl radicals (OH) is described, and its predictions are compared to measurements of aerosol size and composition, which evolve continuously during oxidation. These results are also explicitly compared to those obtained for the corresponding liquid system, squalane, to pinpoint salient elements controlling reactivity. The diffusive confinement of the free radical intermediates at the interface results in enhanced importance of a few specific chemical processes such as the involvement of aldehydes in fragmentation and evaporation, and a significant role of radical-radical reactions in product formation. The simulations show that under typical laboratory conditions semisolid aerosols have highly oxidized nanometer-scale interfaces that encapsulate an unreacted core and may confer distinct optical properties and enhanced hygroscopicity. This highly oxidized layer dynamically evolves with reaction, which we propose to result in plasticization. The validated model is used to predict chemistry under atmospheric conditions, where the OH radical concentration is much lower. The oxidation reactions are more strongly influenced by diffusion in the particle, resulting in a more liquid-like character.
Collapse
Affiliation(s)
- Aaron A Wiegel
- Lawrence Berkeley National Laboratory, Chemical Sciences Division, Berkeley, CA 94702, USA.
| | - Matthew J Liu
- Lawrence Berkeley National Laboratory, Chemical Sciences Division, Berkeley, CA 94702, USA. and University of California, Berkeley, Department of Chemical and Biomolecular Engineering, Berkeley, CA 94702, USA
| | | | - Kevin R Wilson
- Lawrence Berkeley National Laboratory, Chemical Sciences Division, Berkeley, CA 94702, USA.
| | - Frances A Houle
- Lawrence Berkeley National Laboratory, Chemical Sciences Division, Berkeley, CA 94702, USA.
| |
Collapse
|
74
|
Ishizuka S, Fujii T, Matsugi A, Sakamoto Y, Hama T, Enami S. Controlling factors of oligomerization at the water surface: why is isoprene such a unique VOC? Phys Chem Chem Phys 2018; 20:15400-15410. [DOI: 10.1039/c8cp01551a] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The interfacial oligomerization of isoprene is facilitated by the resonance stabilization through the formation of a tertiary carbocation with a conjugated CC bond pair, and electron enrichment induced by the neighboring methyl group.
Collapse
Affiliation(s)
- Shinnosuke Ishizuka
- Institute of Low Temperature Science
- Hokkaido University
- Sapporo 060-0819
- Japan
- National Institute for Environmental Studies
| | - Tomihide Fujii
- Graduate School of Global Environmental Studies
- Kyoto University
- Kyoto 606-8501
- Japan
| | - Akira Matsugi
- Research Institute of Science for Safety and Sustainability
- National Institute of Advanced Industrial Science and Technology
- Tsukuba 305-8569
- Japan
| | - Yosuke Sakamoto
- Graduate School of Global Environmental Studies
- Kyoto University
- Kyoto 606-8501
- Japan
- Graduate School of Human and Environmental Studies
| | - Tetsuya Hama
- Institute of Low Temperature Science
- Hokkaido University
- Sapporo 060-0819
- Japan
| | - Shinichi Enami
- National Institute for Environmental Studies
- Tsukuba 305-8506
- Japan
| |
Collapse
|
75
|
Bzdek BR, Reid JP. Perspective: Aerosol microphysics: From molecules to the chemical physics of aerosols. J Chem Phys 2017; 147:220901. [DOI: 10.1063/1.5002641] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Affiliation(s)
- Bryan R. Bzdek
- School of Chemistry, University of Bristol, Bristol BS8 1TS,
United Kingdom
| | - Jonathan P. Reid
- School of Chemistry, University of Bristol, Bristol BS8 1TS,
United Kingdom
| |
Collapse
|
76
|
Lee HD, Estillore AD, Morris HS, Ray KK, Alejandro A, Grassian VH, Tivanski AV. Direct Surface Tension Measurements of Individual Sub-Micrometer Particles Using Atomic Force Microscopy. J Phys Chem A 2017; 121:8296-8305. [DOI: 10.1021/acs.jpca.7b04041] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Hansol D. Lee
- Department
of Chemistry, University of Iowa, Iowa City, Iowa 52242, United States
| | | | - Holly S. Morris
- Department
of Chemistry, University of Iowa, Iowa City, Iowa 52242, United States
| | - Kamal K. Ray
- Department
of Chemistry, University of Iowa, Iowa City, Iowa 52242, United States
| | - Aldair Alejandro
- Department
of Chemistry, University of Iowa, Iowa City, Iowa 52242, United States
| | | | - Alexei V. Tivanski
- Department
of Chemistry, University of Iowa, Iowa City, Iowa 52242, United States
| |
Collapse
|
77
|
Gray Bé A, Upshur MA, Liu P, Martin ST, Geiger FM, Thomson RJ. Cloud Activation Potentials for Atmospheric α-Pinene and β-Caryophyllene Ozonolysis Products. ACS CENTRAL SCIENCE 2017; 3:715-725. [PMID: 28776013 PMCID: PMC5532715 DOI: 10.1021/acscentsci.7b00112] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Indexed: 05/14/2023]
Abstract
The formation of atmospheric cloud droplets due to secondary organic aerosol (SOA) particles is important for quantifying the Earth's radiative balance under future, possibly warmer, climates, yet is only poorly understood. While cloud activation may be parametrized using the surface tension depression that coincides with surfactant partitioning to the gas-droplet interface, the extent to which cloud activation is influenced by both the chemical structure and reactivity of the individual molecules comprising this surfactant pool is largely unknown. We report herein considerable differences in the surface tension depression of aqueous pendant droplets that contain synthetically prepared ozonolysis products derived from α-pinene and β-caryophyllene, the most abundant of the monoterpenes and sesquiterpenes, respectively, that are emitted over the planet's vast forest ecosystems. Oxidation products derived from β-caryophyllene were found to exhibit significantly higher surface activity than those prepared from α-pinene, with the critical supersaturation required for cloud droplet activation reduced by 50% for β-caryophyllene aldehyde at 1 mM. These considerable reductions in the critical supersaturation were found to coincide with free energies of adsorption that exceed ∼25 kJ/mol, or just one hydrogen bond equivalent, depending on the ammonium sulfate and oxidation product concentration in the solution. Additional experiments showed that aldehyde-containing oxidation products exist in equilibrium with hydrated forms in aqueous solution, which may modulate their bulk solubility and surface activity. Equilibration time scales on the order of 10-5 to 10-4 s calculated for micrometer-sized aerosol particles indicate instantaneous surface tension depression in the activation processes leading to cloud formation in the atmosphere. Our findings highlight the underlying importance of molecular structure and reactivity when considering cloud condensation activity in the presence of SOA particles.
Collapse
Affiliation(s)
- Ariana Gray Bé
- Department
of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Mary Alice Upshur
- Department
of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Pengfei Liu
- John
A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, United States
| | - Scot T. Martin
- John
A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, United States
- Department
of Earth and Planetary Sciences, Harvard
University, Cambridge, Massachusetts 02138, United States
| | - Franz M. Geiger
- Department
of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Regan J. Thomson
- Department
of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| |
Collapse
|
78
|
Revising the hygroscopicity of inorganic sea salt particles. Nat Commun 2017; 8:15883. [PMID: 28671188 PMCID: PMC5500848 DOI: 10.1038/ncomms15883] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Accepted: 05/10/2017] [Indexed: 11/08/2022] Open
Abstract
Sea spray is one of the largest natural aerosol sources and plays an important role in the Earth’s radiative budget. These particles are inherently hygroscopic, that is, they take-up moisture from the air, which affects the extent to which they interact with solar radiation. We demonstrate that the hygroscopic growth of inorganic sea salt is 8–15% lower than pure sodium chloride, most likely due to the presence of hydrates. We observe an increase in hygroscopic growth with decreasing particle size (for particle diameters <150 nm) that is independent of the particle generation method. We vary the hygroscopic growth of the inorganic sea salt within a general circulation model and show that a reduced hygroscopicity leads to a reduction in aerosol-radiation interactions, manifested by a latitudinal-dependent reduction of the aerosol optical depth by up to 15%, while cloud-related parameters are unaffected. We propose that a value of κs=1.1 (at RH=90%) is used to represent the hygroscopicity of inorganic sea salt particles in numerical models. Sea spray, one of the largest natural aerosol sources, plays an important role in the Earth’s radiative budget. Here the authors show that the ability of sea salt particles to take up water is smaller than for pure salt, with implications for the parameterization of the direct aerosol radiative effect.
Collapse
|
79
|
Petters SS, Pagonis D, Claflin MS, Levin EJT, Petters MD, Ziemann PJ, Kreidenweis SM. Hygroscopicity of Organic Compounds as a Function of Carbon Chain Length and Carboxyl, Hydroperoxy, and Carbonyl Functional Groups. J Phys Chem A 2017. [PMID: 28621942 DOI: 10.1021/acs.jpca.7b04114] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Sarah Suda Petters
- Department
of Atmospheric Science, Colorado State University, Fort Collins, Colorado 80523-1371, United States
| | - Demetrios Pagonis
- Department
of Chemistry and Biochemistry, University of Colorado at Boulder, Boulder, Colorado 80309-0216, United States
| | - Megan S. Claflin
- Department
of Chemistry and Biochemistry, University of Colorado at Boulder, Boulder, Colorado 80309-0216, United States
| | - Ezra J. T. Levin
- Department
of Atmospheric Science, Colorado State University, Fort Collins, Colorado 80523-1371, United States
| | - Markus D. Petters
- Department
of Marine Earth and Atmospheric Sciences, North Carolina State University, Raleigh, North Carolina 27695-8208, United States
| | - Paul J. Ziemann
- Department
of Chemistry and Biochemistry, University of Colorado at Boulder, Boulder, Colorado 80309-0216, United States
| | - Sonia M. Kreidenweis
- Department
of Atmospheric Science, Colorado State University, Fort Collins, Colorado 80523-1371, United States
| |
Collapse
|
80
|
Abstract
The spontaneous growth of cloud condensation nuclei (CCN) into cloud droplets under supersaturated water vapour conditions is described by classic Köhler theory. This spontaneous activation of CCN depends on the interplay between the Raoult effect, whereby activation potential increases with decreasing water activity or increasing solute concentration, and the Kelvin effect, whereby activation potential decreases with decreasing droplet size or increases with decreasing surface tension, which is sensitive to surfactants. Surface tension lowering caused by organic surfactants, which diminishes the Kelvin effect, is expected to be negated by a concomitant reduction in the Raoult effect, driven by the displacement of surfactant molecules from the droplet bulk to the droplet-vapour interface. Here we present observational and theoretical evidence illustrating that, in ambient air, surface tension lowering can prevail over the reduction in the Raoult effect, leading to substantial increases in cloud droplet concentrations. We suggest that consideration of liquid-liquid phase separation, leading to complete or partial engulfing of a hygroscopic particle core by a hydrophobic organic-rich phase, can explain the lack of concomitant reduction of the Raoult effect, while maintaining substantial lowering of surface tension, even for partial surface coverage. Apart from the importance of particle size and composition in droplet activation, we show by observation and modelling that incorporation of phase-separation effects into activation thermodynamics can lead to a CCN number concentration that is up to ten times what is predicted by climate models, changing the properties of clouds. An adequate representation of the CCN activation process is essential to the prediction of clouds in climate models, and given the effect of clouds on the Earth's energy balance, improved prediction of aerosol-cloud-climate interactions is likely to result in improved assessments of future climate change.
Collapse
|
81
|
Abstract
Although too small to be seen with the human eye, atmospheric particulate matter has major impacts on the world around us, from our health to global climate. Understanding the sources, properties, and transformations of these particles in the atmosphere is among the major challenges in air quality and climate research today. Significant progress has been made over the past two decades in understanding atmospheric aerosol chemistry and its connections to climate. Advances in technology for characterizing aerosol chemical composition and physical properties have enabled rapid discovery in this area. This article reviews fundamental concepts and recent developments surrounding ambient aerosols, their chemical composition and sources, light-absorbing aerosols, aerosols and cloud formation, and aerosol-based solar radiation management (also known as solar geoengineering).
Collapse
Affiliation(s)
- V. Faye McNeill
- Department of Chemical Engineering, Columbia University, New York, New York 10027
| |
Collapse
|
82
|
Boyer HC, Dutcher CS. Atmospheric Aqueous Aerosol Surface Tensions: Isotherm-Based Modeling and Biphasic Microfluidic Measurements. J Phys Chem A 2017; 121:4733-4742. [DOI: 10.1021/acs.jpca.7b03189] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Hallie C. Boyer
- Department of Mechanical
Engineering, University of Minnesota, Twin Cities, Minneapolis, Minnesota 55455, United States
| | - Cari S. Dutcher
- Department of Mechanical
Engineering, University of Minnesota, Twin Cities, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
83
|
Rastak N, Pajunoja A, Acosta Navarro JC, Ma J, Song M, Partridge DG, Kirkevåg A, Leong Y, Hu WW, Taylor NF, Lambe A, Cerully K, Bougiatioti A, Liu P, Krejci R, Petäjä T, Percival C, Davidovits P, Worsnop DR, Ekman AML, Nenes A, Martin S, Jimenez JL, Collins DR, Topping D, Bertram AK, Zuend A, Virtanen A, Riipinen I. Microphysical explanation of the RH-dependent water affinity of biogenic organic aerosol and its importance for climate. GEOPHYSICAL RESEARCH LETTERS 2017; 44:5167-5177. [PMID: 28781391 PMCID: PMC5518298 DOI: 10.1002/2017gl073056] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2017] [Revised: 04/25/2017] [Accepted: 04/25/2017] [Indexed: 05/28/2023]
Abstract
A large fraction of atmospheric organic aerosol (OA) originates from natural emissions that are oxidized in the atmosphere to form secondary organic aerosol (SOA). Isoprene (IP) and monoterpenes (MT) are the most important precursors of SOA originating from forests. The climate impacts from OA are currently estimated through parameterizations of water uptake that drastically simplify the complexity of OA. We combine laboratory experiments, thermodynamic modeling, field observations, and climate modeling to (1) explain the molecular mechanisms behind RH-dependent SOA water-uptake with solubility and phase separation; (2) show that laboratory data on IP- and MT-SOA hygroscopicity are representative of ambient data with corresponding OA source profiles; and (3) demonstrate the sensitivity of the modeled aerosol climate effect to assumed OA water affinity. We conclude that the commonly used single-parameter hygroscopicity framework can introduce significant error when quantifying the climate effects of organic aerosol. The results highlight the need for better constraints on the overall global OA mass loadings and its molecular composition, including currently underexplored anthropogenic and marine OA sources.
Collapse
|
84
|
Nozière B, Gérard V, Baduel C, Ferronato C. Extraction and Characterization of Surfactants from Atmospheric Aerosols. J Vis Exp 2017. [PMID: 28518073 PMCID: PMC5565068 DOI: 10.3791/55622] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Surface-active compounds, or surfactants, present in atmospheric aerosols are expected to play important roles in the formation of liquid water clouds in the Earth's atmosphere, a central process in meteorology, hydrology, and for the climate system. But because specific extraction and characterization of these compounds have been lacking for decades, very little is known on their identity, properties, mode of action and origins, thus preventing the full understanding of cloud formation and its potential links with the Earth's ecosystems. In this paper we present recently developed methods for 1) the targeted extraction of all the surfactants from atmospheric aerosol samples and for the determination of 2) their absolute concentrations in the aerosol phase and 3) their static surface tension curves in water, including their Critical Micelle Concentration (CMC). These methods have been validated with 9 references surfactants, including anionic, cationic and non-ionic ones. Examples of results are presented for surfactants found in fine aerosol particles (diameter <1 μm) collected at a coastal site in Croatia and suggestions for future improvements and other characterizations than those presented are discussed.
Collapse
Affiliation(s)
| | | | - Christine Baduel
- CNRS, ENS de Lyon, Université Claude Bernard Lyon 1, Institut des Sciences Analytiques, UMR 5280
| | | |
Collapse
|
85
|
Reed Harris AE, Pajunoja A, Cazaunau M, Gratien A, Pangui E, Monod A, Griffith EC, Virtanen A, Doussin JF, Vaida V. Multiphase Photochemistry of Pyruvic Acid under Atmospheric Conditions. J Phys Chem A 2017; 121:3327-3339. [DOI: 10.1021/acs.jpca.7b01107] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Allison E. Reed Harris
- Department
of Chemistry and Biochemistry, CIRES, University of Colorado, Boulder, Colorado 80309, United States
| | - Aki Pajunoja
- Department
of Applied Physics, University of Eastern Finland, Kuopio Campus, P.O. Box 1627, 70211 Kuopio, Finland
| | - Mathieu Cazaunau
- LISA, UMR
CNRS 7583,
Université Paris Est Cretéil (UPEC), Université
Paris Diderot (UPD), Institut Pierre Simon Laplace (IPSL), 94010 Cretéil, France
| | - Aline Gratien
- LISA, UMR
CNRS 7583,
Université Paris Est Cretéil (UPEC), Université
Paris Diderot (UPD), Institut Pierre Simon Laplace (IPSL), 94010 Cretéil, France
| | - Edouard Pangui
- LISA, UMR
CNRS 7583,
Université Paris Est Cretéil (UPEC), Université
Paris Diderot (UPD), Institut Pierre Simon Laplace (IPSL), 94010 Cretéil, France
| | - Anne Monod
- Aix Marseille
Université, CNRS, LCE, 13331, Marseille, France
| | - Elizabeth C. Griffith
- Department
of Chemistry and Biochemistry, CIRES, University of Colorado, Boulder, Colorado 80309, United States
| | - Annele Virtanen
- Department
of Applied Physics, University of Eastern Finland, Kuopio Campus, P.O. Box 1627, 70211 Kuopio, Finland
| | - Jean-Francois Doussin
- LISA, UMR
CNRS 7583,
Université Paris Est Cretéil (UPEC), Université
Paris Diderot (UPD), Institut Pierre Simon Laplace (IPSL), 94010 Cretéil, France
| | - Veronica Vaida
- Department
of Chemistry and Biochemistry, CIRES, University of Colorado, Boulder, Colorado 80309, United States
| |
Collapse
|
86
|
Mocellin A, Gomes AHDA, Araújo OC, de Brito AN, Björneholm O. Surface Propensity of Atmospherically Relevant Amino Acids Studied by XPS. J Phys Chem B 2017; 121:4220-4225. [DOI: 10.1021/acs.jpcb.7b02174] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Alexandra Mocellin
- Institute
of Physics, Brasilia University (UnB), Box 4455, Brasília 70910-970, Brazil
| | - Anderson Herbert de Abreu Gomes
- Institute
of Physics “Gleb Wataghin”, Department of Applied Physics, University of Campinas (Unicamp), Campinas 13083-859, Brazil
| | - Oscar Cardoso Araújo
- Institute
of Physics, Brasilia University (UnB), Box 4455, Brasília 70910-970, Brazil
| | - Arnaldo Naves de Brito
- Institute
of Physics “Gleb Wataghin”, Department of Applied Physics, University of Campinas (Unicamp), Campinas 13083-859, Brazil
| | - Olle Björneholm
- Department
of Physics and Astronomy, Uppsala University, 752 36 Uppsala, Sweden
| |
Collapse
|
87
|
Burkholder JB, Abbatt JPD, Barnes I, Roberts JM, Melamed ML, Ammann M, Bertram AK, Cappa CD, Carlton AG, Carpenter LJ, Crowley JN, Dubowski Y, George C, Heard DE, Herrmann H, Keutsch FN, Kroll JH, McNeill VF, Ng NL, Nizkorodov SA, Orlando JJ, Percival CJ, Picquet-Varrault B, Rudich Y, Seakins PW, Surratt JD, Tanimoto H, Thornton JA, Tong Z, Tyndall GS, Wahner A, Weschler CJ, Wilson KR, Ziemann PJ. The Essential Role for Laboratory Studies in Atmospheric Chemistry. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2017; 51:2519-2528. [PMID: 28169528 DOI: 10.1021/acs.est.6b04947] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Laboratory studies of atmospheric chemistry characterize the nature of atmospherically relevant processes down to the molecular level, providing fundamental information used to assess how human activities drive environmental phenomena such as climate change, urban air pollution, ecosystem health, indoor air quality, and stratospheric ozone depletion. Laboratory studies have a central role in addressing the incomplete fundamental knowledge of atmospheric chemistry. This article highlights the evolving science needs for this community and emphasizes how our knowledge is far from complete, hindering our ability to predict the future state of our atmosphere and to respond to emerging global environmental change issues. Laboratory studies provide rich opportunities to expand our understanding of the atmosphere via collaborative research with the modeling and field measurement communities, and with neighboring disciplines.
Collapse
Affiliation(s)
- James B Burkholder
- Earth System Research Laboratory, Chemical Sciences Division, National Oceanic and Atmospheric Administration , Boulder, Colorado 80305, United States
| | - Jonathan P D Abbatt
- Department of Chemistry, University of Toronto , Toronto, Ontario, M5S 3H6, Canada
| | - Ian Barnes
- University of Wuppertal , School of Mathematics and Natural Science, Institute of Atmospheric and Environmental Research, Gauss Strasse 20, 42119 Wuppertal, Germany
| | - James M Roberts
- Earth System Research Laboratory, Chemical Sciences Division, National Oceanic and Atmospheric Administration , Boulder, Colorado 80305, United States
| | - Megan L Melamed
- IGAC Executive Officer, University of Colorado/CIRES , Boulder, Colorado 80309-0216 United States
| | - Markus Ammann
- Laboratory of Environmental Chemistry, Paul Scherrer Institute , Villigen, 5232, Switzerland
| | - Allan K Bertram
- Department of Chemistry, The University of British Columbia , Vancouver, British Columbia, V6T 1Z1, Canada
| | - Christopher D Cappa
- Department of Civil and Environmental Engineering, University of California , Davis, California 95616, United States
| | - Annmarie G Carlton
- Department of Chemistry, University of California , Irvine, California 92617, United States
| | - Lucy J Carpenter
- Wolfson Atmospheric Chemistry Laboratories, Department of Chemistry, University of York , York, United Kingdom , YO10 5DD
| | | | - Yael Dubowski
- Faculty of Civil and Environmental Engineering Technion, Israel Institute of Technology , Haifa 32000, Israel
| | - Christian George
- Université Lyon 1CNRS, UMR5256, IRCELYON, Institut de recherches sur la catalyse et l'environnement de Lyon , Villeurbanne F-69626, France
| | - Dwayne E Heard
- School of Chemistry, University of Leeds , Leeds, LS2 9JT, United Kingdom
| | - Hartmut Herrmann
- Leibniz-Institut für Troposphärenforschung (TROPOS), D-04318 Leipzig, Germany
| | - Frank N Keutsch
- Department of Chemistry and Chemical Biology, Harvard University , Cambridge, Massachusetts 02128, United States
| | - Jesse H Kroll
- Department of Civil and Environmental Engineering, Department of Chemical Engineering, Massachusetts Institute of Technology , Cambridge, Massachusetts 02139, United States
| | - V Faye McNeill
- Chemical Engineering, Columbia University , New York, New York, United States
| | - Nga Lee Ng
- School of Chemical & Biomolecular Engineering and School of Earth and Atmospheric Sciences, Georgia Institute of Technology , Atlanta, Georgia, United States
| | - Sergey A Nizkorodov
- Department of Chemistry University of California , Irvine, California 92697, United States
| | - John J Orlando
- National Center for Atmospheric Research, Atmospheric Chemistry Observations and Modeling Laboratory , Boulder, Colorado 80301, United States
| | - Carl J Percival
- School of Earth, Atmospheric and Environmental Sciences, University of Manchester , Manchester, United Kingdom
| | - Bénédicte Picquet-Varrault
- Laboratoire Interuniversitaire des Systèmes Atmosphériques (LISA), UMR 7583 CNRS, Universités Paris-Est Créteil et Paris Diderot, Institut Pierre-Simon Laplace , Créteil Cedex, France
| | - Yinon Rudich
- Department of Earth and Planetary Sciences, Weizmann Institute of Science , Rehovot 76100, Israel
| | - Paul W Seakins
- School of Chemistry, University of Leeds , Leeds, LS2 9JT, United Kingdom
| | - Jason D Surratt
- Department of Environmental Sciences and Engineering, University of North Carolina at Chapel Hill , Chapel Hill, North Carolina 27599, United States
| | - Hiroshi Tanimoto
- National Institute for Environmental Studies , Tsukuba, Ibaraki Japan
| | - Joel A Thornton
- Department of Atmospheric Sciences, University of Washington , Seattle, Washington 98195, United States
| | - Zhu Tong
- College of Environmental Sciences and Engineering, Peking University , Beijing, China
| | - Geoffrey S Tyndall
- National Center for Atmospheric Research, Atmospheric Chemistry Observations and Modeling Laboratory , Boulder, Colorado 80301, United States
| | - Andreas Wahner
- Institue of Energy and Climate Research, IEK-8: Troposphere, Forschungszentrum Jülich GmbH, D-52425 Jülich, Germany
| | - Charles J Weschler
- Environmental & Occupational Health Sciences Institute, Rutgers University , Piscataway, New Jersey 08854, United States
| | - Kevin R Wilson
- Chemical Sciences Division, Lawrence Berkeley National Laboratory , Berkeley, California, United States
| | - Paul J Ziemann
- Department of Chemistry and Cooperative Institute for Research in Environmental Sciences, University of Colorado , Boulder, Colorado 80309, United States
| |
Collapse
|
88
|
Zhao DF, Buchholz A, Tillmann R, Kleist E, Wu C, Rubach F, Kiendler-Scharr A, Rudich Y, Wildt J, Mentel TF. Environmental conditions regulate the impact of plants on cloud formation. Nat Commun 2017; 8:14067. [PMID: 28218253 PMCID: PMC5321720 DOI: 10.1038/ncomms14067] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Accepted: 11/25/2016] [Indexed: 11/15/2022] Open
Abstract
The terrestrial vegetation emits large amounts of volatile organic compounds (VOC) into the atmosphere, which on oxidation produce secondary organic aerosol (SOA). By acting as cloud condensation nuclei (CCN), SOA influences cloud formation and climate. In a warming climate, changes in environmental factors can cause stresses to plants, inducing changes of the emitted VOC. These can modify particle size and composition. Here we report how induced emissions eventually affect CCN activity of SOA, a key parameter in cloud formation. For boreal forest tree species, insect infestation by aphids causes additional VOC emissions which modifies SOA composition thus hygroscopicity and CCN activity. Moderate heat increases the total amount of constitutive VOC, which has a minor effect on hygroscopicity, but affects CCN activity by increasing the particles' size. The coupling of plant stresses, VOC composition and CCN activity points to an important impact of induced plant emissions on cloud formation and climate. Volatile organic compounds (VOC) emitted by vegetation influence cloud formation, yet the impact of environmental stresses remains little known. Here, manipulation experiments reveal insect infestation and heat stress are linked to induced VOC and constitutive VOC emissions shifts, respectively.
Collapse
Affiliation(s)
- D F Zhao
- Institute for Energy and Climate Research, IEK-8: Troposphere, Forschungszentrum Jülich, Jülich 52425, Germany
| | - A Buchholz
- Institute for Energy and Climate Research, IEK-8: Troposphere, Forschungszentrum Jülich, Jülich 52425, Germany
| | - R Tillmann
- Institute for Energy and Climate Research, IEK-8: Troposphere, Forschungszentrum Jülich, Jülich 52425, Germany
| | - E Kleist
- Institute of Bio- and Geosciences, IBG-2, Forschungszentrum Jülich, Jülich 52425, Germany
| | - C Wu
- Institute for Energy and Climate Research, IEK-8: Troposphere, Forschungszentrum Jülich, Jülich 52425, Germany
| | - F Rubach
- Institute for Energy and Climate Research, IEK-8: Troposphere, Forschungszentrum Jülich, Jülich 52425, Germany
| | - A Kiendler-Scharr
- Institute for Energy and Climate Research, IEK-8: Troposphere, Forschungszentrum Jülich, Jülich 52425, Germany
| | - Y Rudich
- Department of Earth and Planetary Sciences, Weizmann Institute of Science, Rehovot 76100, Israel
| | - J Wildt
- Institute for Energy and Climate Research, IEK-8: Troposphere, Forschungszentrum Jülich, Jülich 52425, Germany.,Institute of Bio- and Geosciences, IBG-2, Forschungszentrum Jülich, Jülich 52425, Germany
| | - Th F Mentel
- Institute for Energy and Climate Research, IEK-8: Troposphere, Forschungszentrum Jülich, Jülich 52425, Germany
| |
Collapse
|
89
|
Estillore AD, Morris HS, Or VW, Lee HD, Alves MR, Marciano MA, Laskina O, Qin Z, Tivanski AV, Grassian VH. Linking hygroscopicity and the surface microstructure of model inorganic salts, simple and complex carbohydrates, and authentic sea spray aerosol particles. Phys Chem Chem Phys 2017; 19:21101-21111. [DOI: 10.1039/c7cp04051b] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Sea spray aerosol (SSA) particles are mixtures of organics and salts that show diversity in their morphologies and water uptake properties.
Collapse
Affiliation(s)
- Armando D. Estillore
- Department of Chemistry and Biochemistry
- University of California San Diego
- La Jolla
- USA
| | | | - Victor W. Or
- Department of Chemistry and Biochemistry
- University of California San Diego
- La Jolla
- USA
| | - Hansol D. Lee
- Department of Chemistry
- University of Iowa
- Iowa City
- USA
| | - Michael R. Alves
- Department of Chemistry and Biochemistry
- University of California San Diego
- La Jolla
- USA
| | - Meagan A. Marciano
- Department of Chemistry and Biochemistry
- University of California San Diego
- La Jolla
- USA
| | - Olga Laskina
- Department of Chemistry
- University of Iowa
- Iowa City
- USA
| | - Zhen Qin
- Department of Chemistry
- University of Iowa
- Iowa City
- USA
| | | | - Vicki H. Grassian
- Department of Chemistry and Biochemistry
- University of California San Diego
- La Jolla
- USA
- Scripps Institution of Oceanography and Department of Nanoengineering
| |
Collapse
|
90
|
Wellen BA, Lach EA, Allen HC. Surface pKa of octanoic, nonanoic, and decanoic fatty acids at the air–water interface: applications to atmospheric aerosol chemistry. Phys Chem Chem Phys 2017; 19:26551-26558. [DOI: 10.1039/c7cp04527a] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Surface-pKa of medium-chain fatty acids, determined by surface tension titration, is different from the bulk value.
Collapse
Affiliation(s)
- Bethany A. Wellen
- Department of Chemistry & Biochemistry
- The Ohio State University
- Columbus
- Ohio 43210
- USA
| | - Evan A. Lach
- Department of Chemistry & Biochemistry
- The Ohio State University
- Columbus
- Ohio 43210
- USA
| | - Heather C. Allen
- Department of Chemistry & Biochemistry
- The Ohio State University
- Columbus
- Ohio 43210
- USA
| |
Collapse
|
91
|
Boyer HC, Bzdek BR, Reid JP, Dutcher CS. Statistical Thermodynamic Model for Surface Tension of Organic and Inorganic Aqueous Mixtures. J Phys Chem A 2016; 121:198-205. [DOI: 10.1021/acs.jpca.6b10057] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Hallie C. Boyer
- Department
of Mechanical Engineering, University of Minnesota, Twin Cities, Minneapolis, Minnesota 55455, United States
| | - Bryan R. Bzdek
- School
of Chemistry, University of Bristol, Bristol BS8 1TS, United Kingdom
| | - Jonathan P. Reid
- School
of Chemistry, University of Bristol, Bristol BS8 1TS, United Kingdom
| | - Cari S. Dutcher
- Department
of Mechanical Engineering, University of Minnesota, Twin Cities, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
92
|
Enami S, Fujii T, Sakamoto Y, Hama T, Kajii Y. Carboxylate Ion Availability at the Air–Water Interface. J Phys Chem A 2016; 120:9224-9234. [DOI: 10.1021/acs.jpca.6b08868] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Shinichi Enami
- National Institute for Environmental Studies, 16-2 Onogawa, Tsukuba, Ibaraki 305-8506, Japan
| | - Tomihide Fujii
- Graduate School of Global Environmental
Studies, Kyoto University, Kyoto 606-8501, Japan
| | - Yosuke Sakamoto
- Graduate School of Global Environmental
Studies, Kyoto University, Kyoto 606-8501, Japan
- Graduate School of Human and Environmental Studies, Kyoto University, Kyoto 606-8316, Japan
| | - Tetsuya Hama
- Institute of Low Temperature Science, Hokkaido University, Sapporo 060-0819, Japan
| | - Yoshizumi Kajii
- National Institute for Environmental Studies, 16-2 Onogawa, Tsukuba, Ibaraki 305-8506, Japan
- Graduate School of Global Environmental
Studies, Kyoto University, Kyoto 606-8501, Japan
- Graduate School of Human and Environmental Studies, Kyoto University, Kyoto 606-8316, Japan
| |
Collapse
|
93
|
|
94
|
|