51
|
Belardinelli JM, Arora D, Avanzi C, Wheat WH, Bryant JM, Spencer JS, Blundell TL, Parkhill J, Floto RA, Jackson M. Clinically relevant mutations in the PhoR sensor kinase of host-adapted Mycobacterium abscessus isolates impact response to acidic pH and virulence. Microbiol Spectr 2023; 11:e0158823. [PMID: 37874174 PMCID: PMC10715180 DOI: 10.1128/spectrum.01588-23] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 09/14/2023] [Indexed: 10/25/2023] Open
Abstract
IMPORTANCE Difficult-to-treat pulmonary infections caused by nontuberculous mycobacteria of the Mycobacterium abscessus group have been steadily increasing in the USA and globally. Owing to the relatively recent recognition of M. abscessus as a human pathogen, basic and translational research to address critical gaps in diagnosis, treatment, and prevention of diseases caused by this microorganism has been lagging behind that of the better-known mycobacterial pathogen, Mycobacterium tuberculosis. To begin unraveling the molecular mechanisms of pathogenicity of M. abscessus, we here focus on the study of a two-component regulator known as PhoPR which we found to be under strong evolutionary pressure during human lung infection. We show that PhoPR is activated at acidic pH and serves to regulate a defined set of genes involved in host adaptation. Accordingly, clinical isolates from chronically infected human lungs tend to hyperactivate this regulator enabling M. abscessus to escape macrophage killing.
Collapse
Affiliation(s)
- Juan M. Belardinelli
- Department of Microbiology, Immunology and Pathology, Mycobacteria Research Laboratories, Colorado State University, Fort Collins, Colorado, USA
| | - Divya Arora
- Department of Medicine, Molecular Immunity Unit, University of Cambridge, MRC-Laboratory of Molecular Biology, Cambridge, United Kingdom
| | - Charlotte Avanzi
- Department of Microbiology, Immunology and Pathology, Mycobacteria Research Laboratories, Colorado State University, Fort Collins, Colorado, USA
| | - William H. Wheat
- Department of Microbiology, Immunology and Pathology, Mycobacteria Research Laboratories, Colorado State University, Fort Collins, Colorado, USA
| | - Josephine M. Bryant
- Department of Medicine, Molecular Immunity Unit, University of Cambridge, MRC-Laboratory of Molecular Biology, Cambridge, United Kingdom
- University of Cambridge Centre for AI in Medicine, Cambridge, United Kingdom
| | - John S. Spencer
- Department of Microbiology, Immunology and Pathology, Mycobacteria Research Laboratories, Colorado State University, Fort Collins, Colorado, USA
| | - Tom L. Blundell
- Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom
| | - Julian Parkhill
- Wellcome Sanger Institute, Hinxton, United Kingdom
- Department of Veterinary Medicine, University of Cambridge, Cambridge, United Kingdom
| | - R. Andres Floto
- Department of Medicine, Molecular Immunity Unit, University of Cambridge, MRC-Laboratory of Molecular Biology, Cambridge, United Kingdom
- University of Cambridge Centre for AI in Medicine, Cambridge, United Kingdom
- Cambridge Centre for Lung Infection, Papworth Hospital, Cambridge, United Kingdom
| | - Mary Jackson
- Department of Microbiology, Immunology and Pathology, Mycobacteria Research Laboratories, Colorado State University, Fort Collins, Colorado, USA
| |
Collapse
|
52
|
Baird T, Bell S. Cystic Fibrosis-Related Nontuberculous Mycobacterial Pulmonary Disease. Clin Chest Med 2023; 44:847-860. [PMID: 37890921 DOI: 10.1016/j.ccm.2023.06.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/29/2023]
Abstract
Non-tuberculous mycobacteria (NTM) infection is a major cause of morbidity in people with cystic fibrosis (pwCF) with rates of infection increasing worldwide. Accurate diagnosis and decisions surrounding best management remain challenging. Treatment guidelines have been developed to assist physicians in managing NTM in pwCF, but involve prolonged and complex mycobacterial regimens, often associated with significant toxicity. Fortunately, current management and outcomes of NTM in CF are likely to evolve due to improved understanding of disease acquisition, better diagnostics, emerging antimycobacterial therapies, and the widespread uptake of cystic fibrosis transmembrane conductance regulator (CFTR) modulator therapies.
Collapse
Affiliation(s)
- Timothy Baird
- Department of Respiratory Medicine, Sunshine Coast University Hospital, Sunshine Coast, Queensland, Australia; Sunshine Coast Health Institute, Sunshine Coast, Queensland, Australia; University of the Sunshine Coast, Sunshine Coast, Queensland, Australia.
| | - Scott Bell
- Department of Thoracic Medicine, The Prince Charles Hospital, Brisbane, Queensland, Australia; Children's Health Research Centre, Faculty of Medicine, The University of Queensland, Brisbane, Australia; Translational Research Institute, Brisbane, Queensland, Australia; Department of Thoracic Medicine, The Prince Charles Hospital, Chermside, Queensland, Australia
| |
Collapse
|
53
|
Shallom SJ, Tettelin H, Chandrasekaran P, Park IK, Agrawal S, Arora K, Sadzewicz L, Milstone AM, Aitken ML, Brown-Elliott BA, Wallace RJ, Sampaio EP, Niederweis M, Olivier KN, Holland SM, Zelazny AM. Evolution of Mycobacterium abscessus in the human lung: Cumulative mutations and genomic rearrangement of porin genes in patient isolates. Virulence 2023; 14:2215602. [PMID: 37221835 PMCID: PMC10243398 DOI: 10.1080/21505594.2023.2215602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 05/01/2023] [Indexed: 05/25/2023] Open
Abstract
BACKGROUND Mycobacterium abscessus subspecies massiliense (M. massiliense) is increasingly recognized as an emerging bacterial pathogen, particularly in cystic fibrosis (CF) patients and CF centres' respiratory outbreaks. We characterized genomic and phenotypic changes in 15 serial isolates from two CF patients (1S and 2B) with chronic pulmonary M. massiliense infection leading to death, as well as four isolates from a CF centre outbreak in which patient 2B was the index case. RESULTS Comparative genomic analysis revealed the mutations affecting growth rate, metabolism, transport, lipids (loss of glycopeptidolipids), antibiotic susceptibility (macrolides and aminoglycosides resistance), and virulence factors. Mutations in 23S rRNA, mmpL4, porin locus and tetR genes occurred in isolates from both CF patients. Interestingly, we identified two different spontaneous mutation events at the mycobacterial porin locus: a fusion of two tandem porin paralogs in patient 1S and a partial deletion of the first porin paralog in patient 2B. These genomic changes correlated with reduced porin protein expression, diminished 14C-glucose uptake, slower bacterial growth rates, and enhanced TNF-α induction in mycobacteria-infected THP-1 human cells. Porin gene complementation of porin mutants partly restored 14C-glucose uptake, growth rate and TNF-α levels to those of intact porin strains. CONCLUSIONS We hypothesize that specific mutations accumulated and maintained over time in M. massiliense, including mutations shared among transmissible strains, collectively lead to more virulent, host adapted lineages in CF patients and other susceptible hosts.
Collapse
Affiliation(s)
- Shamira J. Shallom
- Microbiology Service, Department of Laboratory Medicine (DLM), Clinical Center, NIH, Bethesda, MD, USA
| | - Hervé Tettelin
- Institute for Genome Sciences, Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Prabha Chandrasekaran
- Laboratory of Clinical Infectious Diseases (LCID), National Institute of Allergy and Infectious Diseases (NIAID), NIH, Bethesda, MD, USA
| | - In Kwon Park
- Laboratory of Clinical Infectious Diseases (LCID), National Institute of Allergy and Infectious Diseases (NIAID), NIH, Bethesda, MD, USA
| | - Sonia Agrawal
- Institute for Genome Sciences, Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Kriti Arora
- Laboratory of Clinical Infectious Diseases (LCID), National Institute of Allergy and Infectious Diseases (NIAID), NIH, Bethesda, MD, USA
| | - Lisa Sadzewicz
- Institute for Genome Sciences, Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Aaron M. Milstone
- Pediatric Infectious Diseases, Johns Hopkins University, Baltimore, MD, USA
| | - Moira L. Aitken
- Division of Pulmonary and Critical Care Medicine, University of Washington Medical Center, Seattle, WA, USA
| | | | - Richard J. Wallace
- Mycobacteria/Nocardia Laboratory, University of Texas Health Science Center, Tyler, TX, USA
| | - Elizabeth P. Sampaio
- Laboratory of Clinical Infectious Diseases (LCID), National Institute of Allergy and Infectious Diseases (NIAID), NIH, Bethesda, MD, USA
| | | | - Kenneth N. Olivier
- Laboratory of Chronic Airway Infection, Pulmonary Branch, National Heart Lung and Blood Institute (NHLBI), NIH, Bethesda, MD, USA
| | - Steven M. Holland
- Laboratory of Clinical Infectious Diseases (LCID), National Institute of Allergy and Infectious Diseases (NIAID), NIH, Bethesda, MD, USA
| | - Adrian M. Zelazny
- Microbiology Service, Department of Laboratory Medicine (DLM), Clinical Center, NIH, Bethesda, MD, USA
| |
Collapse
|
54
|
Honda JR. Environmental Sources and Transmission of Nontuberculous Mycobacteria. Clin Chest Med 2023; 44:661-674. [PMID: 37890909 DOI: 10.1016/j.ccm.2023.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/29/2023]
Abstract
The field of environmental nontuberculous mycobacteria (NTM) is benefiting from a new era of genomics that has catapulted our understanding of preferred niches, transmission, and outbreak investigations. The ability to forecast environmental features that promote or reduce environmental NTM prevalence will greatly improve with coordinated environmental sampling and by elevating the necessity for uniform disease notifications. Studies that synergize environmental biology, isolate notifications, and comparative genomics in prospective, longitudinal studies, particularly during climate changes and weather events, will be useful to solve longstanding NTM public health quandaries.
Collapse
Affiliation(s)
- Jennifer R Honda
- Department of Cellular and Molecular Biology, University of Texas Health Science Center at Tyler, 11937 US Hwy 271, BMR Building, Tyler, TX 75708, USA.
| |
Collapse
|
55
|
Liu X, Brčić J, Cassell GH, Cegelski L. CPMAS NMR platform for direct compositional analysis of mycobacterial cell-wall complexes and whole cells. JOURNAL OF MAGNETIC RESONANCE OPEN 2023; 16-17:100127. [PMID: 38125335 PMCID: PMC10732466 DOI: 10.1016/j.jmro.2023.100127] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/23/2023]
Abstract
Tuberculosis and non-tuberculosis mycobacterial infections are rising each year and often result in chronic incurable disease. Important antibiotics target cell-wall biosynthesis, yet some mycobacteria are alarmingly resistant or tolerant to currently available antibiotics. This resistance is often attributed to assumed differences in composition of the complex cell wall of different mycobacterial strains and species. However, due to the highly crosslinked and insoluble nature of mycobacterial cell walls, direct comparative determinations of cell-wall composition pose a challenge to analysis through conventional biochemical analyses. We introduce an approach to directly observe the chemical composition of mycobacterial cell walls using solid-state NMR spectroscopy. 13C CPMAS spectra are provided of individual components (peptidoglycan, arabinogalactan, and mycolic acids) and of in situ cell-wall complexes. We assigned the spectroscopic contributions of each component in the cell-wall spectrum. We uncovered a higher arabinogalactan-to-peptidoglycan ratio in the cell wall of M. abscessus, an organism noted for its antibiotic resistance, relative to M. smegmatis. Furthermore, differentiating influences of different types of cell-wall targeting antibiotics were observed in spectra of antibiotic-treated whole cells. This platform will be of value in evaluating cell-wall composition and antibiotic activity among different mycobacteria and in considering the most effective combination treatment regimens.
Collapse
Affiliation(s)
- Xinyu Liu
- Department of Chemistry, Stanford University, CA 94305, United States
| | - Jasna Brčić
- Department of Chemistry, Stanford University, CA 94305, United States
| | - Gail H. Cassell
- PAI Life Sciences Inc, Seattle WA 98102, United States
- Department of Global Health and Social Medicine, Harvard Medical School, Boston, MA 02115, United States
| | - Lynette Cegelski
- Department of Chemistry, Stanford University, CA 94305, United States
| |
Collapse
|
56
|
Gonzalez GA, Porto G, Tecce E, Oghli YS, Miao J, O'Leary M, Chadid DP, Vo M, Harrop J. Advances in diagnosis and management of atypical spinal infections: A comprehensive review. NORTH AMERICAN SPINE SOCIETY JOURNAL 2023; 16:100282. [PMID: 37915965 PMCID: PMC10616400 DOI: 10.1016/j.xnsj.2023.100282] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 07/28/2023] [Accepted: 09/24/2023] [Indexed: 11/03/2023]
Abstract
Atypical spinal infections (ASIs) of the spine are a challenging pathology to management with potentially devastating morbidity and mortality. To identify patients with atypical spinal infections, it is important to recognize the often insidious clinical and radiographic presentations, in the setting of indolent and smoldering organism growth. Trending of inflammatory markers, and culturing of organisms, is essential. Once identified, the spinal infection should be treated with antibiotics and possibly various surgical interventions including decompression and possible fusion depending on spine structural integrity and stability. Early diagnosis of ASIs and immediate treatment of debilitating conditions, such as epidural abscess, correlate with fewer neurological deficits and a shorter duration of medical treatment. There have been great advances in surgical interventions and spinal fusion techniques for patients with spinal infection. Overall, ASIs remain a perplexing pathology that could be successfully treated with early diagnosis and immediate, appropriate medical, and surgical management.
Collapse
Affiliation(s)
- Glenn A. Gonzalez
- Department of Neurosurgery, Thomas Jefferson University and Jefferson Hospital for Neuroscience, 909 Walnut St, Philadelphia, PA 19107, United States
| | - Guilherme Porto
- Department of Neurosurgery, Thomas Jefferson University and Jefferson Hospital for Neuroscience, 909 Walnut St, Philadelphia, PA 19107, United States
| | - Eric Tecce
- Department of Neurosurgery, Thomas Jefferson University and Jefferson Hospital for Neuroscience, 909 Walnut St, Philadelphia, PA 19107, United States
| | - Yazan Shamli Oghli
- Department of Neurosurgery, Thomas Jefferson University and Jefferson Hospital for Neuroscience, 909 Walnut St, Philadelphia, PA 19107, United States
| | - Jingya Miao
- Department of Neurosurgery, Thomas Jefferson University and Jefferson Hospital for Neuroscience, 909 Walnut St, Philadelphia, PA 19107, United States
| | - Matthew O'Leary
- Department of Neurosurgery, Thomas Jefferson University and Jefferson Hospital for Neuroscience, 909 Walnut St, Philadelphia, PA 19107, United States
| | | | - Michael Vo
- Department of Neurosurgery, Thomas Jefferson University and Jefferson Hospital for Neuroscience, 909 Walnut St, Philadelphia, PA 19107, United States
| | - James Harrop
- Department of Neurosurgery, Thomas Jefferson University and Jefferson Hospital for Neuroscience, 909 Walnut St, Philadelphia, PA 19107, United States
| |
Collapse
|
57
|
Ruis C, Weimann A, Tonkin-Hill G, Pandurangan AP, Matuszewska M, Murray GGR, Lévesque RC, Blundell TL, Floto RA, Parkhill J. Mutational spectra are associated with bacterial niche. Nat Commun 2023; 14:7091. [PMID: 37925514 PMCID: PMC10625568 DOI: 10.1038/s41467-023-42916-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 10/25/2023] [Indexed: 11/06/2023] Open
Abstract
As observed in cancers, individual mutagens and defects in DNA repair create distinctive mutational signatures that combine to form context-specific spectra within cells. We reasoned that similar processes must occur in bacterial lineages, potentially allowing decomposition analysis to detect both disruption of DNA repair processes and exposure to niche-specific mutagens. Here we reconstruct mutational spectra for 84 clades from 31 diverse bacterial species and find distinct mutational patterns. We extract signatures driven by specific DNA repair defects using hypermutator lineages, and further deconvolute the spectra into multiple signatures operating within different clades. We show that these signatures are explained by both bacterial phylogeny and replication niche. By comparing mutational spectra of clades from different environmental and biological locations, we identify niche-associated mutational signatures, and then employ these signatures to infer the predominant replication niches for several clades where this was previously obscure. Our results show that mutational spectra may be associated with sites of bacterial replication when mutagen exposures differ, and can be used in these cases to infer transmission routes for established and emergent human bacterial pathogens.
Collapse
Affiliation(s)
- Christopher Ruis
- Molecular Immunity Unit, University of Cambridge Department of Medicine, MRC-Laboratory of Molecular Biology, Cambridge, UK
- Department of Veterinary Medicine, University of Cambridge, Cambridge, UK
- Cambridge Centre for AI in Medicine, University of Cambridge, Cambridge, UK
| | - Aaron Weimann
- Molecular Immunity Unit, University of Cambridge Department of Medicine, MRC-Laboratory of Molecular Biology, Cambridge, UK
- Department of Veterinary Medicine, University of Cambridge, Cambridge, UK
- Cambridge Centre for AI in Medicine, University of Cambridge, Cambridge, UK
| | | | | | - Marta Matuszewska
- Department of Veterinary Medicine, University of Cambridge, Cambridge, UK
- Department of Medicine, University of Cambridge, Cambridge, UK
| | - Gemma G R Murray
- Parasites and Microbes Programme, Wellcome Sanger Institute; Wellcome Genome Campus, Cambridge, UK
| | - Roger C Lévesque
- Institut de biologie intégrative et des systèmes (IBIS), Université Laval, Québec City, Québec, Canada
| | - Tom L Blundell
- Department of Biochemistry, Sanger Building, University of Cambridge, Cambridge, UK
| | - R Andres Floto
- Molecular Immunity Unit, University of Cambridge Department of Medicine, MRC-Laboratory of Molecular Biology, Cambridge, UK.
- Cambridge Centre for AI in Medicine, University of Cambridge, Cambridge, UK.
- Cambridge Centre for Lung Infection, Papworth Hospital, Cambridge, UK.
| | - Julian Parkhill
- Department of Veterinary Medicine, University of Cambridge, Cambridge, UK.
| |
Collapse
|
58
|
Carneiro S, Pinto M, Silva S, Santos A, Rodrigues I, Santos D, Duarte S, Vieira L, Gomes JP, Macedo R. Genome-Scale Characterization of Mycobacterium abscessus Complex Isolates from Portugal. Int J Mol Sci 2023; 24:15402. [PMID: 37895081 PMCID: PMC10606986 DOI: 10.3390/ijms242015402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 10/12/2023] [Accepted: 10/20/2023] [Indexed: 10/29/2023] Open
Abstract
The Mycobacterium abscessus complex (MABC) is an emerging, difficult to treat, multidrug-resistant nontuberculous mycobacteria responsible for a wide spectrum of infections and associated with an increasing number of cases worldwide. Dominant circulating clones (DCCs) of MABC have been genetically identified as groups of strains associated with higher prevalence, higher levels of antimicrobial resistance, and worse clinical outcomes. To date, little is known about the genomic characteristics of MABC species circulating in Portugal. Here, we examined the genetic diversity and antimicrobial resistance profiles of 30 MABC strains isolated between 2014 and 2022 in Portugal. The genetic diversity of circulating MABC strains was assessed through a gene-by-gene approach (wgMLST), allowing their subspecies differentiation and the classification of isolates into DCCs. Antimicrobial resistance profiles were defined using phenotypic, molecular, and genomic approaches. The majority of isolates were resistant to at least two antimicrobials, although a poor correlation between phenotype and genotype data was observed. Portuguese genomes were highly diverse, and data suggest the existence of MABC lineages with potential international circulation or cross-border transmission. This study highlights the genetic diversity and antimicrobial resistance profile of circulating MABC isolates in Portugal while representing the first step towards the implementation of a genomic-based surveillance system for MABC at the Portuguese NIH.
Collapse
Affiliation(s)
- Sofia Carneiro
- National Reference Laboratory for Mycobacteria, Department of Infectious Diseases, National Institute of Health Doutor Ricardo Jorge (INSA), 1649-016 Lisbon, Portugal; (S.C.); (A.S.)
- Department of Life Science, NOVA School of Science and Technology, NOVA University Lisbon, 2829-516 Lisbon, Portugal
| | - Miguel Pinto
- Genomics and Bioinformatics Unit, Department of Infectious Diseases, National Institute of Health Doutor Ricardo Jorge (INSA), 1649-016 Lisbon, Portugal; (M.P.); (J.P.G.)
| | - Sónia Silva
- National Reference Laboratory for Mycobacteria, Department of Infectious Diseases, National Institute of Health Doutor Ricardo Jorge (INSA), 1649-016 Lisbon, Portugal; (S.C.); (A.S.)
| | - Andrea Santos
- National Reference Laboratory for Mycobacteria, Department of Infectious Diseases, National Institute of Health Doutor Ricardo Jorge (INSA), 1649-016 Lisbon, Portugal; (S.C.); (A.S.)
| | - Irene Rodrigues
- National Reference Laboratory for Mycobacteria, Department of Infectious Diseases, National Institute of Health Doutor Ricardo Jorge (INSA), 1649-016 Lisbon, Portugal; (S.C.); (A.S.)
| | - Daniela Santos
- Technology and Innovation Unit, Department of Human Genetics, National Institute of Health Doutor Ricardo Jorge (INSA), 1649-016 Lisbon, Portugal; (D.S.); (S.D.)
| | - Sílvia Duarte
- Technology and Innovation Unit, Department of Human Genetics, National Institute of Health Doutor Ricardo Jorge (INSA), 1649-016 Lisbon, Portugal; (D.S.); (S.D.)
| | - Luís Vieira
- Technology and Innovation Unit, Department of Human Genetics, National Institute of Health Doutor Ricardo Jorge (INSA), 1649-016 Lisbon, Portugal; (D.S.); (S.D.)
| | - João Paulo Gomes
- Genomics and Bioinformatics Unit, Department of Infectious Diseases, National Institute of Health Doutor Ricardo Jorge (INSA), 1649-016 Lisbon, Portugal; (M.P.); (J.P.G.)
- Veterinary and Animal Research Centre (CECAV), Faculty of Veterinary Medicine, Lusófona University, 376 Campo Grande, 1749-024 Lisbon, Portugal
| | - Rita Macedo
- National Reference Laboratory for Mycobacteria, Department of Infectious Diseases, National Institute of Health Doutor Ricardo Jorge (INSA), 1649-016 Lisbon, Portugal; (S.C.); (A.S.)
| |
Collapse
|
59
|
Yamamoto K, Tsujimura Y, Ato M. Catheter-associated Mycobacterium intracellulare biofilm infection in C3HeB/FeJ mice. Sci Rep 2023; 13:17148. [PMID: 37816786 PMCID: PMC10564925 DOI: 10.1038/s41598-023-44403-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 10/07/2023] [Indexed: 10/12/2023] Open
Abstract
Non-tuberculosis mycobacterial (NTM) diseases are steadily increasing in prevalence and mortality worldwide. Mycobacterium avium and M. intracellulare, the two major pathogens of NTM diseases, are resistant to antibiotics, and chlorine, necessitating their capacity to survive in natural environments (e.g. soil and rivers) and disinfected municipal water. They can also form biofilms on artificial surfaces to provide a protective barrier and habitat for bacilli, which can cause refractory systemic disseminated NTM disease. Therefore, preventing biofilm formation by these pathogens is crucial; however, not many in vivo experimental systems and studies on NTM biofilm infection are available. This study develops a mouse model of catheter-associated systemic disseminated disease caused by M. intracellulare that reproduces the pathophysiology of catheter-associated infections observed in patients undergoing peritoneal dialysis. In addition, the bioluminescence system enabled noninvasive visualization of the amount and distribution of bacilli in vivo and conveniently examine the efficacy of antimicrobials. Furthermore, the cellulose-based biofilms, which were extensively formed in the tissue surrounding the catheter insertion site, reduced drug therapy effectiveness. Overall, this study provides insights into the cause of the drug resistance of NTM and may guide the development of new therapies for NTM diseases.
Collapse
Affiliation(s)
- Kentaro Yamamoto
- Department of Mycobacteriology, Leprosy Research Center, National Institute of Infectious Diseases, Aoba-cho, Higashimurayama, Tokyo, Japan.
| | - Yusuke Tsujimura
- Department of Mycobacteriology, Leprosy Research Center, National Institute of Infectious Diseases, Aoba-cho, Higashimurayama, Tokyo, Japan
| | - Manabu Ato
- Department of Mycobacteriology, Leprosy Research Center, National Institute of Infectious Diseases, Aoba-cho, Higashimurayama, Tokyo, Japan
| |
Collapse
|
60
|
Veigyabati Devi M, Singh AK. Delineation of transcriptional regulators involve in biofilm formation cycle of Mycobacterium abscessus. Gene 2023; 882:147644. [PMID: 37479094 DOI: 10.1016/j.gene.2023.147644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Revised: 07/01/2023] [Accepted: 07/12/2023] [Indexed: 07/23/2023]
Abstract
Mycobacterium abscessus is an intrinsically and acquired multidrug resistant (MDR) intracellular pathogen with biofilm formation capability and limited option for treatment. Biofilm is the major characteristic that leads to failure and prolong treatment, intensifies treatment cost and increases mortality/morbidity rate. However, the biofilm formation regulations of M. abscessus remain largely unexplored. In this study, we identify the putative/hypothetical transcriptional regulator (TR) of M. abscessus that are involved in biofilm formation. This study includes fifty TRs belonging to thirteen different families viz., AraC, ArsR, AsnC, CarD, CdaR, GntR, IclR, LysR, MarR, PadR, PrrA, TetR and WhiB, including TRs of unknown family. The promoter of these putative TRs were fused individually with GFP and analyzed their expression using CLSM in planktonic phase and early, mid and mature stages of biofilm formation phase, which overall termed as biofilm formation cycle. Further, qRT-PCR was carried out for selected TRs to analyze their differential expressions. This study found thirteen numbers of TR belonging to TetR family, five TRs belonging to MarR family, four TRs of unannotated TR family, two AraC TRs, two LysR, two GntR, two AsnC, one each of ArsR family, CarD family, IclR family, PadR family, PrrA family and WhiB family selected for this study are involved in biofilm formation cycle. Our study characterized the TRs with respect to their role in biofilm formation for the first time in M. abscessus and also found that their biofilm formation is regulated by diverse TR families.
Collapse
Affiliation(s)
- Moirangthem Veigyabati Devi
- Biological Sciences and Technology Division, CSIR-North East Institute of Science and Technology, Jorhat 785006, Assam, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Anil Kumar Singh
- Biological Sciences and Technology Division, CSIR-North East Institute of Science and Technology, Jorhat 785006, Assam, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| |
Collapse
|
61
|
Gu Y, Nie W, Huang H, Yu X. Non-tuberculous mycobacterial disease: progress and advances in the development of novel candidate and repurposed drugs. Front Cell Infect Microbiol 2023; 13:1243457. [PMID: 37850054 PMCID: PMC10577331 DOI: 10.3389/fcimb.2023.1243457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 09/11/2023] [Indexed: 10/19/2023] Open
Abstract
Non-tuberculous mycobacteria (NTM) are opportunistic pathogens that can infect all body tissues and organs. In particular, the lungs are the most commonly involved organ, with NTM pulmonary diseases causing serious health issues in patients with underlying lung disease. Moreover, NTM infections have been steadily increasing worldwide in recent years. NTM are also naturally resistant to many antibiotics, specifically anti-tuberculosis (anti-TB) drugs. The lack of drugs targeting NTM infections and the increasing drug resistance of NTM have further made treating these mycobacterial diseases extremely difficult. The currently recommended NTM treatments rely on the extended indications of existing drugs, which underlines the difficulties of new antibiotic discovery against NTM. Another challenge is determining which drug combinations are most effective against NTM infection. To a certain extent, anti-NTM drug development depends on using already available antibiotics and compounds. Here, we aimed to review new antibiotics or compounds with good antibacterial activity against NTM, focusing on their mechanisms of action, in vitro and in vivo antibacterial activities.
Collapse
Affiliation(s)
- Yuzhen Gu
- National Clinical Laboratory on Tuberculosis, Beijing Key Laboratory on Drug-Resistant Tuberculosis, Beijing Chest Hospital, Capital Medical University, Beijing, China
| | - Wenjuan Nie
- Tuberculosis Department, Beijing Chest Hospital, Capital Medical University, Beijing, China
| | - Hairong Huang
- National Clinical Laboratory on Tuberculosis, Beijing Key Laboratory on Drug-Resistant Tuberculosis, Beijing Chest Hospital, Capital Medical University, Beijing, China
| | - Xia Yu
- National Clinical Laboratory on Tuberculosis, Beijing Key Laboratory on Drug-Resistant Tuberculosis, Beijing Chest Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
62
|
Yuan J, Wang Y, Wang L, Wang H, Ren Y, Yang W. What do the clinical features of positive nontuberculous mycobacteria isolates from patients with HIV/AIDS in China reveal? A systematic review and meta-analysis. J Glob Health 2023; 13:04093. [PMID: 37651639 PMCID: PMC10472018 DOI: 10.7189/jogh.13.04093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/02/2023] Open
Abstract
Background China has a high burden of nontuberculous mycobacterial (NTM) infections. Immunocompromised populations, such as those with human immunodeficiency virus/acquired immunodeficiency syndrome (HIV/AIDS), are at a higher risk of being infected with NTM than immunocompetent individuals. Yet, there is a paucity of information on the clinical features of positive NTM isolates from patients with HIV/AIDS in China. To address this gap, we conducted a systematic review and meta-analysis of existing studies, comparing them against current expert consensus to provide guidance for clinical practice. Methods Two researchers independently searched eight databases (SinoMed, China National Knowledge Infrastructure, Wanfang, VIP, Cochrane Library, PubMed, Embase, and Web of Science) from inception to 26 December 2022 to retrieve published Chinese- and English-language studies reporting clinical features of NTM-positive isolates among patients with HIV/AIDS in China. Results We included 28 studies with 1861 patients. The rate of positive NTM isolates detected from men among all patients was 87.3%. NTM species distribution was mainly Mycobacterium avium complex (64.3%), which was predominant in different regions. The five most common clinical symptoms were fever (68.5%), cough or expectoration (67.0%), appetite loss (49.4%), weight loss (45.5%), and superficial lymphadenectasis (41.1%). The prevalence of laboratory tests were as follows: albumin <35 g/L (55.6%), erythrocyte sedimentation rate >20 mm/h (91.4%), anaemia (59.0%), predominantly mild, CD4+ T cell count ≤50 pieces/μL (70.3%), and CD4+ T cell count 51-200 pieces/μL (22.1%). Lesion manifestations in thoracic imaging mainly included bilateral lung involvement (83.8%), showed stripe shadows (60.3%), patchy shadows (42.9%), nodules (40.6%), and bronchiectasis (38.6%). Accompanied signs included thoracic lymph node enlargement (49.5%). Seventy per cent of symptoms improved after treatment. Conclusions Focusing on clinical symptoms, laboratory tests, and thoracic imaging helps with initial screening for NTM infections. Physicians should raise awareness of the diagnosis and treatment of Mycobacterium avium complex, providing guidance for experimental treatment, screening of priority populations for NTM infections, and prophylactic treatment of NTM disease. Registration PROSPERO CRD42023388185.
Collapse
Affiliation(s)
- Jianwei Yuan
- Department of Infection, Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, China
| | - Yan Wang
- Department of Infection, Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, China
| | - Lin Wang
- Department of Infection, Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, China
| | - Hongxia Wang
- Department of Infection, Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, China
| | - Yuan Ren
- School of Public Health, Shanxi Medical University, Taiyuan, China
| | - Wenzhe Yang
- Department of Epidemiology and Biostatistics, School of Public Health, Tianjin Medical University, Tianjin, China
| |
Collapse
|
63
|
Quan H, Chung H, Je S, Hong JJ, Kim BJ, Na YR, Seok SH. Pyruvate dehydrogenase kinase inhibitor dichloroacetate augments autophagy mediated constraining the replication of Mycobacteroides massiliense in macrophages. Microbes Infect 2023; 25:105139. [PMID: 37085043 DOI: 10.1016/j.micinf.2023.105139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 03/25/2023] [Accepted: 04/11/2023] [Indexed: 04/23/2023]
Abstract
Increasing evidence indicates a strong interaction between cellular metabolism and innate macrophage immunity. Here, we show that the intracellular replication of Mycobacteroides massiliense in macrophages depends on host pyruvate dehydrogenase kinase (PDK) activity. Infection with M. massiliense induced a metabolic switch in macrophages by increasing glycolysis and decreasing oxidative phosphorylation. Treatment with dichloroacetate (DCA), a PDK inhibitor, converts this switch in M. massiliense-infected macrophages and restricts intracellular bacterial replication. Mechanistically, DCA resulted in AMPKα1 activation via increased AMP/ATP ratio, consequently inducing autophagy to constrain bacterial proliferation in the phagolysosome. This study suggests that the pharmacological inhibition of PDK could be a strategy for host-directed therapy to control virulent M. massiliense infections.
Collapse
Affiliation(s)
- Hailian Quan
- Department of Microbiology and Immunology, Institute of Endemic Disease, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Hyewon Chung
- Department of Microbiology and Immunology, Institute of Endemic Disease, Seoul National University College of Medicine, Seoul, Republic of Korea; Bio-MAX Institute, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Sungmo Je
- Department of Microbiology and Immunology, Institute of Endemic Disease, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Jung Joo Hong
- National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju-si, South Korea; KRIBB School of Bioscience, Korea University of Science & Technology (UST), Daejeon, South Korea
| | - Bum-Joon Kim
- Department of Microbiology and Immunology, Institute of Endemic Disease, Seoul National University College of Medicine, Seoul, Republic of Korea; Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Yi Rang Na
- Transdisciplinary Department of Medicine and Advanced Technology, Seoul National University Hospital, Seoul, Republic of Korea.
| | - Seung Hyeok Seok
- Department of Microbiology and Immunology, Institute of Endemic Disease, Seoul National University College of Medicine, Seoul, Republic of Korea; Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Republic of Korea; Cancer Research Institute, Seoul National University College of Medicine, Seoul, Republic of Korea.
| |
Collapse
|
64
|
Komiya K, Yoshida M, Uchida S, Takikawa S, Yamasue M, Matsumoto T, Morishige Y, Aono A, Hiramatsu K, Yamaoka Y, Nishizono A, Ato M, Kadota JI, Mitarai S. Massive and Lengthy Clonal Nosocomial Expansion of Mycobacterium abscessus subsp. massiliense among Patients Who Are Ventilator Dependent without Cystic Fibrosis. Microbiol Spectr 2023; 11:e0490822. [PMID: 37314340 PMCID: PMC10433864 DOI: 10.1128/spectrum.04908-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 05/30/2023] [Indexed: 06/15/2023] Open
Abstract
Nontuberculous mycobacterial infections are generally believed to be independently acquired from the environment. Although person-to-person transmission of nontuberculous mycobacteria, especially Mycobacterium abscessus subsp. massiliense, is a serious concern among individuals with cystic fibrosis (CF), evidence of its spread among patients without CF has never been established. We unexpectedly found a number of M. abscessus subsp. massiliense cases among patients without CF in a hospital. This study aimed to define the mechanism of M. abscessus subsp. massiliense infection among patients who were ventilator dependent and without CF who had progressive neurodegenerative diseases in our long-term care wards from 2014 to 2018 during suspected nosocomial outbreaks. We conducted whole-genome sequencing of M. abscessus subsp. massiliense isolates from 52 patients and environmental samples. Potential opportunities for in-hospital transmission were analyzed using epidemiological data. M. abscessus subsp. massiliense was isolated from one air sample obtained near a patient without CF who was colonized with M. abscessus subsp. massiliense but not from other potential sources. Phylogenetic analysis of the strains from these patients and the environmental isolate revealed clonal expansion of near-identical M. abscessus subsp. massiliense isolates, with the isolates generally differing by fewer than 22 single nucleotide polymorphisms (SNPs). Approximately half of the isolates differed by fewer than nine SNPs, indicating interpatient transmission. Whole-genome sequencing revealed a potential nosocomial outbreak among patients who were ventilator dependent and without CF. IMPORTANCE The isolation of M. abscessus subsp. massiliense from the air, but not from environmental fluid samples, may suggest airborne transmission. This was the first report to demonstrate person-to-person transmission of M. abscessus subsp. massiliense, even among patients without CF. M. abscessus subsp. massiliense may spread among patients who are ventilator dependent without CF through direct or indirect in-hospital transmission. The current infection control measures should address potential transmission among patients without CF, particularly in facilities that treat patients who are ventilator dependent and patients with preexisting chronic pulmonary diseases, such as CF.
Collapse
Affiliation(s)
- Kosaku Komiya
- Respiratory Medicine and Infectious Diseases, Oita University Faculty of Medicine, Yufu, Oita, Japan
- Research Center for GLOBAL and LOCAL Infectious Diseases, Oita University Faculty of Medicine, Yufu, Oita, Japan
| | - Mitsunori Yoshida
- Department of Mycobacteriology, Leprosy Research Centre, National Institute of Infectious Diseases, Higashimurayama, Tokyo, Japan
| | - Sonoe Uchida
- Internal Medicine, National Hospital Organization Nishi-Beppu Hospital, Beppu, Oita, Japan
- Respiratory Medicine, Bungoono City Hospital, Bungoono, Oita, Japan
| | - Shuichi Takikawa
- Internal Medicine, National Hospital Organization Nishi-Beppu Hospital, Beppu, Oita, Japan
| | - Mari Yamasue
- Respiratory Medicine and Infectious Diseases, Oita University Faculty of Medicine, Yufu, Oita, Japan
- Internal Medicine, National Hospital Organization Nishi-Beppu Hospital, Beppu, Oita, Japan
| | - Takashi Matsumoto
- Department of Environmental and Preventive Medicine, Oita University Faculty of Medicine, Yufu, Oita, Japan
| | - Yuta Morishige
- Department of Mycobacterium Reference and Research, the Research Institute of Tuberculosis, Japan Anti-Tuberculosis Association, Kiyose, Tokyo, Japan
| | - Akio Aono
- Department of Mycobacterium Reference and Research, the Research Institute of Tuberculosis, Japan Anti-Tuberculosis Association, Kiyose, Tokyo, Japan
| | - Kazufumi Hiramatsu
- Respiratory Medicine and Infectious Diseases, Oita University Faculty of Medicine, Yufu, Oita, Japan
- Research Center for GLOBAL and LOCAL Infectious Diseases, Oita University Faculty of Medicine, Yufu, Oita, Japan
| | - Yoshio Yamaoka
- Research Center for GLOBAL and LOCAL Infectious Diseases, Oita University Faculty of Medicine, Yufu, Oita, Japan
- Department of Environmental and Preventive Medicine, Oita University Faculty of Medicine, Yufu, Oita, Japan
| | - Akira Nishizono
- Research Center for GLOBAL and LOCAL Infectious Diseases, Oita University Faculty of Medicine, Yufu, Oita, Japan
- Department of Microbiology, Oita University Faculty of Medicine, Oita, Japan
| | - Manabu Ato
- Department of Mycobacteriology, Leprosy Research Centre, National Institute of Infectious Diseases, Higashimurayama, Tokyo, Japan
| | - Jun-ichi Kadota
- Respiratory Medicine and Infectious Diseases, Oita University Faculty of Medicine, Yufu, Oita, Japan
| | - Satoshi Mitarai
- Department of Mycobacterium Reference and Research, the Research Institute of Tuberculosis, Japan Anti-Tuberculosis Association, Kiyose, Tokyo, Japan
| |
Collapse
|
65
|
Choi J, Keen EC, Wallace MA, Fishbein S, Prusa J, Zimbric M, Mejia-Chew CR, Mehta SB, Bailey TC, Caverly LJ, Burnham CAD, Dantas G. Genomic Analyses of Longitudinal Mycobacterium abscessus Isolates in a Multicenter Cohort Reveal Parallel Signatures of In-Host Adaptation. J Infect Dis 2023; 228:321-331. [PMID: 37254795 PMCID: PMC10420398 DOI: 10.1093/infdis/jiad187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 03/18/2023] [Accepted: 05/30/2023] [Indexed: 06/01/2023] Open
Abstract
BACKGROUND Nontuberculous mycobacteria (NTM) are ubiquitous in the environment and an increasingly frequent cause of opportunistic infections. Mycobacterium abscessus complex (MABC) is one of the major NTM lung pathogens that disproportionately colonize and infect the lungs of individuals with cystic fibrosis (CF). MABC infection can persist for years, and antimicrobial treatment is frequently ineffective. METHODS We sequenced the genomes of 175 isolates longitudinally collected from 30 patients with MABC lung infection. We contextualized our cohort amidst the broader MABC phylogeny and investigated genes undergoing parallel adaptation across patients. Finally, we tested the phenotypic consequences of parallel mutations by conducting antimicrobial resistance and mercury-resistance assays. RESULTS We identified highly related isolate pairs across hospital centers with low likelihood of transmission. We further annotated nonrandom parallel mutations in 22 genes and demonstrated altered macrolide susceptibility co-occurring with a nonsynonymous whiB1 mutation. Finally, we highlighted a 23-kb mercury-resistance plasmid whose loss during chronic infection conferred phenotypic susceptibility to organic and nonorganic mercury compounds. CONCLUSIONS We characterized parallel genomic processes through which MABC is adapting to promote survival within the host. The within-lineage polymorphisms we observed have phenotypic effects, potentially benefiting fitness in the host at the putative detriment of environmental survival.
Collapse
Affiliation(s)
- JooHee Choi
- The Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine in St Louis, St Louis, Missouri, USA
| | - Eric C Keen
- The Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine in St Louis, St Louis, Missouri, USA
| | - Meghan A Wallace
- Department of Pathology and Immunology, Division of Laboratory and Genomic Medicine, Washington University School of Medicine in St Louis, St Louis, Missouri, USA
| | - Skye Fishbein
- Department of Pathology and Immunology, Division of Laboratory and Genomic Medicine, Washington University School of Medicine in St Louis, St Louis, Missouri, USA
| | - Jerome Prusa
- Department of Pathology and Immunology, Division of Laboratory and Genomic Medicine, Washington University School of Medicine in St Louis, St Louis, Missouri, USA
| | - Madsen Zimbric
- Department of Pediatrics, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Carlos R Mejia-Chew
- Department of Medicine, Washington University School of Medicine in St Louis, St Louis, Missouri, USA
| | - Shail B Mehta
- Department of Medicine, Washington University School of Medicine in St Louis, St Louis, Missouri, USA
| | - Thomas C Bailey
- Department of Medicine, Washington University School of Medicine in St Louis, St Louis, Missouri, USA
| | - Lindsay J Caverly
- Department of Pediatrics, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Carey-Ann D Burnham
- Department of Pathology and Immunology, Division of Laboratory and Genomic Medicine, Washington University School of Medicine in St Louis, St Louis, Missouri, USA
- Department of Medicine, Washington University School of Medicine in St Louis, St Louis, Missouri, USA
- Department of Pediatrics, Washington University School of Medicine in St Louis, St Louis, Missouri, USA
- Department of Molecular Microbiology, Washington University School of Medicine in St Louis, St Louis, Missouri, USA
| | - Gautam Dantas
- The Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine in St Louis, St Louis, Missouri, USA
- Department of Pathology and Immunology, Division of Laboratory and Genomic Medicine, Washington University School of Medicine in St Louis, St Louis, Missouri, USA
- Department of Pediatrics, Washington University School of Medicine in St Louis, St Louis, Missouri, USA
- Department of Molecular Microbiology, Washington University School of Medicine in St Louis, St Louis, Missouri, USA
- Department of Biomedical Engineering, Washington University in St Louis, St Louis, Missouri, USA
| |
Collapse
|
66
|
Brčić J, Tong A, Wender PA, Cegelski L. Conjugation of Vancomycin with a Single Arginine Improves Efficacy against Mycobacteria by More Effective Peptidoglycan Targeting. J Med Chem 2023; 66:10226-10237. [PMID: 37477249 PMCID: PMC10783851 DOI: 10.1021/acs.jmedchem.3c00565] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/22/2023]
Abstract
Drug resistant bacterial infections have emerged as one of the greatest threats to public health. The discovery and development of new antimicrobials and anti-infective strategies are urgently needed to address this challenge. Vancomycin is one of the most important antibiotics for the treatment of Gram-positive infections. Here, we introduce the vancomycin-arginine conjugate (V-R) as a highly effective antimicrobial against actively growing mycobacteria and difficult-to-treat mycobacterial biofilm populations. Further improvement in efficacy through combination treatment of V-R to inhibit peptidoglycan synthesis and ethambutol to inhibit arabinogalactan synthesis underscores the ability to identify compound synergies to more effectively target the Achilles heel of the cell-wall assembly. Moreover, we introduce mechanistic activity data and a molecular model derived from a d-Ala-d-Ala-bound vancomycin structure that we hypothesize underlies the molecular basis for the antibacterial improvement attributed to the arginine modification that is specific to peptidoglycan chemistry employed by mycobacteria and distinct from Gram-positive pathogens.
Collapse
Affiliation(s)
- Jasna Brčić
- Department of Chemistry, Stanford University, Stanford, CA 94305, USA
| | - Alan Tong
- Department of Chemistry, Stanford University, Stanford, CA 94305, USA
| | - Paul A. Wender
- Department of Chemistry, Stanford University, Stanford, CA 94305, USA
- Department of Chemical and Systems Biology, Stanford University, Stanford, CA 94305, USA
| | - Lynette Cegelski
- Department of Chemistry, Stanford University, Stanford, CA 94305, USA
| |
Collapse
|
67
|
Troian EA, Maldonado HM, Chauhan U, Barth VC, Woychik NA. Mycobacterium abscessus VapC5 toxin potentiates evasion of antibiotic killing by ribosome overproduction and activation of multiple resistance pathways. Nat Commun 2023; 14:3705. [PMID: 37349306 PMCID: PMC10287673 DOI: 10.1038/s41467-023-38844-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 05/18/2023] [Indexed: 06/24/2023] Open
Abstract
Mycobacterium abscessus (Mab) infections are inexplicably intractable to clearing after aggressive and lengthy treatment regimens. Here we discovered that acquisition of a single toxin-antitoxin system enables Mab to activate a phenotypic switch that enhances survival upon treatment with current first-line antibiotics. This switch is tripped when the VapC5 toxin inactivates tRNASerCGA by cleavage at only one site within its anticodon, leading to growth arrest. Concomitant tRNASerCGA depletion then reprograms the transcriptome to favor synthesis of proteins naturally low in the cognate Ser UCG codon including the transcription factor WhiB7 and members of its regulon as well as the ribosomal protein family. This programmed stockpiling of ribosomes is predicted to override the efficacy of ribosome-targeting antibiotics while the growth arrest phenotype attenuates antibiotics targeting cell wall synthesis. In agreement, VapC5 increases Mab persister formation upon exposure to amikacin and the next-generation oxazolidinone tedizolid (both target ribosomes) or cefoxitin (inhibits cell wall synthesis). These findings expand the repertoire of genetic adaptations harnessed by Mab to survive assaults intended to eradicate it, as well as provide a much-needed framework for selection of shorter and more efficacious alternate treatment options for Mab infections using currently available antimicrobials whose targets are not confounded by VapC5.
Collapse
Affiliation(s)
- Eduardo A Troian
- Department of Biochemistry and Molecular Biology, Rutgers University, Robert Wood Johnson Medical School, Piscataway, NJ, 08854, USA
| | - Heather M Maldonado
- Department of Biochemistry and Molecular Biology, Rutgers University, Robert Wood Johnson Medical School, Piscataway, NJ, 08854, USA
| | - Unnati Chauhan
- Department of Biochemistry and Molecular Biology, Rutgers University, Robert Wood Johnson Medical School, Piscataway, NJ, 08854, USA
| | - Valdir C Barth
- Immunotherapy Laboratory, Basic Health Sciences Department, Federal University of Health Sciences of Porto Alegre (UFCSPA), R. Sarmento Leite, 245 - Centro Histórico, Porto Alegre, 90050-170, Brazil
| | - Nancy A Woychik
- Department of Biochemistry and Molecular Biology, Rutgers University, Robert Wood Johnson Medical School, Piscataway, NJ, 08854, USA.
- Member, Rutgers Cancer Institute of New Jersey, Piscataway, NJ, USA.
| |
Collapse
|
68
|
Kaji M, Namkoong H, Nagao G, Azekawa S, Nakagawara K, Tanaka H, Morita A, Asakura T, Kamata H, Uwamino Y, Yoshida M, Fukunaga K, Hasegawa N. Nasopharyngeal Mycobacterium abscessus Infection: A Case Report and Literature Review. Infect Drug Resist 2023; 16:3955-3963. [PMID: 37361939 PMCID: PMC10290463 DOI: 10.2147/idr.s415197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 06/02/2023] [Indexed: 06/28/2023] Open
Abstract
Background Mycobacterium abscessus (M. abscessus) is a rapidly growing bacterium (RGM) that causes refractory pulmonary and extrapulmonary infections. However, studies investigating pharyngeal and laryngeal M. abscessus infections are limited. Case Presentation A 41-year-old immunocompetent woman complaining of bloody sputum was referred to our hospital. Although her sputum culture tested positive for M. abscessus subsp. abscessus, radiological findings were not indicative of pulmonary infection or sinusitis. Further diagnostic workup, including laryngeal endoscopy and positron emission tomography/computed tomography (PET/CT), confirmed the presence of nasopharyngeal M. abscessus infection. The patient was initially treated with intravenous amikacin, imipenem/cilastatin, azithromycin, and clofazimine for 28 days, after which the patient was provided with amikacin, azithromycin, clofazimine, and sitafloxacin for four months. After the completion of antibiotic therapy, the patient showed negative results on sputum smear and culture and normal findings on PET/CT and laryngeal endoscopy. Whole-genome sequencing of this strain revealed that it belonged to the ABS-GL4 cluster, which has a functional erythromycin ribosomal methylase gene, although it is not a major lineage in non-cystic fibrosis (CF) patients in Japan and Taiwan and in CF patients in European countries. We conducted a literature review and identified seven patients who developed pharyngeal/laryngeal non-tuberculous mycobacterium (NTM) infection. Four of the eight patients had a history of immunosuppressant use, including steroids. Seven of the eight patients responded well to their treatment regimens. Conclusion Patients whose sputum culture tests are positive for NTM and who meet the diagnostic criteria for NTM infection but do not have intrapulmonary lesions should be evaluated for otorhinolaryngological infections. Our case series revealed that immunosuppressant use is a risk factor for pharyngeal/laryngeal NTM infection and that patients with pharyngeal/laryngeal NTM infections respond relatively well to antibiotic therapy.
Collapse
Affiliation(s)
- Masanori Kaji
- Division of Pulmonary Medicine, Department of Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Ho Namkoong
- Department of Infectious Diseases, Keio University School of Medicine, Tokyo, Japan
| | - Genta Nagao
- Division of Pulmonary Medicine, Department of Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Shuhei Azekawa
- Division of Pulmonary Medicine, Department of Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Kensuke Nakagawara
- Division of Pulmonary Medicine, Department of Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Hiromu Tanaka
- Division of Pulmonary Medicine, Department of Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Atsuho Morita
- Division of Pulmonary Medicine, Department of Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Takanori Asakura
- Division of Pulmonary Medicine, Department of Medicine, Keio University School of Medicine, Tokyo, Japan
- Department of Clinical Medicine (Laboratory of Bioregulatory Medicine), Kitasato University School of Pharmacy, Tokyo, Japan
- Department of Respiratory Medicine, Kitasato University, Kitasato Institute Hospital, Tokyo, Japan
| | - Hirofumi Kamata
- Division of Pulmonary Medicine, Department of Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Yoshifumi Uwamino
- Department of Infectious Diseases, Keio University School of Medicine, Tokyo, Japan
- Department of Laboratory Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Mitsunori Yoshida
- Department of Mycobacteriology, Leprosy Research Center, National Institute of Infectious Diseases, Tokyo, Japan
| | - Koichi Fukunaga
- Division of Pulmonary Medicine, Department of Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Naoki Hasegawa
- Department of Infectious Diseases, Keio University School of Medicine, Tokyo, Japan
| |
Collapse
|
69
|
Goh BC, Larsson S, Dam LC, Ling YHS, Chua WLP, Abirami R, Singh S, Ong JLE, Teo JWP, Ho P, Ingham PW, Pethe K, Dedon PC. Rifaximin potentiates clarithromycin against Mycobacterium abscessus in vitro and in zebrafish. JAC Antimicrob Resist 2023; 5:dlad052. [PMID: 37168836 PMCID: PMC10164658 DOI: 10.1093/jacamr/dlad052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 04/13/2023] [Indexed: 05/13/2023] Open
Abstract
Background Mycobacterium abscessus is a non-tuberculous mycobacterium (NTM) that causes chronic pulmonary infections. Because of its extensive innate resistance to numerous antibiotics, treatment options are limited, often resulting in poor clinical outcomes. Current treatment regimens usually involve a combination of antibiotics, with clarithromycin being the cornerstone of NTM treatments. Objectives To identify drug candidates that exhibit synergistic activity with clarithromycin against M. abscessus. Methods We performed cell-based phenotypic screening of a compound library against M. abscessus induced to become resistant to clarithromycin. Furthermore, we evaluated the toxicity and efficacy of the top compound in a zebrafish embryo infection model. Results The screen revealed rifaximin as a clarithromycin potentiator. The combination of rifaximin and clarithromycin was synergistic and bactericidal in vitro and potent in the zebrafish model. Conclusions The data indicate that the rifaximin/clarithromycin combination is promising to effectively treat pulmonary NTM infections.
Collapse
Affiliation(s)
- Boon Chong Goh
- Antimicrobial Resistance Interdisciplinary Research Group, Singapore-MIT Alliance for Research and Technology Centre, Singapore, Singapore
| | - Simon Larsson
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
| | - Linh Chi Dam
- Antimicrobial Resistance Interdisciplinary Research Group, Singapore-MIT Alliance for Research and Technology Centre, Singapore, Singapore
| | - Yan Han Sharon Ling
- Antimicrobial Resistance Interdisciplinary Research Group, Singapore-MIT Alliance for Research and Technology Centre, Singapore, Singapore
| | - Wei Lin Patrina Chua
- Antimicrobial Resistance Interdisciplinary Research Group, Singapore-MIT Alliance for Research and Technology Centre, Singapore, Singapore
| | - R Abirami
- Antimicrobial Resistance Interdisciplinary Research Group, Singapore-MIT Alliance for Research and Technology Centre, Singapore, Singapore
| | - Samsher Singh
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
| | - Jun Long Ernest Ong
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
| | - Jeanette W P Teo
- Department of Laboratory Medicine, National University Hospital, Singapore, Singapore
| | - Peiying Ho
- Antimicrobial Resistance Interdisciplinary Research Group, Singapore-MIT Alliance for Research and Technology Centre, Singapore, Singapore
| | - Philip W Ingham
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
- Institute of Molecular and Cell Biology, Agency of Science, Technology and Research (A*Star), Singapore, Singapore
| | | | | |
Collapse
|
70
|
Maimaiti Z, Li Z, Xu C, Fu J, Hao L, Chen J, Li X, Chai W. Non-Tuberculosis Mycobacterium Periprosthetic Joint Infections Following Total Hip and Knee Arthroplasty: Case Series and Review of the Literature. Orthop Surg 2023; 15:1488-1497. [PMID: 37154097 PMCID: PMC10235174 DOI: 10.1111/os.13661] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 12/21/2022] [Accepted: 12/23/2022] [Indexed: 05/10/2023] Open
Abstract
OBJECTIVE Periprosthetic joint infection (PJI) caused by non-tubercular mycobacteria (NTM) is uncommon but catastrophic. However, conclusive clinical data on PJI caused by NTM are lacking. In this case series and systematic review, the clinical manifestations, diagnosis, and management of NTM PJI are summarized and analyzed. METHODS From 2012 to 2020, we retrospectively analyzed consecutive PJI cases caused by NTM in our institution. A literature review was also conducted from January 2000 to December 2021, utilizing the PubMed, MEDLINE, Cochrane Library, and EMBASE databases to identify all reported NTM-induced PJI cases. The clinical characteristics, demographics, pathogen identification, treatment protocols, and prognosis of NTM PJI were summarized and analyzed. RESULTS In this retrospective analysis, seven patients infected with NTM following total joint arthroplasty at our institution were included, including six cases of PJI caused by NTM and one case of septic arthritis (SA) caused by NTM. There were six men and one woman, and their average age was 62.3 years. The average interval between TJA and PJI onset was 4 months. The preoperative serological markers, including the mean ESR (51 mm/h), CRP (4.0 mg/dL), fibrinogen (5.7 g/L), and D-dimer (1.1 g/L), were increased. Six patients underwent staged revision surgery, and one patient with SA received antibiotic-loaded bone cement beads to treat the infection. After an average of 33 months of observation following surgical intervention, none of the patients showed any symptoms of infection recurrence. From 2000 to 2021, 68 patients with NTM PJI were found in 39 studies in the published literature. Reinfections occurred within 1 year after arthroplasty in more than half (53.2%) of the patients. M. fortuitum and M. abscesses were the most prevalent rapidly growing mycobacteria (RGM) in all PJI patients, whereas Mycobacterium avium intracellulare (MAC) was the most prevalent slowly growing mycobacterium (SGM). The corresponding antibiotics were amikacin and ethambutol. The rate of culture-negative without specific clinical symptoms was as high as 36.4% (12/33), while 45% (18/40) utilized additional diagnostic techniques such as NGS. A final clinical follow-up record was available for 59 patients (86.7%; mean follow-up period, 29 months), and 10.1% of patients failed to respond to treatment. CONCLUSION Orthopaedic surgeons should consider NTM in patients with negative routine cultures who are at risk for Mycobacterium infection. Treatment options rely on the accurate result of microbiologic identification and drug sensitivity testing, and to achieve this, it may be necessary to send multiple culture specimens, extend the culture time, and change the culture medium. Every effort should be made to identify NTM and its various subtypes through modern diagnostic tools if necessary.
Collapse
Affiliation(s)
- Zulipikaer Maimaiti
- Senior Department of Orthopaedics, The Fourth Medical CentreChinese PLA General HospitalBeijingChina
- Department of Orthopaedics, The First Medical CentreChinese PLA General HospitalBeijingChina
- National Clinical Research Center for OrthopedicsSports Medicine & RehabilitationBeijingChina
| | - Zhuo Li
- Senior Department of Orthopaedics, The Fourth Medical CentreChinese PLA General HospitalBeijingChina
- Department of Orthopaedics, The First Medical CentreChinese PLA General HospitalBeijingChina
- School of MedicineNankai UniversityTianjinChina
| | - Chi Xu
- Senior Department of Orthopaedics, The Fourth Medical CentreChinese PLA General HospitalBeijingChina
- Department of Orthopaedics, The First Medical CentreChinese PLA General HospitalBeijingChina
- National Clinical Research Center for OrthopedicsSports Medicine & RehabilitationBeijingChina
| | - Jun Fu
- Senior Department of Orthopaedics, The Fourth Medical CentreChinese PLA General HospitalBeijingChina
- Department of Orthopaedics, The First Medical CentreChinese PLA General HospitalBeijingChina
- National Clinical Research Center for OrthopedicsSports Medicine & RehabilitationBeijingChina
| | - Libo Hao
- Senior Department of Orthopaedics, The Fourth Medical CentreChinese PLA General HospitalBeijingChina
- Department of Orthopaedics, The First Medical CentreChinese PLA General HospitalBeijingChina
- National Clinical Research Center for OrthopedicsSports Medicine & RehabilitationBeijingChina
| | - Jiying Chen
- Senior Department of Orthopaedics, The Fourth Medical CentreChinese PLA General HospitalBeijingChina
- Department of Orthopaedics, The First Medical CentreChinese PLA General HospitalBeijingChina
- National Clinical Research Center for OrthopedicsSports Medicine & RehabilitationBeijingChina
| | - Xiang Li
- Senior Department of Orthopaedics, The Fourth Medical CentreChinese PLA General HospitalBeijingChina
- Department of Orthopaedics, The First Medical CentreChinese PLA General HospitalBeijingChina
- National Clinical Research Center for OrthopedicsSports Medicine & RehabilitationBeijingChina
| | - Wei Chai
- Senior Department of Orthopaedics, The Fourth Medical CentreChinese PLA General HospitalBeijingChina
- Department of Orthopaedics, The First Medical CentreChinese PLA General HospitalBeijingChina
- National Clinical Research Center for OrthopedicsSports Medicine & RehabilitationBeijingChina
| |
Collapse
|
71
|
Bolden N, Mell JC, Logan JB, Planet PJ. Phylogenomics of nontuberculous mycobacteria respiratory infections in people with cystic fibrosis. Paediatr Respir Rev 2023; 46:63-70. [PMID: 36828670 PMCID: PMC10659050 DOI: 10.1016/j.prrv.2023.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 02/06/2023] [Indexed: 02/12/2023]
Abstract
Nontuberculous mycobacteria (NTM) can cause severe pulmonary disease in people with cystic fibrosis (pwCF). These infections present unique challenges for diagnosis and treatment, prompting a recent interest in understanding NTM transmission and pathogenesis during chronic infection. Major gaps remain in our knowledge regarding basic pathogenesis, immune evasion strategies, population dynamics, recombination potential, and the evolutionary implications of host and antibiotic pressures of long-term NTM infections in pwCF. Phylogenomic techniques have emerged as an important tool for tracking global patterns of transmission and are beginning to be used to ask fundamental biological questions about adaptation to the host during pathogenesis. In this review, we discuss the burden of NTM lung disease (NTM-LD), highlight the use of phylogenomics in NTM research, and address the clinical implications associated with these studies.
Collapse
Affiliation(s)
- Nicholas Bolden
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States.
| | - Joshua Chang Mell
- Center for Genomic Sciences, Drexel University College of Medicine, Philadelphia, PA, United States; Department of Microbiology & Immunology, Drexel University, Philadelphia, PA, United States.
| | - Jennifer Bouso Logan
- Division of Pulmonary Medicine, Children's Hospital of Philadelphia, Philadelphia, PA, United States; Department of Pulmonary Medicine and Cystic Fibrosis Center, Lehigh Valley Reilly Children's Hospital, PA, United States.
| | - Paul J Planet
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States; Division of Infectious Diseases, Children's Hospital of Philadelphia, Philadelphia, PA, United States; Comparative Genomics, American Museum of Natural History, New York, NY, United States.
| |
Collapse
|
72
|
Commins N, Sullivan MR, McGowen K, Koch EM, Rubin EJ, Farhat M. Mutation rates and adaptive variation among the clinically dominant clusters of Mycobacterium abscessus. Proc Natl Acad Sci U S A 2023; 120:e2302033120. [PMID: 37216535 PMCID: PMC10235944 DOI: 10.1073/pnas.2302033120] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 04/13/2023] [Indexed: 05/24/2023] Open
Abstract
Mycobacterium abscessus (Mab) is a multidrug-resistant pathogen increasingly responsible for severe pulmonary infections. Analysis of whole-genome sequences (WGS) of Mab demonstrates dense genetic clustering of clinical isolates collected from disparate geographic locations. This has been interpreted as supporting patient-to-patient transmission, but epidemiological studies have contradicted this interpretation. Here, we present evidence for a slowing of the Mab molecular clock rate coincident with the emergence of phylogenetic clusters. We performed phylogenetic inference using publicly available WGS from 483 Mab patient isolates. We implement a subsampling approach in combination with coalescent analysis to estimate the molecular clock rate along the long internal branches of the tree, indicating a faster long-term molecular clock rate compared to branches within phylogenetic clusters. We used ancestry simulation to predict the effects of clock rate variation on phylogenetic clustering and found that the degree of clustering in the observed phylogeny is more easily explained by a clock rate slowdown than by transmission. We also find that phylogenetic clusters are enriched in mutations affecting DNA repair machinery and report that clustered isolates have lower spontaneous mutation rates in vitro. We propose that Mab adaptation to the host environment through variation in DNA repair genes affects the organism's mutation rate and that this manifests as phylogenetic clustering. These results challenge the model that phylogenetic clustering in Mab is explained by person-to-person transmission and inform our understanding of transmission inference in emerging, facultative pathogens.
Collapse
Affiliation(s)
- Nicoletta Commins
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA02115
| | - Mark R. Sullivan
- Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, Boston, MA02115
| | - Kerry McGowen
- Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, Boston, MA02115
| | - Evan M. Koch
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA02115
| | - Eric J. Rubin
- Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, Boston, MA02115
- Department of Microbiology, Harvard Medical School, Boston, MA02115
| | - Maha Farhat
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA02115
- Division of Pulmonary and Critical Care Medicine, Massachusetts General Hospital, Boston, MA02114
| |
Collapse
|
73
|
Sakiyama A, Saren C, Kaneko Y, Oinuma KI. Identification of a mycobacterial hydrazidase, an isoniazid-hydrolyzing enzyme. Sci Rep 2023; 13:8180. [PMID: 37210419 DOI: 10.1038/s41598-023-35213-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 05/15/2023] [Indexed: 05/22/2023] Open
Abstract
There exists decades-old evidence that some mycobacteria, including Mycobacterium avium and Mycobacterium smegmatis, produce hydrazidase, an enzyme that can hydrolyze the first-line antitubercular agent isoniazid. Despite its importance as a potential resistance factor, no studies have attempted to reveal its identity. In this study, we aimed to isolate and identify M. smegmatis hydrazidase, characterize it, and evaluate its impact on isoniazid resistance. We determined the optimal condition under which M. smegmatis produced the highest amount of hydrazidase, purified the enzyme by column chromatography, and identified it by peptide mass fingerprinting. It was revealed to be PzaA, an enzyme known as pyrazinamidase/nicotinamidase whose physiological role remains unknown. The kinetic constants suggested that this amidase with broad substrate specificity prefers amides to hydrazides as a substrate. Notably, of the five tested compounds, including amides, only isoniazid served as an efficient inducer of pzaA transcription, as revealed by quantitative reverse transcription PCR. Moreover, high expression of PzaA was confirmed to be beneficial for the survival and growth of M. smegmatis in the presence of isoniazid. Thus, our findings suggest a possible role for PzaA, and other hydrazidases yet to be identified, as an intrinsic isoniazid resistance factor of mycobacteria.
Collapse
Affiliation(s)
- Arata Sakiyama
- Department of Bacteriology, Osaka City University Graduate School of Medicine, Abeno-ku, Osaka, Japan
| | - Chaogetu Saren
- Department of Bacteriology, Osaka City University Graduate School of Medicine, Abeno-ku, Osaka, Japan
| | - Yukihiro Kaneko
- Department of Bacteriology, Osaka Metropolitan University Graduate School of Medicine, Abeno-ku, Osaka, Japan
- Research Center for Infectious Disease Sciences, Osaka Metropolitan University Graduate School of Medicine, Abeno-ku, Osaka, Japan
| | - Ken-Ichi Oinuma
- Department of Bacteriology, Osaka Metropolitan University Graduate School of Medicine, Abeno-ku, Osaka, Japan.
- Research Center for Infectious Disease Sciences, Osaka Metropolitan University Graduate School of Medicine, Abeno-ku, Osaka, Japan.
| |
Collapse
|
74
|
Wheeler EA, Lenhart-Pendergrass PM, Rysavy NM, Poch K, Caceres S, Calhoun KM, Serban K, Nick JA, Malcolm KC. Divergent host innate immune response to the smooth-to-rough M. abscessus adaptation to chronic infection. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.15.540822. [PMID: 37293112 PMCID: PMC10245581 DOI: 10.1101/2023.05.15.540822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Mycobacterium abscessus is a nontuberculous mycobacterium emerging as a significant pathogen for individuals with chronic lung disease, including cystic fibrosis and chronic obstructive pulmonary disease. Current therapeutics have poor efficacy. New strategies of bacterial control based on host defenses are appealing, but anti-mycobacterial immune mechanisms are poorly understood and are complicated by the appearance of smooth and rough morphotypes with distinct host responses. We explored the role of the complement system in the clearance of M. abscessus morphotypes by neutrophils, an abundant cell in these infections. M. abscessus opsonized with plasma from healthy individuals promoted greater killing by neutrophils compared to opsonization in heat-inactivated plasma. Rough clinical isolates were more resistant to complement but were still efficiently killed. Complement C3 associated strongly with the smooth morphotype while mannose-binding lectin 2 was associated with the rough morphotype. M. abscessus killing was dependent on C3, but not on C1q or Factor B; furthermore, competition of mannose-binding lectin 2 binding with mannan or N-acetyl-glucosamine during opsonization did not inhibit killing. These data suggest that M. abscessus does not canonically activate complement through the classical, alternative, or lectin pathways. Complement-mediated killing was dependent on IgG and IgM for smooth and on IgG for rough M. abscessus. Both morphotypes were recognized by Complement Receptor 3 (CD11b), but not CR1 (CD35), and in a carbohydrate- and calcium-dependent manner. These data suggest the smooth-to-rough adaptation changes complement recognition of M. abscessus and that complement is an important factor for M. abscessus infection.
Collapse
Affiliation(s)
| | | | - Noel M Rysavy
- Department of Medicine, National Jewish Health, Denver, CO
| | - Katie Poch
- Department of Medicine, National Jewish Health, Denver, CO
| | - Silvia Caceres
- Department of Medicine, National Jewish Health, Denver, CO
| | - Kara M Calhoun
- Department of Medicine University of Colorado, Aurora, CO
| | - Karina Serban
- Department of Medicine, National Jewish Health, Denver, CO
- Department of Medicine University of Colorado, Aurora, CO
| | - Jerry A Nick
- Department of Medicine, National Jewish Health, Denver, CO
- Department of Medicine University of Colorado, Aurora, CO
| | - Kenneth C Malcolm
- Department of Medicine, National Jewish Health, Denver, CO
- Department of Medicine University of Colorado, Aurora, CO
| |
Collapse
|
75
|
van Tonder AJ, Ellis HC, Churchward CP, Kumar K, Ramadan N, Benson S, Parkhill J, Moffatt MF, Loebinger MR, Cookson WOC. M ycobacterium avium complex genomics and transmission in a London hospital. Eur Respir J 2023; 61:2201237. [PMID: 36517182 PMCID: PMC10116071 DOI: 10.1183/13993003.01237-2022] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 10/23/2022] [Indexed: 12/23/2022]
Abstract
BACKGROUND Non-tuberculous mycobacteria (NTM) are environmental microorganisms and opportunistic pathogens in individuals with pre-existing lung conditions such as cystic fibrosis (CF) and non-CF bronchiectasis. While recent studies of Mycobacterium abscessus have identified transmission within single CF centres as well as nationally and globally, transmission of other NTM species is less well studied. METHODS To investigate the potential for transmission of the Mycobacterium avium complex (MAC) we sequenced 996 isolates from 354 CF and non-CF patients at the Royal Brompton Hospital (London, UK; collected 2013-2016) and analysed them in a global context. Epidemiological links were identified from patient records. Previously published genomes were used to characterise global population structures. RESULTS We identified putative transmission clusters in three MAC species, although few epidemiological links could be identified. For M. avium, lineages were largely limited to single countries, while for Mycobacterium chimaera, global transmission clusters previously associated with heater-cooler units (HCUs) were found. However, the immediate ancestor of the lineage causing the major HCU-associated outbreak was a lineage already circulating in patients. CONCLUSIONS CF and non-CF patients shared transmission chains, although the lack of epidemiological links suggested that most transmission is indirect and may involve environmental intermediates or asymptomatic carriage in the wider population.
Collapse
Affiliation(s)
| | - Huw C Ellis
- Host Defence Unit, Department of Respiratory Medicine, Royal Brompton Hospital, Guy's and St Thomas' NHS Foundation Trust, London, UK
- National Heart and Lung Institute, Imperial College London, London, UK
| | | | - Kartik Kumar
- Host Defence Unit, Department of Respiratory Medicine, Royal Brompton Hospital, Guy's and St Thomas' NHS Foundation Trust, London, UK
- National Heart and Lung Institute, Imperial College London, London, UK
| | - Newara Ramadan
- Department of Microbiology, Royal Brompton Hospital, Guy's and St Thomas' NHS Foundation Trust, London, UK
| | - Susan Benson
- Department of Microbiology, Royal Brompton Hospital, Guy's and St Thomas' NHS Foundation Trust, London, UK
| | - Julian Parkhill
- Department of Veterinary Medicine, University of Cambridge, Cambridge, UK
| | - Miriam F Moffatt
- National Heart and Lung Institute, Imperial College London, London, UK
- These three authors contributed equally
| | - Michael R Loebinger
- Host Defence Unit, Department of Respiratory Medicine, Royal Brompton Hospital, Guy's and St Thomas' NHS Foundation Trust, London, UK
- National Heart and Lung Institute, Imperial College London, London, UK
- These three authors contributed equally
| | - William O C Cookson
- Host Defence Unit, Department of Respiratory Medicine, Royal Brompton Hospital, Guy's and St Thomas' NHS Foundation Trust, London, UK
- National Heart and Lung Institute, Imperial College London, London, UK
- These three authors contributed equally
| |
Collapse
|
76
|
Milinic T, McElvaney OJ, Goss CH. Diagnosis and Management of Cystic Fibrosis Exacerbations. Semin Respir Crit Care Med 2023; 44:225-241. [PMID: 36746183 PMCID: PMC10131792 DOI: 10.1055/s-0042-1760250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
With the improving survival of cystic fibrosis (CF) patients and the advent of highly effective cystic fibrosis transmembrane conductance regulator (CFTR) therapy, the clinical spectrum of this complex multisystem disease continues to evolve. One of the most important clinical events for patients with CF in the course of this disease is acute pulmonary exacerbation (PEx). Clinical and microbial epidemiology studies of CF PEx continue to provide important insight into the disease course, prognosis, and complications. This work has now led to several large-scale clinical trials designed to clarify the treatment paradigm for CF PEx. The primary goal of this review is to provide a summary and update of the pathophysiology, clinical and microbial epidemiology, outcome and treatment of CF PEx, biomarkers for exacerbation, and the impact of highly effective modulator therapy on these events moving forward.
Collapse
Affiliation(s)
- Tijana Milinic
- Department of Medicine, University of Washington School of Medicine, Seattle, Washington
| | - Oliver J McElvaney
- Cysic Fibrosis Therapeutics Development Network Coordinating Center, Seattle Children's Research Institute, Seattle, Washington
| | - Christopher H Goss
- Department of Medicine, University of Washington School of Medicine, Seattle, Washington
- Cysic Fibrosis Therapeutics Development Network Coordinating Center, Seattle Children's Research Institute, Seattle, Washington
- Department of Pediatrics, University of Washington School of Medicine, Seattle, Washington
| |
Collapse
|
77
|
Steindor M, Hafkemeyer S, Ruckes C, Stehling F, Naehrlich L, Ringshausen FC. Epidemiological trends in nontuberculous mycobacterial infection among people with cystic fibrosis in Germany. Int J Infect Dis 2023; 129:32-39. [PMID: 36736578 DOI: 10.1016/j.ijid.2023.01.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 01/24/2023] [Accepted: 01/24/2023] [Indexed: 02/01/2023] Open
Abstract
OBJECTIVES People with cystic fibrosis (pwCF) are at risk for infection with nontuberculous mycobacteria (NTM). The epidemiology and screening practice of NTM among pwCF in Germany are largely unknown and require investigation. METHODS We analyzed the data of the German Cystic Fibrosis Registry from 2016 to 2020 for NTM. The annual prevalence and incidence of any NTM, Mycobacterium abscessus complex (MABC), Mycobacterium avium complex (MAC), Mycobacterium gordonae, and other mycobacteria were determined and correlated to patient characteristics. Patients with incident MABC and MAC infection were compared. RESULTS The annual NTM prevalence and incidence remained stable between 7.53% and 8.76%, as well as 3.31% and 4.95%, respectively, among the approximately 6000 registry participants. MABC was the most common NTM, whereas only the prevalence of MAC increased slightly. In each year, only about one-third of all patients were screened for NTM. An association between NTM infections and Aspergillus fumigatus infection and/or allergic bronchopulmonary aspergillosis was observed. On average, patients with incident MAC infection were older than patients with MABC infection. CONCLUSION The NTM burden in pwCF in Germany remained unchanged between 2016 and 2020. MABC was the dominant species detected, whereas only MAC infections increased with time and patient age. The previously observed association of Aspergillus fumigatus and NTM was reaffirmed. Awareness of NTM needs to be improved.
Collapse
Affiliation(s)
- Mathis Steindor
- Pediatric Pulmonology and Sleep Medicine, Children's University Hospital Essen, University of Duisburg-Essen, Essen, Germany.
| | | | - Christian Ruckes
- Interdisciplinary Center for Clinical Trials Mainz, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Florian Stehling
- Pediatric Pulmonology and Sleep Medicine, Children's University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Lutz Naehrlich
- Department of Pediatrics, Justus-Liebig-University Giessen, Giessen, Germany
| | - Felix C Ringshausen
- Department of Respiratory Medicine, Hannover Medical School and Biomedical Research in End-stage and Obstructive Lung disease (BREATH), German Center for Lung Research (DZL), Hannover, Germany; European Reference Network on Rare and Complex Respiratory Diseases (ERN-LUNG), Frankfurt, Germany
| |
Collapse
|
78
|
Burke A, Thomson RM, Wainwright CE, Bell SC. Nontuberculous Mycobacteria in Cystic Fibrosis in the Era of Cystic Fibrosis Transmembrane Regulator Modulators. Semin Respir Crit Care Med 2023; 44:287-296. [PMID: 36649736 DOI: 10.1055/s-0042-1759883] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Nontuberculous mycobacteria (NTM) are a group of mycobacteria which represent opportunistic pathogens that are of increasing concern in people with cystic fibrosis (pwCF). The acquisition has been traditionally though to be from environmental sources, though recent work has suggested clustered clonal infections do occur and transmission potential demonstrated among pwCF attending CF specialist centers. Guidelines for the screening, diagnosis, and identification of NTM and management of pwCF have been published. The emergence of CF-specific therapies, in particular cystic fibrosis transmembrane regulator (CFTR) modulator drugs, have led to significant improvement in the health and well-being of pwCF and may lead to challenges in sampling the lower respiratory tract including to screen for NTM. This review highlights the epidemiology, modes of acquisition, screening and diagnosis, therapeutic approaches in the context of improved clinical status for pwCF, and the clinical application of CFTR modulator therapies.
Collapse
Affiliation(s)
- Andrew Burke
- Department of Thoracic Medicine, The Prince Charles Hospital, Chermside, Queensland, Australia.,Centre for Clinical Research, Faculty of Medicine, The University of Queensland, Brisbane, Australia
| | - Rachel M Thomson
- Department of Thoracic Medicine, The Prince Charles Hospital, Chermside, Queensland, Australia.,Gallipoli Medical Research Foundation, Greenslopes Private Hospital, Greenslopes, Queensland, Australia
| | - Claire E Wainwright
- Department of Respiratory and Sleep Medicine, Queensland Children's Hospital, South Brisbane, Australia.,Children's Health Research Centre, Faculty of Medicine, The University of Queensland, South Brisbane, Australia
| | - Scott C Bell
- Department of Thoracic Medicine, The Prince Charles Hospital, Chermside, Queensland, Australia.,Children's Health Research Centre, Faculty of Medicine, The University of Queensland, South Brisbane, Australia.,Translational Research Institute, Woolloongabba, Australia
| |
Collapse
|
79
|
Daley CL, Hasan N. Transmission of Mycobacterium avium complex in healthcare settings: from environment, person to person, or both? Eur Respir J 2023; 61:61/4/2300308. [PMID: 37080577 DOI: 10.1183/13993003.00308-2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 03/04/2023] [Indexed: 04/22/2023]
Affiliation(s)
- Charles L Daley
- Department of Medicine, National Jewish Health, Denver, CO, USA
- Department of Medicine, University of Colorado School of Medicine, Aurora, CO, USA
| | - Nabeeh Hasan
- Department of Genes, Environment, and Health, National Jewish Health, Denver, CO, USA
| |
Collapse
|
80
|
Tan Z, Fan J, He S, Zhang Z, Chu H. sRNA21, a novel small RNA, protects Mycobacterium abscessus against oxidative stress. J Gene Med 2023:e3492. [PMID: 36862004 DOI: 10.1002/jgm.3492] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Revised: 02/04/2023] [Accepted: 02/23/2023] [Indexed: 03/03/2023] Open
Abstract
BACKGROUND During infection, Mycobacterium abscessus encounters numerous environmental changes and adapts to them using a variety of complex mechanisms. Non-coding small RNAs (sRNAs) have been shown in other bacteria to be involved in post-transcriptional regulatory pathways, including environmental stress adaptation. However, the potential role of sRNAs in the resistance to oxidative stress in M. abscessus was not clearly described. METHODS In the present study, we analyzed putative sRNAs identified by RNA-sequencing (RNA-seq) experiments in M. abscessus ATCC_19977 under oxidative stress, and the transcription profiles of sRNAs with differential expression were verified by quantitative reverse transcription-PCR (qRT-PCR). Six sRNA overexpression strains were constructed, and the differences in growth curves between these strains and the control strain were verified. An upregulated sRNA under oxidative stress was selected and named sRNA21. The survival ability of the sRNA21 overexpression strain was assessed, and computer-based approaches were used to predict the targets and pathways regulated by sRNA21. The total ATP production and NAD+ /NADH ratio of the sRNA21 overexpression strain were measured. The expression level of antioxidase-related genes and the activity of antioxidase were tested to confirm the interaction of sRNA21 with the predicted target genes in silico. RESULTS In total, 14 putative sRNAs were identified under oxidative stress, and the qRT-PCR analysis of six sRNAs showed comparable results to RNA-seq assays. Overexpression of sRNA21 in M. abscessus increased cell growth rate and intracellular ATP level before and after peroxide exposure. The expression of genes encoding alkyl hydroperoxidase and superoxide dismutase was significantly increased, and superoxide dismutase activity was enhanced in the sRNA21 overexpression strain. Meanwhile, after sRNA21 overexpression, the intracellular NAD+ /NADH ratio decreased, indicating changes in redox homeostasis. CONCLUSIONS Our findings show that sRNA21 is an oxidative stress-induced sRNA that increases M. abscessus survival and promotes the expression of antioxidant enzymes under oxidative stress. These findings may provide new insights into the adaptive transcriptional response of M. abscessus to oxidative stress.
Collapse
Affiliation(s)
- Zhili Tan
- Department of Respiratory and Critical Care Medicine, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China.,School of Medicine, Tongji University, Shanghai, China
| | - Junsheng Fan
- Department of Respiratory and Critical Care Medicine, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China.,School of Medicine, Tongji University, Shanghai, China
| | - Siyuan He
- Department of Respiratory and Critical Care Medicine, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China.,School of Medicine, Tongji University, Shanghai, China
| | - Zhemin Zhang
- Department of Respiratory and Critical Care Medicine, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China.,School of Medicine, Tongji University, Shanghai, China
| | - Haiqing Chu
- Department of Respiratory and Critical Care Medicine, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China.,School of Medicine, Tongji University, Shanghai, China.,Shanghai Key Laboratory of Tuberculosis, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
| |
Collapse
|
81
|
Klompas M, Akusobi C, Boyer J, Woolley A, Wolf ID, Tucker R, Rhee C, Fiumara K, Pearson M, Morris CA, Rubin E, Baker MA. Mycobacterium abscessus Cluster in Cardiac Surgery Patients Potentially Attributable to a Commercial Water Purification System. Ann Intern Med 2023; 176:333-339. [PMID: 36877966 DOI: 10.7326/m22-3306] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/08/2023] Open
Abstract
BACKGROUND Nontuberculous mycobacteria are water-avid pathogens that are associated with nosocomial infections. OBJECTIVE To describe the analysis and mitigation of a cluster of Mycobacterium abscessus infections in cardiac surgery patients. DESIGN Descriptive study. SETTING Brigham and Women's Hospital, Boston, Massachusetts. PARTICIPANTS Four cardiac surgery patients. INTERVENTION Commonalities among cases were sought, potential sources were cultured, patient and environmental specimens were sequenced, and possible sources were abated. MEASUREMENTS Description of the cluster, investigation, and mitigation. RESULTS Whole-genome sequencing confirmed homology among clinical isolates. Patients were admitted during different periods to different rooms but on the same floor. There were no common operating rooms, ventilators, heater-cooler devices, or dialysis machines. Environmental cultures were notable for heavy mycobacterial growth in ice and water machines on the cluster unit but little or no growth in ice and water machines in the hospital's other 2 inpatient towers or in shower and sink faucet water in any of the hospital's 3 inpatient towers. Whole-genome sequencing confirmed the presence of a genetically identical element in ice and water machine and patient specimens. Investigation of the plumbing system revealed a commercial water purifier with charcoal filters and an ultraviolet irradiation unit leading to the ice and water machines in the cluster tower but not the hospital's other inpatient towers. Chlorine was present at normal levels in municipal source water but was undetectable downstream from the purification unit. There were no further cases after high-risk patients were switched to sterile and distilled water, ice and water machine maintenance was intensified, and the commercial purification system was decommissioned. LIMITATION Transmission pathways were not clearly characterized. CONCLUSION Well-intentioned efforts to modify water management systems may inadvertently increase infection risk for vulnerable patients. PRIMARY FUNDING SOURCE National Institutes of Health.
Collapse
Affiliation(s)
- Michael Klompas
- Department of Population Medicine, Harvard Medical School and Harvard Pilgrim Health Care Institute, and Department of Medicine and Department of Quality and Safety, Brigham and Women's Hospital, Boston, Massachusetts (M.K., C.R., M.A.B.)
| | - Chidiebere Akusobi
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, Massachusetts (C.A., I.D.W.)
| | - Jon Boyer
- Department of Environmental Affairs, Brigham and Women's Hospital, Boston, Massachusetts (J.B.)
| | - Ann Woolley
- Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts (A.W., C.A.M.)
| | - Ian D Wolf
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, Massachusetts (C.A., I.D.W.)
| | - Robert Tucker
- Department of Quality and Safety, Brigham and Women's Hospital, Boston, Massachusetts (R.T., K.F.)
| | - Chanu Rhee
- Department of Population Medicine, Harvard Medical School and Harvard Pilgrim Health Care Institute, and Department of Medicine and Department of Quality and Safety, Brigham and Women's Hospital, Boston, Massachusetts (M.K., C.R., M.A.B.)
| | - Karen Fiumara
- Department of Quality and Safety, Brigham and Women's Hospital, Boston, Massachusetts (R.T., K.F.)
| | - Madelyn Pearson
- Department of Nursing, Brigham and Women's Hospital, Boston, Massachusetts (M.P.)
| | - Charles A Morris
- Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts (A.W., C.A.M.)
| | - Eric Rubin
- Department of Medicine, Brigham and Women's Hospital, and Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, Massachusetts (E.R.)
| | - Meghan A Baker
- Department of Population Medicine, Harvard Medical School and Harvard Pilgrim Health Care Institute, and Department of Medicine and Department of Quality and Safety, Brigham and Women's Hospital, Boston, Massachusetts (M.K., C.R., M.A.B.)
| |
Collapse
|
82
|
Zhang Y, Yu C, Jiang Y, Zheng X, Wang L, Li J, Shen X, Xu B. Drug resistance profile of Mycobacterium kansasii clinical isolates before and after 2-month empirical antimycobacterial treatment. Clin Microbiol Infect 2023; 29:353-359. [PMID: 36209990 DOI: 10.1016/j.cmi.2022.10.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 09/26/2022] [Accepted: 10/01/2022] [Indexed: 11/25/2022]
Abstract
OBJECTIVES Mycobacterium kansasii pulmonary disease is frequently misdiagnosed and treated as tuberculosis, especially in countries with high tuberculosis burden. This study aimed to investigate the drug resistance profile of M.kansasii in patients with M.kansasii pulmonary disease in Shanghai and to determine the variations in drug resistance after 2 months of antimycobacterial treatment. METHODS All patients with a diagnosis of M.kansasii pulmonary disease from 2017 to 2019 in Shanghai were retrospectively analysed. Whole-genome sequencing was performed, and the minimum inhibitory concentration (MIC) to antimycobacterial drugs was measured using the broth microdilution method. RESULTS In total, 191 patients had a diagnosis of M.kansasii pulmonary disease. Of them, 24.1% (46/191) had persistent positive culture after 2 months of antimycobacterial treatment. Whole-genome sequencing revealed that the 46 paired isolates had a difference of <17 single nucleotide polymorphisms, thus excluding the possibility of exogenous reinfection. More than 90% of the baseline isolates were sensitive to rifampin, clarithromycin, moxifloxacin, or amikacin, whereas a high resistance to ethambutol (118/191, 61.8%) and 4 μg/mL of isoniazid (32/191, 16.8%) were observed. Two isolates presented high resistance to rifamycin (i.e. a rifampin MIC of >8 μg/mL and a rifabutin MIC of 8 μg/mL) both containing the rpoB mutation (S454L). The increase of MIC to rifampin, ethambutol, and/or isoniazid was identified in 50.0% (23/46) of the patients. DISCUSSION A high prevalence of innate resistance to ethambutol and isoniazid was observed among circulating M.kansasii clinical strains in Shanghai. The increase in drug resistance under empirical antimycobacterial treatment highlighted the urgency of definitive species identification before initiating treatment.
Collapse
Affiliation(s)
- Yangyi Zhang
- Department of Epidemiology, School of Public Health and Key Laboratory of Public Health Safety, Fudan University, Shanghai, People's Republic of China; Division of TB and HIV/AIDS Prevention, Shanghai Municipal Center for Disease Control and Prevention, Shanghai, People's Republic of China; Shanghai Institutes of Preventive Medicine, Shanghai, People's Republic of China
| | - Chenlei Yu
- Division of TB and HIV/AIDS Prevention, Shanghai Municipal Center for Disease Control and Prevention, Shanghai, People's Republic of China; Shanghai Institutes of Preventive Medicine, Shanghai, People's Republic of China
| | - Yuan Jiang
- Division of TB and HIV/AIDS Prevention, Shanghai Municipal Center for Disease Control and Prevention, Shanghai, People's Republic of China; Shanghai Institutes of Preventive Medicine, Shanghai, People's Republic of China
| | - Xubin Zheng
- Clinic and Research Center of Tuberculosis, Shanghai Key Laboratory of Tuberculosis, Shanghai Pulmonary Hospital, Tongji University, Shanghai, People's Republic of China
| | - Lili Wang
- Division of TB and HIV/AIDS Prevention, Shanghai Municipal Center for Disease Control and Prevention, Shanghai, People's Republic of China; Shanghai Institutes of Preventive Medicine, Shanghai, People's Republic of China
| | - Jing Li
- Division of TB and HIV/AIDS Prevention, Shanghai Municipal Center for Disease Control and Prevention, Shanghai, People's Republic of China; Shanghai Institutes of Preventive Medicine, Shanghai, People's Republic of China
| | - Xin Shen
- Division of TB and HIV/AIDS Prevention, Shanghai Municipal Center for Disease Control and Prevention, Shanghai, People's Republic of China; Shanghai Institutes of Preventive Medicine, Shanghai, People's Republic of China.
| | - Biao Xu
- Department of Epidemiology, School of Public Health and Key Laboratory of Public Health Safety, Fudan University, Shanghai, People's Republic of China.
| |
Collapse
|
83
|
Bedoya M, Salfinger M, Weisman A, Colin AA. Culture result discrepancy between laboratories for nontuberculous mycobacteria in people with cystic fibrosis. Pediatr Pulmonol 2023; 58:1598-1601. [PMID: 36751141 DOI: 10.1002/ppul.26346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 01/24/2023] [Accepted: 02/05/2023] [Indexed: 02/09/2023]
Affiliation(s)
- Mariana Bedoya
- Division of Allergy, Immunology, Pulmonary and Sleep Medicine, Monroe Carell Jr. Children's Hospital at Vanderbilt, Nashville, Tennessee, USA
| | - Max Salfinger
- Public Health Practice Program, Division of Infectious Disease and International Medicine, College of Public Health & Morsani College of Medicine, University of South Florida, Tampa, Florida, USA
| | - Alejandra Weisman
- Division of Pediatric Pulmonology, Miller School of Medicine, University of Miami, Miami, Florida, USA
| | - Andrew A Colin
- Division of Pediatric Pulmonology, Miller School of Medicine, University of Miami, Miami, Florida, USA
| |
Collapse
|
84
|
Nguyen TT, He C, Carter R, Ballard EL, Smith K, Groth R, Jaatinen E, Kidd TJ, Thomson RM, Tay G, Johnson GR, Bell SC, Knibbs LD. Quantifying the effectiveness of ultraviolet-C light at inactivating airborne Mycobacterium abscessus. J Hosp Infect 2023; 132:133-139. [PMID: 36309203 DOI: 10.1016/j.jhin.2022.10.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 09/26/2022] [Accepted: 10/06/2022] [Indexed: 11/07/2022]
Abstract
BACKGROUND Mycobacterium abscessus (MABS) group are environmental organisms that can cause infection in people with cystic fibrosis (CF) and other suppurative lung diseases. There is potential for person-to-person airborne transmission of MABS among people with CF attending the same care centre. Ultraviolet light (band C, UV-C) is used for Mycobacterium tuberculosis control indoors; however, no studies have assessed UV-C for airborne MABS. AIM To determine whether a range of UV-C doses increased the inactivation of airborne MABS, compared with no-UVC conditions. METHODS MABS was generated by a vibrating mesh nebulizer located within a 400 L rotating drum sampler, and then exposed to an array of 265 nm UV-C light-emitting diodes (LED). A six-stage Andersen Cascade Impactor was used to collect aerosols. Standard microbiological protocols were used for enumerating MABS, and these quantified the effectiveness of UV-C doses (in triplicate). UV-C effectiveness was estimated using the difference between inactivation with and without UV-C. FINDINGS Sixteen tests were performed, with UV-C doses ranging from 276 to 1104 μW s/cm2. Mean (±SD) UV-C effectiveness ranged from 47.1% (±13.4) to 83.6% (±3.3). UV-C led to significantly greater inactivation of MABS (all P-values ≤0.045) than natural decay at all doses assessed. Using an indoor model of the hospital environment, it was estimated that UV-C doses in the range studied here could be safely delivered in clinical settings where patients and staff are present. CONCLUSION This study provides empirical in-vitro evidence that nebulized MABS are susceptible to UV-C inactivation.
Collapse
Affiliation(s)
- T T Nguyen
- Faculty of Medicine, School of Public Health, University of Queensland, Brisbane, QLD, Australia.
| | - C He
- International Laboratory for Air Quality & Health, School of Earth and Atmospheric Sciences, Faculty of Science, Queensland University of Technology, Brisbane, QLD, Australia
| | - R Carter
- Centre for Children's Health Research, Brisbane, QLD, Australia
| | - E L Ballard
- QIMR Berghofer Institute of Medical Research, Brisbane, QLD 4006, Australia
| | - K Smith
- Centre for Children's Health Research, Brisbane, QLD, Australia
| | - R Groth
- International Laboratory for Air Quality & Health, School of Earth and Atmospheric Sciences, Faculty of Science, Queensland University of Technology, Brisbane, QLD, Australia
| | - E Jaatinen
- School of Chemistry and Physics, Queensland University of Technology (QUT), Brisbane, QLD, Australia
| | - T J Kidd
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, QLD, Australia; Pathology Queensland, Royal Brisbane and Women's Hospital, Brisbane, QLD, Australia
| | - R M Thomson
- The Prince Charles Hospital, Brisbane, QLD, Australia; Faculty of Medicine, University of Queensland, Brisbane, QLD, Australia; Gallipoli Medical Research Foundation, Greenslopes Private Hospital, Brisbane, QLD, Australia
| | - G Tay
- The Prince Charles Hospital, Brisbane, QLD, Australia
| | - G R Johnson
- International Laboratory for Air Quality & Health, School of Earth and Atmospheric Sciences, Faculty of Science, Queensland University of Technology, Brisbane, QLD, Australia
| | - S C Bell
- Centre for Children's Health Research, Brisbane, QLD, Australia; The Prince Charles Hospital, Brisbane, QLD, Australia; Faculty of Medicine, University of Queensland, Brisbane, QLD, Australia; Translational Research Institute, Brisbane, QLD, Australia
| | - L D Knibbs
- Public Health Unit, Sydney Local Health District, Camperdown, NSW, Australia; Faculty of Medicine and Health, School of Public Health, University of Sydney, NSW, Australia
| |
Collapse
|
85
|
Lou H, Zou A, Shen X, Fang Y, Sun Q, Zhang F, Sha W. Clinical Features of Nontuberculous Mycobacterial Pulmonary Disease in the Yangtze River Delta of China: A Single-Center, Retrospective, Observational Study. Trop Med Infect Dis 2023; 8:tropicalmed8010050. [PMID: 36668957 PMCID: PMC9861733 DOI: 10.3390/tropicalmed8010050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 12/29/2022] [Accepted: 01/03/2023] [Indexed: 01/11/2023] Open
Abstract
With increased focus on nontuberculous mycobacterial pulmonary disease (NTM-PD), and the improvement in detection methods, the global incidence continues to increase every year, but the diagnosis and treatment are difficult with a high misdiagnosis rate and poor curative effect. This study aimed to analyze the clinical indicators of different pathogenic NTM in the Yangtze River Delta. The study retrospectively analyzed the medical records of patients with NTM-PD, who resided in the Yangtze River Delta and were diagnosed using sputum or bronchial lavage fluid and hospitalized in Shanghai Pulmonary Hospital from March 2017 to February 2019. The clinical data of confirmed patients were collected. Among the 513 cases of NTM-PD, 482 cases were infected by four common bacteria: Mycobacterium intracellulare (224, 46.5%), M. abscessus (138, 28.6%), M. kansasii (84, 17.4%), and M. avium (36, 7.5%). The analysis found that different NTM strains have their corresponding positive and negative correlation factors (p < 0.05). M. intracellulare, M. abscessus, M. kansasii, and M. avium were the main pathogenic bacteria isolated from patients with NTM-PD in the Yangtze River Delta were. Different strains resulted in different clinical features, assisting in the early diagnosis and treatment of NTM-PD.
Collapse
Affiliation(s)
- Hai Lou
- Shanghai Key Laboratory of Tuberculosis, Tuberculosis Diagnosis and Treatment Center, Shanghai Pulmonary Hospital, Tongji University, Shanghai 200433, China
| | - Ansheng Zou
- Intensive Care Unit, Yantai Qishan Hospital, Yantai 264001, China
| | - Xiaona Shen
- Shanghai Key Laboratory of Tuberculosis, Tuberculosis Diagnosis and Treatment Center, Shanghai Pulmonary Hospital, Tongji University, Shanghai 200433, China
| | - Yong Fang
- Shanghai Key Laboratory of Tuberculosis, Tuberculosis Diagnosis and Treatment Center, Shanghai Pulmonary Hospital, Tongji University, Shanghai 200433, China
| | - Qin Sun
- Shanghai Key Laboratory of Tuberculosis, Tuberculosis Diagnosis and Treatment Center, Shanghai Pulmonary Hospital, Tongji University, Shanghai 200433, China
| | - Fen Zhang
- Department of Pulmonary and Critical Care Medicine, Shanghai Forth People’s Hospital, School of Medicine, Tongji University, Shanghai 200434, China
- Correspondence: (F.Z.); (W.S.)
| | - Wei Sha
- Shanghai Key Laboratory of Tuberculosis, Tuberculosis Diagnosis and Treatment Center, Shanghai Pulmonary Hospital, Tongji University, Shanghai 200433, China
- Correspondence: (F.Z.); (W.S.)
| |
Collapse
|
86
|
Mycobacterium abscessus infection results in decrease of oxidative metabolism of lung airways cells and relaxation of the epithelial mucosal tight junctions. Tuberculosis (Edinb) 2023; 138:102303. [PMID: 36652813 DOI: 10.1016/j.tube.2023.102303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 12/30/2022] [Accepted: 01/04/2023] [Indexed: 01/11/2023]
Abstract
Mycobacterium abscessus complex is a group of environmental pathogens that recently have been isolated more from patients with underlying lung diseases, such and COPD, bronchiectasis, and cystic fibrosis. The mechanisms involved in the pathogenesis of these diseases have only recently been investigated. Infection is associated with biofilm formation on the airway mucosa, invasion of the mucosal epithelial cells and a time-dependent impairment of the integrity of the monolayer. Using electron microscopy, it was shown that Mycobacterium abscessus induced lesions of the cell surface structures. Tight junction proteins claudin-1 and occludin-1 have increased transcription in cells exposed to Mycobacterium abscessus, in contrast to cells exposed to Mycobacterium avium. Infection of A549 alveolar epithelial cells by Mycobacterium abscessus reduced the oxidative metabolism of the cell, without inducing necrosis. A transposon library screen identified mutants that do not alter the metabolism of the A549 cells.Once the bacterium crosses the epithelial barrier, it may encounter sub-epithelial macrophages. Select mutants were used for infection assays to determine their effects on membrane integrity. Translocated select mutants were attenuated in macrophages compared to wild type Mycobacterium abscessus. In summary, the dynamics of Mycobacterium abscessus infection appears to be different from other non-tuberculous mycobacteria (NTMs). Future studies will attempt to address the mechanism involved in airway membrane lesions.
Collapse
|
87
|
He Z, Xu X, Wang C, Li Y, Dong B, Li S, Zeng J. Effect of Panax quinquefolius extract on Mycobacterium abscessus biofilm formation. BIOFOULING 2023; 39:24-35. [PMID: 36644897 DOI: 10.1080/08927014.2023.2166405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Revised: 01/01/2023] [Accepted: 01/04/2023] [Indexed: 06/17/2023]
Abstract
Mycobacterium abscessus (M. abscessus) can exist either as planktonic bacteria or as a biofilm. Biofilm formation is one of the important causes of conversion to resistance to antibiotics of bacteria that were previously sensitive when in their planktonic form, resulting in infections difficult to manage. Panax quinquefolius and its active ingredient ginsenosides have the potential ability in fighting pathogenic infections. In this study, the P. quinquefolius extract (PQE) showed good antibacterial/bactericidal activity against the M. abscessus planktonic cells. The extract reduced the biomass, thickness, and number of M. abscessus in the biofilm and altered its morphological characteristics as well as the spatial distribution of dead/alive bacteria. Moreover, the ginsenoside CK monomer had a similar inhibitory effect on M. abscessus planktonic bacteria and biofilm formation. Therefore, PQE and its monomer CK might be potential novel antimicrobial agents for the clinical prevention and treatment of M. abscessus, including biofilms in chronic infections.
Collapse
Affiliation(s)
- Zhiqun He
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
| | - Xinyue Xu
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
| | - Chuan Wang
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
| | - Yuqing Li
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Baoyu Dong
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
| | - Shuai Li
- Pharmaceutical Research Institute of Traditional Chinese Medicine, Sichuan Academy of Chinese Medicine Sciences, Chengdu, Sichuan, China
| | - Jumei Zeng
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
88
|
Updated Review on the Mechanisms of Pathogenicity in Mycobacterium abscessus, a Rapidly Growing Emerging Pathogen. Microorganisms 2022; 11:microorganisms11010090. [PMID: 36677382 PMCID: PMC9866562 DOI: 10.3390/microorganisms11010090] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 12/21/2022] [Accepted: 12/23/2022] [Indexed: 01/01/2023] Open
Abstract
In recent years, Mycobacterium abscessus has appeared as an emerging pathogen, with an increasing number of disease cases reported worldwide that mainly occur among patients with chronic lung diseases or impaired immune systems. The treatment of this pathogen represents a challenge due to the multi-drug-resistant nature of this species and its ability to evade most therapeutic approaches. However, although predisposing host factors for disease are well known, intrinsic pathogenicity mechanisms of this mycobacterium are still not elucidated. Like other mycobacteria, intracellular invasiveness and survival inside different cell lines are pathogenic factors related to the ability of M. abscessus to establish infection. Some of the molecular factors involved in this process are well-known and are present in the mycobacterial cell wall, such as trehalose-dimycolate and glycopeptidolipids. The ability to form biofilms is another pathogenic factor that is essential for the development of chronic disease and for promoting mycobacterial survival against the host immune system or different antibacterial treatments. This capability also seems to be related to glycopeptidolipids and other lipid molecules, and some studies have shown an intrinsic relationship between both pathogenic mechanisms. Antimicrobial resistance is also considered a mechanism of pathogenicity because it allows the mycobacterium to resist antimicrobial therapies and represents an advantage in polymicrobial biofilms. The recent description of hyperpathogenic strains with the potential interhuman transmission makes it necessary to increase our knowledge of pathogenic mechanisms of this species to design better therapeutic approaches to the management of these infections.
Collapse
|
89
|
Fressatti Cardoso R, Martín-Blecua I, Pietrowski Baldin V, Meneguello JE, Valverde JR, Blázquez J, Castañeda-García A. Noncanonical Mismatch Repair Protein NucS Modulates the Emergence of Antibiotic Resistance in Mycobacterium abscessus. Microbiol Spectr 2022; 10:e0222822. [PMID: 36219122 PMCID: PMC9769700 DOI: 10.1128/spectrum.02228-22] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 09/22/2022] [Indexed: 01/06/2023] Open
Abstract
NucS/EndoMS-dependent noncanonical mismatch repair (MMR) ensures the stability of genomic DNA in mycobacteria and acts as a guardian of the genome by preventing the accumulation of point mutations. In order to address whether the inactivation of noncanonical MMR could increase the acquisition of drug resistance by mutation, a ΔnucS strain was constructed and explored in the emerging pathogen Mycobacterium abscessus. Deletion of nucS resulted in a mutator phenotype with increased acquisition of resistance to macrolides and aminoglycosides, the two main groups of antimycobacterial agents for M. abscessus treatment, and also to second-line drugs such as fluoroquinolones. Inactivation of the noncanonical MMR in M. abscessus led to increases of 10- to 22-fold in the appearance of spontaneous mutants resistant to the macrolide clarithromycin and the aminoglycosides amikacin, gentamicin, and apramycin, compared with the wild-type strain. Furthermore, emergence of fluoroquinolone (ciprofloxacin) resistance was detected in a nucS-deficient strain but not in a wild-type M. abscessus strain. Acquired drug resistance to macrolides and aminoglycosides was analyzed through sequencing of the 23S rRNA gene rrl and the 16S rRNA gene rrs from independent drug-resistant colonies of both strains. When the acquisition of clarithromycin resistance was examined, a different mutational profile was detected in the M. abscessus ΔnucS strain compared with the wild-type one. To summarize, M. abscessus requires the NucS-dependent noncanonical MMR pathway to prevent the emergence of drug-resistant isolates by mutation. To our knowledge, this is the first report that reveals the role of NucS in a human pathogen, and these findings have potential implications for the treatment of M. abscessus infections. IMPORTANCE Chronic infections caused by M. abscessus are an emerging challenge in public health, posing a substantial health and economic burden, especially in patients with cystic fibrosis. Treatment of M. abscessus infections with antibiotics is particularly challenging, as its complex drug resistance mechanisms, including constitutive resistance through DNA mutation, lead to high rates of treatment failure. To decipher the evolution of antibiotic resistance in M. abscessus, we studied NucS-dependent noncanonical MMR, a unique DNA repair pathway involved in genomic maintenance. Inactivation of NucS is linked to the increase of DNA mutations (hypermutation), which can confer drug resistance. Our analysis detected increased acquisition of mutations conferring resistance to first-line and second-line antibiotics. We believe that this study will improve the knowledge of how this pathogen could evolve into an untreatable infectious agent, and it uncovers a role for hypermutators in chronic infectious diseases under antibiotic pressure.
Collapse
Affiliation(s)
- Rosilene Fressatti Cardoso
- Departamento de Análises Clínicas e Biomedicina, Universidade Estadual de Maringá, Maringá, Paraná, Brazil
| | - Isabel Martín-Blecua
- Departamento de Biotecnología Microbiana, Centro Nacional de Biotecnología CNB-CSIC, Madrid, Spain
| | - Vanessa Pietrowski Baldin
- Departamento de Análises Clínicas e Biomedicina, Universidade Estadual de Maringá, Maringá, Paraná, Brazil
| | - Jean Eduardo Meneguello
- Departamento de Análises Clínicas e Biomedicina, Universidade Estadual de Maringá, Maringá, Paraná, Brazil
| | - José Ramón Valverde
- Departamento de Computación Científica, Centro Nacional de Biotecnología CNB-CSIC, Madrid, Spain
| | - Jesús Blázquez
- Departamento de Biotecnología Microbiana, Centro Nacional de Biotecnología CNB-CSIC, Madrid, Spain
| | - Alfredo Castañeda-García
- Departamento de Biotecnología Microbiana, Centro Nacional de Biotecnología CNB-CSIC, Madrid, Spain
| |
Collapse
|
90
|
Abstract
Nontuberculous mycobacteria (NTM) are important pathogens, with a longitudinal prevalence of up to 20% within the cystic fibrosis (CF) population. Diagnosis of NTM pulmonary disease in people with CF (pwCF) is challenging, as a majority have NTM infection that is transient or indolent, without evidence of clinical consequence. In addition, the radiographic and clinical manifestations of chronic coinfections with typical CF pathogens can overlap those of NTM, making diagnosis difficult. Comprehensive care of pwCF must be optimized to assess the true clinical impact of NTM and to improve response to treatment. Treatment requires prolonged, multidrug therapy that varies depending on NTM species, resistance pattern, and extent of disease. With a widespread use of highly effective modulator therapy (HEMT), clinical signs and symptoms of NTM disease may be less apparent, and sensitivity of sputum cultures further reduced. The development of a disease-specific approach to the diagnosis and treatment of NTM infection in pwCF is a research priority, as a lifelong strategy is needed for this high-risk population.
Collapse
|
91
|
Le Moigne V, Blouquit-Laye S, Desquesnes A, Girard-Misguich F, Herrmann JL. Liposomal amikacin and Mycobacterium abscessus: intimate interactions inside eukaryotic cells. J Antimicrob Chemother 2022; 77:3496-3503. [PMID: 36253948 DOI: 10.1093/jac/dkac348] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 09/26/2022] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Mycobacterium abscessus (Mabs), a rapidly growing Mycobacterium species, is considered an MDR organism. Among the standard antimicrobial multi-drug regimens against Mabs, amikacin is considered as one of the most effective. Parenteral amikacin, as a consequence of its inability to penetrate inside the cells, is only active against extracellular mycobacteria. The use of inhaled liposomal amikacin may yield improved intracellular efficacy by targeting Mabs inside the cells, while reducing its systemic toxicity. OBJECTIVES To evaluate the colocalization of an amikacin liposomal inhalation suspension (ALIS) with intracellular Mabs, and then to measure its intracellular anti-Mabs activity. METHODS We evaluated the colocalization of ALIS with Mabs in eukaryotic cells such as macrophages (THP-1 and J774.2) or pulmonary epithelial cells (BCi-NS1.1 and MucilAir), using a fluorescent ALIS and GFP-expressing Mabs, to test whether ALIS reaches intracellular Mabs. We then evaluated the intracellular anti-Mabs activity of ALIS inside macrophages using cfu and/or luminescence. RESULTS Using confocal microscopy, we demonstrated fluorescent ALIS and GFP-Mabs colocalization in macrophages and epithelial cells. We also showed that ALIS was active against intracellular Mabs at a concentration of 32 to 64 mg/L, at 3 and 5 days post-infection. Finally, ALIS intracellular activity was confirmed when tested against 53 clinical Mabs isolates, showing intracellular growth reduction for nearly 80% of the isolates. CONCLUSIONS Our experiments demonstrate the intracellular localization and intracellular contact between Mabs and ALIS, and antibacterial activity against intracellular Mabs, showing promise for its future use for Mabs pulmonary infections.
Collapse
Affiliation(s)
- Vincent Le Moigne
- Pensez à respecter la signature institutionnelle (think to respect the institutional signature): Université Paris-Saclay, UVSQ, Inserm, Infection et inflammation, 78180, Montigny-Le-Bretonneux, France
| | - Sabine Blouquit-Laye
- Pensez à respecter la signature institutionnelle (think to respect the institutional signature): Université Paris-Saclay, UVSQ, Inserm, Infection et inflammation, 78180, Montigny-Le-Bretonneux, France
| | - Aurore Desquesnes
- Pensez à respecter la signature institutionnelle (think to respect the institutional signature): Université Paris-Saclay, UVSQ, Inserm, Infection et inflammation, 78180, Montigny-Le-Bretonneux, France
| | - Fabienne Girard-Misguich
- Pensez à respecter la signature institutionnelle (think to respect the institutional signature): Université Paris-Saclay, UVSQ, Inserm, Infection et inflammation, 78180, Montigny-Le-Bretonneux, France
| | - Jean-Louis Herrmann
- Pensez à respecter la signature institutionnelle (think to respect the institutional signature): Université Paris-Saclay, UVSQ, Inserm, Infection et inflammation, 78180, Montigny-Le-Bretonneux, France.,AP-HP, GHU Paris-Saclay, Hôpital Raymond Poincaré, Service de Microbiologie, Garches, France
| |
Collapse
|
92
|
Ratnatunga CN, Tungatt K, Proietti C, Halstrom S, Holt MR, Lutzky VP, Price P, Doolan DL, Bell SC, Field MA, Kupz A, Thomson RM, Miles JJ. Characterizing and correcting immune dysfunction in non-tuberculous mycobacterial disease. Front Immunol 2022; 13:1047781. [PMID: 36439147 PMCID: PMC9686449 DOI: 10.3389/fimmu.2022.1047781] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Accepted: 10/25/2022] [Indexed: 10/29/2023] Open
Abstract
Non-tuberculous mycobacterial pulmonary disease (NTM-PD) is a chronic, progressive, and growing worldwide health burden associated with mounting morbidity, mortality, and economic costs. Improvements in NTM-PD management are urgently needed, which requires a better understanding of fundamental immunopathology. Here, we examine temporal dynamics of the immune compartment during NTM-PD caused by Mycobacterium avium complex (MAC) and Mycobactereoides abscessus complex (MABS). We show that active MAC infection is characterized by elevated T cell immunoglobulin and mucin-domain containing-3 expression across multiple T cell subsets. In contrast, active MABS infection was characterized by increased expression of cytotoxic T-lymphocyte-associated protein 4. Patients who failed therapy closely mirrored the healthy individual immune phenotype, with circulating immune network appearing to 'ignore' infection in the lung. Interestingly, immune biosignatures were identified that could inform disease stage and infecting species with high accuracy. Additionally, programmed cell death protein 1 blockade rescued antigen-specific IFN-γ secretion in all disease stages except persistent infection, suggesting the potential to redeploy checkpoint blockade inhibitors for NTM-PD. Collectively, our results provide new insight into species-specific 'immune chatter' occurring during NTM-PD and provide new targets, processes and pathways for diagnostics, prognostics, and treatments needed for this emerging and difficult to treat disease.
Collapse
Affiliation(s)
- Champa N. Ratnatunga
- Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, QLD, Australia
- School of Medicine, University of Queensland, Brisbane, QLD, Australia
- Queensland Institute of Medical Research (QIMR) Berghofer, Brisbane, QLD, Australia
- Faculty of Medicine, University of Peradeniya, Kandy, Sri Lanka
| | - Katie Tungatt
- Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, QLD, Australia
- Centre for Molecular Therapeutics, James Cook University, Cairns, QLD, Australia
| | - Carla Proietti
- Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, QLD, Australia
- Centre for Molecular Therapeutics, James Cook University, Cairns, QLD, Australia
| | - Sam Halstrom
- Curtin Medical School, Curtin University, Perth, WA, Australia
| | - Michael R. Holt
- School of Medicine, University of Queensland, Brisbane, QLD, Australia
- Thoracic Medicine, The Prince Charles Hospital, Brisbane, QLD, Australia
- Gallipoli Medical Research Institute, Greenslopes Private Hospital Foundation, Brisbane, QLD, Australia
| | - Viviana P. Lutzky
- Queensland Institute of Medical Research (QIMR) Berghofer, Brisbane, QLD, Australia
| | - Patricia Price
- Curtin Medical School, Curtin University, Perth, WA, Australia
| | - Denise L. Doolan
- Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, QLD, Australia
- Centre for Molecular Therapeutics, James Cook University, Cairns, QLD, Australia
| | - Scott C. Bell
- School of Medicine, University of Queensland, Brisbane, QLD, Australia
- Thoracic Medicine, The Prince Charles Hospital, Brisbane, QLD, Australia
| | - Matt A. Field
- Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, QLD, Australia
- Centre for Molecular Therapeutics, James Cook University, Cairns, QLD, Australia
- Centre for Tropical Bioinformatics and Molecular Biology, James Cook University, Cairns, QLD, Australia
| | - Andreas Kupz
- Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, QLD, Australia
- Centre for Molecular Therapeutics, James Cook University, Cairns, QLD, Australia
| | - Rachel M. Thomson
- School of Medicine, University of Queensland, Brisbane, QLD, Australia
- Division of Infection and Immunity, University Hospital Wales, Cardiff University School of Medicine, Cardiff, Wales, United Kingdom
| | - John J. Miles
- Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, QLD, Australia
- Queensland Institute of Medical Research (QIMR) Berghofer, Brisbane, QLD, Australia
- Centre for Molecular Therapeutics, James Cook University, Cairns, QLD, Australia
- Division of Infection and Immunity, University Hospital Wales, Cardiff University School of Medicine, Cardiff, Wales, United Kingdom
- Systems Immunity Research Institute, Cardiff University, Cardiff, Wales, United Kingdom
| |
Collapse
|
93
|
Zomer D, van Ingen J, Hofland R, Akkerman O, Altenburg J, Bakker M, Bannier M, Conemans L, Gulmans V, Heijerman H, Hoek R, Janssens H, van der Meer R, Merkus P, Noordhoek J, Nuijsink M, Terheggen-Lagro S, van der Vaart H, de Winter-de Groot K. Epidemiology and management of nontuberculous mycobacterial disease in people with cystic fibrosis, the Netherlands. J Cyst Fibros 2022; 22:327-333. [PMID: 36347785 DOI: 10.1016/j.jcf.2022.10.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 09/23/2022] [Accepted: 10/20/2022] [Indexed: 11/09/2022]
Abstract
BACKGROUND Nontuberculous mycobacteria (NTM) are opportunistic, difficult to treat pathogens. With increasing prevalence of NTM infections in people with cystic fibrosis (pwCF) and the improved life expectancy, the burden is expected to grow. METHODS We assessed the epidemiology and management of NTM isolation and disease in pwCF in the Netherlands using a survey and retrospective, case-controlled data from the Dutch CF Registry. We determined the isolation prevalence, treatment and outcomes from 2013-2019. RESULTS NTM isolation prevalence increased from 1.0% to 3.6% (2013-2019). This was a single NTM isolation in 53.7% of the adults and 60.0% of the children. M. abscessus and M. avium complex (MAC) were most frequent (47.1 and 30.9%). Of the treated pwCF, 48.5% attained culture conversion of M. abscessus; 54.5% for MAC. Children with an NTM isolation showed more infections with S. maltophilia and/or A. fumigatus (p < 0.001) compared to controls. In the year prior to NTM isolation, children in the NTM group had a lower mean FEV1% predicted (81.5 ± 16.7 vs. 88.6 ± 15.3, p = 0.024), while adults in the NTM group had more IV antibiotic days compared to controls (60 vs. 17, p = 0.047). In the following years, FEV1% predicted declined faster in pwCF with NTM than the control group (children: -3.8% vs. -1.6%, p = 0.023; adults: -0.7% and 0.4%, ns). CONCLUSIONS The isolation prevalence of 3.6%, poor treatment outcomes and associated lung function decline emphasize that NTM pulmonary disease (NTM-PD) is a significant health issue among pwCF in the Netherlands. Its prevention and treatment require increased attention.
Collapse
|
94
|
Jeon SM, Kim YJ, Nguyen TQ, Cui J, Thi Bich Hanh B, Silwal P, Kim JK, Kim JM, Oh DC, Jang J, Jo EK. Ohmyungsamycin Promotes M1-like Inflammatory Responses to Enhance Host Defense against Mycobacteroides abscessus Infections. Virulence 2022; 13:1966-1984. [PMID: 36271707 DOI: 10.1080/21505594.2022.2138009] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
Abstract
Ohmyungsamycin A (OMS) is a newly identified cyclic peptide that exerts antimicrobial effects against Mycobacterium tuberculosis. However, its role in nontuberculous mycobacteria (NTMs) infections has not been clarified. Mycobacteroides abscessus (Mabc) is a rapidly growing NTM that has emerged as a human pathogen in both immunocompetent and immunosuppressed individuals. In this study, we demonstrated that OMS had significant antimicrobial effects against Mabc infection in both immunocompetent and immunodeficient mice, and in macrophages. OMS treatment amplified Mabc-induced expression of M1-related proinflammatory cytokines and inducible nitric oxide synthase, and significantly downregulated arginase-1 expression in murine macrophages. In addition, OMS augmented Mabc-mediated production of mitochondrial reactive oxygen species (mtROS), which promoted M1-like proinflammatory responses in Mabc-infected macrophages. OMS-induced production of mtROS and nitric oxide was critical for OMS-mediated antimicrobial responses during Mabc infections. Notably, the combination of OMS and rifabutin had a synergistic effect on the antimicrobial responses against Mabc infections in vitro, in murine macrophages, and in zebrafish models in vivo. Collectively, these data strongly suggest that OMS may be an effective M1-like adjunctive therapeutic against Mabc infections, either alone or in combination with antibiotics.
Collapse
Affiliation(s)
- Sang Min Jeon
- Department of Microbiology, Chungnam National University School of Medicine, Daejeon, South Korea.,Infection Control Convergence Research Center, Chungnam National University School of Medicine, Daejeon, South Korea.,Department of Medical Science, Chungnam National University School of Medicine, Daejeon, South Korea.,Brain Korea 21 FOUR Project for Medical Science, Chungnam National University School of Medicine, Daejeon, South Korea
| | - Young Jae Kim
- Department of Microbiology, Chungnam National University School of Medicine, Daejeon, South Korea.,Infection Control Convergence Research Center, Chungnam National University School of Medicine, Daejeon, South Korea.,Department of Medical Science, Chungnam National University School of Medicine, Daejeon, South Korea.,Brain Korea 21 FOUR Project for Medical Science, Chungnam National University School of Medicine, Daejeon, South Korea
| | - Thanh Quang Nguyen
- Division of Applied Life Science (BK21 Four Program), Research Institute of Life Science, Gyeongsang National University, Jinju, South Korea
| | - Jinsheng Cui
- Department of Microbiology, Keimyung University School of Medicine, Daegu, South Korea
| | - Bui Thi Bich Hanh
- Division of Applied Life Science (BK21 Four Program), Research Institute of Life Science, Gyeongsang National University, Jinju, South Korea
| | - Prashanta Silwal
- Department of Microbiology, Chungnam National University School of Medicine, Daejeon, South Korea.,Infection Control Convergence Research Center, Chungnam National University School of Medicine, Daejeon, South Korea
| | - Jin Kyung Kim
- Department of Microbiology, Keimyung University School of Medicine, Daegu, South Korea
| | - Jin-Man Kim
- Infection Control Convergence Research Center, Chungnam National University School of Medicine, Daejeon, South Korea.,Department of Medical Science, Chungnam National University School of Medicine, Daejeon, South Korea.,Department of Pathology, Chungnam National University School of Medicine, Daejeon, South Korea
| | - Dong-Chan Oh
- Natural Products Research Institute, College of Pharmacy, Seoul National University, Seoul, South Korea
| | - Jichan Jang
- Division of Life Science, Department of Bio & Medical Big Data (BK21 Four Program), Research Institute of Life Science, Gyeongsang National University,Jinju, South Korea
| | - Eun-Kyeong Jo
- Department of Microbiology, Chungnam National University School of Medicine, Daejeon, South Korea.,Infection Control Convergence Research Center, Chungnam National University School of Medicine, Daejeon, South Korea
| |
Collapse
|
95
|
Nguyen TT, He C, Carter R, Ballard EL, Smith K, Groth R, Jaatinen E, Kidd TJ, Nguyen TK, Stockwell RE, Tay G, Johnson GR, Bell SC, Knibbs LD. The Effectiveness of Ultraviolet-C (UV-C) Irradiation on the Viability of Airborne Pseudomonas aeruginosa. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph192013706. [PMID: 36294279 PMCID: PMC9602727 DOI: 10.3390/ijerph192013706] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 10/19/2022] [Accepted: 10/20/2022] [Indexed: 05/17/2023]
Abstract
Pseudomonas aeruginosa (Pa) is the predominant bacterial pathogen in people with cystic fibrosis (CF) and can be transmitted by airborne droplet nuclei. Little is known about the ability of ultraviolet band C (UV-C) irradiation to inactivate Pa at doses and conditions relevant to implementation in indoor clinical settings. We assessed the effectiveness of UV-C (265 nm) at up to seven doses on the decay of nebulized Pa aerosols (clonal Pa strain) under a range of experimental conditions. Experiments were done in a 400 L rotating sampling drum. A six-stage Andersen cascade impactor was used to collect aerosols inside the drum and the particle size distribution was characterized by an optical particle counter. UV-C effectiveness was characterized relative to control tests (no UV-C) of the natural decay of Pa. We performed 112 tests in total across all experimental conditions. The addition of UV-C significantly increased the inactivation of Pa compared with natural decay alone at all but one of the UV-C doses assessed. UV-C doses from 246-1968 µW s/cm2 had an estimated effectiveness of approximately 50-90% for airborne Pa. The effectiveness of doses ≥984 µW s/cm2 were not significantly different from each other (p-values: 0.365 to ~1), consistent with a flattening of effectiveness at higher doses. Modelling showed that delivering the highest dose associated with significant improvement in effectiveness (984 µW s/cm2) to the upper air of three clinical rooms would lead to lower room doses from 37-49% of the 8 h occupational limit. Our results suggest that UV-C can expedite the inactivation of nebulized airborne Pa under controlled conditions, at levels that can be delivered safely in occupied settings. These findings need corroboration, but UV-C may have potential applications in locations where people with CF congregate, coupled with other indoor and administrative infection control measures.
Collapse
Affiliation(s)
- Thi Tham Nguyen
- School of Public Health, The University of Queensland, Brisbane, QLD 4006, Australia
- Correspondence:
| | - Congrong He
- International Laboratory for Air Quality & Health, School of Earth and Atmospheric Sciences, Faculty of Science, Queensland University of Technology (QUT), Brisbane, QLD 4000, Australia
| | - Robyn Carter
- Centre for Children’s Health Research, Brisbane, QLD 4101, Australia
| | - Emma L. Ballard
- QIMR Berghofer Institute of Medical Research, Brisbane, QLD 4006, Australia
| | - Kim Smith
- Centre for Children’s Health Research, Brisbane, QLD 4101, Australia
| | - Robert Groth
- International Laboratory for Air Quality & Health, School of Earth and Atmospheric Sciences, Faculty of Science, Queensland University of Technology (QUT), Brisbane, QLD 4000, Australia
| | - Esa Jaatinen
- School of Chemistry and Physics, Queensland University of Technology (QUT), Brisbane, QLD 4000, Australia
| | - Timothy J. Kidd
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD 4032, Australia
- Pathology Queensland, Royal Brisbane and Women’s Hospital, Brisbane, QLD 4006, Australia
| | - Thuy-Khanh Nguyen
- QIMR Berghofer Institute of Medical Research, Brisbane, QLD 4006, Australia
| | | | - George Tay
- The Prince Charles Hospital, Brisbane, QLD 4032, Australia
| | - Graham R. Johnson
- International Laboratory for Air Quality & Health, School of Earth and Atmospheric Sciences, Faculty of Science, Queensland University of Technology (QUT), Brisbane, QLD 4000, Australia
| | - Scott C. Bell
- Centre for Children’s Health Research, Brisbane, QLD 4101, Australia
- The Prince Charles Hospital, Brisbane, QLD 4032, Australia
- Faculty of Medicine, The University of Queensland, Brisbane, QLD 4006, Australia
- Translational Research Institute, Brisbane, QLD 4102, Australia
| | - Luke D. Knibbs
- Public Health Unit, Sydney Local Health District, Camperdown, NSW 2050, Australia
- Faculty of Medicine and Health, School of Public Health, The University of Sydney, Sydney, NSW 2006, Australia
| |
Collapse
|
96
|
Selection of Relevant Bacterial Strains for Novel Therapeutic Testing: a Guidance Document for Priority Cystic Fibrosis Lung Pathogens. CURRENT CLINICAL MICROBIOLOGY REPORTS 2022. [DOI: 10.1007/s40588-022-00182-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Abstract
Purpose of Review
People with cystic fibrosis (CF) suffer chronic lung infections with a range of antimicrobial-resistant bacterial pathogens. There is an urgent need for researchers to develop novel anti-infectives to treat these problematic infections, but how can we select bacterial strains which are relevant for robust testing and comparative research?
Recent Findings
Pseudomonas aeruginosa, Burkholderia cepacia complex and Burkholderia gladioli, Mycobacterium abscessus complex, Staphylococcus aureus, Haemophilus influenza, and several multidrug-resistant Gram-negative species were selected as key CF infections that urgently require new therapeutics. Reference isolates and strain panels were identified, and a summary of the known genotypic diversity of each pathogen was provided.
Summary
Here, we summarise the current strain resources available for priority CF bacterial pathogens and highlight systematic selection criteria that researchers can use to select strains for use in therapeutic testing.
Collapse
|
97
|
Nimmo C, Millard J, Faulkner V, Monteserin J, Pugh H, Johnson EO. Evolution of Mycobacterium tuberculosis drug resistance in the genomic era. Front Cell Infect Microbiol 2022; 12:954074. [PMID: 36275027 PMCID: PMC9585206 DOI: 10.3389/fcimb.2022.954074] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 09/20/2022] [Indexed: 12/02/2022] Open
Abstract
Mycobacterium tuberculosis has acquired drug resistance to all drugs that have been used against it, including those only recently introduced into clinical practice. Compared to other bacteria, it has a well conserved genome due to its role as an obligate human pathogen that has adapted to a niche over five to ten thousand years. These features facilitate reconstruction and dating of M. tuberculosis phylogenies, giving key insights into how resistance has been acquired and spread globally. Resistance to each new drug has occurred within five to ten years of clinical use and has occurred even more rapidly with recently introduced drugs. In most cases, resistance-conferring mutations come with a fitness cost, but this can be overcome by compensatory mutations which restore fitness to that of wild-type bacteria. It is likely that M. tuberculosis acquires drug resistance while maintaining limited genomic variability due the generation of low frequency within-host variation, combined with ongoing purifying selection causing loss of variants without a clear fitness advantage. However, variants that do confer an advantage, such as drug resistance, can increase in prevalence amongst all bacteria within a host and become the dominant clone. These resistant strains can then be transmitted leading to primary drug resistant infection in a new host. As many countries move towards genomic methods for diagnosis of M. tuberculosis infection and drug resistance, it is important to be aware of the implications for the evolution of resistance. Currently, understanding of resistance-conferring mutations is incomplete, and some targeted genetic diagnostics create their own selective pressures. We discuss an example where a rifampicin resistance-conferring mutation which was not routinely covered by standard testing became dominant. Finally, resistance to new drugs such as bedaquiline and delamanid is caused by individually rare mutations occurring across a large mutational genomic target that have been detected over a short time, and do not provide statistical power for genotype-phenotype correlation – in contrast to longer-established drugs that form the backbone of drug-sensitive antituberculosis therapy. Therefore, we need a different approach to identify resistance-conferring mutations of new drugs before their resistance becomes widespread, abrogating their usefulness.
Collapse
Affiliation(s)
- Camus Nimmo
- Systems Chemical Biology of Infection and Resistance Laboratory, Francis Crick Institute, London, United Kingdom
- *Correspondence: Camus Nimmo,
| | - James Millard
- Institute of Infection and Global Health, University of Liverpool, Liverpool, United Kingdom
| | - Valwynne Faulkner
- Systems Chemical Biology of Infection and Resistance Laboratory, Francis Crick Institute, London, United Kingdom
| | - Johana Monteserin
- Systems Chemical Biology of Infection and Resistance Laboratory, Francis Crick Institute, London, United Kingdom
| | - Hannah Pugh
- Systems Chemical Biology of Infection and Resistance Laboratory, Francis Crick Institute, London, United Kingdom
| | - Eachan Oliver Johnson
- Systems Chemical Biology of Infection and Resistance Laboratory, Francis Crick Institute, London, United Kingdom
| |
Collapse
|
98
|
Ledesma Y, Echeverría G, Claro-Almea FE, Silva D, Guerrero-Freire S, Rojas Y, Bastidas-Caldes C, Navarro JC, de Waard JH. The Re-Identification of Previously Unidentifiable Clinical Non-Tuberculous Mycobacterial Isolates Shows Great Species Diversity and the Presence of Other Acid-Fast Genera. Pathogens 2022; 11:pathogens11101159. [PMID: 36297216 PMCID: PMC9610484 DOI: 10.3390/pathogens11101159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 09/25/2022] [Accepted: 09/26/2022] [Indexed: 01/24/2023] Open
Abstract
Non-tuberculous mycobacteria that cannot be identified at the species level represent a challenge for clinical laboratories, as proper species assignment is key to implementing successful treatments or epidemiological studies. We re-identified forty-eight isolates of Ziehl-Neelsen (ZN)-staining-positive "acid-fast bacilli" (AFB), which were isolated in a clinical laboratory and previously identified as Mycobacterium species but were unidentifiable at the species level with the hsp65 PCR restriction fragment length polymorphism analysis (PRA). As most isolates also could not be identified confidently via 16S, hsp65, or rpoB DNA sequencing and a nBLAST search analysis, we employed a phylogenetic method for their identification using the sequences of the 16S rDNA, which resulted in the identification of most AFB and a Mycobacterium species diversity not found before in our laboratory. Most were rare species with only a few clinical reports. Moreover, although selected with the ZN staining as AFB, not all isolates belonged to the genus Mycobacterium, and we report for the first time in Latin America the isolation of Nocardia puris, Tsukamurella pulmosis, and Gordonia sputi from sputum samples of symptomatic patients. We conclude that ZN staining does not differentiate between the genus Mycobacterium and other genera of AFB. Moreover, there is a need for a simple and more accurate tree-based identification method for mycobacterial species. For this purpose, and in development in our lab, is a web-based identification system using a phylogenetic analysis (including all AFB genera) based on 16S rDNA sequences (and in the future multigene datasets) and the closest relatives.
Collapse
Affiliation(s)
- Yanua Ledesma
- Laboratorios de Investigación, Facultad de Ciencias de Salud, Universidad de Las Américas (UDLA), Quito 170125, Ecuador
| | - Gustavo Echeverría
- Instituto de Investigación en Salud Pública y Zoonosis-CIZ, Universidad Central del Ecuador, Quito 170521, Ecuador
- Programa de Doctorado, Facultad de Ciencias Veterinarias, Universidad de Buenos Aires, Buenos Aires C1428EGA, Argentina
| | - Franklin E. Claro-Almea
- Servicio Autónomo Instituto de Biomedicina Dr. Jacinto Convit, Universidad Central de Venezuela, Caracas 1010, Venezuela
| | - Douglas Silva
- Servicio Autónomo Instituto de Biomedicina Dr. Jacinto Convit, Universidad Central de Venezuela, Caracas 1010, Venezuela
| | - Salomé Guerrero-Freire
- Laboratorios de Investigación, Facultad de Ciencias de Salud, Universidad de Las Américas (UDLA), Quito 170125, Ecuador
- Programa de Doctorado, Facultad de Ciencias Veterinarias, Universidad de Buenos Aires, Buenos Aires C1428EGA, Argentina
| | - Yeimy Rojas
- Grupo de Microbiología Aplicada, Universidad Regional Amazónica Ikiam, Tena 150102, Ecuador
| | - Carlos Bastidas-Caldes
- One Health Research Group, Facultad de Ingeniería y Ciencias Aplicadas, Biotecnología, Universidad de las Américas, Quito 170125, Ecuador
- Programa de Doctorado en Salud Pública y Animal, Facultad de Veterinaria, Universidad de Extremadura, Cáceres 10003, España
| | - Juan Carlos Navarro
- Grupo de Enfermedades Emergentes, Ecoepidemiologia y Biodiversidad, Facultad de Ciencias de la Salud, Universidad Internacional SEK, Quito 170107, Ecuador
| | - Jacobus H. de Waard
- Laboratorios de Investigación, Facultad de Ciencias de Salud, Universidad de Las Américas (UDLA), Quito 170125, Ecuador
- Instituto de Investigación en Salud Pública y Zoonosis-CIZ, Universidad Central del Ecuador, Quito 170521, Ecuador
- Servicio Autónomo Instituto de Biomedicina Dr. Jacinto Convit, Universidad Central de Venezuela, Caracas 1010, Venezuela
- Correspondence:
| |
Collapse
|
99
|
The unusual convergence of steroid catabolic pathways in Mycobacterium abscessus. Proc Natl Acad Sci U S A 2022; 119:e2207505119. [PMID: 36161908 DOI: 10.1073/pnas.2207505119] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Mycobacterium abscessus, an opportunistic pathogen responsible for pulmonary infections, contains genes predicted to encode two steroid catabolic pathways: a cholesterol catabolic pathway similar to that of Mycobacterium tuberculosis and a 4-androstenedione (4-AD) catabolic pathway. Consistent with this prediction, M. abscessus grew on both steroids. In contrast to M. tuberculosis, Rhodococcus jostii RHA1, and other Actinobacteria, the cholesterol and 4-AD catabolic gene clusters of the M. abscessus complex lack genes encoding HsaD, the meta-cleavage product (MCP) hydrolase. However, M. abscessus ATCC 19977 harbors two hsaD homologs elsewhere in its genome. Only one of the encoded enzymes detectably transformed steroid metabolites. Among tested substrates, HsaDMab and HsaDMtb of M. tuberculosis had highest substrate specificities for MCPs with partially degraded side chains thioesterified with coenzyme A (kcat/KM = 1.9 × 104 and 5.7 × 103 mM-1s-1, respectively). Consistent with a dual role in cholesterol and 4-AD catabolism, HsaDMab also transformed nonthioesterified substrates efficiently, and a ΔhsaD mutant of M. abscessus grew on neither steroid. Interestingly, both steroids prevented growth of the mutant on acetate. The ΔhsaD mutant of M. abscessus excreted cholesterol metabolites with a fully degraded side chain, while the corresponding RHA1 mutant excreted metabolites with partially degraded side chains. Finally, the ΔhsaD mutant was not viable in macrophages. Overall, our data establish that the cholesterol and 4-AD catabolic pathways of M. abscessus are unique in that they converge upstream of where this occurs in characterized steroid-catabolizing bacteria. The data further indicate that cholesterol is a substrate for intracellular bacteria and that cholesterol-dependent toxicity is not strictly dependent on coenzyme A sequestration.
Collapse
|
100
|
Ying C, Li X, Lv S, Du P, Chen Y, Fu H, Du W, Xu K, Zhang Y, Wu W. T-SPOT with CT image analysis based on deep learning for early differential diagnosis of nontuberculous mycobacteria pulmonary disease and pulmonary tuberculosis. Int J Infect Dis 2022; 125:42-50. [PMID: 36180035 DOI: 10.1016/j.ijid.2022.09.031] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 09/21/2022] [Accepted: 09/21/2022] [Indexed: 12/14/2022] Open
Abstract
OBJECTIVES This study aimed to establish a diagnostic algorithm combining T-SPOT with computed tomography image analysis based on deep learning (DL) for early differential diagnosis of nontuberculous mycobacteria pulmonary disease (NTM-PD) and pulmonary tuberculosis (PTB). METHODS A total of 1049 cases were enrolled, including 467 NTM-PD and 582 PTB cases. A total of 320 cases (160 NTM-PD and 160 PTB) were randomized as the testing set and were analyzed using T-SPOT combined with the DL model. The testing cases were first divided into T-SPOT-positive and -negative groups, and the DL model was then used to separate the cases into four subgroups further. RESULTS The precision was found to be 91.7% for the subgroup of T-SPOT-negative and DL classified as NTM-PD, and 89.8% for T-SPOT-positive and DL classified as PTB, which covered 66.9% of the total cases, compared with the accuracy rate of 80.3% of T-SPOT alone. In the other two remaining groups, where the T-SPOT prediction was inconsistent with the DL model, the accuracy was 73.0% and 52.2%, separately. CONCLUSION Our study shows that the new diagnostic system combining T-SPOT with DL based computed tomography image analysis can greatly improve the classification precision of NTM-PD and PTB when the two methods of prediction are consistent.
Collapse
Affiliation(s)
- Chiqing Ying
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Xukun Li
- Artificial Intelligence Lab, Hangzhou AiSmartVision Co., Ltd., Hangzhou, China
| | - Shuangzhi Lv
- Radiology Department, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Peng Du
- Artificial Intelligence Lab, Hangzhou AiSmartVision Co., Ltd., Hangzhou, China
| | - Yunzhi Chen
- School of Information Engineering, Hangzhou Vocational & Technical College, Hangzhou, China
| | - Hongxin Fu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Weibo Du
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Kaijin Xu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Ying Zhang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Wei Wu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China.
| |
Collapse
|