51
|
Zeng Q, Shan W, Zhang H, Yang J, Zuo Z. Paraventricular thalamic nucleus plays a critical role in consolation and anxious behaviors of familiar observers exposed to surgery mice. Am J Cancer Res 2021; 11:3813-3829. [PMID: 33664863 PMCID: PMC7914349 DOI: 10.7150/thno.45690] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Accepted: 01/09/2021] [Indexed: 02/06/2023] Open
Abstract
Background: Consolation behaviors toward the sick are common in humans. Anxiety in the relatives of the sick is also common. Anxiety can cause detrimental effects on multiple systems. However, our understanding on the neural mechanisms of these behaviors is limited because of the lack of small animal models. Methods: Five of 6- to 8-week-old CD-1 male mice were housed in a cage. Among them, 2 mice had right common artery exposure (surgery) and the rest were without surgery. Allo-grooming and performance in light and dark box and elevated plus maze tests of the mice were determined. Results: Mice without surgery had increased allo-grooming toward mice with surgery but decreased allo-grooming toward non-surgery intruders. This increased allo-grooming toward surgery mice was higher in familiar observers of surgery mice than that of mice that were not cage-mates of surgery mice before the surgery. Familiar observers developed anxious behavior after being with surgery mice. Surgery mice with familiar observers had less anxious behavior than surgery mice without interacting with familiar observers. Multiple brain regions including paraventricular thalamic nucleus (PVT) were activated in familiar observers. The activated cells in PVT contained orexin receptors. Injuring the neurons with ibotenic acid, antagonizing orexin signaling with an anti-orexin antibody or inhibiting neurons by chemogenetic approach in PVT abolished the consolation and anxious behaviors of familiar observers. Conclusions: Mice show consolation behavior toward the sick. This behavior attenuates the anxious behavior of surgery mice. The orexin signaling in the PVT neurons play a critical role in the consolation of familiar observers toward surgery mice and their anxious behavior. Considering that about 50 million patients have surgery annually in the United States, our study represents the initial attempt to understand neural mechanisms for consolation and anxiety of a large number of people.
Collapse
|
52
|
Abstract
Atopic dermatitis (AD) is a common skin disease characterized by chronic inflammation and itchiness. Although skin barrier dysfunction and immune abnormalities are thought to contribute to the development of AD, the precise pathogenic mechanism remains to be elucidated. We have developed a unique, diet-induced AD mouse model based on the findings that deficiencies of certain polyunsaturated fatty acids and starches cause AD-like symptoms in hairless mice. Here, we present a protocol and tips for establishing an AD mouse model using a custom diet modified from a widely used standard diet (AIN-76A Rodent Diet). We also describe methods for evaluating skin barrier dysfunction and analyzing itch-related scratching behavior. This model can be used not only to investigate the complex pathogenic mechanism of human AD but also to study the puzzling relationship between nutrition and AD development.
Collapse
Affiliation(s)
- Masanori Fujii
- Division of Pathological Sciences, Department of Pharmacology, Kyoto Pharmaceutical University, Kyoto, Japan.
| | - Yuki Shimazaki
- Division of Pathological Sciences, Department of Pharmacology, Kyoto Pharmaceutical University, Kyoto, Japan
| | - Takeshi Nabe
- Division of Pathological Sciences, Department of Pharmacology, Kyoto Pharmaceutical University, Kyoto, Japan.,Laboratory of Immunopharmacology, Faculty of Pharmaceutical Sciences, Setsunan University, Osaka, Japan
| |
Collapse
|
53
|
Najafi P, Dufor O, Ben Salem D, Misery L, Carré JL. Itch processing in the brain. J Eur Acad Dermatol Venereol 2020; 35:1058-1066. [PMID: 33145804 DOI: 10.1111/jdv.17029] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Revised: 09/17/2020] [Accepted: 10/02/2020] [Indexed: 01/04/2023]
Abstract
Itch is a sensation defined as the urge to scratch. The central mechanisms of itch are being increasingly studied. These studies are usually based on experimental itch induction methods, which can be classified into the following categories: histamine-induced, induction by other non-histamine chemicals (e.g. cowhage), physically induced (e.g. electrical) and mentally induced (e.g. audio-visual). Because pain has been more extensively studied, some extrapolations to itch can be proposed and verified by experiments. Recent studies suggest that the itch-processing network in the brain could be disrupted in certain diseases. This disruption could be related to the implication of new regions or the exclusion of already engaged brain regions from itch-processing network in the brain.
Collapse
Affiliation(s)
| | - O Dufor
- LIEN, Univ Brest, Brest, France.,LabISEN Yncréa Ouest ISEN, Brest, France
| | - D Ben Salem
- Univ Brest, LaTIM, INSERM, UMR 1101, Brest, France.,University Hospital of Brest, Brest, France
| | - L Misery
- LIEN, Univ Brest, Brest, France.,University Hospital of Brest, Brest, France
| | - J-L Carré
- LIEN, Univ Brest, Brest, France.,University Hospital of Brest, Brest, France
| |
Collapse
|
54
|
Kamber MS, Sutter M, Navarini A, Mueller SM. Contagious itch and disgust during a lecture on ectoparasitic infestations: Two co‐activated complementary parasite defense systems? Dermatol Ther 2020; 33:e14456. [DOI: 10.1111/dth.14456] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 10/10/2020] [Accepted: 10/15/2020] [Indexed: 01/25/2023]
Affiliation(s)
- Marise S. Kamber
- Department of Dermatology University Hospital Basel Basel Switzerland
| | - Mia Sutter
- Department of Dermatology University Hospital Basel Basel Switzerland
| | | | - Simon M. Mueller
- Department of Dermatology University Hospital Basel Basel Switzerland
| |
Collapse
|
55
|
Gonzales-Rojas R, Rana AN, Mason P, Renfro C, Annaluru V, Panda S, Lee HY. The mouse model of fragile X syndrome exhibits deficits in contagious itch behavior. Sci Rep 2020; 10:17679. [PMID: 33077777 PMCID: PMC7573600 DOI: 10.1038/s41598-020-72891-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2019] [Accepted: 09/01/2020] [Indexed: 11/24/2022] Open
Abstract
Individuals with autism spectrum disorders (ASDs) imitate observed behavior less than age-matched and typically developing peers, resulting in deterred learning ability and social interaction. However, this deficit lacks preclinical assessment tools. A previous study has shown that mice exhibit contagious itch behavior while viewing a scratching demonstrator mouse, as opposed to an ambulating demonstrator mouse, but whether autism mouse models imitate observed scratching behavior remains unknown. Here, we investigated contagious itch behavior in the mouse model of fragile X syndrome (FXS), a common form of inherited intellectual disabilities with a high risk for ASDs. We found that the mouse model of FXS shows deficits in contagious itch behavior. Our findings can be used as a new preclinical assessment tool for measuring imitative deficits in the study of neurodevelopmental disorders including FXS.
Collapse
Affiliation(s)
- Rodrigo Gonzales-Rojas
- The Department of Cellular and Integrative Physiology, The University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Amtul-Noor Rana
- The Department of Cellular and Integrative Physiology, The University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Peter Mason
- The Department of Cellular and Integrative Physiology, The University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Christopher Renfro
- The Department of Cellular and Integrative Physiology, The University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Vallabhi Annaluru
- The Department of Cellular and Integrative Physiology, The University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Shree Panda
- The Department of Cellular and Integrative Physiology, The University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Hye Young Lee
- The Department of Cellular and Integrative Physiology, The University of Texas Health Science Center at San Antonio, San Antonio, TX, USA.
| |
Collapse
|
56
|
Posterior Thalamic Nucleus Mediates Facial Histaminergic Itch. Neuroscience 2020; 444:54-63. [PMID: 32750381 DOI: 10.1016/j.neuroscience.2020.07.048] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 07/13/2020] [Accepted: 07/27/2020] [Indexed: 11/24/2022]
Abstract
Itch induces a desire to scratch and leads to skin damage in some severe conditions. Much progress has been made in the peripheral and spinal level, and recent findings suggested that we need to focus on the central circuitry mechanism. However, the functional role of the thalamus in itch signal processing remains largely unknown. We showed that the posterior thalamic nucleus (Po) played a vital role in modulating facial histaminergic itch signal processing. We found that the calcium signal of Po neurons was increased during the histaminergic itch-induced scratching behavior in the cheek model, and pharmacogenetic suppression of Po neurons reduced the scratching behaviors. Retrograde mapping results suggested that the Po receives information from the somatosensory cortex, motor cortex, parabrachial nucleus (PBN), the principal sensory trigeminal nucleus (PrV) and the spinal trigeminal nucleus (SpV), which participate in itch signal transmission from head and body. Thus, our study indicates that the Po is critical in modulating facial histaminergic itch signal processing.
Collapse
|
57
|
Cevikbas F, Lerner EA. Physiology and Pathophysiology of Itch. Physiol Rev 2020; 100:945-982. [PMID: 31869278 PMCID: PMC7474262 DOI: 10.1152/physrev.00017.2019] [Citation(s) in RCA: 154] [Impact Index Per Article: 30.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 10/31/2019] [Accepted: 12/04/2019] [Indexed: 02/06/2023] Open
Abstract
Itch is a topic to which everyone can relate. The physiological roles of itch are increasingly understood and appreciated. The pathophysiological consequences of itch impact quality of life as much as pain. These dynamics have led to increasingly deep dives into the mechanisms that underlie and contribute to the sensation of itch. When the prior review on the physiology of itching was published in this journal in 1941, itch was a black box of interest to a small number of neuroscientists and dermatologists. Itch is now appreciated as a complex and colorful Rubik's cube. Acute and chronic itch are being carefully scratched apart and reassembled by puzzle solvers across the biomedical spectrum. New mediators are being identified. Mechanisms blur boundaries of the circuitry that blend neuroscience and immunology. Measures involve psychophysics and behavioral psychology. The efforts associated with these approaches are positively impacting the care of itchy patients. There is now the potential to markedly alleviate chronic itch, a condition that does not end life, but often ruins it. We review the itch field and provide a current understanding of the pathophysiology of itch. Itch is a disease, not only a symptom of disease.
Collapse
Affiliation(s)
- Ferda Cevikbas
- Dermira, Inc., Menlo Park, California; and Harvard Medical School and the Cutaneous Biology Research Center at Massachusetts General Hospital, Charlestown, Massachusetts
| | - Ethan A Lerner
- Dermira, Inc., Menlo Park, California; and Harvard Medical School and the Cutaneous Biology Research Center at Massachusetts General Hospital, Charlestown, Massachusetts
| |
Collapse
|
58
|
Abstract
A patient can develop cognitive dysfunction and neuroinflammation after surgery. However, it is not known whether these pathological processes occur in people who live together with surgery patients. As an initial step to address this issue in animals, 2 mice with right common carotid arterial exposure were cage-mates with 3 non-surgery mice. Their learning and memory were tested starting 5 days after surgery. Their brain tissues were harvested 1 day or 5 days after surgery. The results showed that mice with surgery and cage-mates of these surgery mice had increased pro-inflammatory cytokines in the brain and dysfunction of learning and memory. Inhibition of inflammation attenuated the cognitive impairment of the cage-mates. These results suggest that dysfunction of complex behavior including learning and memory can occur in non-surgery cage-mates of surgery mice. Additional studies are needed to determine whether this phenomenon exists in larger animals and humans.
Collapse
Affiliation(s)
- Yuxin Zheng
- Department of Anesthesiology, University of Virginia, Charlottesville, VA 22908, U.S.A
- Department of Anesthesiology, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Zhiyi Zuo
- Department of Anesthesiology, University of Virginia, Charlottesville, VA 22908, U.S.A
| |
Collapse
|
59
|
Geng KW, Du R, Wei N, Li CL, Wang Y, Sun W, Chen T, Wei DY, Yu Y, He T, Luo WJ, Wang RR, Chen ZF, Chen J. Image-Forming Visual Basis of Empathy for Pain in Mice. Neurosci Bull 2020; 36:1563-1569. [PMID: 32562164 DOI: 10.1007/s12264-020-00528-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Accepted: 03/08/2020] [Indexed: 12/11/2022] Open
Affiliation(s)
- Kai-Wen Geng
- Institute for Biomedical Sciences of Pain, Tangdu Hospital, The Fourth Military Medical University, Xi'an, 710038, China.,Key Laboratory of Brain Stress and Behavior, People's Liberation Army, Xi'an, 710038, China.,Center for the Study of Itch, Washington University School of Medicine, St. Louis, MO, 63110, USA.,Department of Anesthesiology, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Rui Du
- Institute for Biomedical Sciences of Pain, Tangdu Hospital, The Fourth Military Medical University, Xi'an, 710038, China.,Key Laboratory of Brain Stress and Behavior, People's Liberation Army, Xi'an, 710038, China
| | - Na Wei
- Institute for Biomedical Sciences of Pain, Tangdu Hospital, The Fourth Military Medical University, Xi'an, 710038, China.,Key Laboratory of Brain Stress and Behavior, People's Liberation Army, Xi'an, 710038, China
| | - Chun-Li Li
- Institute for Biomedical Sciences of Pain, Tangdu Hospital, The Fourth Military Medical University, Xi'an, 710038, China.,Key Laboratory of Brain Stress and Behavior, People's Liberation Army, Xi'an, 710038, China
| | - Yan Wang
- Institute for Biomedical Sciences of Pain, Tangdu Hospital, The Fourth Military Medical University, Xi'an, 710038, China.,Key Laboratory of Brain Stress and Behavior, People's Liberation Army, Xi'an, 710038, China
| | - Wei Sun
- Institute for Biomedical Sciences of Pain, Tangdu Hospital, The Fourth Military Medical University, Xi'an, 710038, China.,Key Laboratory of Brain Stress and Behavior, People's Liberation Army, Xi'an, 710038, China
| | - Tao Chen
- Center of Clinical Aerospace Medicine, The Fourth Military Medical University, Xi'an, 710032, China
| | - Dong-Yu Wei
- Center of Clinical Aerospace Medicine, The Fourth Military Medical University, Xi'an, 710032, China
| | - Yang Yu
- Institute for Biomedical Sciences of Pain, Tangdu Hospital, The Fourth Military Medical University, Xi'an, 710038, China.,Key Laboratory of Brain Stress and Behavior, People's Liberation Army, Xi'an, 710038, China
| | - Ting He
- Institute for Biomedical Sciences of Pain, Tangdu Hospital, The Fourth Military Medical University, Xi'an, 710038, China.,Key Laboratory of Brain Stress and Behavior, People's Liberation Army, Xi'an, 710038, China
| | - Wen-Jun Luo
- Institute for Biomedical Sciences of Pain, Tangdu Hospital, The Fourth Military Medical University, Xi'an, 710038, China.,Key Laboratory of Brain Stress and Behavior, People's Liberation Army, Xi'an, 710038, China
| | - Rui-Rui Wang
- Institute for Biomedical Sciences of Pain, Tangdu Hospital, The Fourth Military Medical University, Xi'an, 710038, China.,Key Laboratory of Brain Stress and Behavior, People's Liberation Army, Xi'an, 710038, China
| | - Zhou-Feng Chen
- Center for the Study of Itch, Washington University School of Medicine, St. Louis, MO, 63110, USA. .,Department of Anesthesiology, Washington University School of Medicine, St. Louis, MO, 63110, USA. .,Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, 63110, USA. .,Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO, 63110, USA.
| | - Jun Chen
- Institute for Biomedical Sciences of Pain, Tangdu Hospital, The Fourth Military Medical University, Xi'an, 710038, China. .,Key Laboratory of Brain Stress and Behavior, People's Liberation Army, Xi'an, 710038, China.
| |
Collapse
|
60
|
Abstract
Itch, in particular chronic forms, has been widely recognized as an important clinical problem, but much less is known about the mechanisms of itch in comparison with other sensory modalities such as pain. Recently, considerable progress has been made in dissecting the circuit mechanisms of itch at both the spinal and supraspinal levels. Major components of the spinal neural circuit underlying both chemical and mechanical itch have now been identified, along with the circuits relaying ascending transmission and the descending modulation of itch. In this review, we summarize the progress in elucidating the neural circuit mechanism of itch at spinal and supraspinal levels.
Collapse
Affiliation(s)
- Xiao-Jun Chen
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Center for Excellence in Brain Science & Intelligence Technology, Chinese Academy of Sciences, 320 Yue-Yang Road, 200031, Shanghai, China
- University of Chinese Academy of Sciences, 19A Yu-quan Road, 100049, Beijing, China
| | - Yan-Gang Sun
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Center for Excellence in Brain Science & Intelligence Technology, Chinese Academy of Sciences, 320 Yue-Yang Road, 200031, Shanghai, China.
- Shanghai Center for Brain Science and Brain-Inspired Intelligence Technology, 201210, Shanghai, China.
| |
Collapse
|
61
|
Meeuwis SH, van Middendorp H, van Laarhoven AIM, van Leijenhorst C, Pacheco-Lopez G, Lavrijsen APM, Veldhuijzen DS, Evers AWM. Placebo and nocebo effects for itch and itch-related immune outcomes: A systematic review of animal and human studies. Neurosci Biobehav Rev 2020; 113:325-337. [PMID: 32240668 DOI: 10.1016/j.neubiorev.2020.03.025] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Accepted: 03/24/2020] [Indexed: 12/19/2022]
Abstract
Placebo and nocebo effects can influence somatic symptoms such as pain. For itch and other dermatological symptoms these effects have been far less investigated. This review systematically integrates evidence from both animal (mainly rodents) and human trials on placebo and nocebo effects in itch, itch-related symptoms and conditions of the skin and mucous membranes, and related immune outcomes (e.g., histamine). Thirty-one animal studies, and fifty-five human studies (k = 21 healthy participants, k = 34 patients) were included. Overall, studies consistently show that placebo and nocebo effects can be induced by various methods (e.g., suggestions, conditioning and social cues), despite high heterogeneity across studies. Effects of suggestions were found consistently across subjective and behavioral parameters (e.g., itch and scratching in humans), whereas conditioning was likely to impact physiological parameters under certain conditions (e.g., conditioning of histamine levels in stressed rodents). Brain areas responsible for itch processing were associated with nocebo effects. Future research may investigate how variations in methods impact placebo and nocebo effects, and whether all symptoms and conditions can be influenced equally.
Collapse
Affiliation(s)
- Stefanie H Meeuwis
- Health, Medical and Neuropsychology Unit, Institute of Psychology, Faculty of Social and Behavioral Sciences, Leiden University, P.O. Box 9555, 2300RB, Leiden, the Netherlands; Leiden Institute for Brain and Cognition, P.O. Box 9600, 2300RC, Leiden University Medical Center, Leiden, the Netherlands.
| | - Henriët van Middendorp
- Health, Medical and Neuropsychology Unit, Institute of Psychology, Faculty of Social and Behavioral Sciences, Leiden University, P.O. Box 9555, 2300RB, Leiden, the Netherlands; Leiden Institute for Brain and Cognition, P.O. Box 9600, 2300RC, Leiden University Medical Center, Leiden, the Netherlands
| | - Antoinette I M van Laarhoven
- Health, Medical and Neuropsychology Unit, Institute of Psychology, Faculty of Social and Behavioral Sciences, Leiden University, P.O. Box 9555, 2300RB, Leiden, the Netherlands; Leiden Institute for Brain and Cognition, P.O. Box 9600, 2300RC, Leiden University Medical Center, Leiden, the Netherlands; Department of Psychiatry, Leiden University Medical Center, P.O. Box 9600, 2300RC, Leiden, the Netherlands
| | - Cora van Leijenhorst
- Health, Medical and Neuropsychology Unit, Institute of Psychology, Faculty of Social and Behavioral Sciences, Leiden University, P.O. Box 9555, 2300RB, Leiden, the Netherlands
| | - Gustavo Pacheco-Lopez
- Health, Medical and Neuropsychology Unit, Institute of Psychology, Faculty of Social and Behavioral Sciences, Leiden University, P.O. Box 9555, 2300RB, Leiden, the Netherlands; Metropolitan Autonomous University (UAM), Campus Lerma, Health Sciences Department, Lerma, 52005, Edo Mex, Mexico
| | - Adriana P M Lavrijsen
- Department of Dermatology, Leiden University Medical Center, P.O. Box 9600, 2300RC, Leiden, the Netherlands
| | - Dieuwke S Veldhuijzen
- Health, Medical and Neuropsychology Unit, Institute of Psychology, Faculty of Social and Behavioral Sciences, Leiden University, P.O. Box 9555, 2300RB, Leiden, the Netherlands; Leiden Institute for Brain and Cognition, P.O. Box 9600, 2300RC, Leiden University Medical Center, Leiden, the Netherlands
| | - Andrea W M Evers
- Health, Medical and Neuropsychology Unit, Institute of Psychology, Faculty of Social and Behavioral Sciences, Leiden University, P.O. Box 9555, 2300RB, Leiden, the Netherlands; Leiden Institute for Brain and Cognition, P.O. Box 9600, 2300RC, Leiden University Medical Center, Leiden, the Netherlands; Department of Psychiatry, Leiden University Medical Center, P.O. Box 9600, 2300RC, Leiden, the Netherlands
| |
Collapse
|
62
|
Barry DM, Liu XT, Liu B, Liu XY, Gao F, Zeng X, Liu J, Yang Q, Wilhelm S, Yin J, Tao A, Chen ZF. Exploration of sensory and spinal neurons expressing gastrin-releasing peptide in itch and pain related behaviors. Nat Commun 2020; 11:1397. [PMID: 32170060 PMCID: PMC7070094 DOI: 10.1038/s41467-020-15230-y] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Accepted: 02/27/2020] [Indexed: 12/12/2022] Open
Abstract
Gastrin-releasing peptide (GRP) functions as a neurotransmitter for non-histaminergic itch, but its site of action (sensory neurons vs spinal cord) remains controversial. To determine the role of GRP in sensory neurons, we generated a floxed Grp mouse line. We found that conditional knockout of Grp in sensory neurons results in attenuated non-histaminergic itch, without impairing histamine-induced itch. Using a Grp-Cre knock-in mouse line, we show that the upper epidermis of the skin is exclusively innervated by GRP fibers, whose activation via optogeneics and chemogenetics in the skin evokes itch- but not pain-related scratching or wiping behaviors. In contrast, intersectional genetic ablation of spinal Grp neurons does not affect itch nor pain transmission, demonstrating that spinal Grp neurons are dispensable for itch transmission. These data indicate that GRP is a neuropeptide in sensory neurons for non-histaminergic itch, and GRP sensory neurons are dedicated to itch transmission.
Collapse
Affiliation(s)
- Devin M Barry
- Center for the Study of Itch and Sensory Disorders, Washington University School of Medicine, St. Louis, MO, 63110, USA
- Department of Anesthesiology, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Xue-Ting Liu
- Center for the Study of Itch and Sensory Disorders, Washington University School of Medicine, St. Louis, MO, 63110, USA
- Department of Anesthesiology, Washington University School of Medicine, St. Louis, MO, 63110, USA
- The Second Affiliated Hospital, The State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology, Sino-French Hoffmann Institute, Center for Immunology, Inflammation, Immune-mediated disease, Guangzhou Medical University, 510260, Guangzhou, Guangdong, P.R. China
| | - Benlong Liu
- Center for the Study of Itch and Sensory Disorders, Washington University School of Medicine, St. Louis, MO, 63110, USA
- Department of Anesthesiology, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Xian-Yu Liu
- Center for the Study of Itch and Sensory Disorders, Washington University School of Medicine, St. Louis, MO, 63110, USA
- Department of Anesthesiology, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Fang Gao
- Center for the Study of Itch and Sensory Disorders, Washington University School of Medicine, St. Louis, MO, 63110, USA
- Department of Anesthesiology, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Xiansi Zeng
- Center for the Study of Itch and Sensory Disorders, Washington University School of Medicine, St. Louis, MO, 63110, USA
- Department of Anesthesiology, Washington University School of Medicine, St. Louis, MO, 63110, USA
- College of Life Sciences, Xinyang Normal University, 237 Nanhu Road, 464000, Xinyang, P. R. China
| | - Juan Liu
- Center for the Study of Itch and Sensory Disorders, Washington University School of Medicine, St. Louis, MO, 63110, USA
- Department of Anesthesiology, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Qianyi Yang
- Center for the Study of Itch and Sensory Disorders, Washington University School of Medicine, St. Louis, MO, 63110, USA
- Department of Anesthesiology, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Steven Wilhelm
- Center for the Study of Itch and Sensory Disorders, Washington University School of Medicine, St. Louis, MO, 63110, USA
- Department of Anesthesiology, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Jun Yin
- Center for the Study of Itch and Sensory Disorders, Washington University School of Medicine, St. Louis, MO, 63110, USA
- Department of Anesthesiology, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Ailin Tao
- Center for the Study of Itch and Sensory Disorders, Washington University School of Medicine, St. Louis, MO, 63110, USA
- The Second Affiliated Hospital, The State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology, Sino-French Hoffmann Institute, Center for Immunology, Inflammation, Immune-mediated disease, Guangzhou Medical University, 510260, Guangzhou, Guangdong, P.R. China
| | - Zhou-Feng Chen
- Center for the Study of Itch and Sensory Disorders, Washington University School of Medicine, St. Louis, MO, 63110, USA.
- Department of Anesthesiology, Washington University School of Medicine, St. Louis, MO, 63110, USA.
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, 63110, USA.
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO, 63110, USA.
| |
Collapse
|
63
|
The similar past pain experience evokes both observational contagious pain and consolation in stranger rat observers. Neurosci Lett 2020; 722:134840. [PMID: 32081568 DOI: 10.1016/j.neulet.2020.134840] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 02/08/2020] [Accepted: 02/16/2020] [Indexed: 02/08/2023]
Abstract
Laboratory rodents have been shown to have an ability to recognize the injury site and negative emotional state of their conspecifics in pain, resulting in empathic consoling behaviors and observational contagious pain (OCP). However, these empathic responses have been shown to be familiarity-dependent. In this report, we further explored whether the past pain experience could evoke empathic response in stranger observers. In our rodent model, two types of empathic response have been identified from naive cagemate observer (COnaive) during and after a priming dyadic social interaction (PDSI) with a cagemate demonstrator in pain (CDpain): the consolation and OCP. Consolation is represented by allolicking and allogrooming behaviors toward the CDpain, while the OCP is represented by a long-term mechanical pain hypersensitivity. The current results showed that: (1) neither the consolation nor OCP could be identified in the naive noncagemate observer (NCOnaive) during and after a PDSI with a noncagemate demonstrator in pain (NCDpain); (2) nor were the two types of empathic response seen in the NCO, who had just experienced acute pain (NCOpainexp), during and after a PDSI with a naive unfamiliar conspecific (NCDnaive). However, both the consolation and OCP were dramatically identified in the NCOpainexp during and after a PDSI with a NCD in pain (NCDpain). The current results demonstrated that the past pain experience can evoke both consolation and OCP in stranger rat observers when witnessing a conspecific in pain, implicating that the processing of empathy for pain can be modulated by past negative mood experience.
Collapse
|
64
|
Dong X, Dong X. Peripheral and Central Mechanisms of Itch. Neuron 2019; 98:482-494. [PMID: 29723501 DOI: 10.1016/j.neuron.2018.03.023] [Citation(s) in RCA: 253] [Impact Index Per Article: 42.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Revised: 03/12/2018] [Accepted: 03/15/2018] [Indexed: 12/15/2022]
Abstract
Itch is a unique sensory experience that is encoded by genetically distinguishable neurons both in the peripheral nervous system (PNS) and central nervous system (CNS) to elicit a characteristic behavioral response (scratching). Itch interacts with the other sensory modalities at multiple locations, from its initiation in a particular dermatome to its transmission to the brain where it is finally perceived. In this review, we summarize the current understanding of the molecular and neural mechanisms of itch by starting in the periphery, where itch is initiated, and discussing the circuits involved in itch processing in the CNS.
Collapse
Affiliation(s)
- Xintong Dong
- The Solomon H. Snyder Department of Neuroscience and the Center for Sensory Biology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Howard Hughes Medical Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| | - Xinzhong Dong
- The Solomon H. Snyder Department of Neuroscience and the Center for Sensory Biology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Howard Hughes Medical Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| |
Collapse
|
65
|
Sanders KM, Fast K, Yosipovitch G. Why we scratch: Function and dysfunction. Exp Dermatol 2019; 28:1482-1484. [DOI: 10.1111/exd.13977] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2019] [Revised: 05/17/2019] [Accepted: 05/21/2019] [Indexed: 01/20/2023]
Affiliation(s)
- Kristen M. Sanders
- Dr Phillip Frost Department of Dermatology and Cutaneous Surgery and Miami Itch Center, Miller School of Medicine University of Miami Miami Florida
| | - Katharine Fast
- Department of Allergy and Immunology California Pacific Medical Center San Francisco California
| | - Gil Yosipovitch
- Dr Phillip Frost Department of Dermatology and Cutaneous Surgery and Miami Itch Center, Miller School of Medicine University of Miami Miami Florida
| |
Collapse
|
66
|
Pavlenko D, Akiyama T. Why does stress aggravate itch? A possible role of the amygdala. Exp Dermatol 2019; 28:1439-1441. [PMID: 30991457 DOI: 10.1111/exd.13941] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2019] [Accepted: 04/10/2019] [Indexed: 11/30/2022]
Abstract
Stress is the exacerbating factor of itch across patients with chronic itch due to different origins. However, the precise mechanisms behind stress-induced exacerbation of itch remain unknown. Chronic stress induces hyperexcitability of the amygdala, the centre of emotional processing. Recent findings on the itch neuronal pathways support a pivotal role of the amygdala for itch processing. We hypothesized that itch is enhanced by stress through hyperexcitation of the amygdala. Modulation of amygdala activity, therefore, may have therapeutic potential in the treatment of chronic itch.
Collapse
Affiliation(s)
- Darya Pavlenko
- Dr. Phillip Frost Department of Dermatology and Cutaneous Surgery, Miami Itch Center, University of Miami, Miami, Florida
| | - Tasuku Akiyama
- Dr. Phillip Frost Department of Dermatology and Cutaneous Surgery, Miami Itch Center, University of Miami, Miami, Florida
| |
Collapse
|
67
|
Du L, Hu X, Yang W, Yasheng H, Liu S, Zhang W, Zhou Y, Cui W, Zhu J, Qiao Z, Maoying Q, Chu Y, Zhou H, Wang Y, Mi W. Spinal IL-33/ST2 signaling mediates chronic itch in mice through the astrocytic JAK2-STAT3 cascade. Glia 2019; 67:1680-1693. [PMID: 31087583 DOI: 10.1002/glia.23639] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2018] [Revised: 03/29/2019] [Accepted: 04/23/2019] [Indexed: 12/22/2022]
Abstract
Interleukin-33 (IL-33) and its receptor ST2 contribute to spinal glial activation and chronic pain. A recent study showed that peripheral IL-33 plays a pivotal role in the pathogenesis of chronic itch induced by poison ivy. However, how IL-33/ST2 signaling in the spinal cord potentially mediates chronic itch remains elusive. Here, we determined that St2-/- substantially reduced scratching behaviors in 2,4-dinitrofluorobenzene (DNFB)-induced allergic contact dermatitis (ACD) as well as acetone and diethylether followed by water-induced dry skin in mice. Intrathecal administration of the neutralizing anti-ST2 or anti-IL-33 antibody remarkably decreased the scratching response in DNFB-induced ACD mice. Expression of spinal IL-33 and ST2 significantly increased in ACD mice, as evidenced by increased mRNA and protein levels. Immunofluorescence and in situ hybridization demonstrated that increased expression of spinal IL-33 was predominant in oligodendrocytes and astrocytes, whereas ST2 was mainly expressed in astrocytes. Further studies showed that in ACD mice, the activation of astrocytes and increased phosphorylation of signal transducer and activator of transcription 3 (STAT3) were markedly attenuated by St2-/- . Intrathecal injection of Janus Kinase 2 Inhibitor AG490 significantly alleviated scratching behaviors in ACD mice. rIL-33 pretreatment exacerbated gastrin-releasing peptide (GRP)-evoked scratching behaviors. This increased gastrin-releasing peptide receptor (GRPR) expression was abolished by St2-/- . Tnf-α upregulation was suppressed by St2-/- . Our results indicate that the spinal IL-33/ST2 signaling pathway contributes to chronic itch via astrocytic JAK2-STAT3 cascade activation, promoting TNF-α release to regulate the GRP/GRPR signaling-related itch response. Thus, these findings provide a potential therapeutic option for treating chronic pruritus.
Collapse
Affiliation(s)
- Lixia Du
- Department of Integrative Medicine and Neurobiology, Institutes of Integrative Medicine, School of Basic Medical Sciences, Institutes of Brain Science, Brain Science Collaborative Innovation Center, State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai, People's Republic of China
| | - Xueming Hu
- Department of Integrative Medicine and Neurobiology, Institutes of Integrative Medicine, School of Basic Medical Sciences, Institutes of Brain Science, Brain Science Collaborative Innovation Center, State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai, People's Republic of China
| | - Wei Yang
- Department of Integrative Medicine and Neurobiology, Institutes of Integrative Medicine, School of Basic Medical Sciences, Institutes of Brain Science, Brain Science Collaborative Innovation Center, State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai, People's Republic of China
| | - Hanikezi Yasheng
- Department of Integrative Medicine and Neurobiology, Institutes of Integrative Medicine, School of Basic Medical Sciences, Institutes of Brain Science, Brain Science Collaborative Innovation Center, State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai, People's Republic of China
| | - Shenbin Liu
- Department of Integrative Medicine and Neurobiology, Institutes of Integrative Medicine, School of Basic Medical Sciences, Institutes of Brain Science, Brain Science Collaborative Innovation Center, State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai, People's Republic of China
| | - Wenwen Zhang
- Department of Integrative Medicine and Neurobiology, Institutes of Integrative Medicine, School of Basic Medical Sciences, Institutes of Brain Science, Brain Science Collaborative Innovation Center, State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai, People's Republic of China
| | - Yang Zhou
- Department of Integrative Medicine and Neurobiology, Institutes of Integrative Medicine, School of Basic Medical Sciences, Institutes of Brain Science, Brain Science Collaborative Innovation Center, State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai, People's Republic of China
| | - Wenqiang Cui
- Department of Integrative Medicine and Neurobiology, Institutes of Integrative Medicine, School of Basic Medical Sciences, Institutes of Brain Science, Brain Science Collaborative Innovation Center, State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai, People's Republic of China
| | - Jianyu Zhu
- Department of Integrative Medicine and Neurobiology, Institutes of Integrative Medicine, School of Basic Medical Sciences, Institutes of Brain Science, Brain Science Collaborative Innovation Center, State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai, People's Republic of China
| | - Zheng Qiao
- Department of Integrative Medicine and Neurobiology, Institutes of Integrative Medicine, School of Basic Medical Sciences, Institutes of Brain Science, Brain Science Collaborative Innovation Center, State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai, People's Republic of China
| | - Qiliang Maoying
- Department of Integrative Medicine and Neurobiology, Institutes of Integrative Medicine, School of Basic Medical Sciences, Institutes of Brain Science, Brain Science Collaborative Innovation Center, State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai, People's Republic of China
| | - Yuxia Chu
- Department of Integrative Medicine and Neurobiology, Institutes of Integrative Medicine, School of Basic Medical Sciences, Institutes of Brain Science, Brain Science Collaborative Innovation Center, State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai, People's Republic of China
| | - Hong Zhou
- Department of Immunology, Nanjing Medical University, Nanjing, People's Republic of China
| | - Yanqing Wang
- Department of Integrative Medicine and Neurobiology, Institutes of Integrative Medicine, School of Basic Medical Sciences, Institutes of Brain Science, Brain Science Collaborative Innovation Center, State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai, People's Republic of China
| | - Wenli Mi
- Department of Integrative Medicine and Neurobiology, Institutes of Integrative Medicine, School of Basic Medical Sciences, Institutes of Brain Science, Brain Science Collaborative Innovation Center, State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai, People's Republic of China
| |
Collapse
|
68
|
Lu JS, Chen QY, Zhou SB, Wu FY, Liu RH, Zhou ZX, Zhang H, Zhuo M. Contagious itch can be induced in humans but not in rodents. Mol Brain 2019; 12:38. [PMID: 31014383 PMCID: PMC6480616 DOI: 10.1186/s13041-019-0455-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Accepted: 03/27/2019] [Indexed: 11/29/2022] Open
Abstract
Itch contagion has been reported in human when people watch someone scratching in a video. The basic mechanism of contagious itch induced by scratching video is still being investigated. A recent study has reported that adult mice showed itch like responses after watching itch-like video or mice showing itching responses. However, such contagious itch behaviors failed to be reproduced by another study by repeating the same experiments of viewing itching mice. It is unclear if contagious itch induced by seeing itching video may be reproducible. In the present study, we used a four-iPad paradigm to repeat these experiments, and found that mice showed no significant itch-like responses after watching itching video of mice. To test if mice actually can see the video, we placed mirrors at the same location. Interestingly, mice showed altered activities in the open field with the mirrors. Finally, in healthy subjects, we found that viewing human itch video did cause itch sensation or responses. Our results indicate that the mouse model may not appropriate for studying contagious itch in humans.
Collapse
Affiliation(s)
- Jing-Shan Lu
- Center for Neuron and Disease, Frontier Institutes of Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Qi-Yu Chen
- Center for Neuron and Disease, Frontier Institutes of Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Si-Bo Zhou
- Center for Neuron and Disease, Frontier Institutes of Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Feng-Yi Wu
- Center for Neuron and Disease, Frontier Institutes of Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Ren-Hao Liu
- Center for Neuron and Disease, Frontier Institutes of Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Zhao-Xiang Zhou
- Center for Neuron and Disease, Frontier Institutes of Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Hua Zhang
- Center for Neuron and Disease, Frontier Institutes of Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Min Zhuo
- Center for Neuron and Disease, Frontier Institutes of Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China. .,Department of Physiology, Faculty of Medicine, University of Toronto, Medical Science Building, Room #3342, 1 King's College Circle, Toronto, Ontario, M5S 1A8, Canada.
| |
Collapse
|
69
|
Rinaldi G. The Itch-Scratch Cycle: A Review of the Mechanisms. Dermatol Pract Concept 2019; 9:90-97. [PMID: 31106010 PMCID: PMC6502296 DOI: 10.5826/dpc.0902a03] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/28/2019] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND Despite being one of the most common presenting dermatological symptoms, itching continues to perplex health care professionals because it is notoriously difficult to control. OBJECTIVE This review gathers evidence to answer the 2-part question, "Why do we itch and scratch?" by exploring the history of itchy disease, the neurobiology of itch, and the 4 different clinical origins of itch: pruritogenic, neurological, neuropathic, and psychological. RESULTS The automated scratching reflex and its biological and psychological reasons for existence are complicated and poorly understood. Currently, there are a myriad of treatments available for individuals suffering from this condition; however, many remain symptomatic. CONCLUSIONS The itch-scratch cycle is a complex pain-like sensation with a reflex-like response. In the future, continued exploration into the mechanisms behind itch and scratch may open the doors for new therapeutic interventions.
Collapse
|
70
|
Off the Clock: From Circadian Disruption to Metabolic Disease. Int J Mol Sci 2019; 20:ijms20071597. [PMID: 30935034 PMCID: PMC6480015 DOI: 10.3390/ijms20071597] [Citation(s) in RCA: 90] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 03/20/2019] [Accepted: 03/27/2019] [Indexed: 12/18/2022] Open
Abstract
Circadian timekeeping allows appropriate temporal regulation of an organism’s internal metabolism to anticipate and respond to recurrent daily changes in the environment. Evidence from animal genetic models and from humans under circadian misalignment (such as shift work or jet lag) shows that disruption of circadian rhythms contributes to the development of obesity and metabolic disease. Inappropriate timing of food intake and high-fat feeding also lead to disruptions of the temporal coordination of metabolism and physiology and subsequently promote its pathogenesis. This review illustrates the impact of genetically or environmentally induced molecular clock disruption (at the level of the brain and peripheral tissues) and the interplay between the circadian system and metabolic processes. Here, we discuss some mechanisms responsible for diet-induced circadian desynchrony and consider the impact of nutritional cues in inter-organ communication, with a particular focus on the communication between peripheral organs and brain. Finally, we discuss the relay of environmental information by signal-dependent transcription factors to adjust the timing of gene oscillations. Collectively, a better knowledge of the mechanisms by which the circadian clock function can be compromised will lead to novel preventive and therapeutic strategies for obesity and other metabolic disorders arising from circadian desynchrony.
Collapse
|
71
|
Buijs RM, Guzmán Ruiz MA, Méndez Hernández R, Rodríguez Cortés B. The suprachiasmatic nucleus; a responsive clock regulating homeostasis by daily changing the setpoints of physiological parameters. Auton Neurosci 2019; 218:43-50. [PMID: 30890347 DOI: 10.1016/j.autneu.2019.02.001] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Revised: 02/05/2019] [Accepted: 02/06/2019] [Indexed: 12/13/2022]
Abstract
The suprachiasmatic nucleus (SCN) is responsible for determining circadian variations in physiological setpoints. The SCN achieves such control through projections to different target structures within and outside the hypothalamus. Thus the SCN prepares the physiology of the body every 24 h via hormones and autonomic nervous system (ANS), to coming changes in behavior. Resulting rhythms in hormones and ANS activity transmit a precise message to selective organs, adapting their sensitivity to coming hormones, metabolites or other essentials. Thus the SCN as autonomous clock gives rhythm to physiological processes. However when the body is challenged by infections, low or high temperature, food shortage or excess: physiological setpoints need to be changed. For example, under fasting conditions, setpoints for body temperature and glucose levels are lowered at the beginning of the sleep (inactive) phase. However, starting the active phase, a normal increase in glucose and temperature levels take place to support activities associated with the acquisition of food. Thus, the SCN adjusts physiological setpoints in agreement with time of the day and according to challenges faced by the body. The SCN is enabled to do this by receiving extensive input from brain areas involved in sensing the condition of the body. Therefore, when the body receives stimuli contradicting normal physiology, such as eating or activity during the inactive period, this information reaches the SCN, adapting its output to correct this disbalance. As consequence frequent violations of the SCN message, such as by shift work or night eating, will result in development of disease.
Collapse
Affiliation(s)
- Ruud M Buijs
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad Universitaria, PC 04510 Mexico D.F., Mexico.
| | - Mara A Guzmán Ruiz
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad Universitaria, PC 04510 Mexico D.F., Mexico
| | - Rebeca Méndez Hernández
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad Universitaria, PC 04510 Mexico D.F., Mexico
| | - Betty Rodríguez Cortés
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad Universitaria, PC 04510 Mexico D.F., Mexico
| |
Collapse
|
72
|
Gao ZR, Chen WZ, Liu MZ, Chen XJ, Wan L, Zhang XY, Yuan L, Lin JK, Wang M, Zhou L, Xu XH, Sun YG. Tac1-Expressing Neurons in the Periaqueductal Gray Facilitate the Itch-Scratching Cycle via Descending Regulation. Neuron 2019; 101:45-59.e9. [PMID: 30554781 DOI: 10.1016/j.neuron.2018.11.010] [Citation(s) in RCA: 94] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Revised: 09/07/2018] [Accepted: 11/05/2018] [Indexed: 02/02/2023]
|
73
|
Atsumi T, Ide M, Wada M. Spontaneous Discriminative Response to the Biological Motion Displays Involving a Walking Conspecific in Mice. Front Behav Neurosci 2018; 12:263. [PMID: 30459572 PMCID: PMC6232871 DOI: 10.3389/fnbeh.2018.00263] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Accepted: 10/17/2018] [Indexed: 11/13/2022] Open
Abstract
Recent translational studies using mice have contributed toward elucidating the neural, genetic, and molecular basis of social communication deficits. Nevertheless, many components of visual processes underlying mice sociality remain unresolved, including perception of bodily-movement. Here, we aimed to reveal the visual sensitivity of mice to information on bodily motion using biological motion displays depicted by simple geometric dots. We introduced biological motions extracted from walking mice vs. corresponding meaningless scrambled motions, in which the spatial configurations of each path of dots were shuffled. The apparatus was a three-chambered box with an opening between the chambers, and each side chamber had a monitor. We measured the exploration time of mice within the apparatus during the test, with two types of displays being presented. Mice spent more time in the chamber with the scrambled motion displays, indicating that animals spontaneously discriminated stimuli, with the scrambled motion being relatively novel. Furthermore, mice might have detected socially familiar cues from the biological motion displays. Subsequent testing revealed that additional mice showed no bias to the static versions of the stimuli used in the Movie test. Thus, we confirmed that mice modulated their behavior by focusing on the motion information of the stimuli, rather than the spatial configurations of each dot. Our findings provide a new perspective on how visual processing contributes to underlying social behavior in mice, potentially facilitating future translational studies of social deficits with respect to genetic and neural bases.
Collapse
Affiliation(s)
- Takeshi Atsumi
- Department of Rehabilitation for Brain Functions, Research Institute of National Rehabilitation Center for Persons with Disabilities, Saitama, Japan
- Japan Society for the Promotion of Science, Tokyo, Japan
| | - Masakazu Ide
- Department of Rehabilitation for Brain Functions, Research Institute of National Rehabilitation Center for Persons with Disabilities, Saitama, Japan
| | - Makoto Wada
- Department of Rehabilitation for Brain Functions, Research Institute of National Rehabilitation Center for Persons with Disabilities, Saitama, Japan
| |
Collapse
|
74
|
Li CL, Yu Y, He T, Wang RR, Geng KW, Du R, Luo WJ, Wei N, Wang XL, Wang Y, Yang Y, Yu YQ, Chen J. Validating Rat Model of Empathy for Pain: Effects of Pain Expressions in Social Partners. Front Behav Neurosci 2018; 12:242. [PMID: 30386220 PMCID: PMC6199527 DOI: 10.3389/fnbeh.2018.00242] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Accepted: 09/26/2018] [Indexed: 01/09/2023] Open
Abstract
Pain can be socially transferred between familiar rats due to empathic responses. To validate rat model of empathy for pain, effects of pain expressions in a cagemate demonstrator (CD) in pain on empathic pain responses in a naïve cagemate observer (CO) after 30 min priming dyadic social interactions (PDSI) were evaluated. The CD rats were prepared with four pain models: bee venom (BV), formalin, complete Freund's adjuvant (CFA), and spared nerve injury (SNI). Both BV and formalin tests are characterized by displayable and eye-identifiable spontaneous pain-related behaviors (SPRB) immediately after treatment, while CFA and SNI models are characterized by delayed occurrence of evoked pain hypersensitivity but with less eye-identifiable SPRB. After 30 min PDSI with a CD immediately after BV and formalin, respectively, the empathic mechanical pain hypersensitivity (EMPH) could be identified at both hind paws in CO rats. The BV—or formalin-induced EMPH in CO rats lasted for 4–5 h until full recovery. However, EMPH failed to develop in CO after socially interacting with a CD immediately after CFA, or 2 h after BV when SPRB completely disappeared. The CO's EMPH was partially relieved when socially interacting with an analgecized CD whose SPRB had been significantly suppressed. Moreover, repeated exposures to a CD in pain could enhance EMPH in CO. Finally, social transfer of pain hypersensitivity was also identified in CO who was being co-housed in pairs with a conspecific treated with CFA or SNI. The results suggest that development of EMPH in CO rats would be determined not only by extent of familiarity but also by visually identifiable pain expressions in the social partners during short period of PDSI. However, the visually unidentifiable pain can also be transferred to naïve cagemate when being co-housed in pairs with a distressed conspecific. In summary, the vicariously social contagion of pain between familiar rats is dependent upon not only expressions of pain in social partners but also the time that dyads spent in social communications. The rat model of empathy for pain is a highly stable, reproducible and valid model for studying the neural mechanisms of empathy in lower animals.
Collapse
Affiliation(s)
- Chun-Li Li
- Institute for Biomedical Sciences of Pain, Tangdu Hospital, The Fourth Military Medical University, Xi'an, China.,Key Laboratory of Brain Stress and Behavior, PLA, Xi'an, China
| | - Yang Yu
- Institute for Biomedical Sciences of Pain, Tangdu Hospital, The Fourth Military Medical University, Xi'an, China.,Key Laboratory of Brain Stress and Behavior, PLA, Xi'an, China
| | - Ting He
- Institute for Biomedical Sciences of Pain, Tangdu Hospital, The Fourth Military Medical University, Xi'an, China.,Key Laboratory of Brain Stress and Behavior, PLA, Xi'an, China
| | - Rui-Rui Wang
- Institute for Biomedical Sciences of Pain, Tangdu Hospital, The Fourth Military Medical University, Xi'an, China.,Key Laboratory of Brain Stress and Behavior, PLA, Xi'an, China
| | - Kai-Wen Geng
- Institute for Biomedical Sciences of Pain, Tangdu Hospital, The Fourth Military Medical University, Xi'an, China
| | - Rui Du
- Institute for Biomedical Sciences of Pain, Tangdu Hospital, The Fourth Military Medical University, Xi'an, China
| | - Wen-Jun Luo
- Institute for Biomedical Sciences of Pain, Tangdu Hospital, The Fourth Military Medical University, Xi'an, China
| | - Na Wei
- Institute for Biomedical Sciences of Pain, Tangdu Hospital, The Fourth Military Medical University, Xi'an, China.,Key Laboratory of Brain Stress and Behavior, PLA, Xi'an, China
| | - Xiao-Liang Wang
- Institute for Biomedical Sciences of Pain, Tangdu Hospital, The Fourth Military Medical University, Xi'an, China.,Key Laboratory of Brain Stress and Behavior, PLA, Xi'an, China
| | - Yang Wang
- Institute for Biomedical Sciences of Pain, Tangdu Hospital, The Fourth Military Medical University, Xi'an, China.,Key Laboratory of Brain Stress and Behavior, PLA, Xi'an, China
| | - Yan Yang
- Institute for Biomedical Sciences of Pain, Tangdu Hospital, The Fourth Military Medical University, Xi'an, China.,Key Laboratory of Brain Stress and Behavior, PLA, Xi'an, China
| | - Yao-Qing Yu
- Institute for Biomedical Sciences of Pain, Tangdu Hospital, The Fourth Military Medical University, Xi'an, China.,Key Laboratory of Brain Stress and Behavior, PLA, Xi'an, China
| | - Jun Chen
- Institute for Biomedical Sciences of Pain, Tangdu Hospital, The Fourth Military Medical University, Xi'an, China.,Key Laboratory of Brain Stress and Behavior, PLA, Xi'an, China
| |
Collapse
|
75
|
Ehling S, Butler A, Thi S, Ghashghaei HT, Bäumer W. To scratch an itch: Establishing a mouse model to determine active brain areas involved in acute histaminergic itch. IBRO Rep 2018; 5:67-73. [PMID: 30364768 PMCID: PMC6197726 DOI: 10.1016/j.ibror.2018.10.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Accepted: 10/13/2018] [Indexed: 12/30/2022] Open
Abstract
The specific histamine H4 receptor agonist ST-1006 induces acute itch in mice. Histaminergic itch increases neuronal activity in the medial habenula. Selective H4R activation in the skin increases neuronal activity in the medial habenula.
Background Strategies to efficiently control itch require a deep understanding of the underlying mechanisms. Several areas in the brain involved in itch and scratching responses have been postulated, but the central mechanisms that drive pruritic responses are still unknown. Histamine is recognized as a major mediator of itch in humans, and has been the most frequently used stimulus as an experimental pruritogen for brain imaging of itch. Objective Histaminergic itch via histamine and the selective histamine H4 receptor (H4R) agonist, ST-1006, recruit brain nuclei through c-fos activation and activate specific areas in the brain. Methods An acute itch model was established in c-fos-EGFP transgenic mice using ST-1006 and histamine. Coronal brain sections were stained for c-fos immunoreactivity and the forebrain was mapped for density of c-fos + nuclei. Results Histamine and ST-1006 significantly increased scratching response in c-fos-EGFP mice compared to vehicle controls. Mapping c-fos immunostained brain sections revealed neuronal activity in the cortex, striatum, hypothalamus, thalamus, amygdala, and the midbrain. Conclusions Histaminergic itch and selective H4R activation significantly increased the density of c-fos + nuclei in the medial habenula (MHb). Thus, the MHb may be a new target to investigate and subsequently develop novel mechanism-based strategies to treat itch and possibly provide a locus for pharmacological control of pruritus.
Collapse
Affiliation(s)
- Sarah Ehling
- Department of Molecular Biomedical Sciences, College of Veterinary Medicine, North Carolina State University, NC, USA.,Institute of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Freie Universität Berlin, Berlin, Germany
| | - Ashley Butler
- Department of Molecular Biomedical Sciences, College of Veterinary Medicine, North Carolina State University, NC, USA
| | - Stephanie Thi
- Department of Molecular Biomedical Sciences, College of Veterinary Medicine, North Carolina State University, NC, USA
| | - H Troy Ghashghaei
- Department of Molecular Biomedical Sciences, College of Veterinary Medicine, North Carolina State University, NC, USA
| | - Wolfgang Bäumer
- Department of Molecular Biomedical Sciences, College of Veterinary Medicine, North Carolina State University, NC, USA.,Institute of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Freie Universität Berlin, Berlin, Germany
| |
Collapse
|
76
|
Collins B, Brown SA. Beyond the molecular clock. CURRENT OPINION IN PHYSIOLOGY 2018. [DOI: 10.1016/j.cophys.2018.10.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
77
|
Dynamics and Functional Role of Dopaminergic Neurons in the Ventral Tegmental Area during Itch Processing. J Neurosci 2018; 38:9856-9869. [PMID: 30266741 DOI: 10.1523/jneurosci.1483-18.2018] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Revised: 09/10/2018] [Accepted: 09/14/2018] [Indexed: 11/21/2022] Open
Abstract
Itchiness triggers a strong urge to engage in scratching behavior, which could lead to severe skin or tissue damage in patients with chronic itch. This process is dynamically modulated. However, the neural mechanisms underlying itch modulation remain largely unknown. Here, we report that dopaminergic (DA) neurons in the ventral tegmental area (VTA) play a critical role in modulating itch-induced scratching behavior. We found that the activity of VTA DA neurons was increased during pruritogen-induced scratching behavior in freely moving male mice. Consistently, individual VTA DA neurons mainly exhibited elevated neural activity during itch-induced scratching behavior as demonstrated by in vivo extracellular recording. In behavioral experiments, the transient suppression of VTA DA neurons with the optogenetic approach shortened the pruritogen-induced scratching train. Furthermore, the DA projection from the VTA to the lateral shell of the nucleus accumbens exhibited strong activation as measured with fiber photometry during itch-elicited scratching behavior. These results revealed the dynamic activity of VTA DA neurons during itch processing and demonstrated the modulatory role of the DA system in itch-induced scratching behavior.SIGNIFICANCE STATEMENT Itchiness is an unpleasant sensation that evokes a scratching response for relief. However, the neural mechanism underlying the modulation of itch-evoked scratching in the brain remains elusive. Here, by combining fiber photometry, extracellular recording, and optogenetic manipulation, we show that the dopaminergic neurons in the ventral tegmental area play a modulatory role in itch-evoked scratching behavior. These results reveal a potential target for suppressing excessive scratching responses in patients with chronic itch.
Collapse
|
78
|
Stinchcombe AR, Mouland JW, Wong KY, Lucas RJ, Forger DB. Multiplexing Visual Signals in the Suprachiasmatic Nuclei. Cell Rep 2018; 21:1418-1425. [PMID: 29117548 DOI: 10.1016/j.celrep.2017.10.045] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2016] [Revised: 06/24/2017] [Accepted: 10/05/2017] [Indexed: 12/23/2022] Open
Abstract
The suprachiasmatic nuclei (SCN), the site of the mammalian circadian (daily) pacemaker, contains thousands of interconnected neurons, some of which receive direct retinal input. Here, we study the fast (<1 s) responses of SCN neurons to visual stimuli with a large-scale mathematical model tracking the ionic currents and voltage of all SCN neurons. We reconstruct the SCN network connectivity and reject 99.99% of theoretically possible SCN networks by requiring that the model reproduces experimentally determined receptive fields of SCN neurons. The model shows how the SCN neuronal network can enhance circadian entrainment by sensitizing a population of neurons in the ventral SCN to irradiance. This SCN network also increases the spatial acuity of neurons and increases the accuracy of a simulated subconscious spatial visual task. We hypothesize that much of the fast electrical activity within the SCN is related to the processing of spatial information.
Collapse
Affiliation(s)
- Adam R Stinchcombe
- Department of Mathematics, University of Michigan, 2074 East Hall, 530 Church Street, Ann Arbor, MI 48109-1043, USA
| | - Joshua W Mouland
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PT, UK
| | - Kwoon Y Wong
- Department of Ophthalmology and Visual Sciences, University of Michigan, Ann Arbor, MI 48105, USA; Department of Molecular, Cellular & Developmental Biology, University of Michigan, Ann Arbor, MI 48105, USA
| | - Robert J Lucas
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PT, UK
| | - Daniel B Forger
- Department of Mathematics, University of Michigan, 2074 East Hall, 530 Church Street, Ann Arbor, MI 48109-1043, USA; Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
79
|
The vicious cycle of itch and anxiety. Neurosci Biobehav Rev 2018; 87:17-26. [PMID: 29374516 DOI: 10.1016/j.neubiorev.2018.01.009] [Citation(s) in RCA: 101] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Revised: 12/28/2017] [Accepted: 01/21/2018] [Indexed: 12/21/2022]
Abstract
Chronic itch is associated with increased stress, anxiety, and other mood disorders. In turn, stress and anxiety exacerbate itch, leading to a vicious cycle that affects patient behavior (scratching) and worsens disease prognosis and quality of life. This cycle persists across chronic itch conditions of different etiologies and even to some extent in healthy individuals, suggesting that the final common pathway for itch processing (the central nervous system) plays a major role in the relationship between itch and anxiety. Pharmacological and nonpharmacological treatments that reduce anxiety have shown promising anti-itch effects. Further research is needed to establish specific central mechanisms of the itch-anxiety cycle and provide new targets for treatment.
Collapse
|
80
|
Wang Y, Fang JL, Cui B, Liu J, Song P, Lang C, Bao Y, Sun R, Xu C, Ding X, Yan Z, Yan Y, Kong Q, Kong J. The functional and structural alterations of the striatum in chronic spontaneous urticaria. Sci Rep 2018; 8:1725. [PMID: 29379058 PMCID: PMC5789061 DOI: 10.1038/s41598-018-19962-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Accepted: 01/11/2018] [Indexed: 12/16/2022] Open
Abstract
The brain has long been known to be the regulation center of itch, but the neuropathology of chronic itch, such as chronic spontaneous urticaria (CSU), remains unclear. Thus, we aimed to explore the brain areas involved in the pathophysiology of CSU in hopes that our results may provide valuable insights into the treatment of chronic itch conditions. 40 CSU patients and 40 healthy controls (HCs) were recruited. Urticaria activity scores 7 (UAS7) were collected to evaluate patient’s clinical symptoms. Amplitude of low frequency fluctuations (ALFF), voxel-based morphometry (VBM), and seed-based resting-state functional connectivity (rs-FC) analysis were used to assess brain activity and related plasticity. Compared with HCs, CSU patients exhibited 1) higher ALFF values in the right ventral striatum / putamen, which were positively associated with clinical symptoms as measured by UAS7; 2) gray matter volume (GMV) increase in the right ventral striatum and putamen; and 3) decreased rs-FC between the right ventral striatum and the right occipital cortex and between the right putamen and the left precentral gyrus. Using multiple-modality brain imaging tools, we demonstrated the dysfunction of the striatum in CSU. Our results may provide valuable insights into the neuropathology and development of chronic itch.
Collapse
Affiliation(s)
- Yuming Wang
- Department of Dermatology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China. .,Department of Psychiatry, Massachusetts General Hospital/Harvard Medical School, Charlestown, MA 02129, USA.
| | - Ji-Liang Fang
- Department of Radiology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China
| | - Bingnan Cui
- Department of Dermatology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China
| | - Jiao Liu
- Department of Psychiatry, Massachusetts General Hospital/Harvard Medical School, Charlestown, MA 02129, USA.,National-Local Joint Engineering Research Center of Rehabilitation Medicine Technology, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, 350122, China
| | - Ping Song
- Department of Dermatology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China
| | - Courtney Lang
- Department of Psychiatry, Massachusetts General Hospital/Harvard Medical School, Charlestown, MA 02129, USA
| | - Yan Bao
- Department of Radiology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China
| | - Ruirui Sun
- Department of Psychiatry, Massachusetts General Hospital/Harvard Medical School, Charlestown, MA 02129, USA
| | - Chenchen Xu
- Department of Dermatology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China
| | - Xu Ding
- Department of Dermatology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China
| | - Zhifang Yan
- Department of Dermatology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China
| | - Yuhe Yan
- Department of Dermatology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China
| | - Qian Kong
- Department of Dermatology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China
| | - Jian Kong
- Department of Psychiatry, Massachusetts General Hospital/Harvard Medical School, Charlestown, MA 02129, USA.
| |
Collapse
|
81
|
The interhemispheric CA1 circuit governs rapid generalisation but not fear memory. Nat Commun 2017; 8:2190. [PMID: 29259187 PMCID: PMC5736595 DOI: 10.1038/s41467-017-02315-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Accepted: 11/20/2017] [Indexed: 12/30/2022] Open
Abstract
Encoding specificity theory predicts most effective recall by the original conditions at encoding, while generalization endows recall flexibly under circumstances which deviate from the originals. The CA1 regions have been implicated in memory and generalization but whether and which locally separated mechanisms are involved is not clear. We report here that fear memory is quickly formed, but generalization develops gradually over 24 h. Generalization but not fear memory is impaired by inhibiting ipsilateral (ips) or contralateral (con) CA1, and by optogenetic silencing of the ipsCA1 projections onto conCA1. By contrast, in vivo fEPSP recordings reveal that ipsCA1–conCA1 synaptic efficacy is increased with delay over 24 h when generalization is formed but it is unchanged if generalization is disrupted. Direct excitation of ipsCA1–conCA1 synapses using chemogenetic hM3Dq facilitates generalization formation. Thus, rapid generalization is an active process dependent on bilateral CA1 regions, and encoded by gradual synaptic learning in ipsCA1–conCA1 circuit. Previous work has documented a slow form of memory generalization although a rapid one is demanded. Here the authors elucidate the role of the interhemispheric CA1-CA1 projection in a form of rapid generalization of contextual fear memory via gradual potentiation of these synapses over 24 h.
Collapse
|
82
|
Petit A. [What's new in clinical dermatology?]. Ann Dermatol Venereol 2017; 144 Suppl 4:IVS1-IVS9. [PMID: 29249246 DOI: 10.1016/s0151-9638(17)31059-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
In addition to continuous medical education, medical journals offer to dermatologists a huge variety of news that differ by their content, validity, originality and clinical relevance. I collected here various articles relative to clinical dermatology that have been published between September, 2016 and September, 2017. These papers have been chosen in the aim of reflecting such diversity. I just excluded, as far as possible, articles dealing with other issues that the reader will find further in this booklet (such as research, pediatric, instrumental, oncologic or therapeutic dermatology, or dermatology and internal medicine). Space restriction required to skip some commentaries while keeping the references to the selected papers, which the reader will be able to read carefully in its original form.
Collapse
Affiliation(s)
- A Petit
- Service de dermatologie, AP-HP hôpital Saint-Louis, Paris, France.
| |
Collapse
|
83
|
Wan L, Jin H, Liu XY, Jeffry J, Barry DM, Shen KF, Peng JH, Liu XT, Jin JH, Sun Y, Kim R, Meng QT, Mo P, Yin J, Tao A, Bardoni R, Chen ZF. Distinct roles of NMB and GRP in itch transmission. Sci Rep 2017; 7:15466. [PMID: 29133874 PMCID: PMC5684337 DOI: 10.1038/s41598-017-15756-0] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Accepted: 11/01/2017] [Indexed: 01/12/2023] Open
Abstract
A key question in our understanding of itch coding mechanisms is whether itch is relayed by dedicated molecular and neuronal pathways. Previous studies suggested that gastrin-releasing peptide (GRP) is an itch-specific neurotransmitter. Neuromedin B (NMB) is a mammalian member of the bombesin family of peptides closely related to GRP, but its role in itch is unclear. Here, we show that itch deficits in mice lacking NMB or GRP are non-redundant and Nmb/Grp double KO (DKO) mice displayed additive deficits. Furthermore, both Nmb/Grp and Nmbr/Grpr DKO mice responded normally to a wide array of noxious stimuli. Ablation of NMBR neurons partially attenuated peripherally induced itch without compromising nociceptive processing. Importantly, electrophysiological studies suggested that GRPR neurons receive glutamatergic input from NMBR neurons. Thus, we propose that NMB and GRP may transmit discrete itch information and NMBR neurons are an integral part of neural circuits for itch in the spinal cord.
Collapse
Affiliation(s)
- Li Wan
- Center for the Study of Itch, Washington University School of Medicine, St. Louis, MO, 63110, USA
- Department of Anesthesiology, Washington University School of Medicine, St. Louis, MO, 63110, USA
- Department of Pain Medicine, The State Key Clinical Specialty in Pain Medicine, The Second Affiliated Hospital, Guangzhou Medical University, Guangdong, 510260, P.R. China
| | - Hua Jin
- Center for the Study of Itch, Washington University School of Medicine, St. Louis, MO, 63110, USA
- Department of Anesthesiology, Washington University School of Medicine, St. Louis, MO, 63110, USA
- Department of Anesthesiology, The First Hospital of Yunnan Province, Kunming, Yunnan, 650031, P.R. China
| | - Xian-Yu Liu
- Center for the Study of Itch, Washington University School of Medicine, St. Louis, MO, 63110, USA
- Department of Anesthesiology, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Joseph Jeffry
- Center for the Study of Itch, Washington University School of Medicine, St. Louis, MO, 63110, USA
- Department of Anesthesiology, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Devin M Barry
- Center for the Study of Itch, Washington University School of Medicine, St. Louis, MO, 63110, USA
- Department of Anesthesiology, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Kai-Feng Shen
- Center for the Study of Itch, Washington University School of Medicine, St. Louis, MO, 63110, USA
- Department of Anesthesiology, Washington University School of Medicine, St. Louis, MO, 63110, USA
- Department of Neurosurgery, Xinqiao Hospital, Third Military Medical University, Chongqing, 400037, P.R. China
| | - Jia-Hang Peng
- Center for the Study of Itch, Washington University School of Medicine, St. Louis, MO, 63110, USA
- Department of Anesthesiology, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Xue-Ting Liu
- Center for the Study of Itch, Washington University School of Medicine, St. Louis, MO, 63110, USA
- Department of Anesthesiology, Washington University School of Medicine, St. Louis, MO, 63110, USA
- Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology, The State Key Laboratory of Respiratory Disease, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong, 510260, P.R. China
| | - Jin-Hua Jin
- Center for the Study of Itch, Washington University School of Medicine, St. Louis, MO, 63110, USA
- Department of Anesthesiology, Washington University School of Medicine, St. Louis, MO, 63110, USA
- Department of Anesthesiology, Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100144, P.R. China
| | - Yu Sun
- Center for the Study of Itch, Washington University School of Medicine, St. Louis, MO, 63110, USA
- Department of Anesthesiology, Washington University School of Medicine, St. Louis, MO, 63110, USA
- Department of Anesthesiology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, P.R. China
| | - Ray Kim
- Center for the Study of Itch, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Qing-Tao Meng
- Center for the Study of Itch, Washington University School of Medicine, St. Louis, MO, 63110, USA
- Department of Anesthesiology, Washington University School of Medicine, St. Louis, MO, 63110, USA
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, Hubei, 430060, P.R. China
| | - Ping Mo
- Center for the Study of Itch, Washington University School of Medicine, St. Louis, MO, 63110, USA
- Department of Anesthesiology, Washington University School of Medicine, St. Louis, MO, 63110, USA
- Department of Anesthesiology, the Affiliated Nanhai Hospital of Southern Medical University, Foshan, Guangdong, 528000, P.R. China
| | - Jun Yin
- Center for the Study of Itch, Washington University School of Medicine, St. Louis, MO, 63110, USA
- Department of Anesthesiology, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Ailin Tao
- Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology, The State Key Laboratory of Respiratory Disease, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong, 510260, P.R. China
| | - Rita Bardoni
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, 41125, Italy
| | - Zhou-Feng Chen
- Center for the Study of Itch, Washington University School of Medicine, St. Louis, MO, 63110, USA.
- Department of Anesthesiology, Washington University School of Medicine, St. Louis, MO, 63110, USA.
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, 63110, USA.
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO, 63110, USA.
| |
Collapse
|
84
|
Liljencrantz J, Pitcher MH, Low LA, Bauer L, Bushnell MC. Comment on "Molecular and neural basis of contagious itch behavior in mice". Science 2017; 357:357/6347/eaan4749. [PMID: 28706013 DOI: 10.1126/science.aan4749] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Accepted: 06/16/2017] [Indexed: 11/02/2022]
Abstract
Yu et al (Reports, 10 March 2017, p. 1072) state that contagious itch occurs in mice based on imitative scratching in normal mice observing excessive scratching in genetically modified demonstrator mice. However, despite employing multiple behavioral analysis approaches, we were unable to extend these findings to normal mice observing the well-established histamine model of acute itch in demonstrator mice.
Collapse
Affiliation(s)
- Jaquette Liljencrantz
- Pain and Integrative Neuroscience Laboratory, National Center for Complementary and Integrative Health, National Institutes of Health, Bethesda, MD 20892, USA
| | - Mark H Pitcher
- Pain and Integrative Neuroscience Laboratory, National Center for Complementary and Integrative Health, National Institutes of Health, Bethesda, MD 20892, USA.
| | - Lucie A Low
- Pain and Integrative Neuroscience Laboratory, National Center for Complementary and Integrative Health, National Institutes of Health, Bethesda, MD 20892, USA
| | - Lucy Bauer
- Pain and Integrative Neuroscience Laboratory, National Center for Complementary and Integrative Health, National Institutes of Health, Bethesda, MD 20892, USA
| | - M Catherine Bushnell
- Pain and Integrative Neuroscience Laboratory, National Center for Complementary and Integrative Health, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
85
|
Barry DM, Yu YQ, Hao Y, Liu XT, Chen ZF. Response to Comment on "Molecular and neural basis of contagious itch behavior in mice". Science 2017; 357:357/6347/eaan5000. [PMID: 28706014 DOI: 10.1126/science.aan5000] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Accepted: 06/16/2017] [Indexed: 01/22/2023]
Abstract
Liljencrantz et al report the failure of observing contagious itch behavior using mice injected with histamine as the demonstrators. Analysis of their results shows that the histamine model is limited by inadequate frequency and duration of scratching bouts required for contagious itch test. To streamline the contagious itch test, the screen paradigm is highly recommended.
Collapse
Affiliation(s)
- Devin M Barry
- Center for the Study of Itch, Washington University School of Medicine, St. Louis, MO 63110, USA.,Department of Anesthesiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Yao-Qing Yu
- Center for the Study of Itch, Washington University School of Medicine, St. Louis, MO 63110, USA.,Department of Anesthesiology, Washington University School of Medicine, St. Louis, MO 63110, USA.,Institute for Biomedical Sciences of Pain, Tangdu Hospital, The Fourth Military Medical University, Xi'an, Shaanxi 710038, P.R. China
| | - Yan Hao
- Center for the Study of Itch, Washington University School of Medicine, St. Louis, MO 63110, USA.,Department of Anesthesiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Xue-Ting Liu
- Center for the Study of Itch, Washington University School of Medicine, St. Louis, MO 63110, USA.,Department of Anesthesiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Zhou-Feng Chen
- Center for the Study of Itch, Washington University School of Medicine, St. Louis, MO 63110, USA. .,Department of Anesthesiology, Washington University School of Medicine, St. Louis, MO 63110, USA.,Department of Psychiatry, Washington University School of Medicine, St. Louis, MO 63110, USA.,Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO 63110, USA
| |
Collapse
|
86
|
Lü YF, Yang Y, Li CL, Wang Y, Li Z, Chen J. The Locus Coeruleus-Norepinephrine System Mediates Empathy for Pain through Selective Up-Regulation of P2X3 Receptor in Dorsal Root Ganglia in Rats. Front Neural Circuits 2017; 11:66. [PMID: 28979194 PMCID: PMC5611373 DOI: 10.3389/fncir.2017.00066] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2017] [Accepted: 09/01/2017] [Indexed: 11/13/2022] Open
Abstract
Empathy for pain (vicariously felt pain), an ability to feel, recognize, understand and share the painful emotions of others, has been gradually accepted to be a common identity in both humans and rodents, however, the underlying neural and molecular mechanisms are largely unknown. Recently, we have developed a rat model of empathy for pain in which pain can be transferred from a cagemate demonstrator (CD) in pain to a naïve cagemate observer (CO) after 30 min dyadic priming social interaction. The naïve CO rats display both mechanical pain hypersensitivity (hyperalgesia) and enhanced spinal nociception. Chemical lesions of bilateral medial prefrontal cortex (mPFC) abolish the empathic pain response completely, suggesting existence of a top-down facilitation system in production of empathy for pain. However, the social transfer of pain was not observed in non-cagemate observer (NCO) after dyadic social interaction with a non-cagemate demonstrator (NCD) in pain. Here we showed that dyadic social interaction with a painful CD resulted in elevation of circulating norepinephrine (NE) and increased neuronal activity in the locus coeruleus (LC) in the CO rats. Meanwhile, CO rats also had over-expression of P2X3, but not TRPV1, in the dorsal root ganglia (DRG). Chemical lesion of the LC-NE neurons by systemic DSP-4 and pharmacological inhibition of central synaptic release of NE by clonidine completely abolished increase in circulating NE and P2X3 receptor expression, as well as the sympathetically-maintained development of empathic mechanical hyperalgesia. However, in the NCO rats, neither the LC-NE neuronal activity nor the P2X3 receptor expression was altered after dyadic social interaction with a painful NCD although the circulating corticosterone and NE were elevated. Finally, in the periphery, both P2X3 receptor and α1 adrenergic receptor were found to be involved in the development of empathic mechanical hyperalgesia. Taken together with our previous results, empathy for pain observed in the CO rats is likely to be mediated by activation of the top-down mPFC-LC/NE-sympathoadrenomedullary (SAM) system that further up-regulates P2X3 receptors in the periphery, however, social stress observed in the NCO rats is mediated by activation of both hypothalamic-pituitary-adrenocortical axis and SAM axis.
Collapse
Affiliation(s)
- Yun-Fei Lü
- Institute for Biomedical Sciences of Pain, Tangdu Hospital, The Fourth Military Medical UniversityXi'an, China.,Key Laboratory of Brain Stress and Behavior, PLAXi'an, China.,Anesthesia and Operation Center, 302 Military HospitalBeijing, China
| | - Yan Yang
- Institute for Biomedical Sciences of Pain, Tangdu Hospital, The Fourth Military Medical UniversityXi'an, China.,Key Laboratory of Brain Stress and Behavior, PLAXi'an, China
| | - Chun-Li Li
- Institute for Biomedical Sciences of Pain, Tangdu Hospital, The Fourth Military Medical UniversityXi'an, China.,Key Laboratory of Brain Stress and Behavior, PLAXi'an, China
| | - Yan Wang
- Institute for Biomedical Sciences of Pain, Tangdu Hospital, The Fourth Military Medical UniversityXi'an, China.,Key Laboratory of Brain Stress and Behavior, PLAXi'an, China
| | - Zhen Li
- Institute for Biomedical Sciences of Pain, Tangdu Hospital, The Fourth Military Medical UniversityXi'an, China.,Key Laboratory of Brain Stress and Behavior, PLAXi'an, China
| | - Jun Chen
- Institute for Biomedical Sciences of Pain, Tangdu Hospital, The Fourth Military Medical UniversityXi'an, China.,Key Laboratory of Brain Stress and Behavior, PLAXi'an, China.,Beijing Institute for Brain DisordersBeijing, China
| |
Collapse
|
87
|
The impact of temporal modulations in irradiance under light adapted conditions on the mouse suprachiasmatic nuclei (SCN). Sci Rep 2017; 7:10582. [PMID: 28874778 PMCID: PMC5585163 DOI: 10.1038/s41598-017-11184-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Accepted: 08/07/2017] [Indexed: 12/31/2022] Open
Abstract
Electrophysiological responses of SCN neurons to light steps are well established, but responses to more natural modulations in irradiance have been much less studied. We address this deficit first by showing that variations in irradiance for human subjects are biased towards low temporal frequencies and small magnitudes. Using extracellular recordings we show that neurons in the mouse SCN are responsive to stimuli with these characteristics, tracking sinusoidal modulations in irradiance best at lower temporal frequencies and responding to abrupt changes in irradiance over a range of commonly encountered contrasts. The spectral sensitivity of these light adapted responses indicates that they are driven primarily by cones, but with melanopsin (and/or rods) contributing under more gradual changes. Higher frequency modulations in irradiance increased time averaged firing of SCN neurons (typically considered to encode background light intensity) modestly over that encountered during steady exposure, but did not have a detectable effect on the circadian phase resetting efficiency of light. Our findings highlight the SCN’s ability to encode naturalistic temporal modulations in irradiance, while revealing that the circadian system can effectively integrate such signals over time such that phase-resetting responses remain proportional to the mean light exposure.
Collapse
|
88
|
Massen JJ, Gallup AC. Why contagious yawning does not (yet) equate to empathy. Neurosci Biobehav Rev 2017; 80:573-585. [DOI: 10.1016/j.neubiorev.2017.07.006] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Revised: 06/24/2017] [Accepted: 07/16/2017] [Indexed: 12/30/2022]
|
89
|
Liu BW, Li ZX, He ZG, Liu C, Xiong J, Xiang HB. Altered expression of target genes of spinal cord in different itch models compared with capsaicin assessed by RT-qPCR validation. Oncotarget 2017; 8:74423-74433. [PMID: 29088797 PMCID: PMC5650352 DOI: 10.18632/oncotarget.20148] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2017] [Accepted: 05/23/2017] [Indexed: 11/25/2022] Open
Abstract
Spinal cord plays a central role in the development and progression of pathogenesis of obstinate pruritus. In the current study, four groups of adult male C57Bl/6 mice were investigated; one group treated with saline, while the other groups intradermally injected with compound 48/80, histamine, α-Me-5-HT and capsaicin (algogenic substance), respectively. The intradermal microinjection of pruritic and algogenic compound resulted in a dramatic increase in the itch/algogenic behavior. Analysis of the microarray data showed that 15 genes in spinal cord (C5-C8) were differentially expressed between control group and 48/80 group, in which 9 genes were up-regulated and 6 genes were down-regulated. Furthermore, the results of RT-qPCR validation studies in C5-C8 spinal cord revealed that the 9 mRNA (Sgk1, Bag4, Fos, Ehd2, Edn3, Wdfy, Corin, 4921511E18Rik and 4930423020Rik) showed very different patterns for these different drugs, especially when comparing α-Me-5-HT and capsaicin. In three itch models, Fos and Ehd2 were up-regulated whereas Corin, 4921511E18Rik and 4930423020Rik were down-regulated. Furthermore, Corin and 4930423020Rik were down-regulated in itch model group compared to capsaicin group. Thus the application of microarray technique, coupled with RT-qPCR validation, further explain the mechanism behind itching evoked by pruritic compounds. It can contribute to our understanding of pharmacological methods for prevention or treatment of obstinate pruritus.
Collapse
Affiliation(s)
- Bao-Wen Liu
- Department of Anesthesiology and Pain Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhi-Xiao Li
- Department of Anesthesiology and Pain Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhi-Gang He
- Department of Anesthesiology and Pain Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Cheng Liu
- Department of Anesthesiology and Pain Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jun Xiong
- Hepatobiliary Surgery Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hong-Bing Xiang
- Department of Anesthesiology and Pain Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
90
|
Mouland JW, Stinchcombe AR, Forger DB, Brown TM, Lucas RJ. Responses to Spatial Contrast in the Mouse Suprachiasmatic Nuclei. Curr Biol 2017; 27:1633-1640.e3. [PMID: 28528901 PMCID: PMC5462621 DOI: 10.1016/j.cub.2017.04.039] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Revised: 03/27/2017] [Accepted: 04/19/2017] [Indexed: 11/26/2022]
Abstract
A direct retinal projection targets the suprachiasmatic nucleus (SCN) (an important hypothalamic control center). The accepted function of this projection is to convey information about ambient light (irradiance) to synchronize the SCN’s endogenous circadian clock with local time and drive the diurnal variations in physiology and behavior [1, 2, 3, 4]. Here, we report that it also renders the SCN responsive to visual images. We map spatial receptive fields (RFs) for SCN neurons and find that only a minority are excited (or inhibited) by light from across the scene as expected for irradiance detectors. The most commonly encountered units have RFs with small excitatory centers, combined with very extensive inhibitory surrounds that reduce their sensitivity to global changes in light in favor of responses to spatial patterns. Other units have larger excitatory RF centers, but these always cover a coherent region of visual space, implying visuotopic order at the single-unit level. Approximately 75% of light-responsive SCN units modulate their firing according to simple spatial patterns (drifting or inverting gratings) without changes in irradiance. The time-averaged firing rate of the SCN is modestly increased under these conditions, but including spatial contrast did not significantly alter the circadian phase resetting efficiency of light. Our data indicate that the SCN contains information about irradiance and spatial patterns. This newly appreciated sensory capacity provides a mechanism by which behavioral and physiological systems downstream of the SCN could respond to visual images [5]. Many SCN units have receptive fields optimized for spatial discrimination A large majority of SCN neurons track changes in spatial patterns Spatial patterns can enhance SCN-maintained firing, but not circadian phase resetting
Collapse
Affiliation(s)
- Joshua W Mouland
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PT, UK
| | - Adam R Stinchcombe
- Department of Mathematics, University of Michigan, 2074 East Hall, 530 Church Street, Ann Arbor, MI 48109-1043, USA
| | - Daniel B Forger
- Department of Mathematics, University of Michigan, 2074 East Hall, 530 Church Street, Ann Arbor, MI 48109-1043, USA; Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI 48109, USA
| | - Timothy M Brown
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PT, UK
| | - Robert J Lucas
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PT, UK.
| |
Collapse
|
91
|
Yates D. Itch transmission. Nat Rev Neurosci 2017. [DOI: 10.1038/nrn.2017.51] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
92
|
Koch M. Choose Your Friends Wisely. Cell 2017; 169:179. [PMID: 28388399 DOI: 10.1016/j.cell.2017.03.037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
93
|
VanHook AM. Papers of note in
Science
355
(6329). Sci Signal 2017. [DOI: 10.1126/scisignal.aan1405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
This week's articles describe the molecules and neural circuit that mediate contagious itch and an isoprenoid released by Plasmodium that enhances the transmission of this parasite through multiple mechanisms.
Collapse
|