51
|
Brochado Ó, Martínez I, Berenguer J, Medrano L, González-García J, Jiménez-Sousa MÁ, Carrero A, Hontañón V, Navarro J, Guardiola JM, Fernández-Rodríguez A, Resino S. HCV eradication with IFN-based therapy does not completely restore gene expression in PBMCs from HIV/HCV-coinfected patients. J Biomed Sci 2021; 28:23. [PMID: 33785040 PMCID: PMC8010945 DOI: 10.1186/s12929-021-00718-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Accepted: 03/24/2021] [Indexed: 12/11/2022] Open
Abstract
Objective To evaluate the impact of hepatitis C virus (HCV) elimination via interferon (IFN)-based therapy on gene expression profiles related to the immune system in HIV/HCV-coinfected patients. Methods We conducted a prospective study in 28 HIV/HCV-coinfected patients receiving IFN-based therapy at baseline (HIV/HCV-b) and week 24 after sustained virological response (HIV/HCV-f). Twenty-seven HIV-monoinfected patients (HIV-mono) were included as a control. RNA-seq analysis was performed on peripheral blood mononuclear cells (PBMCs). Genes with a fold-change (FC) ≥ 1.5 (in either direction) and false discovery rate (FDR) ≤ 0.05 were identified as significantly differentially expressed (SDE). Results HIV/HCV-b showed six SDE genes compared to HIV-mono group, but no significantly enriched pathways were observed. For HIV/HCV-f vs. HIV/HCV-b, we found 58 SDE genes, 34 upregulated and 24 downregulated in the HIV/HCV-f group. Of these, the most overexpressed were CXCL2, PDCD6IP, ATP5B, IGSF9, RAB26, and CSRNP1, and the most downregulated were IFI44 and IFI44L. These 58 SDE genes revealed two significantly enriched pathways (FDR < 0.05), one linked to Epstein-Barr virus infection and another related to p53 signaling. For HIV/HCV-f vs. HIV-mono group, we found 44 SDE genes that revealed 31 enriched pathways (FDR < 0.05) related to inflammation, cancer/cell cycle alteration, viral and bacterial infection, and comorbidities associated with HIV/HCV-coinfection. Five genes were overrepresented in most pathways (JUN, NFKBIA, PIK3R2, CDC42, and STAT3). Conclusion HIV/HCV-coinfected patients who eradicated hepatitis C with IFN-based therapy showed profound gene expression changes after achieving sustained virological response. The altered pathways were related to inflammation and liver-related complications, such as non-alcoholic fatty liver disease and hepatocellular carcinoma, underscoring the need for active surveillance for these patients. Supplementary Information The online version contains supplementary material available at 10.1186/s12929-021-00718-6.
Collapse
Affiliation(s)
- Óscar Brochado
- Unidad de Infección Viral E Inmunidad, Centro Nacional de Microbiología, Instituto de Salud Carlos III (Campus Majadahonda), Carretera Majadahonda-Pozuelo, Km 2.2, 28220, MajadahondaMadrid, Spain
| | - Isidoro Martínez
- Unidad de Infección Viral E Inmunidad, Centro Nacional de Microbiología, Instituto de Salud Carlos III (Campus Majadahonda), Carretera Majadahonda-Pozuelo, Km 2.2, 28220, MajadahondaMadrid, Spain.
| | - Juan Berenguer
- Unidad de Enfermedades Infecciosas/VIH, Hospital General Universitario "Gregorio Marañón", Madrid, Spain.,Instituto de Investigación Sanitaria del Gregorio Marañón, Madrid, Spain
| | - Luz Medrano
- Unidad de Infección Viral E Inmunidad, Centro Nacional de Microbiología, Instituto de Salud Carlos III (Campus Majadahonda), Carretera Majadahonda-Pozuelo, Km 2.2, 28220, MajadahondaMadrid, Spain
| | - Juan González-García
- Unidad de VIH, Servicio de Medicina Interna, Hospital Universitario "La Paz", Madrid, Spain.,Instituto de Investigacion Sanitaria La Paz (IdiPAZ), Madrid, Spain
| | - María Ángeles Jiménez-Sousa
- Unidad de Infección Viral E Inmunidad, Centro Nacional de Microbiología, Instituto de Salud Carlos III (Campus Majadahonda), Carretera Majadahonda-Pozuelo, Km 2.2, 28220, MajadahondaMadrid, Spain
| | - Ana Carrero
- Unidad de Enfermedades Infecciosas/VIH, Hospital General Universitario "Gregorio Marañón", Madrid, Spain.,Instituto de Investigación Sanitaria del Gregorio Marañón, Madrid, Spain
| | - Víctor Hontañón
- Unidad de VIH, Servicio de Medicina Interna, Hospital Universitario "La Paz", Madrid, Spain.,Instituto de Investigacion Sanitaria La Paz (IdiPAZ), Madrid, Spain
| | - Jordi Navarro
- Servicio de Enfermedades Infecciosas, Hospital Universitari Vall D'Hebron, Barcelona, Spain.,Institut de Recerca Vall D'Hebron, Barcelona, Spain
| | | | - Amanda Fernández-Rodríguez
- Unidad de Infección Viral E Inmunidad, Centro Nacional de Microbiología, Instituto de Salud Carlos III (Campus Majadahonda), Carretera Majadahonda-Pozuelo, Km 2.2, 28220, MajadahondaMadrid, Spain
| | - Salvador Resino
- Unidad de Infección Viral E Inmunidad, Centro Nacional de Microbiología, Instituto de Salud Carlos III (Campus Majadahonda), Carretera Majadahonda-Pozuelo, Km 2.2, 28220, MajadahondaMadrid, Spain.
| | | |
Collapse
|
52
|
Johansson T, Koskela S, Yohannes DA, Partanen J, Saavalainen P. Targeted RNA-Based Oxford Nanopore Sequencing for Typing 12 Classical HLA Genes. Front Genet 2021; 12:635601. [PMID: 33763116 PMCID: PMC7982845 DOI: 10.3389/fgene.2021.635601] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 02/11/2021] [Indexed: 01/29/2023] Open
Abstract
Identification of human leukocyte antigen (HLA) alleles from next-generation sequencing (NGS) data is challenging because of the high polymorphism and mosaic nature of HLA genes. Owing to the complex nature of HLA genes and consequent challenges in allele assignment, Oxford Nanopore Technologies' (ONT) single-molecule sequencing technology has been of great interest due to its fitness for sequencing long reads. In addition to the read length, ONT's advantages are its portability and possibility for a rapid real-time sequencing, which enables a simultaneous data analysis. Here, we describe a targeted RNA-based method for HLA typing using ONT sequencing and SeqNext-HLA SeqPilot software (JSI Medical Systems GmbH). Twelve classical HLA genes were enriched from cDNA of 50 individuals, barcoded, pooled, and sequenced in 10 MinION R9.4 SpotON flow cell runs producing over 30,000 reads per sample. Using barcoded 2D reads, SeqPilot assigned HLA alleles to two-field typing resolution or higher with the average read depth of 1750x. Sequence analysis resulted in 99-100% accuracy at low-resolution level (one-field) and in 74-100% accuracy at high-resolution level (two-field) with the expected alleles. There are still some limitations with ONT RNA sequencing, such as noisy reads, homopolymer errors, and the lack of robust algorithms, which interfere with confident allele assignment. These issues need to be inspected carefully in the future to improve the allele call rates. Nevertheless, here we show that sequencing of multiplexed cDNA amplicon libraries on ONT MinION can produce accurate high-resolution typing results of 12 classical HLA loci. For HLA research, ONT RNA sequencing is a promising method due to its capability to sequence full-length HLA transcripts. In addition to HLA genotyping, the technique could also be applied for simultaneous expression analysis.
Collapse
Affiliation(s)
- Tiira Johansson
- Translational Immunology Research Program and Department of Medical and Clinical Genetics, University of Helsinki, Helsinki, Finland.,Finnish Red Cross Blood Service, Helsinki, Finland
| | - Satu Koskela
- Finnish Red Cross Blood Service, Helsinki, Finland
| | - Dawit A Yohannes
- Translational Immunology Research Program and Department of Medical and Clinical Genetics, University of Helsinki, Helsinki, Finland
| | | | - Päivi Saavalainen
- Translational Immunology Research Program and Department of Medical and Clinical Genetics, University of Helsinki, Helsinki, Finland.,Finnish Red Cross Blood Service, Helsinki, Finland
| |
Collapse
|
53
|
Price MA, Kilembe W, Ruzagira E, Karita E, Inambao M, Sanders EJ, Anzala O, Allen S, Edward VA, Kaleebu P, Fast PE, Rida W, Kamali A, Hunter E, Tang J, Lakhi S, Mutua G, Bekker LG, Abu-Baker G, Tichacek A, Chetty P, Latka MH, Maenetje P, Makkan H, Hare J, Kibengo F, Priddy F, Landais E, Chinyenze K, Gilmour J. Cohort Profile: IAVI's HIV epidemiology and early infection cohort studies in Africa to support vaccine discovery. Int J Epidemiol 2021; 50:29-30. [PMID: 32879950 PMCID: PMC7938500 DOI: 10.1093/ije/dyaa100] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/06/2020] [Indexed: 12/20/2022] Open
Affiliation(s)
- Matt A Price
- IAVI, New York, USA & Nairobi, Kenya
- Department of Epidemiology and Biostatistics, University of California at San Francisco, San Francisco, CA, USA
| | - William Kilembe
- Rwanda Zambia Emory HIV Research Group, Lusaka & Ndola, Zambia; Kigali, Rwanda
- Emory University, Atlanta, GA, USA
| | - Eugene Ruzagira
- Medical Research Council, Uganda Virus Research Institute, and London School of Hygiene and Tropical Medicine Uganda Research Unit (MULS), Entebbe & Masaka, Uganda
| | - Etienne Karita
- Rwanda Zambia Emory HIV Research Group, Lusaka & Ndola, Zambia; Kigali, Rwanda
- Emory University, Atlanta, GA, USA
| | - Mubiana Inambao
- Rwanda Zambia Emory HIV Research Group, Lusaka & Ndola, Zambia; Kigali, Rwanda
- Emory University, Atlanta, GA, USA
| | - Eduard J Sanders
- Kenyan Medical Research Institute-Wellcome Trust, Kilifi, Kenya
- Nuffield Department of Clinical Medicine, Centre for Clinical Vaccinology and Tropical Medicine, University of Oxford, Headington, UK
| | - Omu Anzala
- KAVI-Institute of Clinical Research, Nairobi, Kenya
| | - Susan Allen
- Rwanda Zambia Emory HIV Research Group, Lusaka & Ndola, Zambia; Kigali, Rwanda
- Emory University, Atlanta, GA, USA
- Department of Pathology and Laboratory Medicine, Emory University, Atlanta, GA, USA
| | - Vinodh A Edward
- The Aurum Institute, Johannesburg and Rustenburg, South Africa
- School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
- Advancing Care and Treatment for TB/HIV, A Collaborating Centre of the South African Medical Research Council, Cape Town, South Africa
- Department of Environmental Health Sciences, Yale School of Public Health, New Haven, CT, USA
| | - Pontiano Kaleebu
- Medical Research Council, Uganda Virus Research Institute, and London School of Hygiene and Tropical Medicine Uganda Research Unit (MULS), Entebbe & Masaka, Uganda
| | - Patricia E Fast
- IAVI, New York, USA & Nairobi, Kenya
- Pediatric Infectious Diseases, School of Medicine, Stanford University, Palo Alto, CA, USA
| | - Wasima Rida
- Biostatistics Consultant, Arlington, VA, USA
| | | | - Eric Hunter
- Rwanda Zambia Emory HIV Research Group, Lusaka & Ndola, Zambia; Kigali, Rwanda
- Emory University, Atlanta, GA, USA
- Department of Pathology and Laboratory Medicine, Emory University, Atlanta, GA, USA
| | - Jianming Tang
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Shabir Lakhi
- Rwanda Zambia Emory HIV Research Group, Lusaka & Ndola, Zambia; Kigali, Rwanda
- Emory University, Atlanta, GA, USA
| | | | - Linda Gail Bekker
- Desmond Tutu HIV Centre, University of Cape Town, Cape Town, South Africa
| | - Ggayi Abu-Baker
- Medical Research Council, Uganda Virus Research Institute, and London School of Hygiene and Tropical Medicine Uganda Research Unit (MULS), Entebbe & Masaka, Uganda
| | - Amanda Tichacek
- Rwanda Zambia Emory HIV Research Group, Lusaka & Ndola, Zambia; Kigali, Rwanda
- Emory University, Atlanta, GA, USA
- Department of Epidemiology, Emory University, Atlanta, GA, USA
| | | | - Mary H Latka
- The Aurum Institute, Johannesburg and Rustenburg, South Africa
| | - Pholo Maenetje
- The Aurum Institute, Johannesburg and Rustenburg, South Africa
| | - Heeran Makkan
- The Aurum Institute, Johannesburg and Rustenburg, South Africa
| | - Jonathan Hare
- IAVI Human Immunology Laboratory, Imperial College, London, UK
| | - Freddie Kibengo
- Medical Research Council, Uganda Virus Research Institute, and London School of Hygiene and Tropical Medicine Uganda Research Unit (MULS), Entebbe & Masaka, Uganda
| | | | - Elise Landais
- IAVI, New York, USA & Nairobi, Kenya
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA, USA
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, USA
| | | | - Jill Gilmour
- IAVI Human Immunology Laboratory, Imperial College, London, UK
| |
Collapse
|
54
|
Johansson T, Yohannes DA, Koskela S, Partanen J, Saavalainen P. HLA RNA Sequencing With Unique Molecular Identifiers Reveals High Allele-Specific Variability in mRNA Expression. Front Immunol 2021; 12:629059. [PMID: 33717155 PMCID: PMC7949471 DOI: 10.3389/fimmu.2021.629059] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 01/18/2021] [Indexed: 11/13/2022] Open
Abstract
The HLA gene complex is the most important single genetic factor in susceptibility to most diseases with autoimmune or autoinflammatory origin and in transplantation matching. Most studies have focused on the vast allelic variation in these genes; only a few studies have explored differences in the expression levels of HLA alleles. In this study, we quantified mRNA expression levels of HLA class I and II genes from peripheral blood samples of 50 healthy individuals. The gene- and allele-specific mRNA expression was assessed using unique molecular identifiers, which enabled PCR bias removal and calculation of the number of original mRNA transcripts. We identified differences in mRNA expression between different HLA genes and alleles. Our results suggest that HLA alleles are differentially expressed and these differences in expression levels are quantifiable using RNA sequencing technology. Our method provides novel insights into HLA research, and it can be applied to quantify expression differences of HLA alleles in various tissues and to evaluate the role of this type of variation in transplantation matching and susceptibility to autoimmune diseases.
Collapse
Affiliation(s)
- Tiira Johansson
- Research Programs Unit, Translational Immunology Program, University of Helsinki, Helsinki, Finland
- Research and Development, Finnish Red Cross Blood Service, Helsinki, Finland
| | - Dawit A. Yohannes
- Research Programs Unit, Translational Immunology Program, University of Helsinki, Helsinki, Finland
| | - Satu Koskela
- Research and Development, Finnish Red Cross Blood Service, Helsinki, Finland
| | - Jukka Partanen
- Research and Development, Finnish Red Cross Blood Service, Helsinki, Finland
| | - Päivi Saavalainen
- Research Programs Unit, Translational Immunology Program, University of Helsinki, Helsinki, Finland
- Research and Development, Finnish Red Cross Blood Service, Helsinki, Finland
| |
Collapse
|
55
|
Huot N, Rascle P, Petitdemange C, Contreras V, Stürzel CM, Baquero E, Harper JL, Passaes C, Legendre R, Varet H, Madec Y, Sauermann U, Stahl-Hennig C, Nattermann J, Saez-Cirion A, Le Grand R, Keith Reeves R, Paiardini M, Kirchhoff F, Jacquelin B, Müller-Trutwin M. SIV-induced terminally differentiated adaptive NK cells in lymph nodes associated with enhanced MHC-E restricted activity. Nat Commun 2021; 12:1282. [PMID: 33627642 PMCID: PMC7904927 DOI: 10.1038/s41467-021-21402-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Accepted: 01/27/2021] [Indexed: 02/06/2023] Open
Abstract
Natural killer (NK) cells play a critical understudied role during HIV infection in tissues. In a natural host of SIV, the African green monkey (AGM), NK cells mediate a strong control of SIVagm infection in secondary lymphoid tissues. We demonstrate that SIVagm infection induces the expansion of terminally differentiated NKG2alow NK cells in secondary lymphoid organs displaying an adaptive transcriptional profile and increased MHC-E-restricted cytotoxicity in response to SIV Env peptides while expressing little IFN-γ. Such NK cell differentiation was lacking in SIVmac-infected macaques. Adaptive NK cells displayed no increased NKG2C expression. This study reveals a previously unknown profile of NK cell adaptation to a viral infection, thus accelerating strategies toward NK-cell directed therapies and viral control in tissues.
Collapse
Affiliation(s)
- Nicolas Huot
- grid.428999.70000 0001 2353 6535Institut Pasteur, Unité HIV, Inflammation et Persistance, Paris, France
| | - Philippe Rascle
- grid.428999.70000 0001 2353 6535Institut Pasteur, Unité HIV, Inflammation et Persistance, Paris, France ,grid.508487.60000 0004 7885 7602Université Paris Diderot, Sorbonne Paris Cité, Paris, France
| | - Caroline Petitdemange
- grid.428999.70000 0001 2353 6535Institut Pasteur, Unité HIV, Inflammation et Persistance, Paris, France
| | - Vanessa Contreras
- CEA-Université Paris Sud-Inserm, U1184, IDMIT Department, IBFJ, Fontenay-aux-Roses, France
| | | | - Eduard Baquero
- grid.462718.eInstitut Pasteur, Unité de Virologie Structurale, Paris, France
| | - Justin L. Harper
- grid.189967.80000 0001 0941 6502Division of Microbiology and Immunology, Yerkes National Primate Research Center, Emory University, Atlanta, GA USA
| | - Caroline Passaes
- grid.428999.70000 0001 2353 6535Institut Pasteur, Unité HIV, Inflammation et Persistance, Paris, France
| | - Rachel Legendre
- grid.428999.70000 0001 2353 6535Bioinformatics and Biostatistics Hub, Department of Computational Biology, Institut Pasteur, Paris, France
| | - Hugo Varet
- grid.428999.70000 0001 2353 6535Biomics Platform, Center for Technological Resources and Research (C2RT), Institut Pasteur, Paris, France
| | - Yoann Madec
- grid.428999.70000 0001 2353 6535 Institut Pasteur; Epidemiology of Emerging Diseases Unit, Paris, France
| | - Ulrike Sauermann
- grid.418215.b0000 0000 8502 7018Deutsches Primatenzentrum - Leibniz Institut für Primatenforschung, Göttingen, Germany
| | - Christiane Stahl-Hennig
- grid.418215.b0000 0000 8502 7018Deutsches Primatenzentrum - Leibniz Institut für Primatenforschung, Göttingen, Germany
| | - Jacob Nattermann
- grid.452463.2Medizinische Klinik und Poliklinik I, Universitätsklinikum Bonn, Germany; German Center for Infection Research (DZIF), Bonn, Germany
| | - Asier Saez-Cirion
- grid.428999.70000 0001 2353 6535Institut Pasteur, Unité HIV, Inflammation et Persistance, Paris, France
| | - Roger Le Grand
- CEA-Université Paris Sud-Inserm, U1184, IDMIT Department, IBFJ, Fontenay-aux-Roses, France
| | - R. Keith Reeves
- grid.38142.3c000000041936754XCenter for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA USA
| | - Mirko Paiardini
- grid.189967.80000 0001 0941 6502Division of Microbiology and Immunology, Yerkes National Primate Research Center, Emory University, Atlanta, GA USA ,grid.189967.80000 0001 0941 6502Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA USA
| | | | - Beatrice Jacquelin
- grid.428999.70000 0001 2353 6535Institut Pasteur, Unité HIV, Inflammation et Persistance, Paris, France
| | - Michaela Müller-Trutwin
- grid.428999.70000 0001 2353 6535Institut Pasteur, Unité HIV, Inflammation et Persistance, Paris, France
| |
Collapse
|
56
|
Saunders PM, MacLachlan BJ, Widjaja J, Wong SC, Oates CVL, Rossjohn J, Vivian JP, Brooks AG. The Role of the HLA Class I α2 Helix in Determining Ligand Hierarchy for the Killer Cell Ig-like Receptor 3DL1. THE JOURNAL OF IMMUNOLOGY 2021; 206:849-860. [PMID: 33441440 DOI: 10.4049/jimmunol.2001109] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 11/25/2020] [Indexed: 01/16/2023]
Abstract
HLA class I molecules that represent ligands for the inhibitory killer cell Ig-like receptor (KIR) 3DL1 found on NK cells are categorically defined as those HLA-A and HLA-B allotypes containing the Bw4 motif, yet KIR3DL1 demonstrates hierarchical recognition of these HLA-Bw4 ligands. To better understand the molecular basis underpinning differential KIR3DL1 recognition, the HLA-ABw4 family of allotypes were investigated. Transfected human 721.221 cells expressing HLA-A*32:01 strongly inhibited primary human KIR3DL1+ NK cells, whereas HLA-A*24:02 and HLA-A*23:01 displayed intermediate potency and HLA-A*25:01 failed to inhibit activation of KIR3DL1+ NK cells. Structural studies demonstrated that recognition of HLA-A*24:02 by KIR3DL1 used identical contacts as the potent HLA-B*57:01 ligand. Namely, the D1-D2 domains of KIR3DL1 were placed over the α1 helix and α2 helix of the HLA-A*24:02 binding cleft, respectively, whereas the D0 domain contacted the side of the HLA-A*24:02 molecule. Nevertheless, functional analyses showed KIR3DL1 recognition of HLA-A*24:02 was more sensitive to substitutions within the α2 helix of HLA-A*24:02, including residues Ile142 and Lys144 Furthermore, the presence of Thr149 in the α2 helix of HLA-A*25:01 abrogated KIR3DL1+ NK inhibition. Together, these data demonstrate a role for the HLA class I α2 helix in determining the hierarchy of KIR3DL1 ligands. Thus, recognition of HLA class I is dependent on a complex interplay between the peptide repertoire, polymorphisms within and proximal to the Bw4 motif, and the α2 helix. Collectively, the data furthers our understanding of KIR3DL1 ligands and will inform genetic association and immunogenetics studies examining the role of KIR3DL1 in disease settings.
Collapse
Affiliation(s)
- Philippa M Saunders
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, Victoria 3000, Australia;
| | - Bruce J MacLachlan
- Infection and Immunity Program, Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria 3800, Australia
| | - Jacqueline Widjaja
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, Victoria 3000, Australia
| | - Shu Cheng Wong
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, Victoria 3000, Australia
| | - Clare V L Oates
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, Victoria 3000, Australia
| | - Jamie Rossjohn
- Infection and Immunity Program, Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria 3800, Australia.,Australian Research Council Centre of Excellence in Advanced Molecular Imaging, Monash University, Clayton, Victoria 3800, Australia; and.,Institute of Infection and Immunity, Cardiff University, School of Medicine, Heath Park, Cardiff CF14 4XN, United Kingdom
| | - Julian P Vivian
- Infection and Immunity Program, Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria 3800, Australia.,Australian Research Council Centre of Excellence in Advanced Molecular Imaging, Monash University, Clayton, Victoria 3800, Australia; and
| | - Andrew G Brooks
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, Victoria 3000, Australia;
| |
Collapse
|
57
|
Abstract
Over the past four decades, research on the natural history of HIV infection has described how HIV wreaks havoc on human immunity and causes AIDS. HIV host genomic research, which aims to understand how human genetic variation affects our response to HIV infection, has progressed from early candidate gene studies to recent multi-omic efforts, benefiting from spectacular advances in sequencing technology and data science. In addition to invading cells and co-opting the host machinery for replication, HIV also stably integrates into our own genome. The study of the complex interactions between the human and retroviral genomes has improved our understanding of pathogenic mechanisms and suggested novel preventive and therapeutic approaches against HIV infection.
Collapse
Affiliation(s)
- Paul J. McLaren
- grid.415368.d0000 0001 0805 4386National HIV and Retrovirology Laboratory at the JC Wilt Infectious Diseases Research Centre, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, MB Canada ,grid.21613.370000 0004 1936 9609Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, MB Canada
| | - Jacques Fellay
- grid.5333.60000000121839049School of Life Sciences, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland ,grid.419765.80000 0001 2223 3006Swiss Institute of Bioinformatics, Lausanne, Switzerland ,grid.8515.90000 0001 0423 4662Precision Medicine Unit, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
58
|
Tamouza R, Krishnamoorthy R, Leboyer M. Understanding the genetic contribution of the human leukocyte antigen system to common major psychiatric disorders in a world pandemic context. Brain Behav Immun 2021; 91:731-739. [PMID: 33031918 PMCID: PMC7534661 DOI: 10.1016/j.bbi.2020.09.033] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 09/01/2020] [Accepted: 09/30/2020] [Indexed: 12/20/2022] Open
Abstract
The human leukocyte antigen (HLA) is a complex genetic system that encodes proteins which predominantly regulate immune/inflammatory processes. It can be involved in a variety of immuno-inflammatory disorders ranging from infections to autoimmunity and cancers. The HLA system is also suggested to be involved in neurodevelopment and neuroplasticity, especially through microglia regulation and synaptic pruning. Consequently, this highly polymorphic gene region has recently emerged as a major player in the etiology of several major psychiatric disorders, such as schizophrenia, autism spectrum disorder and bipolar disorder and with less evidence for major depressive disorders and attention deficit hyperactivity disorder. We thus review here the role of HLA genes in particular subgroups of psychiatric disorders and foresee their potential implication in future research. In particular, given the prominent role that the HLA system plays in the regulation of viral infection, this review is particularly timely in the context of the Covid-19 pandemic.
Collapse
Affiliation(s)
- Ryad Tamouza
- Université Paris Est Créteil, INSERM U955, IMRB, Laboratoire Neuro-Psychiatrie Translationnelle, F-94010 Creteil, France; AP-HP, Hopital Henri Mondor, Département Medico-Universitaire de Psychiatrie et d'Addictologie (DMU ADAPT), F-94010, France; Fondation FondaMental, Créteil, France.
| | | | - Marion Leboyer
- Université Paris Est Créteil, INSERM U955, IMRB, Laboratoire Neuro-Psychiatrie Translationnelle, F-94010 Creteil, France; AP-HP, Hopital Henri Mondor, Département Medico-Universitaire de Psychiatrie et d'Addictologie (DMU ADAPT), F-94010, France; Fondation FondaMental, Créteil, France
| |
Collapse
|
59
|
Zhang C, Hu W, Jin JH, Zhou MJ, Song JW, Deng JN, Huang L, Wang SY, Wang FS. The role of CD8 T cells in controlling HIV beyond the antigen-specific face. HIV Med 2020; 21:692-700. [PMID: 33369032 DOI: 10.1111/hiv.13021] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/10/2020] [Indexed: 12/14/2022]
Abstract
OBJECTIVES Understanding the determinants of HIV immune control is important for seeking viable HIV prevention, treatment and curative strategies. The antigen-specific roles of CD8 T cells in controlling primary HIV infection have been well documented, but their abilities to control the latent HIV reservoir is less well studied. METHODS The scientific literature on this issue was searched on PubMed. RESULTS Recent reports have demonstrated that CD8 T cells are also involved in the control of viral replication in HIV-infected individuals receiving antiretroviral therapy (ART). However, based on accumulating evidence, the antiviral role of CD8 T cells in ART patients may not be achieved via an antigen-specific manner as HIV-specific CD8 T cells can sense, but not effectively eliminate, cells harbouring intact provirus without first being activated. Our recent study indicated that virtual memory CD8 T cells, a semi-differentiated component of CD8 T cells, may be involved in the mechanism restraining the HIV DNA reservoir in ART patients. CONCLUSIONS In this review, we summarize recent findings on the role of CD8 T cells in controlling HIV, highlighting differences between conventional antigen-specific and innate-like CD8 T cells. A better understanding of the roles of CD8 T cells during HIV infection should benefit the informed design of immune-based treatment strategies.
Collapse
Affiliation(s)
- C Zhang
- Department of Infectious Diseases, Fifth Medical Centre of Chinese PLA General Hospital, National Clinical Research Centre for Infectious Diseases, Beijing, China.,Guangxi AIDS Clinical Treatment Centre, The Fourth People's Hospital of Nanning, Nanning, China
| | - W Hu
- Department of Infectious Diseases, Fifth Medical Centre of Chinese PLA General Hospital, National Clinical Research Centre for Infectious Diseases, Beijing, China.,Medical School of Chinese PLA, Beijing, China
| | - J H Jin
- Department of Infectious Diseases, Fifth Medical Centre of Chinese PLA General Hospital, National Clinical Research Centre for Infectious Diseases, Beijing, China
| | - M J Zhou
- Department of Infectious Diseases, Fifth Medical Centre of Chinese PLA General Hospital, National Clinical Research Centre for Infectious Diseases, Beijing, China
| | - J W Song
- Department of Infectious Diseases, Fifth Medical Centre of Chinese PLA General Hospital, National Clinical Research Centre for Infectious Diseases, Beijing, China
| | - J N Deng
- Guangxi AIDS Clinical Treatment Centre, The Fourth People's Hospital of Nanning, Nanning, China
| | - L Huang
- Department of Infectious Diseases, Fifth Medical Centre of Chinese PLA General Hospital, National Clinical Research Centre for Infectious Diseases, Beijing, China.,Guangxi AIDS Clinical Treatment Centre, The Fourth People's Hospital of Nanning, Nanning, China
| | - S Y Wang
- Department of Infectious Diseases, Fifth Medical Centre of Chinese PLA General Hospital, National Clinical Research Centre for Infectious Diseases, Beijing, China.,Medical School of Chinese PLA, Beijing, China
| | - F S Wang
- Department of Infectious Diseases, Fifth Medical Centre of Chinese PLA General Hospital, National Clinical Research Centre for Infectious Diseases, Beijing, China.,Guangxi AIDS Clinical Treatment Centre, The Fourth People's Hospital of Nanning, Nanning, China.,Medical School of Chinese PLA, Beijing, China
| |
Collapse
|
60
|
Charap AJ, Enokida T, Brody R, Sfakianos J, Miles B, Bhardwaj N, Horowitz A. Landscape of natural killer cell activity in head and neck squamous cell carcinoma. J Immunother Cancer 2020; 8:jitc-2020-001523. [PMID: 33428584 PMCID: PMC7754625 DOI: 10.1136/jitc-2020-001523] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/16/2020] [Indexed: 12/13/2022] Open
Abstract
Head and neck squamous cell carcinoma (HNSCC) encompasses a set of cancers arising from the epithelia of the upper aerodigestive tract, accounting for a significant burden of disease worldwide due to the disease’s mortality, morbidity, and predilection for recurrence. Prognosis of HNSCC in the recurrent and/or metastatic (R/M-HNSCC) setting is especially poor and effective treatment options increasingly rely on modulating T-cell antitumor responses. Still, immunotherapy response rates are generally low, prompting the exploration of novel strategies that incorporate other effector cells within the tumor microenvironment. Within the last decade, important advances have been made leveraging the powerful innate antitumor function of natural killer (NK) cells to treat solid tumors, including head and neck squamous cell carcinoma. NK cells are hybrid innate-adaptive effector cells capable of directly eliminating tumor cells in addition to initiating adaptive antitumor immune responses. In the setting of HNSCC, NK cells are important for tumor surveillance and control, and NK cell infiltration has repeatedly been associated with a favorable prognosis. Yet, HNSCC-infiltrating NK cells are susceptible to an array of immune evasion strategies employed by tumors that must be overcome to fully realize the antitumor potential of NK cells. We believe that a conceptual framework informed by the basic biological understanding of the mechanisms underlying NK cell activation can improve treatment of HNSCC, in part by selecting for patients most likely to respond to NK cell-based immunotherapy. Herein, we review the activity of NK cells in HNSCC, paying special attention to the role of environmental and genetic determinants of NK cell antitumor function. Moreover, we explore the evidence that NK cells are a crucial determinant of the efficacy of both established and emerging treatments for HNSCC.
Collapse
Affiliation(s)
- Andrew J Charap
- Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Tomohiro Enokida
- Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Rachel Brody
- Pathology, Molecular and Cell Based Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - John Sfakianos
- Urology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Brett Miles
- Otolaryngology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Nina Bhardwaj
- Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Amir Horowitz
- Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| |
Collapse
|
61
|
Host genetics and infectious disease: new tools, insights and translational opportunities. Nat Rev Genet 2020; 22:137-153. [PMID: 33277640 PMCID: PMC7716795 DOI: 10.1038/s41576-020-00297-6] [Citation(s) in RCA: 110] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/14/2020] [Indexed: 12/22/2022]
Abstract
Understanding how human genetics influence infectious disease susceptibility offers the opportunity for new insights into pathogenesis, potential drug targets, risk stratification, response to therapy and vaccination. As new infectious diseases continue to emerge, together with growing levels of antimicrobial resistance and an increasing awareness of substantial differences between populations in genetic associations, the need for such work is expanding. In this Review, we illustrate how our understanding of the host–pathogen relationship is advancing through holistic approaches, describing current strategies to investigate the role of host genetic variation in established and emerging infections, including COVID-19, the need for wider application to diverse global populations mirroring the burden of disease, the impact of pathogen and vector genetic diversity and a broad array of immune and inflammation phenotypes that can be mapped as traits in health and disease. Insights from study of inborn errors of immunity and multi-omics profiling together with developments in analytical methods are further advancing our knowledge of this important area. Infectious diseases are an ever-present global threat. In this Review, Kwok, Mentzer and Knight discuss our latest understanding of how human genetics influence susceptibility to disease. Furthermore, they discuss emerging progress in the interplay between host and pathogen genetics, molecular responses to infection and vaccination, and opportunities to bring these aspects together for rapid responses to emerging diseases such as COVID-19.
Collapse
|
62
|
Liu G, Carter B, Gifford DK. Predicted Cellular Immunity Population Coverage Gaps for SARS-CoV-2 Subunit Vaccines and Their Augmentation by Compact Peptide Sets. Cell Syst 2020; 12:102-107.e4. [PMID: 33321075 PMCID: PMC7691134 DOI: 10.1016/j.cels.2020.11.010] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 10/18/2020] [Accepted: 11/19/2020] [Indexed: 11/25/2022]
Abstract
Subunit vaccines induce immunity to a pathogen by presenting a component of the pathogen and thus inherently limit the representation of pathogen peptides for cellular immunity-based memory. We find that severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) subunit peptides may not be robustly displayed by the major histocompatibility complex (MHC) molecules in certain individuals. We introduce an augmentation strategy for subunit vaccines that adds a small number of SARS-CoV-2 peptides to a vaccine to improve the population coverage of pathogen peptide display. Our population coverage estimates integrate clinical data on peptide immunogenicity in convalescent COVID-19 patients and machine learning predictions. We evaluate the population coverage of 9 different subunits of SARS-CoV-2, including 5 functional domains and 4 full proteins, and augment each of them to fill a predicted coverage gap. Clinical data and machine learning predict SARS-CoV-2 peptide-HLA immunogenicity Human population coverage gaps of COVID-19 subunit vaccines are predicted Subunit augmentation improves vaccine population coverage for cellular immunity Subunit-free peptide vaccines are predicted to have high population coverage
Collapse
Affiliation(s)
- Ge Liu
- MIT Computer Science and Artificial Intelligence Laboratory, Cambridge, MA, USA; MIT Electrical Engineering and Computer Science, Cambridge, MA, USA
| | - Brandon Carter
- MIT Computer Science and Artificial Intelligence Laboratory, Cambridge, MA, USA; MIT Electrical Engineering and Computer Science, Cambridge, MA, USA
| | - David K Gifford
- MIT Computer Science and Artificial Intelligence Laboratory, Cambridge, MA, USA; MIT Electrical Engineering and Computer Science, Cambridge, MA, USA; MIT Biological Engineering, Cambridge, MA, USA.
| |
Collapse
|
63
|
Ex vivo rectal explant model reveals potential opposing roles of Natural Killer cells and Marginal Zone-like B cells in HIV-1 infection. Sci Rep 2020; 10:20154. [PMID: 33214610 PMCID: PMC7677325 DOI: 10.1038/s41598-020-76976-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Accepted: 10/28/2020] [Indexed: 12/15/2022] Open
Abstract
Our understanding of innate immune responses in human rectal mucosal tissues (RM) and their contributions to promoting or restricting HIV transmission is limited. We defined the RM composition of innate and innate-like cell subsets, including plasmacytoid dendritic cells; CD1c + myeloid DCs; neutrophils; macrophages; natural killer cells (NK); Marginal Zone-like B cells (MZB); γδ T cells; and mucosal-associated invariant T cells in RM from 69 HIV-negative men by flow cytometry. Associations between these cell subsets and HIV-1 replication in ex vivo RM explant challenge experiments revealed an inverse correlation between RM-NK and p24 production, in contrast to a positive association between RM-MZB and HIV replication. Comparison of RM and blood-derived MZB and NK illustrated qualitative and quantitative differences between tissue compartments. Additionally, 22 soluble molecules were measured in a subset of explant cultures (n = 26). Higher production of IL-17A, IFN-γ, IL-10, IP-10, GM-CSF, sFasL, Granzyme A, Granzyme B, Granulysin, and Perforin following infection positively correlated with HIV replication. These data show novel associations between MZB and NK cells and p24 production in RM and underscore the importance of inflammatory cytokines in mucosal HIV infection, demonstrating the likely critical role these innate immune responses play in early mucosal HIV replication in humans.
Collapse
|
64
|
Mbiribindi B, Pena JK, Arvedson MP, Moreno Romero C, McCarthy SR, Hatton OL, Esquivel CO, Martinez OM, Krams SM. Epstein-Barr virus peptides derived from latent cycle proteins alter NKG2A + NK cell effector function. Sci Rep 2020; 10:19973. [PMID: 33203899 PMCID: PMC7673117 DOI: 10.1038/s41598-020-76344-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 10/21/2020] [Indexed: 12/11/2022] Open
Abstract
Natural killer (NK) cells control viral infection through the interaction between inhibitory receptors and human leukocyte antigen (HLA) ligands and bound peptide. NK cells expressing the inhibitory receptor NKG2A/CD94 recognize and respond to autologous B cells latently infected with Epstein-Barr virus (EBV). The mechanism is not yet understood, thus we investigated peptides derived from seven latent proteins of EBV in the interaction of NKG2A and its ligand HLA-E. Functional analysis demonstrated that EBV peptides can bind to HLA-E and block inhibition of NK cell effector function. Moreover, analysis of DNA from 79 subjects showed sequence variations in the latent protein, LMP1, which alters NK responses to EBV. We provide evidence that peptides derived from EBV latent cycle proteins can impair the recognition of NKG2A despite being presented by HLA-E, resulting in NK cell activation.
Collapse
Affiliation(s)
- Berenice Mbiribindi
- Division of Abdominal Transplantation, Department of Surgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Josselyn K Pena
- Division of Abdominal Transplantation, Department of Surgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Matthew P Arvedson
- Division of Abdominal Transplantation, Department of Surgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Claudia Moreno Romero
- Division of Abdominal Transplantation, Department of Surgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Sarah R McCarthy
- Division of Abdominal Transplantation, Department of Surgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Olivia L Hatton
- Department of Molecular Biology, Colorado College, Colorado Springs, CO, USA
| | - Carlos O Esquivel
- Division of Abdominal Transplantation, Department of Surgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Olivia M Martinez
- Division of Abdominal Transplantation, Department of Surgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Sheri M Krams
- Division of Abdominal Transplantation, Department of Surgery, Stanford University School of Medicine, Stanford, CA, USA.
| |
Collapse
|
65
|
Borst L, van der Burg SH, van Hall T. The NKG2A-HLA-E Axis as a Novel Checkpoint in the Tumor Microenvironment. Clin Cancer Res 2020; 26:5549-5556. [PMID: 32409305 DOI: 10.1158/1078-0432.ccr-19-2095] [Citation(s) in RCA: 138] [Impact Index Per Article: 27.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 03/31/2020] [Accepted: 05/12/2020] [Indexed: 11/16/2022]
Abstract
The success of checkpoint blockade therapy revolutionized cancer treatment. However, we need to increase the fraction of responding patients and overcome acquired resistance to these therapies. Recently, the inhibitory receptor NKG2A received attention as a new kid on the block of immune checkpoints. This receptor is selectively expressed on cytotoxic lymphocytes, including natural killer cells and CD8 T cells, and NKG2A+ T cells are preferentially residing in tissues, like the tumor microenvironment. Its ligand, histocompatibility leucocyte antigen E (HLA-E), is a conserved nonclassical HLA class I molecule that binds a limited peptide repertoire and its expression is commonly detected in human cancer. NKG2A blockade as a standalone therapy appears poorly effective in mouse tumor models, however, in the presence of activated T cells, for example, induced by PD-1/PD-L1 blockade or cancer vaccines, exerts strongly enhanced efficacy. Clinical trials demonstrated safety of the humanized NKG2A-blocking antibody, monalizumab, and first results of phase II trials demonstrate encouraging durable response rates. Further development of this axis is clearly warranted.
Collapse
Affiliation(s)
- Linda Borst
- Department of Medical Oncology, Oncode Institute, Leiden University Medical Center, Leiden, the Netherlands.
| | - Sjoerd H van der Burg
- Department of Medical Oncology, Oncode Institute, Leiden University Medical Center, Leiden, the Netherlands
| | - Thorbald van Hall
- Department of Medical Oncology, Oncode Institute, Leiden University Medical Center, Leiden, the Netherlands.
| |
Collapse
|
66
|
Camacho-Bydume C, Wang T, Sees JA, Fernandez-Viña M, Abid MB, Askar M, Beitinjaneh A, Brown V, Castillo P, Chhabra S, Gadalla SM, Hsu JM, Kamoun M, Lazaryan A, Nishihori T, Page K, Schetelig J, Fleischhauer K, Marsh SGE, Paczesny S, Spellman SR, Lee SJ, Hsu KC. Specific Class I HLA Supertypes but Not HLA Zygosity or Expression Are Associated with Outcomes following HLA-Matched Allogeneic Hematopoietic Cell Transplant: HLA Supertypes Impact Allogeneic HCT Outcomes. Transplant Cell Ther 2020; 27:142.e1-142.e11. [PMID: 33053450 DOI: 10.1016/j.bbmt.2020.10.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 09/30/2020] [Accepted: 10/07/2020] [Indexed: 12/12/2022]
Abstract
Maximizing the probability of antigen presentation to T cells through diversity in HLAs can enhance immune responsiveness and translate into improved clinical outcomes, as evidenced by the association of heterozygosity and supertypes at HLA class I loci with improved survival in patients with advanced solid tumors treated with immune checkpoint inhibitors. We investigated the impact of HLA heterozygosity, supertypes, and surface expression on outcomes in adult and pediatric patients with acute myeloid leukemia (AML), myelodysplastic syndrome, acute lymphoblastic leukemia, and non-Hodgkin lymphoma who underwent 8/8 HLA-matched, T cell replete, unrelated, allogeneic hematopoietic cell transplant (HCT) from 2000 to 2015 using patient data reported to the Center for International Blood and Marrow Transplant Research. HLA class I heterozygosity and HLA expression were not associated with overall survival, relapse, transplant-related mortality (TRM), disease-free survival (DFS), and acute graft-versus-host disease following HCT. The HLA-B62 supertype was associated with decreased TRM in the entire patient cohort (hazard ratio [HR], 0.79; 95% CI, 0.69 to 0.90; P = .00053). The HLA-B27 supertype was associated with worse DFS in patients with AML (HR = 1.21; 95% CI, 1.10 to 1.32; P = .00005). These findings suggest that the survival benefit of HLA heterozygosity seen in solid tumor patients receiving immune checkpoint inhibitors does not extend to patients undergoing allogeneic HCT. Certain HLA supertypes, however, are associated with TRM and DFS, suggesting that similarities in peptide presentation between supertype members play a role in these outcomes. Beyond implications for prognosis following HCT, these findings support the further investigation of these HLA supertypes and the specific immune peptides important for transplant outcomes.
Collapse
Affiliation(s)
| | - Tao Wang
- Division of Biostatistics, Medical College of Wisconsin, Milwaukee, WI
| | - Jennifer A Sees
- Center for International Blood and Marrow Transplant Research, National Marrow Donor Program/Be The Match, Minneapolis, MN
| | | | - Muhammad Bilal Abid
- Divisions of Hematology/Oncology and Infectious Diseases, Department of Medicine, Medical College of Wisconsin, Milwaukee, WI
| | - Medhat Askar
- Department of Pathology and Laboratory Medicine, Baylor University Medical Center, Dallas, Texas
| | - Amer Beitinjaneh
- Department of Medicine, Division of Transplantation and Cellular Therapy, University of Miami, Miami, Florida
| | - Valerie Brown
- Division of Pediatric Hematology/Oncology, Department of Pediatrics, Penn State Hershey Children's Hospital and College of Medicine, Hershey, Pennsylvania
| | - Paul Castillo
- Division of Pediatric Hematology/Oncology, Department of Pediatrics, University of Florida Health Shands Children's Hospital, Gainesville, FL
| | - Saurabh Chhabra
- Division of Hematology/Oncology, Department of Medicine, Medical College of Wisconsin, Milwaukee, WI
| | - Shahinaz M Gadalla
- Division of Cancer Epidemiology & Genetics, NIH-NCI Clinical Genetics Branch, Rockville, Maryland
| | - Jing-Mei Hsu
- Division of Hematology/Oncology, Department of Medicine, Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine/New York Presbyterian Hospital, New York, NY
| | - Malek Kamoun
- Deparment of Pathology and Laboratory Medicine, Perelman School of Medicine, Hospital of the University of Pennsylvania, Philadelphia, PA
| | - Aleksandr Lazaryan
- Department of Blood and Marrow Transplant and Cellular Immunotherapy (BMT CI), Moffitt Cancer Center, Tampa, Florida
| | - Taiga Nishihori
- Department of Blood and Marrow Transplant and Cellular Immunotherapy (BMT CI), Moffitt Cancer Center, Tampa, Florida
| | - Kristin Page
- Division of Pediatric Blood and Marrow Transplantation, Duke University Medical Center, Durham, North Carolina
| | - Johannes Schetelig
- Department of Internal Medicine I, University Hospital Carl Gustav Carus Dresden, Dresden, Germany
| | | | - Steven G E Marsh
- Anthony Nolan Research Institute, Royal Free Hospital, London, UK; UCL Cancer Institute, London, UK
| | - Sophie Paczesny
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC
| | - Stephen R Spellman
- Center for International Blood and Marrow Transplant Research, National Marrow Donor Program/Be The Match, Minneapolis, MN
| | - Stephanie J Lee
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington; Department of Medicine, University of Washington, Seattle, WA
| | - Katharine C Hsu
- Department of Medicine, Adult Bone Marrow Transplantation Service, Memorial Sloan Kettering Cancer Center, New York, New York; Department of Medicine, Weill Cornell Medical College, New York, New York; Human Oncology & Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York.
| |
Collapse
|
67
|
Petersdorf EW, Bengtsson M, De Santis D, Dubois V, Fleischhauer K, Gooley T, Horowitz M, Madrigal JA, Malkki M, McKallor C, Morishima Y, Oudshoorn M, Spellman SR, Villard J, Stevenson P, Carrington M. Role of HLA-DP Expression in Graft-Versus-Host Disease After Unrelated Donor Transplantation. J Clin Oncol 2020; 38:2712-2718. [PMID: 32479188 PMCID: PMC7430213 DOI: 10.1200/jco.20.00265] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/28/2020] [Indexed: 01/15/2023] Open
Abstract
PURPOSE The main aim of this study was to evaluate the significance of HLA-DPB1 expression in acute graft-versus-host disease (GVHD) after hematopoietic cell transplantation (HCT) from HLA-A, -B, -C, -DRB1, -DQB1-matched and -mismatched unrelated donors. PATIENTS AND METHODS Between January 1, 2017, and January 10, 2019, we assessed 19,136 patients who received HCT from an HLA-A, -B, -C, -DRB1, -DQB1-matched or -mismatched unrelated donor performed in Australia, the European Union, Japan, North America, and the United Kingdom between 1988 and 2016. Among transplant recipients with one HLA-DPB1 mismatch, the patient's mismatched HLA-DPB1 allotype was defined as low or high expression. Multivariable regression models were used to assess risks of GVHD associated with high expression relative to low expression HLA-DPB1 mismatches. The effect of increasing numbers of HLA-DPB1 mismatches on clinical outcome was assessed in HLA-mismatched transplant recipients. RESULTS In HLA-A, -B, -C, -DRB1,-DQB1-matched transplant recipients, donor mismatching against one high-expression patient HLA-DPB1 increased moderate (odds ratio [OR], 1.36; P = .001) and severe acute GVHD (OR, 1.32; P = .0016) relative to low-expression patient mismatches, regardless of the expression level of the donor's mismatched HLA-DPB1. Among transplant recipients with one HLA-A, -B, -C, -DRB1, or -DQB1 mismatch, the odds of acute GVHD increased with increasing numbers of HLA-DPB1 mismatches (OR, 1.23 for one; OR, 1.40 for two mismatches relative to zero mismatches for moderate GVHD; OR, 1.19 for one; OR, 1.40 for two mismatches relative to zero for severe GVHD), but not with the level of expression of the patient's mismatched HLA-DPB1 allotype. CONCLUSION The level of expression of patient HLA-DPB1 mismatches informs the risk of GVHD after HLA-A, -B, -C, -DRB1, -DQB1-matched unrelated HCT, and the total number of HLA-DPB1 mismatches informs the risk of GVHD after HLA-mismatched unrelated HCT. Prospective consideration of HLA-DPB1 may help to lower GVHD risks after transplantation.
Collapse
Affiliation(s)
- Effie W. Petersdorf
- Division of Clinical Research, Fred Hutchinson Cancer Research Center, Seattle, WA
- Department of Medicine, University of Washington, Seattle, WA
| | - Mats Bengtsson
- Department of Immunology, Genetics, and Pathology, University of Uppsala, Uppsala, Sweden
| | | | - Valerie Dubois
- Etablissement Français du Sang Auvergne Rhône Alpes, site de Lyon, Décines, France
| | - Katharina Fleischhauer
- Institute for Experimental Cellular Therapy, University of Duisburg-Essen, Essen, Germany
| | - Ted Gooley
- Division of Clinical Research, Fred Hutchinson Cancer Research Center, Seattle, WA
| | - Mary Horowitz
- Center for International Blood and Marrow Transplant Research, Milwaukee, WI
- Division of Hematology and Oncology, Medical College of Wisconsin, Milwaukee, WI
| | | | - Mari Malkki
- Division of Clinical Research, Fred Hutchinson Cancer Research Center, Seattle, WA
| | - Caroline McKallor
- Division of Clinical Research, Fred Hutchinson Cancer Research Center, Seattle, WA
| | - Yasuo Morishima
- Aichi Medical University School of Medicine, Nagakute, Aichi, Japan
| | - Machteld Oudshoorn
- Leiden University Medical Centre, Department Immunohematology and Blood Transfusion, Leiden, the Netherlands
- Matchis Foundation, Leiden, the Netherlands
| | - Stephen R. Spellman
- Center for International Blood and Marrow Transplant Research, Minneapolis, MN
| | | | - Phil Stevenson
- Division of Clinical Research, Fred Hutchinson Cancer Research Center, Seattle, WA
| | - Mary Carrington
- Basic Science Program, Frederick National Laboratory for Cancer Research, Frederick, MD
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University, Cambridge, MA
| | - on behalf of the
- Division of Clinical Research, Fred Hutchinson Cancer Research Center, Seattle, WA
- Department of Medicine, University of Washington, Seattle, WA
- Department of Immunology, Genetics, and Pathology, University of Uppsala, Uppsala, Sweden
- PathWest, Fiona Stanley Hospital, Perth, WA, Australia
- Etablissement Français du Sang Auvergne Rhône Alpes, site de Lyon, Décines, France
- Institute for Experimental Cellular Therapy, University of Duisburg-Essen, Essen, Germany
- Center for International Blood and Marrow Transplant Research, Milwaukee, WI
- Division of Hematology and Oncology, Medical College of Wisconsin, Milwaukee, WI
- Anthony Nolan Research Institute, Royal Free Hospital, London, United Kingdom
- Aichi Medical University School of Medicine, Nagakute, Aichi, Japan
- Leiden University Medical Centre, Department Immunohematology and Blood Transfusion, Leiden, the Netherlands
- Matchis Foundation, Leiden, the Netherlands
- Center for International Blood and Marrow Transplant Research, Minneapolis, MN
- Geneva University Hospital, Geneva, Switzerland
- Basic Science Program, Frederick National Laboratory for Cancer Research, Frederick, MD
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University, Cambridge, MA
| | - International Histocompatibility Working Group in Hematopoietic-Cell Transplantation
- Division of Clinical Research, Fred Hutchinson Cancer Research Center, Seattle, WA
- Department of Medicine, University of Washington, Seattle, WA
- Department of Immunology, Genetics, and Pathology, University of Uppsala, Uppsala, Sweden
- PathWest, Fiona Stanley Hospital, Perth, WA, Australia
- Etablissement Français du Sang Auvergne Rhône Alpes, site de Lyon, Décines, France
- Institute for Experimental Cellular Therapy, University of Duisburg-Essen, Essen, Germany
- Center for International Blood and Marrow Transplant Research, Milwaukee, WI
- Division of Hematology and Oncology, Medical College of Wisconsin, Milwaukee, WI
- Anthony Nolan Research Institute, Royal Free Hospital, London, United Kingdom
- Aichi Medical University School of Medicine, Nagakute, Aichi, Japan
- Leiden University Medical Centre, Department Immunohematology and Blood Transfusion, Leiden, the Netherlands
- Matchis Foundation, Leiden, the Netherlands
- Center for International Blood and Marrow Transplant Research, Minneapolis, MN
- Geneva University Hospital, Geneva, Switzerland
- Basic Science Program, Frederick National Laboratory for Cancer Research, Frederick, MD
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University, Cambridge, MA
| |
Collapse
|
68
|
Alrubayyi A, Ogbe A, Moreno Cubero E, Peppa D. Harnessing Natural Killer Cell Innate and Adaptive Traits in HIV Infection. Front Cell Infect Microbiol 2020; 10:395. [PMID: 32850493 PMCID: PMC7417314 DOI: 10.3389/fcimb.2020.00395] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Accepted: 06/26/2020] [Indexed: 12/13/2022] Open
Abstract
Despite efficient virological suppression on antiretroviral therapy (ART), people living with HIV (PLWH), experience an increased burden of premature co-morbidities, such as cancer and end-organ disease. With remaining challenges in terms of access to therapy, adherence and potential long-term drug toxicity, improving their long-term healthcare outcome, including new strategies for HIV clearance, remains a global priority. There is, therefore, an ongoing need to better characterize and harness the immune response in order to develop new strategies and supplement current therapeutic approaches for a “functional” cure. Current efforts toward HIV eradication to enhance immune recognition and elimination of persistently infected cells have highlighted the need for an optimized “kill” approach. Natural killer (NK) cells play an important role in antiviral defense and by virtue of their innate and adaptive features hold great promise as a focus of “kill” efforts. Galvanized by advances in the cancer field, NK cell exploitation, represents a transformative approach to augment HIV therapeutic modalities, circumventing many of the limitations inherent to T cell approaches. In this review we will discuss recent advances in our understanding of the development of NK cell adaptive/memory responses in HIV infection and highlight new and exciting opportunities to exploit the beneficial attributes of NK cells for HIV immunotherapy.
Collapse
Affiliation(s)
- Aljawharah Alrubayyi
- Nuffield Department of Clinical Medicine, University of Oxford, Oxford, United Kingdom
| | - Ane Ogbe
- Peter Medawar Building for Pathogen Research, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Elia Moreno Cubero
- Nuffield Department of Clinical Medicine, University of Oxford, Oxford, United Kingdom
| | - Dimitra Peppa
- Nuffield Department of Clinical Medicine, University of Oxford, Oxford, United Kingdom.,Department of HIV, Mortimer Market Centre, CNWL NHS Trust, London, OH, United Kingdom
| |
Collapse
|
69
|
Petersdorf EW, Stevenson P, Bengtsson M, De Santis D, Dubois V, Gooley T, Horowitz M, Hsu K, Madrigal JA, Malkki M, McKallor C, Morishima Y, Oudshoorn M, Spellman SR, Villard J, Carrington M. HLA-B leader and survivorship after HLA-mismatched unrelated donor transplantation. Blood 2020; 136:362-369. [PMID: 32483623 PMCID: PMC7365916 DOI: 10.1182/blood.2020005743] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Accepted: 05/02/2020] [Indexed: 11/20/2022] Open
Abstract
Hematopoietic cell transplantation (HCT) from HLA-mismatched unrelated donors can cure life-threatening blood disorders, but its success is limited by graft-versus-host disease (GVHD). HLA-B leaders encode methionine (M) or threonine (T) at position 2 and give rise to TT, MT, or MM genotypes. The dimorphic HLA-B leader informs GVHD risk in HLA-B-mismatched HCT. If the leader influences outcome in other HLA-mismatched transplant settings, the success of HCT could be improved for future patients. We determined leader genotypes for 10 415 patients receiving a transplant between 1988 and 2016 from unrelated donors with one HLA-A, HLA-B, HLA-C, HLA-DRB1, or HLA-DQB1 mismatch. Multivariate regression methods were used to evaluate risks associated with patient leader genotype according to the mismatched HLA locus and with HLA-A, HLA-B, HLA-C, HLA-DRB1, or HLA-DQB1 mismatching according to patient leader genotype. The impact of the patient leader genotype on acute GVHD and mortality varied across different mismatched HLA loci. Nonrelapse mortality was higher among HLA-DQB1-mismatched MM patients compared with HLA-DQB1-mismatched TT patients (hazard ratio, 1.35; P = .01). Grades III to IV GVHD risk was higher among HLA-DRB1-mismatched MM or MT patients compared with HLA-DRB1-mismatched TT patients (odds ratio, 2.52 and 1.51, respectively). Patients tolerated a single HLA-DQB1 mismatch better than mismatches at other loci. Outcome after HLA-mismatched transplantation depends on the HLA-B leader dimorphism and the mismatched HLA locus. The patient's leader variant provides new information on the limits of HLA mismatching. The success of HLA-mismatched unrelated transplantation might be enhanced through the judicious selection of mismatched donors for a patient's leader genotype.
Collapse
Affiliation(s)
- Effie W Petersdorf
- Division of Clinical Research, Fred Hutchinson Cancer Research Center, Seattle, WA
- Department of Medicine, University of Washington, Seattle, WA
| | - Philip Stevenson
- Division of Clinical Research, Fred Hutchinson Cancer Research Center, Seattle, WA
| | - Mats Bengtsson
- Department of Immunology, Genetics and Pathology, University of Uppsala, Uppsala, Sweden
| | | | - Valerie Dubois
- Etablissement Français du Sang Auvergne Rhône Alpes, Lyon, France
| | - Ted Gooley
- Division of Clinical Research, Fred Hutchinson Cancer Research Center, Seattle, WA
| | - Mary Horowitz
- Center for International Blood and Marrow Transplant Research, Milwaukee, WI
- Division of Hematology and Oncology, Medical College of Wisconsin, Milwaukee, WI
| | - Katharine Hsu
- Memorial Sloan Kettering Cancer Center, New York, NY
| | | | - Mari Malkki
- Division of Clinical Research, Fred Hutchinson Cancer Research Center, Seattle, WA
| | - Caroline McKallor
- Division of Clinical Research, Fred Hutchinson Cancer Research Center, Seattle, WA
| | | | - Machteld Oudshoorn
- Leiden University Medical Centre, Leiden, The Netherlands
- Matchis Foundation, Leiden, The Netherlands
| | - Stephen R Spellman
- Center for International Blood and Marrow Transplant Research, Minneapolis, MN
| | | | - Mary Carrington
- Basic Science Program, Frederick National Laboratory for Cancer Research, Frederick, MD; and
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard, Cambridge, MA
| |
Collapse
|
70
|
Vabret N, Britton GJ, Gruber C, Hegde S, Kim J, Kuksin M, Levantovsky R, Malle L, Moreira A, Park MD, Pia L, Risson E, Saffern M, Salomé B, Esai Selvan M, Spindler MP, Tan J, van der Heide V, Gregory JK, Alexandropoulos K, Bhardwaj N, Brown BD, Greenbaum B, Gümüş ZH, Homann D, Horowitz A, Kamphorst AO, Curotto de Lafaille MA, Mehandru S, Merad M, Samstein RM. Immunology of COVID-19: Current State of the Science. Immunity 2020; 52:910-941. [PMID: 32505227 PMCID: PMC7200337 DOI: 10.1016/j.immuni.2020.05.002] [Citation(s) in RCA: 1171] [Impact Index Per Article: 234.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The coronavirus disease 2019 (COVID-19) pandemic, caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has affected millions of people worldwide, igniting an unprecedented effort from the scientific community to understand the biological underpinning of COVID19 pathophysiology. In this Review, we summarize the current state of knowledge of innate and adaptive immune responses elicited by SARS-CoV-2 infection and the immunological pathways that likely contribute to disease severity and death. We also discuss the rationale and clinical outcome of current therapeutic strategies as well as prospective clinical trials to prevent or treat SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Nicolas Vabret
- Precision Immunology Institute at the Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| | - Graham J Britton
- Precision Immunology Institute at the Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Conor Gruber
- Precision Immunology Institute at the Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Samarth Hegde
- Precision Immunology Institute at the Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Joel Kim
- Precision Immunology Institute at the Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Maria Kuksin
- Precision Immunology Institute at the Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Rachel Levantovsky
- Precision Immunology Institute at the Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Louise Malle
- Precision Immunology Institute at the Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Alvaro Moreira
- Precision Immunology Institute at the Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Matthew D Park
- Precision Immunology Institute at the Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Luisanna Pia
- Precision Immunology Institute at the Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Emma Risson
- Precision Immunology Institute at the Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Miriam Saffern
- Precision Immunology Institute at the Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Bérengère Salomé
- Precision Immunology Institute at the Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Myvizhi Esai Selvan
- Precision Immunology Institute at the Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Matthew P Spindler
- Precision Immunology Institute at the Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Jessica Tan
- Precision Immunology Institute at the Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Verena van der Heide
- Precision Immunology Institute at the Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Jill K Gregory
- Precision Immunology Institute at the Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | | | - Nina Bhardwaj
- Precision Immunology Institute at the Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Brian D Brown
- Precision Immunology Institute at the Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Benjamin Greenbaum
- Precision Immunology Institute at the Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Zeynep H Gümüş
- Precision Immunology Institute at the Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Dirk Homann
- Precision Immunology Institute at the Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Amir Horowitz
- Precision Immunology Institute at the Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Alice O Kamphorst
- Precision Immunology Institute at the Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | | | - Saurabh Mehandru
- Precision Immunology Institute at the Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Miriam Merad
- Precision Immunology Institute at the Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| | - Robert M Samstein
- Precision Immunology Institute at the Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
71
|
Gingras SN, Tang D, Tuff J, McLaren PJ. Minding the gap in HIV host genetics: opportunities and challenges. Hum Genet 2020; 139:865-875. [PMID: 32409920 PMCID: PMC7272494 DOI: 10.1007/s00439-020-02177-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Accepted: 03/12/2020] [Indexed: 12/15/2022]
Abstract
Genome-wide association studies (GWAS) have been successful in identifying and confirming novel genetic variants that are associated with diverse HIV phenotypes. However, these studies have predominantly focused on European cohorts. HLA molecules have been consistently associated with HIV outcomes, some of which have been found to be population specific, underscoring the need for diversity in GWAS. Recently, there has been a concerted effort to address this gap that leads to health care (disease prevention, diagnosis, treatment) disparities with marginal improvement. As precision medicine becomes more utilized, non-European individuals will be more and more disadvantaged, as the genetic variants identified in genomic research based on European populations may not accurately reflect that of non-European individuals. Leveraging pre-existing, large, multiethnic cohorts, such as the UK Biobank, 23andMe, and the National Institute of Health's All of Us Research Program, can contribute in raising genomic research in non-European populations and ultimately lead to better health outcomes.
Collapse
Affiliation(s)
- Shanelle N. Gingras
- JC Wilt Infectious Diseases Research Centre, National HIV and Retrovirology Lab, National Microbiology Laboratories, Public Health Agency of Canada, Winnipeg, Canada
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, Canada
| | - David Tang
- JC Wilt Infectious Diseases Research Centre, National HIV and Retrovirology Lab, National Microbiology Laboratories, Public Health Agency of Canada, Winnipeg, Canada
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, Canada
| | - Jeffrey Tuff
- JC Wilt Infectious Diseases Research Centre, National HIV and Retrovirology Lab, National Microbiology Laboratories, Public Health Agency of Canada, Winnipeg, Canada
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, Canada
| | - Paul J. McLaren
- JC Wilt Infectious Diseases Research Centre, National HIV and Retrovirology Lab, National Microbiology Laboratories, Public Health Agency of Canada, Winnipeg, Canada
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, Canada
| |
Collapse
|
72
|
Olson E, Geng J, Raghavan M. Polymorphisms of HLA-B: influences on assembly and immunity. Curr Opin Immunol 2020; 64:137-145. [PMID: 32619904 PMCID: PMC7772265 DOI: 10.1016/j.coi.2020.05.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Accepted: 05/22/2020] [Indexed: 01/07/2023]
Abstract
The major histocompatibility class I (MHC-I) complex functions in innate and adaptive immunity, mediating surveillance of the subcellular environment. In humans, MHC-I heavy chains are encoded by three genes: the human leukocyte antigen (HLA)-A, HLA-B, and HLA-C. These genes are highly polymorphic, which results in the expression, typically, of six different HLA class I (HLA-I) proteins on the cell surface, and the presentation of diverse peptide antigens to CD8+ T cells for broad surveillance against many pathogenic conditions. Recent studies of HLA-B allotypes show that the polymorphisms, not surprisingly, also significantly impact protein folding and assembly pathways. The use of non-canonical assembly routes and the generation of non-canonical HLA-B conformers has consequences for immune receptor interactions and disease therapies.
Collapse
Affiliation(s)
- Eli Olson
- Graduate Program in Immunology, Michigan Medicine, University of Michigan, Ann Arbor, MI 48109, USA
| | - Jie Geng
- Department of Microbiology and Immunology, Michigan Medicine, University of Michigan, Ann Arbor, MI 48109, USA
| | - Malini Raghavan
- Department of Microbiology and Immunology, Michigan Medicine, University of Michigan, Ann Arbor, MI 48109, USA.
| |
Collapse
|
73
|
Zhao NQ, Ferreira AM, Grant PM, Holmes S, Blish CA. Treated HIV Infection Alters Phenotype but Not HIV-Specific Function of Peripheral Blood Natural Killer Cells. Front Immunol 2020; 11:829. [PMID: 32477342 PMCID: PMC7235409 DOI: 10.3389/fimmu.2020.00829] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2020] [Accepted: 04/14/2020] [Indexed: 12/14/2022] Open
Abstract
Natural killer (NK) cells are the predominant antiviral cells of the innate immune system, and may play an important role in acquisition and disease progression of HIV. While untreated HIV infection is associated with distinct alterations in the peripheral blood NK cell repertoire, less is known about how NK phenotype is altered in the setting of long-term viral suppression with antiretroviral therapy (ART), as well as how NK memory can impact functional responses. As such, we sought to identify changes in NK cell phenotype and function using high-dimensional mass cytometry to simultaneously analyze both surface and functional marker expression of peripheral blood NK cells in a cohort of ART-suppressed, HIV+ patients and HIV- healthy controls. We found that the NK cell repertoire following IL-2 treatment was altered in individuals with treated HIV infection compared to healthy controls, with increased expression of markers including NKG2C and CD2, and decreased expression of CD244 and NKp30. Using co-culture assays with autologous, in vitro HIV-infected CD4 T cells, we identified a subset of NK cells with enhanced responsiveness to HIV-1-infected cells, but no differences in the magnitude of anti-HIV NK cell responses between the HIV+ and HIV− groups. In addition, by profiling of NK cell receptors on responding cells, we found similar phenotypes of HIV-responsive NK cell subsets in both groups. Lastly, we identified clusters of NK cells that are altered in individuals with treated HIV infection compared to healthy controls, but found that these clusters are distinct from those that respond to HIV in vitro. As such, we conclude that while chronic, treated HIV infection induces a reshaping of the IL-2-stimulated peripheral blood NK cell repertoire, it does so in a way that does not make the repertoire more HIV-specific.
Collapse
Affiliation(s)
- Nancy Q Zhao
- Immunology Program, Stanford University School of Medicine, Stanford, CA, United States.,Department of Medicine, Stanford University School of Medicine, Stanford, CA, United States
| | - Anne-Maud Ferreira
- Department of Statistics, Stanford University School of Medicine, Stanford, CA, United States
| | - Philip M Grant
- Department of Medicine, Stanford University School of Medicine, Stanford, CA, United States
| | - Susan Holmes
- Department of Statistics, Stanford University School of Medicine, Stanford, CA, United States
| | - Catherine A Blish
- Immunology Program, Stanford University School of Medicine, Stanford, CA, United States.,Department of Medicine, Stanford University School of Medicine, Stanford, CA, United States.,Chan Zuckerberg Biohub, San Francisco, CA, United States
| |
Collapse
|
74
|
Ranganath T, Simpson LJ, Ferreira AM, Seiler C, Vendrame E, Zhao N, Fontenot JD, Holmes S, Blish CA. Characterization of the Impact of Daclizumab Beta on Circulating Natural Killer Cells by Mass Cytometry. Front Immunol 2020; 11:714. [PMID: 32391016 PMCID: PMC7194113 DOI: 10.3389/fimmu.2020.00714] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Accepted: 03/30/2020] [Indexed: 12/11/2022] Open
Abstract
Daclizumab beta is a humanized monoclonal antibody that binds to CD25 and selectively inhibits high-affinity IL-2 receptor signaling. As a former treatment for relapsing forms of multiple sclerosis (RMS), daclizumab beta induces robust expansion of the CD56bright subpopulation of NK cells that is correlated with the drug’s therapeutic effects. As NK cells represent a heterogeneous population of lymphocytes with a range of phenotypes and functions, the goal of this study was to better understand how daclizumab beta altered the NK cell repertoire to provide further insight into the possible mechanism(s) of action in RMS. We used mass cytometry to evaluate expression patterns of NK cell markers and provide a comprehensive assessment of the NK cell repertoire in individuals with RMS treated with daclizumab beta or placebo over the course of 1 year. Treatment with daclizumab beta significantly altered the NK cell repertoire compared to placebo treatment. As previously reported, daclizumab beta significantly increased expression of CD56 on total NK cells. Within the CD56bright NK cells, treatment was associated with multiple phenotypic changes, including increased expression of NKG2A and NKp44, and diminished expression of CD244, CD57, and NKp46. These alterations occurred broadly across the CD56bright population, and were not associated with a specific subset of CD56bright NK cells. While the changes were less dramatic, CD56dim NK cells responded distinctly to daclizumab beta treatment, with higher expression of CD2 and NKG2A, and lower expression of FAS-L, HLA-DR, NTB-A, NKp30, and Perforin. Together, these data indicate that the expanded CD56bright NK cells share features of both immature and mature NK cells. These findings show that daclizumab beta treatment is associated with unique changes in NK cells that may enhance their ability to kill autoreactive T cells or to exert immunomodulatory functions.
Collapse
Affiliation(s)
- Thanmayi Ranganath
- Department of Medicine, Stanford University School of Medicine, Stanford, CA, United States
| | - Laura J Simpson
- Department of Medicine, Stanford University School of Medicine, Stanford, CA, United States
| | - Anne-Maud Ferreira
- Department of Statistics, Stanford University, Stanford, CA, United States
| | - Christof Seiler
- Department of Statistics, Stanford University, Stanford, CA, United States
| | - Elena Vendrame
- Department of Medicine, Stanford University School of Medicine, Stanford, CA, United States
| | - Nancy Zhao
- Department of Medicine, Stanford University School of Medicine, Stanford, CA, United States
| | | | - Susan Holmes
- Department of Statistics, Stanford University, Stanford, CA, United States
| | - Catherine A Blish
- Department of Medicine, Stanford University School of Medicine, Stanford, CA, United States.,Chan Zuckerberg Biohub, San Francisco, CA, United States
| |
Collapse
|
75
|
Paiardini M, Dhodapkar K, Harper J, Deeks SG, Ahmed R. Editorial: HIV and Cancer Immunotherapy: Similar Challenges and Converging Approaches. Front Immunol 2020; 11:519. [PMID: 32296432 PMCID: PMC7138010 DOI: 10.3389/fimmu.2020.00519] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Accepted: 03/06/2020] [Indexed: 12/19/2022] Open
Affiliation(s)
- Mirko Paiardini
- Division of Microbiology and Immunology, Yerkes National Primate Research Center, Emory University, Atlanta, GA, United States.,Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA, United States
| | - Kavita Dhodapkar
- Department of Pediatrics, Emory University School of Medicine and Children's Healthcare of Atlanta, Atlanta, GA, United States
| | - Justin Harper
- Division of Microbiology and Immunology, Yerkes National Primate Research Center, Emory University, Atlanta, GA, United States
| | - Steven G Deeks
- Division of Experimental Medicine, University of California, San Francisco, San Francisco, CA, United States
| | - Rafi Ahmed
- Emory Vaccine Center and Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA, United States
| |
Collapse
|
76
|
Jin JH, Huang HH, Zhou MJ, Li J, Hu W, Huang L, Xu Z, Tu B, Yang G, Shi M, Jiao YM, Fan X, Song JW, Zhang JY, Zhang C, Wang FS. Virtual memory CD8+ T cells restrain the viral reservoir in HIV-1-infected patients with antiretroviral therapy through derepressing KIR-mediated inhibition. Cell Mol Immunol 2020; 17:1257-1265. [PMID: 32210395 DOI: 10.1038/s41423-020-0408-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2019] [Accepted: 03/03/2020] [Indexed: 01/10/2023] Open
Abstract
The viral reservoir is the major hurdle in developing and establishing an HIV cure. Understanding factors affecting the size and decay of this reservoir is crucial for the development of therapeutic strategies. Recent work highlighted that CD8+ T cells are involved in the control of viral replication in ART-treated HIV-1-infected individuals, but how CD8+ T cells sense and restrict the HIV reservoir are not fully understood. Here, we demonstrate that a population of unconventional CD45RA+, PanKIR+, and/or NKG2A+ virtual memory CD8+ T cells (TVM cells), which confer rapid and robust protective immunity against pathogens, plays an important role in restraining the HIV DNA reservoir in HIV-1-infected patients with effective ART. In patients undergoing ART, TVM cells negatively correlate with HIV DNA and positively correlate with circulating IFN-α2 and IL-15. Moreover, TVM cells constitutively express high levels of cytotoxic granule components, including granzyme B, perforin and granulysin, and demonstrate the capability to control HIV replication through both cytolytic and noncytolytic mechanisms. Furthermore, by using an ex vivo system, we showed that HIV reactivation is effectively suppressed by TVM cells through KIR-mediated recognition. This study suggests that TVM cells are a promising target to predict posttreatment virological control and to design immune-based interventions to reduce the reservoir size in ART-treated HIV-1-infected individuals.
Collapse
Affiliation(s)
- Jie-Hua Jin
- Peking University 302 Clinical Medical School, Beijing, China.,Treatment and Research Center for Infectious Diseases, The Fifth Medical Center of PLA General Hospital, Beijing, China.,National Clinical Research Center for Infectious Diseases, Beijing, China
| | - Hui-Huang Huang
- Treatment and Research Center for Infectious Diseases, The Fifth Medical Center of PLA General Hospital, Beijing, China.,National Clinical Research Center for Infectious Diseases, Beijing, China
| | - Ming-Ju Zhou
- Treatment and Research Center for Infectious Diseases, The Fifth Medical Center of PLA General Hospital, Beijing, China.,National Clinical Research Center for Infectious Diseases, Beijing, China.,Bengbu Medical University, Bengbu, China
| | - Jing Li
- Treatment and Research Center for Infectious Diseases, The Fifth Medical Center of PLA General Hospital, Beijing, China.,National Clinical Research Center for Infectious Diseases, Beijing, China.,Bengbu Medical University, Bengbu, China
| | - Wei Hu
- Treatment and Research Center for Infectious Diseases, The Fifth Medical Center of PLA General Hospital, Beijing, China.,National Clinical Research Center for Infectious Diseases, Beijing, China
| | - Lei Huang
- Treatment and Research Center for Infectious Diseases, The Fifth Medical Center of PLA General Hospital, Beijing, China.,National Clinical Research Center for Infectious Diseases, Beijing, China
| | - Zhe Xu
- Treatment and Research Center for Infectious Diseases, The Fifth Medical Center of PLA General Hospital, Beijing, China.,National Clinical Research Center for Infectious Diseases, Beijing, China
| | - Bo Tu
- Treatment and Research Center for Infectious Diseases, The Fifth Medical Center of PLA General Hospital, Beijing, China.,National Clinical Research Center for Infectious Diseases, Beijing, China
| | - Guang Yang
- Treatment and Research Center for Infectious Diseases, The Fifth Medical Center of PLA General Hospital, Beijing, China.,National Clinical Research Center for Infectious Diseases, Beijing, China
| | - Ming Shi
- Peking University 302 Clinical Medical School, Beijing, China.,Treatment and Research Center for Infectious Diseases, The Fifth Medical Center of PLA General Hospital, Beijing, China.,National Clinical Research Center for Infectious Diseases, Beijing, China
| | - Yan-Mei Jiao
- Treatment and Research Center for Infectious Diseases, The Fifth Medical Center of PLA General Hospital, Beijing, China.,National Clinical Research Center for Infectious Diseases, Beijing, China
| | - Xing Fan
- Treatment and Research Center for Infectious Diseases, The Fifth Medical Center of PLA General Hospital, Beijing, China.,National Clinical Research Center for Infectious Diseases, Beijing, China
| | - Jin-Wen Song
- Treatment and Research Center for Infectious Diseases, The Fifth Medical Center of PLA General Hospital, Beijing, China.,National Clinical Research Center for Infectious Diseases, Beijing, China
| | - Ji-Yuan Zhang
- Treatment and Research Center for Infectious Diseases, The Fifth Medical Center of PLA General Hospital, Beijing, China.,National Clinical Research Center for Infectious Diseases, Beijing, China
| | - Chao Zhang
- Treatment and Research Center for Infectious Diseases, The Fifth Medical Center of PLA General Hospital, Beijing, China. .,National Clinical Research Center for Infectious Diseases, Beijing, China.
| | - Fu-Sheng Wang
- Peking University 302 Clinical Medical School, Beijing, China. .,Treatment and Research Center for Infectious Diseases, The Fifth Medical Center of PLA General Hospital, Beijing, China. .,National Clinical Research Center for Infectious Diseases, Beijing, China.
| |
Collapse
|
77
|
Gluckman E, Fuente JDL, Cappelli B, Scigliuolo GM, Volt F, Tozatto-Maio K, Rocha V, Tommaso M, O’Boyle F, Smiers F, Cunha-Riehm CBD, Calore E, Bonanomi S, Graphakos S, Paisiou A, Albert MH, Ruggeri A, Zecca M, Lankester AC, Corbacioglu S. The role of HLA matching in unrelated donor hematopoietic stem cell transplantation for sickle cell disease in Europe. Bone Marrow Transplant 2020; 55:1946-1954. [DOI: 10.1038/s41409-020-0847-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 02/19/2020] [Accepted: 02/21/2020] [Indexed: 02/07/2023]
|
78
|
Pierce SK, Schwartzberg PL, Shah NN, Taylor N. Women in immunology: 2020 and beyond. Nat Immunol 2020; 21:254-258. [PMID: 32094649 PMCID: PMC11549733 DOI: 10.1038/s41590-020-0618-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Accepted: 01/24/2020] [Indexed: 12/27/2022]
Abstract
Women have been at the forefront of tremendous achievements in immunology in the past decade. However, disparities still exist, limiting upward potential and further advancements. As four NIH intramural women scientists who care deeply about scientific progress and the progress of women in our field, we review ongoing challenges and discuss potential approaches to help advance the promotion of women in the sciences.
Collapse
Affiliation(s)
- Susan K Pierce
- Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD, USA.
| | - Pamela L Schwartzberg
- Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD, USA.
| | - Nirali N Shah
- Pediatric Oncology Branch, National Cancer Institute, NIH, Bethesda, MD, USA.
| | - Naomi Taylor
- Pediatric Oncology Branch, National Cancer Institute, NIH, Bethesda, MD, USA.
- IGMM, Université de Montpellier, CNRS, Montpellier, France.
| |
Collapse
|
79
|
Cubero EM, Ogbe A, Pedroza-Pacheco I, Cohen MS, Haynes BF, Borrow P, Peppa D. Subordinate Effect of -21M HLA-B Dimorphism on NK Cell Repertoire Diversity and Function in HIV-1 Infected Individuals of African Origin. Front Immunol 2020; 11:156. [PMID: 32132995 PMCID: PMC7041644 DOI: 10.3389/fimmu.2020.00156] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Accepted: 01/21/2020] [Indexed: 02/02/2023] Open
Abstract
Natural Killer (NK) cells play an important role in antiviral defense and their potent effector function identifies them as key candidates for immunotherapeutic interventions in chronic viral infections. Their remarkable functional agility is achieved by virtue of a wide array of germline-encoded inhibitory and activating receptors ensuring a self-tolerant and tunable repertoire. NK cell diversity is generated by a combination of factors including genetic determinants and infections/environmental factors, which together shape the NK cell pool and functional potential. Recently a genetic polymorphism at position -21 of HLA-B, which influences the supply of HLA-E binding peptides and availability of HLA-E for recognition by the inhibitory NK cell receptor NKG2A, was shown to have a marked influence on NK cell functionality in healthy human cytomegalovirus (HCMV) seronegative Caucasian individuals. In this study, -21 methionine (M)-expressing alleles supplying HLA-E binding peptides were largely poor ligands for inhibitory killer immunoglobulin-like receptors (KIRs), and a bias to NKG2A-mediated education of functionally-potent NK cells was observed. Here, we investigated the effect of this polymorphism on the phenotype and functional capacity of peripheral blood NK cells in a cohort of 36 African individuals with human immunodeficiency virus type 1 (HIV-1)/HCMV co-infection. A similarly profound influence of dimorphism at position -21 of HLA-B on NK cells was not evident in these subjects. They predominantly expressed African specific HLA-B and -C alleles that contribute a distinct supply of NKG2A and KIR ligands, and these genetic differences were compounded by the marked effect of HIV-1/HCMV co-infection on NK cell differentiation. Together, these factors resulted in a lack of correlation of the HLA-B -21 polymorphism with surface abundance of HLA-E and loss of the NK cell functional advantage in subjects with -21M HLA-B alleles. Instead, our data suggest that during HIV/HCMV co-infection exposure of NK cells to an environment that displays altered HLA-E ligands drives adaptive NKG2C+ NK cell expansions influencing effector responses. Increased efforts to understand how NK cells are functionally calibrated to self-HLA during chronic viral infections will pave the way to developing targeted therapeutic interventions to overcome the current barriers to enhancing immune-based antiviral control.
Collapse
Affiliation(s)
- Elia Moreno Cubero
- Nuffield Department of Clinical Medicine, University of Oxford, Oxford, United Kingdom
| | - Ane Ogbe
- Nuffield Department of Clinical Medicine, University of Oxford, Oxford, United Kingdom
| | | | - Myron S. Cohen
- University of North Carolina School of Medicine, Chapel Hill, NC, United States
| | - Barton F. Haynes
- Duke University Human Vaccine Institute, Duke University School of Medicine, Durham, NC, United States
| | - Persephone Borrow
- Nuffield Department of Clinical Medicine, University of Oxford, Oxford, United Kingdom
| | - Dimitra Peppa
- Nuffield Department of Clinical Medicine, University of Oxford, Oxford, United Kingdom
- Department of HIV, Mortimer Market Centre, Central and North West London NHS Foundation Trust (CNWL),, London, United Kingdom
| |
Collapse
|
80
|
Abstract
HIV infection can be effectively treated by lifelong administration of combination antiretroviral therapy, but an effective vaccine will likely be required to end the HIV epidemic. Although the majority of current vaccine strategies focus on the induction of neutralizing antibodies, there is substantial evidence that cellular immunity mediated by CD8+ T cells can sustain long-term disease-free and transmission-free HIV control and may be harnessed to induce both therapeutic and preventive antiviral effects. In this Review, we discuss the increasing evidence derived from individuals who spontaneously control infection without antiretroviral therapy as well as preclinical immunization studies that provide a clear rationale for renewed efforts to develop a CD8+ T cell-based HIV vaccine in conjunction with B cell vaccine efforts. Further, we outline the remaining challenges in translating these findings into viable HIV prevention, treatment and cure strategies. Recently, antibody-mediated control of HIV infection has received considerable attention. Here, the authors discuss the importance of CD8+ T cells in HIV infection and suggest that efforts to develop vaccines that target these cells in conjunction with B cells should be renewed.
Collapse
|
81
|
Huang YH, Khor SS, Zheng X, Chen HY, Chang YH, Chu HW, Wu PE, Lin YJ, Liao SF, Shen CY, Tokunaga K, Lee MH. A high-resolution HLA imputation system for the Taiwanese population: a study of the Taiwan Biobank. THE PHARMACOGENOMICS JOURNAL 2020; 20:695-704. [PMID: 32042094 DOI: 10.1038/s41397-020-0156-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 01/22/2020] [Accepted: 01/27/2020] [Indexed: 12/24/2022]
Abstract
An imputation algorithm for human leukocyte antigen (HLA) is helpful for exploring novel disease associations. However, population-specific HLA imputation references are essential for achieving high imputation accuracy. In this study, a subset of 1012 individuals from the Taiwan Biobank (TWB) who underwent both whole-genome SNP array and NGS-based HLA typing were used to establish Taiwanese HLA imputation references. The HIBAG package was used to generate the imputation references for eight HLA loci at a two- and three-field resolution. Internal validation was carried out to evaluate the call threshold and accuracy for each HLA gene. HLA class II genes found to be associated with rheumatoid arthritis (RA) were validated in this study by the imputed HLA alleles. Our Taiwanese population-specific references achieved average HLA imputation accuracies of 98.11% for two-field and 98.08% for three-field resolution. The frequency distribution of imputed HLA alleles among 23,972 TWB subjects were comparable with PCR-based HLA alleles in general Taiwanese reported in the allele frequency net database. We replicated four common HLA alleles (HLA-DRB1*03:01, DRB1*04:05, DQA1*03:03, and DQB1*04:01) significantly associated with RA. The population-specific references provide an informative tool to investigate the associations of HLA variants and human diseases in large-scale population-based studies.
Collapse
Affiliation(s)
- Yu-Han Huang
- Institute of Clinical Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Seik-Soon Khor
- Department of Human Genetics, Graduate School of Medicine, the University of Tokyo, Toyo, Japan
| | - Xiuwen Zheng
- Department of Biostatistics, University of Washington, Seattle, WA, USA
| | - Hsuan-Yu Chen
- Institute of Statistical Science, Academia Sinica, Taipei, Taiwan
| | - Ya-Hsuan Chang
- Institute of Statistical Science, Academia Sinica, Taipei, Taiwan
| | - Hou-Wei Chu
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Pei-Ei Wu
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Yu-Ju Lin
- Institute of Clinical Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Shu-Fen Liao
- Institute of Clinical Medicine, National Yang-Ming University, Taipei, Taiwan.,Institute of Statistical Science, Academia Sinica, Taipei, Taiwan
| | - Chen-Yang Shen
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Katsushi Tokunaga
- Department of Human Genetics, Graduate School of Medicine, the University of Tokyo, Toyo, Japan.
| | - Mei-Hsuan Lee
- Institute of Clinical Medicine, National Yang-Ming University, Taipei, Taiwan.
| | | |
Collapse
|
82
|
Chen Y, Xin Z, Huang L, Zhao L, Wang S, Cheng J, Wu P, Chai Y. CD8 + T Cells Form the Predominant Subset of NKG2A + Cells in Human Lung Cancer. Front Immunol 2020; 10:3002. [PMID: 32010126 PMCID: PMC6979261 DOI: 10.3389/fimmu.2019.03002] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Accepted: 12/06/2019] [Indexed: 12/16/2022] Open
Abstract
Background: NKG2A is an inhibitory receptor of both T cells and natural killer (NK) cells. Persistent activation promotes T cells and NK cells to express NKG2A and results in the progression of chronic infection and cancer. However, the characteristics and subsets of NKG2A+ lymphocytes in human lung cancer are still unclear. Methods: Here, we used the Tumor Immune Estimation Resource database and immune profiling of paired biospecimens to uncover the correlation between NKG2A expression and immune infiltration levels in human cancer as well as the characteristics of NKG2A+ lymphocytes in human lung cancer. Results: We found that KLRC1 expression was especially correlated with CD8+ T-cell infiltration levels in 34 types of human cancer through the Tumor Immune Estimation Resource database. Moreover, NKG2A+ CD8+ T cells were the predominant subset of NKG2A+ lymphocytes in human lung cancer. In contrast, the NKG2A+ NK cells were decreased in tumors compared with the paired normal lung tissue. Tumor-infiltrating NKG2A+ CD8+ T cells expressed tissue-resident memory T cell (TRM cell) and exhausted T-cell markers. Cytokines and cytotoxic molecules secreted by tumor-infiltrating NKG2A+ CD8+ T cells were significantly lower than those secreted by NKG2A− CD8+ T cells in vitro. When stimulated with T-cell receptor activator, tumor-infiltrating NKG2A+ CD8+ T cells could secrete large amounts of granzyme B. Conclusions: Our findings demonstrate that tumor-infiltrating NKG2A+ CD8+ T cells form the predominant subset of NKG2A+ cells in human lung cancer and suggest that targeting NKG2A+ CD8+ T cells is a promising approach for future anti-lung cancer immunotherapy.
Collapse
Affiliation(s)
- Yongyuan Chen
- Department of Thoracic Surgery, Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China.,Cancer Institute, Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China
| | - Zhongwei Xin
- Department of Thoracic Surgery, Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China.,Cancer Institute, Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China
| | - Lijian Huang
- Department of Thoracic Surgery, Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China
| | - Lufeng Zhao
- Department of Thoracic Surgery, Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China
| | - Shijie Wang
- Department of Thoracic Surgery, Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China
| | - Jiwei Cheng
- Department of Thoracic Surgery, Henan Cancer Hospital, The Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou, China
| | - Pin Wu
- Department of Thoracic Surgery, Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China.,Cancer Institute, Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China.,Key Laboratory of Tumor Microenvironment and Immune Therapy of Zhejiang Province, Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China
| | - Ying Chai
- Department of Thoracic Surgery, Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
83
|
Hirbod-Mobarakeh A, Shabani M, Keshavarz-Fathi M, Delavari F, Amirzargar AA, Nikbin B, Kutikhin A, Rezaei N. Immunogenetics of Cancer. CANCER IMMUNOLOGY 2020:417-478. [DOI: 10.1007/978-3-030-30845-2_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
84
|
Petersdorf EW, Carrington M, O'hUigin C, Bengtsson M, De Santis D, Dubois V, Gooley T, Horowitz M, Hsu K, Madrigal JA, Maiers MJ, Malkki M, McKallor C, Morishima Y, Oudshoorn M, Spellman SR, Villard J, Stevenson P. Role of HLA-B exon 1 in graft-versus-host disease after unrelated haemopoietic cell transplantation: a retrospective cohort study. Lancet Haematol 2020; 7:e50-e60. [PMID: 31669248 PMCID: PMC6948919 DOI: 10.1016/s2352-3026(19)30208-x] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Revised: 07/26/2019] [Accepted: 07/31/2019] [Indexed: 12/27/2022]
Abstract
BACKGROUND The success of unrelated haemopoietic cell transplantation (HCT) is limited by graft-versus-host disease (GVHD), which is the main post-transplantation challenge when HLA-matched donors are unavailable. A sequence dimorphism in exon 1 of HLA-B gives rise to leader peptides containing methionine (Met; M) or threonine (Thr; T), which differentially influence natural killer and T-cell alloresponses. The main aim of the study was to evaluate the role of the leader dimorphism in GVHD after HLA-B-mismatched unrelated HCT. METHODS We did a retrospective cohort study of 33 982 patients who received an unrelated HCT done in Australia, Europe, Japan, North America, and the UK between Jan 1, 1988, and Dec 31, 2016. Data were contributed by participants of the International Histocompatibility Working Group in Hematopoietic Cell Transplantation. All cases were included and there were no exclusion criteria. Multivariate regression models were used to assess risks associated with HLA-A, HLA-B, HLA-C, HLA-DRB1, and HLA-DQB1 mismatching. Among the 33 982 transplantations, the risks of GVHD associated with HLA-B M and T leaders were established in 17 100 (50·3%) HLA-matched and 1457 (4·3%) single HLA-B-mismatched transplantations using multivariate regression models. Leader frequencies were defined in 2 004 742 BeTheMatch US registry donors. FINDINGS Between Jan 20, 2017, and March 11, 2019, we assessed 33 982 HCTs using multivariate regression models for the role of HLA mismatching on outcome. Median follow-up was 1841 days (IQR 909-2963). Mortality and GVHD increased with increasing numbers of HLA mismatches. A single HLA-B mismatch increased grade 3-4 acute GVHD (odds ratio [OR] 1·89, 95% CI 1·53-2·33; p<0·0001). Among the single HLA-B-mismatched transplantations, acute GVHD risk was higher with leader mismatching than with leader matching (OR 1·73, 1·02-2·94; p=0·042 for grade 2-4) and with an M leader shared allotype compared with a T leader shared allotype (OR 1·98, 1·39-2·81; p=0·0001 for grade 3-4). The preferred HLA-B-mismatched donor is leader-matched and shares a T leader allotype. The majority (1 836 939 [91·6%]) of the 2 004 742 US registry donors have the TT or MT genotype. INTERPRETATION The HLA-B leader informs GVHD risk after HLA-B-mismatched unrelated HCT and differentiates high-risk HLA-B mismatches from those with lower risk. The leader of the matched allotype could be considered to be as important as the leader of the mismatched allotype for GVHD. Prospective identification of leader-matched donors is feasible for most patients in need of a HCT, and could lower GVHD and increase availability of HCT therapy. These findings are being independently validated and warrant further research in prospective trials. FUNDING The National Institutes of Health, USA.
Collapse
Affiliation(s)
- Effie W Petersdorf
- Division of Clinical Research, Fred Hutchinson Cancer Research Center, Seattle, WA, USA; Department of Medicine, University of Washington, Seattle, WA, USA.
| | - Mary Carrington
- Basic Science Program, Frederick National Laboratory for Cancer Research, Frederick, MD, USA; Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University, Cambridge, MA, USA
| | - Colm O'hUigin
- Basic Science Program, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Mats Bengtsson
- Department of Immunology, Genetics and Pathology, University of Uppsala, Uppsala, Sweden
| | | | - Valerie Dubois
- Etablissement Français du Sang Auvergne Rhône Alpes, site de Lyon, Décines, France
| | - Ted Gooley
- Division of Clinical Research, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Mary Horowitz
- Center for International Blood and Marrow Transplant Research, Milwaukee, WI, USA; Division of Hematology and Oncology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Katharine Hsu
- Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | | | - Martin J Maiers
- Center for International Blood and Marrow Transplant Research, Minneapolis, MN, USA
| | - Mari Malkki
- Division of Clinical Research, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Caroline McKallor
- Division of Clinical Research, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Yasuo Morishima
- Aichi Medical University School of Medicine, Nagakute, Aichi, Japan
| | - Machteld Oudshoorn
- Leiden University Medical Centre, Department Immunohematology and Blood Transfusion, Leiden, Netherlands; Matchis Foundation, Leiden, Netherlands
| | - Stephen R Spellman
- Center for International Blood and Marrow Transplant Research, Minneapolis, MN, USA
| | | | - Phil Stevenson
- Division of Clinical Research, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| |
Collapse
|
85
|
Okoye AA, DeGottardi MQ, Fukazawa Y, Vaidya M, Abana CO, Konfe AL, Fachko DN, Duell DM, Li H, Lum R, Gao L, Park BS, Skalsky RL, Lewis AD, Axthelm MK, Lifson JD, Wong SW, Picker LJ. Role of IL-15 Signaling in the Pathogenesis of Simian Immunodeficiency Virus Infection in Rhesus Macaques. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2019; 203:2928-2943. [PMID: 31653683 PMCID: PMC6864325 DOI: 10.4049/jimmunol.1900792] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Accepted: 09/30/2019] [Indexed: 01/04/2023]
Abstract
Although IL-15 has been implicated in the pathogenic hyperimmune activation that drives progressive HIV and SIV infection, as well as in the generation of HIV/SIV target cells, it also supports NK and T cell homeostasis and effector activity, potentially benefiting the host. To understand the role of IL-15 in SIV infection and pathogenesis, we treated two cohorts of SIVmac239-infected rhesus macaques (RM; Macaca mulatta), one with chronic infection, the other with primary infection, with a rhesusized, IL-15-neutralizing mAb (versus an IgG isotype control) for up to 10 wk (n = 7-9 RM per group). In both cohorts, anti-IL-15 was highly efficient at blocking IL-15 signaling in vivo, causing 1) profound depletion of NK cells in blood and tissues throughout the treatment period; 2) substantial, albeit transient, depletion of CD8+ effector memory T cells (TEM) (but not the naive and central memory subsets); and 3) CD4+ and CD8+ TEM hyperproliferation. In primary infection, reduced frequencies of SIV-specific effector T cells in an extralymphoid tissue site were also observed. Despite these effects, the kinetics and extent of SIV replication, CD4+ T cell depletion, and the onset of AIDS were comparable between anti-IL-15- and control-treated groups in both cohorts. However, RM treated with anti-IL-15 during primary infection manifested accelerated reactivation of RM rhadinovirus. Thus, IL-15 support of NK cell and TEM homeostasis does not play a demonstrable, nonredundant role in SIV replication or CD4+ T cell deletion dynamics but may contribute to immune control of oncogenic γ-herpesviruses.
Collapse
Affiliation(s)
- Afam A Okoye
- Vaccine and Gene Therapy Institute, Oregon Health & Science University, Beaverton, OR 97006
- Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR 97006
| | - Maren Q DeGottardi
- Vaccine and Gene Therapy Institute, Oregon Health & Science University, Beaverton, OR 97006
- Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR 97006
| | - Yoshinori Fukazawa
- Vaccine and Gene Therapy Institute, Oregon Health & Science University, Beaverton, OR 97006
- Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR 97006
| | - Mukta Vaidya
- Vaccine and Gene Therapy Institute, Oregon Health & Science University, Beaverton, OR 97006
- Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR 97006
| | - Chike O Abana
- Vaccine and Gene Therapy Institute, Oregon Health & Science University, Beaverton, OR 97006
- Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR 97006
| | - Audrie L Konfe
- Vaccine and Gene Therapy Institute, Oregon Health & Science University, Beaverton, OR 97006
- Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR 97006
| | - Devin N Fachko
- Vaccine and Gene Therapy Institute, Oregon Health & Science University, Beaverton, OR 97006
- Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR 97006
| | - Derick M Duell
- Vaccine and Gene Therapy Institute, Oregon Health & Science University, Beaverton, OR 97006
- Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR 97006
| | - He Li
- Vaccine and Gene Therapy Institute, Oregon Health & Science University, Beaverton, OR 97006
- Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR 97006
| | - Richard Lum
- Vaccine and Gene Therapy Institute, Oregon Health & Science University, Beaverton, OR 97006
- Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR 97006
| | - Lina Gao
- Division of Biostatistics, Department of Public Health and Preventative Medicine, Oregon Health & Science University, Portland, OR 97239; and
| | - Byung S Park
- Division of Biostatistics, Department of Public Health and Preventative Medicine, Oregon Health & Science University, Portland, OR 97239; and
| | - Rebecca L Skalsky
- Vaccine and Gene Therapy Institute, Oregon Health & Science University, Beaverton, OR 97006
- Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR 97006
| | - Anne D Lewis
- Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR 97006
| | - Michael K Axthelm
- Vaccine and Gene Therapy Institute, Oregon Health & Science University, Beaverton, OR 97006
- Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR 97006
| | - Jeffrey D Lifson
- AIDS and Cancer Virus Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD 21702
| | - Scott W Wong
- Vaccine and Gene Therapy Institute, Oregon Health & Science University, Beaverton, OR 97006
- Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR 97006
| | - Louis J Picker
- Vaccine and Gene Therapy Institute, Oregon Health & Science University, Beaverton, OR 97006;
- Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR 97006
| |
Collapse
|
86
|
Climent N, Plana M. Immunomodulatory Activity of Tyrosine Kinase Inhibitors to Elicit Cytotoxicity Against Cancer and Viral Infection. Front Pharmacol 2019; 10:1232. [PMID: 31680987 PMCID: PMC6813222 DOI: 10.3389/fphar.2019.01232] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Accepted: 09/27/2019] [Indexed: 12/23/2022] Open
Abstract
Tyrosine kinase inhibitors (TKIs) of aberrant tyrosine kinase (TK) activity have been widely used to treat chronic myeloid leukemia (CML) for decades in clinic. An area of growing interest is the reported ability of TKIs to induce immunomodulatory effects with anti-tumor and anti-viral activity, which appears to be mediated by directly or indirectly acting on immune cells. In selected cases of patients with CML, TKI treatment may be interrupted and a non-drug remission may be observed. In these patients, an immune mechanism of increased anti-tumor cytotoxic activity induced by chronic administration of TKIs has been suggested. TKIs increase some populations of natural killer (NK), NK-LGL, and T-LGLs cells especially in dasatinib treated CML patients infected with cytomegalovirus (CMV). In addition, dasatinib increases responses against CMV and is able to inhibit HIV replication in vitro. Recent studies suggest that subclinical reactivation of CMV could drive expansion of specific subsets of NK- and T-cells with both anti-tumoral and anti-viral function. Therefore, the underlying mechanisms implicated in the expansion of this increased anti-tumor and anti-viral cytotoxic activity induced by TKIs could be a new therapeutic approach to take into account against cancer and viral infections such as HIV-1 infection. The present review will briefly summarize the immunomodulatory effects of TKIs on T cells, NKs, and B cells. Therapeutic implications for modulating immunity against cancer and viral infections and critical open questions are also discussed.
Collapse
Affiliation(s)
- Núria Climent
- AIDS Research Group, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), HIV Vaccine Development in Catalonia (HIVACAT), Hospital Clínic de Barcelona, Faculty of Medicine, University of Barcelona, Barcelona, Spain
| | - Montserrat Plana
- AIDS Research Group, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), HIV Vaccine Development in Catalonia (HIVACAT), Hospital Clínic de Barcelona, Faculty of Medicine, University of Barcelona, Barcelona, Spain
| |
Collapse
|
87
|
van Hall T, André P, Horowitz A, Ruan DF, Borst L, Zerbib R, Narni-Mancinelli E, van der Burg SH, Vivier E. Monalizumab: inhibiting the novel immune checkpoint NKG2A. J Immunother Cancer 2019; 7:263. [PMID: 31623687 PMCID: PMC6798508 DOI: 10.1186/s40425-019-0761-3] [Citation(s) in RCA: 194] [Impact Index Per Article: 32.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 09/26/2019] [Indexed: 02/08/2023] Open
Abstract
The implementation of immune checkpoint inhibitors to the oncology clinic signified a new era in cancer treatment. After the first indication of melanoma, an increasing list of additional cancer types are now treated with immune system targeting antibodies to PD-1, PD-L1 and CTLA-4, alleviating inhibition signals on T cells. Recently, we published proof-of-concept results on a novel checkpoint inhibitor, NKG2A. This receptor is expressed on cytotoxic lymphocytes, including NK cells and subsets of activated CD8+ T cells. Blocking antibodies to NKG2A unleashed the reactivity of these effector cells resulting in tumor control in multiple mouse models and an early clinical trial. Monalizumab is inhibiting this checkpoint in human beings and future clinical trials will have to reveal its potency in combination with other cancer treatment options.
Collapse
MESH Headings
- Animals
- Antibodies, Monoclonal, Humanized/pharmacology
- Antibodies, Monoclonal, Humanized/therapeutic use
- Antineoplastic Agents, Immunological/pharmacology
- Antineoplastic Agents, Immunological/therapeutic use
- Disease Models, Animal
- Histocompatibility Antigens Class I/immunology
- Histocompatibility Antigens Class I/metabolism
- Humans
- Killer Cells, Natural/drug effects
- Killer Cells, Natural/immunology
- Killer Cells, Natural/metabolism
- Mice
- NK Cell Lectin-Like Receptor Subfamily C/antagonists & inhibitors
- NK Cell Lectin-Like Receptor Subfamily C/immunology
- NK Cell Lectin-Like Receptor Subfamily C/metabolism
- Neoplasms/drug therapy
- Neoplasms/immunology
- T-Lymphocytes, Cytotoxic/immunology
- T-Lymphocytes, Cytotoxic/metabolism
- HLA-E Antigens
Collapse
Affiliation(s)
- Thorbald van Hall
- Department of Medical Oncology, Oncode Institute, Leiden University Medical Center, 2333, ZA, Leiden, the Netherlands.
| | - Pascale André
- Innate Pharma Research Labs, Innate Pharma, Marseille, France
| | - Amir Horowitz
- Department of Oncological Sciences, Precision Immunology Institute, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Dan Fu Ruan
- Department of Oncological Sciences, Precision Immunology Institute, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Linda Borst
- Department of Medical Oncology, Oncode Institute, Leiden University Medical Center, 2333, ZA, Leiden, the Netherlands
| | - Robert Zerbib
- Innate Pharma Research Labs, Innate Pharma, Marseille, France
| | - Emilie Narni-Mancinelli
- Aix Marseille Université, INSERM, CNRS, Centre d'Immunologie de Marseille-Luminy, Marseille, France
| | - Sjoerd H van der Burg
- Department of Medical Oncology, Oncode Institute, Leiden University Medical Center, 2333, ZA, Leiden, the Netherlands
| | - Eric Vivier
- Innate Pharma Research Labs, Innate Pharma, Marseille, France.
- Aix Marseille Université, INSERM, CNRS, Centre d'Immunologie de Marseille-Luminy, Marseille, France.
- Service d'Immunologie, Marseille Immunopole, Hôpital de la Timone, Assistance Publique-Hôpitaux de Marseille, Marseille, France.
| |
Collapse
|
88
|
van Stigt Thans T, Akko JI, Niehrs A, Garcia-Beltran WF, Richert L, Stürzel CM, Ford CT, Li H, Ochsenbauer C, Kappes JC, Hahn BH, Kirchhoff F, Martrus G, Sauter D, Altfeld M, Hölzemer A. Primary HIV-1 Strains Use Nef To Downmodulate HLA-E Surface Expression. J Virol 2019; 93:e00719-19. [PMID: 31375574 PMCID: PMC6798123 DOI: 10.1128/jvi.00719-19] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Accepted: 07/19/2019] [Indexed: 02/08/2023] Open
Abstract
Human immunodeficiency virus type 1 (HIV-1) has evolved elaborate ways to evade immune cell recognition, including downregulation of classical HLA class I (HLA-I) from the surfaces of infected cells. Recent evidence identified HLA-E, a nonclassical HLA-I, as an important part of the antiviral immune response to HIV-1. Changes in HLA-E surface levels and peptide presentation can prompt both CD8+ T-cell and natural killer (NK) cell responses to viral infections. Previous studies reported unchanged or increased HLA-E levels on HIV-1-infected cells. Here, we examined HLA-E surface levels following infection of CD4+ T cells with primary HIV-1 strains and observed that a subset downregulated HLA-E. Two primary strains of HIV-1 that induced the strongest reduction in surface HLA-E expression were chosen for further testing. Expression of single Nef or Vpu proteins in a T-cell line, as well as tail swap experiments exchanging the cytoplasmic tail of HLA-A2 with that of HLA-E, demonstrated that Nef modulated HLA-E surface levels and targeted the cytoplasmic tail of HLA-E. Furthermore, infection of primary CD4+ T cells with HIV-1 mutants showed that a lack of functional Nef (and Vpu to some extent) impaired HLA-E downmodulation. Taken together, the results of this study demonstrate for the first time that HIV-1 can downregulate HLA-E surface levels on infected primary CD4+ T cells, potentially rendering them less vulnerable to CD8+ T-cell recognition but at increased risk of NKG2A+ NK cell killing.IMPORTANCE For almost two decades, it was thought that HIV-1 selectively downregulated the highly expressed HLA-I molecules HLA-A and HLA-B from the cell surface in order to evade cytotoxic-T-cell recognition, while leaving HLA-C and HLA-E molecules unaltered. It was stipulated that HIV-1 infection thereby maintained inhibition of NK cells via inhibitory receptors that bind HLA-C and HLA-E. This concept was recently revised when a study showed that primary HIV-1 strains reduce HLA-C surface levels, whereas the cell line-adapted HIV-1 strain NL4-3 lacks this ability. Here, we demonstrate that infection with distinct primary HIV-1 strains results in significant downregulation of surface HLA-E levels. Given the increasing evidence for HLA-E as an important modulator of CD8+ T-cell and NKG2A+ NK cell functions, this finding has substantial implications for future immunomodulatory approaches aimed at harnessing cytotoxic cellular immunity against HIV.
Collapse
Affiliation(s)
| | - Janet I Akko
- Heinrich Pette Institute, Leibniz Institute for Experimental Virology, Hamburg, Germany
- German Center for Infection Research (DZIF), Site Hamburg-Lübeck-Borstel-Riems, Germany
| | - Annika Niehrs
- Heinrich Pette Institute, Leibniz Institute for Experimental Virology, Hamburg, Germany
- German Center for Infection Research (DZIF), Site Hamburg-Lübeck-Borstel-Riems, Germany
| | | | - Laura Richert
- Heinrich Pette Institute, Leibniz Institute for Experimental Virology, Hamburg, Germany
- Université Bordeaux, Inserm, Bordeaux Population Health Research Center, UMR 1219, Inria SISTM, Bordeaux, France
| | - Christina M Stürzel
- Institute of Molecular Virology, Ulm University Medical Center, Ulm, Germany
| | - Christopher T Ford
- Heinrich Pette Institute, Leibniz Institute for Experimental Virology, Hamburg, Germany
| | - Hui Li
- Department of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Christina Ochsenbauer
- Department of Medicine, Division of Hematology and Oncology, and CFAR, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - John C Kappes
- Department of Medicine, Division of Hematology and Oncology, and CFAR, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Beatrice H Hahn
- Department of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Frank Kirchhoff
- Institute of Molecular Virology, Ulm University Medical Center, Ulm, Germany
| | - Glòria Martrus
- Heinrich Pette Institute, Leibniz Institute for Experimental Virology, Hamburg, Germany
| | - Daniel Sauter
- Institute of Molecular Virology, Ulm University Medical Center, Ulm, Germany
| | - Marcus Altfeld
- Heinrich Pette Institute, Leibniz Institute for Experimental Virology, Hamburg, Germany
- German Center for Infection Research (DZIF), Site Hamburg-Lübeck-Borstel-Riems, Germany
- Institute for Immunology, University Medical Center Eppendorf, Hamburg, Germany
| | - Angelique Hölzemer
- Heinrich Pette Institute, Leibniz Institute for Experimental Virology, Hamburg, Germany
- German Center for Infection Research (DZIF), Site Hamburg-Lübeck-Borstel-Riems, Germany
- First Department of Internal Medicine, University Medical Center Eppendorf, Hamburg, Germany
| |
Collapse
|
89
|
Fisicaro P, Rossi M, Vecchi A, Acerbi G, Barili V, Laccabue D, Montali I, Zecca A, Penna A, Missale G, Ferrari C, Boni C. The Good and the Bad of Natural Killer Cells in Virus Control: Perspective for Anti-HBV Therapy. Int J Mol Sci 2019; 20:ijms20205080. [PMID: 31614928 PMCID: PMC6834135 DOI: 10.3390/ijms20205080] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Revised: 10/09/2019] [Accepted: 10/10/2019] [Indexed: 12/12/2022] Open
Abstract
Immune modulatory therapies are widely believed to represent potential therapeutic strategies for chronic hepatitis B infection (CHB). Among the cellular targets for immune interventions, Natural Killer (NK) cells represent possible candidates because they have a key role in anti-viral control by producing cytokines and by exerting cytotoxic functions against virus-infected cells. However, in patients with chronic hepatitis B, NK cells have been described to be more pathogenic than protective with preserved cytolytic activity but with a poor capacity to produce anti-viral cytokines. In addition, NK cells can exert a regulatory activity and possibly suppress adaptive immune responses in the setting of persistent viral infections. Consequently, a potential drawback of NK-cell targeted modulatory interventions is that they can potentiate the suppressive NK cell effect on virus-specific T cells, which further causes impairment of exhausted anti-viral T cell functions. Thus, clinically useful NK-cell modulatory strategies should be not only suited to improve positive anti-viral NK cell functions but also to abrogate T cell suppression by NK cell-mediated T cell killing. This review outlines the main NK cell features with a particular focus on CHB infection. It describes different mechanisms involved in NK-T cell interplay as well as how NK cells can have positive anti-viral effector functions and negative suppressive effects on T cells activity. This review discusses how modulation of their balance can have potential therapeutic implications.
Collapse
Affiliation(s)
- Paola Fisicaro
- Laboratory of Viral Immunopathology, Unit of Infectious Diseases and Hepatology, Azienda-Ospedaliero-Universitaria di Parma, 43126 Parma, Italy.
- Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy.
| | - Marzia Rossi
- Laboratory of Viral Immunopathology, Unit of Infectious Diseases and Hepatology, Azienda-Ospedaliero-Universitaria di Parma, 43126 Parma, Italy.
- Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy.
| | - Andrea Vecchi
- Laboratory of Viral Immunopathology, Unit of Infectious Diseases and Hepatology, Azienda-Ospedaliero-Universitaria di Parma, 43126 Parma, Italy.
| | - Greta Acerbi
- Laboratory of Viral Immunopathology, Unit of Infectious Diseases and Hepatology, Azienda-Ospedaliero-Universitaria di Parma, 43126 Parma, Italy.
- Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy.
| | - Valeria Barili
- Laboratory of Viral Immunopathology, Unit of Infectious Diseases and Hepatology, Azienda-Ospedaliero-Universitaria di Parma, 43126 Parma, Italy.
- Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy.
| | - Diletta Laccabue
- Laboratory of Viral Immunopathology, Unit of Infectious Diseases and Hepatology, Azienda-Ospedaliero-Universitaria di Parma, 43126 Parma, Italy.
| | - Ilaria Montali
- Laboratory of Viral Immunopathology, Unit of Infectious Diseases and Hepatology, Azienda-Ospedaliero-Universitaria di Parma, 43126 Parma, Italy.
| | - Alessandra Zecca
- Laboratory of Viral Immunopathology, Unit of Infectious Diseases and Hepatology, Azienda-Ospedaliero-Universitaria di Parma, 43126 Parma, Italy.
| | - Amalia Penna
- Laboratory of Viral Immunopathology, Unit of Infectious Diseases and Hepatology, Azienda-Ospedaliero-Universitaria di Parma, 43126 Parma, Italy.
| | - Gabriele Missale
- Laboratory of Viral Immunopathology, Unit of Infectious Diseases and Hepatology, Azienda-Ospedaliero-Universitaria di Parma, 43126 Parma, Italy.
- Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy.
| | - Carlo Ferrari
- Laboratory of Viral Immunopathology, Unit of Infectious Diseases and Hepatology, Azienda-Ospedaliero-Universitaria di Parma, 43126 Parma, Italy.
- Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy.
| | - Carolina Boni
- Laboratory of Viral Immunopathology, Unit of Infectious Diseases and Hepatology, Azienda-Ospedaliero-Universitaria di Parma, 43126 Parma, Italy.
| |
Collapse
|
90
|
Cornillet M, Jansson H, Schaffer M, Hertwig L, Berglin L, Zimmer CL, Johansson H, Ellis E, Isaksson B, Gonzalez-Galarza FF, Middleton D, Malmberg KJ, Sparrelid E, Björkström NK. Imbalance of Genes Encoding Natural Killer Immunoglobulin-Like Receptors and Human Leukocyte Antigen in Patients With Biliary Cancer. Gastroenterology 2019; 157:1067-1080.e9. [PMID: 31229495 DOI: 10.1053/j.gastro.2019.06.023] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Revised: 06/03/2019] [Accepted: 06/16/2019] [Indexed: 12/20/2022]
Abstract
BACKGROUND & AIMS Bile duct tumors are rare and have poor prognoses. Natural killer (NK) cells are frequent in human liver and infiltrate these tumors but do not control their progression. Responses of NK cells are regulated by NK immunoglobulin-like receptors (KIRs), which interact with HLA class I ligands. We aimed to characterize the features of the KIR gene loci and their ligands in patients with bile duct cancer (BDC). METHODS We performed combined multidimensional characterization of genes that encode KIRs and their ligands in blood samples from patients with BDC from Sweden, followed for up to 8 years after diagnosis (n = 148), in 2 geographically matched cohorts of healthy individuals from Northern Europe (n = 204 and n = 900), and in healthy individuals from 6 geographically unrelated populations (n = 2917). We used real-time polymerase chain reaction, RNA sequencing, immunohistochemistry, and flow cytometry to evaluate NK-cell presence, as well as KIR and KIR-ligand expression in bile duct tumors and control tissues. RESULTS Patients with bile duct tumors had multiple alterations at the KIR gene loci. KIR loci are grouped into genotypes that encode more inhibitory (group A) and more activating (group B) receptors, which can be subdivided into centromeric and telomeric fragments. Patients with BDC had a lower prevalence of KIR2DL3, which was linked to disequilibrium in centromeric A/B and B/B genotypes, compared with control individuals. The associations between KIRs and KIR ligands differed between patients with BDC and control individuals; patients had an altered balance between activating and inhibitory KIRs. KIR-positive NK cells infiltrated biliary tumors that expressed matched KIR ligands. CONCLUSIONS In a multidimensional analysis of DNA from blood samples of patients with BDC in Europe, we found patients to have multiple alterations at the KIR and HLA gene loci compared with control individuals. These alterations might affect NK-cell tumor surveillance. NK cells from bile duct tumors expressed KIRs and were found in tumors that expressed cognate ligands. This should be considered in development of immune-based therapies for BDC.
Collapse
Affiliation(s)
- Martin Cornillet
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden.
| | - Hannes Jansson
- Division of Surgery, Department of Clinical Science, Intervention and Technology, Karolinska Institutet, Stockholm, Sweden
| | - Marie Schaffer
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Laura Hertwig
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Lena Berglin
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Christine L Zimmer
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Helene Johansson
- Department of Clinical Science, Intervention and Technology, Division of Transplantation Surgery, Karolinska Institutet, and Department of Transplantation, Karolinska University Hospital, Stockholm, Sweden
| | - Ewa Ellis
- Department of Clinical Science, Intervention and Technology, Division of Transplantation Surgery, Karolinska Institutet, and Department of Transplantation, Karolinska University Hospital, Stockholm, Sweden
| | - Bengt Isaksson
- Division of Surgery, Department of Clinical Science, Intervention and Technology, Karolinska Institutet, Stockholm, Sweden
| | - Faviel F Gonzalez-Galarza
- Center for Biomedical Research, Faculty of Medicine, Autonomous University of Coahuila, Torreon, Mexico
| | - Derek Middleton
- Transplant Immunology Laboratory, Royal Liverpool University Hospital, Liverpool, UK
| | - Karl-Johan Malmberg
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden; Department of Cancer Immunology, Institute for Cancer Research, Oslo University Hospital, Radiumhospitalet, Oslo, Norway
| | - Ernesto Sparrelid
- Division of Surgery, Department of Clinical Science, Intervention and Technology, Karolinska Institutet, Stockholm, Sweden
| | - Niklas K Björkström
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden.
| |
Collapse
|
91
|
LaLiah Thomas P, Shanker A. Notch as an Immunologic Basis of Cancer Disparities. CANCER HEALTH DISPARITIES 2019; 3:e1-e10. [PMID: 34268483 PMCID: PMC8278364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Inter-individual differences due to racial/ethnic backgrounds may alter host immunity responsible for the cancer immunosurveillance and elimination, leading to disparate cancer incidence and relapse. One basis of disparity in tumor incidence, progression or therapeutic outcomes could lie in the components of Notch intercellular communication system, which provide instructive signals for a variety of pathways regulating cell commitment and differentiation including context-dependent lymphocyte polarization in tumor microenvironment. Notch signaling in hematopoietic cells is perturbed by tumor growth for its advantage, and there are indications that differences in Notch components could underlie poor cancer prognosis in certain populations. Here, we discuss the oncogenic and immunologic aspects of Notch, which should inform on cancer health disparities and therapeutic outcomes.
Collapse
Affiliation(s)
- Portia LaLiah Thomas
- Department of Biochemistry, Cancer Biology, Neuroscience and Pharmacology, School of Medicine, Meharry Medical College, Nashville, TN, USA
- Department of Microbiology, Immunology and Physiology, School of Medicine, Meharry Medical College, Nashville, TN, USA
- School of Graduate Studies and Research, Meharry Medical College, Nashville, TN, USA
| | - Anil Shanker
- Department of Biochemistry, Cancer Biology, Neuroscience and Pharmacology, School of Medicine, Meharry Medical College, Nashville, TN, USA
- School of Graduate Studies and Research, Meharry Medical College, Nashville, TN, USA
- Host–Tumor Interactions Research Program, Vanderbilt-Ingram Comprehensive Cancer Center, Vanderbilt University School of Medicine, Nashville, TN, USA
- Vanderbilt Institute for Infection, Immunology and Inflammation, Vanderbilt University School of Medicine, Nashville, TN, USA
| |
Collapse
|
92
|
Lucar O, Reeves RK, Jost S. A Natural Impact: NK Cells at the Intersection of Cancer and HIV Disease. Front Immunol 2019; 10:1850. [PMID: 31474977 PMCID: PMC6705184 DOI: 10.3389/fimmu.2019.01850] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Accepted: 07/23/2019] [Indexed: 12/24/2022] Open
Abstract
Despite efficient suppression of plasma viremia in people living with HIV (PLWH) on cART, evidence of HIV-induced immunosuppression remains, and normally benign and opportunistic pathogens become major sources of co-morbidities, including virus-induced cancers. In fact, cancer remains a primary cause of death even in virally suppressed PLWH. Natural killer (NK) cells provide rapid early responses to HIV infection, contribute substantially to disease modulation and vaccine protection, and are also major therapeutic targets for cancer immunotherapy. However, much like other lymphocyte populations, recent burgeoning evidence suggests that in chronic conditions like HIV, NK cells can become functionally exhausted with impaired cytotoxic function, altered cytokine production and impaired antibody-dependent cell-mediated cytotoxicity. Recent work suggests functional anergy is likely due to low-level ongoing virus replication, increased inflammatory cytokines, or increased presence of MHClow target cells. Indeed, HIV-induced loss of NK cell-mediated control of lytic EBV infection has been specifically shown to cause lymphoma and also increases replication of CMV. In this review, we will discuss current understanding of NK cell modulation of HIV disease, reciprocal exhaustion of NK cells, and how this may impact increased cancer incidences and prospects for NK cell-targeted immunotherapies. Finally, we will review the most recent evidence supporting adaptive functions of NK cells and highlight the potential of adaptive NK cells for cancer immunotherapy.
Collapse
Affiliation(s)
- Olivier Lucar
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| | - R Keith Reeves
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States.,Ragon Institute of Massachusetts General Hospital, MIT, and Harvard, Cambridge, MA, United States
| | - Stephanie Jost
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
93
|
Ogg G, Cerundolo V, McMichael AJ. Capturing the antigen landscape: HLA-E, CD1 and MR1. Curr Opin Immunol 2019; 59:121-129. [PMID: 31445404 DOI: 10.1016/j.coi.2019.07.006] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 04/12/2019] [Accepted: 07/18/2019] [Indexed: 12/15/2022]
Abstract
T cell receptor (TCR) recognition of antigens presented by relatively non-polymorphic MHC-like molecules is emerging as a significant contributor to health and disease. These evolutionarily ancient pathways have been inappropriately labelled 'non-conventional' because their roles were discovered after viral-specific peptide presentation by polymorphic MHC class I molecules. We suggest that these pathways are complementary to mainstream peptide presentation. HLA-E, CD1 and MR1 can present diverse self and foreign antigens to TCRs and therefore contribute to tissue homeostasis, pathogen defence, inflammation and immune responses to cancer. Despite presenting different classes of antigens, they share many features and are under common selective pressures. Through understanding their roles in disease, therapeutic manipulation for disease prevention and treatment should become possible.
Collapse
Affiliation(s)
- Graham Ogg
- MRC Human Immunology Unit, and Oxford NIHR Biomedical Research Centre, University of Oxford, UK
| | | | - Andrew J McMichael
- Nuffield Department of Medicine Research Building, University of Oxford, UK.
| |
Collapse
|
94
|
Bioinformatic methods for cancer neoantigen prediction. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2019; 164:25-60. [PMID: 31383407 DOI: 10.1016/bs.pmbts.2019.06.016] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Tumor cells accumulate aberrations not present in normal cells, leading to presentation of neoantigens on MHC molecules on their surface. These non-self neoantigens distinguish tumor cells from normal cells to the immune system and are thus targets for cancer immunotherapy. The rapid development of molecular profiling platforms, such as next-generation sequencing, has enabled the generation of large datasets characterizing tumor cells. The simultaneous development of algorithms has enabled rapid and accurate processing of these data. Bioinformatic software tools encoding the algorithms can be strung together in a workflow to identify neoantigens. Here, with a focus on high-throughput sequencing, we review state-of-the art bioinformatic tools along with the steps and challenges involved in neoantigen identification and recognition.
Collapse
|
95
|
Juno JA, Eriksson EM. γδ T-cell responses during HIV infection and antiretroviral therapy. Clin Transl Immunology 2019; 8:e01069. [PMID: 31321033 PMCID: PMC6636517 DOI: 10.1002/cti2.1069] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 06/27/2019] [Accepted: 06/28/2019] [Indexed: 12/16/2022] Open
Abstract
HIV infection is associated with a rapid and sustained inversion of the Vδ1:Vδ2 T‐cell ratio in peripheral blood. Studies of antiretroviral therapy (ART)‐treated cohorts suggest that ART is insufficient to reconstitute either the frequency or function of the γδ T‐cell subset. Recent advances are now beginning to shed light on the relationship between microbial translocation, chronic inflammation, immune ageing and γδ T‐cell immunology. Here, we review the impact of acute, chronic untreated and treated HIV infection on circulating and mucosal γδ T‐cell subsets and highlight novel approaches to harness γδ T cells as components of anti‐HIV immunotherapy.
Collapse
Affiliation(s)
- Jennifer A Juno
- Department of Microbiology and Immunology The University of Melbourne at The Peter Doherty Institute for Infection and Immunity Melbourne VIC Australia
| | - Emily M Eriksson
- Division of Population Health and Immunity Walter and Eliza Hall Institute of Medical Science Melbourne VIC Australia.,Department of Medical Biology The University of Melbourne Melbourne VIC Australia
| |
Collapse
|
96
|
Galperin M, Farenc C, Mukhopadhyay M, Jayasinghe D, Decroos A, Benati D, Tan LL, Ciacchi L, Reid HH, Rossjohn J, Chakrabarti LA, Gras S. CD4 + T cell-mediated HLA class II cross-restriction in HIV controllers. Sci Immunol 2019; 3:3/24/eaat0687. [PMID: 29884618 DOI: 10.1126/sciimmunol.aat0687] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2018] [Accepted: 04/18/2018] [Indexed: 12/15/2022]
Abstract
Rare individuals, termed HIV controllers, spontaneously control HIV infection by mounting efficient T cell responses against the virus. Protective CD4+ T cell responses from HIV controllers involve high-affinity public T cell receptors (TCRs) recognizing an immunodominant capsid epitope (Gag293) presented by a remarkably broad array of human leukocyte antigen (HLA) class II molecules. Here, we determine the structures of a prototypical public TCR bound to HLA-DR1, HLA-DR11, and HLA-DR15 molecules presenting the Gag293 epitope. TCR recognition was driven by contacts with the Gag293 epitope, a feature that underpinned the extensive HLA cross-restriction. These high-affinity TCRs promoted mature immunological synapse formation and cytotoxic capacity in both CD4+ and CD8+ T cells. The public TCRs suppressed HIV replication in multiple genetic backgrounds ex vivo, emphasizing the functional advantage conferred by broad HLA class II cross-restriction.
Collapse
Affiliation(s)
- Moran Galperin
- Pasteur Institute, Viral Pathogenesis Unit, Paris, France
| | - Carine Farenc
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria 3800, Australia
| | | | - Dhilshan Jayasinghe
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria 3800, Australia
| | | | - Daniela Benati
- Pasteur Institute, Viral Pathogenesis Unit, Paris, France
| | - Li Lynn Tan
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria 3800, Australia
| | - Lisa Ciacchi
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria 3800, Australia
| | - Hugh H Reid
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria 3800, Australia.,ARC Centre of Excellence in Advanced Molecular Imaging, Monash University, Clayton, Victoria 3800, Australia
| | - Jamie Rossjohn
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria 3800, Australia.,ARC Centre of Excellence in Advanced Molecular Imaging, Monash University, Clayton, Victoria 3800, Australia.,Institute of Infection and Immunity, School of Medicine, Cardiff University, Cardiff CF14 4XN, UK
| | - Lisa A Chakrabarti
- Pasteur Institute, Viral Pathogenesis Unit, Paris, France.,INSERM, U1108, Paris, France
| | - Stephanie Gras
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria 3800, Australia.,ARC Centre of Excellence in Advanced Molecular Imaging, Monash University, Clayton, Victoria 3800, Australia
| |
Collapse
|
97
|
NKG2A is a NK cell exhaustion checkpoint for HCV persistence. Nat Commun 2019; 10:1507. [PMID: 30944315 PMCID: PMC6447531 DOI: 10.1038/s41467-019-09212-y] [Citation(s) in RCA: 101] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Accepted: 02/18/2019] [Indexed: 01/23/2023] Open
Abstract
Exhaustion of cytotoxic effector natural killer (NK) and CD8+ T cells have important functions in the establishment of persistent viral infections, but how exhaustion is induced during chronic hepatitis C virus (HCV) infection remains poorly defined. Here we show, using the humanized C/OTg mice permissive for persistent HCV infection, that NK and CD8+ T cells become sequentially exhausted shortly after their transient hepatic infiltration and activation in acute HCV infection. HCV infection upregulates Qa-1 expression in hepatocytes, which ligates NKG2A to induce NK cell exhaustion. Antibodies targeting NKG2A or Qa-1 prevents NK exhaustion and promotes NK-dependent HCV clearance. Moreover, reactivated NK cells provide sufficient IFN-γ that helps rejuvenate polyclonal HCV CD8+ T cell response and clearance of HCV. Our data thus show that NKG2A serves as a critical checkpoint for HCV-induced NK exhaustion, and that NKG2A blockade sequentially boosts interdependent NK and CD8+ T cell functions to prevent persistent HCV infection. Immune cells may become less responsive, or ‘exhausted’, upon chronic viral infection, but the underlying mechanism and crosstalk are still unclear. Here the authors show that, upon chronic hepatitis C virus (HCV) infection, natural killer cell exhaustion is induced by NKG2A signalling to instruct downstream exhaustion of CD8+ T cells and HCV persistence.
Collapse
|
98
|
Identification of NK Cell Subpopulations That Differentiate HIV-Infected Subject Cohorts with Diverse Levels of Virus Control. J Virol 2019; 93:JVI.01790-18. [PMID: 30700608 DOI: 10.1128/jvi.01790-18] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Accepted: 01/19/2019] [Indexed: 02/07/2023] Open
Abstract
HIV infection is controlled immunologically in a small subset of infected individuals without antiretroviral therapy (ART), though the mechanism of control is unclear. CD8+ T cells are a critical component of HIV control in many immunological controllers. NK cells are also believed to have a role in controlling HIV infection, though their role is less well characterized. We used mass cytometry to simultaneously measure the levels of expression of 24 surface markers on peripheral NK cells from HIV-infected subjects with various degrees of HIV natural control; we then used machine learning to identify NK cell subpopulations that differentiate HIV controllers from noncontrollers. Using CITRUS (cluster identification, characterization, and regression), we identified 3 NK cell subpopulations that differentiated subjects with chronic HIV viremia (viremic noncontrollers [VNC]) from individuals with undetectable HIV viremia without ART (elite controllers [EC]). In a parallel approach, we identified 11 NK cell subpopulations that differentiated HIV-infected subject groups using k-means clustering after dimensionality reduction by t-neighbor stochastic neighbor embedding (tSNE) or linear discriminant analysis (LDA). Among these additional 11 subpopulations, the frequencies of 5 correlated with HIV DNA levels; importantly, significance was retained in 2 subpopulations in analyses that included only cohorts without detectable viremia. By comparing the surface marker expression patterns of all identified subpopulations, we revealed that the CD11b+ CD57- CD161+ Siglec-7+ subpopulation of CD56dim CD16+ NK cells are more abundant in EC and HIV-negative controls than in VNC and that the frequency of these cells correlated with HIV DNA levels. We hypothesize that this population may have a role in immunological control of HIV infection.IMPORTANCE HIV infection results in the establishment of a stable reservoir of latently infected cells; ART is usually required to keep viral replication under control and disease progression at bay, though a small subset of HIV-infected subjects can control HIV infection without ART through immunological mechanisms. In this study, we sought to identify subpopulations of NK cells that may be involved in the natural immunological control of HIV infection. We used mass cytometry to measure surface marker expression on peripheral NK cells. Using two distinct semisupervised machine learning approaches, we identified a CD11b+ CD57- CD161+ Siglec-7+ subpopulation of CD56dim CD16+ NK cells that differentiates HIV controllers from noncontrollers. These cells can be sorted out for future functional studies to assess their potential role in the immunological control of HIV infection.
Collapse
|
99
|
Ali A, Gyurova IE, Waggoner SN. Mutually assured destruction: the cold war between viruses and natural killer cells. Curr Opin Virol 2019; 34:130-139. [PMID: 30877885 DOI: 10.1016/j.coviro.2019.02.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Revised: 01/30/2019] [Accepted: 02/07/2019] [Indexed: 12/22/2022]
Abstract
Natural killer (NK) cells play a multitude of antiviral roles that are significant enough to provoke viral counterefforts to subvert their activity. As innate lymphocytes, NK cells provide a rapid source of pro-inflammatory antiviral cytokines and bring to bear cytolytic activities that are collectively meant to constrain viral replication and dissemination. Additionally, NK cells participate in adaptive immunity both by shaping virus-specific T-cell responses and by developing adaptive features themselves, including enhanced antibody-dependent effector functions. The relative importance of different functional activities of NK cells are poorly understood, thereby obfuscating clinical use of these cells. Here we focus on opposing efforts of NK cells and viruses to gain tactical superiority during infection.
Collapse
Affiliation(s)
- Ayad Ali
- Center for Autoimmune Genomics and Etiology, Cincinnati Children's Hospital Medical Center, United States; Medical Scientist Training Program, University of Cincinnati College of Medicine, United States; Immunology Graduate Training Program, University of Cincinnati College of Medicine, United States
| | - Ivayla E Gyurova
- Center for Autoimmune Genomics and Etiology, Cincinnati Children's Hospital Medical Center, United States; Pathobiology and Molecular Medicine Graduate Program, University of Cincinnati College of Medicine, United States
| | - Stephen N Waggoner
- Center for Autoimmune Genomics and Etiology, Cincinnati Children's Hospital Medical Center, United States; Medical Scientist Training Program, University of Cincinnati College of Medicine, United States; Immunology Graduate Training Program, University of Cincinnati College of Medicine, United States; Pathobiology and Molecular Medicine Graduate Program, University of Cincinnati College of Medicine, United States; Department of Pediatrics, University of Cincinnati College of Medicine, United States.
| |
Collapse
|
100
|
Wroblewski EE, Parham P, Guethlein LA. Two to Tango: Co-evolution of Hominid Natural Killer Cell Receptors and MHC. Front Immunol 2019; 10:177. [PMID: 30837985 PMCID: PMC6389700 DOI: 10.3389/fimmu.2019.00177] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Accepted: 01/21/2019] [Indexed: 12/16/2022] Open
Abstract
Natural killer (NK) cells have diverse roles in hominid immunity and reproduction. Modulating these functions are the interactions between major histocompatibility complex (MHC) class I molecules that are ligands for two NK cell surface receptor types. Diverse killer cell immunoglobulin-like receptors (KIR) bind specific motifs encoded within the polymorphic MHC class I cell surface glycoproteins, while, in more conserved interactions, CD94:NKG2A receptors recognize MHC-E with bound peptides derived from MHC class I leader sequences. The hominid lineage presents a choreographed co-evolution of KIR with their MHC class I ligands. MHC-A, -B, and -C are present in all great apes with species-specific haplotypic variation in gene content. The Bw4 epitope recognized by lineage II KIR is restricted to MHC-B but also present on some gorilla and human MHC-A. Common to great apes, but rare in humans, are MHC-B possessing a C1 epitope recognized by lineage III KIR. MHC-C arose from duplication of MHC-B and is fixed in all great apes except orangutan, where it exists on approximately 50% of haplotypes and all allotypes are C1-bearing. Recent study showed that gorillas possess yet another intermediate MHC organization compared to humans. Like orangutans, but unlike the Pan-Homo species, duplication of MHC-B occurred. However, MHC-C is fixed, and the MHC-C C2 epitope (absent in orangutans) emerges. The evolution of MHC-C drove expansion of its cognate lineage III KIR. Recently, position −21 of the MHC-B leader sequence has been shown to be critical in determining NK cell educational outcome. In humans, methionine (−21M) results in CD94:NKG2A-focused education whereas threonine (−21T) produces KIR-focused education. This is another dynamic position among hominids. Orangutans have exclusively −21M, consistent with their intermediate stage in lineage III KIR-focused evolution. Gorillas have both −21M and −21T, like humans, but they are unequally encoded by their duplicated B genes. Chimpanzees have near-fixed −21T, indicative of KIR-focused NK education. Harmonious with this observation, chimpanzee KIR exhibit strong binding and, compared to humans, smaller differences between binding levels of activating and inhibitory KIR. Consistent between these MHC-NK cell receptor systems over the course of hominid evolution is the evolution of polymorphism favoring the more novel and dynamic KIR system.
Collapse
Affiliation(s)
- Emily E Wroblewski
- Department of Anthropology, Washington University, St. Louis, MO, United States
| | - Peter Parham
- Departments of Structural Biology and Microbiology & Immunology, Stanford University School of Medicine, Stanford, CA, United States
| | - Lisbeth A Guethlein
- Departments of Structural Biology and Microbiology & Immunology, Stanford University School of Medicine, Stanford, CA, United States
| |
Collapse
|