51
|
Phages in the infant gut: a framework for virome development during early life. ISME JOURNAL 2021; 16:323-330. [PMID: 34417565 PMCID: PMC8776839 DOI: 10.1038/s41396-021-01090-x] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 08/04/2021] [Accepted: 08/09/2021] [Indexed: 01/21/2023]
|
52
|
Chevallereau A, Pons BJ, van Houte S, Westra ER. Interactions between bacterial and phage communities in natural environments. Nat Rev Microbiol 2021; 20:49-62. [PMID: 34373631 DOI: 10.1038/s41579-021-00602-y] [Citation(s) in RCA: 263] [Impact Index Per Article: 65.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 06/28/2021] [Indexed: 12/20/2022]
Abstract
We commonly acknowledge that bacterial viruses (phages) shape the composition and evolution of bacterial communities in nature and therefore have important roles in ecosystem functioning. This view stems from studies in the 1990s to the first decade of the twenty-first century that revealed high viral abundance, high viral diversity and virus-induced microbial death in aquatic ecosystems as well as an association between collapses in bacterial density and peaks in phage abundance. The recent surge in metagenomic analyses has provided deeper insight into the abundance, genomic diversity and spatio-temporal dynamics of phages in a wide variety of ecosystems, ranging from deep oceans to soil and the mammalian digestive tract. However, the causes and consequences of variations in phage community compositions remain poorly understood. In this Review, we explore current knowledge of the composition and evolution of phage communities, as well as their roles in controlling the population and evolutionary dynamics of bacterial communities. We discuss the need for greater ecological realism in laboratory studies to capture the complexity of microbial communities that thrive in natural environments.
Collapse
Affiliation(s)
- Anne Chevallereau
- Environment and Sustainability Institute, Biosciences, University of Exeter, Penryn, UK. .,Department of Infection, Immunity and Inflammation, Institut Cochin, INSERM U1016, CNRS UMR8104, Université de Paris, Paris, France.
| | - Benoît J Pons
- Environment and Sustainability Institute, Biosciences, University of Exeter, Penryn, UK
| | - Stineke van Houte
- Environment and Sustainability Institute, Biosciences, University of Exeter, Penryn, UK
| | - Edze R Westra
- Environment and Sustainability Institute, Biosciences, University of Exeter, Penryn, UK.
| |
Collapse
|
53
|
Chu XL, Zhang QG, Buckling A, Castledine M. Interspecific Niche Competition Increases Morphological Diversity in Multi-Species Microbial Communities. Front Microbiol 2021; 12:699190. [PMID: 34394041 PMCID: PMC8362326 DOI: 10.3389/fmicb.2021.699190] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 07/02/2021] [Indexed: 12/03/2022] Open
Abstract
Intraspecific competition for limited niches has been recognized as a driving force for adaptive radiation, but results for the role of interspecific competition have been mixed. Here, we report the adaptive diversification of the model bacteria Pseudomonas fluorescens in the presence of different numbers and combinations of four competing bacterial species. Increasing the diversity of competitive community increased the morphological diversity of focal species, which is caused by impeding the domination of a single morphotype. Specifically, this pattern was driven by more diverse communities being more likely to contain key species that occupy the same niche as otherwise competitively superior morphotype, and thus preventing competitive exclusion within the focal species. Our results suggest that sympatric adaptive radiation is driven by the presence or absence of niche-specific competitors.
Collapse
Affiliation(s)
- Xiao-Lin Chu
- College of Life and Environmental Sciences, Environment and Sustainability Institute, University of Exeter, Penryn, Cornwall, United Kingdom.,State Key Laboratory of Earth Surface Processes and Resource Ecology and MOE Key Laboratory for Biodiversity Science and Ecological Engineering, Beijing Normal University, Beijing, China
| | - Quan-Guo Zhang
- State Key Laboratory of Earth Surface Processes and Resource Ecology and MOE Key Laboratory for Biodiversity Science and Ecological Engineering, Beijing Normal University, Beijing, China
| | - Angus Buckling
- College of Life and Environmental Sciences, Environment and Sustainability Institute, University of Exeter, Penryn, Cornwall, United Kingdom
| | - Meaghan Castledine
- College of Life and Environmental Sciences, Environment and Sustainability Institute, University of Exeter, Penryn, Cornwall, United Kingdom
| |
Collapse
|
54
|
Blasco-Costa I, Hayward A, Poulin R, Balbuena JA. Next-generation cophylogeny: unravelling eco-evolutionary processes. Trends Ecol Evol 2021; 36:907-918. [PMID: 34243958 DOI: 10.1016/j.tree.2021.06.006] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 06/09/2021] [Accepted: 06/11/2021] [Indexed: 11/19/2022]
Abstract
A fundamental question in evolutionary biology is how microevolutionary processes translate into species diversification. Cophylogeny provides an appropriate framework to address this for symbiotic associations, but historically has been primarily limited to unveiling patterns. We argue that it is essential to integrate advances from ecology and evolutionary biology into cophylogeny, to gain greater mechanistic insights and transform cophylogeny into a platform to advance understanding of interspecific interactions and diversification more widely. We discuss key directions, such as incorporating trait reconstruction and considering multiple scales of network organization, and highlight recent developments for implementation. A new quantitative framework is proposed to allow integration of relevant information, such as quantitative traits and assessment of the contribution of individual mechanisms to cophylogenetic patterns.
Collapse
Affiliation(s)
- Isabel Blasco-Costa
- Department of Invertebrates, Natural History Museum of Geneva, PO Box 6434, CH-1211 Geneva 6, Switzerland; Department of Arctic and Marine Biology, UiT The Arctic University of Norway, Langnes, PO Box 6050, 9037 Tromsø, Norway.
| | - Alexander Hayward
- Centre for Ecology and Conservation, University of Exeter, Penryn Campus, Penryn, Cornwall, Exeter, TR10 9FE, UK
| | - Robert Poulin
- Department of Zoology, University of Otago, PO Box 56, Dunedin, New Zealand
| | - Juan A Balbuena
- Cavanilles Institute of Biodiversity and Evolutionary Biology, University of Valencia, PO Box 22085, 46071 Valencia, Spain
| |
Collapse
|
55
|
Sørensen MCH, Vitt A, Neve H, Soverini M, Ahern SJ, Klumpp J, Brøndsted L. Campylobacter phages use hypermutable polyG tracts to create phenotypic diversity and evade bacterial resistance. Cell Rep 2021; 35:109214. [PMID: 34107245 DOI: 10.1016/j.celrep.2021.109214] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 12/15/2020] [Accepted: 05/12/2021] [Indexed: 12/16/2022] Open
Abstract
Phase variation is a common mechanism for creating phenotypic heterogeneity of surface structures in bacteria important for niche adaptation. In Campylobacter, phase variation occurs by random variation in hypermutable homonucleotide 7-11 G (polyG) tracts. To elucidate how phages adapt to phase-variable hosts, we study Fletchervirus phages infecting Campylobacter dependent on a phase-variable receptor. Our data demonstrate that Fletcherviruses mimic their host and encode hypermutable polyG tracts, leading to phase-variable expression of two of four receptor-binding proteins. This creates phenotypically diverse phage populations, including a sub-population that infects the bacterial host when the phase-variable receptor is not expressed. Such population dynamics of both phage and host promote co-existence in a shared niche. Strikingly, we identify polyG tracts in more than 100 phage genera, infecting more than 70 bacterial species. Future experimental work may confirm phase variation as a widespread strategy for creating phenotypically diverse phage populations.
Collapse
Affiliation(s)
- Martine C Holst Sørensen
- Department of Veterinary and Animal Sciences, University of Copenhagen, 1870 Frederiksberg, Denmark.
| | - Amira Vitt
- Department of Veterinary and Animal Sciences, University of Copenhagen, 1870 Frederiksberg, Denmark
| | - Horst Neve
- Department of Microbiology and Biotechnology, Max-Rubner Institut, 24103 Kiel, Germany
| | - Matteo Soverini
- COPSAC, Copenhagen Prospective Studies on Asthma in Childhood, Herlev and Gentofte Hospital, University of Copenhagen, 2820 Gentofte, Denmark
| | - Stephen James Ahern
- Department of Veterinary and Animal Sciences, University of Copenhagen, 1870 Frederiksberg, Denmark
| | - Jochen Klumpp
- Institute for Food, Nutrition and Health, ETH Zurich, 8092 Zurich, Switzerland
| | - Lone Brøndsted
- Department of Veterinary and Animal Sciences, University of Copenhagen, 1870 Frederiksberg, Denmark
| |
Collapse
|
56
|
Xu S, Zhang S, Hu X, Zhang B, Yang S, Hu X, Liu S, Hu D, Bai J. Temporal and spatial dynamics of gastrointestinal parasite infection in Père David's deer. PeerJ 2021; 9:e11335. [PMID: 33996283 PMCID: PMC8106392 DOI: 10.7717/peerj.11335] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Accepted: 04/01/2021] [Indexed: 11/20/2022] Open
Abstract
Background The Père David's deer (Elaphurus davidianus) population was established from only a small number of individuals. Their genetic diversity is therefore relatively low and transmissible (parasitic) diseases affecting them merit further attention. Parasitic infections can affect the health, survival, and population development of the host. However, few reports have been published on the gastrointestinal parasites of Père David's deer. The aims of this study were: (1) to identify the intestinal parasites groups in Père David's deer; (2) to determine their prevalence and burden and clarify the effects of different seasons and regions on various indicators of Père David's deer intestinal parasites; (3) to evaluate the effects of the Père David's deer reproductive period on these parasites; (4) to reveal the regularity of the parasites in space and time. Methods In total, 1,345 Père David's deer faecal samples from four regions during four seasons were tested using the flotation (saturated sodium nitrate solution) to identify parasites of different genus or group, and the McMaster technique to count the number of eggs or oocysts. Results Four groups of gastrointestinal parasites were found, of which strongyles were dominant; their prevalence and burden were significantly higher than other groups. Significant temporal and spatial effects on gastrointestinal parasitic infection were found. Parasite diversity, prevalence, parasite burden, and aggregation were the highest in summer. Among the four regions, parasite diversity, prevalence, and burden were the highest in the Dongting Lake area. In addition, parasite diversity and burden during the reproductive period of Père David's deer was significantly higher than during the post-reproductive period. Conclusions The summer season and the reproductive period of Père David's deer had great potential for parasite transmission, and there is a high risk of parasite outbreaks in the Dongting Lake area.
Collapse
Affiliation(s)
- Shanghua Xu
- School of Ecology and Nature Conservation, Beijing Forestry University, Beijing, China
| | - Shumiao Zhang
- Department of Research, Beijing Milu Ecological Research Center, Beijing, China
| | - Xiaolong Hu
- College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| | - Baofeng Zhang
- School of Ecology and Nature Conservation, Beijing Forestry University, Beijing, China
| | - Shuang Yang
- School of Ecology and Nature Conservation, Beijing Forestry University, Beijing, China
| | - Xin Hu
- Beijing Key Laboratory of Captive Wildlife Technologies, Beijing Zoo, Beijing, China
| | - Shuqiang Liu
- School of Ecology and Nature Conservation, Beijing Forestry University, Beijing, China
| | - Defu Hu
- School of Ecology and Nature Conservation, Beijing Forestry University, Beijing, China
| | - Jiade Bai
- Department of Research, Beijing Milu Ecological Research Center, Beijing, China
| |
Collapse
|
57
|
Holding ML, Strickland JL, Rautsaw RM, Hofmann EP, Mason AJ, Hogan MP, Nystrom GS, Ellsworth SA, Colston TJ, Borja M, Castañeda-Gaytán G, Grünwald CI, Jones JM, Freitas-de-Sousa LA, Viala VL, Margres MJ, Hingst-Zaher E, Junqueira-de-Azevedo ILM, Moura-da-Silva AM, Grazziotin FG, Gibbs HL, Rokyta DR, Parkinson CL. Phylogenetically diverse diets favor more complex venoms in North American pitvipers. Proc Natl Acad Sci U S A 2021; 118:e2015579118. [PMID: 33875585 PMCID: PMC8092465 DOI: 10.1073/pnas.2015579118] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
The role of natural selection in the evolution of trait complexity can be characterized by testing hypothesized links between complex forms and their functions across species. Predatory venoms are composed of multiple proteins that collectively function to incapacitate prey. Venom complexity fluctuates over evolutionary timescales, with apparent increases and decreases in complexity, and yet the causes of this variation are unclear. We tested alternative hypotheses linking venom complexity and ecological sources of selection from diet in the largest clade of front-fanged venomous snakes in North America: the rattlesnakes, copperheads, cantils, and cottonmouths. We generated independent transcriptomic and proteomic measures of venom complexity and collated several natural history studies to quantify dietary variation. We then constructed genome-scale phylogenies for these snakes for comparative analyses. Strikingly, prey phylogenetic diversity was more strongly correlated to venom complexity than was overall prey species diversity, specifically implicating prey species' divergence, rather than the number of lineages alone, in the evolution of complexity. Prey phylogenetic diversity further predicted transcriptomic complexity of three of the four largest gene families in viper venom, showing that complexity evolution is a concerted response among many independent gene families. We suggest that the phylogenetic diversity of prey measures functionally relevant divergence in the targets of venom, a claim supported by sequence diversity in the coagulation cascade targets of venom. Our results support the general concept that the diversity of species in an ecological community is more important than their overall number in determining evolutionary patterns in predator trait complexity.
Collapse
Affiliation(s)
- Matthew L Holding
- Department of Biological Sciences, Clemson University, Clemson, SC 29634;
- Department of Biological Science, Florida State University, Tallahassee, FL 32306
| | - Jason L Strickland
- Department of Biological Sciences, Clemson University, Clemson, SC 29634
| | - Rhett M Rautsaw
- Department of Biological Sciences, Clemson University, Clemson, SC 29634
| | - Erich P Hofmann
- Department of Biological Sciences, Clemson University, Clemson, SC 29634
| | - Andrew J Mason
- Department of Biological Sciences, Clemson University, Clemson, SC 29634
- Department of Evolution, Ecology and Organismal Biology, The Ohio State University, Columbus, OH 43210
| | - Michael P Hogan
- Department of Biological Science, Florida State University, Tallahassee, FL 32306
| | - Gunnar S Nystrom
- Department of Biological Science, Florida State University, Tallahassee, FL 32306
| | - Schyler A Ellsworth
- Department of Biological Science, Florida State University, Tallahassee, FL 32306
| | - Timothy J Colston
- Department of Biological Science, Florida State University, Tallahassee, FL 32306
| | - Miguel Borja
- Facultad de Ciencias Biológicas, Universidad Juárez del Estado de Durango, C.P. 35010 Gómez Palacio, Dgo., Mexico
| | - Gamaliel Castañeda-Gaytán
- Facultad de Ciencias Biológicas, Universidad Juárez del Estado de Durango, C.P. 35010 Gómez Palacio, Dgo., Mexico
| | | | - Jason M Jones
- HERP.MX A.C., Villa del Álvarez, Colima 28973, Mexico
| | | | - Vincent Louis Viala
- Laboratório de Toxinologia Aplicada, Instituto Butantan, São Paulo 05503-900, Brazil
- Center of Toxins, Immune-Response and Cell Signaling, São Paulo 05503-900, Brazil
| | - Mark J Margres
- Department of Biological Sciences, Clemson University, Clemson, SC 29634
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138
| | | | - Inácio L M Junqueira-de-Azevedo
- Laboratório de Toxinologia Aplicada, Instituto Butantan, São Paulo 05503-900, Brazil
- Center of Toxins, Immune-Response and Cell Signaling, São Paulo 05503-900, Brazil
| | - Ana M Moura-da-Silva
- Laboratório de Imunopatologia, Instituto Butantan, São Paulo 05503-900, Brazil
- Instituto de Pesquisa Clínica Carlos Borborema, Fundação de Medicina Tropical Doutor Heitor Vieira Dourado, Manaus 69040, Brazil
| | - Felipe G Grazziotin
- Laboratório de Coleções Zoológicas, Instituto Butantan, São Paulo 05503-900, Brazil
| | - H Lisle Gibbs
- Department of Evolution, Ecology and Organismal Biology, The Ohio State University, Columbus, OH 43210
| | - Darin R Rokyta
- Department of Biological Science, Florida State University, Tallahassee, FL 32306
| | - Christopher L Parkinson
- Department of Biological Sciences, Clemson University, Clemson, SC 29634;
- Department of Forestry and Environmental Conservation, Clemson University, Clemson, SC 29634
| |
Collapse
|
58
|
Host diversity slows bacteriophage adaptation by selecting generalists over specialists. Nat Ecol Evol 2021; 5:350-359. [PMID: 33432132 DOI: 10.1038/s41559-020-01364-1] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Accepted: 11/12/2020] [Indexed: 01/28/2023]
Abstract
Most viruses can infect multiple hosts, yet the selective mechanisms that maintain multi-host generalists over single-host specialists remain an open question. Here we propagate populations of the newly identified bacteriophage øJB01 in coculture with many host genotypes and find that while phage can adapt to infect any of the new hosts, increasing the number of hosts slows the rate of adaptation. We quantify trade-offs in the capacity for individual phage to infect different hosts and find that phage from evolved populations with more hosts are more likely to be generalists. Sequencing of evolved phage reveals strong selection and the genetic basis of adaptation, supporting a model that shows how the addition of more potential hosts to a community can select for low-fitness generalists over high-fitness specialists. Our results show how evolution with multiple hosts alters the rate of viral adaptation and provides empirical support for an evolutionary mechanism that promotes generalists over specialists.
Collapse
|
59
|
Aghaee BL, Khan Mirzaei M, Alikhani MY, Mojtahedi A, Maurice CF. Improving the Inhibitory Effect of Phages against Pseudomonas aeruginosa Isolated from a Burn Patient Using a Combination of Phages and Antibiotics. Viruses 2021; 13:334. [PMID: 33670028 PMCID: PMC7926668 DOI: 10.3390/v13020334] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 02/17/2021] [Accepted: 02/18/2021] [Indexed: 12/12/2022] Open
Abstract
Antibiotic resistance causes around 700,000 deaths a year worldwide. Without immediate action, we are fast approaching a post-antibiotic era in which common infections can result in death. Pseudomonas aeruginosa is the leading cause of nosocomial infection and is also one of the three bacterial pathogens in the WHO list of priority bacteria for developing new antibiotics against. A viable alternative to antibiotics is to use phages, which are bacterial viruses. Yet, the isolation of phages that efficiently kill their target bacteria has proven difficult. Using a combination of phages and antibiotics might increase treatment efficacy and prevent the development of resistance against phages and/or antibiotics, as evidenced by previous studies. Here, in vitro populations of a Pseudomonas aeruginosa strain isolated from a burn patient were treated with a single phage, a mixture of two phages (used simultaneously and sequentially), and the combination of phages and antibiotics (at sub-minimum inhibitory concentration (MIC) and MIC levels). In addition, we tested the stability of these phages at different temperatures, pH values, and in two burn ointments. Our results show that the two-phages-one-antibiotic combination had the highest killing efficiency against the P. aeruginosa strain. The phages tested showed low stability at high temperatures, acidic pH values, and in the two ointments. This work provides additional support for the potential of using combinations of phage-antibiotic cocktails at sub-MIC levels for the treatment of multidrug-resistant P. aeruginosa infections.
Collapse
Affiliation(s)
- Bahareh Lashtoo Aghaee
- Department of Microbiology, Faculty of Medicine, Hamadan University of Medical Sciences, Hamadan 65178-38678, Iran;
| | - Mohammadali Khan Mirzaei
- Institute of Virology, Helmholtz Center Munich and Technical University of Munich, 85764 Neuherberg, Germany;
- Department of Microbiology & Immunology, Faculty of Medicine and Health Sciences, McGill University, Montreal, QC H3G 0B1, Canada
| | - Mohammad Yousef Alikhani
- Department of Microbiology, Faculty of Medicine, Hamadan University of Medical Sciences, Hamadan 65178-38678, Iran;
| | - Ali Mojtahedi
- Department of Microbiology, School of Medicine, Guilan University of Medical Sciences, Rasht 41938-33697, Iran
| | - Corinne F. Maurice
- Department of Microbiology & Immunology, Faculty of Medicine and Health Sciences, McGill University, Montreal, QC H3G 0B1, Canada
| |
Collapse
|
60
|
Huang J, Chen J, Fang G, Pang L, Zhou S, Zhou Y, Pan Z, Zhang Q, Sheng Y, Lu Y, Liu Z, Zhang Y, Li G, Shi M, Chen X, Zhan S. Two novel venom proteins underlie divergent parasitic strategies between a generalist and a specialist parasite. Nat Commun 2021; 12:234. [PMID: 33431897 PMCID: PMC7801585 DOI: 10.1038/s41467-020-20332-8] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Accepted: 11/25/2020] [Indexed: 12/23/2022] Open
Abstract
Parasitoids are ubiquitous in natural ecosystems. Parasitic strategies are highly diverse among parasitoid species, yet their underlying genetic bases are poorly understood. Here, we focus on the divergent adaptation of a specialist and a generalist drosophilid parasitoids. We find that a novel protein (Lar) enables active immune suppression by lysing the host lymph glands, eventually leading to successful parasitism by the generalist. Meanwhile, another novel protein (Warm) contributes to a passive strategy by attaching the laid eggs to the gut and other organs of the host, leading to incomplete encapsulation and helping the specialist escape the host immune response. We find that these diverse parasitic strategies both originated from lateral gene transfer, followed with duplication and specialization, and that they might contribute to the shift in host ranges between parasitoids. Our results increase our understanding of how novel gene functions originate and how they contribute to host adaptation.
Collapse
Affiliation(s)
- Jianhua Huang
- Institute of Insect Sciences, Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insect Pests, College of Agriculture and Biotechnology, Zhejiang University, 310058, Hangzhou, China. .,Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Zhejiang University, 310058, Hangzhou, China.
| | - Jiani Chen
- Institute of Insect Sciences, Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insect Pests, College of Agriculture and Biotechnology, Zhejiang University, 310058, Hangzhou, China.,Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Zhejiang University, 310058, Hangzhou, China
| | - Gangqi Fang
- CAS Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China.,CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, China
| | - Lan Pang
- Institute of Insect Sciences, Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insect Pests, College of Agriculture and Biotechnology, Zhejiang University, 310058, Hangzhou, China.,Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Zhejiang University, 310058, Hangzhou, China
| | - Sicong Zhou
- Institute of Insect Sciences, Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insect Pests, College of Agriculture and Biotechnology, Zhejiang University, 310058, Hangzhou, China.,Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Zhejiang University, 310058, Hangzhou, China
| | - Yuenan Zhou
- Institute of Insect Sciences, Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insect Pests, College of Agriculture and Biotechnology, Zhejiang University, 310058, Hangzhou, China.,Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Zhejiang University, 310058, Hangzhou, China
| | - Zhongqiu Pan
- Institute of Insect Sciences, Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insect Pests, College of Agriculture and Biotechnology, Zhejiang University, 310058, Hangzhou, China.,Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Zhejiang University, 310058, Hangzhou, China
| | - Qichao Zhang
- Institute of Insect Sciences, Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insect Pests, College of Agriculture and Biotechnology, Zhejiang University, 310058, Hangzhou, China.,Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Zhejiang University, 310058, Hangzhou, China
| | - Yifeng Sheng
- Institute of Insect Sciences, Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insect Pests, College of Agriculture and Biotechnology, Zhejiang University, 310058, Hangzhou, China.,Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Zhejiang University, 310058, Hangzhou, China
| | - Yueqi Lu
- Institute of Insect Sciences, Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insect Pests, College of Agriculture and Biotechnology, Zhejiang University, 310058, Hangzhou, China.,Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Zhejiang University, 310058, Hangzhou, China
| | - Zhiguo Liu
- Institute of Insect Sciences, Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insect Pests, College of Agriculture and Biotechnology, Zhejiang University, 310058, Hangzhou, China.,Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Zhejiang University, 310058, Hangzhou, China
| | - Yixiang Zhang
- CAS Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China.,CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, China
| | - Guiyun Li
- CAS Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Min Shi
- Institute of Insect Sciences, Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insect Pests, College of Agriculture and Biotechnology, Zhejiang University, 310058, Hangzhou, China.,Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Zhejiang University, 310058, Hangzhou, China
| | - Xuexin Chen
- Institute of Insect Sciences, Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insect Pests, College of Agriculture and Biotechnology, Zhejiang University, 310058, Hangzhou, China. .,Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Zhejiang University, 310058, Hangzhou, China. .,State Key Lab of Rice Biology, Zhejiang University, 310058, Hangzhou, China.
| | - Shuai Zhan
- CAS Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China. .,CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
61
|
Barraclough TG. Evolution: Groundhog Day for a Lab Bacterium. Curr Biol 2020; 30:R1484-R1486. [DOI: 10.1016/j.cub.2020.10.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
62
|
Jalasvuori M. Silent rain: does the atmosphere-mediated connectivity between microbiomes influence bacterial evolutionary rates? FEMS Microbiol Ecol 2020; 96:5841522. [PMID: 32436564 DOI: 10.1093/femsec/fiaa096] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Accepted: 05/20/2020] [Indexed: 01/21/2023] Open
Abstract
Air carries a vast number of bacteria and viruses over great distances all the time. This leads to continuous introduction of foreign genetic material to local, established microbial communities. In this perspective, I ask whether this silent rain may have a slowing effect on the overall evolutionary rates in the microbial biosphere. Arguably, the greater the genetic divergence between gene 'donors' and 'recipients', the greater the chance that the gene product has a deleterious epistatic interaction with other gene products in its genetic environment. This is due to the long-term absence of check for mutual compatibility. As such, if an organism is extensively different from other bacteria, genetic innovations are less probable to fit to the genome. Here, genetic innovation would be anything that elevates the fitness of the gene vehicle (e.g. bacterium) over its contemporaries. Adopted innovations increase the fitness of the compatible genome over incompatible ones, thus possibly tempering the pace at which mutations accumulate in existing genomes over generations. I further discuss the transfer of bacteriophages through atmosphere and potential effects that this may have on local dynamics and perhaps phage survival.
Collapse
Affiliation(s)
- Matti Jalasvuori
- Department of Biological and Environmental Science, Nanoscience Center, University of Jyvaskyla, Jyvaskyla, FI-40014, Finland
| |
Collapse
|
63
|
Northfield TD, Ripa J, Nell LA, Ives AR. Coevolution, diversification and alternative states in two-trophic communities. Ecol Lett 2020; 24:269-278. [PMID: 33201560 DOI: 10.1111/ele.13639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 09/15/2020] [Accepted: 10/11/2020] [Indexed: 11/28/2022]
Abstract
Single-trait eco-evolutionary models of arms races between consumers and their resource species often show inhibition rather than promotion of community diversification. In contrast, modelling arms races involving multiple traits, we found that arms races can promote diversification when trade-off costs among traits make simultaneous investment in multiple traits either more beneficial or more costly. Coevolution between resource and consumer species generates an adaptive landscape for each, with the configuration giving predictable suites of consumer and resource species. Nonetheless, the adaptive landscape contains multiple alternative stable states, and which stable community is reached depends on small stochastic differences occurring along evolutionary pathways. Our results may solve a puzzling conflict between eco-evolutionary theory that predicts community diversification via consumer-resource interactions will be rare, and empirical research that has uncovered real cases. Furthermore, our results suggest that these real cases might be just a subset of alternative stable communities.
Collapse
Affiliation(s)
- Tobin D Northfield
- Department of Entomology, Tree Fruit Research and Extension Center, Washington State University, Wenatchee, WA, 98801, USA.,Centre for Tropical Environmental and Sustainability Studies, College of Science and Engineering, James Cook University, Cairns, QLD, 4870, Australia
| | - Jörgen Ripa
- Theoretical Population Ecology and Evolution Group (ThePEG), Department of Biology, Lund University, Lund, SE-223 62, Sweden
| | - Lucas A Nell
- Department of Integrative Biology, University of Wisconsin, Madison, WI, 53706, USA
| | - Anthony R Ives
- Department of Integrative Biology, University of Wisconsin, Madison, WI, 53706, USA
| |
Collapse
|
64
|
Abstract
Ecological interactions can generate strong selection. Two new studies reveal that the tempo and patterns of evolutionary change in a mammalian gut commensal can be altered dramatically during interactions with both the host and its microbiome.
Collapse
Affiliation(s)
- Kayla C King
- Department of Zoology, University of Oxford, Oxford OX1 3SZ, UK.
| | - Emily Stevens
- Department of Zoology, University of Oxford, Oxford OX1 3SZ, UK
| | - Georgia C Drew
- Department of Zoology, University of Oxford, Oxford OX1 3SZ, UK
| |
Collapse
|
65
|
Fazzino L, Anisman J, Chacón JM, Harcombe WR. Phage cocktail strategies for the suppression of a pathogen in a cross-feeding coculture. Microb Biotechnol 2020; 13:1997-2007. [PMID: 32814365 PMCID: PMC7533344 DOI: 10.1111/1751-7915.13650] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 07/21/2020] [Accepted: 07/27/2020] [Indexed: 01/19/2023] Open
Abstract
Cocktail combinations of bacteria-infecting viruses (bacteriophages) can suppress pathogenic bacterial growth. However, predicting how phage cocktails influence microbial communities with complex ecological interactions, specifically cross-feeding interactions in which bacteria exchange nutrients, remains challenging. Here, we used experiments and mathematical simulations to determine how to best suppress a model pathogen, E. coli, when obligately cross-feeding with S. enterica. We tested whether the duration of pathogen suppression caused by a two-lytic phage cocktail was maximized when both phages targeted E. coli, or when one phage targeted E. coli and the other its cross-feeding partner, S. enterica. Experimentally, we observed that cocktails targeting both cross-feeders suppressed E. coli growth longer than cocktails targeting only E. coli. Two non-mutually exclusive mechanisms could explain these results: (i) we found that treatment with two E. coli phage led to the evolution of a mucoid phenotype that provided cross-resistance against both phages, and (ii) S. enterica set the growth rate of the coculture, and therefore, targeting S. enterica had a stronger effect on pathogen suppression. Simulations suggested that cross-resistance and the relative growth rates of cross-feeders modulated the duration of E. coli suppression. More broadly, we describe a novel bacteriophage cocktail strategy for pathogens that cross-feed.
Collapse
Affiliation(s)
- Lisa Fazzino
- Department of Microbiology and ImmunologyUniversity of MinnesotaMinneapolisMNUSA
- BioTechnology InstituteUniversity of MinnesotaSaint PaulMNUSA
| | - Jeremy Anisman
- College of Continuing and Professional StudiesUniversity of MinnesotaMinneapolisMNUSA
- Department of Diagnostic and Biological SciencesSchool of DentistryUniversity of MinnesotaMinneapolisMNUSA
| | - Jeremy M. Chacón
- BioTechnology InstituteUniversity of MinnesotaSaint PaulMNUSA
- Department of Evolution, and BehaviorUniversity of MinnesotaSaint PaulMNUSA
| | - William R. Harcombe
- BioTechnology InstituteUniversity of MinnesotaSaint PaulMNUSA
- Department of Evolution, and BehaviorUniversity of MinnesotaSaint PaulMNUSA
| |
Collapse
|
66
|
Evans R, Beckerman AP, Wright RCT, McQueen-Mason S, Bruce NC, Brockhurst MA. Eco-evolutionary Dynamics Set the Tempo and Trajectory of Metabolic Evolution in Multispecies Communities. Curr Biol 2020; 30:4984-4988.e4. [PMID: 33035481 PMCID: PMC7758711 DOI: 10.1016/j.cub.2020.09.028] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 07/30/2020] [Accepted: 09/04/2020] [Indexed: 12/21/2022]
Abstract
The eco-evolutionary dynamics of microbial communities are predicted to affect both the tempo and trajectory of evolution in constituent species [1]. While community composition determines available niche space, species sorting dynamically alters composition, changing over time the distribution of vacant niches to which species adapt [2], altering evolutionary trajectories [3, 4]. Competition for the same niche can limit evolutionary potential if population size and mutation supply are reduced [5, 6] but, alternatively, could stimulate evolutionary divergence to exploit vacant niches if character displacement results from the coevolution of competitors [7, 8]. Under more complex ecological scenarios, species can create new niches through their exploitation of complex resources, enabling others to adapt to occupy these newly formed niches [9, 10]. Disentangling the drivers of natural selection within such communities is extremely challenging, and it is thus unclear how eco-evolutionary dynamics drive the evolution of constituent taxa. We tracked the metabolic evolution of a focal species during adaptation to wheat straw as a resource both in monoculture and in polycultures wherein on-going eco-evolutionary community dynamics were either permitted or prevented. Species interactions accelerated metabolic evolution. Eco-evolutionary dynamics drove increased use of recalcitrant substrates by the focal species, whereas greater exploitation of readily digested substrate niches created by other species evolved if on-going eco-evolutionary dynamics were prevented. Increased use of recalcitrant substrates was associated with parallel evolution of tctE, encoding a carbon metabolism regulator. Species interactions and species sorting set, respectively, the tempo and trajectory of evolutionary divergence among communities, selecting distinct ecological functions in otherwise equivalent ecosystems. Living in a multispecies community accelerated bacterial metabolic evolution Species sorting altered the trajectory of metabolic evolution between communities Eco-evolutionary dynamics drove increased use of hard-to-digest substrate niches This was linked to mutation of tctE, encoding a regulator of carbon metabolism
Collapse
Affiliation(s)
- Rachael Evans
- Department of Animal and Plant Sciences, University of Sheffield, Western Bank, Sheffield S10 2TN, UK; Department of Biology, University of York, Wentworth Way, York YO10 5DD, UK
| | - Andrew P Beckerman
- Department of Animal and Plant Sciences, University of Sheffield, Western Bank, Sheffield S10 2TN, UK
| | - Rosanna C T Wright
- Department of Animal and Plant Sciences, University of Sheffield, Western Bank, Sheffield S10 2TN, UK; Department of Biology, University of York, Wentworth Way, York YO10 5DD, UK; Division of Evolution and Genomic Sciences, University of Manchester, Dover Street, Manchester M13 9PT, UK
| | | | - Neil C Bruce
- Department of Biology, University of York, Wentworth Way, York YO10 5DD, UK
| | - Michael A Brockhurst
- Division of Evolution and Genomic Sciences, University of Manchester, Dover Street, Manchester M13 9PT, UK.
| |
Collapse
|
67
|
Medina I, Kilner RM, Langmore NE. From micro- to macroevolution: brood parasitism as a driver of phenotypic diversity in birds. Curr Zool 2020; 66:515-526. [PMID: 33293930 PMCID: PMC7705515 DOI: 10.1093/cz/zoaa033] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 06/17/2020] [Indexed: 11/14/2022] Open
Abstract
A fundamental question in biology is how diversity evolves and why some clades are more diverse than others. Phenotypic diversity has often been shown to result from morphological adaptation to different habitats. The role of behavioral interactions as a driver of broadscale phenotypic diversity has received comparatively less attention. Behavioral interactions, however, are a key agent of natural selection. Antagonistic behavioral interactions with predators or with parasites can have significant fitness consequences, and hence act as strong evolutionary forces on the phenotype of species, ultimately generating diversity between species of both victims and exploiters. Avian obligate brood parasites lay their eggs in the nests of other species, their hosts, and this behavioral interaction between hosts and parasites is often considered one of the best examples of coevolution in the natural world. In this review, we use the coevolution between brood parasites and their hosts to illustrate the potential of behavioral interactions to drive evolution of phenotypic diversity at different taxonomic scales. We provide a bridge between behavioral ecology and macroevolution by describing how this interaction has increased avian phenotypic diversity not only in the brood parasitic clades but also in their hosts.
Collapse
Affiliation(s)
- Iliana Medina
- School of BioSciences, University of Melbourne, Victoria, 3010, Australia
| | - Rebecca M Kilner
- Department of Zoology, University of Cambridge, Cambridge, CB2 3EJ, UK
| | - Naomi E Langmore
- Division of Ecology and Evolution, Australian National University, Canberra, ACT 2600, Australia
| |
Collapse
|
68
|
Castledine M, Padfield D, Buckling A. Experimental (co)evolution in a multi-species microbial community results in local maladaptation. Ecol Lett 2020; 23:1673-1681. [PMID: 32893477 DOI: 10.1111/ele.13599] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 06/19/2020] [Accepted: 08/13/2020] [Indexed: 01/01/2023]
Abstract
Interspecific coevolutionary interactions can result in rapid biotic adaptation, but most studies have focused only on species pairs. Here, we (co)evolved five microbial species in replicate polycultures and monocultures and quantified local adaptation. Specifically, growth rate assays were used to determine adaptations of each species' populations to (1) the presence of the other four species in general and (2) sympatric vs. allopatric communities. We found that species did not show an increase in net biotic adaptation:ancestral, polyculture- and monoculture-evolved populations did not have significantly different growth rates within communities. However, 4/5 species' growth rates were significantly lower within the community they evolved in relative to an allopatric community. 'Local maladaptation' suggests that species evolved increased competitive interactions to sympatric species' populations. This increased competition did not affect community stability or productivity. Our results suggest that (co)evolution within communities can increase competitive interactions that are specific to (co)evolved community members.
Collapse
Affiliation(s)
- Meaghan Castledine
- College of Life and Environmental Sciences, Environment and Sustainability Institute, University of Exeter, Penryn, Cornwall, TR10 9FE, UK
| | - Daniel Padfield
- College of Life and Environmental Sciences, Environment and Sustainability Institute, University of Exeter, Penryn, Cornwall, TR10 9FE, UK
| | - Angus Buckling
- College of Life and Environmental Sciences, Environment and Sustainability Institute, University of Exeter, Penryn, Cornwall, TR10 9FE, UK
| |
Collapse
|
69
|
Noreikiene K, Ozerov M, Ahmad F, Kõiv T, Kahar S, Gross R, Sepp M, Pellizzone A, Vesterinen EJ, Kisand V, Vasemägi A. Humic-acid-driven escape from eye parasites revealed by RNA-seq and target-specific metabarcoding. Parasit Vectors 2020; 13:433. [PMID: 32859251 PMCID: PMC7456052 DOI: 10.1186/s13071-020-04306-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 08/16/2020] [Indexed: 01/09/2023] Open
Abstract
Background Next generation sequencing (NGS) technologies are extensively used to dissect the molecular mechanisms of host-parasite interactions in human pathogens. However, ecological studies have yet to fully exploit the power of NGS as a rich source for formulating and testing new hypotheses. Methods We studied Eurasian perch (Perca fluviatilis) and its eye parasite (Trematoda, Diplostomidae) communities in 14 lakes that differed in humic content in order to explore host-parasite-environment interactions. We hypothesised that high humic content along with low pH would decrease the abundance of the intermediate hosts (gastropods), thus limiting the occurrence of diplostomid parasites in humic lakes. This hypothesis was initially invoked by whole eye RNA-seq data analysis and subsequently tested using PCR-based detection and a novel targeted metabarcoding approach. Results Whole eye transcriptome results revealed overexpression of immune-related genes and the presence of eye parasite sequences in RNA-seq data obtained from perch living in clear-water lakes. Both PCR-based and targeted-metabarcoding approach showed that perch from humic lakes were completely free from diplostomid parasites, while the prevalence of eye flukes in clear-water lakes that contain low amounts of humic substances was close to 100%, with the majority of NGS reads assigned to Tylodelphys clavata. Conclusions High intraspecific diversity of T. clavata indicates that massively parallel sequencing of naturally pooled samples represents an efficient and powerful strategy for shedding light on cryptic diversity of eye parasites. Our results demonstrate that perch populations in clear-water lakes experience contrasting eye parasite pressure compared to those from humic lakes, which is reflected by prevalent differences in the expression of immune-related genes in the eye. This study highlights the utility of NGS to discover novel host-parasite-environment interactions and provide unprecedented power to characterize the molecular diversity of cryptic parasites.![]()
Collapse
Affiliation(s)
- Kristina Noreikiene
- Chair of Aquaculture, Institute of Veterinary Medicine and Animal Sciences, Estonian University of Life Sciences, Kreutzwaldi 46, 51006, Tartu, Estonia.
| | - Mikhail Ozerov
- Department of Biology, University of Turku, 20014, Turku, Finland.,Department of Aquatic Resources, Institute of Freshwater Research, Swedish University of Agricultural Sciences, 17893, Drottningholm, Sweden.,Biodiversity Unit, University of Turku, 20014, Turku, Finland
| | - Freed Ahmad
- Department of Biology, University of Turku, 20014, Turku, Finland
| | - Toomas Kõiv
- Chair of Hydrobiology and Fishery, Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Kreutzwaldi 5, 51006, Tartu, Estonia
| | - Siim Kahar
- Chair of Aquaculture, Institute of Veterinary Medicine and Animal Sciences, Estonian University of Life Sciences, Kreutzwaldi 46, 51006, Tartu, Estonia
| | - Riho Gross
- Chair of Aquaculture, Institute of Veterinary Medicine and Animal Sciences, Estonian University of Life Sciences, Kreutzwaldi 46, 51006, Tartu, Estonia
| | - Margot Sepp
- Chair of Hydrobiology and Fishery, Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Kreutzwaldi 5, 51006, Tartu, Estonia
| | - Antonia Pellizzone
- Department of Biology, University of Turku, 20014, Turku, Finland.,Department of Life Sciences and Biotechnology, University of Ferrara, 44121, Ferrara, Italy
| | - Eero J Vesterinen
- Biodiversity Unit, University of Turku, 20014, Turku, Finland.,Department of Ecology, Swedish University of Agricultural Sciences, 75651, Uppsala, Sweden
| | - Veljo Kisand
- Institute of Technology, University of Tartu, Nooruse 1, 50411, Tartu, Estonia
| | - Anti Vasemägi
- Chair of Aquaculture, Institute of Veterinary Medicine and Animal Sciences, Estonian University of Life Sciences, Kreutzwaldi 46, 51006, Tartu, Estonia. .,Department of Aquatic Resources, Institute of Freshwater Research, Swedish University of Agricultural Sciences, 17893, Drottningholm, Sweden.
| |
Collapse
|
70
|
Gurney J, Pradier L, Griffin JS, Gougat-Barbera C, Chan BK, Turner PE, Kaltz O, Hochberg ME. Phage steering of antibiotic-resistance evolution in the bacterial pathogen, Pseudomonas aeruginosa. EVOLUTION MEDICINE AND PUBLIC HEALTH 2020; 2020:148-157. [PMID: 34254028 DOI: 10.1093/emph/eoaa026] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Accepted: 06/18/2020] [Indexed: 12/13/2022]
Abstract
Background and objectives Antimicrobial resistance is a growing global concern and has spurred increasing efforts to find alternative therapeutics. Bacteriophage therapy has seen near constant use in Eastern Europe since its discovery over a century ago. One promising approach is to use phages that not only reduce bacterial pathogen loads but also select for phage resistance mechanisms that trade-off with antibiotic resistance-so called 'phage steering'. Methodology Recent work has shown that the phage OMKO1 can interact with efflux pumps and in so doing select for both phage resistance and antibiotic sensitivity of the pathogenic bacterium Pseudomonas aeruginosa. We tested the robustness of this approach to three different antibiotics in vitro (tetracycline, erythromycin and ciprofloxacin) and one in vivo (erythromycin). Results We show that in vitro OMKO1 can reduce antibiotic resistance of P. aeruginosa (Washington PAO1) even in the presence of antibiotics, an effect still detectable after ca.70 bacterial generations in continuous culture with phage. Our in vivo experiment showed that phage both increased the survival times of wax moth larvae (Galleria mellonella) and increased bacterial sensitivity to erythromycin. This increased antibiotic sensitivity occurred both in lines with and without the antibiotic. Conclusions and implications Our study supports a trade-off between antibiotic resistance and phage sensitivity. This trade-off was maintained over co-evolutionary time scales even under combined phage and antibiotic pressure. Similarly, OMKO1 maintained this trade-off in vivo, again under dual phage/antibiotic pressure. Our findings have implications for the future clinical use of steering in phage therapies. Lay Summary: Given the rise of antibiotic-resistant bacterial infection, new approaches to treatment are urgently needed. Bacteriophages (phages) are bacterial viruses. The use of such viruses to treat infections has been in near-continuous use in several countries since the early 1900s. Recent developments have shown that these viruses are not only effective against routine infections but can also target antibiotic resistant bacteria in a novel, unexpected way. Similar to other lytic phages, these so-called 'steering phages' kill the majority of bacteria directly. However, steering phages also leave behind bacterial variants that resist the phages, but are now sensitive to antibiotics. Treatment combinations of these phages and antibiotics can now be used to greater effect than either one independently. We evaluated the impact of steering using phage OMKO1 and a panel of three antibiotics on Pseudomonas aeruginosa, an important pathogen in hospital settings and in people with cystic fibrosis. Our findings indicate that OMKO1, either alone or in combination with antibiotics, maintains antibiotic sensitivity both in vitro and in vivo, giving hope that phage steering will be an effective treatment option against antibiotic-resistant bacteria.
Collapse
Affiliation(s)
- James Gurney
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA 30332, USA.,Center for Microbial Dynamics and Infection, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Léa Pradier
- CEFE/CNRS, Université de Montpellier Campus du CNRS, 1919, route de Mende, Montpellier 34293, France
| | - Joanne S Griffin
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool L69 7ZB, UK
| | - Claire Gougat-Barbera
- Institute of Evolution Sciences of Montpellier, Université de Montpellier, CNRS, IRD EPHE, Montpellier, France
| | - Benjamin K Chan
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT 06511, USA
| | - Paul E Turner
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT 06511, USA.,Department is Program in Microbiology, Program in Microbiology, Yale School of Medicine, New Haven, CT 06510, USA
| | - Oliver Kaltz
- Institute of Evolution Sciences of Montpellier, Université de Montpellier, CNRS, IRD EPHE, Montpellier, France
| | - Michael E Hochberg
- Institute of Evolution Sciences of Montpellier, Université de Montpellier, CNRS, IRD EPHE, Montpellier, France.,Santa Fe Institute, Santa Fe, NM 87501, USA
| |
Collapse
|
71
|
Gonzalez-Serrano R, Dunne M, Rosselli R, Martin-Cuadrado AB, Grosboillot V, Zinsli LV, Roda-Garcia JJ, Loessner MJ, Rodriguez-Valera F. Alteromonas Myovirus V22 Represents a New Genus of Marine Bacteriophages Requiring a Tail Fiber Chaperone for Host Recognition. mSystems 2020; 5:e00217-20. [PMID: 32518192 PMCID: PMC7289586 DOI: 10.1128/msystems.00217-20] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Accepted: 05/20/2020] [Indexed: 12/24/2022] Open
Abstract
Marine phages play a variety of critical roles in regulating the microbial composition of our oceans. Despite constituting the majority of genetic diversity within these environments, there are relatively few isolates with complete genome sequences or in-depth analyses of their host interaction mechanisms, such as characterization of their receptor binding proteins (RBPs). Here, we present the 92,760-bp genome of the Alteromonas-targeting phage V22. Genomic and morphological analyses identify V22 as a myovirus; however, due to a lack of sequence similarity to any other known myoviruses, we propose that V22 be classified as the type phage of a new Myoalterovirus genus within the Myoviridae family. V22 shows gene homology and synteny with two different subfamilies of phages infecting enterobacteria, specifically within the structural region of its genome. To improve our understanding of the V22 adsorption process, we identified putative RBPs (gp23, gp24, and gp26) and tested their ability to decorate the V22 propagation strain, Alteromonas mediterranea PT11, as recombinant green fluorescent protein (GFP)-tagged constructs. Only GFP-gp26 was capable of bacterial recognition and identified as the V22 RBP. Interestingly, production of functional GFP-gp26 required coexpression with the downstream protein gp27. GFP-gp26 could be expressed alone but was incapable of host recognition. By combining size-exclusion chromatography with fluorescence microscopy, we reveal how gp27 is not a component of the final RBP complex but instead is identified as a new type of phage-encoded intermolecular chaperone that is essential for maturation of the gp26 RBP.IMPORTANCE Host recognition by phage-encoded receptor binding proteins (RBPs) constitutes the first step in all phage infections and the most critical determinant of host specificity. By characterizing new types of RBPs and identifying their essential chaperones, we hope to expand the repertoire of known phage-host recognition machineries. Due to their genetic plasticity, studying RBPs and their associated chaperones can shed new light onto viral evolution affecting phage-host interactions, which is essential for fields such as phage therapy or biotechnology. In addition, since marine phages constitute one of the most important reservoirs of noncharacterized genetic diversity on the planet, their genomic and functional characterization may be of paramount importance for the discovery of novel genes with potential applications.
Collapse
Affiliation(s)
| | - Matthew Dunne
- Institute of Food, Nutrition and Health, ETH Zurich, Zurich, Switzerland
| | - Riccardo Rosselli
- NIOZ Royal Netherlands Institute for Sea Research, Department of Marine Microbiology and Biogeochemistry, Utrecht University, Den Burg, The Netherlands
- Laboratory for Theoretical and Computer Studies of Biological Macromolecules and Genomes, Moscow Institute of Physics and Technology, Dolgoprudny, Russia
| | | | | | - Léa V Zinsli
- Institute of Food, Nutrition and Health, ETH Zurich, Zurich, Switzerland
| | - Juan J Roda-Garcia
- Evolutionary Genomics Group, Universidad Miguel Hernández, San Juan de Alicante, Spain
| | - Martin J Loessner
- Institute of Food, Nutrition and Health, ETH Zurich, Zurich, Switzerland
| | - Francisco Rodriguez-Valera
- Evolutionary Genomics Group, Universidad Miguel Hernández, San Juan de Alicante, Spain
- Laboratory for Theoretical and Computer Studies of Biological Macromolecules and Genomes, Moscow Institute of Physics and Technology, Dolgoprudny, Russia
| |
Collapse
|
72
|
Measuring Coevolutionary Dynamics in Species-Rich Communities. Trends Ecol Evol 2020; 35:539-550. [DOI: 10.1016/j.tree.2020.02.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 01/24/2020] [Accepted: 02/03/2020] [Indexed: 12/18/2022]
|
73
|
Kaur R, Stoldt M, Jongepier E, Feldmeyer B, Menzel F, Bornberg-Bauer E, Foitzik S. Ant behaviour and brain gene expression of defending hosts depend on the ecological success of the intruding social parasite. Philos Trans R Soc Lond B Biol Sci 2020; 374:20180192. [PMID: 30967075 DOI: 10.1098/rstb.2018.0192] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The geographical mosaic theory of coevolution predicts that species interactions vary between locales. Depending on who leads the coevolutionary arms race, the effectivity of parasite attack or host defence strategies will explain parasite prevalence. Here, we compare behaviour and brain transcriptomes of Temnothorax longispinosus ant workers when defending their nest against an invading social parasite, the slavemaking ant Temnothorax americanus. A full-factorial design allowed us to test whether behaviour and gene expression are linked to parasite pressure on host populations or to the ecological success of parasite populations. Albeit host defences had been shown before to covary with local parasite pressure, we found parasite success to be much more important. Our chemical and behavioural analyses revealed that parasites from high prevalence sites carry lower concentrations of recognition cues and are less often attacked by hosts. This link was further supported by gene expression analysis. Our study reveals that host-parasite interactions are strongly influenced by social parasite strategies, so that variation in parasite prevalence is determined by parasite traits rather than the efficacy of host defence. Gene functions associated with parasite success indicated strong neuronal responses in hosts, including long-term changes in gene regulation, indicating an enduring impact of parasites on host behaviour. This article is part of the theme issue 'The coevolutionary biology of brood parasitism: from mechanism to pattern'.
Collapse
Affiliation(s)
- Rajbir Kaur
- 1 Institute of Organismic and Molecular Evolution, Johannes Gutenberg University , Mainz , Germany
| | - Marah Stoldt
- 1 Institute of Organismic and Molecular Evolution, Johannes Gutenberg University , Mainz , Germany
| | - Evelien Jongepier
- 2 Molecular Evolution and Bioinformatics Group, Institute for Evolution and Biodiversity, Westfälische Wilhelms-Universität , Münster , Germany
| | - Barbara Feldmeyer
- 3 Senckenberg Biodiversity and Climate Research Centre, Senckenberg Gesellschaft für Naturforschung , Senckenberganlage 25, 60325 Frankfurt am Main , Germany
| | - Florian Menzel
- 1 Institute of Organismic and Molecular Evolution, Johannes Gutenberg University , Mainz , Germany
| | - Erich Bornberg-Bauer
- 2 Molecular Evolution and Bioinformatics Group, Institute for Evolution and Biodiversity, Westfälische Wilhelms-Universität , Münster , Germany
| | - Susanne Foitzik
- 1 Institute of Organismic and Molecular Evolution, Johannes Gutenberg University , Mainz , Germany
| |
Collapse
|
74
|
Suhonen J, Ilvonen JJ, Nyman T, Sorvari J. Brood parasitism in eusocial insects (Hymenoptera): role of host geographical range size and phylogeny. Philos Trans R Soc Lond B Biol Sci 2020; 374:20180203. [PMID: 30967081 DOI: 10.1098/rstb.2018.0203] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Interspecific brood parasitism is common in many animal systems. Brood parasites enter the nests of other species and divert host resources for producing their own offspring, which can lead to strong antagonistic parasite-host coevolution. Here, we look at commonalities among social insect species that are victims of brood parasites, and use phylogenetic data and information on geographical range size to predict which species are most probably to fall victims to brood parasites in the future. In our analyses, we focus on three eusocial hymenopteran groups and their brood parasites: (i) bumblebees, (ii) Myrmica ants, and (iii) vespine and polistine wasps. In these groups, some, but not all, species are parasitized by obligate workerless inquilines that only produce reproductive-caste descendants. We find phylogenetic signals for geographical range size and the presence of parasites in bumblebees, but not in ants and wasps. Phylogenetic logistic regressions indicate that the probability of being attacked by one or more brood parasite species increases with the size of the geographical range in bumblebees, but the effect is statistically only marginally significant in ants. However, non-phylogenetic logistic regressions suggest that bumblebee species with the largest geographical range sizes may have a lower likelihood of harbouring social parasites than do hosts with medium-sized ranges. Our results provide new insights into the ecology and evolution of host-social parasite systems, and indicate that host phylogeny and geographical range size can be used to predict threats posed by social parasites, as well to design efficient conservation measures for both hosts and their parasites. This article is part of the theme issue 'The coevolutionary biology of brood parasitism: from mechanism to pattern'.
Collapse
Affiliation(s)
- Jukka Suhonen
- 1 Department of Biology, University of Turku , 20014 Turku , Finland
| | - Jaakko J Ilvonen
- 1 Department of Biology, University of Turku , 20014 Turku , Finland
| | - Tommi Nyman
- 2 Department of Ecosystems in the Barents Region, Norwegian Institute of Bioeconomy Research , Svanhovd Research Station, 9925 Svanvik , Norway.,3 Department of Environmental and Biological Sciences, University of Eastern Finland , PO Box 111, 80101 Joensuu , Finland
| | - Jouni Sorvari
- 4 Department of Environmental and Biological Sciences, University of Eastern Finland , PO Box 1627, 70211 Kuopio , Finland
| |
Collapse
|
75
|
Bacterial adaptation is constrained in complex communities. Nat Commun 2020; 11:754. [PMID: 32029713 PMCID: PMC7005322 DOI: 10.1038/s41467-020-14570-z] [Citation(s) in RCA: 98] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Accepted: 12/18/2019] [Indexed: 12/20/2022] Open
Abstract
A major unresolved question is how bacteria living in complex communities respond to environmental changes. In communities, biotic interactions may either facilitate or constrain evolution depending on whether the interactions expand or contract the range of ecological opportunities. A fundamental challenge is to understand how the surrounding biotic community modifies evolutionary trajectories as species adapt to novel environmental conditions. Here we show that community context can dramatically alter evolutionary dynamics using a novel approach that 'cages' individual focal strains within complex communities. We find that evolution of focal bacterial strains depends on properties both of the focal strain and of the surrounding community. In particular, there is a stronger evolutionary response in low-diversity communities, and when the focal species have a larger genome and are initially poorly adapted. We see how community context affects resource usage and detect genetic changes involved in carbon metabolism and inter-specific interaction. The findings demonstrate that adaptation to new environmental conditions should be investigated in the context of interspecific interactions.
Collapse
|
76
|
McGuire AV, Northfield TD. Tropical Occurrence and Agricultural Importance of Beauveria bassiana and Metarhizium anisopliae. FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2020. [DOI: 10.3389/fsufs.2020.00006] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
|
77
|
How long do Red Queen dynamics survive under genetic drift? A comparative analysis of evolutionary and eco-evolutionary models. BMC Evol Biol 2020; 20:8. [PMID: 31931696 PMCID: PMC6958710 DOI: 10.1186/s12862-019-1562-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Accepted: 12/12/2019] [Indexed: 11/26/2022] Open
Abstract
Background Red Queen dynamics are defined as long term co-evolutionary dynamics, often with oscillations of genotype abundances driven by fluctuating selection in host-parasite systems. Much of our current understanding of these dynamics is based on theoretical concepts explored in mathematical models that are mostly (i) deterministic, inferring an infinite population size and (ii) evolutionary, thus ecological interactions that change population sizes are excluded. Here, we recall the different mathematical approaches used in the current literature on Red Queen dynamics. We then compare models from game theory (evo) and classical theoretical ecology models (eco-evo), that are all derived from individual interactions and are thus intrinsically stochastic. We assess the influence of this stochasticity through the time to the first loss of a genotype within a host or parasite population. Results The time until the first genotype is lost (“extinction time”), is shorter when ecological dynamics, in the form of a changing population size, is considered. Furthermore, when individuals compete only locally with other individuals extinction is even faster. On the other hand, evolutionary models with a fixed population size and competition on the scale of the whole population prolong extinction and therefore stabilise the oscillations. The stabilising properties of intra-specific competitions become stronger when population size is increased and the deterministic part of the dynamics gain influence. In general, the loss of genotype diversity can be counteracted with mutations (or recombination), which then allow the populations to recurrently undergo negative frequency-dependent selection dynamics and selective sweeps. Conclusion Although the models we investigated are equal in their biological motivation and interpretation, they have diverging mathematical properties both in the derived deterministic dynamics and the derived stochastic dynamics. We find that models that do not consider intraspecific competition and that include ecological dynamics by letting the population size vary, lose genotypes – and thus Red Queen oscillations – faster than models with competition and a fixed population size.
Collapse
|
78
|
Ignacio-Espinoza JC, Ahlgren NA, Fuhrman JA. Long-term stability and Red Queen-like strain dynamics in marine viruses. Nat Microbiol 2019; 5:265-271. [PMID: 31819214 DOI: 10.1038/s41564-019-0628-x] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Accepted: 11/04/2019] [Indexed: 11/09/2022]
Abstract
Viruses that infect microorganisms dominate marine microbial communities numerically, with impacts ranging from host evolution to global biogeochemical cycles1,2. However, virus community dynamics, necessary for conceptual and mechanistic model development, remains difficult to assess. Here, we describe the long-term stability of a viral community by analysing the metagenomes of near-surface 0.02-0.2 μm samples from the San Pedro Ocean Time-series3 that were sampled monthly over 5 years. Of 19,907 assembled viral contigs (>5 kb, mean 15 kb), 97% were found in each sample (by >98% ID metagenomic read recruitment) to have relative abundances that ranged over seven orders of magnitude, with limited temporal reordering of rank abundances along with little change in richness. Seasonal variations in viral community composition were superimposed on the overall stability; maximum community similarity occurred at 12-month intervals. Despite the stability of viral genotypic clusters that had 98% sequence identity, viral sequences showed transient variations in single-nucleotide polymorphisms (SNPs) and constant turnover of minor population variants, each rising and falling over a few months, reminiscent of Red Queen dynamics4. The rise and fall of variants within populations, interpreted through the perspective of known virus-host interactions5, is consistent with the hypothesis that fluctuating selection acts on a microdiverse cloud of strains, and this succession is associated with ever-shifting virus-host defences and counterdefences. This results in long-term virus-host coexistence that is facilitated by perpetually changing minor variants.
Collapse
Affiliation(s)
| | - Nathan A Ahlgren
- Department of Biological Sciences, University of Southern California, Los Angeles, CA, USA.,Department of Biology, Clark University, Worcester, MA, USA
| | - Jed A Fuhrman
- Department of Biological Sciences, University of Southern California, Los Angeles, CA, USA.
| |
Collapse
|
79
|
Wang X, Wei Z, Yang K, Wang J, Jousset A, Xu Y, Shen Q, Friman VP. Phage combination therapies for bacterial wilt disease in tomato. Nat Biotechnol 2019; 37:1513-1520. [PMID: 31792408 DOI: 10.1038/s41587-019-0328-3] [Citation(s) in RCA: 154] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2019] [Accepted: 10/28/2019] [Indexed: 12/21/2022]
Abstract
Bacteriophages have been proposed as an alternative to pesticides to kill bacterial pathogens of crops. However, the efficacy of phage biocontrol is variable and poorly understood in natural rhizosphere microbiomes. We studied biocontrol efficacy of different phage combinations on Ralstonia solanacearum infection in tomato. Increasing the number of phages in combinations decreased the incidence of disease by up to 80% in greenhouse and field experiments during a single crop season. The decreased incidence of disease was explained by a reduction in pathogen density and the selection for phage-resistant but slow-growing pathogen strains, together with enrichment for bacterial species that were antagonistic toward R. solanacearum. Phage treatment did not affect the existing rhizosphere microbiota. Specific phage combinations have potential as precision tools to control plant pathogenic bacteria.
Collapse
Affiliation(s)
- Xiaofang Wang
- Jiangsu Provincial Key Laboratory for Organic Solid Waste Utilization, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, National Engineering Research Center for Organic-Based Fertilizers, Nanjing Agricultural University, Weigang, Nanjing, China
| | - Zhong Wei
- Jiangsu Provincial Key Laboratory for Organic Solid Waste Utilization, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, National Engineering Research Center for Organic-Based Fertilizers, Nanjing Agricultural University, Weigang, Nanjing, China.
| | - Keming Yang
- Jiangsu Provincial Key Laboratory for Organic Solid Waste Utilization, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, National Engineering Research Center for Organic-Based Fertilizers, Nanjing Agricultural University, Weigang, Nanjing, China
| | - Jianing Wang
- Jiangsu Provincial Key Laboratory for Organic Solid Waste Utilization, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, National Engineering Research Center for Organic-Based Fertilizers, Nanjing Agricultural University, Weigang, Nanjing, China
| | - Alexandre Jousset
- Jiangsu Provincial Key Laboratory for Organic Solid Waste Utilization, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, National Engineering Research Center for Organic-Based Fertilizers, Nanjing Agricultural University, Weigang, Nanjing, China.,Institute of Environmental Biology, Ecology and Biodiversity, Utrecht University, Utrecht, the Netherlands
| | - Yangchun Xu
- Jiangsu Provincial Key Laboratory for Organic Solid Waste Utilization, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, National Engineering Research Center for Organic-Based Fertilizers, Nanjing Agricultural University, Weigang, Nanjing, China
| | - Qirong Shen
- Jiangsu Provincial Key Laboratory for Organic Solid Waste Utilization, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, National Engineering Research Center for Organic-Based Fertilizers, Nanjing Agricultural University, Weigang, Nanjing, China.
| | - Ville-Petri Friman
- Jiangsu Provincial Key Laboratory for Organic Solid Waste Utilization, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, National Engineering Research Center for Organic-Based Fertilizers, Nanjing Agricultural University, Weigang, Nanjing, China. .,Department of Biology, University of York, York, UK.
| |
Collapse
|
80
|
Retel C, Kowallik V, Huang W, Werner B, Künzel S, Becks L, Feulner PGD. The feedback between selection and demography shapes genomic diversity during coevolution. SCIENCE ADVANCES 2019; 5:eaax0530. [PMID: 31616788 PMCID: PMC6774728 DOI: 10.1126/sciadv.aax0530] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Accepted: 09/06/2019] [Indexed: 06/10/2023]
Abstract
Species interactions and coevolution are integral to ecological communities, but we lack empirical information on when and how these interactions generate and purge genetic diversity. Using genomic time series data from host-virus experiments, we found that coevolution occurs through consecutive selective sweeps in both species, with temporal consistency across replicates. Sweeps were accompanied by phenotypic change (resistance or infectivity increases) and expansions in population size. In the host, population expansion enabled rapid generation of genetic diversity in accordance with neutral processes. Viral molecular evolution was, in contrast, confined to few genes, all putative targets of selection. This study demonstrates that molecular evolution during species interactions is shaped by both eco-evolutionary feedback dynamics and interspecific differences in how genetic diversity is generated and maintained.
Collapse
Affiliation(s)
- Cas Retel
- Department of Fish Ecology and Evolution, Center for Ecology, Evolution and Biogeochemistry, EAWAG, Swiss Federal Institute of Aquatic Science and Technology, Kastanienbaum, Switzerland
- Division of Aquatic Ecology, Institute of Ecology and Evolution, University of Bern, Bern, Switzerland
| | - Vienna Kowallik
- Community Dynamics Group, Department of Evolutionary Ecology, Max Planck Institute for Evolutionary Biology, Plön, Germany
| | - Weini Huang
- Group of Theoretical Biology, The State Key Laboratory of Biocontrol, School of Life Science, Sun Yat-sen University, Guangzhou, China
- Complex Systems and Networks Research Group, School of Mathematical Sciences, Queen Mary University of London, London, UK
| | - Benjamin Werner
- Evolutionary Genomics and Modelling Lab, Centre for Evolution and Cancer, The Institute of Cancer Research, London, UK
| | - Sven Künzel
- Department Evolutionary Genetics, Max Planck Institute for Evolutionary Biology, Plön, Germany
| | - Lutz Becks
- Community Dynamics Group, Department of Evolutionary Ecology, Max Planck Institute for Evolutionary Biology, Plön, Germany
- Kiel Evolution Center, Biologiezentrum, Kiel, Germany
| | - Philine G. D. Feulner
- Department of Fish Ecology and Evolution, Center for Ecology, Evolution and Biogeochemistry, EAWAG, Swiss Federal Institute of Aquatic Science and Technology, Kastanienbaum, Switzerland
- Division of Aquatic Ecology, Institute of Ecology and Evolution, University of Bern, Bern, Switzerland
| |
Collapse
|
81
|
Techer MA, Rane RV, Grau ML, Roberts JMK, Sullivan ST, Liachko I, Childers AK, Evans JD, Mikheyev AS. Divergent evolutionary trajectories following speciation in two ectoparasitic honey bee mites. Commun Biol 2019; 2:357. [PMID: 31583288 PMCID: PMC6773775 DOI: 10.1038/s42003-019-0606-0] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2019] [Accepted: 09/10/2019] [Indexed: 01/28/2023] Open
Abstract
Multispecies host-parasite evolution is common, but how parasites evolve after speciating remains poorly understood. Shared evolutionary history and physiology may propel species along similar evolutionary trajectories whereas pursuing different strategies can reduce competition. We test these scenarios in the economically important association between honey bees and ectoparasitic mites by sequencing the genomes of the sister mite species Varroa destructor and Varroa jacobsoni. These genomes were closely related, with 99.7% sequence identity. Among the 9,628 orthologous genes, 4.8% showed signs of positive selection in at least one species. Divergent selective trajectories were discovered in conserved chemosensory gene families (IGR, SNMP), and Halloween genes (CYP) involved in moulting and reproduction. However, there was little overlap in these gene sets and associated GO terms, indicating different selective regimes operating on each of the parasites. Based on our findings, we suggest that species-specific strategies may be needed to combat evolving parasite communities.
Collapse
Affiliation(s)
- Maeva A. Techer
- Okinawa Institute of Science and Technology, 1919-1 Tancha Onna-son, 904-0495 Okinawa, Japan
| | - Rahul V. Rane
- Commonwealth Scientific and Industrial Research Organisation, Clunies Ross St, (GPO Box 1700), Acton, ACT 2601 Australia
- Bio21 Institute, School of BioSciences, University of Melbourne, 30 Flemington Road, Parkville, VIC 3010 Australia
| | - Miguel L. Grau
- Okinawa Institute of Science and Technology, 1919-1 Tancha Onna-son, 904-0495 Okinawa, Japan
| | - John M. K. Roberts
- Commonwealth Scientific and Industrial Research Organisation, Clunies Ross St, (GPO Box 1700), Acton, ACT 2601 Australia
| | | | | | | | | | - Alexander S. Mikheyev
- Okinawa Institute of Science and Technology, 1919-1 Tancha Onna-son, 904-0495 Okinawa, Japan
- Australian National University, Canberra, ACT 2600 Australia
| |
Collapse
|
82
|
Jahn MT, Arkhipova K, Markert SM, Stigloher C, Lachnit T, Pita L, Kupczok A, Ribes M, Stengel ST, Rosenstiel P, Dutilh BE, Hentschel U. A Phage Protein Aids Bacterial Symbionts in Eukaryote Immune Evasion. Cell Host Microbe 2019; 26:542-550.e5. [PMID: 31561965 DOI: 10.1016/j.chom.2019.08.019] [Citation(s) in RCA: 82] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Revised: 07/22/2019] [Accepted: 08/30/2019] [Indexed: 11/27/2022]
Abstract
Phages are increasingly recognized as important members of host-associated microbiomes, with a vast genomic diversity. The new frontier is to understand how phages may affect higher order processes, such as in the context of host-microbe interactions. Here, we use marine sponges as a model to investigate the interplay between phages, bacterial symbionts, and eukaryotic hosts. Using viral metagenomics, we find that sponges, although massively filtering seawater, harbor species-specific and even individually unique viral signatures that are taxonomically distinct from other environments. We further discover a symbiont phage-encoded ankyrin-domain-containing protein, which is widely spread in phages of many host-associated contexts including human. We confirm in macrophage infection assays that the ankyrin protein (ANKp) modulates the eukaryotic host immune response against bacteria. We predict that the role of ANKp in nature is to facilitate coexistence in the tripartite interplay between phages, symbionts, and sponges and possibly many other host-microbe associations.
Collapse
Affiliation(s)
- Martin T Jahn
- GEOMAR Helmholtz Centre for Ocean Research Kiel, Marine Symbioses, 24105 Kiel, Germany.
| | - Ksenia Arkhipova
- Theoretical Biology and Bioinformatics, Utrecht University, 3584 Utrecht, the Netherlands
| | - Sebastian M Markert
- Imaging Core Facility, Biocenter, University of Würzburg, 97074 Würzburg, Germany
| | - Christian Stigloher
- Imaging Core Facility, Biocenter, University of Würzburg, 97074 Würzburg, Germany
| | - Tim Lachnit
- Christian-Albrechts-University of Kiel, 24105 Kiel, Germany
| | - Lucia Pita
- GEOMAR Helmholtz Centre for Ocean Research Kiel, Marine Symbioses, 24105 Kiel, Germany
| | - Anne Kupczok
- Christian-Albrechts-University of Kiel, 24105 Kiel, Germany
| | - Marta Ribes
- Institut de Ciències del Mar-CSIC, 08003 Barcelona, Spain
| | - Stephanie T Stengel
- Institute of Clinical Molecular Biology, University Hospital Schleswig-Holstein, 24105 Kiel, Germany
| | - Philip Rosenstiel
- Christian-Albrechts-University of Kiel, 24105 Kiel, Germany; Institute of Clinical Molecular Biology, University Hospital Schleswig-Holstein, 24105 Kiel, Germany
| | - Bas E Dutilh
- Theoretical Biology and Bioinformatics, Utrecht University, 3584 Utrecht, the Netherlands
| | - Ute Hentschel
- GEOMAR Helmholtz Centre for Ocean Research Kiel, Marine Symbioses, 24105 Kiel, Germany; Christian-Albrechts-University of Kiel, 24105 Kiel, Germany.
| |
Collapse
|
83
|
Wright RCT, Friman VP, Smith MCM, Brockhurst MA. Resistance Evolution against Phage Combinations Depends on the Timing and Order of Exposure. mBio 2019; 10:e01652-19. [PMID: 31551330 PMCID: PMC6759759 DOI: 10.1128/mbio.01652-19] [Citation(s) in RCA: 83] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Accepted: 08/29/2019] [Indexed: 01/07/2023] Open
Abstract
Phage therapy is a promising alternative to chemotherapeutic antibiotics for the treatment of bacterial infections. However, despite recent clinical uses of combinations of phages to treat multidrug-resistant infections, a mechanistic understanding of how bacteria evolve resistance against multiple phages is lacking, limiting our ability to deploy phage combinations optimally. Here, we show, using Pseudomonas aeruginosa and pairs of phages targeting shared or distinct surface receptors, that the timing and order of phage exposure determine the strength, cost, and mutational basis of resistance. Whereas sequential exposure allowed bacteria to acquire multiple resistance mutations effective against both phages, this evolutionary trajectory was prevented by simultaneous exposure, resulting in quantitatively weaker resistance. The order of phage exposure determined the fitness costs of sequential resistance, such that certain sequential orders imposed much higher fitness costs than the same phage pair in the reverse order. Together, these data suggest that phage combinations can be optimized to limit the strength of evolved resistances while maximizing their associated fitness costs to promote the long-term efficacy of phage therapy.IMPORTANCE Globally rising rates of antibiotic resistance have renewed interest in phage therapy where combinations of phages have been successfully used to treat multidrug-resistant infections. To optimize phage therapy, we first need to understand how bacteria evolve resistance against combinations of multiple phages. Here, we use simple laboratory experiments and genome sequencing to show that the timing and order of phage exposure determine the strength, cost, and mutational basis of resistance evolution in the opportunistic pathogen Pseudomonas aeruginosa These findings suggest that phage combinations can be optimized to limit the emergence and persistence of resistance, thereby promoting the long-term usefulness of phage therapy.
Collapse
Affiliation(s)
- Rosanna C T Wright
- Department of Biology, University of York, York, United Kingdom
- Department of Animal and Plant Sciences, University of Sheffield, Sheffield, United Kingdom
| | | | | | - Michael A Brockhurst
- Department of Animal and Plant Sciences, University of Sheffield, Sheffield, United Kingdom
| |
Collapse
|
84
|
McDonald MJ. Microbial Experimental Evolution - a proving ground for evolutionary theory and a tool for discovery. EMBO Rep 2019; 20:e46992. [PMID: 31338963 PMCID: PMC6680118 DOI: 10.15252/embr.201846992] [Citation(s) in RCA: 78] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2018] [Revised: 03/23/2019] [Accepted: 06/28/2019] [Indexed: 01/21/2023] Open
Abstract
Microbial experimental evolution uses controlled laboratory populations to study the mechanisms of evolution. The molecular analysis of evolved populations enables empirical tests that can confirm the predictions of evolutionary theory, but can also lead to surprising discoveries. As with other fields in the life sciences, microbial experimental evolution has become a tool, deployed as part of the suite of techniques available to the molecular biologist. Here, I provide a review of the general findings of microbial experimental evolution, especially those relevant to molecular microbiologists that are new to the field. I also relate these results to design considerations for an evolution experiment and suggest future directions for those working at the intersection of experimental evolution and molecular biology.
Collapse
|
85
|
Herrera J, Nunn CL. Behavioural ecology and infectious disease: implications for conservation of biodiversity. Philos Trans R Soc Lond B Biol Sci 2019; 374:20180054. [PMID: 31352881 DOI: 10.1098/rstb.2018.0054] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Behaviour underpins interactions among conspecifics and between species, with consequences for the transmission of disease-causing parasites. Because many parasites lead to declines in population size and increased risk of extinction for threatened species, understanding the link between host behaviour and disease transmission is particularly important for conservation management. Here, we consider the intersection of behaviour, ecology and parasite transmission, broadly encompassing micro- and macroparasites. We focus on behaviours that have direct impacts on transmission, as well as the behaviours that result from infection. Given the important role of parasites in host survival and reproduction, the effects of behaviour on parasitism can scale up to population-level processes, thus affecting species conservation. Understanding how conservation and infectious disease control strategies actually affect transmission potential can therefore often only be understood through a behavioural lens. We highlight how behavioural perspectives of disease ecology apply to conservation by reviewing the different ways that behavioural ecology influences parasite transmission and conservation goals. This article is part of the theme issue 'Linking behaviour to dynamics of populations and communities: application of novel approaches in behavioural ecology to conservation'.
Collapse
Affiliation(s)
- James Herrera
- Department of Evolutionary Anthropology, Duke University, 103 Science Drive, Durham, NC 27705, USA
| | - Charles L Nunn
- Department of Evolutionary Anthropology, Duke University, 103 Science Drive, Durham, NC 27705, USA.,Duke Global Health Institute, Duke University, 103 Science Drive, Durham, NC 27705, USA
| |
Collapse
|
86
|
Chame M, Barbosa HJC, Gadelha LMR, Augusto DA, Krempser E, Abdalla L. SISS-Geo: Leveraging Citizen Science to Monitor Wildlife Health Risks in Brazil. JOURNAL OF HEALTHCARE INFORMATICS RESEARCH 2019; 3:414-440. [DOI: 10.1007/s41666-019-00055-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Revised: 06/09/2019] [Accepted: 06/20/2019] [Indexed: 11/28/2022]
|
87
|
Understanding and Exploiting Phage-Host Interactions. Viruses 2019; 11:v11060567. [PMID: 31216787 PMCID: PMC6630733 DOI: 10.3390/v11060567] [Citation(s) in RCA: 132] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 06/07/2019] [Accepted: 06/10/2019] [Indexed: 01/05/2023] Open
Abstract
Initially described a century ago by William Twort and Felix d’Herelle, bacteriophages are bacterial viruses found ubiquitously in nature, located wherever their host cells are present. Translated literally, bacteriophage (phage) means ‘bacteria eater’. Phages interact and infect specific bacteria while not affecting other bacteria or cell lines of other organisms. Due to the specificity of these phage–host interactions, the relationship between phages and their host cells has been the topic of much research. The advances in phage biology research have led to the exploitation of these phage–host interactions and the application of phages in the agricultural and food industry. Phages may provide an alternative to the use of antibiotics, as it is well known that the emergence of antibiotic-resistant bacterial infections has become an epidemic in clinical settings. In agriculture, pre-harvest and/or post-harvest application of phages to crops may prevent the colonisation of bacteria that are detrimental to plant or human health. In addition, the abundance of data generated from genome sequencing has allowed the development of phage-derived bacterial detection systems of foodborne pathogens. This review aims to outline the specific interactions between phages and their host and how these interactions may be exploited and applied in the food industry.
Collapse
|
88
|
Evans ERJ, Northfield TD, Daly NL, Wilson DT. Venom Costs and Optimization in Scorpions. Front Ecol Evol 2019. [DOI: 10.3389/fevo.2019.00196] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
|
89
|
Ecology, not distance, explains community composition in parasites of sky-island Audubon’s Warblers. Int J Parasitol 2019; 49:437-448. [DOI: 10.1016/j.ijpara.2018.11.012] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Revised: 11/13/2018] [Accepted: 11/19/2018] [Indexed: 12/31/2022]
|
90
|
Cebriá-Mendoza M, Sanjuán R, Domingo-Calap P. Directed Evolution of a Mycobacteriophage. Antibiotics (Basel) 2019; 8:antibiotics8020046. [PMID: 31027152 PMCID: PMC6627502 DOI: 10.3390/antibiotics8020046] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 04/22/2019] [Accepted: 04/23/2019] [Indexed: 12/03/2022] Open
Abstract
Bacteriophages represent an alternative strategy to combat pathogenic bacteria. Currently, Mycobacterium tuberculosis infections constitute a major public health problem due to extensive antibiotic resistance in some strains. Using a non-pathogenic species of the same genus as an experimental model, Mycobacterium smegmatis, here we have set up a basic methodology for mycobacteriophage growth and we have explored directed evolution as a tool for increasing phage infectivity and lytic activity. We demonstrate mycobacteriophage adaptation to its host under different conditions. Directed evolution could be used for the development of future phage therapy applications against mycobacteria.
Collapse
Affiliation(s)
- María Cebriá-Mendoza
- Institute for Integrative Systems Biology (I2SysBio), Universitat de València-CSIC, 46980 Paterna, Valencia, Spain.
| | - Rafael Sanjuán
- Institute for Integrative Systems Biology (I2SysBio), Universitat de València-CSIC, 46980 Paterna, Valencia, Spain.
- Department of Genetics, Universitat de València, 46100 Burjassot, Valencia, Spain.
| | - Pilar Domingo-Calap
- Institute for Integrative Systems Biology (I2SysBio), Universitat de València-CSIC, 46980 Paterna, Valencia, Spain.
- Department of Genetics, Universitat de València, 46100 Burjassot, Valencia, Spain.
| |
Collapse
|
91
|
Ramisetty BCM, Sudhakari PA. Bacterial 'Grounded' Prophages: Hotspots for Genetic Renovation and Innovation. Front Genet 2019; 10:65. [PMID: 30809245 PMCID: PMC6379469 DOI: 10.3389/fgene.2019.00065] [Citation(s) in RCA: 99] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Accepted: 01/24/2019] [Indexed: 01/07/2023] Open
Abstract
Bacterial genomes are highly plastic allowing the generation of variants through mutations and acquisition of genetic information. The fittest variants are then selected by the econiche thereby allowing the bacterial adaptation and colonization of the habitat. Larger genomes, however, may impose metabolic burden and hence bacterial genomes are optimized by the loss of frivolous genetic information. The activity of temperate bacteriophages has acute consequences on the bacterial population as well as the bacterial genome through lytic and lysogenic cycles. Lysogeny is a selective advantage as the prophage provides immunity to the lysogen against secondary phage attack. Since the non-lysogens are eliminated by the lytic phages, lysogens multiply and colonize the habitat. Nevertheless, all lysogens have an imminent risk of lytic cycle activation and cell lysis. However, a mutation in the attachment sites or in the genes that encode the specific recombinase responsible for prophage excision could result in 'grounding' of the prophage. Since the lysogens with grounded prophage are immune to respective phage infection as well as dodge the induction of lytic cycle, we hypothesize that the selection of these mutant lysogens is favored relative to their normal lysogenic counterparts. These grounded prophages offer several advantages to the bacterial genome evolution through propensity for genetic variations including inversions, deletions, and insertions via horizontal gene transfer. We propose that the grounded prophages expedite bacterial genome evolution by acting as 'genetic buffer zones' thereby increasing the frequency as well as the diversity of variations on which natural selection favors the beneficial variants. The grounded prophages are also hotspots for horizontal gene transfer wherein several ecologically significant genes such as those involved in stress tolerance, antimicrobial resistance, and novel metabolic pathways, are integrated. Moreover, the high frequency of genetic changes within prophages also allows proportionate probability for the de novo genesis of genetic information. Through sequence analyses of well-characterized E. coli prophages we exemplify various roles of grounded prophages in E. coli ecology and evolution. Therefore, the temperate prophages are one of the most significant drivers of bacterial genome evolution and sites of biogenesis of genetic information.
Collapse
Affiliation(s)
- Bhaskar Chandra Mohan Ramisetty
- Laboratory of Molecular Biology and Evolution, School of Chemical and Biotechnology, SASTRA Deemed University, Thanjavur, India
| | - Pavithra Anantharaman Sudhakari
- Laboratory of Molecular Biology and Evolution, School of Chemical and Biotechnology, SASTRA Deemed University, Thanjavur, India
| |
Collapse
|
92
|
Cabezas-Cruz A, Allain E, Ahmad AS, Saeed MA, Rashid I, Ashraf K, Yousfi L, Shehzad W, Indjein L, Rodriguez-Valle M, Estrada-Peña A, Obregón D, Jabbar A, Moutailler S. Low genetic diversity of Ehrlichia canis associated with high co-infection rates in Rhipicephalus sanguineus (s.l.). Parasit Vectors 2019; 12:12. [PMID: 30616670 PMCID: PMC6322249 DOI: 10.1186/s13071-018-3194-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Accepted: 11/09/2018] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Rhipicephalus sanguineus sensu lato (s.l.) is the most widely distributed ixodid tick and is a vector of major canine and human pathogens. High-throughput technologies have revealed that individual ticks carry a high diversity of pathogens, including bacteria, protozoa and viruses. Currently, it is accepted that co-infections (multiple pathogen species within an individual) are very common in ticks and influence pathogen acquisition and transmission as well as host infection risk. However, little is known on the impact of the genetic diversity of pathogens on the incidence of co-infections. Herein, we studied the frequency of co-infections in R. sanguineus (s.l.) and their association with the genetic diversity of Ehrlichia canis. METHODS Rhipicephalus sanguineus (s.l.) female ticks (n = 235) were collected from healthy farm dogs in three districts of Pakistan. Microfluidic real-time PCR, a powerful nanotechnology for high-throughput molecular detection of pathogens, was used to test the presence of 25 bacterial and seven parasitic species in individual ticks. The genetic diversity of E. canis was evaluated by characterizing the trp36 gene. RESULTS A total of 204 ticks were infected with at least one pathogen and 109 co-infected with two (80%) or three (20%) pathogens. Rickettsia massiliae (human pathogen) and E. canis (zoonotic dog pathogen) were the most common pathogens co-infecting (30.4%) ticks. Furthermore, all identified co-infections included R. massiliae and/or E. canis. Multiple correspondence analysis (MCA) revealed that single infections did not show clear regional association whereas some co-infections were restricted to certain geographical regions. The sequence analysis of trp36 in representative samples allowed the identification of three E. canis strains with low genetic diversity, and the strain found in Muzaffargarh district appeared to be more adapted to co-infection with R. massiliae. CONCLUSIONS Rhipicephalus sanguineus (s.l.) harbors multiple co-infections with human and dog pathogens of zoonotic potential. Findings of this study suggest that genetic diversity of E. canis may favor co-infections with different pathogens.
Collapse
Affiliation(s)
- Alejandro Cabezas-Cruz
- UMR BIPAR, INRA, ANSES, Ecole Nationale Vétérinaire d’Alfort, Université Paris-Est, 94700 Maisons-Alfort, France
| | - Eleonore Allain
- UMR BIPAR, INRA, ANSES, Ecole Nationale Vétérinaire d’Alfort, Université Paris-Est, 94700 Maisons-Alfort, France
| | - Abdullah S. Ahmad
- Department of Veterinary Biosciences, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Werribee, Victoria 3030 Australia
- Department of Parasitology, Faculty of Veterinary Sciences, University of Veterinary and Animal Sciences, Lahore, Punjab Pakistan
| | - Muhammad A. Saeed
- Department of Veterinary Biosciences, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Werribee, Victoria 3030 Australia
| | - Imran Rashid
- Department of Parasitology, Faculty of Veterinary Sciences, University of Veterinary and Animal Sciences, Lahore, Punjab Pakistan
| | - Kamran Ashraf
- Department of Parasitology, Faculty of Veterinary Sciences, University of Veterinary and Animal Sciences, Lahore, Punjab Pakistan
| | - Lena Yousfi
- UMR BIPAR, INRA, ANSES, Ecole Nationale Vétérinaire d’Alfort, Université Paris-Est, 94700 Maisons-Alfort, France
| | - Wasim Shehzad
- Institute of Biochemistry and Biotechnology, Faculty of Biosciences, University of Veterinary and Animal Sciences, Lahore, Punjab Pakistan
| | - Lea Indjein
- Department of Veterinary Biosciences, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Werribee, Victoria 3030 Australia
| | - Manuel Rodriguez-Valle
- Queensland Alliance for Agriculture & Food Innovation, The University of Queensland, St. Lucia, Queensland 4072 Australia
| | | | - Dasiel Obregón
- Cell and Molecular Biology Laboratory, Center for Nuclear Energy in Agriculture, University of Sao Paulo, Piracicaba, SP Brazil
| | - Abdul Jabbar
- Department of Veterinary Biosciences, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Werribee, Victoria 3030 Australia
| | - Sara Moutailler
- UMR BIPAR, INRA, ANSES, Ecole Nationale Vétérinaire d’Alfort, Université Paris-Est, 94700 Maisons-Alfort, France
| |
Collapse
|
93
|
The genomic basis of Red Queen dynamics during rapid reciprocal host-pathogen coevolution. Proc Natl Acad Sci U S A 2018; 116:923-928. [PMID: 30598446 PMCID: PMC6338873 DOI: 10.1073/pnas.1810402116] [Citation(s) in RCA: 88] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Pathogens are omnipresent and by definition detrimental to their hosts. Pathogens thus exert high selection on their hosts, which, if adapting, can exert similar levels of selection on the pathogen, resulting in ongoing cycles of reciprocal adaptation between the antagonists. Such coevolutionary interactions have a central influence on the evolution of organisms. Surprisingly, we still know little about the exact selection dynamics and the genome regions involved. Our study uses a controlled experimental approach with an animal host to dissect coevolutionary selection. We find that distinct selective processes underlie rapid coadaptation in the two antagonists, including antagonistic frequency-dependent selection on toxin gene copy number in the pathogen, while the host response is likely influenced by changes in multiple genome regions. Red Queen dynamics, involving coevolutionary interactions between species, are ubiquitous, shaping the evolution of diverse biological systems. To date, information on the underlying selection dynamics and the involved genome regions is mainly available for bacteria–phage systems or only one of the antagonists of a eukaryotic host–pathogen interaction. We add to our understanding of these important coevolutionary interactions using an experimental host–pathogen model, which includes the nematode Caenorhabditis elegans and its pathogen Bacillus thuringiensis. We combined experimental evolution with time-shift experiments, in which a focal host or pathogen is tested against a coevolved antagonist from the past, present, or future, followed by genomic analysis. We show that (i) coevolution occurs rapidly within few generations, (ii) temporal coadaptation at the phenotypic level is found in parallel across replicate populations, consistent with antagonistic frequency-dependent selection, (iii) genomic changes in the pathogen match the phenotypic pattern and include copy number variations of a toxin-encoding plasmid, and (iv) host genomic changes do not match the phenotypic pattern and likely involve selective responses at more than one locus. By exploring the dynamics of coevolution at the phenotypic and genomic level for both host and pathogen simultaneously, our findings demonstrate a more complex model of the Red Queen, consisting of distinct selective processes acting on the two antagonists during rapid and reciprocal coadaptation.
Collapse
|
94
|
Achieving a multi-strain symbiosis: strain behavior and infection dynamics. ISME JOURNAL 2018; 13:698-706. [PMID: 30353039 DOI: 10.1038/s41396-018-0305-8] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Revised: 09/16/2018] [Accepted: 10/09/2018] [Indexed: 01/30/2023]
Abstract
Strain diversity, while now recognized as a key driver underlying partner dynamics in symbioses, is usually difficult to experimentally manipulate and image in hosts with complex microbiota. To address this problem, we have used the luminous marine bacterium Vibrio fischeri, which establishes a symbiosis within the crypts of the nascent light organ of the squid Euprymna scolopes. Competition assays in newly hatched juvenile squid have shown that symbiotic V. fischeri are either niche-sharing "S strains", which share the light organ when co-inoculated with other S strains, or niche-dominant "D strains", which are typically found alone in the light organ after a co-colonization. To understand this D strain advantage, we determined the minimum time that different V. fischeri strains needed to initiate colonization and used confocal microscopy to localize the symbionts along their infection track. Further, we determined whether symbiont-induced host morphogenic events also occurred earlier during a D strain colonization. We conclude that D strains colonized more quickly than S strains. Nevertheless, light-organ populations in field-caught adult squid often contain both D and S strains. We determined experimentally that this symbiont population heterogeneity might be achieved in nature by a serial encounter of different strains in the environment.
Collapse
|
95
|
Cairns J, Jokela R, Hultman J, Tamminen M, Virta M, Hiltunen T. Construction and Characterization of Synthetic Bacterial Community for Experimental Ecology and Evolution. Front Genet 2018; 9:312. [PMID: 30154827 PMCID: PMC6102323 DOI: 10.3389/fgene.2018.00312] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Accepted: 07/23/2018] [Indexed: 01/21/2023] Open
Abstract
Experimental microbial ecology and evolution have yielded foundational insights into ecological and evolutionary processes using simple microcosm setups and phenotypic assays with one- or two-species model systems. The fields are now increasingly incorporating more complex systems and exploration of the molecular basis of observations. For this purpose, simplified, manageable and well-defined multispecies model systems are required that can be easily investigated using culturing and high-throughput sequencing approaches, bridging the gap between simpler and more complex synthetic or natural systems. Here we address this need by constructing a completely synthetic 33 bacterial strain community that can be cultured in simple laboratory conditions. We provide whole-genome data for all the strains as well as metadata about genomic features and phenotypic traits that allow resolving individual strains by amplicon sequencing and facilitate a variety of envisioned mechanistic studies. We further show that a large proportion of the strains exhibit coexistence in co-culture over serial transfer for 48 days in the absence of any experimental manipulation to maintain diversity. The constructed bacterial community can be a valuable resource in future experimental work.
Collapse
Affiliation(s)
- Johannes Cairns
- Department of Microbiology, University of Helsinki, Helsinki, Finland
| | - Roosa Jokela
- Department of Microbiology, University of Helsinki, Helsinki, Finland
| | - Jenni Hultman
- Department of Microbiology, University of Helsinki, Helsinki, Finland
| | - Manu Tamminen
- Department of Biology, University of Turku, Turku, Finland
| | - Marko Virta
- Department of Microbiology, University of Helsinki, Helsinki, Finland
| | - Teppo Hiltunen
- Department of Microbiology, University of Helsinki, Helsinki, Finland
- Department of Biology, University of Turku, Turku, Finland
| |
Collapse
|
96
|
Luikart G, Kardos M, Hand BK, Rajora OP, Aitken SN, Hohenlohe PA. Population Genomics: Advancing Understanding of Nature. POPULATION GENOMICS 2018. [DOI: 10.1007/13836_2018_60] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|