51
|
Detection of CRISPR adaptation. Biochem Soc Trans 2020; 48:257-269. [PMID: 32010936 PMCID: PMC7054753 DOI: 10.1042/bst20190662] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 12/26/2019] [Accepted: 01/03/2020] [Indexed: 12/12/2022]
Abstract
Prokaryotic adaptive immunity is built when short DNA fragments called spacers are acquired into CRISPR (clustered regularly interspaced short palindromic repeats) arrays. CRISPR adaptation is a multistep process which comprises selection, generation, and incorporation of prespacers into arrays. Once adapted, spacers provide immunity through the recognition of complementary nucleic acid sequences, channeling them for destruction. To prevent deleterious autoimmunity, CRISPR adaptation must therefore be a highly regulated and infrequent process, at least in the absence of genetic invaders. Over the years, ingenious methods to study CRISPR adaptation have been developed. In this paper, we discuss and compare methods that detect CRISPR adaptation and its intermediates in vivo and propose suppressing PCR as a simple modification of a popular assay to monitor spacer acquisition with increased sensitivity.
Collapse
|
52
|
Dorman CJ, Schumacher MA, Bush MJ, Brennan RG, Buttner MJ. When is a transcription factor a NAP? Curr Opin Microbiol 2020; 55:26-33. [PMID: 32120333 DOI: 10.1016/j.mib.2020.01.019] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 01/28/2020] [Accepted: 01/29/2020] [Indexed: 02/03/2023]
Abstract
Proteins that regulate transcription often also play an architectural role in the genome. Thus, it has been difficult to define with precision the distinctions between transcription factors and nucleoid-associated proteins (NAPs). Anachronistic descriptions of NAPs as 'histone-like' implied an organizational function in a bacterial chromatin-like complex. Definitions based on protein abundance, regulatory mechanisms, target gene number, or the features of their DNA-binding sites are insufficient as marks of distinction, and trying to distinguish transcription factors and NAPs based on their ranking within regulatory hierarchies or positions in gene-control networks is also unsatisfactory. The terms 'transcription factor' and 'NAP' are ad hoc operational definitions with each protein lying along a spectrum of structural and functional features extending from highly specific actors with few gene targets to those with a pervasive influence on the transcriptome. The Streptomyces BldC protein is used to illustrate these issues.
Collapse
Affiliation(s)
- Charles J Dorman
- Department of Microbiology, Moyne Institute of Preventive Medicine, Trinity College Dublin, Dublin 2, Ireland.
| | - Maria A Schumacher
- Department of Biochemistry, Duke University School of Medicine, Durham, NC 27710, USA
| | - Matthew J Bush
- Department of Molecular Microbiology, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK
| | - Richard G Brennan
- Department of Biochemistry, Duke University School of Medicine, Durham, NC 27710, USA
| | - Mark J Buttner
- Department of Molecular Microbiology, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK.
| |
Collapse
|
53
|
Béguin P, Chekli Y, Sezonov G, Forterre P, Krupovic M. Sequence motifs recognized by the casposon integrase of Aciduliprofundum boonei. Nucleic Acids Res 2020; 47:6386-6395. [PMID: 31114911 PMCID: PMC6614799 DOI: 10.1093/nar/gkz447] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Revised: 04/17/2019] [Accepted: 05/20/2019] [Indexed: 01/01/2023] Open
Abstract
Casposons are a group of bacterial and archaeal DNA transposons encoding a specific integrase, termed casposase, which is homologous to the Cas1 enzyme responsible for the integration of new spacers into CRISPR loci. Here, we characterized the sequence motifs recognized by the casposase from a thermophilic archaeon Aciduliprofundum boonei. We identified a stretch of residues, located in the leader region upstream of the actual integration site, whose deletion or mutagenesis impaired the concerted integration reaction. However, deletions of two-thirds of the target site were fully functional. Various single-stranded 6-FAM-labelled oligonucleotides derived from casposon terminal inverted repeats were as efficiently incorporated as duplexes into the target site. This result suggests that, as in the case of spacer insertion by the CRISPR Cas1–Cas2 integrase, casposon integration involves splaying of the casposon termini, with single-stranded ends being the actual substrates. The sequence critical for incorporation was limited to the five terminal residues derived from the 3′ end of the casposon. Furthermore, we characterize the casposase from Nitrosopumilus koreensis, a marine member of the phylum Thaumarchaeota, and show that it shares similar properties with the A. boonei enzyme, despite belonging to a different family. These findings further reinforce the mechanistic similarities and evolutionary connection between the casposons and the adaptation module of the CRISPR–Cas systems.
Collapse
Affiliation(s)
- Pierre Béguin
- Unité Biologie Moléculaire du Gène chez les Extrêmophiles, Institut Pasteur, 25-28 rue du Dr. Roux 75724 Paris cedex 15, France
| | - Yankel Chekli
- Unité Biologie Moléculaire du Gène chez les Extrêmophiles, Institut Pasteur, 25-28 rue du Dr. Roux 75724 Paris cedex 15, France
| | - Guennadi Sezonov
- UMRS 1138 - Centre de Recherche des Cordeliers, Sorbonne Université, 15, rue de l'École de Médecine, 75006 Paris, France
| | - Patrick Forterre
- Unité Biologie Moléculaire du Gène chez les Extrêmophiles, Institut Pasteur, 25-28 rue du Dr. Roux 75724 Paris cedex 15, France.,Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ. Paris- Sud, Université Paris-Saclay, Gif-sur-Yvette cedex, Paris, France
| | - Mart Krupovic
- Unité Biologie Moléculaire du Gène chez les Extrêmophiles, Institut Pasteur, 25-28 rue du Dr. Roux 75724 Paris cedex 15, France
| |
Collapse
|
54
|
Zhang M, Liu C, Shi Y, Wu J, Wu J, Chen H. Selective endpoint visualized detection of Vibrio parahaemolyticus with CRISPR/Cas12a assisted PCR using thermal cycler for on-site application. Talanta 2020; 214:120818. [PMID: 32278427 DOI: 10.1016/j.talanta.2020.120818] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 01/15/2020] [Accepted: 02/09/2020] [Indexed: 12/26/2022]
Abstract
Vibrio parahaemolyticus is a major cause of seafood-associated food poisoning. It is of great significance to develop an accurate, simple and cost-effective method to identify infected seafood, especially for on-site application. Polymerase chain reaction (PCR) remains the golden standard for nucleic acid detection. But traditional methods heavily reply on sophisticated instrument and specialized operators, which limits the application for on-site detections. Here we developed a novel, specific and visualized detection method for PCR based on CRISPR/Cas12a system. On a low-cost thermal cycler, amplification reaction can be conducted easily. The CRISPR/Cas12a system was specifically designed to evaluate amplicons, eliminating false positive results. Besides the negative samples remained colorless, the positive samples generated obvious green fluorescence, which could be easily distinguished by the naked eye using a homemade UV device. The presented detection method was verified by detecting shrimp samples. The limit of detection is 1.02 × 102 copies/μL. This presented method provided a new strategy for specific endpoint detection of PCR and advanced its application in field for food safety assurance.
Collapse
Affiliation(s)
- Mengyao Zhang
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, China
| | - Chengzhi Liu
- Key Laboratory of Microbiol Technology and Bioinformatics of Zhejiang Province, Zhejiang Institute of Microbiology, Hangzhou, 310012, China; NMPA Key Laboratory for Testing and Risk Warning of Pharmaceutical Microbiology, Zhejiang Institute of Microbiology, Hangzhou, 310012, China
| | - Ya Shi
- Key Laboratory of Microbiol Technology and Bioinformatics of Zhejiang Province, Zhejiang Institute of Microbiology, Hangzhou, 310012, China; NMPA Key Laboratory for Testing and Risk Warning of Pharmaceutical Microbiology, Zhejiang Institute of Microbiology, Hangzhou, 310012, China
| | - Jun Wu
- Lin'an Center for Disease Control and Prevention, Lin'an, 311300, China
| | - Jian Wu
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, China.
| | - Huan Chen
- Key Laboratory of Microbiol Technology and Bioinformatics of Zhejiang Province, Zhejiang Institute of Microbiology, Hangzhou, 310012, China; NMPA Key Laboratory for Testing and Risk Warning of Pharmaceutical Microbiology, Zhejiang Institute of Microbiology, Hangzhou, 310012, China.
| |
Collapse
|
55
|
How mouse RAG recombinase avoids DNA transposition. Nat Struct Mol Biol 2020; 27:127-133. [PMID: 32015553 PMCID: PMC8291384 DOI: 10.1038/s41594-019-0366-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Accepted: 12/17/2019] [Indexed: 11/12/2022]
Abstract
The RAG1-RAG2 recombinase (RAG) cleaves DNA to initiate V(D)J recombination. But RAG also belongs to the RNH-type transposase family. To learn how RAG-catalyzed transposition is inhibited in developing lymphocytes, we determined the structure of a DNA strand-transfer complex of mouse RAG at 3.1 Å resolution. The target DNA is a T form (T for transpositional target), which contains two >80° kinks towards the minor groove, only 3 bp apart. RAG2, a late evolutionary addition in V(D)J recombination, appears to enforce the sharp kinks and additional inter-segment twisting in target DNA and thus attenuate unwanted transposition. In contrast to strand-transfer complexes of genuine transposases, where severe kinks occur at the integration sites of target DNA and thus prevent the reverse reaction, the sharp kink with RAG is 1 bp away from the integration site. As a result, RAG efficiently catalyzes the disintegration reaction that restores the RSS (donor) and target DNA.
Collapse
|
56
|
Hickman AB, Kailasan S, Genzor P, Haase AD, Dyda F. Casposase structure and the mechanistic link between DNA transposition and spacer acquisition by CRISPR-Cas. eLife 2020; 9:50004. [PMID: 31913120 PMCID: PMC6977970 DOI: 10.7554/elife.50004] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Accepted: 01/08/2020] [Indexed: 12/17/2022] Open
Abstract
Key to CRISPR-Cas adaptive immunity is maintaining an ongoing record of invading nucleic acids, a process carried out by the Cas1-Cas2 complex that integrates short segments of foreign genetic material (spacers) into the CRISPR locus. It is hypothesized that Cas1 evolved from casposases, a novel class of transposases. We show here that the Methanosarcina mazei casposase can integrate varied forms of the casposon end in vitro, and recapitulates several properties of CRISPR-Cas integrases including site-specificity. The X-ray structure of the casposase bound to DNA representing the product of integration reveals a tetramer with target DNA bound snugly between two dimers in which single-stranded casposon end binding resembles that of spacer 3'-overhangs. The differences between transposase and CRISPR-Cas integrase are largely architectural, and it appears that evolutionary change involved changes in protein-protein interactions to favor Cas2 binding over tetramerization; this in turn led to preferred integration of single spacers over two transposon ends.
Collapse
Affiliation(s)
- Alison B Hickman
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, United States
| | - Shweta Kailasan
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, United States
| | - Pavol Genzor
- Laboratory of Cell and Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, United States
| | - Astrid D Haase
- Laboratory of Cell and Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, United States
| | - Fred Dyda
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, United States
| |
Collapse
|
57
|
Abstract
Many bacteria and archaea have the unique ability to heritably alter their genomes by incorporating small fragments of foreign DNA, called spacers, into CRISPR loci. Once transcribed and processed into individual CRISPR RNAs, spacer sequences guide Cas effector nucleases to destroy complementary, invading nucleic acids. Collectively, these two processes are known as the CRISPR-Cas immune response. In this Progress article, we review recent studies that have advanced our understanding of the molecular mechanisms underlying spacer acquisition and that have revealed a fundamental link between the two phases of CRISPR immunity that ensures optimal immunity from newly acquired spacers. Finally, we highlight important open questions and discuss the potential basic and applied impact of spacer acquisition research.
Collapse
Affiliation(s)
- Jon McGinn
- Laboratory of Bacteriology, The Rockefeller University, New York, NY, USA
| | | |
Collapse
|
58
|
Ramachandran A, Summerville L, Learn BA, DeBell L, Bailey S. Processing and integration of functionally oriented prespacers in the Escherichia coli CRISPR system depends on bacterial host exonucleases. J Biol Chem 2019; 295:3403-3414. [PMID: 31914418 DOI: 10.1074/jbc.ra119.012196] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 12/20/2019] [Indexed: 12/22/2022] Open
Abstract
CRISPR-Cas systems provide bacteria with adaptive immunity against viruses. During spacer adaptation, the Cas1-Cas2 complex selects fragments of foreign DNA, called prespacers, and integrates them into CRISPR arrays in an orientation that provides functional immunity. Cas4 is involved in both the trimming of prespacers and the cleavage of protospacer adjacent motif (PAM) in several type I CRISPR-Cas systems, but how the prespacers are processed in systems lacking Cas4, such as the type I-E and I-F systems, is not understood. In Escherichia coli, which has a type I-E system, Cas1-Cas2 preferentially selects prespacers with 3' overhangs via specific recognition of a PAM, but how these prespacers are integrated in a functional orientation in the absence of Cas4 is not known. Using a biochemical approach with purified proteins, as well as integration, prespacer protection, sequencing, and quantitative PCR assays, we show here that the bacterial 3'-5' exonucleases DnaQ and ExoT can trim long 3' overhangs of prespacers and promote integration in the correct orientation. We found that trimming by these exonucleases results in an asymmetric intermediate, because Cas1-Cas2 protects the PAM sequence, which helps to define spacer orientation. Our findings implicate the E. coli host 3'-5' exonucleases DnaQ and ExoT in spacer adaptation and reveal a mechanism by which spacer orientation is defined in E. coli.
Collapse
Affiliation(s)
- Anita Ramachandran
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland 21205
| | - Lesley Summerville
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland 21205
| | - Brian A Learn
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland 21205
| | - Lily DeBell
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland 21205
| | - Scott Bailey
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland 21205; Department of Biophysics and Biophysical Chemistry, School of Medicine, Johns Hopkins University, Baltimore, Maryland 21205.
| |
Collapse
|
59
|
Yoganand KN, Muralidharan M, Nimkar S, Anand B. Fidelity of prespacer capture and processing is governed by the PAM-mediated interactions of Cas1-2 adaptation complex in CRISPR-Cas type I-E system. J Biol Chem 2019; 294:20039-20053. [PMID: 31748409 PMCID: PMC6937570 DOI: 10.1074/jbc.ra119.009438] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2019] [Revised: 11/18/2019] [Indexed: 12/11/2022] Open
Abstract
Prokaryotes deploy CRISPR-Cas-based RNA-guided adaptive immunity to fend off mobile genetic elements such as phages and plasmids. During CRISPR adaptation, which is the first stage of CRISPR immunity, the Cas1-2 integrase complex captures invader-derived prespacer DNA and specifically integrates it at the leader-repeat junction as spacers. For this integration, several variants of CRISPR-Cas systems use Cas4 as an indispensable nuclease for selectively processing the protospacer adjacent motif (PAM) containing prespacers to a defined length. Surprisingly, however, a few CRISPR-Cas systems, such as type I-E, are bereft of Cas4. Despite the absence of Cas4, how the prespacers show impeccable conservation for length and PAM selection in type I-E remains intriguing. Here, using in vivo and in vitro integration assays, deep sequencing, and exonuclease footprinting, we show that Cas1-2/I-E-via the type I-E-specific extended C-terminal tail of Cas1-displays intrinsic affinity for PAM containing prespacers of variable length in Escherichia coli Although Cas1-2/I-E does not prune the prespacers, its binding protects the prespacer boundaries from exonuclease action. This ensures the pruning of exposed ends by exonucleases to aptly sized substrates for integration into the CRISPR locus. In summary, our work reveals that in a few CRISPR-Cas variants, such as type I-E, the specificity of PAM selection resides with Cas1-2, whereas the prespacer processing is co-opted by cellular non-Cas exonucleases, thereby offsetting the need for Cas4.
Collapse
Affiliation(s)
- Kakimani Nagarajan Yoganand
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati 781039, India
| | - Manasasri Muralidharan
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati 781039, India
| | - Siddharth Nimkar
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati 781039, India
| | - Baskaran Anand
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati 781039, India
| |
Collapse
|
60
|
Grainy J, Garrett S, Graveley BR, P Terns M. CRISPR repeat sequences and relative spacing specify DNA integration by Pyrococcus furiosus Cas1 and Cas2. Nucleic Acids Res 2019; 47:7518-7531. [PMID: 31219587 PMCID: PMC6698737 DOI: 10.1093/nar/gkz548] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Revised: 06/07/2019] [Accepted: 06/12/2019] [Indexed: 12/26/2022] Open
Abstract
Acquiring foreign spacer DNA into the CRISPR locus is an essential primary step of the CRISPR-Cas pathway in prokaryotes for developing host immunity to mobile genetic elements. Here, we investigate spacer integration in vitro using proteins from Pyrococcus furiosus and demonstrate that Cas1 and Cas2 are sufficient to accurately integrate spacers into a minimal CRISPR locus. Using high-throughput sequencing, we identified high frequency spacer integration occurring at the same CRISPR repeat border sites utilized in vivo, as well as at several non-CRISPR plasmid sequences which share features with repeats. Analysis of non-CRISPR integration sites revealed that Cas1 and Cas2 are directed to catalyze full-site spacer integration at specific DNA stretches where guanines and/or cytosines are 30 base pairs apart and the intervening sequence harbors several positionally conserved bases. Moreover, assaying a series of CRISPR repeat mutations, followed by sequencing of the integration products, revealed that the specificity of integration is primarily directed by sequences at the leader-repeat junction as well as an adenine-rich sequence block in the mid-repeat. Together, our results indicate that P. furiosus Cas1 and Cas2 recognize multiple sequence features distributed over a 30 base pair DNA region for accurate spacer integration at the CRISPR repeat.
Collapse
Affiliation(s)
- Julie Grainy
- Department of Microbiology, University of Georgia, Athens, GA 30602, USA
| | - Sandra Garrett
- Department of Genetics and Genome Sciences, Institute for Systems Genomics, UConn Stem Cell Institute, UConn Health, Farmington, CT 06030, USA
| | - Brenton R Graveley
- Department of Genetics and Genome Sciences, Institute for Systems Genomics, UConn Stem Cell Institute, UConn Health, Farmington, CT 06030, USA
| | - Michael P Terns
- Department of Microbiology, University of Georgia, Athens, GA 30602, USA.,Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA 30602, USA.,Department of Genetics, University of Georgia, Athens, GA 30602, USA
| |
Collapse
|
61
|
Kim JG, Garrett S, Wei Y, Graveley BR, Terns MP. CRISPR DNA elements controlling site-specific spacer integration and proper repeat length by a Type II CRISPR-Cas system. Nucleic Acids Res 2019; 47:8632-8648. [PMID: 31392984 PMCID: PMC6895254 DOI: 10.1093/nar/gkz677] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Revised: 07/19/2019] [Accepted: 07/30/2019] [Indexed: 12/26/2022] Open
Abstract
CRISPR–Cas systems provide heritable immunity against viruses by capturing short invader DNA sequences, termed spacers, and incorporating them into the CRISPR loci of the prokaryotic host genome. Here, we investigate DNA elements that control accurate spacer uptake in the type II-A CRISPR locus of Streptococcus thermophilus. We determined that purified Cas1 and Cas2 proteins catalyze spacer integration with high specificity for CRISPR repeat junctions. We show that 10 bp of the CRISPR leader sequence is critical for stimulating polarized integration preferentially at the repeat proximal to the leader. Spacer integration proceeds through a two-step transesterification reaction where the 3′ hydroxyl groups of the spacer target both repeat borders on opposite strands. The leader-proximal end of the repeat is preferentially targeted for the first site of integration through recognition of sequences spanning the leader-repeat junction. Subsequently, second-site integration at the leader-distal end of the repeat is specified by multiple determinants including a length-defining mechanism relying on a repeat element proximal to the second site of integration. Our results highlight the intrinsic ability of type II Cas1/Cas2 proteins to coordinate directional and site-specific spacer integration into the CRISPR locus to ensure precise duplication of the repeat required for CRISPR immunity.
Collapse
Affiliation(s)
- Jenny G Kim
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA 30602, USA
| | - Sandra Garrett
- Department of Genetics and Genome Sciences, Institute for Systems Genomics, University of Connecticut Health Center, Farmington, CT 06030, USA
| | - Yunzhou Wei
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA 30602, USA
| | - Brenton R Graveley
- Department of Genetics and Genome Sciences, Institute for Systems Genomics, University of Connecticut Health Center, Farmington, CT 06030, USA
| | - Michael P Terns
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA 30602, USA.,Department of Microbiology, University of Georgia, Athens, GA 30602, USA.,Department of Genetics, University of Georgia, Athens, GA 30602, USA
| |
Collapse
|
62
|
Almendros C, Nobrega FL, McKenzie RE, Brouns SJJ. Cas4-Cas1 fusions drive efficient PAM selection and control CRISPR adaptation. Nucleic Acids Res 2019; 47:5223-5230. [PMID: 30937444 PMCID: PMC6547450 DOI: 10.1093/nar/gkz217] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 03/15/2019] [Accepted: 03/28/2019] [Indexed: 12/24/2022] Open
Abstract
Microbes have the unique ability to acquire immunological memories from mobile genetic invaders to protect themselves from predation. To confer CRISPR resistance, new spacers need to be compatible with a targeting requirement in the invader's DNA called the protospacer adjacent motif (PAM). Many CRISPR systems encode Cas4 proteins to ensure new spacers are integrated that meet this targeting prerequisite. Here we report that a gene fusion between cas4 and cas1 from the Geobacter sulfurreducens I-U CRISPR-Cas system is capable of introducing functional spacers carrying interference proficient TTN PAM sequences at much higher frequencies than unfused Cas4 adaptation modules. Mutations of Cas4-domain catalytic residues resulted in dramatically decreased naïve and primed spacer acquisition, and a loss of PAM selectivity showing that the Cas4 domain controls Cas1 activity. We propose the fusion gene evolved to drive the acquisition of only PAM-compatible spacers to optimize CRISPR interference.
Collapse
Affiliation(s)
- Cristóbal Almendros
- Kavli Institute of Nanoscience, Department of Bionanoscience, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, Netherlands
| | - Franklin L Nobrega
- Kavli Institute of Nanoscience, Department of Bionanoscience, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, Netherlands
| | - Rebecca E McKenzie
- Kavli Institute of Nanoscience, Department of Bionanoscience, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, Netherlands
| | - Stan J J Brouns
- Kavli Institute of Nanoscience, Department of Bionanoscience, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, Netherlands.,Laboratory of Microbiology, Wageningen University, Stippeneng 4, 6708 WE Wageningen, Netherlands
| |
Collapse
|
63
|
Crystal structure of Cas1 in complex with branched DNA. SCIENCE CHINA-LIFE SCIENCES 2019; 63:516-528. [DOI: 10.1007/s11427-019-9827-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Accepted: 08/02/2019] [Indexed: 01/18/2023]
|
64
|
Structure of a P element transposase-DNA complex reveals unusual DNA structures and GTP-DNA contacts. Nat Struct Mol Biol 2019; 26:1013-1022. [PMID: 31659330 DOI: 10.1038/s41594-019-0319-6] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Accepted: 09/11/2019] [Indexed: 01/19/2023]
Abstract
P element transposase catalyzes the mobility of P element DNA transposons within the Drosophila genome. P element transposase exhibits several unique properties, including the requirement for a guanosine triphosphate cofactor and the generation of long staggered DNA breaks during transposition. To gain insights into these features, we determined the atomic structure of the Drosophila P element transposase strand transfer complex using cryo-EM. The structure of this post-transposition nucleoprotein complex reveals that the terminal single-stranded transposon DNA adopts unusual A-form and distorted B-form helical geometries that are stabilized by extensive protein-DNA interactions. Additionally, we infer that the bound guanosine triphosphate cofactor interacts with the terminal base of the transposon DNA, apparently to position the P element DNA for catalysis. Our structure provides the first view of the P element transposase superfamily, offers new insights into P element transposition and implies a transposition pathway fundamentally distinct from other cut-and-paste DNA transposases.
Collapse
|
65
|
Dorman CJ, Ní Bhriain N. CRISPR-Cas, DNA Supercoiling, and Nucleoid-Associated Proteins. Trends Microbiol 2019; 28:19-27. [PMID: 31519332 DOI: 10.1016/j.tim.2019.08.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Revised: 08/02/2019] [Accepted: 08/08/2019] [Indexed: 12/11/2022]
Abstract
In this opinion article we highlight links between the H-NS nucleoid-associated protein, variable DNA topology, the regulation of CRISPR-cas locus expression, CRISPR-Cas activity, and the recruitment of novel genetic information by the CRISPR array. We propose that the requirement that the invading mobile genetic element be negatively supercoiled limits effective CRISPR action to a window in the bacterial growth cycle when DNA topology is optimal, and that this same window is used for the efficient integration of new spacer sequences at the CRISPR array. H-NS silences CRISPR promoters, and we propose that antagonists of H-NS, such as the LeuO transcription factor, provide a basis for a stochastic genetic switch that acts at random in each cell in the bacterial population. In addition, we wish to propose a mechanism by which mobile genetic elements can suppress CRISPR-cas transcription using H-NS homologues. Although the individual components of this network are known, we propose a new model in which they are integrated and linked to the physiological state of the bacterium. The model provides a basis for cell-to-cell variation in the expression and performance of CRISPR systems in bacterial populations.
Collapse
Affiliation(s)
- Charles J Dorman
- Department of Microbiology, Trinity College Dublin, Dublin 2, Ireland.
| | - Niamh Ní Bhriain
- Department of Microbiology, Trinity College Dublin, Dublin 2, Ireland
| |
Collapse
|
66
|
High-throughput screen reveals sRNAs regulating crRNA biogenesis by targeting CRISPR leader to repress Rho termination. Nat Commun 2019; 10:3728. [PMID: 31427601 PMCID: PMC6700203 DOI: 10.1038/s41467-019-11695-8] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Accepted: 07/30/2019] [Indexed: 01/10/2023] Open
Abstract
Discovery of CRISPR-Cas systems is one of paramount importance in the field of microbiology. Currently, how CRISPR-Cas systems are finely regulated remains to be defined. Here we use small regulatory RNA (sRNA) library to screen sRNAs targeting type I-F CRISPR-Cas system through proximity ligation by T4 RNA ligase and find 34 sRNAs linking to CRISPR loci. Among 34 sRNAs for potential regulators of CRISPR, sRNA pant463 and PhrS enhance CRISPR loci transcription, while pant391 represses their transcription. We identify PhrS as a regulator of CRISPR-Cas by binding CRISPR leaders to suppress Rho-dependent transcription termination. PhrS-mediated anti-termination facilitates CRISPR locus transcription to generate CRISPR RNA (crRNA) and subsequently promotes CRISPR-Cas adaptive immunity against bacteriophage invasion. Furthermore, this also exists in type I-C/-E CRISPR-Cas, suggesting general regulatory mechanisms in bacteria kingdom. Our findings identify sRNAs as important regulators of CRISPR-Cas, extending roles of sRNAs in controlling bacterial physiology by promoting CRISPR-Cas adaptation priming. Small non-coding RNAs (sRNA) regulate bacterial functions by finding nucleic acids and proteins. Here the authors identify PhrS sRNA in Pseudomonas as a positive regulator of CRISPR, and show PhrS acts by binding to CRISPR leader, thereby preventing Rho-mediated transcription termination and promoting anti-bacteriophage immunity.
Collapse
|
67
|
Dorman CJ. DNA supercoiling and transcription in bacteria: a two-way street. BMC Mol Cell Biol 2019; 20:26. [PMID: 31319794 PMCID: PMC6639932 DOI: 10.1186/s12860-019-0211-6] [Citation(s) in RCA: 75] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Accepted: 07/09/2019] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND The processes of DNA supercoiling and transcription are interdependent because the movement of a transcription elongation complex simultaneously induces under- and overwinding of the DNA duplex and because the initiation, elongation and termination steps of transcription are all sensitive to the topological state of the DNA. RESULTS Policing of the local and global supercoiling of DNA by topoisomerases helps to sustain the major DNA-based transactions by eliminating barriers to the movement of transcription complexes and replisomes. Recent data from whole-genome and single-molecule studies have provided new insights into how interactions between transcription and the supercoiling of DNA influence the architecture of the chromosome and how they create cell-to-cell diversity at the level of gene expression through transcription bursting. CONCLUSIONS These insights into fundamental molecular processes reveal mechanisms by which bacteria can prevail in unpredictable and often hostile environments by becoming unpredictable themselves.
Collapse
Affiliation(s)
- Charles J Dorman
- Department of Microbiology, Moyne Institute of Preventive Medicine, Trinity College Dublin, Dublin 2, Ireland.
| |
Collapse
|
68
|
Tang S, Orsi RH, Luo H, Ge C, Zhang G, Baker RC, Stevenson A, Wiedmann M. Assessment and Comparison of Molecular Subtyping and Characterization Methods for Salmonella. Front Microbiol 2019; 10:1591. [PMID: 31354679 PMCID: PMC6639432 DOI: 10.3389/fmicb.2019.01591] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Accepted: 06/26/2019] [Indexed: 01/26/2023] Open
Abstract
The food industry is facing a major transition regarding methods for confirmation, characterization, and subtyping of Salmonella. Whole-genome sequencing (WGS) is rapidly becoming both the method of choice and the gold standard for Salmonella subtyping; however, routine use of WGS by the food industry is often not feasible due to cost constraints or the need for rapid results. To facilitate selection of subtyping methods by the food industry, we present: (i) a comparison between classical serotyping and selected widely used molecular-based subtyping methods including pulsed-field gel electrophoresis, multilocus sequence typing, and WGS (including WGS-based serovar prediction) and (ii) a scoring system to evaluate and compare Salmonella subtyping assays. This literature-based assessment supports the superior discriminatory power of WGS for source tracking and root cause elimination in food safety incident; however, circumstances in which use of other subtyping methods may be warranted were also identified. This review provides practical guidance for the food industry and presents a starting point for further comparative evaluation of Salmonella characterization and subtyping methods.
Collapse
Affiliation(s)
- Silin Tang
- Mars Global Food Safety Center, Beijing, China
| | - Renato H. Orsi
- Department of Food Science, College of Agriculture and Life Sciences, Cornell University, Ithaca, NY, United States
| | - Hao Luo
- Mars Global Food Safety Center, Beijing, China
| | - Chongtao Ge
- Mars Global Food Safety Center, Beijing, China
| | | | | | | | - Martin Wiedmann
- Department of Food Science, College of Agriculture and Life Sciences, Cornell University, Ithaca, NY, United States
| |
Collapse
|
69
|
Radovcic M, Killelea T, Savitskaya E, Wettstein L, Bolt EL, Ivancic-Bace I. CRISPR-Cas adaptation in Escherichia coli requires RecBCD helicase but not nuclease activity, is independent of homologous recombination, and is antagonized by 5' ssDNA exonucleases. Nucleic Acids Res 2019; 46:10173-10183. [PMID: 30189098 PMCID: PMC6212769 DOI: 10.1093/nar/gky799] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Accepted: 08/25/2018] [Indexed: 12/29/2022] Open
Abstract
Prokaryotic adaptive immunity is established against mobile genetic elements (MGEs) by ‘naïve adaptation’ when DNA fragments from a newly encountered MGE are integrated into CRISPR–Cas systems. In Escherichia coli, DNA integration catalyzed by Cas1–Cas2 integrase is well understood in mechanistic and structural detail but much less is known about events prior to integration that generate DNA for capture by Cas1–Cas2. Naïve adaptation in E. coli is thought to depend on the DNA helicase-nuclease RecBCD for generating DNA fragments for capture by Cas1–Cas2. The genetics presented here show that naïve adaptation does not require RecBCD nuclease activity but that helicase activity may be important. RecA loading by RecBCD inhibits adaptation explaining previously observed adaptation phenotypes that implicated RecBCD nuclease activity. Genetic analysis of other E. coli nucleases and naïve adaptation revealed that 5′ ssDNA tailed DNA molecules promote new spacer acquisition. We show that purified E. coli Cas1–Cas2 complex binds to and nicks 5′ ssDNA tailed duplexes and propose that E. coli Cas1–Cas2 nuclease activity on such DNA structures supports naïve adaptation.
Collapse
Affiliation(s)
- Marin Radovcic
- Department of Biology, Faculty of Science, University of Zagreb, Croatia
| | - Tom Killelea
- School of Life Sciences, University of Nottingham, UK
| | - Ekaterina Savitskaya
- Center for Life Sciences, Skolkovo Institute of Science and Technology, Moscow 143028, Russia.,Institute of Molecular Genetics, Russian Academy of Sciences, Moscow 123182, Russia
| | | | - Edward L Bolt
- School of Life Sciences, University of Nottingham, UK
| | - Ivana Ivancic-Bace
- Department of Biology, Faculty of Science, University of Zagreb, Croatia
| |
Collapse
|
70
|
Adaptation processes that build CRISPR immunity: creative destruction, updated. Essays Biochem 2019; 63:227-235. [PMID: 31186288 DOI: 10.1042/ebc20180073] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Revised: 05/13/2019] [Accepted: 05/14/2019] [Indexed: 01/01/2023]
Abstract
Prokaryotes can defend themselves against invading mobile genetic elements (MGEs) by acquiring immune memory against them. The memory is a DNA database located at specific chromosomal sites called CRISPRs (clustered regularly interspaced short palindromic repeats) that store fragments of MGE DNA. These are utilised to target and destroy returning MGEs, preventing re-infection. The effectiveness of CRISPR-based immune defence depends on 'adaptation' reactions that capture and integrate MGE DNA fragments into CRISPRs. This provides the means for immunity to be delivered against MGEs in 'interference' reactions. Adaptation and interference are catalysed by Cas (CRISPR-associated) proteins, aided by enzymes well known for other roles in cells. We survey the molecular biology of CRISPR adaptation, highlighting entirely new developments that may help us to understand how MGE DNA is captured. We focus on processes in Escherichia coli, punctuated with reference to other prokaryotes that illustrate how common requirements for adaptation, DNA capture and integration, can be achieved in different ways. We also comment on how CRISPR adaptation enzymes, and their antecedents, can be utilised for biotechnology.
Collapse
|
71
|
Plateau P, Moch C, Blanquet S. Spermidine strongly increases the fidelity of Escherichia coli CRISPR Cas1-Cas2 integrase. J Biol Chem 2019; 294:11311-11322. [PMID: 31171718 DOI: 10.1074/jbc.ra119.007619] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Revised: 06/03/2019] [Indexed: 12/20/2022] Open
Abstract
Site-selective CRISPR array expansion at the origin of bacterial adaptive immunity relies on recognition of sequence-dependent DNA structures by the conserved Cas1-Cas2 integrase. Off-target integration of a new spacer sequence outside canonical CRISPR arrays has been described in vitro However, this nonspecific integration activity is rare in vivo Here, we designed gel assays to monitor fluorescently labeled protospacer insertion in a supercoiled 3-kb plasmid harboring a minimal CRISPR locus derived from the Escherichia coli type I-E system. This assay enabled us to distinguish and quantify target and off-target insertion events catalyzed by E. coli Cas1-Cas2 integrase. We show that addition of the ubiquitous polyamine spermidine or of another polyamine, spermine, significantly alters the ratio between target and off-target insertions. Notably, addition of 2 mm spermidine quenched the off-target spacer insertion rate by a factor of 20-fold, and, in the presence of integration host factor, spermidine also increased insertion at the CRISPR locus 1.5-fold. The observation made in our in vitro system that spermidine strongly decreases nonspecific activity of Cas1-Cas2 integrase outside the leader-proximal region of a CRISPR array suggests that this polyamine plays a potential role in the fidelity of the spacer integration also in vivo.
Collapse
Affiliation(s)
- Pierre Plateau
- BIOC, CNRS, Ecole polytechnique, IP Paris, F-91128 Palaiseau, France
| | - Clara Moch
- BIOC, CNRS, Ecole polytechnique, IP Paris, F-91128 Palaiseau, France
| | - Sylvain Blanquet
- BIOC, CNRS, Ecole polytechnique, IP Paris, F-91128 Palaiseau, France
| |
Collapse
|
72
|
Wilkinson M, Drabavicius G, Silanskas A, Gasiunas G, Siksnys V, Wigley DB. Structure of the DNA-Bound Spacer Capture Complex of a Type II CRISPR-Cas System. Mol Cell 2019; 75:90-101.e5. [PMID: 31080012 PMCID: PMC6620040 DOI: 10.1016/j.molcel.2019.04.020] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Revised: 03/08/2019] [Accepted: 04/11/2019] [Indexed: 12/26/2022]
Abstract
CRISPR and associated Cas proteins function as an adaptive immune system in prokaryotes to combat bacteriophage infection. During the immunization step, new spacers are acquired by the CRISPR machinery, but the molecular mechanism of spacer capture remains enigmatic. We show that the Cas9, Cas1, Cas2, and Csn2 proteins of a Streptococcus thermophilus type II-A CRISPR-Cas system form a complex and provide cryoelectron microscopy (cryo-EM) structures of three different assemblies. The predominant form, with the stoichiometry Cas18-Cas24-Csn28, referred to as monomer, contains ∼30 bp duplex DNA bound along a central channel. A minor species, termed a dimer, comprises two monomers that sandwich a further eight Cas1 and four Cas2 subunits and contains two DNA ∼30-bp duplexes within the channel. A filamentous form also comprises Cas18-Cas24-Csn28 units (typically 2-6) but with a different Cas1-Cas2 interface between them and a continuous DNA duplex running along a central channel.
Collapse
Affiliation(s)
- Martin Wilkinson
- Section of Structural Biology, Department of Medicine, Imperial College London, London SW7 2AZ, UK
| | | | - Arunas Silanskas
- Institute of Biotechnology, Vilnius University, Vilnius, Lithuania
| | | | | | - Dale B Wigley
- Section of Structural Biology, Department of Medicine, Imperial College London, London SW7 2AZ, UK.
| |
Collapse
|
73
|
Khadempar S, Familghadakchi S, Motlagh RA, Farahani N, Dashtiahangar M, Rezaei H, Gheibi Hayat SM. CRISPR-Cas9 in genome editing: Its function and medical applications. J Cell Physiol 2019; 234:5751-5761. [PMID: 30362544 DOI: 10.1002/jcp.27476] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Accepted: 09/04/2018] [Indexed: 12/22/2022]
Abstract
The targeted genome modification using RNA-guided nucleases is associated with several advantages such as a rapid, easy, and efficient method that not only provides the manipulation and alteration of genes and functional studies for researchers, but also increases their awareness of the molecular basis of the disease and development of new and targeted therapeutic approaches. Different techniques have been emerged so far as the molecular scissors mediating targeted genome editing including zinc finger nuclease, transcription activator-like effector nucleases, and clustered regularly interspaced short palindromic repeats (CRISPR)-CRISPR-associated protein 9 (Cas9). CRISPR-Cas9 is a bacterial immune system against viruses in which the single-strand RNA-guided Cas9 nuclease is linked to the targeted complementary sequences to apply changes. The advances made in the transfer, modification, and emergence of specific solutions have led to the creation of different classes of CRISPR-Cas9. Since this robust tool is capable of direct correction of disease-causing mutations, its ability to treat genetic disorders has attracted the tremendous attention of researchers. Considering the reported cases of nonspecific targeting of Cas9 proteins, many studies focused on enhancing the Cas9 features. In this regard, significant advances have been made in choosing guide RNA, new enzymes and methods for identifying misplaced targeting. Here, we highlighted the history and various direct aspects of CRISPR-Cas9, such as precision in genomic targeting, system transfer and its control over correction events with its applications in future biological studies, and modern treatment of diseases.
Collapse
Affiliation(s)
- Saedeh Khadempar
- Departemant of Medical Genetics, Shahid Sadoughi University of Medical Science, Yazd, Iran
| | - Shokoufeh Familghadakchi
- Department of Clinical Biochemistry, School of Paramedicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Roozbeh Akbari Motlagh
- Department of Biochemistry and Molecular Biology, Faculty of Veterinary, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Najmeh Farahani
- Department of Genetics and Molecular Biology, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Maryam Dashtiahangar
- Department of Biology, Faculty of Sciences, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Hamzeh Rezaei
- Department of Clinical Biochemistry, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Seyed Mohammad Gheibi Hayat
- Department of Medical Biotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
74
|
Musharova O, Sitnik V, Vlot M, Savitskaya E, Datsenko KA, Krivoy A, Fedorov I, Semenova E, Brouns SJJ, Severinov K. Systematic analysis of Type I-E Escherichia coli CRISPR-Cas PAM sequences ability to promote interference and primed adaptation. Mol Microbiol 2019; 111:1558-1570. [PMID: 30875129 PMCID: PMC6568314 DOI: 10.1111/mmi.14237] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/08/2019] [Indexed: 01/05/2023]
Abstract
CRISPR interference occurs when a protospacer recognized by the CRISPR RNA is destroyed by Cas effectors. In Type I CRISPR‐Cas systems, protospacer recognition can lead to «primed adaptation» – acquisition of new spacers from in cis located sequences. Type I CRISPR‐Cas systems require the presence of a trinucleotide protospacer adjacent motif (PAM) for efficient interference. Here, we investigated the ability of each of 64 possible trinucleotides located at the PAM position to induce CRISPR interference and primed adaptation by the Escherichia coli Type I‐E CRISPR‐Cas system. We observed clear separation of PAM variants into three groups: those unable to cause interference, those that support rapid interference and those that lead to reduced interference that occurs over extended periods of time. PAM variants unable to support interference also did not support primed adaptation; those that supported rapid interference led to no or low levels of adaptation, while those that caused attenuated levels of interference consistently led to highest levels of adaptation. The results suggest that primed adaptation is fueled by the products of CRISPR interference. Extended over time interference with targets containing «attenuated» PAM variants provides a continuous source of new spacers leading to high overall level of spacer acquisition.
Collapse
Affiliation(s)
- Olga Musharova
- Center of Life Sciences, Skolkovo Institute of Science and Technology, Moscow, 121205, Russia.,Institute of Molecular Genetics, Russian Academy of Sciences, Moscow, 123182, Russia
| | - Vasily Sitnik
- Center of Life Sciences, Skolkovo Institute of Science and Technology, Moscow, 121205, Russia
| | - Marnix Vlot
- Laboratory of Microbiology, Department of Agrotechnology and Food Sciences, Wageningen University, Stippeneng 4, Wageningen, 6708 WE, The Netherlands
| | - Ekaterina Savitskaya
- Center of Life Sciences, Skolkovo Institute of Science and Technology, Moscow, 121205, Russia.,Institute of Molecular Genetics, Russian Academy of Sciences, Moscow, 123182, Russia
| | - Kirill A Datsenko
- Department of Biological Sciences, Purdue University, West Lafayette, IN, 47907, USA
| | - Andrey Krivoy
- Center of Life Sciences, Skolkovo Institute of Science and Technology, Moscow, 121205, Russia
| | - Ivan Fedorov
- Center of Life Sciences, Skolkovo Institute of Science and Technology, Moscow, 121205, Russia
| | - Ekaterina Semenova
- Waksman Institute, Rutgers, The State University of New Jersey, Piscataway, NJ, 08854, USA
| | - Stan J J Brouns
- Laboratory of Microbiology, Department of Agrotechnology and Food Sciences, Wageningen University, Stippeneng 4, Wageningen, 6708 WE, The Netherlands.,Department of Bionanoscience, Kavli Institute of Nanoscience, Delft University of Technology, Van der Maasweg 9, Delft, 2629 HZ, The Netherlands
| | - Konstantin Severinov
- Center of Life Sciences, Skolkovo Institute of Science and Technology, Moscow, 121205, Russia.,Institute of Molecular Genetics, Russian Academy of Sciences, Moscow, 123182, Russia.,Waksman Institute, Rutgers, The State University of New Jersey, Piscataway, NJ, 08854, USA
| |
Collapse
|
75
|
Hou S, Brenes-Álvarez M, Reimann V, Alkhnbashi OS, Backofen R, Muro-Pastor AM, Hess WR. CRISPR-Cas systems in multicellular cyanobacteria. RNA Biol 2019; 16:518-529. [PMID: 29995583 PMCID: PMC6546389 DOI: 10.1080/15476286.2018.1493330] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Revised: 07/01/2018] [Accepted: 06/19/2018] [Indexed: 01/12/2023] Open
Abstract
Novel CRISPR-Cas systems possess substantial potential for genome editing and manipulation of gene expression. The types and numbers of CRISPR-Cas systems vary substantially between different organisms. Some filamentous cyanobacteria harbor > 40 different putative CRISPR repeat-spacer cassettes, while the number of cas gene instances is much lower. Here we addressed the types and diversity of CRISPR-Cas systems and of CRISPR-like repeat-spacer arrays in 171 publicly available genomes of multicellular cyanobacteria. The number of 1328 repeat-spacer arrays exceeded the total of 391 encoded Cas1 proteins suggesting a tendency for fragmentation or the involvement of alternative adaptation factors. The model cyanobacterium Anabaena sp. PCC 7120 contains only three cas1 genes but hosts three Class 1, possibly one Class 2 and five orphan repeat-spacer arrays, all of which exhibit crRNA-typical expression patterns suggesting active transcription, maturation and incorporation into CRISPR complexes. The CRISPR-Cas system within the element interrupting the Anabaena sp. PCC 7120 fdxN gene, as well as analogous arrangements in other strains, occupy the genetic elements that become excised during the differentiation-related programmed site-specific recombination. This fact indicates the propensity of these elements for the integration of CRISPR-cas systems and points to a previously not recognized connection. The gene all3613 resembling a possible Class 2 effector protein is linked to a short repeat-spacer array and a single tRNA gene, similar to its homologs in other cyanobacteria. The diversity and presence of numerous CRISPR-Cas systems in DNA elements that are programmed for homologous recombination make filamentous cyanobacteria a prolific resource for their study. Abbreviations: Cas: CRISPR associated sequences; CRISPR: Clustered Regularly Interspaced Short Palindromic Repeats; C2c: Class 2 candidate; SDR: small dispersed repeat; TSS: transcriptional start site; UTR: untranslated region.
Collapse
Affiliation(s)
- Shengwei Hou
- Faculty of Biology, Genetics and Experimental Bioinformatics, University of Freiburg, Freiburg, Germany
| | - Manuel Brenes-Álvarez
- Instituto de Bioquímica Vegetal y Fotosíntesis, Consejo Superior de Investigaciones Científicas and Universidad de Sevilla, Seville, Spain
| | - Viktoria Reimann
- Faculty of Biology, Genetics and Experimental Bioinformatics, University of Freiburg, Freiburg, Germany
| | - Omer S. Alkhnbashi
- Bioinformatics group, Department of Computer Science, University of Freiburg, Freiburg, Germany
| | - Rolf Backofen
- Bioinformatics group, Department of Computer Science, University of Freiburg, Freiburg, Germany
- Center for Biological Systems Analysis (ZBSA), University of Freiburg, Freiburg, Germany
- BIOSS Centre for Biological Signaling Studies, University of Freiburg, Freiburg, Germany
| | - Alicia M. Muro-Pastor
- Bioinformatics group, Department of Computer Science, University of Freiburg, Freiburg, Germany
| | - Wolfgang R. Hess
- Faculty of Biology, Genetics and Experimental Bioinformatics, University of Freiburg, Freiburg, Germany
- Freiburg Institute for Advanced Studies,University of Freiburg, Freiburg, Germany
| |
Collapse
|
76
|
Wang F, Wang L, Zou X, Duan S, Li Z, Deng Z, Luo J, Lee SY, Chen S. Advances in CRISPR-Cas systems for RNA targeting, tracking and editing. Biotechnol Adv 2019; 37:708-729. [PMID: 30926472 DOI: 10.1016/j.biotechadv.2019.03.016] [Citation(s) in RCA: 84] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2018] [Revised: 03/26/2019] [Accepted: 03/26/2019] [Indexed: 12/21/2022]
Abstract
Clustered regularly interspaced short palindromic repeat (CRISPR)/CRISPR-associated protein (Cas) systems, especially type II (Cas9) systems, have been widely used in gene/genome targeting. Modifications of Cas9 enable these systems to become platforms for precise DNA manipulations. However, the utilization of CRISPR-Cas systems in RNA targeting remains preliminary. The discovery of type VI CRISPR-Cas systems (Cas13) shed light on RNA-guided RNA targeting. Cas13d, the smallest Cas13 protein, with a length of only ~930 amino acids, is a promising platform for RNA targeting compatible with viral delivery systems. Much effort has also been made to develop Cas9, Cas13a and Cas13b applications for RNA-guided RNA targeting. The discovery of new RNA-targeting CRISPR-Cas systems as well as the development of RNA-targeting platforms with Cas9 and Cas13 will promote RNA-targeting technology substantially. Here, we review new advances in RNA-targeting CRISPR-Cas systems as well as advances in applications of these systems in RNA targeting, tracking and editing. We also compare these Cas protein-based technologies with traditional technologies for RNA targeting, tracking and editing. Finally, we discuss remaining questions and prospects for the future.
Collapse
Affiliation(s)
- Fei Wang
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, Brain Center, School of Pharmaceutical Sciences, Zhongnan Hospital, Wuhan University, Wuhan 430071, Hubei, China; Taihe Hospital, Hubei University of Medicine, Shiyan 442000, Hubei, China
| | - Lianrong Wang
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, Brain Center, School of Pharmaceutical Sciences, Zhongnan Hospital, Wuhan University, Wuhan 430071, Hubei, China; Taihe Hospital, Hubei University of Medicine, Shiyan 442000, Hubei, China
| | - Xuan Zou
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, Brain Center, School of Pharmaceutical Sciences, Zhongnan Hospital, Wuhan University, Wuhan 430071, Hubei, China; Department of Chemical and Biomolecular Engineering (BK21 Plus Program), Korea Advanced Institute of Science and Technology, Yuseong-gu, 34141 Daejeon, Republic of Korea
| | - Suling Duan
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, Brain Center, School of Pharmaceutical Sciences, Zhongnan Hospital, Wuhan University, Wuhan 430071, Hubei, China
| | - Zhiqiang Li
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, Brain Center, School of Pharmaceutical Sciences, Zhongnan Hospital, Wuhan University, Wuhan 430071, Hubei, China
| | - Zixin Deng
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, Brain Center, School of Pharmaceutical Sciences, Zhongnan Hospital, Wuhan University, Wuhan 430071, Hubei, China
| | - Jie Luo
- Taihe Hospital, Hubei University of Medicine, Shiyan 442000, Hubei, China
| | - Sang Yup Lee
- Department of Chemical and Biomolecular Engineering (BK21 Plus Program), Korea Advanced Institute of Science and Technology, Yuseong-gu, 34141 Daejeon, Republic of Korea.
| | - Shi Chen
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, Brain Center, School of Pharmaceutical Sciences, Zhongnan Hospital, Wuhan University, Wuhan 430071, Hubei, China; Taihe Hospital, Hubei University of Medicine, Shiyan 442000, Hubei, China.
| |
Collapse
|
77
|
Desgranges E, Marzi S, Moreau K, Romby P, Caldelari I. Noncoding RNA. Microbiol Spectr 2019; 7:10.1128/microbiolspec.gpp3-0038-2018. [PMID: 31004423 PMCID: PMC11590673 DOI: 10.1128/microbiolspec.gpp3-0038-2018] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Indexed: 12/24/2022] Open
Abstract
Regulatory RNAs, present in many bacterial genomes and particularly in pathogenic bacteria such as Staphylococcus aureus, control the expression of genes encoding virulence factors or metabolic proteins. They are extremely diverse and include noncoding RNAs (sRNA), antisense RNAs, and some 5' or 3' untranslated regions of messenger RNAs that act as sensors for metabolites, tRNAs, or environmental conditions (e.g., temperature, pH). In this review we focus on specific examples of sRNAs of S. aureus that illustrate how numerous sRNAs and associated proteins are embedded in complex networks of regulation. In addition, we discuss the CRISPR-Cas systems defined as an RNA-interference-like mechanism, which also exist in staphylococcal strains.
Collapse
Affiliation(s)
- E Desgranges
- Université de Strasbourg, CNRS, Architecture et Réactivité de l'ARN, F-67000 Strasbourg, France
| | - S Marzi
- Université de Strasbourg, CNRS, Architecture et Réactivité de l'ARN, F-67000 Strasbourg, France
| | - K Moreau
- CIRI, International Center for Infectiology Research, Inserm, Université Claude Bernard Lyon 1, CNRS, UMR5308, École Normale Supérieure de Lyon, Hospices Civils de Lyon, University of Lyon, F-69008, Lyon, France
| | - P Romby
- Université de Strasbourg, CNRS, Architecture et Réactivité de l'ARN, F-67000 Strasbourg, France
| | - I Caldelari
- Université de Strasbourg, CNRS, Architecture et Réactivité de l'ARN, F-67000 Strasbourg, France
| |
Collapse
|
78
|
Wan H, Li J, Chang S, Lin S, Tian Y, Tian X, Wang M, Hu J. Probing the Behaviour of Cas1-Cas2 upon Protospacer Binding in CRISPR-Cas Systems using Molecular Dynamics Simulations. Sci Rep 2019; 9:3188. [PMID: 30816277 PMCID: PMC6395717 DOI: 10.1038/s41598-019-39616-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Accepted: 01/29/2019] [Indexed: 12/26/2022] Open
Abstract
Adaptation in CRISPR-Cas systems enables the generation of an immunological memory to defend against invading viruses. This process is driven by foreign DNA spacer (termed protospacer) selection and integration mediated by Cas1-Cas2 protein. Recently, different states of Cas1-Cas2, in its free form and in complex with protospacer DNAs, were solved by X-ray crystallography. In this paper, molecular dynamics (MD) simulations are employed to study crystal structures of one free and two protospacer-bound Cas1-Cas2 complexes. The simulated results indicate that the protospacer binding markedly increases the system stability, in particular when the protospacer containing the PAM-complementary sequence. The hydrogen bond and binding free energy calculations explain that PAM recognition introduces more specific interactions to increase the cleavage activity of Cas1. By using principal component analysis (PCA) and intramolecular angle calculation, this study observes two dominant slow motions associated with the binding of Ca1-Cas2 to the protospacer and potential target DNAs respectively. The comparison of DNA structural deformation further implies a cooperative conformational change of Cas1-Cas2 and protospacer for the target DNA capture. We propose that this cooperativity is the intrinsic requirement of the CRISPR integration complex formation. This study provides some new insights into the understanding of CRISPR-Cas adaptation.
Collapse
Affiliation(s)
- Hua Wan
- College of Mathematics and Informatics, South China Agricultural University, Guangzhou, 510642, China
| | - Jianming Li
- College of Mathematics and Informatics, South China Agricultural University, Guangzhou, 510642, China
| | - Shan Chang
- Institute of Bioinformatics and Medical Engineering, School of Electrical and Information Engineering, Jiangsu University of Technology, Changzhou, 213001, China
| | - Shuoxin Lin
- Department of Electrical and Computer Engineering, James Clark School of Engineering, University of Maryland, College Park, MD, 20742, USA
| | - Yuanxin Tian
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Xuhong Tian
- College of Mathematics and Informatics, South China Agricultural University, Guangzhou, 510642, China
| | - Meihua Wang
- College of Mathematics and Informatics, South China Agricultural University, Guangzhou, 510642, China.
| | - Jianping Hu
- College of Pharmacy and Biological Engineering, Sichuan Industrial Institute of Antibiotics, Key Laboratory of Medicinal and Edible Plants Resources Development of Sichuan Education Department, Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Chengdu University, Chengdu, 610106, China.
| |
Collapse
|
79
|
Wright AV, Wang JY, Burstein D, Harrington LB, Paez-Espino D, Kyrpides NC, Iavarone AT, Banfield JF, Doudna JA. A Functional Mini-Integrase in a Two-Protein-type V-C CRISPR System. Mol Cell 2019; 73:727-737.e3. [PMID: 30709710 PMCID: PMC6386590 DOI: 10.1016/j.molcel.2018.12.015] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Revised: 11/21/2018] [Accepted: 12/14/2018] [Indexed: 12/26/2022]
Abstract
CRISPR-Cas immunity requires integration of short, foreign DNA fragments into the host genome at the CRISPR locus, a site consisting of alternating repeat sequences and foreign-derived spacers. In most CRISPR systems, the proteins Cas1 and Cas2 form the integration complex and are both essential for DNA acquisition. Most type V-C and V-D systems lack the cas2 gene and have unusually short CRISPR repeats and spacers. Here, we show that a mini-integrase comprising the type V-C Cas1 protein alone catalyzes DNA integration with a preference for short (17- to 19-base-pair) DNA fragments. The mini-integrase has weak specificity for the CRISPR array. We present evidence that the Cas1 proteins form a tetramer for integration. Our findings support a model of a minimal integrase with an internal ruler mechanism that favors shorter repeats and spacers. This minimal integrase may represent the function of the ancestral Cas1 prior to Cas2 adoption.
Collapse
Affiliation(s)
- Addison V Wright
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Joy Y Wang
- Department of Chemistry, University of California, Berkeley, Berkeley, CA 94720, USA
| | - David Burstein
- California Institute for Quantitative Biosciences (QB3), University of California, Berkeley, Berkeley, CA 94720, USA
| | - Lucas B Harrington
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - David Paez-Espino
- Department of Energy, Joint Genome Institute, Walnut Creek, CA 94598, USA
| | - Nikos C Kyrpides
- Department of Energy, Joint Genome Institute, Walnut Creek, CA 94598, USA
| | - Anthony T Iavarone
- Department of Chemistry, University of California, Berkeley, Berkeley, CA 94720, USA; California Institute for Quantitative Biosciences (QB3), University of California, Berkeley, Berkeley, CA 94720, USA
| | - Jillian F Banfield
- Department of Earth and Planetary Sciences, University of California, Berkeley, Berkeley, CA 94720, USA; Department of Environmental Science, Policy, and Management, University of California, Berkeley, Berkeley, CA 94720, USA; Innovative Genomics Institute, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Jennifer A Doudna
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA; Department of Chemistry, University of California, Berkeley, Berkeley, CA 94720, USA; Innovative Genomics Institute, University of California, Berkeley, Berkeley, CA 94720, USA; Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, CA 94720, USA; MBIB Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA; Gladstone Institutes, San Francisco, CA 94158, USA.
| |
Collapse
|
80
|
Xue C, Sashital DG. Mechanisms of Type I-E and I-F CRISPR-Cas Systems in Enterobacteriaceae. EcoSal Plus 2019; 8:10.1128/ecosalplus.ESP-0008-2018. [PMID: 30724156 PMCID: PMC6368399 DOI: 10.1128/ecosalplus.esp-0008-2018] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Indexed: 12/17/2022]
Abstract
CRISPR-Cas systems provide bacteria and archaea with adaptive immunity against invasion by bacteriophages and other mobile genetic elements. Short fragments of invader DNA are stored as immunological memories within CRISPR (clustered regularly interspaced short palindromic repeat) arrays in the host chromosome. These arrays provide a template for RNA molecules that can guide CRISPR-associated (Cas) proteins to specifically neutralize viruses upon subsequent infection. Over the past 10 years, our understanding of CRISPR-Cas systems has benefited greatly from a number of model organisms. In particular, the study of several members of the Gram-negative Enterobacteriaceae family, especially Escherichia coli and Pectobacterium atrosepticum, have provided significant insights into the mechanisms of CRISPR-Cas immunity. In this review, we provide an overview of CRISPR-Cas systems present in members of the Enterobacteriaceae. We also detail the current mechanistic understanding of the type I-E and type I-F CRISPR-Cas systems that are commonly found in enterobacteria. Finally, we discuss how phages can escape or inactivate CRISPR-Cas systems and the measures bacteria can enact to counter these types of events.
Collapse
Affiliation(s)
- Chaoyou Xue
- Roy J. Carver Department of Biochemistry, Biophysics & Molecular Biology, Iowa State University, Ames, IA
- Present address: Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY
| | - Dipali G Sashital
- Roy J. Carver Department of Biochemistry, Biophysics & Molecular Biology, Iowa State University, Ames, IA
| |
Collapse
|
81
|
Fagerlund RD, Ferguson TJ, Maxwell HW, Opel-Reading HK, Krause KL, Fineran PC. Reconstitution of CRISPR adaptation in vitro and its detection by PCR. Methods Enzymol 2019; 616:411-433. [DOI: 10.1016/bs.mie.2018.10.024] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
82
|
Abstract
Fluorescent labeling of proteins is a critical requirement for single-molecule imaging studies. Many protein labeling strategies require harsh conditions or large epitopes that can inactivate the target protein, either by decreasing the protein's enzymatic activity or by blocking protein-protein interactions. Here, we provide a detailed protocol to efficiently label CRISPR-Cas complexes with a small fluorescent peptide via sortase-mediated transpeptidation. The sortase tag consists of just a few amino acids that are specifically recognized at either the N- or the C-terminus, making this strategy advantageous when the protein is part of a larger complex. Sortase is active at high ionic strength, 4°C, and with a broad range of organic fluorophores. We discuss the design, optimization, and single-molecule fluorescent imaging of CRISPR-Cas complexes on DNA curtains. Sortase-mediated transpeptidation is a versatile addition to the protein labeling toolkit.
Collapse
|
83
|
Lisitskaya L, Aravin AA, Kulbachinskiy A. DNA interference and beyond: structure and functions of prokaryotic Argonaute proteins. Nat Commun 2018; 9:5165. [PMID: 30514832 PMCID: PMC6279821 DOI: 10.1038/s41467-018-07449-7] [Citation(s) in RCA: 96] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Accepted: 10/26/2018] [Indexed: 12/14/2022] Open
Abstract
Recognition and repression of RNA targets by Argonaute proteins guided by small RNAs is the essence of RNA interference in eukaryotes. Argonaute proteins with diverse structures are also found in many bacterial and archaeal genomes. Recent studies revealed that, similarly to their eukaryotic counterparts, prokaryotic Argonautes (pAgos) may function in cell defense against foreign genetic elements but, in contrast, preferably act on DNA targets. Many crucial details of the pAgo action, and the roles of a plethora of pAgos with non-conventional architecture remain unknown. Here, we review available structural and biochemical data on pAgos and discuss their possible functions in host defense and other genetic processes in prokaryotic cells. In this review, Aravin and colleagues examine bacterial and archaeal Argonaute proteins, discuss their diverse architectures and their possible roles in host defense, proposing additional functions for Argonaute proteins in prokaryotic cells.
Collapse
Affiliation(s)
- Lidiya Lisitskaya
- Institute of Molecular Genetics, Russian Academy of Sciences, Moscow, 123182, Russia
| | - Alexei A Aravin
- Institute of Molecular Genetics, Russian Academy of Sciences, Moscow, 123182, Russia. .,Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, 91125, USA.
| | - Andrey Kulbachinskiy
- Institute of Molecular Genetics, Russian Academy of Sciences, Moscow, 123182, Russia.
| |
Collapse
|
84
|
Zhu Y, Huang Z. Recent advances in structural studies of the CRISPR-Cas-mediated genome editing tools. Natl Sci Rev 2018; 6:438-451. [PMID: 34691893 PMCID: PMC8291651 DOI: 10.1093/nsr/nwy150] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Revised: 11/21/2018] [Accepted: 11/28/2018] [Indexed: 12/26/2022] Open
Abstract
Clustered regularly interspaced short palindromic repeats (CRISPR) and accompanying CRISPR-associated (Cas) proteins provide RNA-guided adaptive immunity for prokaryotes to defend themselves against viruses. The CRISPR-Cas systems have attracted much attention in recent years for their power in aiding the development of genome editing tools. Based on the composition of the CRISPR RNA-effector complex, the CRISPR-Cas systems can be divided into two classes and six types. In this review, we summarize recent advances in the structural biology of the CRISPR-Cas-mediated genome editing tools, which helps us to understand the mechanism of how the guide RNAs assemble with diverse Cas proteins to cleave target nucleic acids.
Collapse
Affiliation(s)
- Yuwei Zhu
- HIT Center for Life Sciences, School of Life Science and Technology, Harbin Institute of Technology, Harbin 150080, China
| | - Zhiwei Huang
- HIT Center for Life Sciences, School of Life Science and Technology, Harbin Institute of Technology, Harbin 150080, China
| |
Collapse
|
85
|
Faure G, Makarova KS, Koonin EV. CRISPR-Cas: Complex Functional Networks and Multiple Roles beyond Adaptive Immunity. J Mol Biol 2018; 431:3-20. [PMID: 30193985 DOI: 10.1016/j.jmb.2018.08.030] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Revised: 08/28/2018] [Accepted: 08/29/2018] [Indexed: 01/26/2023]
Abstract
CRISPR-Cas is a prokaryotic adaptive immune system that functions by incorporating fragments of foreign DNA into CRISPR arrays. The arrays containing spacers derived from foreign DNA are transcribed, and the transcripts are processed to generate spacer-containing mature CRISPR-RNAs that are employed as guides to specifically recognize and cleave the DNA or RNA of the cognate parasitic genetic elements. The CRISPR-Cas systems show remarkable complexity and diversity of molecular organization and appear to be involved in various cellular functions that are distinct from, even if connected to, adaptive immunity. In this review, we discuss some of such functional links of CRISPR-Cas systems including their effect on horizontal gene transfer that can be either inhibitory or stimulatory, connections between CRISPR-Cas and DNA repair systems as well as programmed cell death and signal transduction mechanisms, and potential role of CRISPR-Cas in transposon integration and plasmid maintenance. The interplay between the primary function of CRISPR-Cas as an adaptive immunity mechanism and these other roles defines the richness of the biological effects of these systems and affects their spread among bacteria and archaea.
Collapse
Affiliation(s)
- Guilhem Faure
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA
| | - Kira S Makarova
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA
| | - Eugene V Koonin
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA.
| |
Collapse
|
86
|
Killelea T, Hawkins M, Howard JL, McGlynn P, Bolt EL. DNA replication roadblocks caused by Cascade interference complexes are alleviated by RecG DNA repair helicase. RNA Biol 2018; 16:543-548. [PMID: 30096986 PMCID: PMC6546356 DOI: 10.1080/15476286.2018.1496773] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Cascade complexes underpin E. coli CRISPR-Cas immunity systems by stimulating 'adaptation' reactions that update immunity and by initiating 'interference' reactions that destroy invader DNA. Recognition of invader DNA in Cascade catalysed R-loops provokes DNA capture and its subsequent integration into CRISPR loci by Cas1 and Cas2. DNA capture processes are unclear but may involve RecG helicase, which stimulates adaptation during its role responding to genome instability. We show that Cascade is a potential source of genome instability because it blocks DNA replication and that RecG helicase alleviates this by dissociating Cascade. This highlights how integrating in vitro CRISPR-Cas interference and adaptation reactions with DNA replication and repair reactions will help to determine precise mechanisms underpinning prokaryotic adaptive immunity.
Collapse
Affiliation(s)
- Tom Killelea
- a School of Life Sciences, Queen's Medical Centre , University of Nottingham , Nottingham , UK
| | | | | | - Peter McGlynn
- b Department of Biology , University of York , York , UK
| | - Edward L Bolt
- a School of Life Sciences, Queen's Medical Centre , University of Nottingham , Nottingham , UK
| |
Collapse
|
87
|
Drabavicius G, Sinkunas T, Silanskas A, Gasiunas G, Venclovas Č, Siksnys V. DnaQ exonuclease-like domain of Cas2 promotes spacer integration in a type I-E CRISPR-Cas system. EMBO Rep 2018; 19:e45543. [PMID: 29891635 PMCID: PMC6030702 DOI: 10.15252/embr.201745543] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2017] [Revised: 05/04/2018] [Accepted: 05/08/2018] [Indexed: 01/14/2023] Open
Abstract
CRISPR-Cas systems constitute an adaptive immune system that provides acquired resistance against phages and plasmids in prokaryotes. Upon invasion of foreign nucleic acids, some cells integrate short fragments of foreign DNA as spacers into the CRISPR locus to memorize the invaders and acquire resistance in the subsequent round of infection. This immunization step called adaptation is the least understood part of the CRISPR-Cas immunity. We have focused here on the adaptation stage of Streptococcus thermophilus DGCC7710 type I-E CRISPR4-Cas (St4) system. Cas1 and Cas2 proteins conserved in nearly all CRISPR-Cas systems are required for spacer acquisition. The St4 CRISPR-Cas system is unique because the Cas2 protein is fused to an additional DnaQ exonuclease domain. Here, we demonstrate that St4 Cas1 and Cas2-DnaQ form a multimeric complex, which is capable of integrating DNA duplexes with 3'-overhangs (protospacers) in vitro We further show that the DnaQ domain of Cas2 functions as a 3'-5'-exonuclease that processes 3'-overhangs of the protospacer to promote integration.
Collapse
Affiliation(s)
| | - Tomas Sinkunas
- Institute of Biotechnology, Vilnius University, Vilnius, Lithuania
| | - Arunas Silanskas
- Institute of Biotechnology, Vilnius University, Vilnius, Lithuania
| | | | | | | |
Collapse
|
88
|
Ricke SC, Kim SA, Shi Z, Park SH. Molecular-based identification and detection of Salmonella in food production systems: current perspectives. J Appl Microbiol 2018; 125:313-327. [PMID: 29675864 DOI: 10.1111/jam.13888] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2017] [Revised: 04/03/2018] [Accepted: 04/10/2018] [Indexed: 12/25/2022]
Abstract
Salmonella remains a prominent cause of foodborne illnesses and can originate from a wide range of food products. Given the continued presence of pathogenic Salmonella in food production systems, there is a consistent need to improve identification and detection methods that can identify this pathogen at all stages in food systems. Methods for subtyping have evolved over the years, and the introduction of whole genome sequencing and advancements in PCR technologies have greatly improved the resolution for differentiating strains within a particular serovar. This, in turn, has led to the continued improvement in Salmonella detection technologies for utilization in food production systems. In this review, the focus will be on recent advancements in these technologies, as well as potential issues associated with the application of these tools in food production. In addition, the recent and emerging research developments on Salmonella detection and identification methodologies and their potential application in food production systems will be discussed.
Collapse
Affiliation(s)
- S C Ricke
- Department of Food Science, Center for Food Safety, University of Arkansas, Fayetteville, AR, USA
| | - S A Kim
- Department of Food Science, Center for Food Safety, University of Arkansas, Fayetteville, AR, USA
| | - Z Shi
- Department of Food Science, Center for Food Safety, University of Arkansas, Fayetteville, AR, USA
| | - S H Park
- Department of Food Science, Center for Food Safety, University of Arkansas, Fayetteville, AR, USA
| |
Collapse
|
89
|
Shiimori M, Garrett SC, Graveley BR, Terns MP. Cas4 Nucleases Define the PAM, Length, and Orientation of DNA Fragments Integrated at CRISPR Loci. Mol Cell 2018; 70:814-824.e6. [PMID: 29883605 DOI: 10.1016/j.molcel.2018.05.002] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Revised: 04/27/2018] [Accepted: 05/01/2018] [Indexed: 11/24/2022]
Abstract
To achieve adaptive and heritable immunity against viruses and other mobile genetic elements, CRISPR-Cas systems must capture and store short DNA fragments (spacers) from these foreign elements into host genomic CRISPR arrays. This process is catalyzed by conserved Cas1/Cas2 integration complexes, but the specific roles of another highly conserved protein linked to spacer acquisition, the Cas4 nuclease, are just now emerging. Here, we show that two Cas4 nucleases (Cas4-1 and Cas4-2) play critical roles in CRISPR spacer acquisition in Pyrococcus furiosus. The nuclease activities of both Cas4 proteins are required to process protospacers to the correct size. Cas4-1 specifies the upstream PAM (protospacer adjacent motif), while Cas4-2 specifies the conserved downstream motif. Both Cas4 proteins ensure CRISPR spacer integration in a defined orientation leading to CRISPR immunity. Collectively, these findings provide in vivo evidence for critical roles of Cas4 nucleases in protospacer generation and functional spacer integration at CRISPR arrays.
Collapse
Affiliation(s)
- Masami Shiimori
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA 30602, USA
| | - Sandra C Garrett
- Department of Genetics and Genome Sciences, Institute for Systems Genomics, UConn Stem Cell Institute, UConn Health, Farmington, CT 06030, USA
| | - Brenton R Graveley
- Department of Genetics and Genome Sciences, Institute for Systems Genomics, UConn Stem Cell Institute, UConn Health, Farmington, CT 06030, USA.
| | - Michael P Terns
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA 30602, USA; Department of Genetics, University of Georgia, Athens, GA 30602, USA; Department of Microbiology, University of Georgia, Athens, GA 30602, USA.
| |
Collapse
|
90
|
Systematic prediction of genes functionally linked to CRISPR-Cas systems by gene neighborhood analysis. Proc Natl Acad Sci U S A 2018; 115:E5307-E5316. [PMID: 29784811 DOI: 10.1073/pnas.1803440115] [Citation(s) in RCA: 99] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
The CRISPR-Cas systems of bacterial and archaeal adaptive immunity consist of direct repeat arrays separated by unique spacers and multiple CRISPR-associated (cas) genes encoding proteins that mediate all stages of the CRISPR response. In addition to the relatively small set of core cas genes that are typically present in all CRISPR-Cas systems of a given (sub)type and are essential for the defense function, numerous genes occur in CRISPR-cas loci only sporadically. Some of these have been shown to perform various ancillary roles in CRISPR response, but the functional relevance of most remains unknown. We developed a computational strategy for systematically detecting genes that are likely to be functionally linked to CRISPR-Cas. The approach is based on a "CRISPRicity" metric that measures the strength of CRISPR association for all protein-coding genes from sequenced bacterial and archaeal genomes. Uncharacterized genes with CRISPRicity values comparable to those of cas genes are considered candidate CRISPR-linked genes. We describe additional criteria to predict functionally relevance for genes in the candidate set and identify 79 genes as strong candidates for functional association with CRISPR-Cas systems. A substantial majority of these CRISPR-linked genes reside in type III CRISPR-cas loci, which implies exceptional functional versatility of type III systems. Numerous candidate CRISPR-linked genes encode integral membrane proteins suggestive of tight membrane association of CRISPR-Cas systems, whereas many others encode proteins implicated in various signal transduction pathways. These predictions provide ample material for improving annotation of CRISPR-cas loci and experimental characterization of previously unsuspected aspects of CRISPR-Cas system functionality.
Collapse
|
91
|
Adashi EY, Cohen IG. Preventing Mitochondrial Diseases: Embryo-Sparing Donor-Independent Options. Trends Mol Med 2018; 24:449-457. [PMID: 29605176 DOI: 10.1016/j.molmed.2018.03.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2018] [Revised: 03/04/2018] [Accepted: 03/05/2018] [Indexed: 12/26/2022]
Abstract
Mutant mitochondrial DNA gives rise to a broad range of incurable inborn maladies. Prevention may now be possible by replacing the mutation-carrying mitochondria of zygotes or oocytes at risk with donated unaffected counterparts. However, mitochondrial replacement therapy is being held back by theological, ethical, and safety concerns over the loss of human zygotes and the involvement of a donor. These concerns make it plain that the identification, validation, and regulatory adjudication of novel embryo-sparing donor-independent technologies remains a pressing imperative. This Opinion highlights three emerging embryo-sparing donor-independent options that stand to markedly allay theological, ethical, and safety concerns raised by mitochondrial replacement therapy.
Collapse
Affiliation(s)
- Eli Y Adashi
- The Warren Alpert Medical School, Brown University, Providence, RI 02905, USA.
| | - I Glenn Cohen
- Harvard Law School, Cambridge, MA 02138, USA; Petrie-Flom Center for Health Law Policy, Biotechnology, and Bioethics, Harvard University, 1563 Massachusetts Avenue, Cambridge, MA 02138, USA
| |
Collapse
|
92
|
Cas4-Dependent Prespacer Processing Ensures High-Fidelity Programming of CRISPR Arrays. Mol Cell 2018; 70:48-59.e5. [PMID: 29602742 DOI: 10.1016/j.molcel.2018.03.003] [Citation(s) in RCA: 78] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Revised: 02/13/2018] [Accepted: 02/28/2018] [Indexed: 12/26/2022]
Abstract
CRISPR-Cas immune systems integrate short segments of foreign DNA as spacers into the host CRISPR locus to provide molecular memory of infection. Cas4 proteins are widespread in CRISPR-Cas systems and are thought to participate in spacer acquisition, although their exact function remains unknown. Here we show that Bacillus halodurans type I-C Cas4 is required for efficient prespacer processing prior to Cas1-Cas2-mediated integration. Cas4 interacts tightly with the Cas1 integrase, forming a heterohexameric complex containing two Cas1 dimers and two Cas4 subunits. In the presence of Cas1 and Cas2, Cas4 processes double-stranded substrates with long 3' overhangs through site-specific endonucleolytic cleavage. Cas4 recognizes PAM sequences within the prespacer and prevents integration of unprocessed prespacers, ensuring that only functional spacers will be integrated into the CRISPR array. Our results reveal the critical role of Cas4 in maintaining fidelity during CRISPR adaptation, providing a structural and mechanistic model for prespacer processing and integration.
Collapse
|
93
|
Zhu Y, Zhang F, Huang Z. Structural insights into the inactivation of CRISPR-Cas systems by diverse anti-CRISPR proteins. BMC Biol 2018; 16:32. [PMID: 29554913 PMCID: PMC5859409 DOI: 10.1186/s12915-018-0504-9] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
A molecular arms race is progressively being unveiled between prokaryotes and viruses. Prokaryotes utilize CRISPR-mediated adaptive immune systems to kill the invading phages and mobile genetic elements, and in turn, the viruses evolve diverse anti-CRISPR proteins to fight back. The structures of several anti-CRISPR proteins have now been reported, and here we discuss their structural features, with a particular emphasis on topology, to discover their similarities and differences. We summarize the CRISPR-Cas inhibition mechanisms of these anti-CRISPR proteins in their structural context. Considering anti-CRISPRs in this way will provide important clues for studying their origin and evolution.
Collapse
Affiliation(s)
- Yuwei Zhu
- HIT Center for Life Sciences, School of Life Science and Technology, Harbin Institute of Technology, Harbin, China.
| | - Fan Zhang
- HIT Center for Life Sciences, School of Life Science and Technology, Harbin Institute of Technology, Harbin, China
| | - Zhiwei Huang
- HIT Center for Life Sciences, School of Life Science and Technology, Harbin Institute of Technology, Harbin, China.
| |
Collapse
|
94
|
Hille F, Richter H, Wong SP, Bratovič M, Ressel S, Charpentier E. The Biology of CRISPR-Cas: Backward and Forward. Cell 2018. [DOI: 10.1016/j.cell.2017.11.032] [Citation(s) in RCA: 333] [Impact Index Per Article: 47.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
95
|
Rollie C, Graham S, Rouillon C, White MF. Prespacer processing and specific integration in a Type I-A CRISPR system. Nucleic Acids Res 2018; 46:1007-1020. [PMID: 29228332 PMCID: PMC5815122 DOI: 10.1093/nar/gkx1232] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Revised: 11/22/2017] [Accepted: 11/29/2017] [Indexed: 12/15/2022] Open
Abstract
The CRISPR-Cas system for prokaryotic adaptive immunity provides RNA-mediated protection from viruses and mobile genetic elements. Adaptation is dependent on the Cas1 and Cas2 proteins along with varying accessory proteins. Here we analyse the process in Sulfolobus solfataricus, showing that while Cas1 and Cas2 catalyze spacer integration in vitro, host factors are required for specificity. Specific integration also requires at least 400 bp of the leader sequence, and is dependent on the presence of hydrolysable ATP, suggestive of an active process that may involve DNA remodelling. Specific spacer integration is associated with processing of prespacer 3' ends in a PAM-dependent manner. This is reflected in PAM-dependent processing of prespacer 3' ends in vitro in the presence of cell lysate or the Cas4 nuclease, in a reaction consistent with PAM-directed binding and protection of prespacer DNA. These results highlight the diverse interplay between CRISPR-Cas elements and host proteins across CRISPR types.
Collapse
Affiliation(s)
- Clare Rollie
- Biomedical Sciences Research Complex, School of Biology, University of St Andrews, North Haugh, St Andrews, Fife KY16 9ST, UK
| | - Shirley Graham
- Biomedical Sciences Research Complex, School of Biology, University of St Andrews, North Haugh, St Andrews, Fife KY16 9ST, UK
| | - Christophe Rouillon
- Biomedical Sciences Research Complex, School of Biology, University of St Andrews, North Haugh, St Andrews, Fife KY16 9ST, UK
| | - Malcolm F White
- Biomedical Sciences Research Complex, School of Biology, University of St Andrews, North Haugh, St Andrews, Fife KY16 9ST, UK
| |
Collapse
|
96
|
Abstract
The adaptation phase of CRISPR-Cas immunity depends on the precise integration of short segments of foreign DNA (spacers) into a specific genomic location within the CRISPR locus by the Cas1-Cas2 integration complex. Although off-target spacer integration outside of canonical CRISPR arrays has been described in vitro, no evidence of non-specific integration activity has been found in vivo. Here, we show that non-canonical off-target integrations can occur within bacterial chromosomes at locations that resemble the native CRISPR locus by characterizing hundreds of off-target integration locations within Escherichia coli. Considering whether such promiscuous Cas1-Cas2 activity could have an evolutionary role through the genesis of neo-CRISPR loci, we combed existing CRISPR databases and available genomes for evidence of off-target integration activity. This search uncovered several putative instances of naturally occurring off-target spacer integration events within the genomes of Yersinia pestis and Sulfolobus islandicus. These results are important in understanding alternative routes to CRISPR array genesis and evolution, as well as in the use of spacer acquisition in technological applications.
Collapse
|
97
|
Spontaneous CRISPR loci generation in vivo by non-canonical spacer integration. Nat Microbiol 2018; 3:310-318. [PMID: 29379209 DOI: 10.1038/s41564-017-0097-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Accepted: 12/11/2017] [Indexed: 01/09/2023]
Abstract
The adaptation phase of CRISPR-Cas immunity depends on the precise integration of short segments of foreign DNA (spacers) into a specific genomic location within the CRISPR locus by the Cas1-Cas2 integration complex. Although off-target spacer integration outside of canonical CRISPR arrays has been described in vitro, no evidence of non-specific integration activity has been found in vivo. Here, we show that non-canonical off-target integrations can occur within bacterial chromosomes at locations that resemble the native CRISPR locus by characterizing hundreds of off-target integration locations within Escherichia coli. Considering whether such promiscuous Cas1-Cas2 activity could have an evolutionary role through the genesis of neo-CRISPR loci, we combed existing CRISPR databases and available genomes for evidence of off-target integration activity. This search uncovered several putative instances of naturally occurring off-target spacer integration events within the genomes of Yersinia pestis and Sulfolobus islandicus. These results are important in understanding alternative routes to CRISPR array genesis and evolution, as well as in the use of spacer acquisition in technological applications.
Collapse
|
98
|
Sheth RU, Yim SS, Wu FL, Wang HH. Multiplex recording of cellular events over time on CRISPR biological tape. Science 2017; 358:1457-1461. [PMID: 29170279 PMCID: PMC7869111 DOI: 10.1126/science.aao0958] [Citation(s) in RCA: 127] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Revised: 09/29/2017] [Accepted: 11/13/2017] [Indexed: 12/12/2022]
Abstract
Although dynamics underlie many biological processes, our ability to robustly and accurately profile time-varying biological signals and regulatory programs remains limited. Here we describe a framework for storing temporal biological information directly in the genomes of a cell population. We developed a "biological tape recorder" in which biological signals trigger intracellular DNA production that is then recorded by the CRISPR-Cas adaptation system. This approach enables stable recording over multiple days and accurate reconstruction of temporal and lineage information by sequencing CRISPR arrays. We further demonstrate a multiplexing strategy to simultaneously record the temporal availability of three metabolites (copper, trehalose, and fucose) in the environment of a cell population over time. This work enables the temporal measurement of dynamic cellular states and environmental changes and suggests new applications for chronicling biological events on a large scale.
Collapse
Affiliation(s)
- Ravi U. Sheth
- Department of Systems Biology, Columbia University, New York, NY, USA
- Integrated Program in Cellular, Molecular, and Biomedical Studies, Columbia University, New York, NY, USA
| | - Sung Sun Yim
- Department of Systems Biology, Columbia University, New York, NY, USA
| | - Felix L. Wu
- Department of Systems Biology, Columbia University, New York, NY, USA
- Integrated Program in Cellular, Molecular, and Biomedical Studies, Columbia University, New York, NY, USA
| | - Harris H. Wang
- Department of Systems Biology, Columbia University, New York, NY, USA
- Department of Pathology and Cell Biology, Columbia University, New York, NY, USA
| |
Collapse
|
99
|
Wu W, Duan Y, Ma G, Zhou G, Park-Windhol C, D'Amore PA, Lei H. AAV-CRISPR/Cas9-Mediated Depletion of VEGFR2 Blocks Angiogenesis In Vitro. Invest Ophthalmol Vis Sci 2017; 58:6082-6090. [PMID: 29204648 PMCID: PMC5714046 DOI: 10.1167/iovs.17-21902] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Purpose Pathologic angiogenesis is a component of many diseases, including neovascular age-related macular degeneration, proliferation diabetic retinopathy, as well as tumor growth and metastasis. The purpose of this project was to examine whether the system of adeno-associated viral (AAV)–mediated CRISPR (clustered regularly interspaced short palindromic repeats)–associated endonuclease (Cas)9 can be used to deplete expression of VEGF receptor 2 (VEGFR2) in human vascular endothelial cells in vitro and thus suppress its downstream signaling events. Methods The dual AAV system of CRISPR/Cas9 from Streptococcus pyogenes (AAV-SpGuide and -SpCas9) was adapted to edit genomic VEGFR2 in primary human retinal microvascular endothelial cells (HRECs). In this system, the endothelial-specific promoter for intercellular adhesion molecule 2 (ICAM2) was cloned into the dual AAV vectors of SpGuide and SpCas9 for driving expression of green fluorescence protein (GFP) and SpCas9, respectively. These two AAV vectors were applied to production of recombinant AAV serotype 5 (rAAV5), which were used to infect HRECs for depletion of VEGFR2. Protein expression was determined by Western blot; and cell proliferation, migration, as well as tube formation were examined. Results AAV5 effectively infected vascular endothelial cells (ECs) and retinal pigment epithelial (RPE) cells; the ICAM2 promoter drove expression of GFP and SpCas9 in HRECs, but not in RPE cells. The results showed that the rAAV5-CRISPR/Cas9 depleted VEGFR2 by 80% and completely blocked VEGF-induced activation of Akt, and proliferation, migration as well as tube formation of HRECs. Conclusions AAV-CRISRP/Cas9–mediated depletion of VEGFR2 is a potential therapeutic strategy for pathologic angiogenesis.
Collapse
Affiliation(s)
- Wenyi Wu
- Schepens Eye Research Institute of Massachusetts Eye and Ear; Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts, United States.,Department of Ophthalmology, Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yajian Duan
- Schepens Eye Research Institute of Massachusetts Eye and Ear; Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts, United States.,Shanxi Eye Hospital, Taiyuan City, Shanxi Province, China
| | - Gaoen Ma
- Schepens Eye Research Institute of Massachusetts Eye and Ear; Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts, United States.,Department of Ophthalmology, The Third Affiliated Hospital of Xinxiang Medical University, Eye Hospital of Xinxiang Medical University, Xinxiang, Henan Province, China
| | - Guohong Zhou
- Schepens Eye Research Institute of Massachusetts Eye and Ear; Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts, United States.,Shanxi Eye Hospital, Taiyuan City, Shanxi Province, China
| | - Cindy Park-Windhol
- Schepens Eye Research Institute of Massachusetts Eye and Ear; Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts, United States
| | - Patricia A D'Amore
- Schepens Eye Research Institute of Massachusetts Eye and Ear; Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts, United States
| | - Hetian Lei
- Schepens Eye Research Institute of Massachusetts Eye and Ear; Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts, United States
| |
Collapse
|
100
|
Leon LM, Mendoza SD, Bondy-Denomy J. How bacteria control the CRISPR-Cas arsenal. Curr Opin Microbiol 2017; 42:87-95. [PMID: 29169146 DOI: 10.1016/j.mib.2017.11.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Revised: 10/30/2017] [Accepted: 11/03/2017] [Indexed: 02/07/2023]
Abstract
CRISPR-Cas systems are adaptive immune systems that protect their hosts from predation by bacteriophages (phages) and parasitism by other mobile genetic elements (MGEs). Given the potent nuclease activity of CRISPR effectors, these enzymes must be carefully regulated to minimize toxicity and maximize anti-phage immunity. While attention has been given to the transcriptional regulation of these systems (reviewed in [1]), less consideration has been given to the crucial post-translational processes that govern enzyme activation and inactivation. Here, we review recent findings that describe how Cas nucleases are controlled in diverse systems to provide a robust anti-viral response while limiting auto-immunity. We also draw comparisons to a distinct bacterial immune system, restriction-modification.
Collapse
Affiliation(s)
- Lina M Leon
- Department of Microbiology & Immunology, University of California, San Francisco, United States
| | - Senén D Mendoza
- Department of Microbiology & Immunology, University of California, San Francisco, United States
| | - Joseph Bondy-Denomy
- Department of Microbiology & Immunology, University of California, San Francisco, United States; Quantitative Biosciences Institute, University of California, San Francisco, United States.
| |
Collapse
|