51
|
Cooperative virulence via the collective action of secreted pathogen effectors. Nat Microbiol 2023; 8:640-650. [PMID: 36782026 DOI: 10.1038/s41564-023-01328-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 01/13/2023] [Indexed: 02/15/2023]
Abstract
Although virulence is typically attributed to single pathogenic strains, here we investigated whether effectors secreted by a population of non-virulent strains could function as public goods to enable the emergence of collective virulence. We disaggregated the 36 type III effectors of the phytopathogenic bacterium Pseudomonas syringae strain PtoDC3000 into a 'metaclone' of 36 coisogenic strains, each carrying a single effector in an effectorless background. Each coisogenic strain was individually unfit, but the metaclone was collectively as virulent as the wild-type strain on Arabidopsis thaliana, suggesting that effectors can drive the emergence of cooperation-based virulence through their public action. We show that independently evolved effector suits can equally drive this cooperative behaviour by transferring the effector alleles native to the strain PmaES4326 into the conspecific but divergent strain PtoDC3000. Finally, we transferred the disaggregated PtoDC3000 effector arsenal into Pseudomonas fluorescens and show that their cooperative action was sufficient to convert this rhizosphere-inhabiting beneficial bacterium into a phyllosphere pathogen. These results emphasize the importance of microbial community interactions and expand the ecological scale at which disease may be attributed.
Collapse
|
52
|
Wu Q, Cui Y, Jin X, Wang G, Yan L, Zhong C, Yu M, Li W, Wang Y, Wang L, Wang H, Dang C, Zhang X, Chen Y, Zhang P, Zhao X, Wu J, Fu D, Xia L, Nevo E, Vogel J, Huo N, Li D, Gu YQ, Jackson AO, Zhang Y, Liu Z. The CC-NB-LRR protein BSR1 from Brachypodium confers resistance to Barley stripe mosaic virus in gramineous plants by recognising TGB1 movement protein. THE NEW PHYTOLOGIST 2022; 236:2233-2248. [PMID: 36059081 DOI: 10.1111/nph.18457] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 08/21/2022] [Indexed: 06/15/2023]
Abstract
Although some nucleotide binding, leucine-rich repeat immune receptor (NLR) proteins conferring resistance to specific viruses have been identified in dicot plants, NLR proteins involved in viral resistance have not been described in monocots. We have used map-based cloning to isolate the CC-NB-LRR (CNL) Barley stripe mosaic virus (BSMV) resistance gene barley stripe resistance 1 (BSR1) from Brachypodium distachyon Bd3-1 inbred line. Stable BSR1 transgenic Brachypodium line Bd21-3, barley (Golden Promise) and wheat (Kenong 199) plants developed resistance against BSMV ND18 strain. Allelic variation analyses indicated that BSR1 is present in several Brachypodium accessions collected from countries in the Middle East. Protein domain swaps revealed that the intact LRR domain and the C-terminus of BSR1 are required for resistance. BSR1 interacts with the BSMV ND18 TGB1 protein in planta and shows temperature-sensitive antiviral resistance. The R390 and T392 residues of TGB1ND (ND18 strain) and the G196 and K197 residues within the BSR1 P-loop motif are key amino acids required for immune activation. BSR1 is the first cloned virus resistance gene encoding a typical CNL protein in monocots, highlighting the utility of the Brachypodium model for isolation and analysis of agronomically important genes for crop improvement.
Collapse
Affiliation(s)
- Qiuhong Wu
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Science, Beijing, 100101, China
| | - Yu Cui
- Institute of Crop Sciences, Chinese Academy of Agriculture Sciences, Beijing, 100081, China
| | - Xuejiao Jin
- State Key Laboratory of Subtropical Silviculture, College of Forestry and Biotechnology, Zhejiang A&F University, Lin'an, Hangzhou, 311300, China
| | - Guoxin Wang
- Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Lijie Yan
- State Key Laboratory of Agro-Biotechnology, China Agricultural University, Beijing, 100193, China
| | - Chenchen Zhong
- State Key Laboratory of Agro-Biotechnology, China Agricultural University, Beijing, 100193, China
| | - Meihua Yu
- State Key Laboratory of Agro-Biotechnology, China Agricultural University, Beijing, 100193, China
| | - Wenli Li
- State Key Laboratory of Agro-Biotechnology, China Agricultural University, Beijing, 100193, China
| | - Yong Wang
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture and Rural Affairs, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Ling Wang
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Hao Wang
- State Key Laboratory of Agro-Biotechnology, China Agricultural University, Beijing, 100193, China
| | - Chen Dang
- State Key Laboratory of Agro-Biotechnology, China Agricultural University, Beijing, 100193, China
| | - Xinyu Zhang
- State Key Laboratory of Agro-Biotechnology, China Agricultural University, Beijing, 100193, China
| | - Yongxing Chen
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Science, Beijing, 100101, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Panpan Zhang
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Science, Beijing, 100101, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiaofei Zhao
- State Key Laboratory of Agro-Biotechnology, China Agricultural University, Beijing, 100193, China
| | - Jiajie Wu
- College of Agronomy, Shandong Agriculture University, Taian, 271018, China
| | - Daolin Fu
- College of Agronomy, Shandong Agriculture University, Taian, 271018, China
| | - Lanqin Xia
- Institute of Crop Sciences, Chinese Academy of Agriculture Sciences, Beijing, 100081, China
| | - Eviatar Nevo
- Institute of Evolution, Haifa University, Haifa, 31905, Israel
| | - John Vogel
- Joint Genome Institute, DOE, Walnut Creek, CA, 94598, USA
| | - Naxin Huo
- USDA-ARS Western Regional Research Center, Albany, CA, 94710, USA
| | - Dawei Li
- State Key Laboratory of Agro-Biotechnology, China Agricultural University, Beijing, 100193, China
| | - Yong Q Gu
- USDA-ARS Western Regional Research Center, Albany, CA, 94710, USA
| | - Andrew O Jackson
- Department of Plant and Microbiology, University of California, Berkeley, CA, 94720, USA
| | - Yongliang Zhang
- State Key Laboratory of Agro-Biotechnology, China Agricultural University, Beijing, 100193, China
| | - Zhiyong Liu
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Science, Beijing, 100101, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
53
|
Pan-Genomics Reveals a New Variation Pattern of Secreted Proteins in Pyricularia oryzae. J Fungi (Basel) 2022; 8:jof8121238. [PMID: 36547571 PMCID: PMC9785059 DOI: 10.3390/jof8121238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 11/19/2022] [Accepted: 11/20/2022] [Indexed: 11/24/2022] Open
Abstract
(1) Background: Pyricularia oryzae, the causal agent of rice blast disease, is one of the major rice pathogens. The complex population structure of P. oryzae facilitates the rapid virulence variations, which make the blast disease a serious challenge for global food security. There is a large body of existing genomics research on P. oryzae, however the population structure at the pan-genome level is not clear, and the mechanism of genetic divergence and virulence variations of different sub-populations is also unknown. (2) Methods: Based on the genome data published in the NCBI, we constructed a pan-genome database of P. oryzae, which consisted of 156 strains (117 isolated from rice and 39 isolated from other hosts). (3) Results: The pan-genome contained a total of 24,100 genes (12,005 novel genes absent in the reference genome 70-15), including 16,911 (~70%) core genes (population frequency ≥95%) and 1378 (~5%) strain-specific genes (population frequency ≤5%). Gene presence-absence variation (PAV) based clustering analysis of the population structure of P. oryzae revealed four subgroups (three from rice and one from other hosts). Interestingly, the cloned avirulence genes and conventional secreted proteins (SPs, with signal peptides) were enriched in the high-frequency regions and significantly associated with transposable elements (TEs), while the unconventional SPs (without signal peptides) were enriched in the low-frequency regions and not associated significantly with TEs. This pan-genome will expand the breadth and depth of the rice blast fungus reference genome, and also serve as a new blueprint for scientists to further study the pathogenic mechanism and virulence variation of the rice blast fungus.
Collapse
|
54
|
van Grinsven IL, Martin EC, Petrescu AJ, Kormelink R. Tsw - A case study on structure-function puzzles in plant NLRs with unusually large LRR domains. FRONTIERS IN PLANT SCIENCE 2022; 13:983693. [PMID: 36275604 PMCID: PMC9585916 DOI: 10.3389/fpls.2022.983693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 09/16/2022] [Indexed: 06/16/2023]
Abstract
Plant disease immunity heavily depends on the recognition of plant pathogens and the subsequent activation of downstream immune pathways. Nod-like receptors are often crucial in this process. Tsw, a Nod-like resistance gene from Capsicum chinense conferring resistance against Tomato spotted wilt virus (TSWV), belongs to the small group of Nod-like receptors with unusually large LRR domains. While typical protein domain dimensions rarely exceed 500 amino acids due to stability constraints, the LRR of these unusual NLRs range from 1,000 to 3,400 amino acids and contain over 30 LRR repeats. The presence of such a multitude of repeats in one protein is also difficult to explain considering protein functionality. Interactions between the LRR and the other NLR domains (CC, TIR, NBS) take place within the first 10 LRR repeats, leaving the function of largest part of the LRR structure unexplained. Herein we discuss the structural modeling limits and various aspects of the structure-function relation conundrums of large LRRs focusing on Tsw, and raise questions regarding its recognition of its effector NSs and the possible inhibition on other domains as seen in other NLRs.
Collapse
Affiliation(s)
- Irene Louise van Grinsven
- Laboratory of Virology, Department of Plant Sciences, Wageningen University, Wageningen, Netherlands
| | - Eliza C. Martin
- Department of Bioinformatics and Structural Biochemistry, Institute of Biochemistry of the Romanian Academy, Bucharest, Romania
| | - Andrei-José Petrescu
- Department of Bioinformatics and Structural Biochemistry, Institute of Biochemistry of the Romanian Academy, Bucharest, Romania
| | - Richard Kormelink
- Laboratory of Virology, Department of Plant Sciences, Wageningen University, Wageningen, Netherlands
| |
Collapse
|
55
|
Bernoux M, Zetzsche H, Stuttmann J. Connecting the dots between cell surface- and intracellular-triggered immune pathways in plants. CURRENT OPINION IN PLANT BIOLOGY 2022; 69:102276. [PMID: 36001920 DOI: 10.1016/j.pbi.2022.102276] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 06/16/2022] [Accepted: 07/06/2022] [Indexed: 06/15/2023]
Abstract
Plants can detect microbial molecules via surface-localized pattern-recognition receptors (PRRs) and intracellular immune receptors from the nucleotide-binding, leucine-rich repeat receptor (NLR) family. The corresponding pattern-triggered (PTI) and effector-triggered (ETI) immunity were long considered separate pathways, although they converge on largely similar cellular responses, such as calcium influx and overlapping gene reprogramming. A number of studies recently uncovered genetic and molecular interconnections between PTI and ETI, highlighting the complexity of the plant immune network. Notably, PRR- and NLR-mediated immune responses require and potentiate each other to reach an optimal immune output. How PTI and ETI connect to confer robust immunity in different plant species, including crops will be an exciting future research area.
Collapse
Affiliation(s)
- Maud Bernoux
- Laboratoire des Interactions Plantes-Microbes-Environnement (LIPME), INRAE, CNRS, Université de Toulouse, F-31326 Castanet-Tolosan, France
| | - Holger Zetzsche
- Institute for Resistance Research and Stress Tolerance, Federal Research Centre for Cultivated Plants, Julius Kühn-Institute (JKI), Quedlinburg, Germany
| | - Johannes Stuttmann
- Institute for Biosafety in Plant Biotechnology, Federal Research Centre for Cultivated Plants, Julius Kühn-Institute (JKI), Quedlinburg, Germany.
| |
Collapse
|
56
|
Breit-McNally C, Laflamme B, Singh RA, Desveaux D, Guttman DS. ZAR1: Guardian of plant kinases. FRONTIERS IN PLANT SCIENCE 2022; 13:981684. [PMID: 36212348 PMCID: PMC9539561 DOI: 10.3389/fpls.2022.981684] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 09/07/2022] [Indexed: 05/25/2023]
Abstract
A key facet of innate immunity in plants entails the recognition of pathogen "effector" virulence proteins by host Nucleotide-Binding Leucine-Rich Repeat Receptors (NLRs). Among characterized NLRs, the broadly conserved ZAR1 NLR is particularly remarkable due to its capacity to recognize at least six distinct families of effectors from at least two bacterial genera. This expanded recognition spectrum is conferred through interactions between ZAR1 and a dynamic network of two families of Receptor-Like Cytoplasmic Kinases (RLCKs): ZED1-Related Kinases (ZRKs) and PBS1-Like Kinases (PBLs). In this review, we survey the history of functional studies on ZAR1, with an emphasis on how the ZAR1-RLCK network functions to trap diverse effectors. We discuss 1) the dynamics of the ZAR1-associated RLCK network; 2) the specificity between ZRKs and PBLs; and 3) the specificity between effectors and the RLCK network. We posit that the shared protein fold of kinases and the switch-like properties of their interactions make them ideal effector sensors, enabling ZAR1 to act as a broad spectrum guardian of host kinases.
Collapse
Affiliation(s)
- Clare Breit-McNally
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON, Canada
| | - Bradley Laflamme
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON, Canada
| | - Racquel A. Singh
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON, Canada
| | - Darrell Desveaux
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON, Canada
- Centre for the Analysis of Genome Evolution & Function, University of Toronto, Toronto, ON, Canada
| | - David S. Guttman
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON, Canada
- Centre for the Analysis of Genome Evolution & Function, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
57
|
Ji L, Yang X, Qi F. Distinct Responses to Pathogenic and Symbionic Microorganisms: The Role of Plant Immunity. Int J Mol Sci 2022; 23:ijms231810427. [PMID: 36142339 PMCID: PMC9499406 DOI: 10.3390/ijms231810427] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 09/06/2022] [Accepted: 09/07/2022] [Indexed: 12/03/2022] Open
Abstract
Plants must balance both beneficial (symbiotic) and pathogenic challenges from microorganisms, the former benefitting the plant and agriculture and the latter causing disease and economic harm. Plant innate immunity describes a highly conserved set of defense mechanisms that play pivotal roles in sensing immunogenic signals associated with both symbiotic and pathogenic microbes and subsequent downstream activation of signaling effector networks that protect the plant. An intriguing question is how the innate immune system distinguishes “friends” from “foes”. Here, we summarize recent advances in our understanding of the role and spectrum of innate immunity in recognizing and responding to different microbes. In addition, we also review some of the strategies used by microbes to manipulate plant signaling pathways and thus evade immunity, with emphasis on the use of effector proteins and micro-RNAs (miRNAs). Furthermore, we discuss potential questions that need addressing to advance the field of plant–microbe interactions.
Collapse
|
58
|
Lin X, Olave-Achury A, Heal R, Pais M, Witek K, Ahn HK, Zhao H, Bhanvadia S, Karki HS, Song T, Wu CH, Adachi H, Kamoun S, Vleeshouwers VGAA, Jones JDG. A potato late blight resistance gene protects against multiple Phytophthora species by recognizing a broadly conserved RXLR-WY effector. MOLECULAR PLANT 2022; 15:1457-1469. [PMID: 35915586 DOI: 10.1016/j.molp.2022.07.012] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 06/15/2022] [Accepted: 07/20/2022] [Indexed: 06/15/2023]
Abstract
Species of the genus Phytophthora, the plant killer, cause disease and reduce yields in many crop plants. Although many Resistance to Phytophthora infestans (Rpi) genes effective against potato late blight have been cloned, few have been cloned against other Phytophthora species. Most Rpi genes encode nucleotide-binding domain, leucine-rich repeat-containing (NLR) immune receptor proteins that recognize RXLR (Arg-X-Leu-Arg) effectors. However, whether NLR proteins can recognize RXLR effectors from multiple Phytophthora species has rarely been investigated. Here, we identified a new RXLR-WY effector AVRamr3 from P. infestans that is recognized by Rpi-amr3 from a wild Solanaceae species Solanum americanum. Rpi-amr3 associates with AVRamr3 in planta. AVRamr3 is broadly conserved in many different Phytophthora species, and the recognition of AVRamr3 homologs by Rpi-amr3 activates resistance against multiple Phytophthora pathogens, including the tobacco black shank disease and cacao black pod disease pathogens P. parasitica and P. palmivora. Rpi-amr3 is thus the first characterized resistance gene that acts against P. parasitica or P. palmivora. These findings suggest a novel path to redeploy known R genes against different important plant pathogens.
Collapse
Affiliation(s)
- Xiao Lin
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, NR4 7UH Norwich, UK
| | - Andrea Olave-Achury
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, NR4 7UH Norwich, UK
| | - Robert Heal
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, NR4 7UH Norwich, UK
| | - Marina Pais
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, NR4 7UH Norwich, UK
| | - Kamil Witek
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, NR4 7UH Norwich, UK
| | - Hee-Kyung Ahn
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, NR4 7UH Norwich, UK
| | - He Zhao
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, NR4 7UH Norwich, UK
| | - Shivani Bhanvadia
- Wageningen UR Plant Breeding, Wageningen University and Research, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| | - Hari S Karki
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, NR4 7UH Norwich, UK
| | - Tianqiao Song
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, NR4 7UH Norwich, UK
| | - Chih-Hang Wu
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, NR4 7UH Norwich, UK
| | - Hiroaki Adachi
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, NR4 7UH Norwich, UK
| | - Sophien Kamoun
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, NR4 7UH Norwich, UK
| | - Vivianne G A A Vleeshouwers
- Wageningen UR Plant Breeding, Wageningen University and Research, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| | - Jonathan D G Jones
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, NR4 7UH Norwich, UK.
| |
Collapse
|
59
|
Dubrow ZE, Carpenter SCD, Carter ME, Grinage A, Gris C, Lauber E, Butchachas J, Jacobs JM, Smart CD, Tancos MA, Noël LD, Bogdanove AJ. Cruciferous Weed Isolates of Xanthomonas campestris Yield Insight into Pathovar Genomic Relationships and Genetic Determinants of Host and Tissue Specificity. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2022; 35:791-802. [PMID: 35536128 DOI: 10.1094/mpmi-01-22-0024-r] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Pathovars of Xanthomonas campestris cause distinct diseases on different brassicaceous hosts. The genomic relationships among pathovars as well as the genetic determinants of host range and tissue specificity remain poorly understood despite decades of research. Here, leveraging advances in multiplexed long-read technology, we fully sequenced the genomes of a collection of X. campestris strains isolated from cruciferous crops and weeds in New York and California as well as strains from global collections, to investigate pathovar relationships and candidate genes for host- and tissue-specificity. Pathogenicity assays and genomic comparisons across this collection and publicly available X. campestris genomes revealed a correlation between pathovar and genomic relatedness and provide support for X. campestris pv. barbareae, the validity of which had been questioned. Linking strain host range with type III effector repertoires identified AvrAC (also 'XopAC') as a candidate host-range determinant, preventing infection of Matthiola incana, and this was confirmed experimentally. Furthermore, the presence of a copy of the cellobiosidase gene cbsA with coding sequence for a signal peptide was found to correlate with the ability to infect vascular tissues, in agreement with a previous study of diverse Xanthomonas species; however, heterologous expression in strains lacking the gene gave mixed results, indicating that factors in addition to cbsA influence tissue specificity of X. campestris pathovars. [Formula: see text] Copyright © 2022 The Author(s). This is an open access article distributed under the CC BY 4.0 International license.
Collapse
Affiliation(s)
- Zoë E Dubrow
- Plant Pathology and Plant-Microbe Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, NY, U.S.A
| | - Sara C D Carpenter
- Plant Pathology and Plant-Microbe Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, NY, U.S.A
| | - Morgan E Carter
- Plant Pathology and Plant-Microbe Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, NY, U.S.A
- School of Plant Sciences, University of Arizona, Tucson, AZ, U.S.A
| | - Ayress Grinage
- Plant Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, NY, U.S.A
| | - Carine Gris
- LIPME, Université de Toulouse, INRAE, CNRS, Université Paul Sabatier, Castanet-Tolosan, France
| | - Emmanuelle Lauber
- LIPME, Université de Toulouse, INRAE, CNRS, Université Paul Sabatier, Castanet-Tolosan, France
| | - Jules Butchachas
- Department of Plant Pathology, The Ohio State University, Columbus, OH, U.S.A
| | - Jonathan M Jacobs
- Department of Plant Pathology, The Ohio State University, Columbus, OH, U.S.A
| | - Christine D Smart
- Plant Pathology and Plant-Microbe Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, NY, U.S.A
| | - Matthew A Tancos
- Foreign Disease-Weed Science Research Unit, United States Department of Agriculture-Agricultural Research Service, Frederick, MD, U.S.A
| | - Laurent D Noël
- LIPME, Université de Toulouse, INRAE, CNRS, Université Paul Sabatier, Castanet-Tolosan, France
| | - Adam J Bogdanove
- Plant Pathology and Plant-Microbe Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, NY, U.S.A
| |
Collapse
|
60
|
Bundalovic-Torma C, Lonjon F, Desveaux D, Guttman DS. Diversity, Evolution, and Function of Pseudomonas syringae Effectoromes. ANNUAL REVIEW OF PHYTOPATHOLOGY 2022; 60:211-236. [PMID: 35537470 DOI: 10.1146/annurev-phyto-021621-121935] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Pseudomonas syringae is an evolutionarily diverse bacterial species complex and a preeminent model for the study of plant-pathogen interactions due in part to its remarkably broad host range. A critical feature of P. syringae virulence is the employment of suites of type III secreted effector (T3SE) proteins, which vary widely in composition and function. These effectors act on a variety of plant intracellular targets to promote pathogenesis but can also be avirulence factors when detected by host immune complexes. In this review, we survey the phylogenetic diversity (PD) of the P. syringae effectorome, comprising 70 distinct T3SE families identified to date, and highlight how avoidance of host immune detection has shaped effectorome diversity through functional redundancy, diversification, and horizontal transfer. We present emerging avenues for research and novel insights that can be gained via future investigations of plant-pathogen interactions through the fusion of large-scale interaction screens and phylogenomic approaches.
Collapse
Affiliation(s)
| | - Fabien Lonjon
- Department of Cell & Systems Biology, University of Toronto, Toronto, Ontario, Canada; ,
| | - Darrell Desveaux
- Department of Cell & Systems Biology, University of Toronto, Toronto, Ontario, Canada; ,
- Centre for the Analysis of Genome Evolution & Function, University of Toronto, Toronto, Ontario, Canada
| | - David S Guttman
- Department of Cell & Systems Biology, University of Toronto, Toronto, Ontario, Canada; ,
- Centre for the Analysis of Genome Evolution & Function, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
61
|
Michalopoulou VA, Mermigka G, Kotsaridis K, Mentzelopoulou A, Celie PHN, Moschou PN, Jones JDG, Sarris PF. The host exocyst complex is targeted by a conserved bacterial type-III effector that promotes virulence. THE PLANT CELL 2022; 34:3400-3424. [PMID: 35640532 PMCID: PMC9421483 DOI: 10.1093/plcell/koac162] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 05/23/2022] [Indexed: 05/30/2023]
Abstract
For most Gram-negative bacteria, pathogenicity largely depends on the type-III secretion system that delivers virulence effectors into eukaryotic host cells. The subcellular targets for the majority of these effectors remain unknown. Xanthomonas campestris, the causal agent of black rot disease of crucifers such as Brassica spp., radish, and turnip, delivers XopP, a highly conserved core-effector protein produced by X. campestris, which is essential for virulence. Here, we show that XopP inhibits the function of the host-plant exocyst complex by direct targeting of Exo70B, a subunit of the exocyst complex, which plays a significant role in plant immunity. XopP interferes with exocyst-dependent exocytosis and can do this without activating a plant NOD-like receptor that guards Exo70B in Arabidopsis. In this way, Xanthomonas efficiently inhibits the host's pathogen-associated molecular pattern (PAMP)-triggered immunity by blocking exocytosis of pathogenesis-related protein-1A, callose deposition, and localization of the FLAGELLIN SENSITIVE2 (FLS2) immune receptor to the plasma membrane, thus promoting successful infection. Inhibition of exocyst function without activating the related defenses represents an effective virulence strategy, indicating the ability of pathogens to adapt to host defenses by avoiding host immunity responses.
Collapse
Affiliation(s)
- Vassiliki A Michalopoulou
- Department of Biology, University of Crete, Heraklion, Crete 714 09, Greece
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Heraklion, Crete 70013, Greece
| | - Glykeria Mermigka
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Heraklion, Crete 70013, Greece
| | - Konstantinos Kotsaridis
- Department of Biology, University of Crete, Heraklion, Crete 714 09, Greece
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Heraklion, Crete 70013, Greece
| | | | - Patrick H N Celie
- Division of Biochemistry, the Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Panagiotis N Moschou
- Department of Biology, University of Crete, Heraklion, Crete 714 09, Greece
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Heraklion, Crete 70013, Greece
- Department of Plant Biology, Swedish University of Agricultural Sciences, Uppsala BioCenter, Linnean Center for Plant Biology, Uppsala S-75007, Sweden
| | | | - Panagiotis F Sarris
- Department of Biology, University of Crete, Heraklion, Crete 714 09, Greece
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Heraklion, Crete 70013, Greece
- Biosciences, University of Exeter, Exeter, UK
| |
Collapse
|
62
|
Zheng X, Zhou Z, Gong Z, Hu M, Ahn YJ, Zhang X, Zhao Y, Gong G, Zhang J, Zuo J, Han GZ, Hoon SK, Zhou JM. Two plant NLR proteins confer strain-specific resistance conditioned by an effector from Pseudomonas syringae pv. actinidiae. J Genet Genomics 2022; 49:823-832. [PMID: 35760352 DOI: 10.1016/j.jgg.2022.06.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 06/06/2022] [Accepted: 06/15/2022] [Indexed: 11/27/2022]
Abstract
Pseudomonas syringae pv. actinidiae (Psa) causes bacterial canker, a devastating disease threatening the Actinidia fruit industry. In a search for non-host resistance genes against Psa, we found that the nucleotide-binding leucine-rich repeat receptor (NLR) protein ZAR1 from both Arabidopsis and Nicotiana benthamiana (Nb) recognizes HopZ5 and triggers cell death. The recognition requires ZED1 in Arabidopsis and JIM2 in Nb plants, which are members of the ZRK pseudokinases and known components of the ZAR1 resistosome. Surprisingly, Arabidopsis ZAR1 and RPM1, another NLR known to recognize HopZ5, confer disease resistance to HopZ5 in a strain-specific manner. Thus, ZAR1, but not RPM1, is solely required for resistance to P. s. maculicola ES4326 (Psm) carrying hopZ5, whereas RPM1 is primarily required for resistance to P. s. tomato DC3000 (Pst) carrying hopZ5. Furthermore, the ZAR1-mediated resistance to Psm hopZ5 in Arabidopsis is insensitive to SOBER1, which encodes a deacetylase known to suppress the RPM1-mediated resistance to Pst hopZ5. In addition, hopZ5 enhances P. syringae virulence in the absence of ZAR1 or RPM1, and that SOBER1 abolishes such virulence function. Together the study suggests that ZAR1 may be used for improving Psa resistance in Actinidia and uncovers previously unknown complexity of effector-triggered immunity and effector-triggered virulence.
Collapse
Affiliation(s)
- Xiaojuan Zheng
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100101, P. R. China; CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Zhaoyang Zhou
- College of Horticulture, China Agricultural University, Beijing 100193, P. R. China
| | - Zhen Gong
- College of Life Sciences, Jiangsu Key Laboratory for Microbes and Functional Genomics, Nanjing Normal University, Nanjing, Jiangsu 210023, P. R. China
| | - Meijuan Hu
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100101, P. R. China; CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Ye Jin Ahn
- Department of Life Sciences, Pohang University of Science and Technology, Pohang 37673, Republic of Korea; School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology, Pohang 37673, Republic of Korea
| | - Xiaojuan Zhang
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100101, P. R. China; CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Yan Zhao
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100101, P. R. China; CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Guoshu Gong
- Plant Protection Department and Major Crop Disease Laboratory, College of Agronomy, Sichuan Agricultural University, Chengdu, Sichuan 611130, P. R. China
| | - Jian Zhang
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100101, P. R. China
| | - Jianru Zuo
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100101, P. R. China; CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing 100049, P. R. China; Hainan Yazhou Bay Seed Laboratory, Sanya 572025, P. R. China
| | - Guan-Zhu Han
- College of Life Sciences, Jiangsu Key Laboratory for Microbes and Functional Genomics, Nanjing Normal University, Nanjing, Jiangsu 210023, P. R. China
| | - Sohn Kee Hoon
- Department of Life Sciences, Pohang University of Science and Technology, Pohang 37673, Republic of Korea; School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology, Pohang 37673, Republic of Korea
| | - Jian-Min Zhou
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100101, P. R. China; CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing 100049, P. R. China; Hainan Yazhou Bay Seed Laboratory, Sanya 572025, P. R. China.
| |
Collapse
|
63
|
Zhao Y, Zhu X, Chen X, Zhou JM. From plant immunity to crop disease resistance. J Genet Genomics 2022; 49:693-703. [PMID: 35728759 DOI: 10.1016/j.jgg.2022.06.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 06/07/2022] [Accepted: 06/08/2022] [Indexed: 11/28/2022]
Abstract
Plant diseases caused by diverse pathogens lead to serious reduction in crop yield and threaten food security worldwide. Genetic improvement of plant immunity is considered as the most effective and sustainable approach to control crop diseases. In the last decade, our understanding of plant immunity at both molecular and genomic levels has improved greatly. Combined with advances in biotechnologies, particularly CRISPR/Cas9-based genome editing, we can now rapidly identify new resistance genes and engineer disease resistance crop plants like never before. In this review, we summarize the current knowledge of plant immunity and outline existing and new strategies for disease resistance improvement in crop plants. We also discuss existing challenges in this field and suggest directions for future studies.
Collapse
Affiliation(s)
- Yan Zhao
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Xiaobo Zhu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University at Wenjiang, Chengdu Sichuan 611130, China
| | - Xuewei Chen
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University at Wenjiang, Chengdu Sichuan 611130, China.
| | - Jian-Min Zhou
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing 100049, China; Hainan Yazhou Bay Seed Laboratory, Sanya, Hainai 572025, China.
| |
Collapse
|
64
|
Kashihara S, Nishimura T, Noutoshi Y, Yamamoto M, Toyoda K, Ichinose Y, Matsui H. HopAZ1, a type III effector of Pseudomonas amygdali pv. tabaci, induces a hypersensitive response in tobacco wildfire-resistant Nicotiana tabacum 'N509'. MOLECULAR PLANT PATHOLOGY 2022; 23:885-894. [PMID: 35233886 PMCID: PMC9104263 DOI: 10.1111/mpp.13198] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 01/31/2022] [Accepted: 02/07/2022] [Indexed: 05/27/2023]
Abstract
Pseudomonas amygdali pv. tabaci (formerly Pseudomonas syringae pv. tabaci; Pta) is a gram-negative bacterium that causes bacterial wildfire disease in Nicotiana tabacum. The pathogen establishes infections by using a type III secretion system to inject type III effector proteins (T3Es) into cells, thereby interfering with the host__s immune system. To counteract the effectors, plants have evolved disease-resistance genes and mechanisms to induce strong resistance on effector recognition. By screening a series of Pta T3E-deficient mutants, we have identified HopAZ1 as the T3E that induces disease resistance in N. tabacum 'N509'. Inoculation with the Pta ∆hopAZ1 mutant did not induce resistance to Pta in N509. We also found that the Pta ∆hopAZ1 mutant did not induce a hypersensitive response and promoted severe disease symptoms in N509. Furthermore, a C-terminal truncated HopAZ1 abolished HopAZ1-dependent cell death in N509. These results indicate that HopAZ1 is the avirulence factor that induces resistance to Pta by N509.
Collapse
Affiliation(s)
- Sachi Kashihara
- Graduate School of Environmental and Life ScienceOkayama UniversityOkayamaJapan
| | - Takafumi Nishimura
- Graduate School of Environmental and Life ScienceOkayama UniversityOkayamaJapan
| | - Yoshiteru Noutoshi
- Graduate School of Environmental and Life ScienceOkayama UniversityOkayamaJapan
| | - Mikihiro Yamamoto
- Graduate School of Environmental and Life ScienceOkayama UniversityOkayamaJapan
| | - Kazuhiro Toyoda
- Graduate School of Environmental and Life ScienceOkayama UniversityOkayamaJapan
| | - Yuki Ichinose
- Graduate School of Environmental and Life ScienceOkayama UniversityOkayamaJapan
| | - Hidenori Matsui
- Graduate School of Environmental and Life ScienceOkayama UniversityOkayamaJapan
| |
Collapse
|
65
|
Hemara LM, Jayaraman J, Sutherland PW, Montefiori M, Arshed S, Chatterjee A, Chen R, Andersen MT, Mesarich CH, van der Linden O, Yoon M, Schipper MM, Vanneste JL, Brendolise C, Templeton MD. Effector loss drives adaptation of Pseudomonas syringae pv. actinidiae biovar 3 to Actinidia arguta. PLoS Pathog 2022; 18:e1010542. [PMID: 35622878 PMCID: PMC9182610 DOI: 10.1371/journal.ppat.1010542] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 06/09/2022] [Accepted: 04/21/2022] [Indexed: 11/18/2022] Open
Abstract
A pandemic isolate of Pseudomonas syringae pv. actinidiae biovar 3 (Psa3) has devastated kiwifruit orchards growing cultivars of Actinidia chinensis. In contrast, A. arguta (kiwiberry) is not a host of Psa3. Resistance is mediated via effector-triggered immunity, as demonstrated by induction of the hypersensitive response in infected A. arguta leaves, observed by microscopy and quantified by ion-leakage assays. Isolates of Psa3 that cause disease in A. arguta have been isolated and analyzed, revealing a 51 kb deletion in the exchangeable effector locus (EEL). This natural EEL-mutant isolate and strains with synthetic knockouts of the EEL were more virulent in A. arguta plantlets than wild-type Psa3. Screening of a complete library of Psa3 effector knockout strains identified increased growth in planta for knockouts of four effectors–AvrRpm1a, HopF1c, HopZ5a, and the EEL effector HopAW1a –suggesting a resistance response in A. arguta. Hypersensitive response (HR) assays indicate that three of these effectors trigger a host species-specific HR. A Psa3 strain with all four effectors knocked out escaped host recognition, but a cumulative increase in bacterial pathogenicity and virulence was not observed. These avirulence effectors can be used in turn to identify the first cognate resistance genes in Actinidia for breeding durable resistance into future kiwifruit cultivars. Clonally propagated monoculture crop plants facilitate the emergence and spread of new diseases. Plant pathogens cause disease by the secretion of effectors that function by repressing the host defense response. While the last few decades have seen a huge increase in our understanding of the role effectors play in mediating plant-pathogen interactions, the combinations of effectors required for the establishment of plant disease and that account for host specificity are less well understood. Breeding genetic resistance is often used to protect plants from disease but it is frequently evaded by rapidly evolving pathogens. Pseudomonas syringae pv. actinidiae (Psa) which causes bacterial canker disease of kiwifruit has spread rapidly throughout the world’s kiwifruit orchards, particularly those growing cultivars of Actinidia chinensis. Other Actinidia species including A. arguta display strong resistance conferred by recognition of effectors delivered by Psa. We explore the depth and dynamics of Psa effector recognition by A. arguta and show that there is a trade-off between losses of effector recognition by A. arguta versus the retention of pathogenicity. Our findings should aid in the understanding of how to breed durable resistance into perennial plants challenged by swiftly evolving pathogens.
Collapse
Affiliation(s)
- Lauren M. Hemara
- The New Zealand Institute for Plant and Food Research Limited, Mt. Albert Research Centre, Auckland, New Zealand
- School of Biological Sciences, University of Auckland, Auckland, New Zealand
- Bioprotection Aoteoroa, New Zealand
| | - Jay Jayaraman
- The New Zealand Institute for Plant and Food Research Limited, Mt. Albert Research Centre, Auckland, New Zealand
- Bioprotection Aoteoroa, New Zealand
| | - Paul W. Sutherland
- The New Zealand Institute for Plant and Food Research Limited, Mt. Albert Research Centre, Auckland, New Zealand
| | - Mirco Montefiori
- The New Zealand Institute for Plant and Food Research Limited, Mt. Albert Research Centre, Auckland, New Zealand
| | - Saadiah Arshed
- The New Zealand Institute for Plant and Food Research Limited, Mt. Albert Research Centre, Auckland, New Zealand
| | - Abhishek Chatterjee
- The New Zealand Institute for Plant and Food Research Limited, Mt. Albert Research Centre, Auckland, New Zealand
| | - Ronan Chen
- The New Zealand Institute for Plant and Food Research Limited, Food Industry Science Centre, Palmerston North, New Zealand
| | - Mark T. Andersen
- The New Zealand Institute for Plant and Food Research Limited, Mt. Albert Research Centre, Auckland, New Zealand
| | - Carl H. Mesarich
- Bioprotection Aoteoroa, New Zealand
- School of Agriculture and Environment, Massey University, Palmerston North, New Zealand
| | - Otto van der Linden
- The New Zealand Institute for Plant and Food Research Limited, Mt. Albert Research Centre, Auckland, New Zealand
| | - Minsoo Yoon
- The New Zealand Institute for Plant and Food Research Limited, Mt. Albert Research Centre, Auckland, New Zealand
| | - Magan M. Schipper
- The New Zealand Institute for Plant and Food Research Limited, Ruakura Campus, Hamilton, New Zealand
| | - Joel L. Vanneste
- The New Zealand Institute for Plant and Food Research Limited, Ruakura Campus, Hamilton, New Zealand
| | - Cyril Brendolise
- The New Zealand Institute for Plant and Food Research Limited, Mt. Albert Research Centre, Auckland, New Zealand
| | - Matthew D. Templeton
- The New Zealand Institute for Plant and Food Research Limited, Mt. Albert Research Centre, Auckland, New Zealand
- School of Biological Sciences, University of Auckland, Auckland, New Zealand
- Bioprotection Aoteoroa, New Zealand
- * E-mail: ,
| |
Collapse
|
66
|
Metaeffector interactions modulate the type III effector-triggered immunity load of Pseudomonas syringae. PLoS Pathog 2022; 18:e1010541. [PMID: 35576228 PMCID: PMC9135338 DOI: 10.1371/journal.ppat.1010541] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 05/26/2022] [Accepted: 04/21/2022] [Indexed: 11/19/2022] Open
Abstract
The bacterial plant pathogen Pseudomonas syringae requires type III secreted effectors (T3SEs) for pathogenesis. However, a major facet of plant immunity entails the recognition of a subset of P. syringae’s T3SEs by intracellular host receptors in a process called Effector-Triggered Immunity (ETI). Prior work has shown that ETI-eliciting T3SEs are pervasive in the P. syringae species complex raising the question of how P. syringae mitigates its ETI load to become a successful pathogen. While pathogens can evade ETI by T3SE mutation, recombination, or loss, there is increasing evidence that effector-effector (a.k.a., metaeffector) interactions can suppress ETI. To study the ETI-suppression potential of P. syringae T3SE repertoires, we compared the ETI-elicitation profiles of two genetically divergent strains: P. syringae pv. tomato DC3000 (PtoDC3000) and P. syringae pv. maculicola ES4326 (PmaES4326), which are both virulent on Arabidopsis thaliana but harbour largely distinct effector repertoires. Of the 529 T3SE alleles screened on A. thaliana Col-0 from the P. syringae T3SE compendium (PsyTEC), 69 alleles from 21 T3SE families elicited ETI in at least one of the two strain backgrounds, while 50 elicited ETI in both backgrounds, resulting in 19 differential ETI responses including two novel ETI-eliciting families: AvrPto1 and HopT1. Although most of these differences were quantitative, three ETI responses were completely absent in one of the pathogenic backgrounds. We performed ETI suppression screens to test if metaeffector interactions contributed to these ETI differences, and found that HopQ1a suppressed AvrPto1m-mediated ETI, while HopG1c and HopF1g suppressed HopT1b-mediated ETI. Overall, these results show that P. syringae strains leverage metaeffector interactions and ETI suppression to overcome the ETI load associated with their native T3SE repertoires.
Collapse
|
67
|
Indirect recognition of pathogen effectors by NLRs. Essays Biochem 2022; 66:485-500. [PMID: 35535995 DOI: 10.1042/ebc20210097] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 04/18/2022] [Accepted: 04/19/2022] [Indexed: 12/11/2022]
Abstract
To perceive pathogen threats, plants utilize both plasma membrane-localized and intracellular receptors. Nucleotide-binding domain leucine-rich repeat containing (NLR) proteins are key receptors that can recognize pathogen-derived intracellularly delivered effectors and activate downstream defense. Exciting recent findings have propelled our understanding of the various recognition and activation mechanisms of plant NLRs. Some NLRs directly bind to effectors, but others can perceive effector-induced changes on targeted host proteins (guardees), or non-functional host protein mimics (decoys). Such guarding strategies are thought to afford the host more durable resistance to quick-evolving and diverse pathogens. Here, we review classic and recent examples of indirect effector recognition by NLRs and discuss strategies for the discovery and study of new NLR-decoy/guardee systems. We also provide a perspective on how executor NLRs and helper NLRs (hNLRs) provide recognition for a wider range of effectors through sensor NLRs and how this can be considered an expanded form of indirect recognition. Furthermore, we summarize recent structural findings on NLR activation and resistosome formation upon indirect recognition. Finally, we discuss existing and potential applications that harness NLR indirect recognition for plant disease resistance and crop resilience.
Collapse
|
68
|
Kim NH, Jacob P, Dangl JL. Con-Ca 2+ -tenating plant immune responses via calcium-permeable cation channels. THE NEW PHYTOLOGIST 2022; 234:813-818. [PMID: 35181918 PMCID: PMC9994437 DOI: 10.1111/nph.18044] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 02/06/2022] [Indexed: 05/24/2023]
Abstract
Calcium serves as a second messenger in a variety of developmental and physiological processes and has long been identified as important for plant immune responses. We discuss recent discoveries regarding plant immune-related calcium-permeable channels and how the two intertwined branches of the plant immune system are intricately linked to one another through calcium signalling. Cell surface immune receptors carefully tap the immense calcium gradient that exists between apoplast and cytoplasm in a short burst via tightly regulated plasma membrane (PM)-resident cation channels. Intracellular immune receptors form atypical calcium-permeable cation channels at the PM and mediate a prolonged calcium influx, overcoming the deleterious influence of pathogen effectors and enhancing plant immune responses.
Collapse
Affiliation(s)
- Nak Hyun Kim
- Department of Biology and Howard Hughes Medical InstituteUniversity of North Carolina at Chapel HillChapel HillNC27599USA
| | - Pierre Jacob
- Department of Biology and Howard Hughes Medical InstituteUniversity of North Carolina at Chapel HillChapel HillNC27599USA
| | - Jeffery L. Dangl
- Department of Biology and Howard Hughes Medical InstituteUniversity of North Carolina at Chapel HillChapel HillNC27599USA
| |
Collapse
|
69
|
Gong Z, Qi J, Hu M, Bi G, Zhou JM, Han GZ. The origin and evolution of a plant resistosome. THE PLANT CELL 2022; 34:1600-1620. [PMID: 35166827 PMCID: PMC9048963 DOI: 10.1093/plcell/koac053] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 02/08/2022] [Indexed: 05/25/2023]
Abstract
The nucleotide-binding, leucine-rich receptor (NLR) protein HOPZ-ACTIVATED RESISTANCE 1 (ZAR1), an immune receptor, interacts with HOPZ-ETI-DEFICIENT 1 (ZED1)-related kinases (ZRKs) and AVRPPHB SUSCEPTIBLE 1-like proteins to form a pentameric resistosome, triggering immune responses. Here, we show that ZAR1 emerged through gene duplication and that ZRKs were derived from the cell surface immune receptors wall-associated protein kinases (WAKs) through the loss of the extracellular domain before the split of eudicots and monocots during the Jurassic period. Many angiosperm ZAR1 orthologs, but not ZAR1 paralogs, are capable of oligomerization in the presence of AtZRKs and triggering cell death, suggesting that the functional ZAR1 resistosome might have originated during the early evolution of angiosperms. Surprisingly, inter-specific pairing of ZAR1 and AtZRKs sometimes results in the formation of a resistosome in the absence of pathogen stimulation, suggesting within-species compatibility between ZAR1 and ZRKs as a result of co-evolution. Numerous concerted losses of ZAR1 and ZRKs occurred in angiosperms, further supporting the ancient co-evolution between ZAR1 and ZRKs. Our findings provide insights into the origin of new plant immune surveillance networks.
Collapse
Affiliation(s)
- Zhen Gong
- College of Life Sciences, Jiangsu Key Laboratory for Microbes and Functional Genomics, Nanjing Normal University, Nanjing, Jiangsu 210023, China
| | - Jinfeng Qi
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
| | - Meijuan Hu
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
| | - Guozhi Bi
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
| | - Jian-Min Zhou
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Guan-Zhu Han
- College of Life Sciences, Jiangsu Key Laboratory for Microbes and Functional Genomics, Nanjing Normal University, Nanjing, Jiangsu 210023, China
| |
Collapse
|
70
|
Ngou BPM, Ding P, Jones JDG. Thirty years of resistance: Zig-zag through the plant immune system. THE PLANT CELL 2022; 34:1447-1478. [PMID: 35167697 PMCID: PMC9048904 DOI: 10.1093/plcell/koac041] [Citation(s) in RCA: 395] [Impact Index Per Article: 131.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 02/02/2022] [Indexed: 05/05/2023]
Abstract
Understanding the plant immune system is crucial for using genetics to protect crops from diseases. Plants resist pathogens via a two-tiered innate immune detection-and-response system. The first plant Resistance (R) gene was cloned in 1992 . Since then, many cell-surface pattern recognition receptors (PRRs) have been identified, and R genes that encode intracellular nucleotide-binding leucine-rich repeat receptors (NLRs) have been cloned. Here, we provide a list of characterized PRRs and NLRs. In addition to immune receptors, many components of immune signaling networks were discovered over the last 30 years. We review the signaling pathways, physiological responses, and molecular regulation of both PRR- and NLR-mediated immunity. Recent studies have reinforced the importance of interactions between the two immune systems. We provide an overview of interactions between PRR- and NLR-mediated immunity, highlighting challenges and perspectives for future research.
Collapse
Affiliation(s)
- Bruno Pok Man Ngou
- The Sainsbury Laboratory, University of East Anglia, Norwich NR4 7UH, UK
- RIKEN Center for Sustainable Resource Science, Yokohama, Japan
| | - Pingtao Ding
- The Sainsbury Laboratory, University of East Anglia, Norwich NR4 7UH, UK
- Institute of Biology Leiden, Leiden University, Leiden 2333 BE, The Netherlands
| | - Jonathan D G Jones
- The Sainsbury Laboratory, University of East Anglia, Norwich NR4 7UH, UK
| |
Collapse
|
71
|
Breit-McNally C, Desveaux D, Guttman DS. The Arabidopsis effector-triggered immunity landscape is conserved in oilseed crops. Sci Rep 2022; 12:6534. [PMID: 35444223 PMCID: PMC9021255 DOI: 10.1038/s41598-022-10410-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 04/07/2022] [Indexed: 11/15/2022] Open
Abstract
The bacterial phytopathogen Pseudomonas syringae causes disease on a wide array of plants, including the model plant Arabidopsis thaliana and its agronomically important relatives in the Brassicaceae family. To cause disease, P. syringae delivers effector proteins into plant cells through a type III secretion system. In response, plant nucleotide-binding leucine-rich repeat proteins recognize specific effectors and mount effector-triggered immunity (ETI). While ETI is pervasive across A. thaliana, with at least 19 families of P. syringae effectors recognized in this model species, the ETI landscapes of crop species have yet to be systematically studied. Here, we investigated the conservation of the A. thaliana ETI landscape in two closely related oilseed crops, Brassica napus (canola) and Camelina sativa (false flax). We show that the level of immune conservation is inversely related to the degree of evolutionary divergence from A. thaliana, with the more closely related C. sativa losing ETI responses to only one of the 19 P. syringae effectors tested, while the more distantly related B. napus loses ETI responses to four effectors. In contrast to the qualitative conservation of immune response, the quantitative rank order is not as well-maintained across the three species and diverges increasingly with evolutionary distance from A. thaliana. Overall, our results indicate that the A. thaliana ETI profile is qualitatively conserved in oilseed crops, but quantitatively distinct.
Collapse
Affiliation(s)
- Clare Breit-McNally
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON, Canada
| | - Darrell Desveaux
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON, Canada.
- Centre for the Analysis of Genome Evolution and Function, University of Toronto, Toronto, ON, Canada.
| | - David S Guttman
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON, Canada.
- Centre for the Analysis of Genome Evolution and Function, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
72
|
Ngou BPM, Jones JDG, Ding P. Plant immune networks. TRENDS IN PLANT SCIENCE 2022; 27:255-273. [PMID: 34548213 DOI: 10.1016/j.tplants.2021.08.012] [Citation(s) in RCA: 173] [Impact Index Per Article: 57.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Revised: 08/14/2021] [Accepted: 08/26/2021] [Indexed: 05/06/2023]
Abstract
Plants have both cell-surface and intracellular receptors to recognize diverse self- and non-self molecules. Cell-surface pattern recognition receptors (PRRs) recognize extracellular pathogen-/damage-derived molecules or apoplastic pathogen-derived effectors. Intracellular nucleotide-binding leucine-rich repeat proteins (NLRs) recognize pathogen effectors. Activation of both PRRs and NLRs elevates defense gene expression and accumulation of the phytohormone salicylic acid (SA), which results in SA-dependent transcriptional reprogramming. These receptors, together with their coreceptors, form networks to mediate downstream immune responses. In addition, cell-surface and intracellular immune systems are interdependent and function synergistically to provide robust resistance against pathogens. Here, we summarize the interactions between these immune systems and attempt to provide a holistic picture of plant immune networks. We highlight current challenges and discuss potential new research directions.
Collapse
Affiliation(s)
- Bruno Pok Man Ngou
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich NR4 7UH, UK.
| | - Jonathan D G Jones
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich NR4 7UH, UK.
| | - Pingtao Ding
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich NR4 7UH, UK; Institute of Biology Leiden, Leiden University, Sylviusweg 72, Leiden 2333, BE, The Netherlands.
| |
Collapse
|
73
|
Bundalovic-Torma C, Desveaux D, Guttman DS. RecPD: A Recombination-aware measure of phylogenetic diversity. PLoS Comput Biol 2022; 18:e1009899. [PMID: 35192600 PMCID: PMC8896707 DOI: 10.1371/journal.pcbi.1009899] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 03/04/2022] [Accepted: 02/07/2022] [Indexed: 12/22/2022] Open
Abstract
A critical step in studying biological features (e.g., genetic variants, gene families, metabolic capabilities, or taxa) is assessing their diversity and distribution among a sample of individuals. Accurate assessments of these patterns are essential for linking features to traits or outcomes of interest and understanding their functional impact. Consequently, it is of crucial importance that the measures employed for quantifying feature diversity can perform robustly under any evolutionary scenario. However, the standard measures used for quantifying and comparing the distribution of features, such as prevalence, phylogenetic diversity, and related approaches, either do not take into consideration evolutionary history, or assume strictly vertical patterns of inheritance. Consequently, these approaches cannot accurately assess diversity for features that have undergone recombination or horizontal transfer. To address this issue, we have devised RecPD, a novel recombination-aware phylogenetic-diversity statistic for measuring the distribution and diversity of features under all evolutionary scenarios. RecPD utilizes ancestral-state reconstruction to map the presence / absence of features onto ancestral nodes in a species tree, and then identifies potential recombination events in the evolutionary history of the feature. We also derive several related measures from RecPD that can be used to assess and quantify evolutionary dynamics and correlation of feature evolutionary histories. We used simulation studies to show that RecPD reliably reconstructs feature evolutionary histories under diverse recombination and loss scenarios. We then applied RecPD in two diverse real-world scenarios including a preliminary study type III effector protein families secreted by the plant pathogenic bacterium Pseudomonas syringae and growth phenotypes of the Pseudomonas genus and demonstrate that prevalence is an inadequate measure that obscures the potential impact of recombination. We believe RecPD will have broad utility for revealing and quantifying complex evolutionary processes for features at any biological level. Phylogenetic diversity is an important concept utilized in evolutionary ecology which has extensive applications in population genetics to help us understand how evolutionary processes have distributed genetic variation among individuals of a species, and how this impacts phenotypic diversification over time. However, existing approaches for studying phylogenetic diversity largely assume that the genetic features follow vertical inheritance, which is frequently violated in the case of microbial genomes due to horizontal transfer. To address this shortcoming, we present RecPD, a recombination-aware phylogenetic diversity measure, which incorporates ancestral state reconstruction to quantify the phylogenetic diversity of genetic features mapped onto a species phylogeny. Through simulation experiments we show that RecPD robustly reconstructs the evolutionary histories of features evolving under various scenarios of recombination and loss. When applied to a real-world example of type III secreted effector protein families from the plant pathogenic bacterium Pseudomonas syringae, RecPD reveals that horizontal transfer has played an important role in shaping the phylogenetic distributions of a substantial proportion of families across the P. syringae species complex. Furthermore, we demonstrate that the traditional measures of feature prevalence are unsuitable as a measure for comparing feature diversity. We also provide a R package implementation of RecPD for public use: https://github.com/cedatorma/recpd.
Collapse
Affiliation(s)
| | - Darrell Desveaux
- Department of Cell & Systems Biology, University of Toronto, Toronto, Ontario, Canada
- Centre for the Analysis of Genome Evolution & Function, University of Toronto, Toronto, Ontario, Canada
| | - David S. Guttman
- Department of Cell & Systems Biology, University of Toronto, Toronto, Ontario, Canada
- Centre for the Analysis of Genome Evolution & Function, University of Toronto, Toronto, Ontario, Canada
- * E-mail:
| |
Collapse
|
74
|
Baltrus DA, Feng Q, Kvitko BH. Genome Context Influences Evolutionary Flexibility of Nearly Identical Type III Effectors in Two Phytopathogenic Pseudomonads. Front Microbiol 2022; 13:826365. [PMID: 35250942 PMCID: PMC8895235 DOI: 10.3389/fmicb.2022.826365] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 01/19/2022] [Indexed: 12/02/2022] Open
Abstract
Integrative Conjugative Elements (ICEs) are replicons that can insert and excise from chromosomal locations in a site-specific manner, can conjugate across strains, and which often carry a variety of genes useful for bacterial growth and survival under specific conditions. Although ICEs have been identified and vetted within certain clades of the agricultural pathogen Pseudomonas syringae, the impact of ICE carriage and transfer across the entire P. syringae species complex remains underexplored. Here we identify and vet an ICE (PmaICE-DQ) from P. syringae pv. maculicola ES4326, a strain commonly used for laboratory virulence experiments, demonstrate that this element can excise and conjugate across strains, and highlight that this element contains loci encoding multiple type III effector proteins. Moreover, genome context suggests that another ICE (PmaICE-AOAB) is highly similar in comparison with and found immediately adjacent to PmaICE-DQ within the chromosome of strain ES4326, and also contains multiple type III effectors. Lastly, we present passage data from in planta experiments that suggests that genomic plasticity associated with ICEs may enable strains to more rapidly lose type III effectors that trigger R-gene mediated resistance in comparison to strains where nearly isogenic effectors are not present in active ICEs. Taken together, our study sheds light on a set of ICE elements from P. syringae pv. maculicola ES4326 and suggests how genomic context may lead to different evolutionary dynamics for shared virulence genes between strains.
Collapse
Affiliation(s)
- David A. Baltrus
- School of Plant Sciences, University of Arizona, Tucson, AZ, United States
- School of Animal and Comparative Biomedical Sciences, University of Arizona, Tucson, AZ, United States
- *Correspondence: David A. Baltrus,
| | - Qian Feng
- Institute of Plant Breeding, Genetics and Genomics, University of Georgia, Athens, GA, United States
| | - Brian H. Kvitko
- Department of Plant Pathology, University of Georgia, Athens, GA, United States
- Brian H. Kvitko,
| |
Collapse
|
75
|
Hartmann A, Berkowitz O, Whelan J, Narsai R. Cross-species transcriptomic analyses reveals common and opposite responses in Arabidopsis, rice and barley following oxidative stress and hormone treatment. BMC PLANT BIOLOGY 2022; 22:62. [PMID: 35120438 PMCID: PMC8815143 DOI: 10.1186/s12870-021-03406-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 12/14/2021] [Indexed: 05/27/2023]
Abstract
BACKGROUND For translational genomics, a roadmap is needed to know the molecular similarities or differences between species, such as model species and crop species. This knowledge is invaluable for the selection of target genes and pathways to alter downstream in response to the same stimuli. Here, the transcriptomic responses to six treatments including hormones (abscisic acid - ABA and salicylic acid - SA); treatments that cause oxidative stress (3-amino-1,2,4-triazole - 3AT, methyl viologen - MV); inhibit respiration (antimycin A - AA) or induce genetic damage (ultraviolet radiation -UV) were analysed and compared between Arabidopsis (Arabidopsis thaliana), barley (Hordeum vulgare) and rice (Oryza sativa). RESULTS Common and opposite responses were identified between species, with the number of differentially expressed genes (DEGs) varying greatly between treatments and species. At least 70% of DEGs overlapped with at least one other treatment within a species, indicating overlapping response networks. Remarkably, 15 to 34% of orthologous DEGs showed opposite responses between species, indicating diversity in responses, despite orthology. Orthologous DEGs with common responses to multiple treatments across the three species were correlated with experimental data showing the functional importance of these genes in biotic/abiotic stress responses. The mitochondrial dysfunction response was revealed to be highly conserved in all three species in terms of responsive genes and regulation via the mitochondrial dysfunction element. CONCLUSIONS The orthologous DEGs that showed a common response between species indicate conserved transcriptomic responses of these pathways between species. However, many genes, including prominent salt-stress responsive genes, were oppositely responsive in multiple-stresses, highlighting fundamental differences in the responses and regulation of these genes between species. This work provides a resource for translation of knowledge or functions between species.
Collapse
Affiliation(s)
- Andreas Hartmann
- Department of Animal, Plant and Soil Sciences, Australian Research Council Centre of Excellence in Plant Energy Biology, School of Life Sciences, La Trobe Institute for Agriculture and Food (LIAF), La Trobe University, 5 Ring Road Bundoora, Victoria, 3083, Australia
| | - Oliver Berkowitz
- Department of Animal, Plant and Soil Sciences, Australian Research Council Centre of Excellence in Plant Energy Biology, School of Life Sciences, La Trobe Institute for Agriculture and Food (LIAF), La Trobe University, 5 Ring Road Bundoora, Victoria, 3083, Australia
| | - James Whelan
- Department of Animal, Plant and Soil Sciences, Australian Research Council Centre of Excellence in Plant Energy Biology, School of Life Sciences, La Trobe Institute for Agriculture and Food (LIAF), La Trobe University, 5 Ring Road Bundoora, Victoria, 3083, Australia
| | - Reena Narsai
- Department of Animal, Plant and Soil Sciences, Australian Research Council Centre of Excellence in Plant Energy Biology, School of Life Sciences, La Trobe Institute for Agriculture and Food (LIAF), La Trobe University, 5 Ring Road Bundoora, Victoria, 3083, Australia.
| |
Collapse
|
76
|
Maruta N, Burdett H, Lim BYJ, Hu X, Desa S, Manik MK, Kobe B. Structural basis of NLR activation and innate immune signalling in plants. Immunogenetics 2022; 74:5-26. [PMID: 34981187 PMCID: PMC8813719 DOI: 10.1007/s00251-021-01242-5] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Accepted: 11/29/2021] [Indexed: 12/18/2022]
Abstract
Animals and plants have NLRs (nucleotide-binding leucine-rich repeat receptors) that recognize the presence of pathogens and initiate innate immune responses. In plants, there are three types of NLRs distinguished by their N-terminal domain: the CC (coiled-coil) domain NLRs, the TIR (Toll/interleukin-1 receptor) domain NLRs and the RPW8 (resistance to powdery mildew 8)-like coiled-coil domain NLRs. CC-NLRs (CNLs) and TIR-NLRs (TNLs) generally act as sensors of effectors secreted by pathogens, while RPW8-NLRs (RNLs) signal downstream of many sensor NLRs and are called helper NLRs. Recent studies have revealed three dimensional structures of a CNL (ZAR1) including its inactive, intermediate and active oligomeric state, as well as TNLs (RPP1 and ROQ1) in their active oligomeric states. Furthermore, accumulating evidence suggests that members of the family of lipase-like EDS1 (enhanced disease susceptibility 1) proteins, which are uniquely found in seed plants, play a key role in providing a link between sensor NLRs and helper NLRs during innate immune responses. Here, we summarize the implications of the plant NLR structures that provide insights into distinct mechanisms of action by the different sensor NLRs and discuss plant NLR-mediated innate immune signalling pathways involving the EDS1 family proteins and RNLs.
Collapse
Affiliation(s)
- Natsumi Maruta
- School of Chemistry and Molecular Biosciences, Institute for Molecular Bioscience and Australian Infectious Diseases Research Centre, University of Queensland, Brisbane, QLD, 4072, Australia.
| | - Hayden Burdett
- School of Chemistry and Molecular Biosciences, Institute for Molecular Bioscience and Australian Infectious Diseases Research Centre, University of Queensland, Brisbane, QLD, 4072, Australia
- Wellcome Centre for Cell Biology, University of Edinburgh, Michael Swann Building, Max Born Crescent, Edinburgh, UK
| | - Bryan Y J Lim
- School of Chemistry and Molecular Biosciences, Institute for Molecular Bioscience and Australian Infectious Diseases Research Centre, University of Queensland, Brisbane, QLD, 4072, Australia
| | - Xiahao Hu
- School of Chemistry and Molecular Biosciences, Institute for Molecular Bioscience and Australian Infectious Diseases Research Centre, University of Queensland, Brisbane, QLD, 4072, Australia
| | - Sneha Desa
- School of Chemistry and Molecular Biosciences, Institute for Molecular Bioscience and Australian Infectious Diseases Research Centre, University of Queensland, Brisbane, QLD, 4072, Australia
| | - Mohammad Kawsar Manik
- School of Chemistry and Molecular Biosciences, Institute for Molecular Bioscience and Australian Infectious Diseases Research Centre, University of Queensland, Brisbane, QLD, 4072, Australia
| | - Bostjan Kobe
- School of Chemistry and Molecular Biosciences, Institute for Molecular Bioscience and Australian Infectious Diseases Research Centre, University of Queensland, Brisbane, QLD, 4072, Australia.
| |
Collapse
|
77
|
Singh R, Kumar K, Bharadwaj C, Verma PK. Broadening the horizon of crop research: a decade of advancements in plant molecular genetics to divulge phenotype governing genes. PLANTA 2022; 255:46. [PMID: 35076815 DOI: 10.1007/s00425-022-03827-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 01/08/2022] [Indexed: 06/14/2023]
Abstract
Advancements in sequencing, genotyping, and computational technologies during the last decade (2011-2020) enabled new forward-genetic approaches, which subdue the impediments of precise gene mapping in varied crops. The modern crop improvement programs rely heavily on two major steps-trait-associated QTL/gene/marker's identification and molecular breeding. Thus, it is vital for basic and translational crop research to identify genomic regions that govern the phenotype of interest. Until the advent of next-generation sequencing, the forward-genetic techniques were laborious and time-consuming. Over the last 10 years, advancements in the area of genome assembly, genotyping, large-scale data analysis, and statistical algorithms have led faster identification of genomic variations regulating the complex agronomic traits and pathogen resistance. In this review, we describe the latest developments in genome sequencing and genotyping along with a comprehensive evaluation of the last 10-year headways in forward-genetic techniques that have shifted the focus of plant research from model plants to diverse crops. We have classified the available molecular genetic methods under bulk-segregant analysis-based (QTL-seq, GradedPool-Seq, QTG-Seq, Exome QTL-seq, and RapMap), target sequence enrichment-based (RenSeq, AgRenSeq, and TACCA), and mutation-based groups (MutMap, NIKS algorithm, MutRenSeq, MutChromSeq), alongside improvements in classical mapping and genome-wide association analyses. Newer methods for outcrossing, heterozygous, and polyploid plant genetics have also been discussed. The use of k-mers has enriched the nature of genetic variants which can be utilized to identify the phenotype-causing genes, independent of reference genomes. We envisage that the recent methods discussed herein will expand the repertoire of useful alleles and help in developing high-yielding and climate-resilient crops.
Collapse
Affiliation(s)
- Ritu Singh
- Plant Immunity Laboratory, National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Kamal Kumar
- Plant Immunity Laboratory, National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Chellapilla Bharadwaj
- Division of Genetics, ICAR-Indian Agricultural Research Institute (IARI), New Delhi, 110020, India
| | - Praveen Kumar Verma
- Plant Immunity Laboratory, National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi, 110067, India.
- Plant Immunity Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067, India.
| |
Collapse
|
78
|
Zhang J, Zhou M, Liu W, Nie J, Huang L. Pseudomonas syringae pv. actinidiae Effector HopAU1 Interacts with Calcium-Sensing Receptor to Activate Plant Immunity. Int J Mol Sci 2022; 23:508. [PMID: 35008934 PMCID: PMC8745740 DOI: 10.3390/ijms23010508] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 12/30/2021] [Accepted: 12/31/2021] [Indexed: 02/01/2023] Open
Abstract
Kiwifruit canker, caused by Pseudomonas syringae pv. actinidiae (Psa), is a destructive pathogen that globally threatens the kiwifruit industry. Understanding the molecular mechanism of plant-pathogen interaction can accelerate applying resistance breeding and controlling plant diseases. All known effectors secreted by pathogens play an important role in plant-pathogen interaction. However, the effectors in Psa and their function mechanism remain largely unclear. Here, we successfully identified a T3SS effector HopAU1 which had no virulence contribution to Psa, but could, however, induce cell death and activate a series of immune responses by agroinfiltration in Nicotiana benthamiana, including elevated transcripts of immune-related genes, accumulation of reactive oxygen species (ROS), and callose deposition. We found that HopAU1 interacted with a calcium sensing receptor in N. benthamiana (NbCaS) as well as its close homologue in kiwifruit (AcCaS). More importantly, silencing CaS by RNAi in N. benthamiana greatly attenuated HopAU1-triggered cell death, suggesting CaS is a crucial component for HopAU1 detection. Further researches showed that overexpression of NbCaS in N. benthamiana significantly enhanced plant resistance against Sclerotinia sclerotiorum and Phytophthora capsici, indicating that CaS serves as a promising resistance-related gene for disease resistance breeding. We concluded that HopAU1 is an immune elicitor that targets CaS to trigger plant immunity.
Collapse
Affiliation(s)
| | | | | | | | - Lili Huang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Xianyang 712100, China; (J.Z.); (M.Z.); (W.L.); (J.N.)
| |
Collapse
|
79
|
Liu X, Cai J, Li X, Yu F, Wu D. Can bacterial type III effectors mediate pathogen-plant-microbiota ternary interactions? PLANT, CELL & ENVIRONMENT 2022; 45:5-11. [PMID: 34533222 DOI: 10.1111/pce.14185] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 09/08/2021] [Accepted: 09/08/2021] [Indexed: 06/13/2023]
Affiliation(s)
- Xiaoli Liu
- Hunan Key Laboratory of Plant Functional Genomics and Developmental Regulation, College of Biology, Hunan University, Changsha, China
| | - Jun Cai
- Hunan Key Laboratory of Plant Functional Genomics and Developmental Regulation, College of Biology, Hunan University, Changsha, China
| | - Xiaoxu Li
- Tobacco Research Institute, Technology Center, China Tobacco Hunan Industrial Co., Ltd, Changsha, China
| | - Feng Yu
- Hunan Key Laboratory of Plant Functional Genomics and Developmental Regulation, College of Biology, Hunan University, Changsha, China
| | - Dousheng Wu
- Hunan Key Laboratory of Plant Functional Genomics and Developmental Regulation, College of Biology, Hunan University, Changsha, China
| |
Collapse
|
80
|
Pasin F, Daròs JA, Tzanetakis IE. OUP accepted manuscript. FEMS Microbiol Rev 2022; 46:6534904. [PMID: 35195244 PMCID: PMC9249622 DOI: 10.1093/femsre/fuac011] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 02/02/2022] [Accepted: 02/08/2022] [Indexed: 11/17/2022] Open
Abstract
Potyviridae, the largest family of known RNA viruses (realm Riboviria), belongs to the picorna-like supergroup and has important agricultural and ecological impacts. Potyvirid genomes are translated into polyproteins, which are in turn hydrolyzed to release mature products. Recent sequencing efforts revealed an unprecedented number of potyvirids with a rich variability in gene content and genomic layouts. Here, we review the heterogeneity of non-core modules that expand the structural and functional diversity of the potyvirid proteomes. We provide a family-wide classification of P1 proteinases into the functional Types A and B, and discuss pretty interesting sweet potato potyviral ORF (PISPO), putative zinc fingers, and alkylation B (AlkB)—non-core modules found within P1 cistrons. The atypical inosine triphosphate pyrophosphatase (ITPase/HAM1), as well as the pseudo tobacco mosaic virus-like coat protein (TMV-like CP) are discussed alongside homologs of unrelated virus taxa. Family-wide abundance of the multitasking helper component proteinase (HC-pro) is revised. Functional connections between non-core modules are highlighted to support host niche adaptation and immune evasion as main drivers of the Potyviridae evolutionary radiation. Potential biotechnological and synthetic biology applications of potyvirid leader proteinases and non-core modules are finally explored.
Collapse
Affiliation(s)
- Fabio Pasin
- Corresponding author: Instituto de Biología Molecular y Celular de Plantas (IBMCP), Consejo Superior de Investigaciones Científicas-Universitat Politècnica de València (CSIC-UPV), UPV Building 8E, Ingeniero Fausto Elio, 46011 Valencia, Spain. E-mail:
| | - José-Antonio Daròs
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), Consejo Superior de Investigaciones Científicas-Universitat Politècnica de València (CSIC-UPV), 46011 Valencia, Spain
| | - Ioannis E Tzanetakis
- Department of Entomology and Plant Pathology, Division of Agriculture, University of Arkansas System, 72701 Fayetteville, AR, USA
| |
Collapse
|
81
|
Song GC, Jeon J, Choi HK, Sim H, Kim S, Ryu C. Bacterial type III effector-induced plant C8 volatiles elicit antibacterial immunity in heterospecific neighbouring plants via airborne signalling. PLANT, CELL & ENVIRONMENT 2022; 45:236-247. [PMID: 34708407 PMCID: PMC9298316 DOI: 10.1111/pce.14209] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 10/08/2021] [Accepted: 10/15/2021] [Indexed: 05/10/2023]
Abstract
Upon sensing attack by pathogens and insect herbivores, plants release complex mixtures of volatile compounds. Here, we show that the infection of lima bean (Phaseolus lunatus L.) plants with the non-host bacterial pathogen Pseudomonas syringae pv. tomato led to the production of microbe-induced plant volatiles (MIPVs). Surprisingly, the bacterial type III secretion system, which injects effector proteins directly into the plant cytosol to subvert host functions, was found to prime both intra- and inter-specific defense responses in neighbouring wild tobacco (Nicotiana benthamiana) plants. Screening of each of 16 effectors using the Pseudomonas fluorescens effector-to-host analyser revealed that an effector, HopP1, was responsible for immune activation in receiver tobacco plants. Further study demonstrated that 1-octen-3-ol, 3-octanone and 3-octanol are novel MIPVs emitted by the lima bean plant in a HopP1-dependent manner. Exposure to synthetic 1-octen-3-ol activated immunity in tobacco plants against a virulent pathogen Pseudomonas syringae pv. tabaci. Our results show for the first time that a bacterial type III effector can trigger the emission of C8 plant volatiles that mediate defense priming via plant-plant interactions. These results provide novel insights into the role of airborne chemicals in bacterial pathogen-induced inter-specific plant-plant interactions.
Collapse
Affiliation(s)
- Geun Cheol Song
- Molecular Phytobacteriology LaboratoryInfectious Disease Research Center, KRIBBDaejeonSouth Korea
| | - Je‐Seung Jeon
- Molecular Phytobacteriology LaboratoryInfectious Disease Research Center, KRIBBDaejeonSouth Korea
| | - Hye Kyung Choi
- Molecular Phytobacteriology LaboratoryInfectious Disease Research Center, KRIBBDaejeonSouth Korea
| | - Hee‐Jung Sim
- Environmental Chemistry Research GroupKorea Institute of Toxicology (KIT)JinjuSouth Korea
| | - Sang‐Gyu Kim
- Department of Biological SciencesKorea Advanced Institute of Science and TechnologyDaejeonSouth Korea
| | - Choong‐Min Ryu
- Molecular Phytobacteriology LaboratoryInfectious Disease Research Center, KRIBBDaejeonSouth Korea
- Biosystems and Bioengineering ProgramUniversity of Science and Technology (UST)DaejeonSouth Korea
| |
Collapse
|
82
|
Molecular Basis of Host–Pathogen Interaction: An Overview. Fungal Biol 2022. [DOI: 10.1007/978-981-16-8877-5_26] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
83
|
Shirsekar G, Devos J, Latorre SM, Blaha A, Queiroz Dias M, González Hernando A, Lundberg DS, Burbano HA, Fenster CB, Weigel D. Multiple Sources of Introduction of North American Arabidopsis thaliana from across Eurasia. Mol Biol Evol 2021; 38:5328-5344. [PMID: 34499163 PMCID: PMC8662644 DOI: 10.1093/molbev/msab268] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Large-scale movement of organisms across their habitable range, or migration, is an important evolutionary process that can shape genetic diversity and influence the adaptive spread of alleles. Although human migrations have been studied in great detail with modern and ancient genomes, recent anthropogenic influence on reducing the biogeographical constraints on the migration of nonnative species has presented opportunities in several study systems to ask the questions about how repeated introductions shape genetic diversity in the introduced range. We present an extensive overview of population structure of North American Arabidopsis thaliana by studying a set of 500 whole-genome sequenced and over 2,800 RAD-seq genotyped individuals in the context of global diversity represented by Afro-Eurasian genomes. We use methods based on haplotype and rare-allele sharing as well as phylogenetic modeling to identify likely sources of introductions of extant N. American A. thaliana from the native range in Africa and Eurasia. We find evidence of admixture among the introduced lineages having increased haplotype diversity and reduced mutational load. We also detect signals of selection in immune-system-related genes that may impart qualitative disease resistance to pathogens of bacterial and oomycete origin. We conclude that multiple introductions to a nonnative range can rapidly enhance the adaptive potential of a colonizing species by increasing haplotypic diversity through admixture. Our results lay the foundation for further investigations into the functional significance of admixture.
Collapse
Affiliation(s)
- Gautam Shirsekar
- Max Planck Institute for Developmental Biology, Tübingen, Germany
| | - Jane Devos
- Max Planck Institute for Developmental Biology, Tübingen, Germany
| | - Sergio M Latorre
- Max Planck Institute for Developmental Biology, Tübingen, Germany
- Centre for Life’s Origin and Evolution, University College London, London, United Kingdom
| | - Andreas Blaha
- Max Planck Institute for Developmental Biology, Tübingen, Germany
| | | | | | - Derek S Lundberg
- Max Planck Institute for Developmental Biology, Tübingen, Germany
| | - Hernán A Burbano
- Max Planck Institute for Developmental Biology, Tübingen, Germany
- Centre for Life’s Origin and Evolution, University College London, London, United Kingdom
| | - Charles B Fenster
- Oak Lake Field Station, Department of Natural Resource Management, South Dakota State University, Brookings, SD, USA
| | - Detlef Weigel
- Max Planck Institute for Developmental Biology, Tübingen, Germany
| |
Collapse
|
84
|
Olawole OI, Liu Q, Chen C, Gleason ML, Beattie GA. The Contributions to Virulence of the Effectors Eop1 and DspE Differ Between Two Clades of Erwinia tracheiphila Strains. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2021; 34:1399-1408. [PMID: 34505816 DOI: 10.1094/mpmi-06-21-0149-r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Strains of Erwinia tracheiphila, causal agent of bacterial wilt of cucurbits, are divided into distinct clades. Et-melo clade strains wilt Cucumis spp. but not Cucurbita spp., thus exhibiting host specificity, whereas Et-C1 clade strains wilt Cucurbita spp. more rapidly than Cucumis melo, thus exhibiting a host preference. This study investigated the contribution of the effector proteins Eop1 and DspE to E. tracheiphila pathogenicity and host adaptation. Loss of eop1 did not enable Et-melo strains to infect squash (Cucurbita pepo) or an Et-C1 strain to induce a more rapid wilt of muskmelon (Cucumis melo), indicating that Eop1 did not function in host specificity or preference as in the related pathogen E. amylovora. However, overexpression of eop1 from Et-melo strain MDCuke but not from Et-C1 strain BHKY increased the virulence of a BHKY eop1 deletion mutant on muskmelon, demonstrating that the Eop1 variants in the two clades are distinct in their virulence functions. Loss of dspE from Et-melo strains reduced but did not eliminate virulence on hosts muskmelon and cucumber, whereas loss of dspE from an Et-C1 strain eliminated pathogenicity on hosts squash, muskmelon, and cucumber. Thus, the centrality of DspE to virulence differs in the two clades. Et-melo mutants lacking the chaperone DspF exhibited similar virulence to mutants lacking DspE, indicating that DspF is the sole chaperone for DspE in E. tracheiphila, unlike in E. amylovora. Collectively, these results provide the first functional evaluation of effectors in E. tracheiphila and demonstrate clade-specific differences in the roles of Eop1 and DspE.[Formula: see text] Copyright © 2021 The Author(s). This is an open access article distributed under the CC BY 4.0 International license.
Collapse
Affiliation(s)
- Olakunle I Olawole
- Department of Plant Pathology and Microbiology, Iowa State University, Ames, IA, U.S.A
| | - Qian Liu
- Department of Plant Pathology and Microbiology, Iowa State University, Ames, IA, U.S.A
| | - Chiliang Chen
- Department of Plant Pathology and Microbiology, Iowa State University, Ames, IA, U.S.A
| | - Mark L Gleason
- Department of Plant Pathology and Microbiology, Iowa State University, Ames, IA, U.S.A
| | - Gwyn A Beattie
- Department of Plant Pathology and Microbiology, Iowa State University, Ames, IA, U.S.A
| |
Collapse
|
85
|
De la Rubia AG, Centeno ML, Moreno-González V, De Castro M, García-Angulo P. Perception and First Defense Responses Against Pseudomonas syringae pv. phaseolicola in Phaseolus vulgaris: Identification of Wall-Associated Kinase Receptors. PHYTOPATHOLOGY 2021; 111:2332-2342. [PMID: 33944603 DOI: 10.1094/phyto-10-20-0449-r] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Common bean (Phaseolus vulgaris) is attacked by several pathogens such as the biotrophic gamma-proteobacterium Pseudomonas syringae pv. phaseolicola. To study the P. syringae pv. phaseolicola-bean interaction during the first stages of infection, leaf discs of a susceptible bean cultivar Riñón were infected with pathogenic P. syringae pv. phaseolicola. Using this experimental system, we tested six new putative wall-associated kinase (WAK) receptors, previously identified in silico. These six P. vulgaris WAKs (PvWAKs) showed high protein sequence homology to the well-described Arabidopsis thaliana WAK1 (AtWAK1) receptor and, by phylogenetic analysis, clustered together with AtWAKs. The expression of PvWAK1 increased at very early stages after the P. syringae pv. phaseolicola infection. Time course experiments were performed to evaluate the accumulation of apoplastic H2O2, Ca2+ influx, total H2O2, antioxidant enzymatic activities, lipid peroxidation, and the concentrations of abscisic acid and salicylic acid (SA), as well as the expression of six defense-related genes: MEKK-1, MAPKK, WRKY33, RIN4, PR1, and NPR1. The results showed that overexpression of PR1 occurred 2 h after P. syringae pv. phaseolicola infection without a concomitant increase in SA levels. Although apoplastic H2O2 increased after infection, the oxidative burst was neither intense nor rapid, and an efficient antioxidant response did not occur, suggesting that the observed cellular damage was caused by the initial increase in total H2O2 early after infection. In conclusion, Riñón can perceive the presence of P. syringae pv. phaseolicola, but this recognition results in only a modest and slow activation of host defenses, leading to high susceptibility to P. syringae pv. phaseolicola.
Collapse
Affiliation(s)
- Alfonso Gonzalo De la Rubia
- Área de Fisiología Vegetal, Departamento de Ingeniería y Ciencias Agrarias, Universidad de León, E-24071, León, Spain
| | - María Luz Centeno
- Área de Fisiología Vegetal, Departamento de Ingeniería y Ciencias Agrarias, Universidad de León, E-24071, León, Spain
| | - Victor Moreno-González
- Área de Zoología, Departamento de Biodiversidad y Gestión Ambiental, Universidad de León, E-24071, León, Spain
| | - María De Castro
- Departamento de Biotecnología Vegetal, Laboratorios Analíticos Agrovet, Mansilla Mayor, 24217, León, España
| | - Penélope García-Angulo
- Área de Fisiología Vegetal, Departamento de Ingeniería y Ciencias Agrarias, Universidad de León, E-24071, León, Spain
| |
Collapse
|
86
|
Physiological and Dual Transcriptional Analysis of Microalga Graesiella emersonii-Amoeboaphelidium protococcarum Pathosystem Uncovers Conserved Defense Response and Robust Pathogenicity. Int J Mol Sci 2021; 22:ijms222312847. [PMID: 34884652 PMCID: PMC8657485 DOI: 10.3390/ijms222312847] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 11/23/2021] [Accepted: 11/24/2021] [Indexed: 11/21/2022] Open
Abstract
The underlying mechanisms of microalgal host–pathogen interactions remain largely unknown. In this study, we applied physiological and simultaneous dual transcriptomic analysis to characterize the microalga Graesiella emersonii–Amoeboaphelidium protococcarum interaction. Three infection stages were determined according to infection rate and physiological features. Dual RNA-seq results showed that the genes expression of G. emersonii and A. protococcarum were strongly dynamically regulated during the infection. For microalgal hosts, similar to plant defense response, the expression of defense genes involved in the pattern recognition receptors, large heat shock proteins, and reactive oxygen scavenging enzymes (glutathione, ferritin, and catalase) were significantly upregulated during infection. However, some genes encoding resistance proteins (R proteins) with a leucine-rich repeat domain exhibited no significant changes during infection. For endoparasite A. protococcarum, genes for carbohydrate-active enzymes, pathogen–host interactions, and putative effectors were significantly upregulated during infection. Furthermore, the genes in cluster II were significantly enriched in pathways associated with the modulation of vacuole transport, including endocytosis, phagosome, ubiquitin-mediated proteolysis, and SNARE interactions in vesicular transport pathways. These results suggest that G. emersonii has a conserved defense system against pathogen and that endoparasite A. protococcarum possesses a robust pathogenicity to infect the host. Our study characterizes the first transcriptomic profile of microalgae–endoparasite interaction, providing a new promising basis for complete understanding of the algal host defense strategies and parasite pathogenicity.
Collapse
|
87
|
The small molecule Zaractin activates ZAR1-mediated immunity in Arabidopsis. Proc Natl Acad Sci U S A 2021; 118:2116570118. [PMID: 34799454 DOI: 10.1073/pnas.2116570118] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/08/2021] [Indexed: 11/18/2022] Open
Abstract
Pathogenic effector proteins use a variety of enzymatic activities to manipulate host cellular proteins and favor the infection process. However, these perturbations can be sensed by nucleotide-binding leucine-rich-repeat (NLR) proteins to activate effector-triggered immunity (ETI). Here we have identified a small molecule (Zaractin) that mimics the immune eliciting activity of the Pseudomonas syringae type III secreted effector (T3SE) HopF1r and show that both HopF1r and Zaractin activate the same NLR-mediated immune pathway in Arabidopsis Our results demonstrate that the ETI-inducing action of pathogenic effectors can be harnessed to identify synthetic activators of the eukaryotic immune system.
Collapse
|
88
|
Brinkman FSL, Winsor GL, Done RE, Filloux A, Francis VI, Goldberg JB, Greenberg EP, Han K, Hancock REW, Haney CH, Häußler S, Klockgether J, Lamont IL, Levesque RC, Lory S, Nikel PI, Porter SL, Scurlock MW, Schweizer HP, Tümmler B, Wang M, Welch M. The Pseudomonas aeruginosa whole genome sequence: A 20th anniversary celebration. Adv Microb Physiol 2021; 79:25-88. [PMID: 34836612 DOI: 10.1016/bs.ampbs.2021.07.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Toward the end of August 2000, the 6.3 Mbp whole genome sequence of Pseudomonas aeruginosa strain PAO1 was published. With 5570 open reading frames (ORFs), PAO1 had the largest microbial genome sequenced up to that point in time-including a large proportion of metabolic, transport and antimicrobial resistance genes supporting its ability to colonize diverse environments. A remarkable 9% of its ORFs were predicted to encode proteins with regulatory functions, providing new insight into bacterial network complexity as a function of network size. In this celebratory article, we fast forward 20 years, and examine how access to this resource has transformed our understanding of P. aeruginosa. What follows is more than a simple review or commentary; we have specifically asked some of the leaders in the field to provide personal reflections on how the PAO1 genome sequence, along with the Pseudomonas Community Annotation Project (PseudoCAP) and Pseudomonas Genome Database (pseudomonas.com), have contributed to the many exciting discoveries in this field. In addition to bringing us all up to date with the latest developments, we also ask our contributors to speculate on how the next 20 years of Pseudomonas research might pan out.
Collapse
Affiliation(s)
- Fiona S L Brinkman
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC, Canada
| | - Geoffrey L Winsor
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC, Canada
| | - Rachel E Done
- Department of Pediatrics, Division of Pulmonary, Allergy and Immunology, Cystic Fibrosis, and Sleep, Emory Children's Center for Cystic Fibrosis and Airway Disease Research, Emory University School of Medicine, Atlanta, GA, United States
| | - Alain Filloux
- Department of Life Sciences, MRC Centre for Molecular Bacteriology and Infection, Imperial College London, London, United Kingdom
| | - Vanessa I Francis
- Geoffrey Pope Building, University of Exeter, Exeter, United Kingdom
| | - Joanna B Goldberg
- Department of Pediatrics, Division of Pulmonary, Allergy and Immunology, Cystic Fibrosis, and Sleep, Emory Children's Center for Cystic Fibrosis and Airway Disease Research, Emory University School of Medicine, Atlanta, GA, United States
| | - E Peter Greenberg
- Department of Microbiology, University of Washington, Seattle, WA, United States
| | - Kook Han
- Department of Microbiology, Harvard Medical School, Boston, MA, United States
| | | | - Cara H Haney
- Department of Microbiology and Immunology, The University of British Columbia, Vancouver, BC, Canada
| | - Susanne Häußler
- Department of Molecular Bacteriology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Jens Klockgether
- Klinik für Pädiatrische Pneumologie, Allergologie und Neonatologie, Medizinische Hochschule Hannover, Hannover, Germany
| | - Iain L Lamont
- Department of Biochemistry, University of Otago, Dunedin, New Zealand
| | - Roger C Levesque
- Institut de biologie intégrative et des systèmes (IBIS), Pavillon Charles-Eugène Marchand, Faculté of Médicine, Université Laval, Québec City, QC, Canada
| | - Stephen Lory
- Department of Microbiology, Harvard Medical School, Boston, MA, United States
| | - Pablo I Nikel
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Lyngby, Denmark
| | - Steven L Porter
- Geoffrey Pope Building, University of Exeter, Exeter, United Kingdom
| | | | - Herbert P Schweizer
- Pathogen and Microbiome Institute, Northern Arizona University, Flagstaff, AZ, United States
| | - Burkhard Tümmler
- Klinik für Pädiatrische Pneumologie, Allergologie und Neonatologie, Medizinische Hochschule Hannover, Hannover, Germany
| | - Meng Wang
- Department of Biochemistry (Hopkins Building), University of Cambridge, Cambridge, United Kingdom
| | - Martin Welch
- Department of Biochemistry (Hopkins Building), University of Cambridge, Cambridge, United Kingdom.
| |
Collapse
|
89
|
López-Márquez D, Del-Espino Á, López-Pagán N, Rodríguez-Negrete EA, Rubio-Somoza I, Ruiz-Albert J, Bejarano ER, Beuzón CR. miR825-5p targets the TIR-NBS-LRR gene MIST1 and down-regulates basal immunity against Pseudomonas syringae in Arabidopsis. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:7316-7334. [PMID: 34329403 PMCID: PMC8547151 DOI: 10.1093/jxb/erab354] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 07/29/2021] [Indexed: 05/29/2023]
Abstract
Plants encode numerous intracellular receptors known as nucleotide-binding leucine-rich repeat receptors (NLRs) that recognize pathogen-derived effectors or their activity to activate defenses. miRNAs regulate NLR genes in many species, often triggering the production of phased siRNAs (phasiRNAs). Most such examples involve genes encoding NLRs carrying coiled-coil domains, although a few include genes encoding NLRs carrying a Toll/interleukin-1 domain (TNL). Here, we characterize the role of miR825-5p in Arabidopsis, using a combination of bioinformatics, transgenic plants with altered miRNA levels and/or reporters, small RNAs, and virulence assays. We demonstrate that miR825-5p down-regulates the TNL MIST1 by targeting for endonucleolytic cleavage the sequence coding for TIR2, a highly conserved amino acid motif, linked to a catalytic residue essential for immune function. miR825-5p acts as a negative regulator of basal resistance against Pseudomonas syringae. miR825-5p triggers the production from MIST1 of a large number of phasiRNAs that can mediate cleavage of both MIST1 and additional TNL gene transcripts, potentially acting as a regulatory hub. miR825-5p is expressed in unchallenged leaves and transcriptionally down-regulated in response to pathogen-associated molecular patterns (PAMPs). Our results show that miR825-5p, which is required for full expression of PAMP-triggered immunity, establishes a link between PAMP perception and expression of uncharacterized TNL genes.
Collapse
Affiliation(s)
- Diego López-Márquez
- Instituto de Hortofruticultura Subtropical y Mediterránea ‘La Mayora’, Universidad de Málaga-Consejo Superior de Investigaciones Científicas (IHSM-UMA-CSIC), Depto. Biología Celular, Genética y Fisiología, Málaga, Spain
| | - Ángel Del-Espino
- Instituto de Hortofruticultura Subtropical y Mediterránea ‘La Mayora’, Universidad de Málaga-Consejo Superior de Investigaciones Científicas (IHSM-UMA-CSIC), Depto. Biología Celular, Genética y Fisiología, Málaga, Spain
| | - Nieves López-Pagán
- Instituto de Hortofruticultura Subtropical y Mediterránea ‘La Mayora’, Universidad de Málaga-Consejo Superior de Investigaciones Científicas (IHSM-UMA-CSIC), Depto. Biología Celular, Genética y Fisiología, Málaga, Spain
| | - Edgar A Rodríguez-Negrete
- Instituto de Hortofruticultura Subtropical y Mediterránea ‘La Mayora’, Universidad de Málaga-Consejo Superior de Investigaciones Científicas (IHSM-UMA-CSIC), Depto. Biología Celular, Genética y Fisiología, Málaga, Spain
| | - Ignacio Rubio-Somoza
- Molecular Reprogramming and Evolution (MoRE) Lab, Centre for Research in Agricultural Genomics (CRAG), Carrer Vall Moronta Edifici CRAG, 08193, Barcelona, Spain
| | - Javier Ruiz-Albert
- Instituto de Hortofruticultura Subtropical y Mediterránea ‘La Mayora’, Universidad de Málaga-Consejo Superior de Investigaciones Científicas (IHSM-UMA-CSIC), Depto. Biología Celular, Genética y Fisiología, Málaga, Spain
| | - Eduardo R Bejarano
- Instituto de Hortofruticultura Subtropical y Mediterránea ‘La Mayora’, Universidad de Málaga-Consejo Superior de Investigaciones Científicas (IHSM-UMA-CSIC), Depto. Biología Celular, Genética y Fisiología, Málaga, Spain
| | - Carmen R Beuzón
- Instituto de Hortofruticultura Subtropical y Mediterránea ‘La Mayora’, Universidad de Málaga-Consejo Superior de Investigaciones Científicas (IHSM-UMA-CSIC), Depto. Biología Celular, Genética y Fisiología, Málaga, Spain
| |
Collapse
|
90
|
Zhu Q, Gao S, Zhang W. Identification of Key Transcription Factors Related to Bacterial Spot Resistance in Pepper through Regulatory Network Analyses. Genes (Basel) 2021; 12:genes12091351. [PMID: 34573336 PMCID: PMC8472308 DOI: 10.3390/genes12091351] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Revised: 08/20/2021] [Accepted: 08/27/2021] [Indexed: 01/03/2023] Open
Abstract
Bacterial spot (BS), caused by Xanthomonas campestris pv. Vesicatoria (Xcv), severely affects the quality and yield of pepper. Thus, breeding new pepper cultivars with enhanced resistance to BS can improve economic benefits for pepper production. Identification of BS resistance genes is an essential step to achieve this goal. However, very few BS resistance genes have been well characterized in pepper so far. In this study, we reanalyzed public multiple time points related to RNA-seq data sets from two pepper cultivars, the Xcv-susceptible cultivar ECW and the Xcv-resistant cultivar VI037601, post Xcv infection. We identified a total of 3568 differentially expressed genes (DEGs) between two cultivars post Xcv infection, which were mainly involved in some biological processes, such as Gene Ontology (GO) terms related to defense response to bacterium, immune system process, and regulation of defense response, etc. Through weighted gene co-expression network analysis (WGCNA), we identified 15 hub (Hub) transcription factor (TF) candidates in response to Xcv infection. We further selected 20 TFs from the gene regulatory network (GRN) potentially involved in Xcv resistance response. Finally, we predicted 4 TFs, C3H (p-coumarate 3-hydroxylase), ERF (ethylene-responsive element binding factor), TALE (three-amino-acid-loop-extension), and HSF (heat shock transcription factor), as key factors responsible for BS disease resistance in pepper. In conclusion, our study provides valuable resources for dissecting the underlying molecular mechanism responsible for Xcv resistance in pepper. Additionally, it also provides valuable references for mining transcriptomic data to identify key candidates for disease resistance in horticulture crops.
Collapse
Affiliation(s)
- Qingquan Zhu
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Collaborative Innovation Center for Modern Crop Production Co-Sponsored by Province and Ministry (CIC-MCP), Nanjing Agricultural University, No.1 Weigang, Nanjing 210095, China;
| | - Shenghua Gao
- Hubei Key Laboratory of Vegetable Germplasm Enhancement and Genetic Improvement, Cash Crops Research Institute, Hubei Academy of Agricultural Sciences, Wuhan 430070, China;
| | - Wenli Zhang
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Collaborative Innovation Center for Modern Crop Production Co-Sponsored by Province and Ministry (CIC-MCP), Nanjing Agricultural University, No.1 Weigang, Nanjing 210095, China;
- Correspondence: ; Tel.: +86-25-84396610; Fax: +86-25-84396302
| |
Collapse
|
91
|
Wan L, He Z. NADase and now Ca 2+ channel, what else to learn about plant NLRs? STRESS BIOLOGY 2021; 1:7. [PMID: 37676511 PMCID: PMC10442028 DOI: 10.1007/s44154-021-00007-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 08/01/2021] [Indexed: 09/08/2023]
Abstract
Plant intracellular immune receptors known as NLR (Nucleotide-binding Leucine-rich repeat, NB-LRR) proteins confer resistance and cause cell death upon recognition of cognate effector proteins from pathogens. Plant NLRs contain a variable N-terminal domain: a Toll/interleukin-1 receptor (TIR) domain or a coiled-coil (CC) domain or an RPW8 (Resistance to Powdery Mildew 8)-like CC (CCR) domain. TIR-NLR, CC-NLR and CCR-NLR are known as TNL, CNL and RNL, respectively. TNLs and CNLs recognize pathogen effectors to activate cell death and defense responses, thus are regarded as sensor NLRs. RNLs are required downstream of TNLs to activate cell death and defense responses, thus are regarded as helper NLRs. Previous studies show that some TNLs form tetrameric resistosome as NAD+ cleaving enzymes to transduce signal, while some CNLs form pentameric resistosome with undefined biochemical function. Two recent breakthrough studies show that activated CNL and RNL function as Ca2+ channel to cause cell death and defense responses and provide a completely new insight into the downstream signaling events of CNL and TNL pathways.
Collapse
Affiliation(s)
- Li Wan
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China.
| | - Zuhua He
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China.
| |
Collapse
|
92
|
Bi G, Zhou JM. Regulation of Cell Death and Signaling by Pore-Forming Resistosomes. ANNUAL REVIEW OF PHYTOPATHOLOGY 2021; 59:239-263. [PMID: 33957051 DOI: 10.1146/annurev-phyto-020620-095952] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Nucleotide-binding leucine-rich repeat receptors (NLRs) are the largest class of immune receptors in plants. They play a key role in the plant surveillance system by monitoring pathogen effectors that are delivered into the plant cell. Recent structural biology and biochemical analyses have uncovered how NLRs are activated to form oligomeric resistosomes upon the recognition of pathogen effectors. In the resistosome, the signaling domain of the NLR is brought to the center of a ringed structure to initiate immune signaling and regulated cell death (RCD). The N terminus of the coiled-coil (CC) domain of the NLR protein HOPZ-ACTIVATED RESISTANCE 1 likely forms a pore in the plasma membrane to trigger RCD in a way analogous to animal pore-forming proteins that trigger necroptosis or pyroptosis. NLRs that carry TOLL-INTERLEUKIN1-RECEPTOR as a signaling domain may also employ pore-forming resistosomes for RCD execution. In addition, increasing evidence supports intimate connections between NLRs and surface receptors in immune signaling. These new findings are rapidly advancing our understanding of the plant immune system.
Collapse
Affiliation(s)
- Guozhi Bi
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China;
| | - Jian-Min Zhou
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China;
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
93
|
Nakamura M, Kondo M, Suzuki A, Hirai H, Che FS. Novel Effector RHIFs Identified From Acidovorax avenae Strains N1141 and K1 Play Different Roles in Host and Non-host Plants. FRONTIERS IN PLANT SCIENCE 2021; 12:716738. [PMID: 34421970 PMCID: PMC8377416 DOI: 10.3389/fpls.2021.716738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Accepted: 07/05/2021] [Indexed: 06/13/2023]
Abstract
Plant pathogenic bacteria inject effectors into plant cells using type III secretion systems (T3SS) to evade plant immune systems and facilitate infection. In contrast, plants have evolved defense systems called effector-triggered immunity (ETI) that can detect such effectors during co-evolution with pathogens. The rice-avirulent strain N1141 of the bacterial pathogen Acidovorax avenae causes rice ETI, including hypersensitive response (HR) cell death in a T3SS-dependent manner, suggesting that strain N1141 expresses an ETI-inducing effector. By screening 6,200 transposon-tagged N1141 mutants based on their ability to induce HR cell death, we identified 17 mutants lacking this ability. Sequence analysis and T3SS-mediated intracellular transport showed that a protein called rice HR cell death inducing factor (RHIF) is a candidate effector protein that causes HR cell death in rice. RHIF-disrupted N1141 lacks the ability to induce HR cell death, whereas RHIF expression in this mutant complemented this ability. In contrast, RHIF from rice-virulent strain K1 functions as an ETI inducer in the non-host plant finger millet. Furthermore, inoculation of rice and finger millet with either RHIF-deficient N1141 or K1 strains showed that a deficiency of RHIF genes in both strains results in decreased infectivity toward each the host plants. Collectively, novel effector RHIFs identified from A. avenae strains N1141 and K1 function in establishing infection in host plants and in ETI induction in non-host plants.
Collapse
Affiliation(s)
- Minami Nakamura
- Graduate School of Biosciences, Nagahama Institute of Bio-Science and Technology, Nagahama, Japan
| | - Machiko Kondo
- Department of Bio-Science, Nagahama Institute of Bio-Science and Technology, Nagahama, Japan
| | - Aika Suzuki
- Graduate School of Biosciences, Nagahama Institute of Bio-Science and Technology, Nagahama, Japan
| | - Hiroyuki Hirai
- Department of Bio-Science, Nagahama Institute of Bio-Science and Technology, Nagahama, Japan
| | - Fang-Sik Che
- Graduate School of Biosciences, Nagahama Institute of Bio-Science and Technology, Nagahama, Japan
- Department of Bio-Science, Nagahama Institute of Bio-Science and Technology, Nagahama, Japan
- Genome Editing Research Institute, Nagahama Institute of Bio-Science and Technology, Nagahama, Japan
| |
Collapse
|
94
|
Chen J, Li M, Liu L, Chen G, Fu ZQ. ZAR1 resistosome and helper NLRs: Bringing in calcium and inducing cell death. MOLECULAR PLANT 2021; 14:1234-1236. [PMID: 34198009 DOI: 10.1016/j.molp.2021.06.026] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 06/09/2021] [Accepted: 06/27/2021] [Indexed: 05/13/2023]
Affiliation(s)
- Jian Chen
- International Genome Center, Jiangsu University, Zhenjiang 212013, China
| | - Min Li
- China-USA Citrus Huanglongbing Joint Laboratory (A Joint Laboratory of The University of Florida's Institute of Food and Agricultural Sciences and Gannan Normal University), National Navel Orange Engineering Research Center, Gannan Normal University, Ganzhou, Jiangxi 341000, China
| | - Longyu Liu
- School of Agriculture and Biology/State Key Laboratory of Microbial Metabolism, Shanghai Jiao Tong University, Shanghai 200240, China; Department of Biological Sciences, University of South Carolina, Columbia, SC 29208, USA
| | - Gongyou Chen
- School of Agriculture and Biology/State Key Laboratory of Microbial Metabolism, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Zheng Qing Fu
- Department of Biological Sciences, University of South Carolina, Columbia, SC 29208, USA.
| |
Collapse
|
95
|
Schultink A, Steinbrenner AD. A playbook for developing disease-resistant crops through immune receptor identification and transfer. CURRENT OPINION IN PLANT BIOLOGY 2021; 62:102089. [PMID: 34333377 DOI: 10.1016/j.pbi.2021.102089] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 05/08/2021] [Accepted: 06/15/2021] [Indexed: 06/13/2023]
Abstract
Plants are resistant to most pathogens because of an immune system that perceives invading microbes and activates defense. A large repertoire of innate immune receptors mediates specific direct or indirect recognition of pathogen-derived molecules. Disease is often a consequence of insufficient immune surveillance, and the transfer of immune receptor genes from resistant plants to susceptible crop varieties is an effective strategy for combating disease outbreaks. We discuss approaches for identifying intracellular and cell surface immune receptors, with particular focus on recently developed and emerging methodologies. We also review considerations for the transfer of immune receptor genes into crop species, including additional host factors that may be required for immune receptor function. Together, these concepts lay out a broadly applicable playbook for developing crop varieties with durable disease resistance.
Collapse
|
96
|
Martel A, Ruiz-Bedoya T, Breit-McNally C, Laflamme B, Desveaux D, Guttman DS. The ETS-ETI cycle: evolutionary processes and metapopulation dynamics driving the diversification of pathogen effectors and host immune factors. CURRENT OPINION IN PLANT BIOLOGY 2021; 62:102011. [PMID: 33677388 DOI: 10.1016/j.pbi.2021.102011] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 01/21/2021] [Accepted: 01/24/2021] [Indexed: 05/13/2023]
Abstract
The natural diversity of pathogen effectors and host immune components represents a snapshot of the underlying evolutionary processes driving the host-pathogen arms race. In plants, this arms race is manifested by an ongoing cycle of disease and resistance driven by pathogenic effectors that promote disease (effector-triggered susceptibility; ETS) and plant resistance proteins that recognize effector activity to trigger immunity (effector-triggered immunity; ETI). Here we discuss how this ongoing ETS-ETI cycle has shaped the natural diversity of both plant resistance proteins and pathogen effectors. We focus on the evolutionary forces that drive the diversification of the molecules that determine the outcome of plant-pathogen interactions and introduce the concept of metapopulation dynamics (i.e., the introduction of genetic variation from conspecific organisms in different populations) as an alternative mechanism that can introduce and maintain diversity in both host and pathogen populations.
Collapse
Affiliation(s)
- Alexandre Martel
- Department of Cell & Systems Biology, University of Toronto, Toronto, Ontario M6S2Y1, Canada
| | - Tatiana Ruiz-Bedoya
- Department of Cell & Systems Biology, University of Toronto, Toronto, Ontario M6S2Y1, Canada
| | - Clare Breit-McNally
- Department of Cell & Systems Biology, University of Toronto, Toronto, Ontario M6S2Y1, Canada
| | - Bradley Laflamme
- Department of Cell & Systems Biology, University of Toronto, Toronto, Ontario M6S2Y1, Canada
| | - Darrell Desveaux
- Department of Cell & Systems Biology, University of Toronto, Toronto, Ontario M6S2Y1, Canada; Centre for the Analysis of Genome Evolution & Function, University of Toronto, Toronto, Ontario M6S2Y1, Canada.
| | - David S Guttman
- Department of Cell & Systems Biology, University of Toronto, Toronto, Ontario M6S2Y1, Canada; Centre for the Analysis of Genome Evolution & Function, University of Toronto, Toronto, Ontario M6S2Y1, Canada.
| |
Collapse
|
97
|
Yuan X, Hulin MT, Sundin GW. Effectors, chaperones, and harpins of the Type III secretion system in the fire blight pathogen Erwinia amylovora: a review. JOURNAL OF PLANT PATHOLOGY 2021; 103:25-39. [PMID: 0 DOI: 10.1007/s42161-020-00623-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 07/23/2020] [Indexed: 05/20/2023]
|
98
|
Jayaraman J, Chatterjee A, Hunter S, Chen R, Stroud EA, Saei H, Hoyte S, Deroles S, Tahir J, Templeton MD, Brendolise C. Rapid Methodologies for Assessing Pseudomonas syringae pv. actinidiae Colonization and Effector-Mediated Hypersensitive Response in Kiwifruit. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2021; 34:880-890. [PMID: 33834857 DOI: 10.1094/mpmi-02-21-0043-r] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The infection of Pseudomonas syringae pv. actinidiae in kiwifruit is currently assessed by numerous methodologies, each with their own limitations. Most studies are based on either a laborious method of growth quantification of the pathogen or qualitative assessments by visual scoring following stem or cutting inoculation. Additionally, when assessing for resistance against specific pathogen effectors, confounding interactions between multiple genes in the pathogen can make mapping resistance phenotypes nearly impossible. Here, we present robust alternative methods to quantify pathogen load based on rapid bacterial DNA quantification by PCR, the use of Pseudomonas fluorescens, and a transient reporter eclipse assay for assessing resistance conferred by isolated bacterial avirulence genes. These assays compare well with bacterial plate counts to assess bacterial colonization as a result of plant resistance activation. The DNA-based quantification, when coupled with the P. fluorescens and reporter eclipse assays to independently identify bacterial avirulence genes, is rapid, highly reproducible, and scalable for high-throughput screens of multiple cultivars or genotypes. Application of these methodologies will allow rapid and high-throughput identification of resistant cultivars and the bacterial avirulence genes they recognize, facilitating resistance gene discovery for plant breeding programs.[Formula: see text] Copyright © 2021 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.
Collapse
Affiliation(s)
- Jay Jayaraman
- The New Zealand Institute for Plant and Food Research Limited, Auckland, New Zealand
- Bio-Protection Research Centre, Lincoln, New Zealand
| | - Abhishek Chatterjee
- The New Zealand Institute for Plant and Food Research Limited, Auckland, New Zealand
| | - Shannon Hunter
- The New Zealand Institute for Plant and Food Research Limited, Auckland, New Zealand
| | - Ronan Chen
- The New Zealand Institute for Plant and Food Research Limited, Palmerston North, New Zealand
| | - Erin A Stroud
- The New Zealand Institute for Plant and Food Research Limited, Auckland, New Zealand
- School of Biological Sciences, University of Auckland, Auckland, New Zealand
| | - Hassan Saei
- The New Zealand Institute for Plant and Food Research Limited, Palmerston North, New Zealand
| | - Stephen Hoyte
- The New Zealand Institute for Plant and Food Research Limited, Ruakura Research Centre, Hamilton, New Zealand
| | - Simon Deroles
- The New Zealand Institute for Plant and Food Research Limited, Palmerston North, New Zealand
| | - Jibran Tahir
- The New Zealand Institute for Plant and Food Research Limited, Auckland, New Zealand
| | - Matthew D Templeton
- The New Zealand Institute for Plant and Food Research Limited, Auckland, New Zealand
- Bio-Protection Research Centre, Lincoln, New Zealand
- School of Biological Sciences, University of Auckland, Auckland, New Zealand
| | - Cyril Brendolise
- The New Zealand Institute for Plant and Food Research Limited, Auckland, New Zealand
| |
Collapse
|
99
|
Jacob P, Kim NH, Wu F, El-Kasmi F, Chi Y, Walton WG, Furzer OJ, Lietzan AD, Sunil S, Kempthorn K, Redinbo MR, Pei ZM, Wan L, Dangl JL. Plant "helper" immune receptors are Ca 2+-permeable nonselective cation channels. Science 2021; 373:420-425. [PMID: 34140391 PMCID: PMC8939002 DOI: 10.1126/science.abg7917] [Citation(s) in RCA: 225] [Impact Index Per Article: 56.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 06/07/2021] [Indexed: 12/15/2022]
Abstract
Plant nucleotide-binding leucine-rich repeat receptors (NLRs) regulate immunity and cell death. In Arabidopsis, a subfamily of "helper" NLRs is required by many "sensor" NLRs. Active NRG1.1 oligomerized, was enriched in plasma membrane puncta, and conferred cytoplasmic calcium ion (Ca2+) influx in plant and human cells. NRG1.1-dependent Ca2+ influx and cell death were sensitive to Ca2+ channel blockers and were suppressed by mutations affecting oligomerization or plasma membrane enrichment. Ca2+ influx and cell death mediated by NRG1.1 and ACTIVATED DISEASE RESISTANCE 1 (ADR1), another helper NLR, required conserved negatively charged N-terminal residues. Whole-cell voltage-clamp recordings demonstrated that Arabidopsis helper NLRs form Ca2+-permeable cation channels to directly regulate cytoplasmic Ca2+ levels and consequent cell death. Thus, helper NLRs transduce cell death signals directly.
Collapse
Affiliation(s)
- Pierre Jacob
- Department of Biology and Howard Hughes Medical Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Nak Hyun Kim
- Department of Biology and Howard Hughes Medical Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Feihua Wu
- Department of Biology, Duke University, Durham, NC 27708, USA
- Department of Horticulture, Foshan University, Foshan, China
| | - Farid El-Kasmi
- Department of Plant Physiology, Centre of Plant Molecular Biology (ZMBP), University of Tübingen, Tübingen, Germany
| | - Yuan Chi
- Department of Biology, Duke University, Durham, NC 27708, USA
| | - William G Walton
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Oliver J Furzer
- Department of Biology and Howard Hughes Medical Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Adam D Lietzan
- Division of Oral and Craniofacial Health Sciences, Adams School of Dentistry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Sruthi Sunil
- Department of Plant Physiology, Centre of Plant Molecular Biology (ZMBP), University of Tübingen, Tübingen, Germany
| | - Korina Kempthorn
- Department of Biology and Howard Hughes Medical Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Matthew R Redinbo
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Zhen-Ming Pei
- Department of Biology, Duke University, Durham, NC 27708, USA.
| | - Li Wan
- Department of Biology and Howard Hughes Medical Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Jeffery L Dangl
- Department of Biology and Howard Hughes Medical Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| |
Collapse
|
100
|
HopA1 Effector from Pseudomonas syringae pv syringae Strain 61 Affects NMD Processes and Elicits Effector-Triggered Immunity. Int J Mol Sci 2021; 22:ijms22147440. [PMID: 34299060 PMCID: PMC8306789 DOI: 10.3390/ijms22147440] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 06/29/2021] [Accepted: 06/30/2021] [Indexed: 01/25/2023] Open
Abstract
Pseudomonas syringae-secreted HopA1 effectors are important determinants in host range expansion and increased pathogenicity. Their recent acquisitions via horizontal gene transfer in several non-pathogenic Pseudomonas strains worldwide have caused alarming increase in their virulence capabilities. In Arabidopsis thaliana, RESISTANCE TO PSEUDOMONAS SYRINGAE 6 (RPS6) gene confers effector-triggered immunity (ETI) against HopA1pss derived from P. syringae pv. syringae strain 61. Surprisingly, a closely related HopA1pst from the tomato pathovar evades immune detection. These responsive differences in planta between the two HopA1s represents a unique system to study pathogen adaptation skills and host-jumps. However, molecular understanding of HopA1′s contribution to overall virulence remain undeciphered. Here, we show that immune-suppressive functions of HopA1pst are more potent than HopA1pss. In the resistance-compromised ENHANCED DISEASE SUSCEPTIBILITY 1 (EDS1) null-mutant, transcriptomic changes associated with HopA1pss-elicited ETI are still induced and carry resemblance to PAMP-triggered immunity (PTI) signatures. Enrichment of HopA1pss interactome identifies proteins with regulatory roles in post-transcriptional and translational processes. With our demonstration here that both HopA1 suppress reporter-gene translations in vitro imply that the above effector-associations with plant target carry inhibitory consequences. Overall, with our results here we unravel possible virulence role(s) of HopA1 in suppressing PTI and provide newer insights into its detection in resistant plants.
Collapse
|