51
|
Yampolskaya M, Herriges MJ, Ikonomou L, Kotton DN, Mehta P. scTOP: physics-inspired order parameters for cellular identification and visualization. Development 2023; 150:dev201873. [PMID: 37756586 PMCID: PMC10629677 DOI: 10.1242/dev.201873] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 09/11/2023] [Indexed: 09/29/2023]
Abstract
Advances in single-cell RNA sequencing provide an unprecedented window into cellular identity. The abundance of data requires new theoretical and computational frameworks to analyze the dynamics of differentiation and integrate knowledge from cell atlases. We present 'single-cell Type Order Parameters' (scTOP): a statistical, physics-inspired approach for quantifying cell identity given a reference basis of cell types. scTOP can accurately classify cells, visualize developmental trajectories and assess the fidelity of engineered cells. Importantly, scTOP does this without feature selection, statistical fitting or dimensional reduction (e.g. uniform manifold approximation and projection, principle components analysis, etc.). We illustrate the power of scTOP using human and mouse datasets. By reanalyzing mouse lung data, we characterize a transient hybrid alveolar type 1/alveolar type 2 cell population. Visualizations of lineage tracing hematopoiesis data using scTOP confirm that a single clone can give rise to multiple mature cell types. We assess the transcriptional similarity between endogenous and donor-derived cells in the context of murine pulmonary cell transplantation. Our results suggest that physics-inspired order parameters can be an important tool for understanding differentiation and characterizing engineered cells. scTOP is available as an easy-to-use Python package.
Collapse
Affiliation(s)
| | - Michael J. Herriges
- Center for Regenerative Medicine of Boston University and Boston Medical Center, Boston, MA 02118, USA
- The Pulmonary Center and Department of Medicine, Boston University School of Medicine, Boston, MA 02118, USA
| | - Laertis Ikonomou
- Department of Oral Biology, University at Buffalo, The State University of New York, Buffalo, NY 14215, USA
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University at Buffalo, The State University of New York, Buffalo, NY 14215, USA
| | - Darrell N. Kotton
- Center for Regenerative Medicine of Boston University and Boston Medical Center, Boston, MA 02118, USA
- The Pulmonary Center and Department of Medicine, Boston University School of Medicine, Boston, MA 02118, USA
| | - Pankaj Mehta
- Department of Physics, Boston University, Boston, MA 02215, USA
- Center for Regenerative Medicine of Boston University and Boston Medical Center, Boston, MA 02118, USA
- Faculty of Computing and Data Science, Boston University, Boston, MA 02215, USA
- Biological Design Center, Boston University, Boston, MA 02215, USA
| |
Collapse
|
52
|
Guo M, Wikenheiser-Brokamp KA, Kitzmiller JA, Jiang C, Wang G, Wang A, Preissl S, Hou X, Buchanan J, Karolak JA, Miao Y, Frank DB, Zacharias WJ, Sun X, Xu Y, Gu M, Stankiewicz P, Kalinichenko VV, Wambach JA, Whitsett JA. Single Cell Multiomics Identifies Cells and Genetic Networks Underlying Alveolar Capillary Dysplasia. Am J Respir Crit Care Med 2023; 208:709-725. [PMID: 37463497 PMCID: PMC10515568 DOI: 10.1164/rccm.202210-2015oc] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 07/18/2023] [Indexed: 07/20/2023] Open
Abstract
Rationale: Alveolar capillary dysplasia with misalignment of pulmonary veins (ACDMPV) is a lethal developmental disorder of lung morphogenesis caused by insufficiency of FOXF1 (forkhead box F1) transcription factor function. The cellular and transcriptional mechanisms by which FOXF1 deficiency disrupts human lung formation are unknown. Objectives: To identify cell types, gene networks, and cell-cell interactions underlying the pathogenesis of ACDMPV. Methods: We used single-nucleus RNA and assay for transposase-accessible chromatin sequencing, immunofluorescence confocal microscopy, and RNA in situ hybridization to identify cell types and molecular networks influenced by FOXF1 in ACDMPV lungs. Measurements and Main Results: Pathogenic single-nucleotide variants and copy-number variant deletions involving the FOXF1 gene locus in all subjects with ACDMPV (n = 6) were accompanied by marked changes in lung structure, including deficient alveolar development and a paucity of pulmonary microvasculature. Single-nucleus RNA and assay for transposase-accessible chromatin sequencing identified alterations in cell number and gene expression in endothelial cells (ECs), pericytes, fibroblasts, and epithelial cells in ACDMPV lungs. Distinct cell-autonomous roles for FOXF1 in capillary ECs and pericytes were identified. Pathogenic variants involving the FOXF1 gene locus disrupt gene expression in EC progenitors, inhibiting the differentiation or survival of capillary 2 ECs and cell-cell interactions necessary for both pulmonary vasculogenesis and alveolar type 1 cell differentiation. Loss of the pulmonary microvasculature was associated with increased VEGFA (vascular endothelial growth factor A) signaling and marked expansion of systemic bronchial ECs expressing COL15A1 (collagen type XV α 1 chain). Conclusions: Distinct FOXF1 gene regulatory networks were identified in subsets of pulmonary endothelial and fibroblast progenitors, providing both cellular and molecular targets for the development of therapies for ACDMPV and other diffuse lung diseases of infancy.
Collapse
Affiliation(s)
- Minzhe Guo
- The Perinatal Institute and Section of Neonatology, Perinatal and Pulmonary Biology
- Department of Pediatrics and
| | - Kathryn A. Wikenheiser-Brokamp
- The Perinatal Institute and Section of Neonatology, Perinatal and Pulmonary Biology
- Division of Pathology and Laboratory Medicine
- Department of Pathology & Laboratory Medicine, College of Medicine, University of Cincinnati, Cincinnati, Ohio
| | - Joseph A. Kitzmiller
- The Perinatal Institute and Section of Neonatology, Perinatal and Pulmonary Biology
| | - Cheng Jiang
- The Perinatal Institute and Section of Neonatology, Perinatal and Pulmonary Biology
| | - Guolun Wang
- The Perinatal Institute and Section of Neonatology, Perinatal and Pulmonary Biology
- Center for Lung Regenerative Medicine
| | - Allen Wang
- Center for Epigenomics & Department of Cellular & Molecular Medicine
| | - Sebastian Preissl
- Center for Epigenomics & Department of Cellular & Molecular Medicine
- Institute of Experimental and Clinical Pharmacology and Toxicology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Xiaomeng Hou
- Center for Epigenomics & Department of Cellular & Molecular Medicine
| | - Justin Buchanan
- Center for Epigenomics & Department of Cellular & Molecular Medicine
| | - Justyna A. Karolak
- Department of Genetics and Pharmaceutical Microbiology, Poznan University of Medical Sciences, Poznan, Poland
| | - Yifei Miao
- The Perinatal Institute and Section of Neonatology, Perinatal and Pulmonary Biology
- Division of Developmental Biology, and
- Center for Stem Cell and Organoid Medicine, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio
- Department of Pediatrics and
| | - David B. Frank
- Penn-CHOP Lung Biology Institute and
- Penn Cardiovascular Institute, University of Pennsylvania, Philadelphia, Pennsylvania
- Division of Cardiology, Department of Pediatrics, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - William J. Zacharias
- The Perinatal Institute and Section of Neonatology, Perinatal and Pulmonary Biology
- Department of Pediatrics and
| | - Xin Sun
- Department of Pediatrics, and
- Department of Biological Sciences, University of California, San Diego, La Jolla, California
| | - Yan Xu
- The Perinatal Institute and Section of Neonatology, Perinatal and Pulmonary Biology
- Division of Biomedical Informatics
- Department of Pediatrics and
| | - Mingxia Gu
- The Perinatal Institute and Section of Neonatology, Perinatal and Pulmonary Biology
- Division of Developmental Biology, and
- Center for Stem Cell and Organoid Medicine, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio
- Department of Pediatrics and
| | - Pawel Stankiewicz
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas; and
| | - Vladimir V. Kalinichenko
- The Perinatal Institute and Section of Neonatology, Perinatal and Pulmonary Biology
- Center for Lung Regenerative Medicine
- Department of Pediatrics and
| | - Jennifer A. Wambach
- Edward Mallinckrodt Department of Pediatrics, Washington University School of Medicine and St. Louis Children’s Hospital, St. Louis, Missouri
| | - Jeffrey A. Whitsett
- The Perinatal Institute and Section of Neonatology, Perinatal and Pulmonary Biology
- Department of Pediatrics and
| |
Collapse
|
53
|
Li S, Liberti D, Zhou S, Ying Y, Kong J, Basil MC, Cardenas-Diaz FL, Shiraishi K, Morley MP, Morrisey EE. DOT1L regulates lung developmental epithelial cell fate and adult alveolar stem cell differentiation after acute injury. Stem Cell Reports 2023; 18:1841-1853. [PMID: 37595582 PMCID: PMC10545485 DOI: 10.1016/j.stemcr.2023.07.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 07/22/2023] [Accepted: 07/23/2023] [Indexed: 08/20/2023] Open
Abstract
AT2 cells harbor alveolar stem cell activity in the lung and can self-renew and differentiate into AT1 cells during homeostasis and after injury. To identify epigenetic pathways that control the AT2-AT1 regenerative response in the lung, we performed an organoid screen using a library of pharmacological epigenetic inhibitors. This screen identified DOT1L as a regulator of AT2 cell growth and differentiation. In vivo inactivation of Dot1l leads to precocious activation of both AT1 and AT2 gene expression during lung development and accelerated AT1 cell differentiation after acute lung injury. Single-cell transcriptome analysis reveals the presence of a new AT2 cell state upon loss of Dot1l, characterized by increased expression of oxidative phosphorylation genes and changes in expression of critical transcription and epigenetic factors. Taken together, these data demonstrate that Dot1l controls the rate of alveolar epithelial cell fate acquisition during development and regeneration after acute injury.
Collapse
Affiliation(s)
- Shanru Li
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Penn-CHOP Lung Biology Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Derek Liberti
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Penn-CHOP Lung Biology Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Su Zhou
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Penn-CHOP Lung Biology Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Yun Ying
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Penn-CHOP Lung Biology Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Jun Kong
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Penn-CHOP Lung Biology Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Maria C Basil
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Penn-CHOP Lung Biology Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Fabian L Cardenas-Diaz
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Penn-CHOP Lung Biology Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Kazushige Shiraishi
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Penn-CHOP Lung Biology Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Michael P Morley
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Penn-CHOP Lung Biology Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Edward E Morrisey
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Penn-CHOP Lung Biology Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
54
|
Herriges MJ, Yampolskaya M, Thapa BR, Lindstrom-Vautrin J, Wang F, Huang J, Na CL, Ma L, Montminy MM, Bawa P, Villacorta-Martin C, Mehta P, Kotton DN. Durable alveolar engraftment of PSC-derived lung epithelial cells into immunocompetent mice. Cell Stem Cell 2023; 30:1217-1234.e7. [PMID: 37625412 PMCID: PMC10529386 DOI: 10.1016/j.stem.2023.07.016] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 06/09/2023] [Accepted: 07/31/2023] [Indexed: 08/27/2023]
Abstract
Durable reconstitution of the distal lung epithelium with pluripotent stem cell (PSC) derivatives, if realized, would represent a promising therapy for diseases that result from alveolar damage. Here, we differentiate murine PSCs into self-renewing lung epithelial progenitors able to engraft into the injured distal lung epithelium of immunocompetent, syngeneic mouse recipients. After transplantation, these progenitors mature in the distal lung, assuming the molecular phenotypes of alveolar type 2 (AT2) and type 1 (AT1) cells. After months in vivo, donor-derived cells retain their mature phenotypes, as characterized by single-cell RNA sequencing (scRNA-seq), histologic profiling, and functional assessment that demonstrates continued capacity of the engrafted cells to proliferate and differentiate. These results indicate durable reconstitution of the distal lung's facultative progenitor and differentiated epithelial cell compartments with PSC-derived cells, thus establishing a novel model for pulmonary cell therapy that can be utilized to better understand the mechanisms and utility of engraftment.
Collapse
Affiliation(s)
- Michael J Herriges
- Center for Regenerative Medicine, Boston University and Boston Medical Center, Boston, MA 02118, USA; The Pulmonary Center and Department of Medicine, Boston University School of Medicine, Boston, MA 02118, USA
| | | | - Bibek R Thapa
- Center for Regenerative Medicine, Boston University and Boston Medical Center, Boston, MA 02118, USA; The Pulmonary Center and Department of Medicine, Boston University School of Medicine, Boston, MA 02118, USA
| | | | - Feiya Wang
- Center for Regenerative Medicine, Boston University and Boston Medical Center, Boston, MA 02118, USA
| | - Jessie Huang
- Center for Regenerative Medicine, Boston University and Boston Medical Center, Boston, MA 02118, USA; The Pulmonary Center and Department of Medicine, Boston University School of Medicine, Boston, MA 02118, USA
| | - Cheng-Lun Na
- Division of Pulmonary Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Liang Ma
- Center for Regenerative Medicine, Boston University and Boston Medical Center, Boston, MA 02118, USA; The Pulmonary Center and Department of Medicine, Boston University School of Medicine, Boston, MA 02118, USA
| | - McKenna M Montminy
- Center for Regenerative Medicine, Boston University and Boston Medical Center, Boston, MA 02118, USA; The Pulmonary Center and Department of Medicine, Boston University School of Medicine, Boston, MA 02118, USA
| | - Pushpinder Bawa
- Center for Regenerative Medicine, Boston University and Boston Medical Center, Boston, MA 02118, USA
| | - Carlos Villacorta-Martin
- Center for Regenerative Medicine, Boston University and Boston Medical Center, Boston, MA 02118, USA
| | - Pankaj Mehta
- Department of Physics, Boston University, Boston, MA 02215, USA
| | - Darrell N Kotton
- Center for Regenerative Medicine, Boston University and Boston Medical Center, Boston, MA 02118, USA; The Pulmonary Center and Department of Medicine, Boston University School of Medicine, Boston, MA 02118, USA.
| |
Collapse
|
55
|
Ghonim MA, Boyd DF, Flerlage T, Thomas PG. Pulmonary inflammation and fibroblast immunoregulation: from bench to bedside. J Clin Invest 2023; 133:e170499. [PMID: 37655660 PMCID: PMC10471178 DOI: 10.1172/jci170499] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/02/2023] Open
Abstract
In recent years, there has been an explosion of interest in how fibroblasts initiate, sustain, and resolve inflammation across disease states. Fibroblasts contain heterogeneous subsets with diverse functionality. The phenotypes of these populations vary depending on their spatial distribution within the tissue and the immunopathologic cues contributing to disease progression. In addition to their roles in structurally supporting organs and remodeling tissue, fibroblasts mediate critical interactions with diverse immune cells. These interactions have important implications for defining mechanisms of disease and identifying potential therapeutic targets. Fibroblasts in the respiratory tract, in particular, determine the severity and outcome of numerous acute and chronic lung diseases, including asthma, chronic obstructive pulmonary disease, acute respiratory distress syndrome, and idiopathic pulmonary fibrosis. Here, we review recent studies defining the spatiotemporal identity of the lung-derived fibroblasts and the mechanisms by which these subsets regulate immune responses to insult exposures and highlight past, current, and future therapeutic targets with relevance to fibroblast biology in the context of acute and chronic human respiratory diseases. This perspective highlights the importance of tissue context in defining fibroblast-immune crosstalk and paves the way for identifying therapeutic approaches to benefit patients with acute and chronic pulmonary disorders.
Collapse
Affiliation(s)
- Mohamed A. Ghonim
- Department of Immunology, St. Jude Children’s Research Hospital, Memphis, Tennessee, USA
- Department of Microbiology and Immunology, Faculty of Pharmacy, Al Azhar University, Cairo, Egypt
| | - David F. Boyd
- Molecular, Cell and Developmental Biology, University of California, Santa Cruz, Santa Cruz, California, USA
| | - Tim Flerlage
- Department of Infectious Diseases, St. Jude Children’s Research Hospital, Memphis, Tennessee, USA
| | - Paul G. Thomas
- Department of Immunology, St. Jude Children’s Research Hospital, Memphis, Tennessee, USA
| |
Collapse
|
56
|
Guo M, Morley MP, Jiang C, Wu Y, Li G, Du Y, Zhao S, Wagner A, Cakar AC, Kouril M, Jin K, Gaddis N, Kitzmiller JA, Stewart K, Basil MC, Lin SM, Ying Y, Babu A, Wikenheiser-Brokamp KA, Mun KS, Naren AP, Clair G, Adkins JN, Pryhuber GS, Misra RS, Aronow BJ, Tickle TL, Salomonis N, Sun X, Morrisey EE, Whitsett JA, Xu Y. Guided construction of single cell reference for human and mouse lung. Nat Commun 2023; 14:4566. [PMID: 37516747 PMCID: PMC10387117 DOI: 10.1038/s41467-023-40173-5] [Citation(s) in RCA: 50] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 07/13/2023] [Indexed: 07/31/2023] Open
Abstract
Accurate cell type identification is a key and rate-limiting step in single-cell data analysis. Single-cell references with comprehensive cell types, reproducible and functionally validated cell identities, and common nomenclatures are much needed by the research community for automated cell type annotation, data integration, and data sharing. Here, we develop a computational pipeline utilizing the LungMAP CellCards as a dictionary to consolidate single-cell transcriptomic datasets of 104 human lungs and 17 mouse lung samples to construct LungMAP single-cell reference (CellRef) for both normal human and mouse lungs. CellRefs define 48 human and 40 mouse lung cell types catalogued from diverse anatomic locations and developmental time points. We demonstrate the accuracy and stability of LungMAP CellRefs and their utility for automated cell type annotation of both normal and diseased lungs using multiple independent methods and testing data. We develop user-friendly web interfaces for easy access and maximal utilization of the LungMAP CellRefs.
Collapse
Affiliation(s)
- Minzhe Guo
- The Perinatal Institute and Section of Neonatology, Perinatal and Pulmonary Biology, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH, 45229, USA.
- Department of Pediatrics, University of Cincinnati College of Medicine, 3230 Eden Avenue, Cincinnati, OH, 45267, USA.
| | - Michael P Morley
- Department of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Penn-CHOP Lung Biology Institute, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Department of Cell and Developmental Biology, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Cheng Jiang
- The Perinatal Institute and Section of Neonatology, Perinatal and Pulmonary Biology, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH, 45229, USA
| | - Yixin Wu
- The Perinatal Institute and Section of Neonatology, Perinatal and Pulmonary Biology, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH, 45229, USA
| | - Guangyuan Li
- Division of Biomedical Informatics, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH, 45229, USA
| | - Yina Du
- The Perinatal Institute and Section of Neonatology, Perinatal and Pulmonary Biology, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH, 45229, USA
| | - Shuyang Zhao
- The Perinatal Institute and Section of Neonatology, Perinatal and Pulmonary Biology, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH, 45229, USA
| | - Andrew Wagner
- The Perinatal Institute and Section of Neonatology, Perinatal and Pulmonary Biology, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH, 45229, USA
| | - Adnan Cihan Cakar
- The Perinatal Institute and Section of Neonatology, Perinatal and Pulmonary Biology, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH, 45229, USA
| | - Michal Kouril
- Division of Biomedical Informatics, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH, 45229, USA
| | - Kang Jin
- Division of Biomedical Informatics, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH, 45229, USA
| | | | - Joseph A Kitzmiller
- The Perinatal Institute and Section of Neonatology, Perinatal and Pulmonary Biology, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH, 45229, USA
| | - Kathleen Stewart
- Department of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Penn-CHOP Lung Biology Institute, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Maria C Basil
- Department of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Penn-CHOP Lung Biology Institute, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Susan M Lin
- Department of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Penn-CHOP Lung Biology Institute, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Yun Ying
- Department of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Penn-CHOP Lung Biology Institute, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Apoorva Babu
- Department of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Penn-CHOP Lung Biology Institute, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Kathryn A Wikenheiser-Brokamp
- The Perinatal Institute and Section of Neonatology, Perinatal and Pulmonary Biology, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH, 45229, USA
- Division of Pathology and Laboratory Medicine, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH, 45229, USA
- Department of Pathology & Laboratory Medicine, University of Cincinnati College of Medicine, 3230 Eden Avenue, Cincinnati, OH, 45267, USA
| | - Kyu Shik Mun
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, 90048, USA
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA, 90048, USA
| | - Anjaparavanda P Naren
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, 90048, USA
| | - Geremy Clair
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, 99352, USA
| | - Joshua N Adkins
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, 99352, USA
| | - Gloria S Pryhuber
- Department of Pediatrics Division of Neonatology, University of Rochester Medical Center, Rochester, NY, 14642, USA
| | - Ravi S Misra
- Department of Pediatrics Division of Neonatology, University of Rochester Medical Center, Rochester, NY, 14642, USA
| | - Bruce J Aronow
- Department of Pediatrics, University of Cincinnati College of Medicine, 3230 Eden Avenue, Cincinnati, OH, 45267, USA
- Division of Biomedical Informatics, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH, 45229, USA
| | - Timothy L Tickle
- Data Sciences Platform, The Broad Institute, Cambridge, MA, 02142, USA
| | - Nathan Salomonis
- Department of Pediatrics, University of Cincinnati College of Medicine, 3230 Eden Avenue, Cincinnati, OH, 45267, USA
- Division of Biomedical Informatics, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH, 45229, USA
| | - Xin Sun
- Department of Pediatrics, University of California at San Diego, 9500 Gilman Dr., La Jolla, CA, 92093, USA
- Department of Biological Sciences, University of California at San Diego, 9500 Gilman Dr, La Jolla, CA, 92093, USA
| | - Edward E Morrisey
- Department of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Penn-CHOP Lung Biology Institute, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Department of Cell and Developmental Biology, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Jeffrey A Whitsett
- The Perinatal Institute and Section of Neonatology, Perinatal and Pulmonary Biology, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH, 45229, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, 3230 Eden Avenue, Cincinnati, OH, 45267, USA
| | - Yan Xu
- The Perinatal Institute and Section of Neonatology, Perinatal and Pulmonary Biology, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH, 45229, USA.
- Department of Pediatrics, University of Cincinnati College of Medicine, 3230 Eden Avenue, Cincinnati, OH, 45267, USA.
- Division of Biomedical Informatics, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH, 45229, USA.
| |
Collapse
|
57
|
El Agha E, Thannickal VJ. The lung mesenchyme in development, regeneration, and fibrosis. J Clin Invest 2023; 133:e170498. [PMID: 37463440 DOI: 10.1172/jci170498] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2023] Open
Abstract
Mesenchymal cells are uniquely located at the interface between the epithelial lining and the stroma, allowing them to act as a signaling hub among diverse cellular compartments of the lung. During embryonic and postnatal lung development, mesenchyme-derived signals instruct epithelial budding, branching morphogenesis, and subsequent structural and functional maturation. Later during adult life, the mesenchyme plays divergent roles wherein its balanced activation promotes epithelial repair after injury while its aberrant activation can lead to pathological remodeling and fibrosis that are associated with multiple chronic pulmonary diseases, including bronchopulmonary dysplasia, idiopathic pulmonary fibrosis, and chronic obstructive pulmonary disease. In this Review, we discuss the involvement of the lung mesenchyme in various morphogenic, neomorphogenic, and dysmorphogenic aspects of lung biology and health, with special emphasis on lung fibroblast subsets and smooth muscle cells, intercellular communication, and intrinsic mesenchymal mechanisms that drive such physiological and pathophysiological events throughout development, homeostasis, injury repair, regeneration, and aging.
Collapse
Affiliation(s)
- Elie El Agha
- Department of Medicine V, Internal Medicine, Infectious Diseases and Infection Control, Universities of Giessen and Marburg Lung Center (UGMLC), German Center for Lung Research (DZL), Justus-Liebig University Giessen, Giessen, Germany
- Cardio-Pulmonary Institute (CPI), Giessen, Germany
- Institute for Lung Health (ILH), Giessen, Germany
| | - Victor J Thannickal
- John W. Deming Department of Medicine, Tulane University School of Medicine, New Orleans, Louisiana, USA
- Southeast Louisiana Veterans Health Care System, New Orleans, Louisiana, USA
| |
Collapse
|
58
|
Altalhi W, Wu T, Wojtkiewicz GR, Jeffs S, Miki K, Ott HC. Intratracheally injected human-induced pluripotent stem cell-derived pneumocytes and endothelial cells engraft in the distal lung and ameliorate emphysema in a rat model. J Thorac Cardiovasc Surg 2023; 166:e23-e37. [PMID: 36933786 DOI: 10.1016/j.jtcvs.2023.03.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 03/01/2023] [Accepted: 03/05/2023] [Indexed: 03/20/2023]
Abstract
OBJECTIVES Pulmonary emphysema is characterized by the destruction of alveolar units and reduced gas exchange capacity. In the present study, we aimed to deliver induced pluripotent stem cell-derived endothelial cells and pneumocytes to repair and regenerate distal lung tissue in an elastase-induced emphysema model. METHODS We induced emphysema in athymic rats via intratracheal injection of elastase as previously reported. At 21 and 35 days after elastase treatment, we suspended 80 million induced pluripotent stem cell-derived endothelial cells and 20 million induced pluripotent stem cell-derived pneumocytes in hydrogel and injected the mixture intratracheally. On day 49 after elastase treatment, we performed imaging, functional analysis, and collected lungs for histology. RESULTS Using immunofluorescence detection of human-specific human leukocyte antigen 1, human-specific CD31, and anti--green fluorescent protein for the reporter labeled pneumocytes, we found that transplanted cells engrafted in 14.69% ± 0.95% of the host alveoli and fully integrated to form vascularized alveoli together with host cells. Transmission electron microscopy confirmed the incorporation of the transplanted human cells and the formation of a blood-air barrier. Human endothelial cells formed perfused vasculature. Computed tomography scans revealed improved vascular density and decelerated emphysema progression in cell-treated lungs. Proliferation of both human and rat cell was higher in cell-treated versus nontreated controls. Cell treatment reduced alveolar enlargement, improved dynamic compliance and residual volume, and improved diffusion capacity. CONCLUSIONS Our findings suggest that human induced pluripotent stem cell-derived distal lung cells can engraft in emphysematous lungs and participate in the formation of functional distal lung units to ameliorate the progression of emphysema.
Collapse
Affiliation(s)
- Wafa Altalhi
- Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, Mass; Clinical Laboratory Medicine, Faculty of Medical Sciences, Taif University, Taif, Makkah, Saudi Arabia
| | - Tong Wu
- Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, Mass
| | | | - Sydney Jeffs
- Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, Mass
| | - Kenji Miki
- Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, Mass
| | - Harald C Ott
- Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, Mass.
| |
Collapse
|
59
|
Alber AB, Marquez HA, Ma L, Kwong G, Thapa BR, Villacorta-Martin C, Lindstrom-Vautrin J, Bawa P, Wang F, Luo Y, Ikonomou L, Shi W, Kotton DN. Directed differentiation of mouse pluripotent stem cells into functional lung-specific mesenchyme. Nat Commun 2023; 14:3488. [PMID: 37311756 PMCID: PMC10264380 DOI: 10.1038/s41467-023-39099-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Accepted: 05/30/2023] [Indexed: 06/15/2023] Open
Abstract
While the generation of many lineages from pluripotent stem cells has resulted in basic discoveries and clinical trials, the derivation of tissue-specific mesenchyme via directed differentiation has markedly lagged. The derivation of lung-specific mesenchyme is particularly important since this tissue plays crucial roles in lung development and disease. Here we generate a mouse induced pluripotent stem cell (iPSC) line carrying a lung-specific mesenchymal reporter/lineage tracer. We identify the pathways (RA and Shh) necessary to specify lung mesenchyme and find that mouse iPSC-derived lung mesenchyme (iLM) expresses key molecular and functional features of primary developing lung mesenchyme. iLM recombined with engineered lung epithelial progenitors self-organizes into 3D organoids with juxtaposed layers of epithelium and mesenchyme. Co-culture increases yield of lung epithelial progenitors and impacts epithelial and mesenchymal differentiation programs, suggesting functional crosstalk. Our iPSC-derived population thus provides an inexhaustible source of cells for studying lung development, modeling diseases, and developing therapeutics.
Collapse
Affiliation(s)
- Andrea B Alber
- Center for Regenerative Medicine of Boston University and Boston Medical Center, Boston, MA, 02118, USA
- The Pulmonary Center and Department of Medicine, Boston University School of Medicine, Boston, MA, 02118, USA
| | - Hector A Marquez
- Center for Regenerative Medicine of Boston University and Boston Medical Center, Boston, MA, 02118, USA
- The Pulmonary Center and Department of Medicine, Boston University School of Medicine, Boston, MA, 02118, USA
| | - Liang Ma
- Center for Regenerative Medicine of Boston University and Boston Medical Center, Boston, MA, 02118, USA
- The Pulmonary Center and Department of Medicine, Boston University School of Medicine, Boston, MA, 02118, USA
| | - George Kwong
- Center for Regenerative Medicine of Boston University and Boston Medical Center, Boston, MA, 02118, USA
- The Pulmonary Center and Department of Medicine, Boston University School of Medicine, Boston, MA, 02118, USA
| | - Bibek R Thapa
- Center for Regenerative Medicine of Boston University and Boston Medical Center, Boston, MA, 02118, USA
- The Pulmonary Center and Department of Medicine, Boston University School of Medicine, Boston, MA, 02118, USA
| | - Carlos Villacorta-Martin
- Center for Regenerative Medicine of Boston University and Boston Medical Center, Boston, MA, 02118, USA
| | | | - Pushpinder Bawa
- Center for Regenerative Medicine of Boston University and Boston Medical Center, Boston, MA, 02118, USA
| | - Feiya Wang
- Center for Regenerative Medicine of Boston University and Boston Medical Center, Boston, MA, 02118, USA
| | - Yongfeng Luo
- Department of Surgery, Children's Hospital Los Angeles, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90027, USA
| | - Laertis Ikonomou
- Department of Oral Biology, School of Dental Medicine, University at Buffalo, Buffalo, NY, 14260, USA
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, 14215, USA
| | - Wei Shi
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, OH, 45267, USA
| | - Darrell N Kotton
- Center for Regenerative Medicine of Boston University and Boston Medical Center, Boston, MA, 02118, USA.
- The Pulmonary Center and Department of Medicine, Boston University School of Medicine, Boston, MA, 02118, USA.
| |
Collapse
|
60
|
Rosmark O, Kadefors M, Dellgren G, Karlsson C, Ericsson A, Lindstedt S, Malmström J, Hallgren O, Larsson-Callerfelt AK, Westergren-Thorsson G. Alveolar epithelial cells are competent producers of interstitial extracellular matrix with disease relevant plasticity in a human in vitro 3D model. Sci Rep 2023; 13:8801. [PMID: 37258541 DOI: 10.1038/s41598-023-35011-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 05/11/2023] [Indexed: 06/02/2023] Open
Abstract
Alveolar epithelial cells (AEC) have been implicated in pathological remodelling. We examined the capacity of AEC to produce extracellular matrix (ECM) and thereby directly contribute towards remodelling in chronic lung diseases. Cryopreserved type 2 AEC (AEC2) from healthy lungs and chronic obstructive pulmonary disease (COPD) afflicted lungs were cultured in decellularized healthy human lung slices for 13 days. Healthy-derived AEC2 were treated with transforming growth factor ß1 (TGF-β1) to evaluate the plasticity of their ECM production. Evaluation of phenotypic markers and expression of matrisome genes and proteins were evaluated by RNA-sequencing, mass spectrometry and immunohistochemistry. The AEC2 displayed an AEC marker profile similar to freshly isolated AEC2 throughout the 13-day culture period. COPD-derived AECs proliferated as healthy AECs with few differences in gene and protein expression while retaining increased expression of disease marker HLA-A. The AEC2 expressed basement membrane components and a complex set of interstitial ECM proteins. TGF-β1 stimuli induced a significant change in interstitial ECM production from AEC2 without loss of specific AEC marker expression. This study reveals a previously unexplored potential of AEC to directly contribute to ECM turnover by producing interstitial ECM proteins, motivating a re-evaluation of the role of AEC2 in pathological lung remodelling.
Collapse
Affiliation(s)
- Oskar Rosmark
- Lung Biology, Department of Experimental Medical Science, Lund University, BMC C12, 22184, Lund, Sweden.
| | - Måns Kadefors
- Lung Biology, Department of Experimental Medical Science, Lund University, BMC C12, 22184, Lund, Sweden
| | - Göran Dellgren
- Transplant Institute and Department of Cardiothoracic Surgery, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Christofer Karlsson
- Division of Infection Medicine, Department of Clinical Sciences, Lund University, Lund, Sweden
| | | | | | - Johan Malmström
- Division of Infection Medicine, Department of Clinical Sciences, Lund University, Lund, Sweden
| | - Oskar Hallgren
- Division of Respiratory Medicine and Allergology, Department of Clinical Sciences, Lund University, Lund, Sweden
| | | | | |
Collapse
|
61
|
Cardenas-Diaz FL, Liberti DC, Leach JP, Babu A, Barasch J, Shen T, Diaz-Miranda MA, Zhou S, Ying Y, Callaway DA, Morley MP, Morrisey EE. Temporal and spatial staging of lung alveolar regeneration is determined by the grainyhead transcription factor Tfcp2l1. Cell Rep 2023; 42:112451. [PMID: 37119134 PMCID: PMC10360042 DOI: 10.1016/j.celrep.2023.112451] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 01/23/2023] [Accepted: 04/13/2023] [Indexed: 04/30/2023] Open
Abstract
Alveolar epithelial type 2 (AT2) cells harbor the facultative progenitor capacity in the lung alveolus to drive regeneration after lung injury. Using single-cell transcriptomics, software-guided segmentation of tissue damage, and in vivo mouse lineage tracing, we identified the grainyhead transcription factor cellular promoter 2-like 1 (Tfcp2l1) as a regulator of this regenerative process. Tfcp2l1 loss in adult AT2 cells inhibits self-renewal and enhances AT2-AT1 differentiation during tissue regeneration. Conversely, Tfcp2l1 blunts the proliferative response to inflammatory signaling during the early acute injury phase. Tfcp2l1 temporally regulates AT2 self-renewal and differentiation in alveolar regions undergoing active regeneration. Single-cell transcriptomics and lineage tracing reveal that Tfcp2l1 regulates cell fate dynamics across the AT2-AT1 differentiation and restricts the inflammatory program in murine AT2 cells. Organoid modeling shows that Tfcp2l1 regulation of interleukin-1 (IL-1) receptor expression controlled these cell fate dynamics. These findings highlight the critical role Tfcp2l1 plays in balancing epithelial cell self-renewal and differentiation during alveolar regeneration.
Collapse
Affiliation(s)
- Fabian L Cardenas-Diaz
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Penn-CHOP Lung Biology Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Derek C Liberti
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Penn-CHOP Lung Biology Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - John P Leach
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Penn-CHOP Lung Biology Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Apoorva Babu
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Penn-CHOP Lung Biology Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Penn Cardiovascular Institute, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Jonathan Barasch
- Department of Pathology and Cell Biology, Columbia University, New York, NY 10032, USA
| | - Tian Shen
- Department of Pathology and Cell Biology, Columbia University, New York, NY 10032, USA
| | - Maria A Diaz-Miranda
- Division of Genomic Diagnostics, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Su Zhou
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Penn-CHOP Lung Biology Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Penn Cardiovascular Institute, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Yun Ying
- Penn-CHOP Lung Biology Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Penn Cardiovascular Institute, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Danielle A Callaway
- Penn-CHOP Lung Biology Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Michael P Morley
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Penn-CHOP Lung Biology Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Penn Cardiovascular Institute, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Edward E Morrisey
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Penn-CHOP Lung Biology Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Penn Cardiovascular Institute, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
62
|
Wang Z, Ou Q, Gao L. The increased cfRNA of TNFSF4 in peripheral blood at late gestation and preterm labor: its implication as a noninvasive biomarker for premature delivery. Front Immunol 2023; 14:1154025. [PMID: 37275889 PMCID: PMC10232964 DOI: 10.3389/fimmu.2023.1154025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 04/27/2023] [Indexed: 06/07/2023] Open
Abstract
INTRODUCTION Given the important roles of immune tolerance and inflammation in both preterm and term labor, some inflammation-related genes could be related to the initiation of labor, even preterm labor. Inspection of cell-free RNA (cfRNA) engaged in inflammation in maternal blood may represent the varied gestational age and may have significant implications for the development of noninvasive diagnostics for preterm birth. METHODS To identify potential biomarkers of preterm birth, we investigated the cfRNA and exosomal miRNA in the peripheral blood of pregnant women at different gestational ages that undergo term labor or preterm labor. 17 inflammatory initiation-related cfRNAs were screened by overlapping with the targets of decreasing miRNAs during gestation and highly expressed cfRNAs at late gestation in maternal blood. To reveal the origins and mechanisms of these screened cfRNAs, the datasets of single-cell RNA sequencing from peripheral blood mononuclear cells of pregnant women, the fetal lung, and the placenta across different gestational ages were analyzed. RESULTS During late gestation, TNFSF4 expression increased exclusively in pro-inflammatory macrophages of maternal blood, whereas its receptor, TNFRSF4, increased expression in T cells from the decidua, which suggested the potential cell-cell communication of maternally-originated pro-inflammatory macrophages with the decidual T cells and contributed to the initiation of labor. Additionally, the cfRNA of TNFSF4 was also increased in preterm labor compared to term labor in the validation cohorts. The EIF2AK2 and TLR4 transcripts were increased in pro-inflammatory macrophages from both fetal lung and placenta but not in those from maternal mononuclear cells at late gestation, suggesting these cfRNAs are possibly derived from fetal tissues exclusively. Moreover, EIF2AK2 and TLR4 transcripts were found highly expressed in the pro-inflammatory macrophages from decidua as well, which suggested these specific fetal-origin macrophages may function at the maternal-fetal interface to stimulate uterine contractions, which have been implicated as the trigger of parturition and preterm labor. DISCUSSION Taken together, our findings not only revealed the potential of peripheral TNFSF4 as a novel cfRNA biomarker for noninvasive testing of preterm labor but further illustrated how maternal and fetal signals coordinately modulate the inflammatory process at the maternal-fetal interface, causing the initiation of term or preterm labor.
Collapse
Affiliation(s)
- Zhe Wang
- Department of Physiology, College of Basic Medical Sciences, Naval Medical University, Shanghai, China
| | - Qingjian Ou
- Department of Ophthalmology of Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Lu Gao
- Department of Physiology, College of Basic Medical Sciences, Naval Medical University, Shanghai, China
- Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai Jiaotong University, Shanghai, China
| |
Collapse
|
63
|
Chong L, Ahmadvand N, Noori A, Lv Y, Chen C, Bellusci S, Zhang JS. Injury activated alveolar progenitors (IAAPs): the underdog of lung repair. Cell Mol Life Sci 2023; 80:145. [PMID: 37166489 PMCID: PMC10173924 DOI: 10.1007/s00018-023-04789-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Revised: 04/11/2023] [Accepted: 04/24/2023] [Indexed: 05/12/2023]
Abstract
Alveolar epithelial type II cells (AT2s) together with AT1s constitute the epithelial lining of lung alveoli. In contrast to the large flat AT1s, AT2s are cuboidal and smaller. In addition to surfactant production, AT2s also serve as prime alveolar progenitors in homeostasis and play an important role during regeneration/repair. Based on different lineage tracing strategies in mice and single-cell transcriptomic analysis, recent reports highlight the heterogeneous nature of AT2s. These studies present compelling evidence for the presence of stable or transitory AT2 subpopulations with distinct marker expression, signaling pathway activation and functional properties. Despite demonstrated progenitor potentials of AT2s in maintaining homeostasis, through self-renewal and differentiation to AT1s, the exact identity, full progenitor potential and regulation of these progenitor cells, especially in the context of human diseases remain unclear. We recently identified a novel subset of AT2 progenitors named "Injury-Activated Alveolar Progenitors" (IAAPs), which express low levels of Sftpc, Sftpb, Sftpa1, Fgfr2b and Etv5, but are highly enriched for the expression of the surface receptor programmed cell death-ligand 1 (Pd-l1). IAAPs are quiescent during lung homeostasis but activated upon injury with the potential to proliferate and differentiate into AT2s. Significantly, a similar population of PD-L1 positive cells expressing intermediate levels of SFTPC are found to be expanded in human IPF lungs. We summarize here the current understanding of this newly discovered AT2 progenitor subpopulation and also try to reconcile the relationship between different AT2 stem cell subpopulations regarding their progenitor potential, regulation, and relevance to disease pathogenesis and therapeutic interventions.
Collapse
Affiliation(s)
- Lei Chong
- Department of Pediatric Respiratory Medicine, National Key Clinical Specialty of Pediatric Respiratory Medicine, Institute of Pediatrics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, Zhejiang, China
| | - Negah Ahmadvand
- Department of Cell Biology, Duke University School of Medicine, Durham, NC27710, USA
| | - Afshin Noori
- Cardio Pulmonary Institute, Department of Pulmonary and Critical Care Medicine and Infectious Diseases, Universities of Giessen and Marburg Lung Center, Justus-Liebig University Giessen, 35392, Giessen, Germany
| | - Yuqing Lv
- Medical Research Center, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China
- The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou, 324000, Zhejiang, China
| | - Chengshui Chen
- The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou, 324000, Zhejiang, China
- Zhejiang Provincial Key Laboratory of Interventional Pulmonology and Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China
| | - Saverio Bellusci
- The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou, 324000, Zhejiang, China.
- Laboratory of Extracellular Matrix Remodelling, Cardio Pulmonary Institute, Department of Pulmonary and Critical Care Medicine and Infectious Diseases, Universities of Giessen and Marburg Lung Center, Member of the German Lung Center, Justus-Liebig University Giessen, 35392, Giessen, Germany.
| | - Jin-San Zhang
- Medical Research Center, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China.
- The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou, 324000, Zhejiang, China.
- Zhejiang Provincial Key Laboratory of Interventional Pulmonology and Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China.
| |
Collapse
|
64
|
Callaway DA, Penkala IJ, Zhou S, Cardenas-Diaz F, Babu A, Morley MP, Lopes M, Garcia BA, Morrisey EE. TGFβ controls alveolar type 1 epithelial cell plasticity and alveolar matrisome gene transcription. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.09.540035. [PMID: 37214932 PMCID: PMC10197675 DOI: 10.1101/2023.05.09.540035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Premature birth disrupts normal lung development and places infants at risk for bronchopulmonary dysplasia (BPD), a disease increasing in incidence which disrupts lung health throughout the lifespan. The TGFβ superfamily has been implicated in BPD pathogenesis, however, what cell lineage it impacts remains unclear. We show that Tgfbr2 is critical for AT1 cell fate maintenance and function. Loss of Tgfbr2 in AT1 cells during late lung development leads to AT1-AT2 cell reprogramming and altered pulmonary architecture, which persists into adulthood. Restriction of fetal lung stretch and associated AT1 cell spreading through a model of oligohydramnios enhances AT1-AT2 reprogramming. Transcriptomic and proteomic analysis reveal the necessity of Tgfbr2 expression in AT1 cells for extracellular matrix production. Moreover, TGFβ signaling regulates integrin transcription to alter AT1 cell morphology, which further impacts ECM expression through changes in mechanotransduction. These data reveal the cell intrinsic necessity of TGFβ signaling in maintaining AT1 cell fate and reveal this cell lineage as a major orchestrator of the alveolar matrisome.
Collapse
|
65
|
Yang MC, Rea-Moreno MG, Chen YW. Breathing-induced forces influence lung cell fate. Cell Stem Cell 2023; 30:507-508. [PMID: 37146577 DOI: 10.1016/j.stem.2023.04.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 04/05/2023] [Accepted: 04/06/2023] [Indexed: 05/07/2023]
Abstract
Respiration exerts a mechanical strain on the lungs, which has an unclear effect on epithelial cell fate. Now in Cell, Shiraishi et al.1 reveal the crucial role of mechanotransduction in maintaining lung epithelial cell fate, representing a significant milestone in understanding how mechanical factors regulate differentiation.
Collapse
Affiliation(s)
- Min-Chi Yang
- Department of Otolaryngology, Icahn School of Medicine at Mount Sinai, New York City, NY, USA; Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York City, NY, USA; Institute for Airway Sciences, Icahn School of Medicine at Mount Sinai, New York City, NY, USA; Center for Epithelial and Airway Biology and Regeneration, Icahn School of Medicine at Mount Sinai, New York City, NY, USA
| | - Martha G Rea-Moreno
- Department of Otolaryngology, Icahn School of Medicine at Mount Sinai, New York City, NY, USA; Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York City, NY, USA; Institute for Airway Sciences, Icahn School of Medicine at Mount Sinai, New York City, NY, USA; Center for Epithelial and Airway Biology and Regeneration, Icahn School of Medicine at Mount Sinai, New York City, NY, USA; Master of Science in Biomedical Science Program, Icahn School of Medicine at Mount Sinai, New York City, NY, USA
| | - Ya-Wen Chen
- Department of Otolaryngology, Icahn School of Medicine at Mount Sinai, New York City, NY, USA; Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York City, NY, USA; Institute for Airway Sciences, Icahn School of Medicine at Mount Sinai, New York City, NY, USA; Center for Epithelial and Airway Biology and Regeneration, Icahn School of Medicine at Mount Sinai, New York City, NY, USA; Department of Cell, Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York City, NY, USA.
| |
Collapse
|
66
|
Meng X, Cui G, Peng G. Lung development and regeneration: newly defined cell types and progenitor status. CELL REGENERATION (LONDON, ENGLAND) 2023; 12:5. [PMID: 37009950 PMCID: PMC10068224 DOI: 10.1186/s13619-022-00149-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 11/05/2022] [Indexed: 06/19/2023]
Abstract
The lung is the most critical organ of the respiratory system supporting gas exchange. Constant interaction with the external environment makes the lung vulnerable to injury. Thus, a deeper understanding of cellular and molecular processes underlying lung development programs and evaluation of progenitor status within the lung is an essential part of lung regenerative medicine. In this review, we aim to discuss the current understanding of lung development process and regenerative capability. We highlight the advances brought by multi-omics approaches, single-cell transcriptome, in particular, that can help us further dissect the cellular player and molecular signaling underlying those processes.
Collapse
Affiliation(s)
- Xiaogao Meng
- Center for Cell Lineage and Development, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, Guangdong, China
- Life Science and Medicine, University of Science and Technology of China, Hefei, 230026, Anhui, China
| | - Guizhong Cui
- School of Basic Medical Sciences, Guangzhou Laboratory, Guangzhou Medical University, Guangzhou, 510005, China.
| | - Guangdun Peng
- Center for Cell Lineage and Development, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, Guangdong, China.
| |
Collapse
|
67
|
Myronenko O, Foris V, Crnkovic S, Olschewski A, Rocha S, Nicolls MR, Olschewski H. Endotyping COPD: hypoxia-inducible factor-2 as a molecular "switch" between the vascular and airway phenotypes? Eur Respir Rev 2023; 32:220173. [PMID: 36631133 PMCID: PMC9879331 DOI: 10.1183/16000617.0173-2022] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 11/08/2022] [Indexed: 01/13/2023] Open
Abstract
COPD is a heterogeneous disease with multiple clinical phenotypes. COPD endotypes can be determined by different expressions of hypoxia-inducible factors (HIFs), which, in combination with individual susceptibility and environmental factors, may cause predominant airway or vascular changes in the lung. The pulmonary vascular phenotype is relatively rare among COPD patients and characterised by out-of-proportion pulmonary hypertension (PH) and low diffusing capacity of the lung for carbon monoxide, but only mild-to-moderate airway obstruction. Its histologic feature, severe remodelling of the small pulmonary arteries, can be mediated by HIF-2 overexpression in experimental PH models. HIF-2 is not only involved in the vascular remodelling but also in the parenchyma destruction. Endothelial cells from human emphysema lungs express reduced HIF-2α levels, and the deletion of pulmonary endothelial Hif-2α leads to emphysema in mice. This means that both upregulation and downregulation of HIF-2 have adverse effects and that HIF-2 may represent a molecular "switch" between the development of the vascular and airway phenotypes in COPD. The mechanisms of HIF-2 dysregulation in the lung are only partly understood. HIF-2 levels may be controlled by NAD(P)H oxidases via iron- and redox-dependent mechanisms. A better understanding of these mechanisms may lead to the development of new therapeutic targets.
Collapse
Affiliation(s)
- Oleh Myronenko
- Division of Pulmonology, Department of Internal Medicine, Medical University of Graz, Graz, Austria
| | - Vasile Foris
- Division of Pulmonology, Department of Internal Medicine, Medical University of Graz, Graz, Austria
- Ludwig Boltzmann Institute for Lung Vascular Research, Graz, Austria
| | - Slaven Crnkovic
- Ludwig Boltzmann Institute for Lung Vascular Research, Graz, Austria
- Division of Physiology, Otto Loewi Research Center, Medical University of Graz, Graz, Austria
| | - Andrea Olschewski
- Ludwig Boltzmann Institute for Lung Vascular Research, Graz, Austria
- Department of Anaesthesiology and Intensive Care Medicine, Medical University of Graz, Graz, Austria
| | - Sonia Rocha
- Department of Molecular Physiology and Cell Signalling, Institute of Systems, Molecular, and Integrative Biology, University of Liverpool, Liverpool, UK
| | - Mark R Nicolls
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, Stanford University, Stanford, CA, USA
| | - Horst Olschewski
- Division of Pulmonology, Department of Internal Medicine, Medical University of Graz, Graz, Austria
- Ludwig Boltzmann Institute for Lung Vascular Research, Graz, Austria
| |
Collapse
|
68
|
Shiraishi K, Shah PP, Morley MP, Loebel C, Santini GT, Katzen J, Basil MC, Lin SM, Planer JD, Cantu E, Jones DL, Nottingham AN, Li S, Cardenas-Diaz FL, Zhou S, Burdick JA, Jain R, Morrisey EE. Biophysical forces mediated by respiration maintain lung alveolar epithelial cell fate. Cell 2023; 186:1478-1492.e15. [PMID: 36870331 PMCID: PMC10065960 DOI: 10.1016/j.cell.2023.02.010] [Citation(s) in RCA: 61] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 12/21/2022] [Accepted: 02/07/2023] [Indexed: 03/06/2023]
Abstract
Lungs undergo mechanical strain during breathing, but how these biophysical forces affect cell fate and tissue homeostasis are unclear. We show that biophysical forces through normal respiratory motion actively maintain alveolar type 1 (AT1) cell identity and restrict these cells from reprogramming into AT2 cells in the adult lung. AT1 cell fate is maintained at homeostasis by Cdc42- and Ptk2-mediated actin remodeling and cytoskeletal strain, and inactivation of these pathways causes a rapid reprogramming into the AT2 cell fate. This plasticity induces chromatin reorganization and changes in nuclear lamina-chromatin interactions, which can discriminate AT1 and AT2 cell identity. Unloading the biophysical forces of breathing movements leads to AT1-AT2 cell reprogramming, revealing that normal respiration is essential to maintain alveolar epithelial cell fate. These data demonstrate the integral function of mechanotransduction in maintaining lung cell fate and identifies the AT1 cell as an important mechanosensor in the alveolar niche.
Collapse
Affiliation(s)
- Kazushige Shiraishi
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Penn-CHOP Lung Biology Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Parisha P Shah
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Penn-CHOP Lung Biology Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Penn Cardiovascular Institute, University of Pennsylvania, Philadelphia, PA, USA; Penn Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Michael P Morley
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Penn-CHOP Lung Biology Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Penn Cardiovascular Institute, University of Pennsylvania, Philadelphia, PA, USA
| | - Claudia Loebel
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA; Department of Materials Science and Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Garrett T Santini
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Penn-CHOP Lung Biology Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Penn Cardiovascular Institute, University of Pennsylvania, Philadelphia, PA, USA; Penn Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Jeremy Katzen
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Penn-CHOP Lung Biology Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Maria C Basil
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Penn-CHOP Lung Biology Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Penn Cardiovascular Institute, University of Pennsylvania, Philadelphia, PA, USA
| | - Susan M Lin
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Penn-CHOP Lung Biology Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Joseph D Planer
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Penn-CHOP Lung Biology Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Edward Cantu
- Penn-CHOP Lung Biology Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Division of Cardiovascular Surgery, Department of Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Dakota L Jones
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Penn-CHOP Lung Biology Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Ana N Nottingham
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Penn-CHOP Lung Biology Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Shanru Li
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Penn-CHOP Lung Biology Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Fabian L Cardenas-Diaz
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Penn-CHOP Lung Biology Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Su Zhou
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Penn-CHOP Lung Biology Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Jason A Burdick
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA; BioFrontiers Institute and Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, CO, USA
| | - Rajan Jain
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Penn-CHOP Lung Biology Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Penn Cardiovascular Institute, University of Pennsylvania, Philadelphia, PA, USA; Penn Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Edward E Morrisey
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Penn-CHOP Lung Biology Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Penn Cardiovascular Institute, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
69
|
Wilson CL, Hung CF, Burkel BM, Ponik SM, Gharib SA, Schnapp LM. Nephronectin is required to maintain right lung lobar separation during embryonic development. Am J Physiol Lung Cell Mol Physiol 2023; 324:L335-L344. [PMID: 36719987 PMCID: PMC10027138 DOI: 10.1152/ajplung.00505.2021] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 11/30/2022] [Accepted: 01/25/2023] [Indexed: 02/02/2023] Open
Abstract
Nephronectin (NPNT) is a basement membrane (BM) protein and high-affinity ligand of integrin α8β1 that is required for kidney morphogenesis in mice. In the lung, NPNT also localizes to BMs, but its potential role in pulmonary development has not been investigated. Mice with a floxed Npnt allele were used to generate global knockouts (KOs). Staged embryos were obtained by timed matings of heterozygotes and lungs were isolated for analysis. Although primary and secondary lung bud formation was normal in KO embryos, fusion of right lung lobes, primarily the medial and caudal, was first detected at E13.5 and persisted into adulthood. The lung parenchyma of KO mice was indistinguishable from wild-type (WT) and lobe fusion did not alter respiratory mechanics in adult KO mice. Interrogation of an existing single-cell RNA-seq atlas of embryonic and adult mouse lungs identified Npnt transcripts in mesothelial cells at E12.5 and into the early postnatal period, but not in adult lungs. KO embryonic lungs exhibited increased expression of laminin α5 and deposition of collagen IV in the mesothelial BM, accompanied by abnormalities in collagen fibrils in the adjacent stroma. Cranial and accessory lobes extracted from KO embryonic lungs fused ex vivo when cultured in juxtaposition, with the area of fusion showing loss of the mesothelial marker Wilms tumor 1. Because a similar pattern of lobe fusion was previously observed in integrin α8 KO embryos, our results suggest that NPNT signaling through integrin α8, likely in the visceral pleura, maintains right lung lobe separation during embryogenesis.
Collapse
Affiliation(s)
- Carole L Wilson
- Division of Allergy, Pulmonary, and Critical Care Medicine, Department of Medicine, University of Wisconsin, Madison, Wisconsin, United States
| | - Chi F Hung
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, University of Washington, Seattle, Washington, United States
| | - Brian M Burkel
- Department of Cell and Regenerative Biology, University of Wisconsin, Madison, Wisconsin, United States
| | - Suzanne M Ponik
- Department of Cell and Regenerative Biology, University of Wisconsin, Madison, Wisconsin, United States
| | - Sina A Gharib
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, University of Washington, Seattle, Washington, United States
| | - Lynn M Schnapp
- Division of Allergy, Pulmonary, and Critical Care Medicine, Department of Medicine, University of Wisconsin, Madison, Wisconsin, United States
| |
Collapse
|
70
|
Abstract
Vascular endothelial cells form the inner layer of blood vessels where they have a key role in the development and maintenance of the functional circulatory system and provide paracrine support to surrounding non-vascular cells. Technical advances in the past 5 years in single-cell genomics and in in vivo genetic labelling have facilitated greater insights into endothelial cell development, plasticity and heterogeneity. These advances have also contributed to a new understanding of the timing of endothelial cell subtype differentiation and its relationship to the cell cycle. Identification of novel tissue-specific gene expression patterns in endothelial cells has led to the discovery of crucial signalling pathways and new interactions with other cell types that have key roles in both tissue maintenance and disease pathology. In this Review, we describe the latest findings in vascular endothelial cell development and diversity, which are often supported by large-scale, single-cell studies, and discuss the implications of these findings for vascular medicine. In addition, we highlight how techniques such as single-cell multimodal omics, which have become increasingly sophisticated over the past 2 years, are being utilized to study normal vascular physiology as well as functional perturbations in disease.
Collapse
Affiliation(s)
- Emily Trimm
- Stanford Medical Scientist Training Program, Stanford University School of Medicine, Stanford, CA, USA
- Stanford Biophysics Program, Stanford University School of Medicine, Stanford, CA, USA
| | - Kristy Red-Horse
- Department of Biology, Stanford University, Stanford, CA, USA.
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, USA.
- Howard Hughes Medical Institute, Stanford University, Stanford, CA, USA.
| |
Collapse
|
71
|
Abstract
The human lung cellular portfolio, traditionally characterized by cellular morphology and individual markers, is highly diverse, with over 40 cell types and a complex branching structure highly adapted for agile airflow and gas exchange. While constant during adulthood, lung cellular content changes in response to exposure, injury, and infection. Some changes are temporary, but others are persistent, leading to structural changes and progressive lung disease. The recent advance of single-cell profiling technologies allows an unprecedented level of detail and scale to cellular measurements, leading to the rise of comprehensive cell atlas styles of reporting. In this review, we chronical the rise of cell atlases and explore their contributions to human lung biology in health and disease.
Collapse
Affiliation(s)
- Taylor S Adams
- Section of Pulmonary, Critical Care and Sleep Medicine, Yale School of Medicine, Yale University, New Haven, Connecticut, USA;
| | - Arnaud Marlier
- Department of Neurosurgery, Yale School of Medicine, Yale University, New Haven, Connecticut, USA
| | - Naftali Kaminski
- Section of Pulmonary, Critical Care and Sleep Medicine, Yale School of Medicine, Yale University, New Haven, Connecticut, USA;
| |
Collapse
|
72
|
Li DB, Xu XX, Hu YQ, Cui Q, Xiao YY, Sun SJ, Chen LJ, Ye LC, Sun Q. Congenital heart disease-associated pulmonary dysplasia and its underlying mechanisms. Am J Physiol Lung Cell Mol Physiol 2023; 324:L89-L101. [PMID: 36472329 PMCID: PMC9925164 DOI: 10.1152/ajplung.00195.2022] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Clinical observation indicates that exercise capacity, an important determinant of survival in patients with congenital heart disease (CHD), is most decreased in children with reduced pulmonary blood flow (RPF). However, the underlying mechanism remains unclear. Here, we obtained human RPF lung samples from children with tetralogy of Fallot as well as piglet and rat RPF lung samples from animals with pulmonary artery banding surgery. We observed impaired alveolarization and vascularization, the main characteristics of pulmonary dysplasia, in the lungs of RPF infants, piglets, and rats. RPF caused smaller lungs, cyanosis, and body weight loss in neonatal rats and reduced the number of alveolar type 2 cells. RNA sequencing demonstrated that RPF induced the downregulation of metabolism and migration, a key biological process of late alveolar development, and the upregulation of immune response, which was confirmed by flow cytometry and cytokine detection. In addition, the immunosuppressant cyclosporine A rescued pulmonary dysplasia and increased the expression of the Wnt signaling pathway, which is the driver of postnatal lung development. We concluded that RPF results in pulmonary dysplasia, which may account for the reduced exercise capacity of patients with CHD with RPF. The underlying mechanism is associated with immune response activation, and immunosuppressants have a therapeutic effect in CHD-associated pulmonary dysplasia.
Collapse
Affiliation(s)
- De-Bao Li
- 1Department of Thoracic and Cardiovascular Surgery, Shanghai Children’s Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, People’s Republic of China
| | - Xiu-Xia Xu
- 4Department of Radiology, Huangpu Branch, Shanghai Ninth People’s Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, People’s Republic of China
| | - Yu-Qing Hu
- 3Department of Cardiology, Shanghai Children’s Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, People’s Republic of China
| | - Qing Cui
- 3Department of Cardiology, Shanghai Children’s Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, People’s Republic of China
| | - Ying-Ying Xiao
- 1Department of Thoracic and Cardiovascular Surgery, Shanghai Children’s Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, People’s Republic of China
| | - Si-Juan Sun
- 5Department of Pediatric Intensive Care Unit, Shanghai Children’s Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, People’s Republic of China
| | - Li-Jun Chen
- 3Department of Cardiology, Shanghai Children’s Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, People’s Republic of China
| | - Lin-Cai Ye
- 2Department of Thoracic and Cardiovascular Surgery, Shanghai Institute for Pediatric Congenital Heart Disease, Institute of Pediatric Translational Medicine, Shanghai Children’s Medical Center, Shanghai School of Medicine, Shanghai Jiao Tong University, Shanghai, People’s Republic of China
| | - Qi Sun
- 1Department of Thoracic and Cardiovascular Surgery, Shanghai Children’s Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, People’s Republic of China
| |
Collapse
|
73
|
Cellular and Molecular Mechanisms in Idiopathic Pulmonary Fibrosis. Adv Respir Med 2023; 91:26-48. [PMID: 36825939 PMCID: PMC9952569 DOI: 10.3390/arm91010005] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 01/06/2023] [Accepted: 01/12/2023] [Indexed: 02/04/2023]
Abstract
The respiratory system is a well-organized multicellular organ, and disruption of cellular homeostasis or abnormal tissue repair caused by genetic deficiency and exposure to risk factors lead to life-threatening pulmonary disease including idiopathic pulmonary fibrosis (IPF). Although there is no clear etiology as the name reflected, its pathological progress is closely related to uncoordinated cellular and molecular signals. Here, we review the advances in our understanding of the role of lung tissue cells in IPF pathology including epithelial cells, mesenchymal stem cells, fibroblasts, immune cells, and endothelial cells. These advances summarize the role of various cell components and signaling pathways in the pathogenesis of idiopathic pulmonary fibrosis, which is helpful to further study the pathological mechanism of the disease, provide new opportunities for disease prevention and treatment, and is expected to improve the survival rate and quality of life of patients.
Collapse
|
74
|
Yampolskaya M, Herriges M, Ikonomou L, Kotton D, Mehta P. scTOP: physics-inspired order parameters for cellular identification and visualization. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.25.525581. [PMID: 36747864 PMCID: PMC9900792 DOI: 10.1101/2023.01.25.525581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Advances in single-cell RNA-sequencing (scRNA-seq) provide an unprecedented window into cellular identity. The increasing abundance of data requires new theoretical and computational frameworks for understanding cell fate determination, accurately classifying cell fates from expression data, and integrating knowledge from cell atlases. Here, we present single-cell Type Order Parameters (scTOP): a statistical-physics-inspired approach for constructing "order parameters" for cell fate given a reference basis of cell types. scTOP can quickly and accurately classify cells at a single-cell resolution, generate interpretable visualizations of developmental trajectories, and assess the fidelity of engineered cells. Importantly, scTOP does this without using feature selection, statistical fitting, or dimensional reduction (e.g., UMAP, PCA, etc.). We illustrate the power of scTOP utilizing a wide variety of human and mouse datasets (both in vivo and in vitro ). By reanalyzing mouse lung alveolar development data, we characterize a transient perinatal hybrid alveolar type 1/alveolar type 2 (AT1/AT2) cell population that disappears by 15 days post-birth and show that it is transcriptionally distinct from previously identified adult AT2-to-AT1 transitional cell types. Visualizations of lineage tracing data on hematopoiesis using scTOP confirm that a single clone can give rise to as many as three distinct differentiated cell types. We also show how scTOP can quantitatively assess the transcriptional similarity between endogenous and transplanted cells in the context of murine pulmonary cell transplantation. Finally, we provide an easy-to-use Python implementation of scTOP. Our results suggest that physics-inspired order parameters can be an important tool for understanding development and characterizing engineered cells.
Collapse
Affiliation(s)
| | - Michael Herriges
- Center for Regenerative Medicine of Boston University and Boston Medical Center, Boston, MA, USA
- The Pulmonary Center and Department of Medicine, Boston University School of Medicine, Boston, MA, USA
| | - Laertis Ikonomou
- Department of Oral Biology. University at Buffalo, The State University of New York, Buffalo, NY, USA
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University at Buffalo, The State University of New York, Buffalo, NY, USA
| | - Darrell Kotton
- Center for Regenerative Medicine of Boston University and Boston Medical Center, Boston, MA, USA
- The Pulmonary Center and Department of Medicine, Boston University School of Medicine, Boston, MA, USA
| | - Pankaj Mehta
- Department of Physics, Boston University, Boston, MA 02215, USA
- Center for Regenerative Medicine of Boston University and Boston Medical Center, Boston, MA, USA
- Faculty of Computing and Data Science, Boston University, Boston, MA 02215, USA
- Biological Design Center, Boston University, Boston, MA 02215, USA
| |
Collapse
|
75
|
Planer JD, Morrisey EE. After the Storm: Regeneration, Repair, and Reestablishment of Homeostasis Between the Alveolar Epithelium and Innate Immune System Following Viral Lung Injury. ANNUAL REVIEW OF PATHOLOGY 2023; 18:337-359. [PMID: 36270292 PMCID: PMC10875627 DOI: 10.1146/annurev-pathmechdis-031621-024344] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The mammalian lung has an enormous environmental-epithelial interface that is optimized to accomplish the principal function of the respiratory system, gas exchange. One consequence of evolving such a large surface area is that the lung epithelium is continuously exposed to toxins, irritants, and pathogens. Maintaining homeostasis in this environment requires a delicate balance of cellular signaling between the epithelium and innate immune system. Following injury, the epithelium can be either fully regenerated in form and function or repaired by forming dysplastic scar tissue. In this review, we describe the major mechanisms of damage, regeneration, and repair within the alveolar niche where gas exchange occurs. With a focus on viral infection, we summarize recent work that has established how epithelial proliferation is arrested during infection and how the innate immune system guides its reconstitution during recovery. The consequences of these processes going awry are also considered, with an emphasis on how this will impact postpandemic pulmonary biology and medicine.
Collapse
Affiliation(s)
- Joseph D Planer
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA; ,
- Penn-CHOP Lung Biology Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Edward E Morrisey
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA; ,
- Penn-CHOP Lung Biology Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Penn Cardiovascular Institute, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
76
|
Burgess CL, Huang J, Bawa P, Alysandratos KD, Minakin K, Morley MP, Babu A, Villacorta-Martin C, Hinds A, Thapa BR, Wang F, Matschulat AM, Morrisey EE, Varelas X, Kotton DN. Generation of human alveolar epithelial type I cells from pluripotent stem cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.19.524655. [PMID: 36711505 PMCID: PMC9882278 DOI: 10.1101/2023.01.19.524655] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
In the distal lung, alveolar epithelial type I cells (AT1s) comprise the vast majority of alveolar surface area and are uniquely flattened to allow the diffusion of oxygen into the capillaries. This structure along with a quiescent, terminally differentiated phenotype has made AT1s particularly challenging to isolate or maintain in cell culture. As a result, there is a lack of established models for the study of human AT1 biology, and in contrast to alveolar epithelial type II cells (AT2s), little is known about the mechanisms regulating their differentiation. Here we engineer a human in vitro AT1 model system through the directed differentiation of induced pluripotent stem cells (iPSC). We first define the global transcriptomes of primary adult human AT1s, suggesting gene-set benchmarks and pathways, such as Hippo-LATS-YAP/TAZ signaling, that are enriched in these cells. Next, we generate iPSC-derived AT2s (iAT2s) and find that activating nuclear YAP signaling is sufficient to promote a broad transcriptomic shift from AT2 to AT1 gene programs. The resulting cells express a molecular, morphologic, and functional phenotype reminiscent of human AT1 cells, including the capacity to form a flat epithelial barrier which produces characteristic extracellular matrix molecules and secreted ligands. Our results indicate a role for Hippo-LATS-YAP signaling in the differentiation of human AT1s and demonstrate the generation of viable AT1-like cells from iAT2s, providing an in vitro model of human alveolar epithelial differentiation and a potential source of human AT1s that until now have been challenging to viably obtain from patients.
Collapse
Affiliation(s)
- Claire L Burgess
- Center for Regenerative Medicine of Boston University and Boston Medical Center, Boston, MA 02118, USA
- The Pulmonary Center and Department of Medicine, Boston University Chobanian & Avedisian School of Medicine, Boston, MA 02118, USA
| | - Jessie Huang
- Center for Regenerative Medicine of Boston University and Boston Medical Center, Boston, MA 02118, USA
- The Pulmonary Center and Department of Medicine, Boston University Chobanian & Avedisian School of Medicine, Boston, MA 02118, USA
| | - Pushpinder Bawa
- Center for Regenerative Medicine of Boston University and Boston Medical Center, Boston, MA 02118, USA
| | - Konstantinos-Dionysios Alysandratos
- Center for Regenerative Medicine of Boston University and Boston Medical Center, Boston, MA 02118, USA
- The Pulmonary Center and Department of Medicine, Boston University Chobanian & Avedisian School of Medicine, Boston, MA 02118, USA
| | - Kasey Minakin
- Center for Regenerative Medicine of Boston University and Boston Medical Center, Boston, MA 02118, USA
- The Pulmonary Center and Department of Medicine, Boston University Chobanian & Avedisian School of Medicine, Boston, MA 02118, USA
| | - Michael P Morley
- Penn-CHOP Lung Biology Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Apoorva Babu
- Penn-CHOP Lung Biology Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Carlos Villacorta-Martin
- Center for Regenerative Medicine of Boston University and Boston Medical Center, Boston, MA 02118, USA
| | - Anne Hinds
- The Pulmonary Center and Department of Medicine, Boston University Chobanian & Avedisian School of Medicine, Boston, MA 02118, USA
| | - Bibek R Thapa
- Center for Regenerative Medicine of Boston University and Boston Medical Center, Boston, MA 02118, USA
- The Pulmonary Center and Department of Medicine, Boston University Chobanian & Avedisian School of Medicine, Boston, MA 02118, USA
| | - Feiya Wang
- Center for Regenerative Medicine of Boston University and Boston Medical Center, Boston, MA 02118, USA
| | - Adeline M Matschulat
- Department of Biochemistry, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, 02118, USA
| | - Edward E Morrisey
- Penn-CHOP Lung Biology Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Xaralabos Varelas
- Department of Biochemistry, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, 02118, USA
| | - Darrell N Kotton
- Center for Regenerative Medicine of Boston University and Boston Medical Center, Boston, MA 02118, USA
- The Pulmonary Center and Department of Medicine, Boston University Chobanian & Avedisian School of Medicine, Boston, MA 02118, USA
| |
Collapse
|
77
|
Alysandratos KD, Garcia-de-Alba C, Yao C, Pessina P, Huang J, Villacorta-Martin C, Hix OT, Minakin K, Burgess CL, Bawa P, Murthy A, Konda B, Beers MF, Stripp BR, Kim CF, Kotton DN. Culture impact on the transcriptomic programs of primary and iPSC-derived human alveolar type 2 cells. JCI Insight 2023; 8:e158937. [PMID: 36454643 PMCID: PMC9870086 DOI: 10.1172/jci.insight.158937] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 11/21/2022] [Indexed: 12/02/2022] Open
Abstract
Dysfunction of alveolar epithelial type 2 cells (AEC2s), the facultative progenitors of lung alveoli, is implicated in pulmonary disease pathogenesis, highlighting the importance of human in vitro models. However, AEC2-like cells in culture have yet to be directly compared to their in vivo counterparts at single-cell resolution. Here, we performed head-to-head comparisons among the transcriptomes of primary (1°) adult human AEC2s, their cultured progeny, and human induced pluripotent stem cell-derived AEC2s (iAEC2s). We found each population occupied a distinct transcriptomic space with cultured AEC2s (1° and iAEC2s) exhibiting similarities to and differences from freshly purified 1° cells. Across each cell type, we found an inverse relationship between proliferative and maturation states, with preculture 1° AEC2s being most quiescent/mature and iAEC2s being most proliferative/least mature. Cultures of either type of human AEC2s did not generate detectable alveolar type 1 cells in these defined conditions; however, a subset of iAEC2s cocultured with fibroblasts acquired a transitional cell state described in mice and humans to arise during fibrosis or following injury. Hence, we provide direct comparisons of the transcriptomic programs of 1° and engineered AEC2s, 2 in vitro models that can be harnessed to study human lung health and disease.
Collapse
Affiliation(s)
- Konstantinos-Dionysios Alysandratos
- Center for Regenerative Medicine, Boston University and Boston Medical Center, Boston, Massachusetts, USA
- The Pulmonary Center and Department of Medicine, Boston University Chobanian & Avedisian School of Medicine, Boston, Massachusetts, USA
| | - Carolina Garcia-de-Alba
- Stem Cell Program and Divisions of Hematology/Oncology and Pulmonary Medicine, Boston Children’s Hospital, Boston, Massachusetts, USA
- Harvard Stem Cell Institute, Cambridge, Massachusetts, USA
- Department of Genetics, Harvard Medical School, Boston, Massachusetts, USA
| | - Changfu Yao
- Women’s Guild Lung Institute
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, and
- Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Patrizia Pessina
- Stem Cell Program and Divisions of Hematology/Oncology and Pulmonary Medicine, Boston Children’s Hospital, Boston, Massachusetts, USA
- Harvard Stem Cell Institute, Cambridge, Massachusetts, USA
- Stem Cells and Regenerative Medicine Center, Baylor College of Medicine, Houston, Texas, USA
| | - Jessie Huang
- Center for Regenerative Medicine, Boston University and Boston Medical Center, Boston, Massachusetts, USA
- The Pulmonary Center and Department of Medicine, Boston University Chobanian & Avedisian School of Medicine, Boston, Massachusetts, USA
| | - Carlos Villacorta-Martin
- Center for Regenerative Medicine, Boston University and Boston Medical Center, Boston, Massachusetts, USA
- The Pulmonary Center and Department of Medicine, Boston University Chobanian & Avedisian School of Medicine, Boston, Massachusetts, USA
| | - Olivia T. Hix
- Center for Regenerative Medicine, Boston University and Boston Medical Center, Boston, Massachusetts, USA
| | - Kasey Minakin
- Center for Regenerative Medicine, Boston University and Boston Medical Center, Boston, Massachusetts, USA
| | - Claire L. Burgess
- Center for Regenerative Medicine, Boston University and Boston Medical Center, Boston, Massachusetts, USA
- The Pulmonary Center and Department of Medicine, Boston University Chobanian & Avedisian School of Medicine, Boston, Massachusetts, USA
| | - Pushpinder Bawa
- Center for Regenerative Medicine, Boston University and Boston Medical Center, Boston, Massachusetts, USA
| | - Aditi Murthy
- Pulmonary, Allergy, and Critical Care Division, Department of Medicine, and
- PENN-CHOP Lung Biology Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Bindu Konda
- Women’s Guild Lung Institute
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, and
- Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Michael F. Beers
- Pulmonary, Allergy, and Critical Care Division, Department of Medicine, and
- PENN-CHOP Lung Biology Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Barry R. Stripp
- Women’s Guild Lung Institute
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, and
- Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Carla F. Kim
- Stem Cell Program and Divisions of Hematology/Oncology and Pulmonary Medicine, Boston Children’s Hospital, Boston, Massachusetts, USA
- Harvard Stem Cell Institute, Cambridge, Massachusetts, USA
- Department of Genetics, Harvard Medical School, Boston, Massachusetts, USA
| | - Darrell N. Kotton
- Center for Regenerative Medicine, Boston University and Boston Medical Center, Boston, Massachusetts, USA
- The Pulmonary Center and Department of Medicine, Boston University Chobanian & Avedisian School of Medicine, Boston, Massachusetts, USA
| |
Collapse
|
78
|
Lim K, Donovan APA, Tang W, Sun D, He P, Pett JP, Teichmann SA, Marioni JC, Meyer KB, Brand AH, Rawlins EL. Organoid modeling of human fetal lung alveolar development reveals mechanisms of cell fate patterning and neonatal respiratory disease. Cell Stem Cell 2023; 30:20-37.e9. [PMID: 36493780 DOI: 10.1016/j.stem.2022.11.013] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 10/02/2022] [Accepted: 11/16/2022] [Indexed: 12/13/2022]
Abstract
Variation in lung alveolar development is strongly linked to disease susceptibility. However, underlying cellular and molecular mechanisms are difficult to study in humans. We have identified an alveolar-fated epithelial progenitor in human fetal lungs, which we grow as self-organizing organoids that model key aspects of cell lineage commitment. Using this system, we have functionally validated cell-cell interactions in the developing human alveolar niche, showing that Wnt signaling from differentiating fibroblasts promotes alveolar-type-2 cell identity, whereas myofibroblasts secrete the Wnt inhibitor, NOTUM, providing spatial patterning. We identify a Wnt-NKX2.1 axis controlling alveolar differentiation. Moreover, we show that differential binding of NKX2.1 coordinates alveolar maturation, allowing us to model the effects of human genetic variation in NKX2.1 on alveolar differentiation. Our organoid system recapitulates key aspects of human fetal lung stem cell biology allowing mechanistic experiments to determine the cellular and molecular regulation of human development and disease.
Collapse
Affiliation(s)
- Kyungtae Lim
- Wellcome Trust, CRUK Gurdon Institute, University of Cambridge, Cambridge CB2 1QN, UK; Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 3DY, UK; Wellcome Trust, MRC Stem Cell Institute, Jeffrey Cheah Biomedical Centre Cambridge Biomedical Campus, Puddicombe Way, Cambridge CB2 0AW, UK
| | - Alex P A Donovan
- Wellcome Trust, CRUK Gurdon Institute, University of Cambridge, Cambridge CB2 1QN, UK; Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 3DY, UK
| | - Walfred Tang
- Wellcome Trust, CRUK Gurdon Institute, University of Cambridge, Cambridge CB2 1QN, UK; Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 3DY, UK; Wellcome Trust, MRC Stem Cell Institute, Jeffrey Cheah Biomedical Centre Cambridge Biomedical Campus, Puddicombe Way, Cambridge CB2 0AW, UK
| | - Dawei Sun
- Wellcome Trust, CRUK Gurdon Institute, University of Cambridge, Cambridge CB2 1QN, UK; Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 3DY, UK; Wellcome Trust, MRC Stem Cell Institute, Jeffrey Cheah Biomedical Centre Cambridge Biomedical Campus, Puddicombe Way, Cambridge CB2 0AW, UK
| | - Peng He
- Wellcome Sanger Institute, Hinxton, Cambridge CB10 1SA, UK; European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Cambridge CB10 1SD, UK
| | - J Patrick Pett
- Wellcome Sanger Institute, Hinxton, Cambridge CB10 1SA, UK
| | | | - John C Marioni
- Wellcome Sanger Institute, Hinxton, Cambridge CB10 1SA, UK; European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Cambridge CB10 1SD, UK
| | | | - Andrea H Brand
- Wellcome Trust, CRUK Gurdon Institute, University of Cambridge, Cambridge CB2 1QN, UK; Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 3DY, UK
| | - Emma L Rawlins
- Wellcome Trust, CRUK Gurdon Institute, University of Cambridge, Cambridge CB2 1QN, UK; Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 3DY, UK; Wellcome Trust, MRC Stem Cell Institute, Jeffrey Cheah Biomedical Centre Cambridge Biomedical Campus, Puddicombe Way, Cambridge CB2 0AW, UK.
| |
Collapse
|
79
|
Li D, Wang J, Fang Y, Hu Y, Xiao Y, Cui Q, Jiang C, Sun S, Chen H, Ye L, Sun Q. Impaired cell-cell communication and axon guidance because of pulmonary hypoperfusion during postnatal alveolar development. Respir Res 2023; 24:12. [PMID: 36631871 PMCID: PMC9833865 DOI: 10.1186/s12931-023-02319-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 01/06/2023] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND Pulmonary hypoperfusion is common in children with congenital heart diseases (CHDs) or pulmonary hypertension (PH) and causes adult pulmonary dysplasia. Systematic reviews have shown that some children with CHDs or PH have mitigated clinical outcomes with COVID-19. Understanding the effects of pulmonary hypoperfusion on postnatal alveolar development may aid in the development of methods to improve the pulmonary function of children with CHDs or PH and improve their care during the COVID-19 pandemic, which is characterized by cytokine storm and persistent inflammation. METHODS AND RESULTS We created a neonatal pulmonary hypoperfusion model through pulmonary artery banding (PAB) surgery at postnatal day 1 (P1). Alveolar dysplasia was confirmed by gross and histological examination at P21. Transcriptomic analysis of pulmonary tissues at P7(alveolar stage 2) and P14(alveolar stage 4) revealed that the postnatal alveolar development track had been changed due to pulmonary hypoperfusion. Under the condition of pulmonary hypoperfusion, the cell-cell communication and axon guidance, which both determine the final number of alveoli, were lost; instead, there was hyperactive cell cycle activity. The transcriptomic results were further confirmed by the examination of axon guidance and cell cycle markers. Because axon guidance controls inflammation and immune cell activation, the loss of axon guidance may explain the lack of severe COVID-19 cases among children with CHDs or PH accompanied by pulmonary hypoperfusion. CONCLUSIONS This study suggested that promoting cell-cell communication or supplementation with guidance molecules may treat pulmonary hypoperfusion-induced alveolar dysplasia, and that COVID-19 is less likely to cause a cytokine storm in children with CHD or PH accompanied by pulmonary hypoperfusion.
Collapse
Affiliation(s)
- Debao Li
- grid.16821.3c0000 0004 0368 8293Department of Thoracic and Cardiovascular Surgery, Shanghai Children’s Medical Center, School of Medicine, Shanghai Jiao Tong University, 1678 Dongfang Road, Shanghai, 200127 China
| | - Jing Wang
- grid.16821.3c0000 0004 0368 8293Department of Infectious Diseases, Shanghai Children’s Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yuan Fang
- grid.412523.30000 0004 0386 9086Department of Plastic and Reconstructive Surgery, School of Medicine, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Yuqing Hu
- grid.16821.3c0000 0004 0368 8293Department of Cardiology, Shanghai Children’s Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yingying Xiao
- grid.16821.3c0000 0004 0368 8293Department of Thoracic and Cardiovascular Surgery, Shanghai Children’s Medical Center, School of Medicine, Shanghai Jiao Tong University, 1678 Dongfang Road, Shanghai, 200127 China
| | - Qing Cui
- grid.16821.3c0000 0004 0368 8293Department of Cardiology, Shanghai Children’s Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Chuan Jiang
- grid.16821.3c0000 0004 0368 8293Department of Thoracic and Cardiovascular Surgery, Shanghai Children’s Medical Center, School of Medicine, Shanghai Jiao Tong University, 1678 Dongfang Road, Shanghai, 200127 China
| | - Sijuan Sun
- grid.16821.3c0000 0004 0368 8293Department of Pediatric Intensive Care Unit, Shanghai Children’s Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Hao Chen
- grid.16821.3c0000 0004 0368 8293Department of Thoracic and Cardiovascular Surgery, Shanghai Children’s Medical Center, School of Medicine, Shanghai Jiao Tong University, 1678 Dongfang Road, Shanghai, 200127 China
| | - Lincai Ye
- grid.16821.3c0000 0004 0368 8293Department of Thoracic and Cardiovascular Surgery, Shanghai Children’s Medical Center, School of Medicine, Shanghai Jiao Tong University, 1678 Dongfang Road, Shanghai, 200127 China ,grid.16821.3c0000 0004 0368 8293Institute of Pediatric Translational Medicine, Shanghai Children’s Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China ,grid.16821.3c0000 0004 0368 8293Shanghai Institute for Pediatric Congenital Heart Disease, Shanghai Children’s Medical Center, School of Medicine, Shanghai Jiao Tong University, 1678 Dongfang Road, Shanghai, 200127 China
| | - Qi Sun
- grid.16821.3c0000 0004 0368 8293Department of Thoracic and Cardiovascular Surgery, Shanghai Children’s Medical Center, School of Medicine, Shanghai Jiao Tong University, 1678 Dongfang Road, Shanghai, 200127 China
| |
Collapse
|
80
|
He P, Lim K, Sun D, Pett JP, Jeng Q, Polanski K, Dong Z, Bolt L, Richardson L, Mamanova L, Dabrowska M, Wilbrey-Clark A, Madissoon E, Tuong ZK, Dann E, Suo C, Goh I, Yoshida M, Nikolić MZ, Janes SM, He X, Barker RA, Teichmann SA, Marioni JC, Meyer KB, Rawlins EL. A human fetal lung cell atlas uncovers proximal-distal gradients of differentiation and key regulators of epithelial fates. Cell 2022; 185:4841-4860.e25. [PMID: 36493756 DOI: 10.1016/j.cell.2022.11.005] [Citation(s) in RCA: 78] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 08/11/2022] [Accepted: 11/03/2022] [Indexed: 12/13/2022]
Abstract
We present a multiomic cell atlas of human lung development that combines single-cell RNA and ATAC sequencing, high-throughput spatial transcriptomics, and single-cell imaging. Coupling single-cell methods with spatial analysis has allowed a comprehensive cellular survey of the epithelial, mesenchymal, endothelial, and erythrocyte/leukocyte compartments from 5-22 post-conception weeks. We identify previously uncharacterized cell states in all compartments. These include developmental-specific secretory progenitors and a subtype of neuroendocrine cell related to human small cell lung cancer. Our datasets are available through our web interface (https://lungcellatlas.org). To illustrate its general utility, we use our cell atlas to generate predictions about cell-cell signaling and transcription factor hierarchies which we rigorously test using organoid models.
Collapse
Affiliation(s)
- Peng He
- Wellcome Sanger Institute, Hinxton, Cambridge CB10 1SA, UK; European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Cambridge, UK
| | - Kyungtae Lim
- Wellcome Trust/CRUK Gurdon Institute, Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 1QN, UK
| | - Dawei Sun
- Wellcome Trust/CRUK Gurdon Institute, Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 1QN, UK
| | | | - Quitz Jeng
- Wellcome Trust/CRUK Gurdon Institute, Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 1QN, UK
| | | | - Ziqi Dong
- Wellcome Trust/CRUK Gurdon Institute, Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 1QN, UK
| | - Liam Bolt
- Wellcome Sanger Institute, Hinxton, Cambridge CB10 1SA, UK
| | | | - Lira Mamanova
- Wellcome Sanger Institute, Hinxton, Cambridge CB10 1SA, UK
| | | | | | - Elo Madissoon
- Wellcome Sanger Institute, Hinxton, Cambridge CB10 1SA, UK; European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Cambridge, UK
| | - Zewen Kelvin Tuong
- Wellcome Sanger Institute, Hinxton, Cambridge CB10 1SA, UK; Molecular Immunity Unit, University of Cambridge Department of Medicine, Cambridge, UK
| | - Emma Dann
- Wellcome Sanger Institute, Hinxton, Cambridge CB10 1SA, UK
| | - Chenqu Suo
- Wellcome Sanger Institute, Hinxton, Cambridge CB10 1SA, UK; Department of Paediatrics, Cambridge University Hospitals, Hills Road, Cambridge CB2 0 QQ, UK
| | - Isaac Goh
- Biosciences Institute, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
| | - Masahiro Yoshida
- Lungs for Living Research Centre, UCL Respiratory, University College London, London, UK
| | - Marko Z Nikolić
- Lungs for Living Research Centre, UCL Respiratory, University College London, London, UK
| | - Sam M Janes
- Lungs for Living Research Centre, UCL Respiratory, University College London, London, UK
| | - Xiaoling He
- John van Geest Centre for Brain Repair, Department of Clinical Neurosciences and Wellcome-MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK
| | - Roger A Barker
- John van Geest Centre for Brain Repair, Department of Clinical Neurosciences and Wellcome-MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK
| | - Sarah A Teichmann
- Wellcome Sanger Institute, Hinxton, Cambridge CB10 1SA, UK; Department of Physics, Cavendish Laboratory, University of Cambridge, Cambridge CB3 0HE, UK
| | - John C Marioni
- Wellcome Sanger Institute, Hinxton, Cambridge CB10 1SA, UK; European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Cambridge, UK; Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, UK
| | | | - Emma L Rawlins
- Wellcome Trust/CRUK Gurdon Institute, Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 1QN, UK.
| |
Collapse
|
81
|
Fidalgo MF, Fonseca CG, Caldas P, Raposo AA, Balboni T, Henao-Mišíková L, Grosso AR, Vasconcelos FF, Franco CA. Aerocyte specification and lung adaptation to breathing is dependent on alternative splicing changes. Life Sci Alliance 2022; 5:5/12/e202201554. [PMID: 36220570 PMCID: PMC9554796 DOI: 10.26508/lsa.202201554] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 09/22/2022] [Accepted: 09/22/2022] [Indexed: 11/24/2022] Open
Abstract
Adaptation to breathing is a critical step in lung function and it is crucial for organismal survival. Alveoli are the lung gas exchange units and their development, from late embryonic to early postnatal stages, requires feedbacks between multiple cell types. However, how the crosstalk between the alveolar cell types is modulated to anticipate lung adaptation to breathing is still unclear. Here, we uncovered a synchronous alternative splicing switch in multiple genes in the developing mouse lungs at the transition to birth, and we identified hnRNP A1, Cpeb4, and Elavl2/HuB as putative splicing regulators of this transition. Notably, we found that Vegfa switches from the Vegfa 164 isoform to the longer Vegfa 188 isoform exclusively in lung alveolar epithelial AT1 cells. Functional analysis revealed that VEGFA 188 (and not VEGFA 164) drives the specification of Car4-positive aerocytes, a subtype of alveolar endothelial cells specialized in gas exchanges. Our results reveal that the cell type-specific regulation of Vegfa alternative splicing just before birth modulates the epithelial-endothelial crosstalk in the developing alveoli to promote lung adaptation to breathing.
Collapse
Affiliation(s)
- Marta F Fidalgo
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | - Catarina G Fonseca
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | - Paulo Caldas
- Department of Life Sciences, UCIBIO - Applied Molecular Biosciences Unit, NOVA School of Science and Technology, NOVA University Lisbon, Caparica, Portugal
| | - Alexandre Asf Raposo
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | - Tania Balboni
- Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, Bologna, Italy
| | - Lenka Henao-Mišíková
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | - Ana R Grosso
- Department of Life Sciences, UCIBIO - Applied Molecular Biosciences Unit, NOVA School of Science and Technology, NOVA University Lisbon, Caparica, Portugal
| | - Francisca F Vasconcelos
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | - Cláudio A Franco
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal .,Instituto de Histologia e Biologia do Desenvolvimento, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal.,Universidade Católica Portuguesa, Católica Medical School, Católica Biomedical Research Centre, Lisboa, Portugal
| |
Collapse
|
82
|
Brownfield DG, de Arce AD, Ghelfi E, Gillich A, Desai TJ, Krasnow MA. Alveolar cell fate selection and lifelong maintenance of AT2 cells by FGF signaling. Nat Commun 2022; 13:7137. [PMID: 36414616 PMCID: PMC9681748 DOI: 10.1038/s41467-022-34059-1] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 10/12/2022] [Indexed: 11/24/2022] Open
Abstract
The lung's gas exchange surface is comprised of alveolar AT1 and AT2 cells that are corrupted in several common and deadly diseases. They arise from a bipotent progenitor whose differentiation is thought to be dictated by differential mechanical forces. Here we show the critical determinant is FGF signaling. Fgfr2 is expressed in the developing progenitors in mouse then restricts to nascent AT2 cells and remains on throughout life. Its ligands are expressed in surrounding mesenchyme and can, in the absence of exogenous mechanical cues, induce progenitors to form alveolospheres with intermingled AT2 and AT1 cells. FGF signaling directly and cell autonomously specifies AT2 fate; progenitors lacking Fgfr2 in vitro and in vivo exclusively acquire AT1 fate. Fgfr2 loss in AT2 cells perinatally results in reprogramming to AT1 identity, whereas loss or inhibition later in life triggers AT2 apoptosis and compensatory regeneration. We propose that Fgfr2 signaling selects AT2 fate during development, induces a cell non-autonomous AT1 differentiation signal, then continuously maintains AT2 identity and survival throughout life.
Collapse
Affiliation(s)
- Douglas G Brownfield
- Department of Biochemistry and Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, CA, 94305-5307, USA.
- Molecular and Integrative Physiological Sciences Program, Harvard T.H. Chan School of Public Health, Boston, MA, USA.
- Division of Pulmonary and Critical Care Medicine, Departments of Physiology and Biomedical Engineering and of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine and Science, Rochester, MN, 55905, USA.
| | - Alex Diaz de Arce
- Department of Biochemistry and Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, CA, 94305-5307, USA
| | - Elisa Ghelfi
- Molecular and Integrative Physiological Sciences Program, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Astrid Gillich
- Department of Biochemistry and Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, CA, 94305-5307, USA
| | - Tushar J Desai
- Department of Internal Medicine and Stem Cell Institute, Stanford University School of Medicine, Stanford, CA, 94305, USA.
| | - Mark A Krasnow
- Department of Biochemistry and Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, CA, 94305-5307, USA.
| |
Collapse
|
83
|
Chandrasekaran P, Negretti NM, Sivakumar A, Liberti DC, Wen H, Peers de Nieuwburgh M, Wang JY, Michki NS, Chaudhry FN, Kaur S, Lu M, Jin A, Zepp JA, Young LR, Sucre JMS, Frank DB. CXCL12 defines lung endothelial heterogeneity and promotes distal vascular growth. Development 2022; 149:dev200909. [PMID: 36239312 PMCID: PMC9687018 DOI: 10.1242/dev.200909] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 09/22/2022] [Indexed: 11/05/2022]
Abstract
There is a growing amount of data uncovering the cellular diversity of the pulmonary circulation and mechanisms governing vascular repair after injury. However, the molecular and cellular mechanisms contributing to the morphogenesis and growth of the pulmonary vasculature during embryonic development are less clear. Importantly, deficits in vascular development lead to significant pediatric lung diseases, indicating a need to uncover fetal programs promoting vascular growth. To address this, we used a transgenic mouse reporter for expression of Cxcl12, an arterial endothelial hallmark gene, and performed single-cell RNA sequencing on isolated Cxcl12-DsRed+ endothelium to assess cellular heterogeneity within pulmonary endothelium. Combining cell annotation with gene ontology and histological analysis allowed us to segregate the developing artery endothelium into functionally and spatially distinct subpopulations. Expression of Cxcl12 is highest in the distal arterial endothelial subpopulation, a compartment enriched in genes for vascular development. Accordingly, disruption of CXCL12 signaling led to, not only abnormal branching, but also distal vascular hypoplasia. These data provide evidence for arterial endothelial functional heterogeneity and reveal conserved signaling mechanisms essential for pulmonary vascular development.
Collapse
Affiliation(s)
- Prashant Chandrasekaran
- Department of Pediatrics, Division of Cardiology, University of Pennsylvania, Children's Hospital of Philadelphia, Penn-CHOP Lung Biology Institute, Penn Cardiovascular Institute, Philadelphia, PA 19104, USA
| | - Nicholas M. Negretti
- Department of Pediatrics, Department of Cell and Developmental Biology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Aravind Sivakumar
- Department of Pediatrics, Division of Cardiology, University of Pennsylvania, Children's Hospital of Philadelphia, Penn-CHOP Lung Biology Institute, Penn Cardiovascular Institute, Philadelphia, PA 19104, USA
| | - Derek C. Liberti
- Department of Pediatrics, Division of Cardiology, University of Pennsylvania, Children's Hospital of Philadelphia, Penn-CHOP Lung Biology Institute, Penn Cardiovascular Institute, Philadelphia, PA 19104, USA
| | - Hongbo Wen
- Department of Pediatrics, Division of Cardiology, University of Pennsylvania, Children's Hospital of Philadelphia, Penn-CHOP Lung Biology Institute, Penn Cardiovascular Institute, Philadelphia, PA 19104, USA
| | - Maureen Peers de Nieuwburgh
- Department of Pediatrics, Division of Cardiology, University of Pennsylvania, Children's Hospital of Philadelphia, Penn-CHOP Lung Biology Institute, Penn Cardiovascular Institute, Philadelphia, PA 19104, USA
| | - Joanna Y. Wang
- Department of Medicine, University of Pennsylvania, Penn-CHOP Lung Biology Institute, Philadelphia, PA 19104, USA
| | - Nigel S. Michki
- Department of Pediatrics, Division of Cardiology, University of Pennsylvania, Children's Hospital of Philadelphia, Penn-CHOP Lung Biology Institute, Penn Cardiovascular Institute, Philadelphia, PA 19104, USA
| | - Fatima N. Chaudhry
- Department of Pediatrics, Division of Pulmonary and Sleep Medicine, University of Pennsylvania, Children's Hospital of Philadelphia, Penn-CHOP Lung Biology Institute, Philadelphia, PA 19104, USA
| | - Sukhmani Kaur
- Department of Pediatrics, Division of Cardiology, University of Pennsylvania, Children's Hospital of Philadelphia, Penn-CHOP Lung Biology Institute, Penn Cardiovascular Institute, Philadelphia, PA 19104, USA
| | - MinQi Lu
- Department of Pediatrics, Division of Cardiology, University of Pennsylvania, Children's Hospital of Philadelphia, Penn-CHOP Lung Biology Institute, Penn Cardiovascular Institute, Philadelphia, PA 19104, USA
| | - Annabelle Jin
- Department of Pediatrics, Division of Cardiology, University of Pennsylvania, Children's Hospital of Philadelphia, Penn-CHOP Lung Biology Institute, Penn Cardiovascular Institute, Philadelphia, PA 19104, USA
| | - Jarod A. Zepp
- Department of Pediatrics, Division of Pulmonary and Sleep Medicine, University of Pennsylvania, Children's Hospital of Philadelphia, Penn-CHOP Lung Biology Institute, Philadelphia, PA 19104, USA
| | - Lisa R. Young
- Department of Pediatrics, Division of Pulmonary and Sleep Medicine, University of Pennsylvania, Children's Hospital of Philadelphia, Penn-CHOP Lung Biology Institute, Philadelphia, PA 19104, USA
| | - Jennifer M. S. Sucre
- Department of Pediatrics, Department of Cell and Developmental Biology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - David B. Frank
- Department of Pediatrics, Division of Cardiology, University of Pennsylvania, Children's Hospital of Philadelphia, Penn-CHOP Lung Biology Institute, Penn Cardiovascular Institute, Philadelphia, PA 19104, USA
| |
Collapse
|
84
|
Konkimalla A, Konishi S, Kobayashi Y, Kadur Lakshminarasimha Murthy P, Macadlo L, Mukherjee A, Elmore Z, Kim SJ, Pendergast AM, Lee PJ, Asokan A, Knudsen L, Bravo-Cordero JJ, Tata A, Tata PR. Multi-apical polarity of alveolar stem cells and their dynamics during lung development and regeneration. iScience 2022; 25:105114. [PMID: 36185377 PMCID: PMC9519774 DOI: 10.1016/j.isci.2022.105114] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Revised: 08/25/2022] [Accepted: 09/08/2022] [Indexed: 11/24/2022] Open
Abstract
Epithelial cells of diverse tissues are characterized by the presence of a single apical domain. In the lung, electron microscopy studies have suggested that alveolar type-2 epithelial cells (AT2s) en face multiple alveolar sacs. However, apical and basolateral organization of the AT2s and their establishment during development and remodeling after injury repair remain unknown. Thick tissue imaging and electron microscopy revealed that a single AT2 can have multiple apical domains that enface multiple alveoli. AT2s gradually establish multi-apical domains post-natally, and they are maintained throughout life. Lineage tracing, live imaging, and selective cell ablation revealed that AT2s dynamically reorganize multi-apical domains during injury repair. Single-cell transcriptome signatures of residual AT2s revealed changes in cytoskeleton and cell migration. Significantly, cigarette smoke and oncogene activation lead to dysregulation of multi-apical domains. We propose that the multi-apical domains of AT2s enable them to be poised to support the regeneration of a large array of alveolar sacs.
Collapse
Affiliation(s)
- Arvind Konkimalla
- Department of Cell Biology, Duke University School of Medicine, Durham, NC 27710, USA
- Medical Scientist Training Program, Duke University School of Medicine, Durham, NC 27710, USA
| | - Satoshi Konishi
- Department of Cell Biology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Yoshihiko Kobayashi
- Department of Cell Biology, Duke University School of Medicine, Durham, NC 27710, USA
| | | | - Lauren Macadlo
- Department of Cell Biology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Ananya Mukherjee
- Division of Hematology and Oncology, Department of Medicine, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Zachary Elmore
- Department of Surgery, Duke University School of Medicine, Durham, NC 27710, USA
| | - So-Jin Kim
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, Duke University School of Medicine and the Durham Veterans Administration Medical Center, Durham, NC 27710, USA
| | - Ann Marie Pendergast
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC 27710, USA
- Duke Cancer Institute, Duke University School of Medicine, Durham, NC 27710, USA
| | - Patty J. Lee
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, Duke University School of Medicine and the Durham Veterans Administration Medical Center, Durham, NC 27710, USA
| | - Aravind Asokan
- Department of Surgery, Duke University School of Medicine, Durham, NC 27710, USA
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC 27710, USA
- Department of Biomedical Engineering, Regeneration Next, Duke University, Durham, NC 27710, USA
- Center for Advanced Genomic Technologies, Duke University, Durham, NC 27710, USA
| | - Lars Knudsen
- Institute of Functional and Applied Anatomy, Hannover Medical School, Hannover 30625, Germany
| | - Jose Javier Bravo-Cordero
- Division of Hematology and Oncology, Department of Medicine, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Aleksandra Tata
- Department of Cell Biology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Purushothama Rao Tata
- Department of Cell Biology, Duke University School of Medicine, Durham, NC 27710, USA
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, Duke University School of Medicine and the Durham Veterans Administration Medical Center, Durham, NC 27710, USA
- Duke Cancer Institute, Duke University School of Medicine, Durham, NC 27710, USA
- Center for Advanced Genomic Technologies, Duke University, Durham, NC 27710, USA
- Duke Regeneration Center, Duke University, Durham, NC 27710, USA
| |
Collapse
|
85
|
Barrett JS, Cala Pane M, Knab T, Roddy W, Beusmans J, Jordie E, Singh K, Davis JM, Romero K, Padula M, Thebaud B, Turner M. Landscape analysis for a neonatal disease progression model of bronchopulmonary dysplasia: Leveraging clinical trial experience and real-world data. Front Pharmacol 2022; 13:988974. [PMID: 36313352 PMCID: PMC9597633 DOI: 10.3389/fphar.2022.988974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 09/21/2022] [Indexed: 11/27/2022] Open
Abstract
The 21st Century Cures Act requires FDA to expand its use of real-world evidence (RWE) to support approval of previously approved drugs for new disease indications and post-marketing study requirements. To address this need in neonates, the FDA and the Critical Path Institute (C-Path) established the International Neonatal Consortium (INC) to advance regulatory science and expedite neonatal drug development. FDA recently provided funding for INC to generate RWE to support regulatory decision making in neonatal drug development. One study is focused on developing a validated definition of bronchopulmonary dysplasia (BPD) in neonates. BPD is difficult to diagnose with diverse disease trajectories and few viable treatment options. Despite intense research efforts, limited understanding of the underlying disease pathobiology and disease projection continues in the context of a computable phenotype. It will be important to determine if: 1) a large, multisource aggregation of real-world data (RWD) will allow identification of validated risk factors and surrogate endpoints for BPD, and 2) the inclusion of these simulations will identify risk factors and surrogate endpoints for studies to prevent or treat BPD and its related long-term complications. The overall goal is to develop qualified, fit-for-purpose disease progression models which facilitate credible trial simulations while quantitatively capturing mechanistic relationships relevant for disease progression and the development of future treatments. The extent to which neonatal RWD can inform these models is unknown and its appropriateness cannot be guaranteed. A component of this approach is the critical evaluation of the various RWD sources for context-of use (COU)-driven models. The present manuscript defines a landscape of the data including targeted literature searches and solicitation of neonatal RWD sources from international stakeholders; analysis plans to develop a family of models of BPD in neonates, leveraging previous clinical trial experience and real-world patient data is also described.
Collapse
Affiliation(s)
- Jeffrey S. Barrett
- Critical Path Institute, Tucson, AZ, United States
- *Correspondence: Jeffrey S. Barrett,
| | | | - Timothy Knab
- Metrum Research Group, Tariffville, CT, United States
| | | | - Jack Beusmans
- Metrum Research Group, Tariffville, CT, United States
| | - Eric Jordie
- Metrum Research Group, Tariffville, CT, United States
| | | | - Jonathan Michael Davis
- Tufts Medical Center and the Tufts Clinical and Translational Science Institute, Boston, MA, United States
| | - Klaus Romero
- Critical Path Institute, Tucson, AZ, United States
| | - Michael Padula
- Division of Neonatology, Children’s Hospital of Philadelphia, Philadelphia, PA, United States
| | - Bernard Thebaud
- Department of Pediatrics, Ottawa Hospital Research Institute, Ottawa, ON, Canada
| | - Mark Turner
- Department of Women’s and Children’s Health Institute of Translational Medicine, University of Liverpool, Liverpool, United Kingdom
| |
Collapse
|
86
|
Eenjes E, Tibboel D, Wijnen RM, Rottier RJ. Lung epithelium development and airway regeneration. Front Cell Dev Biol 2022; 10:1022457. [PMID: 36299482 PMCID: PMC9589436 DOI: 10.3389/fcell.2022.1022457] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 09/20/2022] [Indexed: 11/21/2022] Open
Abstract
The lung is composed of a highly branched airway structure, which humidifies and warms the inhaled air before entering the alveolar compartment. In the alveoli, a thin layer of epithelium is in close proximity with the capillary endothelium, allowing for an efficient exchange of oxygen and carbon dioxide. During development proliferation and differentiation of progenitor cells generates the lung architecture, and in the adult lung a proper function of progenitor cells is needed to regenerate after injury. Malfunctioning of progenitors during development results in various congenital lung disorders, such as Congenital Diaphragmatic Hernia (CDH) and Congenital Pulmonary Adenomatoid Malformation (CPAM). In addition, many premature neonates experience continuous insults on the lung caused by artificial ventilation and supplemental oxygen, which requires a highly controlled mechanism of airway repair. Malfunctioning of airway progenitors during regeneration can result in reduction of respiratory function or (chronic) airway diseases. Pathways that are active during development are frequently re-activated upon damage. Understanding the basic mechanisms of lung development and the behavior of progenitor cell in the ontogeny and regeneration of the lung may help to better understand the underlying cause of lung diseases, especially those occurring in prenatal development or in the immediate postnatal period of life. This review provides an overview of lung development and the cell types involved in repair of lung damage with a focus on the airway.
Collapse
Affiliation(s)
- Evelien Eenjes
- Department of Pediatric Surgery, Erasmus MC-Sophia Children’s Hospital, Rotterdam, Netherlands
| | - Dick Tibboel
- Department of Pediatric Surgery, Erasmus MC-Sophia Children’s Hospital, Rotterdam, Netherlands
| | - Rene M.H. Wijnen
- Department of Pediatric Surgery, Erasmus MC-Sophia Children’s Hospital, Rotterdam, Netherlands
| | - Robbert J. Rottier
- Department of Pediatric Surgery, Erasmus MC-Sophia Children’s Hospital, Rotterdam, Netherlands
- Department of Cell Biology, Erasmus MC, Rotterdam, Netherlands
- *Correspondence: Robbert J. Rottier,
| |
Collapse
|
87
|
Gao F, Li C, Smith SM, Peinado N, Kohbodi G, Tran E, Loh YHE, Li W, Borok Z, Minoo P. Decoding the IGF1 signaling gene regulatory network behind alveologenesis from a mouse model of bronchopulmonary dysplasia. eLife 2022; 11:e77522. [PMID: 36214448 PMCID: PMC9581530 DOI: 10.7554/elife.77522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 10/07/2022] [Indexed: 11/13/2022] Open
Abstract
Lung development is precisely controlled by underlying gene regulatory networks (GRN). Disruption of genes in the network can interrupt normal development and cause diseases such as bronchopulmonary dysplasia (BPD) - a chronic lung disease in preterm infants with morbid and sometimes lethal consequences characterized by lung immaturity and reduced alveolarization. Here, we generated a transgenic mouse exhibiting a moderate severity BPD phenotype by blocking IGF1 signaling in secondary crest myofibroblasts (SCMF) at the onset of alveologenesis. Using approaches mirroring the construction of the model GRN in sea urchin's development, we constructed the IGF1 signaling network underlying alveologenesis using this mouse model that phenocopies BPD. The constructed GRN, consisting of 43 genes, provides a bird's eye view of how the genes downstream of IGF1 are regulatorily connected. The GRN also reveals a mechanistic interpretation of how the effects of IGF1 signaling are transduced within SCMF from its specification genes to its effector genes and then from SCMF to its neighboring alveolar epithelial cells with WNT5A and FGF10 signaling as the bridge. Consistently, blocking WNT5A signaling in mice phenocopies BPD as inferred by the network. A comparative study on human samples suggests that a GRN of similar components and wiring underlies human BPD. Our network view of alveologenesis is transforming our perspective to understand and treat BPD. This new perspective calls for the construction of the full signaling GRN underlying alveologenesis, upon which targeted therapies for this neonatal chronic lung disease can be viably developed.
Collapse
Affiliation(s)
- Feng Gao
- Division of Neonatology, Department of Pediatrics, University of Southern CaliforniaLos AngelesUnited States
| | - Changgong Li
- Division of Neonatology, Department of Pediatrics, University of Southern CaliforniaLos AngelesUnited States
| | - Susan M Smith
- Division of Neonatology, Department of Pediatrics, University of Southern CaliforniaLos AngelesUnited States
| | - Neil Peinado
- Division of Neonatology, Department of Pediatrics, University of Southern CaliforniaLos AngelesUnited States
| | - Golenaz Kohbodi
- Division of Neonatology, Department of Pediatrics, University of Southern CaliforniaLos AngelesUnited States
| | - Evelyn Tran
- Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern CaliforniaLos AngelesUnited States
- Department of Biochemistry and Molecular Medicine, Keck School of Medicine, University of Southern CaliforniaLos AngelesUnited States
| | - Yong-Hwee Eddie Loh
- Norris Medical Library, University of Southern CaliforniaLos AngelesUnited States
| | - Wei Li
- Department of Nephrology, Jiangsu Provincial Hospital of Traditional Chinese MedicineNanjingChina
| | - Zea Borok
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of California, San DiegoSan DiegoUnited States
| | - Parviz Minoo
- Division of Neonatology, Department of Pediatrics, University of Southern CaliforniaLos AngelesUnited States
- Hastings Center for Pulmonary Research, Keck School of Medicine, University of Southern CaliforniaLos AngelesUnited States
| |
Collapse
|
88
|
Bai H, Ingber DE. What Can an Organ-on-a-Chip Teach Us About Human Lung Pathophysiology? Physiology (Bethesda) 2022; 37:0. [PMID: 35658627 PMCID: PMC9394778 DOI: 10.1152/physiol.00012.2022] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 05/31/2022] [Accepted: 06/01/2022] [Indexed: 12/25/2022] Open
Abstract
The intertwined relationship between structure and function has been key to understanding human organ physiology and disease pathogenesis. An organ-on-a-chip (organ chip) is a bioengineered microfluidic cell culture device lined by living cells and tissues that recapitulates organ-level functions in vitro. This is accomplished by recreating organ-specific tissue-tissue interfaces and microenvironmental biochemical and mechanical cues while providing dynamic perfusion through endothelium-lined vascular channels. In this review, we discuss how this emerging technology has contributed to the understanding of human lung structure-function relationships at the cell, tissue, and organ levels.
Collapse
Affiliation(s)
- Haiqing Bai
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, Massachusetts
| | - Donald E Ingber
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, Massachusetts
- Vascular Biology Program, Boston Children's Hospital and Department of Surgery, Harvard Medical School, Boston, Massachusetts
- Harvard John A. Paulson School of Engineering and Applied Sciences, Cambridge, Massachusetts
| |
Collapse
|
89
|
Lewis ZR, Kerney R, Hanken J. Developmental basis of evolutionary lung loss in plethodontid salamanders. SCIENCE ADVANCES 2022; 8:eabo6108. [PMID: 35977024 PMCID: PMC9385146 DOI: 10.1126/sciadv.abo6108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 07/01/2022] [Indexed: 06/15/2023]
Abstract
One or more members of four living amphibian clades have independently dispensed with pulmonary respiration and lack lungs, but little is known of the developmental basis of lung loss in any taxon. We use morphological, molecular, and experimental approaches to examine the Plethodontidae, a dominant family of salamanders, all of which are lungless as adults. We confirm an early anecdotal report that plethodontids complete early stages of lung morphogenesis: Transient embryonic lung primordia form but regress by apoptosis before hatching. Initiation of pulmonary development coincides with expression of the lung-specification gene Wnt2b in adjacent mesoderm, and the lung rudiment expresses pulmonary markers Nkx2.1 and Sox9. Lung developmental-genetic pathways are at least partially conserved despite the absence of functional adult lungs for at least 25 and possibly exceeding 60 million years. Adult lung loss appears associated with altered expression of signaling molecules that mediate later stages of tracheal and pulmonary development.
Collapse
Affiliation(s)
- Zachary R. Lewis
- Department of Organismic and Evolutionary Biology and Museum of Comparative Zoology, Harvard University, Cambridge, MA, USA
| | - Ryan Kerney
- Department of Biology, Gettysburg College, Gettysburg, PA, USA
| | - James Hanken
- Department of Organismic and Evolutionary Biology and Museum of Comparative Zoology, Harvard University, Cambridge, MA, USA
| |
Collapse
|
90
|
Varankar SS, Cardoso EC, Lee JH. Ex situ-armus: experimental models for combating respiratory dysfunction. Curr Opin Genet Dev 2022; 75:101946. [PMID: 35810725 DOI: 10.1016/j.gde.2022.101946] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Revised: 05/26/2022] [Accepted: 05/29/2022] [Indexed: 11/28/2022]
Abstract
Ex situ experimental models have become a main stay in pulmonary research. Organoids and explant systems have uncovered novel stem cell subsets, served as disease models, delineated cell fate transitions, and aided high throughput pre-clinical drug screening. Integration of gene-editing and bioengineering approaches have further generated novel avenues for regenerative medicine and transplantation strategies. In this article, we highlight recent studies, aided by ex situ systems, which have contributed to significant advances in our understanding of the human lower respiratory tract. We present key observations from these studies to gain improved insights into human disease. We conclude this article with a summary of existing challenges and potential technological advances to successfully mirror human tissue physiology.
Collapse
Affiliation(s)
- Sagar S Varankar
- Wellcome - Medical Research Council Cambridge Stem Cell Institute, University of Cambridge, Jeffrey Cheah Biomedical Centre, Cambridge CB2 0AW, UK
| | - Erik C Cardoso
- Wellcome - Medical Research Council Cambridge Stem Cell Institute, University of Cambridge, Jeffrey Cheah Biomedical Centre, Cambridge CB2 0AW, UK
| | - Joo-Hyeon Lee
- Wellcome - Medical Research Council Cambridge Stem Cell Institute, University of Cambridge, Jeffrey Cheah Biomedical Centre, Cambridge CB2 0AW, UK; Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 3EL, UK.
| |
Collapse
|
91
|
Li C, Peinado N, Smith SM, Zhou J, Gao F, Kohbodi G, Zhou B, Thornton ME, Grubbs BH, Lee MK, Bellusci S, Borok Z, Chen YW, Minoo P. Wnt5a Promotes AT1 and Represses AT2 Lineage-Specific Gene Expression in a Cell-Context-Dependent Manner. Stem Cells 2022; 40:691-703. [PMID: 35429397 PMCID: PMC9332903 DOI: 10.1093/stmcls/sxac031] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 04/05/2022] [Indexed: 11/13/2022]
Abstract
Lung maturation is not limited to proper structural development but also includes differentiation and functionality of various highly specialized alveolar cell types. Alveolar type 1 (AT1s) cells occupy nearly 95% of the alveolar surface and are critical for establishing efficient gas exchange in the mature lung. AT1 cells arise from progenitors specified during the embryonic stage as well as alveolar epithelial progenitors expressing surfactant protein C (Sftpcpos cells) during postnatal and adult stages. Previously, we found that Wnt5a, a non-canonical Wnt ligand, is required for differentiation of AT1 cells during the saccular phase of lung development. To further investigate the role of Wnt5a in AT1 cell differentiation, we generated and characterized a conditional Wnt5a gain-of-function mouse model. Neonatal Wnt5a gain-of-function disrupted alveologenesis through inhibition of cell proliferation. In this setting Wnt5a downregulated β-catenin-dependent canonical Wnt signaling, repressed AT2 (anti-AT2) and promoted AT1 (pro-AT1) lineage-specific gene expression. In addition, we identified 2 subpopulations of Sftpchigh and Sftpclow alveolar epithelial cells. In Sftpclow cells, Wnt5a exhibits pro-AT1 and anti-AT2 effects, concurrent with inhibition of canonical Wnt signaling. Interestingly, in the Sftpchigh subpopulation, although increasing AT1 lineage-specific gene expression, Wnt5a gain-of-function did not change AT2 gene expression, nor inhibit canonical Wnt signaling. Using primary epithelial cells isolated from human fetal lungs, we demonstrate that this property of Wnt5a is evolutionarily conserved. Wnt5a therefore serves as a selective regulator that ensures proper AT1/AT2 balance in the developing lung.
Collapse
Affiliation(s)
- Changgong Li
- Division of Neonatology, Department of Pediatrics, LAC+USC Medical Center, USC Keck School of Medicine and Children’s HospitalLos Angeles, CA, USA
| | - Neil Peinado
- Division of Neonatology, Department of Pediatrics, LAC+USC Medical Center, USC Keck School of Medicine and Children’s HospitalLos Angeles, CA, USA
| | - Susan M Smith
- Division of Neonatology, Department of Pediatrics, LAC+USC Medical Center, USC Keck School of Medicine and Children’s HospitalLos Angeles, CA, USA
| | - Jing Zhou
- Division of Neonatology, Department of Pediatrics, LAC+USC Medical Center, USC Keck School of Medicine and Children’s HospitalLos Angeles, CA, USA
| | - Feng Gao
- Division of Neonatology, Department of Pediatrics, LAC+USC Medical Center, USC Keck School of Medicine and Children’s HospitalLos Angeles, CA, USA
| | - GoleNaz Kohbodi
- Division of Neonatology, Department of Pediatrics, LAC+USC Medical Center, USC Keck School of Medicine and Children’s HospitalLos Angeles, CA, USA
| | - Beiyun Zhou
- Hastings Center for Pulmonary Research, USC Keck School of Medicine, Los Angeles, CA, USA
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, USC Keck School of Medicine, Los Angeles, CA, USA
| | - Matthew E Thornton
- Division of Maternal Fetal Medicine, Department of Obstetrics and Gynecology, USC Keck School of Medicine, Los Angeles, CA, USA
| | - Brendan H Grubbs
- Division of Maternal Fetal Medicine, Department of Obstetrics and Gynecology, USC Keck School of Medicine, Los Angeles, CA, USA
| | - Matt K Lee
- Division of Neonatology, Department of Pediatrics, LAC+USC Medical Center, USC Keck School of Medicine and Children’s HospitalLos Angeles, CA, USA
| | - Saverio Bellusci
- Division of Neonatology, Department of Pediatrics, LAC+USC Medical Center, USC Keck School of Medicine and Children’s HospitalLos Angeles, CA, USA
- Cardio Pulmonary Institute, Universities of Giessen and Marburg Lung Center (UGMLC), Justus-Liebig-University Giessen, German Center for Lung Research (DZL), Giessen, Germany
| | - Zea Borok
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University ofCalifornia San Diego, CA, USA
| | - Ya-Wen Chen
- Hastings Center for Pulmonary Research, USC Keck School of Medicine, Los Angeles, CA, USA
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, USC Keck School of Medicine, Los Angeles, CA, USA
- Department of Stem Cell Biology and Regenerative Medicine, USC Keck School of Medicine, Los Angeles, CA, USA
| | - Parviz Minoo
- Division of Neonatology, Department of Pediatrics, LAC+USC Medical Center, USC Keck School of Medicine and Children’s HospitalLos Angeles, CA, USA
- Hastings Center for Pulmonary Research, USC Keck School of Medicine, Los Angeles, CA, USA
| |
Collapse
|
92
|
Liberti DC, Liberti Iii WA, Kremp MM, Penkala IJ, Cardenas-Diaz FL, Morley MP, Babu A, Zhou S, Fernandez Iii RJ, Morrisey EE. Klf5 defines alveolar epithelial type 1 cell lineage commitment during lung development and regeneration. Dev Cell 2022; 57:1742-1757.e5. [PMID: 35803279 DOI: 10.1016/j.devcel.2022.06.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 01/26/2022] [Accepted: 06/13/2022] [Indexed: 12/11/2022]
Abstract
Alveolar epithelial cell fate decisions drive lung development and regeneration. Using transcriptomic and epigenetic profiling coupled with genetic mouse and organoid models, we identified the transcription factor Klf5 as an essential determinant of alveolar epithelial cell fate across the lifespan. We show that although dispensable for both adult alveolar epithelial type 1 (AT1) and alveolar epithelial type 2 (AT2) cell homeostasis, Klf5 enforces AT1 cell lineage fidelity during development. Using infectious and non-infectious models of acute respiratory distress syndrome, we demonstrate that Klf5 represses AT2 cell proliferation and enhances AT2-AT1 cell differentiation in a spatially restricted manner during lung regeneration. Moreover, ex vivo organoid assays identify that Klf5 reduces AT2 cell sensitivity to inflammatory signaling to drive AT2-AT1 cell differentiation. These data define the roll of a major transcriptional regulator of AT1 cell lineage commitment and of the AT2 cell response to inflammatory crosstalk during lung regeneration.
Collapse
Affiliation(s)
- Derek C Liberti
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Penn Cardiovascular Institute, University of Pennsylvania, Philadelphia, PA 19104, USA; Penn-CHOP Lung Biology Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Institute for Regenerative Medicine, University of Pennsylvania, Perelman School of Medicine Philadelphia, PA 19104, USA
| | - William A Liberti Iii
- Department of Electrical Engineering and Computer Sciences, UC Berkeley, Berkeley, CA 94720, USA
| | - Madison M Kremp
- Penn Cardiovascular Institute, University of Pennsylvania, Philadelphia, PA 19104, USA; Penn-CHOP Lung Biology Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Ian J Penkala
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Penn Cardiovascular Institute, University of Pennsylvania, Philadelphia, PA 19104, USA; Penn-CHOP Lung Biology Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Institute for Regenerative Medicine, University of Pennsylvania, Perelman School of Medicine Philadelphia, PA 19104, USA
| | - Fabian L Cardenas-Diaz
- Penn Cardiovascular Institute, University of Pennsylvania, Philadelphia, PA 19104, USA; Penn-CHOP Lung Biology Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Michael P Morley
- Penn Cardiovascular Institute, University of Pennsylvania, Philadelphia, PA 19104, USA; Penn-CHOP Lung Biology Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Apoorva Babu
- Penn Cardiovascular Institute, University of Pennsylvania, Philadelphia, PA 19104, USA; Penn-CHOP Lung Biology Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Su Zhou
- Penn Cardiovascular Institute, University of Pennsylvania, Philadelphia, PA 19104, USA; Penn-CHOP Lung Biology Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Rafael J Fernandez Iii
- Medical Scientist Training Program, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Edward E Morrisey
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Penn Cardiovascular Institute, University of Pennsylvania, Philadelphia, PA 19104, USA; Penn-CHOP Lung Biology Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Institute for Regenerative Medicine, University of Pennsylvania, Perelman School of Medicine Philadelphia, PA 19104, USA; Department of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
93
|
Shiraishi K, Morrisey EE. It takes a lot of nerve to form the lung alveolus. Dev Cell 2022; 57:1559-1560. [PMID: 35820390 DOI: 10.1016/j.devcel.2022.06.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Autonomic nerves innervate the lungs, but how these nerves guide lung development remains unclear. In this issue of Developmental Cell, Zhang et al. reveal that myofibroblasts and developing nerves cross-communicate through neurotrophins and neurotransmitters to drive alveologenesi-and that planar cell polarity signaling is critical to this process.
Collapse
Affiliation(s)
- Kazushige Shiraishi
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Penn-CHOP Lung Biology Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Edward E Morrisey
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Penn-CHOP Lung Biology Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
94
|
Chan M, Liu Y. Function of epithelial stem cell in the repair of alveolar injury. Stem Cell Res Ther 2022; 13:170. [PMID: 35477551 PMCID: PMC9044382 DOI: 10.1186/s13287-022-02847-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 04/11/2022] [Indexed: 01/03/2023] Open
Abstract
Alveoli are the functional units of blood-gas exchange in the lung and thus are constantly exposed to outside environments and frequently encounter pathogens, particles and other harmful substances. For example, the alveolar epithelium is one of the primary targets of the SARS-CoV-2 virus that causes COVID-19 lung disease. Therefore, it is essential to understand the cellular and molecular mechanisms by which the integrity of alveoli epithelial barrier is maintained. Alveolar epithelium comprises two cell types: alveolar type I cells (AT1) and alveolar type II cells (AT2). AT2s have been shown to function as tissue stem cells that repair the injured alveoli epithelium. Recent studies indicate that AT1s and subgroups of proximal airway epithelial cells can also participate alveolar repair process through their intrinsic plasticity. This review discussed the potential mechanisms that drive the reparative behaviors of AT2, AT1 and some proximal cells in responses to injury and how an abnormal repair contributes to some pathological conditions.
Collapse
Affiliation(s)
- Manwai Chan
- Department of Biomedical Engineering, University of Illinois College of Medicine, Chicago, IL, 60612, USA
| | - Yuru Liu
- Department of Biomedical Engineering, University of Illinois College of Medicine, Chicago, IL, 60612, USA. .,Department of Pharmacology and Regenerative Medicine, University of Illinois College of Medicine, Chicago, IL, 60612, USA. .,University of Illinois Cancer Center, Chicago, IL60612, USA.
| |
Collapse
|
95
|
Toth A, Steinmeyer S, Kannan P, Gray J, Jackson CM, Mukherjee S, Demmert M, Sheak JR, Benson D, Kitzmiller J, Wayman JA, Presicce P, Cates C, Rubin R, Chetal K, Du Y, Miao Y, Gu M, Guo M, Kalinichenko VV, Kallapur SG, Miraldi ER, Xu Y, Swarr D, Lewkowich I, Salomonis N, Miller L, Sucre JS, Whitsett JA, Chougnet CA, Jobe AH, Deshmukh H, Zacharias WJ. Inflammatory blockade prevents injury to the developing pulmonary gas exchange surface in preterm primates. Sci Transl Med 2022; 14:eabl8574. [PMID: 35353543 PMCID: PMC9082785 DOI: 10.1126/scitranslmed.abl8574] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Perinatal inflammatory stress is associated with early life morbidity and lifelong consequences for pulmonary health. Chorioamnionitis, an inflammatory condition affecting the placenta and fluid surrounding the developing fetus, affects 25 to 40% of preterm births. Severe chorioamnionitis with preterm birth is associated with significantly increased risk of pulmonary disease and secondary infections in childhood, suggesting that fetal inflammation may markedly alter the development of the lung. Here, we used intra-amniotic lipopolysaccharide (LPS) challenge to induce experimental chorioamnionitis in a prenatal rhesus macaque (Macaca mulatta) model that mirrors structural and temporal aspects of human lung development. Inflammatory injury directly disrupted the developing gas exchange surface of the primate lung, with extensive damage to alveolar structure, particularly the close association and coordinated differentiation of alveolar type 1 pneumocytes and specialized alveolar capillary endothelium. Single-cell RNA sequencing analysis defined a multicellular alveolar signaling niche driving alveologenesis that was extensively disrupted by perinatal inflammation, leading to a loss of gas exchange surface and alveolar simplification, with notable resemblance to chronic lung disease in newborns. Blockade of the inflammatory cytokines interleukin-1β and tumor necrosis factor-α ameliorated LPS-induced inflammatory lung injury by blunting stromal responses to inflammation and modulating innate immune activation in myeloid cells, restoring structural integrity and key signaling networks in the developing alveolus. These data provide new insight into the pathophysiology of developmental lung injury and suggest that modulating inflammation is a promising therapeutic approach to prevent fetal consequences of chorioamnionitis.
Collapse
Affiliation(s)
- Andrea Toth
- Perinatal Institute, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH USA
- Division of Pulmonary Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH USA
- Division of Developmental Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH USA
- Medical Scientist Training Program, University of Cincinnati College of Medicine, Cincinnati, OH USA
- Molecular and Developmental Biology Graduate Program, University of Cincinnati College of Medicine, Cincinnati, OH USA
| | - Shelby Steinmeyer
- Perinatal Institute, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH USA
- Division of Pulmonary Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH USA
| | - Paranthaman Kannan
- Perinatal Institute, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH USA
- Division of Pulmonary Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH USA
- Division of Developmental Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH USA
| | - Jerilyn Gray
- Perinatal Institute, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH USA
- Division of Pulmonary Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH USA
- Division of Immunobiology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH USA
| | - Courtney M. Jackson
- Division of Immunobiology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH USA
- Immunology Graduate Program, University of Cincinnati College of Medicine, Cincinnati, OH USA
- Department of Pediatrics, Division of Allergy and Immunology, University of Rochester, Rochester, NY USA
| | - Shibabrata Mukherjee
- Division of Immunobiology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH USA
| | - Martin Demmert
- Division of Immunobiology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH USA
- Department of Pediatrics, Institute for Systemic Inflammation Research, University of Lϋbeck, Lϋbeck, Germany
| | - Joshua R. Sheak
- Perinatal Institute, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH USA
- Division of Pulmonary Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH USA
- Division of Developmental Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH USA
| | - Daniel Benson
- Perinatal Institute, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH USA
- Division of Pulmonary Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH USA
- Division of Developmental Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH USA
| | - Joseph Kitzmiller
- Perinatal Institute, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH USA
- Division of Pulmonary Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH USA
- Division of Developmental Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH USA
| | - Joseph A. Wayman
- Division of Immunobiology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH USA
- Division of Biomedical Informatics, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH USA
| | - Pietro Presicce
- Divisions of Neonatology and Developmental Biology, David Geffen School of Medicine at the University of California Los Angeles, Los Angeles, CA USA
| | - Christopher Cates
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, OH USA
| | - Rhea Rubin
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, OH USA
| | - Kashish Chetal
- Division of Biomedical Informatics, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH USA
| | - Yina Du
- Perinatal Institute, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH USA
- Division of Pulmonary Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH USA
- Division of Developmental Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH USA
- Division of Biomedical Informatics, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH USA
| | - Yifei Miao
- Perinatal Institute, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH USA
- Division of Pulmonary Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH USA
- Division of Developmental Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH USA
| | - Mingxia Gu
- Perinatal Institute, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH USA
- Division of Pulmonary Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH USA
- Division of Developmental Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH USA
| | - Minzhe Guo
- Perinatal Institute, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH USA
- Division of Pulmonary Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH USA
| | - Vladimir V. Kalinichenko
- Perinatal Institute, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH USA
- Division of Pulmonary Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH USA
- Division of Developmental Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH USA
| | - Suhas G. Kallapur
- Divisions of Neonatology and Developmental Biology, David Geffen School of Medicine at the University of California Los Angeles, Los Angeles, CA USA
| | - Emily R. Miraldi
- Division of Immunobiology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH USA
- Division of Biomedical Informatics, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH USA
| | - Yan Xu
- Perinatal Institute, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH USA
- Division of Pulmonary Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH USA
- Division of Biomedical Informatics, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH USA
| | - Daniel Swarr
- Perinatal Institute, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH USA
- Division of Pulmonary Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH USA
| | - Ian Lewkowich
- Division of Immunobiology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH USA
| | - Nathan Salomonis
- Division of Immunobiology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH USA
- Division of Biomedical Informatics, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH USA
| | - Lisa Miller
- California National Primate Research Center, University of California Davis, Davis, CA USA
- Department of Anatomy, Physiology, and Cell Biology, School of Veterinary Medicine, University of California Davis, Davis, CA USA
| | - Jennifer S. Sucre
- Division of Neonatology, Department of Pediatrics, Vanderbilt University School of Medicine, Nashville, TN USA
| | - Jeffrey A. Whitsett
- Perinatal Institute, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH USA
- Division of Pulmonary Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH USA
- Division of Developmental Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH USA
| | - Claire A. Chougnet
- Division of Immunobiology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH USA
| | - Alan H. Jobe
- Perinatal Institute, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH USA
- Division of Pulmonary Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH USA
| | - Hitesh Deshmukh
- Perinatal Institute, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH USA
- Division of Pulmonary Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH USA
- Division of Immunobiology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH USA
| | - William J. Zacharias
- Perinatal Institute, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH USA
- Division of Pulmonary Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH USA
- Division of Developmental Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH USA
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, OH USA
| |
Collapse
|
96
|
Moskwa N, Mahmood A, Nelson DA, Altrieth AL, Forni PE, Larsen M. Single-cell RNA sequencing reveals PDGFRα+ stromal cell subpopulations that promote proacinar cell differentiation in embryonic salivary gland organoids. Development 2022; 149:dev200167. [PMID: 35224622 PMCID: PMC8977102 DOI: 10.1242/dev.200167] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 02/18/2022] [Indexed: 12/12/2022]
Abstract
Stromal cells can direct the differentiation of epithelial progenitor cells during organ development. Fibroblast growth factor (FGF) signaling is essential for submandibular salivary gland development. Through stromal fibroblast cells, FGF2 can indirectly regulate proacinar cell differentiation in organoids, but the mechanisms are not understood. We performed single-cell RNA-sequencing and identified multiple stromal cell subsets, including Pdgfra+ stromal subsets expressing both Fgf2 and Fgf10. When combined with epithelial progenitor cells in organoids, magnetic-activated cell-sorted PDGFRα+ cells promoted proacinar cell differentiation similarly to total stroma. Gene expression analysis revealed that FGF2 increased the expression of multiple stromal genes, including Bmp2 and Bmp7. Both BMP2 and BMP7 synergized with FGF2, stimulating proacinar cell differentiation but not branching. However, stromal cells grown without FGF2 did not support proacinar organoid differentiation and instead differentiated into myofibroblasts. In organoids, TGFβ1 treatment stimulated myofibroblast differentiation and inhibited the proacinar cell differentiation of epithelial progenitor cells. Conversely, FGF2 reversed the effects of TGFβ1. We also demonstrated that adult salivary stromal cells were FGF2 responsive and could promote proacinar cell differentiation. These FGF2 signaling pathways may have applications in future regenerative therapies.
Collapse
Affiliation(s)
- Nicholas Moskwa
- Department of Biological Sciences, University at Albany, State University of New York, Albany, NY 12222, USA
- Graduate Program in Molecular, Cellular, Developmental and Neural Biology, University at Albany, State University of New York, Albany, NY 12222, USA
| | - Ayma Mahmood
- Department of Biological Sciences, University at Albany, State University of New York, Albany, NY 12222, USA
| | - Deirdre A. Nelson
- Department of Biological Sciences, University at Albany, State University of New York, Albany, NY 12222, USA
| | - Amber L. Altrieth
- Department of Biological Sciences, University at Albany, State University of New York, Albany, NY 12222, USA
- Graduate Program in Molecular, Cellular, Developmental and Neural Biology, University at Albany, State University of New York, Albany, NY 12222, USA
- The RNA Institute, University at Albany, State University of New York, Albany, NY 12222, USA
| | - Paolo E. Forni
- Department of Biological Sciences, University at Albany, State University of New York, Albany, NY 12222, USA
- Graduate Program in Molecular, Cellular, Developmental and Neural Biology, University at Albany, State University of New York, Albany, NY 12222, USA
- The RNA Institute, University at Albany, State University of New York, Albany, NY 12222, USA
| | - Melinda Larsen
- Department of Biological Sciences, University at Albany, State University of New York, Albany, NY 12222, USA
- Graduate Program in Molecular, Cellular, Developmental and Neural Biology, University at Albany, State University of New York, Albany, NY 12222, USA
- The RNA Institute, University at Albany, State University of New York, Albany, NY 12222, USA
| |
Collapse
|
97
|
Narvaez Del Pilar O, Gacha Garay MJ, Chen J. Three-axis classification of mouse lung mesenchymal cells reveals two populations of myofibroblasts. Development 2022; 149:274755. [PMID: 35302583 PMCID: PMC8977099 DOI: 10.1242/dev.200081] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 02/21/2022] [Indexed: 10/18/2022]
Abstract
The mesenchyme consists of heterogeneous cell populations that support neighboring structures and are integral to intercellular signaling, but are poorly defined morphologically and molecularly. Leveraging single-cell RNA-sequencing, 3D imaging and lineage tracing, we classify the mouse lung mesenchyme into three proximal-distal axes that are associated with the endothelium, epithelium and interstitium, respectively. From proximal to distal: the vascular axis includes vascular smooth muscle cells and pericytes that transition as arterioles and venules ramify into capillaries; the epithelial axis includes airway smooth muscle cells and two populations of myofibroblasts - ductal myofibroblasts, surrounding alveolar ducts and marked by CDH4, HHIP and LGR6, which persist post-alveologenesis, and alveolar myofibroblasts, surrounding alveoli and marked by high expression of PDGFRA, which undergo developmental apoptosis; and the interstitial axis, residing between the epithelial and vascular trees and sharing the marker MEOX2, includes fibroblasts in the bronchovascular bundle and the alveolar interstitium, which are marked by IL33/DNER/PI16 and Wnt2, respectively. Single-cell imaging reveals a distinct morphology of mesenchymal cell populations. This classification provides a conceptual and experimental framework applicable to other organs.
Collapse
Affiliation(s)
- Odemaris Narvaez Del Pilar
- Department of Pulmonary Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA.,Graduate School of Biomedical Sciences , The University of Texas MD Anderson Cancer Center UTHealth, Houston, Texas 77030, USA.,University of Puerto Rico - Medical Sciences Campus, San Juan, Puerto Rico 00927
| | - Maria Jose Gacha Garay
- Department of Pulmonary Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA.,Graduate School of Biomedical Sciences , The University of Texas MD Anderson Cancer Center UTHealth, Houston, Texas 77030, USA
| | - Jichao Chen
- Department of Pulmonary Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| |
Collapse
|
98
|
Duong TE, Wu Y, Sos BC, Dong W, Limaye S, Rivier LH, Myers G, Hagood JS, Zhang K. A single-cell regulatory map of postnatal lung alveologenesis in humans and mice. CELL GENOMICS 2022; 2:100108. [PMID: 35434692 PMCID: PMC9012447 DOI: 10.1016/j.xgen.2022.100108] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 05/05/2021] [Accepted: 02/02/2022] [Indexed: 04/14/2023]
Abstract
Ex-utero regulation of the lungs' responses to breathing air and continued alveolar development shape adult respiratory health. Applying single-cell transposome hypersensitive site sequencing (scTHS-seq) to over 80,000 cells, we assembled the first regulatory atlas of postnatal human and mouse lung alveolar development. We defined regulatory modules and elucidated new mechanistic insights directing alveolar septation, including alveolar type 1 and myofibroblast cell signaling and differentiation, and a unique human matrix fibroblast population. Incorporating GWAS, we mapped lung function causal variants to myofibroblasts and identified a pathogenic regulatory unit linked to lineage marker FGF18, demonstrating the utility of chromatin accessibility data to uncover disease mechanism targets. Our regulatory map and analysis model provide valuable new resources to investigate age-dependent and species-specific control of critical developmental processes. Furthermore, these resources complement existing atlas efforts to advance our understanding of lung health and disease across the human lifespan.
Collapse
Affiliation(s)
- Thu Elizabeth Duong
- Department of Pediatrics, Division of Respiratory Medicine, University of California San Diego, La Jolla, CA 92093, USA
| | - Yan Wu
- Department of Bioengineering, University of California San Diego, La Jolla, CA 92093, USA
| | - Brandon Chin Sos
- Department of Bioengineering, University of California San Diego, La Jolla, CA 92093, USA
| | - Weixiu Dong
- Department of Bioengineering, University of California San Diego, La Jolla, CA 92093, USA
| | - Siddharth Limaye
- Department of Bioengineering, University of California San Diego, La Jolla, CA 92093, USA
| | - Lauraine H. Rivier
- Department of Pediatrics, Division of Pediatric Pulmonology, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Greg Myers
- Department of Pediatrics, Division of Pediatric Pulmonology, University of North Carolina, Chapel Hill, NC 27599, USA
| | - James S. Hagood
- Department of Pediatrics, Division of Pediatric Pulmonology, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Kun Zhang
- Department of Bioengineering, University of California San Diego, La Jolla, CA 92093, USA
| |
Collapse
|
99
|
Jiang Y, Hao S, Chen X, Cheng M, Xu J, Li C, Zheng H, Volpe G, Chen A, Liao S, Liu C, Liu L, Xu X. Spatial Transcriptome Uncovers the Mouse Lung Architectures and Functions. Front Genet 2022; 13:858808. [PMID: 35391793 PMCID: PMC8982079 DOI: 10.3389/fgene.2022.858808] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 02/21/2022] [Indexed: 11/21/2022] Open
Affiliation(s)
- Yujia Jiang
- BGI College and Henan Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China
- BGI-Shenzhen, Shenzhen, China
| | - Shijie Hao
- BGI-Shenzhen, Shenzhen, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Xi Chen
- BGI-Shenzhen, Shenzhen, China
| | - Mengnan Cheng
- BGI-Shenzhen, Shenzhen, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Jiangshan Xu
- BGI-Shenzhen, Shenzhen, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | | | - Huiwen Zheng
- BGI College and Henan Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China
- BGI-Shenzhen, Shenzhen, China
| | - Giacomo Volpe
- Hematology and Cell Therapy Unit, IRCCS Istituto Tumori “Giovanni Paolo II”, Bari, Italy
| | - Ao Chen
- BGI-Shenzhen, Shenzhen, China
| | | | | | | | - Xun Xu
- BGI College and Henan Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China
- BGI-Shenzhen, Shenzhen, China
| |
Collapse
|
100
|
Yang JW, Lin YR, Chu YL, Chung JHY, Lu HE, Chen GY. Tissue-level alveolar epithelium model for recapitulating SARS-CoV-2 infection and cellular plasticity. Commun Biol 2022; 5:70. [PMID: 35046486 PMCID: PMC8770515 DOI: 10.1038/s42003-022-03026-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Accepted: 12/27/2021] [Indexed: 12/11/2022] Open
Abstract
AbstractPulmonary sequelae following COVID-19 pneumonia have been emerging as a challenge; however, suitable cell sources for studying COVID-19 mechanisms and therapeutics are currently lacking. In this paper, we present a standardized primary alveolar cell culture method for establishing a human alveolar epithelium model that can recapitulate viral infection and cellular plasticity. The alveolar model is infected with a SARS-CoV-2 pseudovirus, and the clinically relevant features of the viral entry into the alveolar type-I/II cells, cytokine production activation, and pulmonary surfactant destruction are reproduced. For this damaged alveolar model, we find that the inhibition of Wnt signaling via XAV939 substantially improves alveolar repair function and prevents subsequent pulmonary fibrosis. Thus, the proposed alveolar cell culture strategy exhibits potential for the identification of pathogenesis and therapeutics in basic and translational research.
Collapse
|