51
|
Kalita P, Tripathi T, Padhi AK. Computational Protein Design for COVID-19 Research and Emerging Therapeutics. ACS CENTRAL SCIENCE 2023; 9:602-613. [PMID: 37122454 PMCID: PMC10042144 DOI: 10.1021/acscentsci.2c01513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Indexed: 05/03/2023]
Abstract
As the world struggles with the ongoing COVID-19 pandemic, unprecedented obstacles have continuously been traversed as new SARS-CoV-2 variants continually emerge. Infectious disease outbreaks are unavoidable, but the knowledge gained from the successes and failures will help create a robust health management system to deal with such pandemics. Previously, scientists required years to develop diagnostics, therapeutics, or vaccines; however, we have seen that, with the rapid deployment of high-throughput technologies and unprecedented scientific collaboration worldwide, breakthrough discoveries can be accelerated and insights broadened. Computational protein design (CPD) is a game-changing new technology that has provided alternative therapeutic strategies for pandemic management. In addition to the development of peptide-based inhibitors, miniprotein binders, decoys, biosensors, nanobodies, and monoclonal antibodies, CPD has also been used to redesign native SARS-CoV-2 proteins and human ACE2 receptors. We discuss how novel CPD strategies have been exploited to develop rationally designed and robust COVID-19 treatment strategies.
Collapse
Affiliation(s)
- Parismita Kalita
- Molecular
and Structural Biophysics Laboratory, Department of Biochemistry, North-Eastern Hill University, Shillong 793022, India
| | - Timir Tripathi
- Molecular
and Structural Biophysics Laboratory, Department of Biochemistry, North-Eastern Hill University, Shillong 793022, India
- Regional
Director’s Office, Indira Gandhi
National Open University, Regional Centre Kohima, Kenuozou, Kohima 797001, India
| | - Aditya K. Padhi
- Laboratory
for Computational Biology & Biomolecular Design, School of Biochemical
Engineering, Indian Institute of Technology
(BHU), Varanasi 221005, Uttar Pradesh, India
| |
Collapse
|
52
|
Dadas O, Ertay A, Cragg MS. Delivering co-stimulatory tumor necrosis factor receptor agonism for cancer immunotherapy: past, current and future perspectives. Front Immunol 2023; 14:1147467. [PMID: 37180119 PMCID: PMC10167284 DOI: 10.3389/fimmu.2023.1147467] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 03/27/2023] [Indexed: 05/15/2023] Open
Abstract
The tumor necrosis factor superfamily (TNFSF) and their receptors (TNFRSF) are important regulators of the immune system, mediating proliferation, survival, differentiation, and function of immune cells. As a result, their targeting for immunotherapy is attractive, although to date, under-exploited. In this review we discuss the importance of co-stimulatory members of the TNFRSF in optimal immune response generation, the rationale behind targeting these receptors for immunotherapy, the success of targeting them in pre-clinical studies and the challenges in translating this success into the clinic. The efficacy and limitations of the currently available agents are discussed alongside the development of next generation immunostimulatory agents designed to overcome current issues, and capitalize on this receptor class to deliver potent, durable and safe drugs for patients.
Collapse
Affiliation(s)
- Osman Dadas
- Antibody and Vaccine Group, School of Cancer Sciences, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | - Ayse Ertay
- School of Cancer Sciences, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | - Mark S. Cragg
- Antibody and Vaccine Group, School of Cancer Sciences, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
- Institute for Life Sciences, University of Southampton, Southampton, United Kingdom
| |
Collapse
|
53
|
Lutz ID, Wang S, Norn C, Courbet A, Borst AJ, Zhao YT, Dosey A, Cao L, Xu J, Leaf EM, Treichel C, Litvicov P, Li Z, Goodson AD, Rivera-Sánchez P, Bratovianu AM, Baek M, King NP, Ruohola-Baker H, Baker D. Top-down design of protein architectures with reinforcement learning. Science 2023; 380:266-273. [PMID: 37079676 DOI: 10.1126/science.adf6591] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Accepted: 03/21/2023] [Indexed: 04/22/2023]
Abstract
As a result of evolutionary selection, the subunits of naturally occurring protein assemblies often fit together with substantial shape complementarity to generate architectures optimal for function in a manner not achievable by current design approaches. We describe a "top-down" reinforcement learning-based design approach that solves this problem using Monte Carlo tree search to sample protein conformers in the context of an overall architecture and specified functional constraints. Cryo-electron microscopy structures of the designed disk-shaped nanopores and ultracompact icosahedra are very close to the computational models. The icosohedra enable very-high-density display of immunogens and signaling molecules, which potentiates vaccine response and angiogenesis induction. Our approach enables the top-down design of complex protein nanomaterials with desired system properties and demonstrates the power of reinforcement learning in protein design.
Collapse
Affiliation(s)
- Isaac D Lutz
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
- Department of Bioengineering, University of Washington, Seattle, WA, USA
| | - Shunzhi Wang
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
| | - Christoffer Norn
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
- BioInnovation Institute, DK2200 Copenhagen N, Denmark
| | - Alexis Courbet
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
- Howard Hughes Medical Institute, University of Washington, Seattle, WA, USA
| | - Andrew J Borst
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
| | - Yan Ting Zhao
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA, USA
- Oral Health Sciences, University of Washington, Seattle, WA, USA
| | - Annie Dosey
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
| | - Longxing Cao
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
| | - Jinwei Xu
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
| | - Elizabeth M Leaf
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
| | - Catherine Treichel
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
| | - Patrisia Litvicov
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA, USA
| | - Zhe Li
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
| | - Alexander D Goodson
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
| | | | | | - Minkyung Baek
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
- School of Biological Sciences, Seoul National University, Seoul, Republic of Korea
| | - Neil P King
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
| | - Hannele Ruohola-Baker
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Department of Bioengineering, University of Washington, Seattle, WA, USA
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA, USA
- Oral Health Sciences, University of Washington, Seattle, WA, USA
| | - David Baker
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
- Department of Bioengineering, University of Washington, Seattle, WA, USA
| |
Collapse
|
54
|
Yang EC, Divine R, Miranda MC, Borst AJ, Sheffler W, Zhang JZ, Decarreau J, Saragovi A, Abedi M, Goldbach N, Ahlrichs M, Dobbins C, Hand A, Cheng S, Lamb M, Levine PM, Chan S, Skotheim R, Fallas J, Ueda G, Lubner J, Somiya M, Khmelinskaia A, King NP, Baker D. Computational design of non-porous, pH-responsive antibody nanoparticles. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.17.537263. [PMID: 37131615 PMCID: PMC10153164 DOI: 10.1101/2023.04.17.537263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Programming protein nanomaterials to respond to changes in environmental conditions is a current challenge for protein design and important for targeted delivery of biologics. We describe the design of octahedral non-porous nanoparticles with the three symmetry axes (four-fold, three-fold, and two-fold) occupied by three distinct protein homooligomers: a de novo designed tetramer, an antibody of interest, and a designed trimer programmed to disassemble below a tunable pH transition point. The nanoparticles assemble cooperatively from independently purified components, and a cryo-EM density map reveals that the structure is very close to the computational design model. The designed nanoparticles can package a variety of molecular payloads, are endocytosed following antibody-mediated targeting of cell surface receptors, and undergo tunable pH-dependent disassembly at pH values ranging between to 5.9-6.7. To our knowledge, these are the first designed nanoparticles with more than two structural components and with finely tunable environmental sensitivity, and they provide new routes to antibody-directed targeted delivery.
Collapse
Affiliation(s)
- Erin C Yang
- Institute for Protein Design, University of Washington, Seattle, WA, USA
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Graduate Program in Biological Physics, Structure & Design, University of Washington, Seattle, WA, USA
| | - Robby Divine
- Institute for Protein Design, University of Washington, Seattle, WA, USA
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Graduate Program in Biochemistry, University of Washington, Seattle, WA, USA
- Department of Chemistry, University of California, Davis, Davis, CA, USA
| | - Marcos C Miranda
- Institute for Protein Design, University of Washington, Seattle, WA, USA
- Department of Medicine Solna, Division of Immunology and Allergy, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden
| | - Andrew J Borst
- Institute for Protein Design, University of Washington, Seattle, WA, USA
- Department of Biochemistry, University of Washington, Seattle, WA, USA
| | - Will Sheffler
- Institute for Protein Design, University of Washington, Seattle, WA, USA
| | - Jason Z Zhang
- Institute for Protein Design, University of Washington, Seattle, WA, USA
- Department of Biochemistry, University of Washington, Seattle, WA, USA
| | - Justin Decarreau
- Institute for Protein Design, University of Washington, Seattle, WA, USA
- Department of Biochemistry, University of Washington, Seattle, WA, USA
| | - Amijai Saragovi
- Institute for Protein Design, University of Washington, Seattle, WA, USA
- Department of Biochemistry, University of Washington, Seattle, WA, USA
| | - Mohamad Abedi
- Institute for Protein Design, University of Washington, Seattle, WA, USA
- Department of Biochemistry, University of Washington, Seattle, WA, USA
| | - Nicolas Goldbach
- Institute for Protein Design, University of Washington, Seattle, WA, USA
- Technical University of Munich, Munich, Germany
| | - Maggie Ahlrichs
- Institute for Protein Design, University of Washington, Seattle, WA, USA
- Department of Biochemistry, University of Washington, Seattle, WA, USA
| | - Craig Dobbins
- Institute for Protein Design, University of Washington, Seattle, WA, USA
- Department of Biochemistry, University of Washington, Seattle, WA, USA
| | - Alexis Hand
- Institute for Protein Design, University of Washington, Seattle, WA, USA
- Department of Biochemistry, University of Washington, Seattle, WA, USA
| | - Suna Cheng
- Institute for Protein Design, University of Washington, Seattle, WA, USA
- Department of Biochemistry, University of Washington, Seattle, WA, USA
| | - Mila Lamb
- Institute for Protein Design, University of Washington, Seattle, WA, USA
- Department of Biochemistry, University of Washington, Seattle, WA, USA
| | - Paul M Levine
- Institute for Protein Design, University of Washington, Seattle, WA, USA
- Department of Biochemistry, University of Washington, Seattle, WA, USA
| | - Sidney Chan
- Institute for Protein Design, University of Washington, Seattle, WA, USA
- Department of Biochemistry, University of Washington, Seattle, WA, USA
| | - Rebecca Skotheim
- Institute for Protein Design, University of Washington, Seattle, WA, USA
- Department of Biochemistry, University of Washington, Seattle, WA, USA
| | - Jorge Fallas
- Institute for Protein Design, University of Washington, Seattle, WA, USA
- Department of Biochemistry, University of Washington, Seattle, WA, USA
| | - George Ueda
- Institute for Protein Design, University of Washington, Seattle, WA, USA
- Department of Biochemistry, University of Washington, Seattle, WA, USA
| | - Joshua Lubner
- Institute for Protein Design, University of Washington, Seattle, WA, USA
- Department of Biochemistry, University of Washington, Seattle, WA, USA
| | - Masaharu Somiya
- Institute for Protein Design, University of Washington, Seattle, WA, USA
- SANKEN, Osaka University, Osaka, Japan
| | - Alena Khmelinskaia
- Institute for Protein Design, University of Washington, Seattle, WA, USA
- Transdisciplinary Research Area "Building Blocks of Matter and Fundamental Interactions (TRA Matter)", University of Bonn, Bonn, Germany
- Life and Medical Sciences Institute, University of Bonn, Bonn, Germany
| | - Neil P King
- Institute for Protein Design, University of Washington, Seattle, WA, USA
- Department of Biochemistry, University of Washington, Seattle, WA, USA
| | - David Baker
- Institute for Protein Design, University of Washington, Seattle, WA, USA
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Howard Hughes Medical Institute, University of Washington, Seattle, WA, USA
| |
Collapse
|
55
|
Yong Joon Kim J, Sang Z, Xiang Y, Shen Z, Shi Y. Nanobodies: Robust miniprotein binders in biomedicine. Adv Drug Deliv Rev 2023; 195:114726. [PMID: 36754285 PMCID: PMC11725230 DOI: 10.1016/j.addr.2023.114726] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 12/30/2022] [Accepted: 02/02/2023] [Indexed: 02/10/2023]
Abstract
Variable domains of heavy chain-only antibodies (VHH), also known as nanobodies (Nbs), are monomeric antigen-binding domains derived from the camelid heavy chain-only antibodies. Nbs are characterized by small size, high target selectivity, and marked solubility and stability, which collectively facilitate high-quality drug development. In addition, Nbs are readily expressed from various expression systems, including E. coli and yeast cells. For these reasons, Nbs have emerged as preferred antibody fragments for protein engineering, disease diagnosis, and treatment. To date, two Nb-based therapies have been approved by the U.S. Food and Drug Administration (FDA). Numerous candidates spanning a wide spectrum of diseases such as cancer, immune disorders, infectious diseases, and neurodegenerative disorders are under preclinical and clinical investigation. Here, we discuss the structural features of Nbs that allow for specific, versatile, and strong target binding. We also summarize emerging technologies for identification, structural analysis, and humanization of Nbs. Our main focus is to review recent advances in using Nbs as a modular scaffold to facilitate the engineering of multivalent polymers for cutting-edge applications. Finally, we discuss remaining challenges for Nb development and envision new opportunities in Nb-based research.
Collapse
Affiliation(s)
- Jeffrey Yong Joon Kim
- Center of Protein Engineering and Therapeutics, Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, 1, Gustave L. Levy Pl, New York, NY 10029, USA; Medical Scientist Training Program, University of Pittsburgh School of Medicine and Carnegie Mellon University, Pittsburgh, PA, USA
| | - Zhe Sang
- Center of Protein Engineering and Therapeutics, Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, 1, Gustave L. Levy Pl, New York, NY 10029, USA
| | - Yufei Xiang
- Center of Protein Engineering and Therapeutics, Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, 1, Gustave L. Levy Pl, New York, NY 10029, USA
| | - Zhuolun Shen
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Yi Shi
- Center of Protein Engineering and Therapeutics, Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, 1, Gustave L. Levy Pl, New York, NY 10029, USA.
| |
Collapse
|
56
|
Kim HS, Bae JH, Kim G, Song JJ, Kim HS. Construction and Functionalization of a Clathrin Assembly for a Targeted Protein Delivery. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2204620. [PMID: 36456203 DOI: 10.1002/smll.202204620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 11/02/2022] [Indexed: 06/17/2023]
Abstract
Protein assemblies have drawn much attention as platforms for biomedical applications, including gene/drug delivery and vaccine, due to biocompatibility and functional diversity. Here, the construction and functionalization of a protein assembly composed of human clathrin heavy chain and light chain for a targeted protein delivery, is presented. The clathrin heavy and light chains are redesigned and associated with each other, and the resulting triskelion unit further self-assembled into a clathrin assembly with the size of about 28 nm in diameter. The clathrin assembly is dual-functionalized with a protein cargo and a targeting moiety using two different orthogonal protein-ligand pairs through one-pot reaction. The functionalized clathrin assembly exhibits about a 900-fold decreased KD value for a cell-surface target due to avidity compared to a native targeting moiety. The utility of the clathrin assembly is demonstrated by an efficient delivery of a protein cargo into tumor cells in a target-specific manner, resulting in a strong cytotoxic effect. The present approach can be used in the creation of protein assemblies with multimodality.
Collapse
Affiliation(s)
- Hong-Sik Kim
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Jin-Ho Bae
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Gijeong Kim
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Ji-Joon Song
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Hak-Sung Kim
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| |
Collapse
|
57
|
Gerben S, Borst AJ, Hicks DR, Moczygemba I, Feldman D, Coventry B, Yang W, Bera AK, Miranda M, Kang A, Nguyen H, Baker D. Design of Diverse Asymmetric Pockets in De Novo Homo-oligomeric Proteins. Biochemistry 2023; 62:358-368. [PMID: 36627259 PMCID: PMC9850923 DOI: 10.1021/acs.biochem.2c00497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Revised: 11/28/2022] [Indexed: 01/12/2023]
Abstract
A challenge for design of protein-small-molecule recognition is that incorporation of cavities with size, shape, and composition suitable for specific recognition can considerably destabilize protein monomers. This challenge can be overcome through binding pockets formed at homo-oligomeric interfaces between folded monomers. Interfaces surrounding the central homo-oligomer symmetry axes necessarily have the same symmetry and so may not be well suited to binding asymmetric molecules. To enable general recognition of arbitrary asymmetric substrates and small molecules, we developed an approach to designing asymmetric interfaces at off-axis sites on homo-oligomers, analogous to those found in native homo-oligomeric proteins such as glutamine synthetase. We symmetrically dock curved helical repeat proteins such that they form pockets at the asymmetric interface of the oligomer with sizes ranging from several angstroms, appropriate for binding a single ion, to up to more than 20 Å across. Of the 133 proteins tested, 84 had soluble expression in E. coli, 47 had correct oligomeric states in solution, 35 had small-angle X-ray scattering (SAXS) data largely consistent with design models, and 8 had negative-stain electron microscopy (nsEM) 2D class averages showing the structures coming together as designed. Both an X-ray crystal structure and a cryogenic electron microscopy (cryoEM) structure are close to the computational design models. The nature of these proteins as homo-oligomers allows them to be readily built into higher-order structures such as nanocages, and the asymmetric pockets of these structures open rich possibilities for small-molecule binder design free from the constraints associated with monomer destabilization.
Collapse
Affiliation(s)
- Stacey
R Gerben
- Department
of Biochemistry, University of Washington, Seattle, Washington 98195, United States
- Institute
for Protein Design, University of Washington, Seattle, Washington 98195, United States
| | - Andrew J Borst
- Department
of Biochemistry, University of Washington, Seattle, Washington 98195, United States
- Institute
for Protein Design, University of Washington, Seattle, Washington 98195, United States
| | - Derrick R Hicks
- Department
of Biochemistry, University of Washington, Seattle, Washington 98195, United States
- Institute
for Protein Design, University of Washington, Seattle, Washington 98195, United States
| | - Isabelle Moczygemba
- Institute
for Protein Design, University of Washington, Seattle, Washington 98195, United States
| | - David Feldman
- Department
of Biochemistry, University of Washington, Seattle, Washington 98195, United States
- Institute
for Protein Design, University of Washington, Seattle, Washington 98195, United States
| | - Brian Coventry
- Department
of Biochemistry, University of Washington, Seattle, Washington 98195, United States
- Institute
for Protein Design, University of Washington, Seattle, Washington 98195, United States
| | - Wei Yang
- Department
of Biochemistry, University of Washington, Seattle, Washington 98195, United States
- Institute
for Protein Design, University of Washington, Seattle, Washington 98195, United States
| | - Asim K. Bera
- Department
of Biochemistry, University of Washington, Seattle, Washington 98195, United States
- Institute
for Protein Design, University of Washington, Seattle, Washington 98195, United States
| | - Marcos Miranda
- Department
of Biochemistry, University of Washington, Seattle, Washington 98195, United States
- Institute
for Protein Design, University of Washington, Seattle, Washington 98195, United States
| | - Alex Kang
- Department
of Biochemistry, University of Washington, Seattle, Washington 98195, United States
- Institute
for Protein Design, University of Washington, Seattle, Washington 98195, United States
| | - Hannah Nguyen
- Department
of Biochemistry, University of Washington, Seattle, Washington 98195, United States
- Institute
for Protein Design, University of Washington, Seattle, Washington 98195, United States
| | - David Baker
- Department
of Biochemistry, University of Washington, Seattle, Washington 98195, United States
- Institute
for Protein Design, University of Washington, Seattle, Washington 98195, United States
- Howard
Hughes Medical Institute, University of
Washington, Seattle, Washington 98195, United States
| |
Collapse
|
58
|
Lacasta A, Kim HC, Kepl E, Gachogo R, Chege N, Ojuok R, Muriuki C, Mwalimu S, Touboul G, Stiber A, Poole EJ, Ndiwa N, Fiala B, King NP, Nene V. Design and immunological evaluation of two-component protein nanoparticle vaccines for East Coast fever. Front Immunol 2023; 13:1015840. [PMID: 36713406 PMCID: PMC9880323 DOI: 10.3389/fimmu.2022.1015840] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 12/22/2022] [Indexed: 01/14/2023] Open
Abstract
Nanoparticle vaccines usually prime stronger immune responses than soluble antigens. Within this class of subunit vaccines, the recent development of computationally designed self-assembling two-component protein nanoparticle scaffolds provides a powerful and versatile platform for displaying multiple copies of one or more antigens. Here we report the generation of three different nanoparticle immunogens displaying 60 copies of p67C, an 80 amino acid polypeptide from a candidate vaccine antigen of Theileria parva, and their immunogenicity in cattle. p67C is a truncation of p67, the major surface protein of the sporozoite stage of T. parva, an apicomplexan parasite that causes an often-fatal bovine disease called East Coast fever (ECF) in sub-Saharan Africa. Compared to I32-19 and I32-28, we found that I53-50 nanoparticle scaffolds displaying p67C had the best biophysical characteristics. p67C-I53-50 also outperformed the other two nanoparticles in stimulating p67C-specific IgG1 and IgG2 antibodies and CD4+ T-cell responses, as well as sporozoite neutralizing capacity. In experimental cattle vaccine trials, p67C-I53-50 induced significant immunity to ECF, suggesting that the I53-50 scaffold is a promising candidate for developing novel nanoparticle vaccines. To our knowledge this is the first application of computationally designed nanoparticles to the development of livestock vaccines.
Collapse
Affiliation(s)
- Anna Lacasta
- Animal and Human Health program, International Livestock Research Institute (ILRI), Nairobi, Kenya,*Correspondence: Anna Lacasta, ; Neil P. King,
| | - Hyung Chan Kim
- Department of Biochemistry, University of Washington, Seattle, WA, United States,Institute for Protein Design, University of Washington, Seattle, WA, United States
| | - Elizabeth Kepl
- Department of Biochemistry, University of Washington, Seattle, WA, United States,Institute for Protein Design, University of Washington, Seattle, WA, United States
| | - Rachael Gachogo
- Animal and Human Health program, International Livestock Research Institute (ILRI), Nairobi, Kenya
| | - Naomi Chege
- Animal and Human Health program, International Livestock Research Institute (ILRI), Nairobi, Kenya
| | - Rose Ojuok
- Animal and Human Health program, International Livestock Research Institute (ILRI), Nairobi, Kenya
| | - Charity Muriuki
- Animal and Human Health program, International Livestock Research Institute (ILRI), Nairobi, Kenya
| | - Stephen Mwalimu
- Animal and Human Health program, International Livestock Research Institute (ILRI), Nairobi, Kenya
| | - Gilad Touboul
- Department of Biochemistry, University of Washington, Seattle, WA, United States,Institute for Protein Design, University of Washington, Seattle, WA, United States
| | - Ariel Stiber
- Summer Undergraduate Research Fellowship Program, Caltech, Pasadena, CA, United States
| | - Elizabeth Jane Poole
- Research Methods Group, International Livestock Research Institute (ILRI), Nairobi, Kenya
| | - Nicholas Ndiwa
- Research Methods Group, International Livestock Research Institute (ILRI), Nairobi, Kenya
| | - Brooke Fiala
- Department of Biochemistry, University of Washington, Seattle, WA, United States,Institute for Protein Design, University of Washington, Seattle, WA, United States
| | - Neil P. King
- Department of Biochemistry, University of Washington, Seattle, WA, United States,Institute for Protein Design, University of Washington, Seattle, WA, United States,*Correspondence: Anna Lacasta, ; Neil P. King,
| | - Vishvanath Nene
- Animal and Human Health program, International Livestock Research Institute (ILRI), Nairobi, Kenya
| |
Collapse
|
59
|
Kobayashi N, Arai R. Protein Cages and Nanostructures Constructed from Protein Nanobuilding Blocks. Methods Mol Biol 2023; 2671:79-94. [PMID: 37308639 DOI: 10.1007/978-1-0716-3222-2_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Protein cages and nanostructures are promising biocompatible medical materials, such as vaccines and drug carriers. Recent advances in designed protein nanocages and nanostructures have opened up cutting-edge applications in the fields of synthetic biology and biopharmaceuticals. A simple approach for constructing self-assembling protein nanocages and nanostructures is the design of a fusion protein composed of two different proteins forming symmetric oligomers. In this chapter, we describe the design and methods of protein nanobuilding blocks (PN-Blocks) using a dimeric de novo protein WA20 to construct self-assembling protein cages and nanostructures. A protein nanobuilding block (PN-Block), WA20-foldon, was developed by fusing an intermolecularly folded dimeric de novo protein WA20 and a trimeric foldon domain from bacteriophage T4 fibritin. The WA20-foldon self-assembled into several oligomeric nanoarchitectures in multiples of 6-mer. De novo extender protein nanobuilding blocks (ePN-Blocks) were also developed by fusing tandemly two WA20 with various linkers, to construct self-assembling cyclized and extended chain-like nanostructures. These PN-Blocks would be useful for the construction of self-assembling protein cages and nanostructures and their potential applications in the future.
Collapse
Affiliation(s)
- Naoya Kobayashi
- Division of Materials Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, Ikoma, Nara, Japan
| | - Ryoichi Arai
- Department of Biomolecular Innovation, Institute for Biomedical Sciences, Shinshu University, Ueda, Nagano, Japan.
- Department of Applied Biology, Faculty of Textile Science and Technology, Shinshu University, Ueda, Nagano, Japan.
| |
Collapse
|
60
|
Troisi M, Marini E, Abbiento V, Stazzoni S, Andreano E, Rappuoli R. A new dawn for monoclonal antibodies against antimicrobial resistant bacteria. Front Microbiol 2022; 13:1080059. [PMID: 36590399 PMCID: PMC9795047 DOI: 10.3389/fmicb.2022.1080059] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 11/21/2022] [Indexed: 12/15/2022] Open
Abstract
Antimicrobial resistance (AMR) is a quickly advancing threat for human health worldwide and almost 5 million deaths are already attributable to this phenomenon every year. Since antibiotics are failing to treat AMR-bacteria, new tools are needed, and human monoclonal antibodies (mAbs) can fill this role. In almost 50 years since the introduction of the first technology that led to mAb discovery, enormous leaps forward have been made to identify and develop extremely potent human mAbs. While their usefulness has been extensively proved against viral pathogens, human mAbs have yet to find their space in treating and preventing infections from AMR-bacteria and fully conquer the field of infectious diseases. The novel and most innovative technologies herein reviewed can support this goal and add powerful tools in the arsenal of weapons against AMR.
Collapse
Affiliation(s)
- Marco Troisi
- Monoclonal Antibody Discovery (MAD) Laboratory, Fondazione Toscana Life Sciences, Siena, Italy
| | - Eleonora Marini
- Monoclonal Antibody Discovery (MAD) Laboratory, Fondazione Toscana Life Sciences, Siena, Italy
| | - Valentina Abbiento
- Monoclonal Antibody Discovery (MAD) Laboratory, Fondazione Toscana Life Sciences, Siena, Italy
| | - Samuele Stazzoni
- Monoclonal Antibody Discovery (MAD) Laboratory, Fondazione Toscana Life Sciences, Siena, Italy
| | - Emanuele Andreano
- Monoclonal Antibody Discovery (MAD) Laboratory, Fondazione Toscana Life Sciences, Siena, Italy
| | - Rino Rappuoli
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Siena, Italy
- Fondazione Biotecnopolo di Siena, Siena, Italy
| |
Collapse
|
61
|
Li SC, Kabeer MH. Caveolae-Mediated Extracellular Vesicle (CMEV) Signaling of Polyvalent Polysaccharide Vaccination: A Host-Pathogen Interface Hypothesis. Pharmaceutics 2022; 14:2653. [PMID: 36559147 PMCID: PMC9784826 DOI: 10.3390/pharmaceutics14122653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Revised: 10/22/2022] [Accepted: 11/22/2022] [Indexed: 12/02/2022] Open
Abstract
We published a study showing that improvement in response to splenectomy associated defective, in regards to the antibody response to Pneumovax® 23 (23-valent polysaccharides, PPSV23), can be achieved by splenocyte reinfusion. This study triggered a debate on whether and how primary and secondary immune responses occur based on humoral antibody responses to the initial vaccination and revaccination. The anti-SARS-CoV-2 vaccine sheds new light on the interpretation of our previous data. Here, we offer an opinion on the administration of the polyvalent polysaccharide vaccine (PPSV23), which appears to be highly relevant to the primary vaccine against SARS-CoV-2 and its booster dose. Thus, we do not insist this is a secondary immune response but an antibody response, nonetheless, as measured through IgG titers after revaccination. However, we contend that we are not sure if these lower but present IgG levels against pneumococcal antigens are clinically protective or are equally common in all groups because of the phenomenon of "hyporesponsiveness" seen after repeated polysaccharide vaccine challenge. We review the literature and propose a new mechanism-caveolae memory extracellular vesicles (CMEVs)-by which polysaccharides mediate prolonged and sustained immune response post-vaccination. We further delineate and explain the data sets to suggest that the dual targets on both Cav-1 and SARS-CoV-2 spike proteins may block the viral entrance and neutralize viral load, which minimizes the immune reaction against viral attacks and inflammatory responses. Thus, while presenting our immunological opinion, we answer queries and responses made by readers to our original statements published in our previous work and propose a hypothesis for all vaccination strategies, i.e., caveolae-mediated extracellular vesicle-mediated vaccine memory.
Collapse
Affiliation(s)
- Shengwen Calvin Li
- Neuro-Oncology and Stem Cell Research Laboratory, Center for Neuroscience Research, CHOC Children’s Research Institute, Children’s Hospital of Orange County, 1201 West La Veta Ave., Orange, CA 92868-3874, USA
- Department of Neurology, University of California-Irvine School of Medicine, 200 S Manchester Ave. Ste 206, Orange, CA 92868, USA
| | - Mustafa H. Kabeer
- Division of Pediatric General and Thoracic Surgery, CHOC Children’s Hospital, 1201 West La Veta Ave., Orange, CA 92868, USA
- Department of Surgery, University of California-Irvine School of Medicine, 333 City Blvd. West, Suite 700, Orange, CA 92868, USA
| |
Collapse
|
62
|
Olshefsky A, Richardson C, Pun SH, King NP. Engineering Self-Assembling Protein Nanoparticles for Therapeutic Delivery. Bioconjug Chem 2022; 33:2018-2034. [PMID: 35487503 PMCID: PMC9673152 DOI: 10.1021/acs.bioconjchem.2c00030] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Despite remarkable advances over the past several decades, many therapeutic nanomaterials fail to overcome major in vivo delivery barriers. Controlling immunogenicity, optimizing biodistribution, and engineering environmental responsiveness are key outstanding delivery problems for most nanotherapeutics. However, notable exceptions exist including some lipid and polymeric nanoparticles, some virus-based nanoparticles, and nanoparticle vaccines where immunogenicity is desired. Self-assembling protein nanoparticles offer a powerful blend of modularity and precise designability to the field, and have the potential to solve many of the major barriers to delivery. In this review, we provide a brief overview of key designable features of protein nanoparticles and their implications for therapeutic delivery applications. We anticipate that protein nanoparticles will rapidly grow in their prevalence and impact as clinically relevant delivery platforms.
Collapse
Affiliation(s)
- Audrey Olshefsky
- Department
of Bioengineering, University of Washington, Seattle, Washington 98195, United States
- Institute
for Protein Design, University of Washington, Seattle, Washington 98195, United States
| | - Christian Richardson
- Department
of Bioengineering, University of Washington, Seattle, Washington 98195, United States
- Institute
for Protein Design, University of Washington, Seattle, Washington 98195, United States
| | - Suzie H. Pun
- Department
of Bioengineering, University of Washington, Seattle, Washington 98195, United States
- Molecular
Engineering and Sciences Institute, University
of Washington, Seattle, Washington 98195, United States
| | - Neil P. King
- Institute
for Protein Design, University of Washington, Seattle, Washington 98195, United States
- Department
of Biochemistry, University of Washington, Seattle, Washington 98195, United States
| |
Collapse
|
63
|
Multimeric ACE2-IgM fusions as broadly active antivirals that potently neutralize SARS-CoV-2 variants. Commun Biol 2022; 5:1237. [DOI: 10.1038/s42003-022-04193-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 10/28/2022] [Indexed: 11/13/2022] Open
Abstract
AbstractCoronavirus infections are a world-wide threat to human health. A promising strategy to develop a broadly active antiviral is the use of fusion proteins consisting of an antibody IgG Fc region and a human ACE2 domain to which the viral spike proteins bind. Here we create antiviral fusion proteins based on IgM scaffolds. The hexameric ACE2-IgM-Fc fusions can be efficiently produced in mammalian cells and they neutralize the infectious virus with picomolar affinity thus surpassing monomeric ACE2-IgM-Fc by up to 96-fold in potency. In addition, the ACE2-IgM fusion shows increased neutralization efficiency for the highly infectious SARS-CoV-2 omicron variant in comparison to prototypic SARS-CoV-2. Taken together, these multimeric IgM fusions proteins are a powerful weapon to fight coronavirus infections.
Collapse
|
64
|
Winegar PH, Figg CA, Teplensky MH, Ramani N, Mirkin CA. Modular Nucleic Acid Scaffolds for Synthesizing Monodisperse and Sequence-Encoded Antibody Oligomers. Chem 2022; 8:3018-3030. [PMID: 36405374 PMCID: PMC9674055 DOI: 10.1016/j.chempr.2022.07.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Synthesizing protein oligomers that contain exact numbers of multiple different proteins in defined architectures is challenging. DNA-DNA interactions can be used to program protein assembly into oligomers; however, existing methods require changes to DNA design to achieve different numbers and oligomeric sequences of proteins. Herein, we develop a modular DNA scaffold that uses only six synthetic oligonucleotides to organize proteins into defined oligomers. As a proof-of-concept, model proteins (antibodies) are oligomerized into dimers and trimers, where antibody function is retained. Illustrating the modularity of this technique, dimer and trimer building blocks are then assembled into pentamers containing three different antibodies in an exact stoichiometry and oligomeric sequence. In sum, this report describes a generalizable method for organizing proteins into monodisperse, sequence-encoded oligomers using DNA. This advance will enable studies into how oligomeric protein sequences affect material properties in areas spanning pharmaceutical development, cascade catalysis, synthetic photosynthesis, and membrane transport.
Collapse
Affiliation(s)
- Peter H. Winegar
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208, USA
- International Institute for Nanotechnology, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208, USA
- These authors contributed equally
| | - C. Adrian Figg
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208, USA
- International Institute for Nanotechnology, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208, USA
- These authors contributed equally
| | - Michelle H. Teplensky
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208, USA
- International Institute for Nanotechnology, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208, USA
| | - Namrata Ramani
- International Institute for Nanotechnology, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208, USA
- Department of Materials Science and Engineering, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208, USA
| | - Chad A. Mirkin
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208, USA
- International Institute for Nanotechnology, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208, USA
- Department of Materials Science and Engineering, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208, USA
- Lead contact
| |
Collapse
|
65
|
Zhou C, Lu P. De novo
design of membrane transport proteins. Proteins 2022; 90:1800-1806. [DOI: 10.1002/prot.26336] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 03/07/2022] [Accepted: 03/12/2022] [Indexed: 12/22/2022]
Affiliation(s)
- Chen Zhou
- Westlake Laboratory of Life Sciences and Biomedicine Hangzhou Zhejiang China
- Key Laboratory of Structural Biology of Zhejiang Province School of Life Sciences, Westlake University Hangzhou Zhejiang China
- Institute of Biology Westlake Institute for Advanced Study Hangzhou Zhejiang China
| | - Peilong Lu
- Westlake Laboratory of Life Sciences and Biomedicine Hangzhou Zhejiang China
- Key Laboratory of Structural Biology of Zhejiang Province School of Life Sciences, Westlake University Hangzhou Zhejiang China
- Institute of Biology Westlake Institute for Advanced Study Hangzhou Zhejiang China
| |
Collapse
|
66
|
Li Y, Champion JA. Self-assembling nanocarriers from engineered proteins: Design, functionalization, and application for drug delivery. Adv Drug Deliv Rev 2022; 189:114462. [PMID: 35934126 DOI: 10.1016/j.addr.2022.114462] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 06/09/2022] [Accepted: 07/15/2022] [Indexed: 01/24/2023]
Abstract
Self-assembling proteins are valuable building blocks for constructing drug nanocarriers due to their self-assembly behavior, monodispersity, biocompatibility, and biodegradability. Genetic and chemical modifications allow for modular design of protein nanocarriers with effective drug encapsulation, targetability, stimuli responsiveness, and in vivo half-life. Protein nanocarriers have been developed to deliver various therapeutic molecules including small molecules, proteins, and nucleic acids with proven in vitro and in vivo efficacy. This article reviews recent advances in protein nanocarriers that are not derived from natural protein nanostructures, such as protein cages or virus like particles. The protein nanocarriers described here are self-assembled from rationally or de novo designed recombinant proteins, as well as recombinant proteins complexed with other biomolecules, presenting properties that are unique from those of natural protein carriers. Design, functionalization, and therapeutic application of protein nanocarriers will be discussed.
Collapse
Affiliation(s)
- Yirui Li
- BioEngineering Program, Georgia Institute of Technology, United States
| | - Julie A Champion
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, 950 Atlantic Drive NW, Atlanta, GA 30332, United States; BioEngineering Program, Georgia Institute of Technology, United States.
| |
Collapse
|
67
|
Qing R, Hao S, Smorodina E, Jin D, Zalevsky A, Zhang S. Protein Design: From the Aspect of Water Solubility and Stability. Chem Rev 2022; 122:14085-14179. [PMID: 35921495 PMCID: PMC9523718 DOI: 10.1021/acs.chemrev.1c00757] [Citation(s) in RCA: 89] [Impact Index Per Article: 29.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Indexed: 12/13/2022]
Abstract
Water solubility and structural stability are key merits for proteins defined by the primary sequence and 3D-conformation. Their manipulation represents important aspects of the protein design field that relies on the accurate placement of amino acids and molecular interactions, guided by underlying physiochemical principles. Emulated designer proteins with well-defined properties both fuel the knowledge-base for more precise computational design models and are used in various biomedical and nanotechnological applications. The continuous developments in protein science, increasing computing power, new algorithms, and characterization techniques provide sophisticated toolkits for solubility design beyond guess work. In this review, we summarize recent advances in the protein design field with respect to water solubility and structural stability. After introducing fundamental design rules, we discuss the transmembrane protein solubilization and de novo transmembrane protein design. Traditional strategies to enhance protein solubility and structural stability are introduced. The designs of stable protein complexes and high-order assemblies are covered. Computational methodologies behind these endeavors, including structure prediction programs, machine learning algorithms, and specialty software dedicated to the evaluation of protein solubility and aggregation, are discussed. The findings and opportunities for Cryo-EM are presented. This review provides an overview of significant progress and prospects in accurate protein design for solubility and stability.
Collapse
Affiliation(s)
- Rui Qing
- State
Key Laboratory of Microbial Metabolism, School of Life Sciences and
Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
- Media
Lab, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
- The
David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Shilei Hao
- Media
Lab, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
- Key
Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400030, China
| | - Eva Smorodina
- Department
of Immunology, University of Oslo and Oslo
University Hospital, Oslo 0424, Norway
| | - David Jin
- Avalon GloboCare
Corp., Freehold, New Jersey 07728, United States
| | - Arthur Zalevsky
- Laboratory
of Bioinformatics Approaches in Combinatorial Chemistry and Biology, Shemyakin−Ovchinnikov Institute of Bioorganic
Chemistry RAS, Moscow 117997, Russia
| | - Shuguang Zhang
- Media
Lab, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
68
|
Hundt N, Cole D, Hantke MF, Miller JJ, Struwe WB, Kukura P. Direct observation of the molecular mechanism underlying protein polymerization. SCIENCE ADVANCES 2022; 8:eabm7935. [PMID: 36044567 PMCID: PMC9432825 DOI: 10.1126/sciadv.abm7935] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 07/19/2022] [Indexed: 06/15/2023]
Abstract
Protein assembly is a main route to generating complexity in living systems. Revealing the relevant molecular details is challenging because of the intrinsic heterogeneity of species ranging from few to hundreds of molecules. Here, we use mass photometry to quantify and monitor the full range of actin oligomers during polymerization with single-molecule sensitivity. We find that traditional nucleation-based models cannot account for the observed distributions of actin oligomers. Instead, the key step of filament formation is a slow transition between distinct states of an actin filament mediated by cation exchange or ATP hydrolysis. The resulting model reproduces important aspects of actin polymerization, such as the critical concentration for filament formation and bulk growth behavior. Our results revise the mechanism of actin nucleation, shed light on the role and function of actin-associated proteins, and introduce a general and quantitative means to studying protein assembly at the molecular level.
Collapse
Affiliation(s)
- Nikolas Hundt
- Physical and Theoretical Chemistry Laboratory, Department of Chemistry, University of Oxford, South Parks Road, Oxford OX1 3QZ, UK
- The Kavli Institute for Nanoscience Discovery, Oxford, UK
| | - Daniel Cole
- Physical and Theoretical Chemistry Laboratory, Department of Chemistry, University of Oxford, South Parks Road, Oxford OX1 3QZ, UK
- The Kavli Institute for Nanoscience Discovery, Oxford, UK
| | - Max F. Hantke
- Physical and Theoretical Chemistry Laboratory, Department of Chemistry, University of Oxford, South Parks Road, Oxford OX1 3QZ, UK
- The Kavli Institute for Nanoscience Discovery, Oxford, UK
| | - Jack J. Miller
- Department of Physics, Clarendon Laboratory, University of Oxford, Parks Road, Oxford OX1 3PT, UK
- The PET Research Centre and The MR Research Centre, Aarhus University, Aarhus, Denmark
| | - Weston B. Struwe
- Physical and Theoretical Chemistry Laboratory, Department of Chemistry, University of Oxford, South Parks Road, Oxford OX1 3QZ, UK
- The Kavli Institute for Nanoscience Discovery, Oxford, UK
| | - Philipp Kukura
- Physical and Theoretical Chemistry Laboratory, Department of Chemistry, University of Oxford, South Parks Road, Oxford OX1 3QZ, UK
- The Kavli Institute for Nanoscience Discovery, Oxford, UK
| |
Collapse
|
69
|
Abstract
The COVID-19 pandemic has caused an unprecedented health crisis and economic burden worldwide. Its etiological agent SARS-CoV-2, a new virus in the coronavirus family, has infected hundreds of millions of people worldwide. SARS-CoV-2 has evolved over the past 2 years to increase its transmissibility as well as to evade the immunity established by previous infection and vaccination. Nevertheless, strong immune responses can be elicited by viral infection and vaccination, which have proved to be protective against the emergence of variants, particularly with respect to hospitalization or severe disease. Here, we review our current understanding of how the virus enters the host cell and how our immune system is able to defend against cell entry and infection. Neutralizing antibodies are a major component of our immune defense and have been extensively studied for SARS-CoV-2 and its variants. Structures of these neutralizing antibodies have provided valuable insights into epitopes that are protective against the original ancestral virus and the variants that have emerged. The molecular characterization of neutralizing epitopes as well as epitope conservation and resistance are important for design of next-generation vaccines and antibody therapeutics.
Collapse
Affiliation(s)
- Hejun Liu
- Department of Integrative Structural and Computational BiologyThe Scripps Research InstituteLa JollaCaliforniaUSA
| | - Ian A. Wilson
- Department of Integrative Structural and Computational BiologyThe Scripps Research InstituteLa JollaCaliforniaUSA
- The Skaggs Institute for Chemical BiologyThe Scripps Research InstituteLa JollaCaliforniaUSA
| |
Collapse
|
70
|
Li L, Chen G. Precise Assembly of Proteins and Carbohydrates for Next-Generation Biomaterials. J Am Chem Soc 2022; 144:16232-16251. [PMID: 36044681 DOI: 10.1021/jacs.2c04418] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The complexity and diversity of biomacromolecules make them a unique class of building blocks for generating precise assemblies. They are particularly available to a new generation of biomaterials integrated with living systems due to their intrinsic properties such as accurate recognition, self-organization, and adaptability. Therefore, many excellent approaches have been developed, leading to a variety of quite practical outcomes. Here, we review recent advances in the fabrication and application of artificially precise assemblies by employing proteins and carbohydrates as building blocks, followed by our perspectives on some of new challenges, goals, and opportunities for the future research directions in this field.
Collapse
Affiliation(s)
- Long Li
- The State Key Laboratory of Molecular Engineering of Polymers and Department of Macromolecular Science, Fudan University, Shanghai 200433, People's Republic of China
| | - Guosong Chen
- The State Key Laboratory of Molecular Engineering of Polymers and Department of Macromolecular Science, Fudan University, Shanghai 200433, People's Republic of China.,Multiscale Research Institute for Complex Systems, Fudan University, Shanghai 200433, People's Republic of China
| |
Collapse
|
71
|
Fryer T, Rogers JD, Mellor C, Kohler TN, Minter R, Hollfelder F. Gigavalent Display of Proteins on Monodisperse Polyacrylamide Hydrogels as a Versatile Modular Platform for Functional Assays and Protein Engineering. ACS CENTRAL SCIENCE 2022; 8:1182-1195. [PMID: 36032770 PMCID: PMC9413441 DOI: 10.1021/acscentsci.2c00576] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Indexed: 06/15/2023]
Abstract
The assembly of robust, modular biological components into complex functional systems is central to synthetic biology. Here, we apply modular "plug and play" design principles to a solid-phase protein display system that facilitates protein purification and functional assays. Specifically, we capture proteins on polyacrylamide hydrogel display beads (PHD beads) made in microfluidic droplet generators. These monodisperse PHD beads are decorated with predefined amounts of anchors, methacrylate-PEG-benzylguanine (BG) and methacrylate-PEG-chloroalkane (CA), that react covalently with SNAP-/Halo-tag fusion proteins, respectively, in a specific, orthogonal, and stable fashion. Anchors, and thus proteins, are distributed throughout the entire bead volume, allowing attachment of ∼109 protein molecules per bead (⌀ 20 μm) -a higher density than achievable with commercial surface-modified beads. We showcase a diverse array of protein modules that enable the secondary capture of proteins, either noncovalently (IgG and SUMO-tag) or covalently (SpyCatcher, SpyTag, SnpCatcher, and SnpTag), in mono- and multivalent display formats. Solid-phase protein binding and enzymatic assays are carried out, and incorporating the photocleavable protein PhoCl enables the controlled release of modules via visible-light irradiation for functional assays in solution. We utilize photocleavage for valency engineering of an anti-TRAIL-R1 scFv, enhancing its apoptosis-inducing potency ∼50-fold through pentamerization.
Collapse
Affiliation(s)
- Thomas Fryer
- Department
of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge CB2 1GA, United Kingdom
- Antibody
Discovery and Protein Engineering, R&D, AstraZeneca, Milstein
Building, Granta Park, Cambridge CB21 6GH, United Kingdom
| | - Joel David Rogers
- Department
of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge CB2 1GA, United Kingdom
- Antibody
Discovery and Protein Engineering, R&D, AstraZeneca, Milstein
Building, Granta Park, Cambridge CB21 6GH, United Kingdom
| | - Christopher Mellor
- Department
of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge CB2 1GA, United Kingdom
| | - Timo N. Kohler
- Department
of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge CB2 1GA, United Kingdom
| | - Ralph Minter
- Antibody
Discovery and Protein Engineering, R&D, AstraZeneca, Milstein
Building, Granta Park, Cambridge CB21 6GH, United Kingdom
| | - Florian Hollfelder
- Department
of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge CB2 1GA, United Kingdom
| |
Collapse
|
72
|
Salomon R, Dahan R. Next Generation CD40 Agonistic Antibodies for Cancer Immunotherapy. Front Immunol 2022; 13:940674. [PMID: 35911742 PMCID: PMC9326085 DOI: 10.3389/fimmu.2022.940674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 06/21/2022] [Indexed: 12/05/2022] Open
Abstract
The clinical use of anti-CD40 agonist monoclonal antibodies (mAbs) is aimed at recruiting the immune system to fight the tumor cells. This approach has been demonstrated to be effective in various preclinical models. However, human CD40 Abs displayed only modest antitumor activity in cancer patients, characterized by low efficacy and dose-limiting toxicity. While recent studies highlight the importance of engineering the Fc region of human CD40 mAbs to optimize their agonistic potency, toxicity remains the main limiting factor, restricting clinical application to suboptimal doses. Here, we discuss the current challenges in realizing the full potential of CD40 mAbs in clinical practice, and describe novel approaches designed to circumvent the systemic toxicity associated with CD40 agonism.
Collapse
|
73
|
Miller JE, Srinivasan Y, Dharmaraj NP, Liu A, Nguyen PL, Taylor SD, Yeates TO. Designing Protease-Triggered Protein Cages. J Am Chem Soc 2022; 144:12681-12689. [PMID: 35802879 DOI: 10.1021/jacs.2c02165] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Proteins that self-assemble into enclosed polyhedral cages, both naturally and by design, are garnering attention for their prospective utility in the fields of medicine and biotechnology. Notably, their potential for encapsulation and surface display are attractive for experiments that require protection and targeted delivery of cargo. The ability to control their opening or disassembly would greatly advance the development of protein nanocages into widespread molecular tools. Toward the development of protein cages that disassemble in a systematic manner and in response to biologically relevant stimuli, here we demonstrate a modular protein cage system that is opened by highly sequence-specific proteases, based on sequence insertions at strategically chosen loop positions in the protein cage subunits. We probed the generality of the approach in the context of protein cages built using the two prevailing methods of construction: genetic fusion between oligomeric components and (non-covalent) computational interface design between oligomeric components. Our results suggest that the former type of cage may be more amenable than the latter for endowing proteolytically controlled disassembly. We show that a successfully designed cage system, based on oligomeric fusion, is modular with regard to its triggering protease. One version of the cage is targeted by an asparagine protease implicated in cancer and Alzheimer's disease, whereas the second version is responsive to the blood-clotting protease, thrombin. The approach demonstrated here should guide future efforts to develop therapeutic vectors to treat disease states where protease induction or mis-regulation occurs.
Collapse
Affiliation(s)
- Justin E Miller
- UCLA Molecular Biology Institute, 611 Charles E. Young Drive East, Los Angeles, California 90095-1570, United States.,UCLA-DOE Institute for Genomics and Proteomics, 611 Charles E. Young Drive East, Los Angeles, California 90095-1570, United States
| | - Yashes Srinivasan
- UCLA Department of Chemistry and Biochemistry, 611 Charles E. Young Drive East, Los Angeles, California 90095, United States
| | - Nithin P Dharmaraj
- UCLA Department of Chemistry and Biochemistry, 611 Charles E. Young Drive East, Los Angeles, California 90095, United States
| | - Andrew Liu
- UCLA Department of Chemistry and Biochemistry, 611 Charles E. Young Drive East, Los Angeles, California 90095, United States
| | - Phillip L Nguyen
- UCLA Department of Chemistry and Biochemistry, 611 Charles E. Young Drive East, Los Angeles, California 90095, United States
| | - Scott D Taylor
- UCLA Department of Chemistry and Biochemistry, 611 Charles E. Young Drive East, Los Angeles, California 90095, United States
| | - Todd O Yeates
- UCLA Molecular Biology Institute, 611 Charles E. Young Drive East, Los Angeles, California 90095-1570, United States.,UCLA-DOE Institute for Genomics and Proteomics, 611 Charles E. Young Drive East, Los Angeles, California 90095-1570, United States.,UCLA Department of Chemistry and Biochemistry, 611 Charles E. Young Drive East, Los Angeles, California 90095, United States
| |
Collapse
|
74
|
Precision materials: Computational design methods of accurate protein materials. Curr Opin Struct Biol 2022; 74:102367. [DOI: 10.1016/j.sbi.2022.102367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2021] [Revised: 02/22/2022] [Accepted: 02/28/2022] [Indexed: 11/23/2022]
|
75
|
Kim JM, Kang YM. Optical Fluorescence Imaging of Native Proteins Using a Fluorescent Probe with a Cell-Membrane-Permeable Carboxyl Group. Int J Mol Sci 2022; 23:ijms23105841. [PMID: 35628651 PMCID: PMC9143923 DOI: 10.3390/ijms23105841] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 05/07/2022] [Accepted: 05/21/2022] [Indexed: 12/10/2022] Open
Abstract
Although various methods for selective protein tagging have been established, their ap plications are limited by the low fluorescent tagging efficiency of specific terminal regions of the native proteins of interest (NPIs). In this study, the highly sensitive fluorescence imaging of single NPIs was demonstrated using a eukaryotic translation mechanism involving a free carboxyl group of a cell-permeable fluorescent dye. In living cells, the carboxyl group of cell-permeable fluorescent dyes reacted with the lysine residues of acceptor peptides (AP or AVI-Tag). Genetically encoded recognition demonstrated that the efficiency of fluorescence labeling was nearly 100%. Nickel-nitrilotriacetic acid (Ni-NTA) beads bound efficiently to a single NPI for detection in a cell without purification. Our labeling approach satisfied the necessary conditions for measuring fluorescently labeled NPI using universal carboxyl fluorescent dyes. This approach is expected to be useful for resolving complex biological/ecological issues and robust single-molecule analyses of dynamic processes, in addition to applications in ultra-sensitive NPIs detection using nanotechnology.
Collapse
Affiliation(s)
- Jung Min Kim
- BK21 FOUR R&E Center for Environmental Science and Ecological Engineering, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02842, Korea
- Correspondence: ; Tel.: +82-2-3290-4778
| | - Young-Mi Kang
- Department of Orthopaedic Surgery, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul 03722, Korea;
| |
Collapse
|
76
|
Pande K, Hollingsworth SA, Sam M, Gao Q, Singh S, Saha A, Vroom K, Ma XS, Brazell T, Gorman D, Chen SJ, Raoufi F, Bailly M, Grandy D, Sathiyamoorthy K, Zhang L, Thompson R, Cheng AC, Fayadat-Dilman L, Geierstanger BH, Kingsley LJ. Hexamerization of Anti-SARS CoV IgG1 Antibodies Improves Neutralization Capacity. Front Immunol 2022; 13:864775. [PMID: 35603164 PMCID: PMC9114490 DOI: 10.3389/fimmu.2022.864775] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 04/08/2022] [Indexed: 11/13/2022] Open
Abstract
The SARS-CoV-2 pandemic and particularly the emerging variants have deepened the need for widely available therapeutic options. We have demonstrated that hexamer-enhancing mutations in the Fc region of anti-SARS-CoV IgG antibodies lead to a noticeable improvement in IC50 in both pseudo and live virus neutralization assay compared to parental molecules. We also show that hexamer-enhancing mutants improve C1q binding to target surface. To our knowledge, this is the first time this format has been explored for application in viral neutralization and the studies provide proof-of-concept for the use of hexamer-enhanced IgG1 molecules as potential anti-viral therapeutics.
Collapse
Affiliation(s)
- Kalyan Pande
- Discovery Biologics, Merck & Co., Inc., South San Francisco, CA, United States
| | | | - Miranda Sam
- Discovery Biologics, Merck & Co., Inc., South San Francisco, CA, United States
| | - Qinshan Gao
- Discovery Biologics, Merck & Co., Inc., South San Francisco, CA, United States
| | - Sujata Singh
- Discovery Biologics, Merck & Co., Inc., South San Francisco, CA, United States
| | - Anasuya Saha
- Discovery Biologics, Merck & Co., Inc., South San Francisco, CA, United States
| | - Karin Vroom
- Discovery Biologics, Merck & Co., Inc., South San Francisco, CA, United States
| | - Xiaohong Shirley Ma
- Discovery Biologics, Merck & Co., Inc., South San Francisco, CA, United States
| | - Tres Brazell
- Discovery Biologics, Merck & Co., Inc., South San Francisco, CA, United States
| | - Dan Gorman
- Discovery Biologics, Merck & Co., Inc., South San Francisco, CA, United States
| | - Shi-Juan Chen
- Discovery Biologics, Merck & Co., Inc., South San Francisco, CA, United States
| | - Fahimeh Raoufi
- Discovery Biologics, Merck & Co., Inc., South San Francisco, CA, United States
| | - Marc Bailly
- Discovery Biologics, Merck & Co., Inc., South San Francisco, CA, United States
| | - David Grandy
- Discovery Biologics, Merck & Co., Inc., South San Francisco, CA, United States
| | | | - Lan Zhang
- Infectious Disease and Vaccine Discovery, Merck & Co., Inc., West Point, PA, United States
| | - Rob Thompson
- Discovery Chemistry, Merck & Co., Inc., South San Francisco, CA, United States
| | - Alan C. Cheng
- Discovery Chemistry, Merck & Co., Inc., South San Francisco, CA, United States
| | | | | | - Laura J. Kingsley
- Discovery Biologics, Merck & Co., Inc., South San Francisco, CA, United States
| |
Collapse
|
77
|
Cao L, Coventry B, Goreshnik I, Huang B, Sheffler W, Park JS, Jude KM, Marković I, Kadam RU, Verschueren KHG, Verstraete K, Walsh STR, Bennett N, Phal A, Yang A, Kozodoy L, DeWitt M, Picton L, Miller L, Strauch EM, DeBouver ND, Pires A, Bera AK, Halabiya S, Hammerson B, Yang W, Bernard S, Stewart L, Wilson IA, Ruohola-Baker H, Schlessinger J, Lee S, Savvides SN, Garcia KC, Baker D. Design of protein-binding proteins from the target structure alone. Nature 2022; 605:551-560. [PMID: 35332283 PMCID: PMC9117152 DOI: 10.1038/s41586-022-04654-9] [Citation(s) in RCA: 245] [Impact Index Per Article: 81.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 03/15/2022] [Indexed: 12/03/2022]
Abstract
The design of proteins that bind to a specific site on the surface of a target protein using no information other than the three-dimensional structure of the target remains a challenge1-5. Here we describe a general solution to this problem that starts with a broad exploration of the vast space of possible binding modes to a selected region of a protein surface, and then intensifies the search in the vicinity of the most promising binding modes. We demonstrate the broad applicability of this approach through the de novo design of binding proteins to 12 diverse protein targets with different shapes and surface properties. Biophysical characterization shows that the binders, which are all smaller than 65 amino acids, are hyperstable and, following experimental optimization, bind their targets with nanomolar to picomolar affinities. We succeeded in solving crystal structures of five of the binder-target complexes, and all five closely match the corresponding computational design models. Experimental data on nearly half a million computational designs and hundreds of thousands of point mutants provide detailed feedback on the strengths and limitations of the method and of our current understanding of protein-protein interactions, and should guide improvements of both. Our approach enables the targeted design of binders to sites of interest on a wide variety of proteins for therapeutic and diagnostic applications.
Collapse
Affiliation(s)
- Longxing Cao
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
| | - Brian Coventry
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
- Molecular Engineering Graduate Program, University of Washington, Seattle, WA, USA
| | - Inna Goreshnik
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
| | - Buwei Huang
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
- Department of Bioengineering, University of Washington, Seattle, WA, USA
| | - William Sheffler
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
| | - Joon Sung Park
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT, USA
| | - Kevin M Jude
- Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, CA, USA
- Department of Structural Biology, Stanford University School of Medicine, Stanford, CA, USA
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA, USA
| | - Iva Marković
- VIB-UGent Center for Inflammation Research, Ghent, Belgium
- Unit for Structural Biology, Department of Biochemistry and Microbiology, Ghent University, Ghent, Belgium
| | - Rameshwar U Kadam
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, USA
| | - Koen H G Verschueren
- VIB-UGent Center for Inflammation Research, Ghent, Belgium
- Unit for Structural Biology, Department of Biochemistry and Microbiology, Ghent University, Ghent, Belgium
| | - Kenneth Verstraete
- VIB-UGent Center for Inflammation Research, Ghent, Belgium
- Unit for Structural Biology, Department of Biochemistry and Microbiology, Ghent University, Ghent, Belgium
| | - Scott Thomas Russell Walsh
- Chemical Biology Laboratory, National Cancer Institute, National Institutes of Health, Frederick, MD, USA
- J.A.M.E.S. Farm, Clarksville, MD, USA
| | - Nathaniel Bennett
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
- Molecular Engineering Graduate Program, University of Washington, Seattle, WA, USA
| | - Ashish Phal
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Department of Bioengineering, University of Washington, Seattle, WA, USA
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA, USA
| | - Aerin Yang
- Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, CA, USA
- Department of Structural Biology, Stanford University School of Medicine, Stanford, CA, USA
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA, USA
| | - Lisa Kozodoy
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
| | - Michelle DeWitt
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
| | - Lora Picton
- Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, CA, USA
- Department of Structural Biology, Stanford University School of Medicine, Stanford, CA, USA
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA, USA
| | - Lauren Miller
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
| | - Eva-Maria Strauch
- Deptartment of Pharmaceutical and Biomedical Sciences, University of Georgia, Athens, GA, USA
| | - Nicholas D DeBouver
- UCB Pharma, Bainbridge Island, WA, USA
- Seattle Structural Genomics Center for Infectious Disease (SSGCID), Seattle, WA, USA
| | - Allison Pires
- Seattle Structural Genomics Center for Infectious Disease (SSGCID), Seattle, WA, USA
- Seattle Children's Center for Global Infectious Disease Research, Seattle, WA, USA
| | - Asim K Bera
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
| | - Samer Halabiya
- Department of Electrical and Computer Engineering, University of Washington, Seattle, WA, USA
| | - Bradley Hammerson
- Seattle Structural Genomics Center for Infectious Disease (SSGCID), Seattle, WA, USA
| | - Wei Yang
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
| | - Steffen Bernard
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, USA
| | - Lance Stewart
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
| | - Ian A Wilson
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, USA
- The Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA, USA
| | - Hannele Ruohola-Baker
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA, USA
| | - Joseph Schlessinger
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT, USA
| | - Sangwon Lee
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT, USA
| | - Savvas N Savvides
- VIB-UGent Center for Inflammation Research, Ghent, Belgium
- Unit for Structural Biology, Department of Biochemistry and Microbiology, Ghent University, Ghent, Belgium
| | - K Christopher Garcia
- Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, CA, USA
- Department of Structural Biology, Stanford University School of Medicine, Stanford, CA, USA
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA, USA
| | - David Baker
- Department of Biochemistry, University of Washington, Seattle, WA, USA.
- Institute for Protein Design, University of Washington, Seattle, WA, USA.
- Howard Hughes Medical Institute, University of Washington, Seattle, WA, USA.
| |
Collapse
|
78
|
Courbet A, Hansen J, Hsia Y, Bethel N, Park YJ, Xu C, Moyer A, Boyken S, Ueda G, Nattermann U, Nagarajan D, Silva D, Sheffler W, Quispe J, Nord A, King N, Bradley P, Veesler D, Kollman J, Baker D. Computational design of mechanically coupled axle-rotor protein assemblies. Science 2022; 376:383-390. [PMID: 35446645 PMCID: PMC10712554 DOI: 10.1126/science.abm1183] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Natural molecular machines contain protein components that undergo motion relative to each other. Designing such mechanically constrained nanoscale protein architectures with internal degrees of freedom is an outstanding challenge for computational protein design. Here we explore the de novo construction of protein machinery from designed axle and rotor components with internal cyclic or dihedral symmetry. We find that the axle-rotor systems assemble in vitro and in vivo as designed. Using cryo-electron microscopy, we find that these systems populate conformationally variable relative orientations reflecting the symmetry of the coupled components and the computationally designed interface energy landscape. These mechanical systems with internal degrees of freedom are a step toward the design of genetically encodable nanomachines.
Collapse
Affiliation(s)
- A. Courbet
- Department of Biochemistry, University of Washington, Seattle, USA
- Institute for Protein Design, University of Washington, Seattle, USA
- Howard Hughes Medical Institute, University of Washington, Seattle, USA
| | - J. Hansen
- Department of Biochemistry, University of Washington, Seattle, USA
| | - Y. Hsia
- Department of Biochemistry, University of Washington, Seattle, USA
- Institute for Protein Design, University of Washington, Seattle, USA
| | - N. Bethel
- Department of Biochemistry, University of Washington, Seattle, USA
- Institute for Protein Design, University of Washington, Seattle, USA
- Howard Hughes Medical Institute, University of Washington, Seattle, USA
| | - YJ. Park
- Department of Biochemistry, University of Washington, Seattle, USA
| | - C. Xu
- Department of Biochemistry, University of Washington, Seattle, USA
- Institute for Protein Design, University of Washington, Seattle, USA
- Howard Hughes Medical Institute, University of Washington, Seattle, USA
| | - A. Moyer
- Department of Biochemistry, University of Washington, Seattle, USA
- Institute for Protein Design, University of Washington, Seattle, USA
| | - S.E. Boyken
- Department of Biochemistry, University of Washington, Seattle, USA
- Institute for Protein Design, University of Washington, Seattle, USA
| | - G. Ueda
- Department of Biochemistry, University of Washington, Seattle, USA
- Institute for Protein Design, University of Washington, Seattle, USA
| | - U. Nattermann
- Department of Biochemistry, University of Washington, Seattle, USA
- Institute for Protein Design, University of Washington, Seattle, USA
| | - D. Nagarajan
- Department of Biochemistry, University of Washington, Seattle, USA
- Institute for Protein Design, University of Washington, Seattle, USA
| | - D. Silva
- Department of Biochemistry, University of Washington, Seattle, USA
- Institute for Protein Design, University of Washington, Seattle, USA
- Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
- Monod Bio, Inc, Seattle, USA
| | - W. Sheffler
- Department of Biochemistry, University of Washington, Seattle, USA
- Institute for Protein Design, University of Washington, Seattle, USA
| | - J. Quispe
- Department of Biochemistry, University of Washington, Seattle, USA
| | - A. Nord
- Centre de Biologie Structurale (CBS), INSERM, CNRS, Université Montpellier, Montpellier, France
| | - N. King
- Department of Biochemistry, University of Washington, Seattle, USA
- Institute for Protein Design, University of Washington, Seattle, USA
| | - P. Bradley
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, USA
| | - D. Veesler
- Department of Biochemistry, University of Washington, Seattle, USA
- Howard Hughes Medical Institute, University of Washington, Seattle, USA
| | - J. Kollman
- Department of Biochemistry, University of Washington, Seattle, USA
| | - D. Baker
- Department of Biochemistry, University of Washington, Seattle, USA
- Institute for Protein Design, University of Washington, Seattle, USA
- Howard Hughes Medical Institute, University of Washington, Seattle, USA
| |
Collapse
|
79
|
Edwardson TGW, Levasseur MD, Tetter S, Steinauer A, Hori M, Hilvert D. Protein Cages: From Fundamentals to Advanced Applications. Chem Rev 2022; 122:9145-9197. [PMID: 35394752 DOI: 10.1021/acs.chemrev.1c00877] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Proteins that self-assemble into polyhedral shell-like structures are useful molecular containers both in nature and in the laboratory. Here we review efforts to repurpose diverse protein cages, including viral capsids, ferritins, bacterial microcompartments, and designed capsules, as vaccines, drug delivery vehicles, targeted imaging agents, nanoreactors, templates for controlled materials synthesis, building blocks for higher-order architectures, and more. A deep understanding of the principles underlying the construction, function, and evolution of natural systems has been key to tailoring selective cargo encapsulation and interactions with both biological systems and synthetic materials through protein engineering and directed evolution. The ability to adapt and design increasingly sophisticated capsid structures and functions stands to benefit the fields of catalysis, materials science, and medicine.
Collapse
Affiliation(s)
| | | | - Stephan Tetter
- Laboratory of Organic Chemistry, ETH Zurich, 8093 Zurich, Switzerland
| | - Angela Steinauer
- Laboratory of Organic Chemistry, ETH Zurich, 8093 Zurich, Switzerland
| | - Mao Hori
- Laboratory of Organic Chemistry, ETH Zurich, 8093 Zurich, Switzerland
| | - Donald Hilvert
- Laboratory of Organic Chemistry, ETH Zurich, 8093 Zurich, Switzerland
| |
Collapse
|
80
|
Zhou Y, Dong J, Zhou C, Wang Q. Finite Assembly of Three-Dimensional DNA Hierarchical Nanoarchitectures through Orthogonal and Directional Bonding. Angew Chem Int Ed Engl 2022; 61:e202116416. [PMID: 35147275 DOI: 10.1002/anie.202116416] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Indexed: 01/01/2023]
Abstract
Reliable orthogonal bonding with precise and flexible orientation control would be ideal for building finite complex nanostructures via self-assembly. Employing a three-dimensional (3D) DNA origami, hexagonal prism DNA origami (HDO), as building block, we demonstrate it is practical to construct finite hierarchical nanoarchitectures with complicated conformations through orthogonal and directional bonding. The as-designed HDO building block has twelve prescribed directional valences in 3D space and each of them supports two opposite orientations, yielding the capability to generate abundant directional bonding. Meanwhile, we minimize the thorny non-specific interactions among HDOs and enable the orthogonal bonding between any two valences based on self-similar designing. Consequently, various hierarchical nanostructures are prepared at will simply by the combination of HDOs with appropriate valences. We believe this route towards hierarchically assembly is inspiring and hope it will facilitate the fabrication of functional superstructures.
Collapse
Affiliation(s)
- Yihao Zhou
- CAS Key Laboratory of Nano-Bio Interface, Suzhou Key Laboratory of Functional Molecular Imaging Technology, Division of Nanobiomedicine and i-Lab, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, China.,School of Nano-Tech and Nano-Bionics, University of Science and Technology of China, China
| | - Jinyi Dong
- CAS Key Laboratory of Nano-Bio Interface, Suzhou Key Laboratory of Functional Molecular Imaging Technology, Division of Nanobiomedicine and i-Lab, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, China
| | - Chao Zhou
- CAS Key Laboratory of Nano-Bio Interface, Suzhou Key Laboratory of Functional Molecular Imaging Technology, Division of Nanobiomedicine and i-Lab, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, China.,School of Nano-Tech and Nano-Bionics, University of Science and Technology of China, China
| | - Qiangbin Wang
- CAS Key Laboratory of Nano-Bio Interface, Suzhou Key Laboratory of Functional Molecular Imaging Technology, Division of Nanobiomedicine and i-Lab, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, China.,School of Nano-Tech and Nano-Bionics, University of Science and Technology of China, China.,College of Materials Sciences and Opto-Electronic Technology, University of Chinese Academy of Sciences, China
| |
Collapse
|
81
|
Verkhivker G. Structural and Computational Studies of the SARS-CoV-2 Spike Protein Binding Mechanisms with Nanobodies: From Structure and Dynamics to Avidity-Driven Nanobody Engineering. Int J Mol Sci 2022; 23:ijms23062928. [PMID: 35328351 PMCID: PMC8951411 DOI: 10.3390/ijms23062928] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Revised: 03/06/2022] [Accepted: 03/07/2022] [Indexed: 11/28/2022] Open
Abstract
Nanobodies provide important advantages over traditional antibodies, including their smaller size and robust biochemical properties such as high thermal stability, high solubility, and the ability to be bioengineered into novel multivalent, multi-specific, and high-affinity molecules, making them a class of emerging powerful therapies against SARS-CoV-2. Recent research efforts on the design, protein engineering, and structure-functional characterization of nanobodies and their binding with SARS-CoV-2 S proteins reflected a growing realization that nanobody combinations can exploit distinct binding epitopes and leverage the intrinsic plasticity of the conformational landscape for the SARS-CoV-2 S protein to produce efficient neutralizing and mutation resistant characteristics. Structural and computational studies have also been instrumental in quantifying the structure, dynamics, and energetics of the SARS-CoV-2 spike protein binding with nanobodies. In this review, a comprehensive analysis of the current structural, biophysical, and computational biology investigations of SARS-CoV-2 S proteins and their complexes with distinct classes of nanobodies targeting different binding sites is presented. The analysis of computational studies is supplemented by an in-depth examination of mutational scanning simulations and identification of binding energy hotspots for distinct nanobody classes. The review is focused on the analysis of mechanisms underlying synergistic binding of multivalent nanobodies that can be superior to single nanobodies and conventional nanobody cocktails in combating escape mutations by effectively leveraging binding avidity and allosteric cooperativity. We discuss how structural insights and protein engineering approaches together with computational biology tools can aid in the rational design of synergistic combinations that exhibit superior binding and neutralization characteristics owing to avidity-mediated mechanisms.
Collapse
Affiliation(s)
- Gennady Verkhivker
- Graduate Program in Computational and Data Sciences, Keck Center for Science and Engineering, Schmid College of Science and Technology, Chapman University, Orange, CA 92866, USA; ; Tel.: +1-714-516-4586
- Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Irvine, CA 92618, USA
| |
Collapse
|
82
|
Habibi N, Mauser A, Ko Y, Lahann J. Protein Nanoparticles: Uniting the Power of Proteins with Engineering Design Approaches. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2104012. [PMID: 35077010 PMCID: PMC8922121 DOI: 10.1002/advs.202104012] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 12/12/2021] [Indexed: 05/16/2023]
Abstract
Protein nanoparticles, PNPs, have played a long-standing role in food and industrial applications. More recently, their potential in nanomedicine has been more widely pursued. This review summarizes recent trends related to the preparation, application, and chemical construction of nanoparticles that use proteins as major building blocks. A particular focus has been given to emerging trends related to applications in nanomedicine, an area of research where PNPs are poised for major breakthroughs as drug delivery carriers, particle-based therapeutics or for non-viral gene therapy.
Collapse
Affiliation(s)
- Nahal Habibi
- Biointerfaces InstituteDepartment of Chemical EngineeringUniversity of MichiganAnn ArborMI48109USA
| | - Ava Mauser
- Biointerfaces InstituteDepartment of Biomedical EngineeringUniversity of MichiganAnn ArborMI48109USA
| | - Yeongun Ko
- Biointerfaces InstituteDepartment of Chemical EngineeringUniversity of MichiganAnn ArborMI48109USA
| | - Joerg Lahann
- Biointerfaces InstituteDepartments of Chemical EngineeringMaterial Science and EngineeringBiomedical Engineeringand Macromolecular Science and EngineeringUniversity of MichiganAnn ArborMI48109USA
| |
Collapse
|
83
|
Juritz J, Poulton JM, Ouldridge TE. Minimal mechanism for cyclic templating of length-controlled copolymers under isothermal conditions. J Chem Phys 2022; 156:074103. [DOI: 10.1063/5.0077865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Affiliation(s)
- Jordan Juritz
- Department of Bioengineering and Centre for Synthetic Biology, Imperial College London, London SW7 2AZ, United Kingdom
| | - Jenny M. Poulton
- Foundation for Fundamental Research on Matter (FOM), Institute for Atomic and Molecular Physics (AMOLF), 1098 XE Amsterdam, The Netherlands
| | - Thomas E. Ouldridge
- Department of Bioengineering and Centre for Synthetic Biology, Imperial College London, London SW7 2AZ, United Kingdom
| |
Collapse
|
84
|
Zhou Y, Dong J, Zhou C, Wang Q. Finite Assembly of Three‐Dimensional DNA Hierarchical Nanoarchitectures through Orthogonal and Directional Bonding. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202116416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Yihao Zhou
- CAS Key Laboratory of Nano-Bio Interface Suzhou Key Laboratory of Functional Molecular Imaging Technology Division of Nanobiomedicine and i-Lab Suzhou Institute of Nano-Tech and Nano-Bionics Chinese Academy of Sciences China
- School of Nano-Tech and Nano-Bionics University of Science and Technology of China China
| | - Jinyi Dong
- CAS Key Laboratory of Nano-Bio Interface Suzhou Key Laboratory of Functional Molecular Imaging Technology Division of Nanobiomedicine and i-Lab Suzhou Institute of Nano-Tech and Nano-Bionics Chinese Academy of Sciences China
| | - Chao Zhou
- CAS Key Laboratory of Nano-Bio Interface Suzhou Key Laboratory of Functional Molecular Imaging Technology Division of Nanobiomedicine and i-Lab Suzhou Institute of Nano-Tech and Nano-Bionics Chinese Academy of Sciences China
- School of Nano-Tech and Nano-Bionics University of Science and Technology of China China
| | - Qiangbin Wang
- CAS Key Laboratory of Nano-Bio Interface Suzhou Key Laboratory of Functional Molecular Imaging Technology Division of Nanobiomedicine and i-Lab Suzhou Institute of Nano-Tech and Nano-Bionics Chinese Academy of Sciences China
- School of Nano-Tech and Nano-Bionics University of Science and Technology of China China
- College of Materials Sciences and Opto-Electronic Technology University of Chinese Academy of Sciences China
| |
Collapse
|
85
|
An albumin scaffold grafted with an alpha-helical motif delivers therapeutic payloads by modular coiled-coil assembly. Int J Biol Macromol 2022; 205:376-384. [PMID: 35157904 DOI: 10.1016/j.ijbiomac.2022.02.040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 02/02/2022] [Accepted: 02/08/2022] [Indexed: 11/22/2022]
Abstract
A short in vivo half-life of protein-based therapeutics often restricts successful clinical translation despite their promising efficacy in vitro. As a biocompatible half-life extender, human serum albumin (HSA) has proven effective in some cases. While genetic fusion is well-established for interlinking HSA and a protein payload, it is limited to structurally simple proteins, necessitating new strategies to expand the utility of HSA for delivery of therapeutic proteins. Here, we report a novel HSA variant (eHSA) as a modular and long-acting carrier compatible with any protein payload of interest. The assembly between eHSA and a payload was driven by a heterodimeric coiled-coil interaction in which a short α-helix grafted onto HSA specifically bound to a complementary α-helix genetically fused to a payload. We showed various proteins including tumor necrosis factor-related apoptosis-inducing ligand (TRAIL), single-chain TRAIL, or green fluorescent protein could piggyback onto eHSA via simple mixing without losing native activity. Additionally, either in presence or absence of a payload, eHSA was found to retain the pH-dependent FcRn-binding behavior - a critical attribute for prolonged survival in the systemic circulation. These results demonstrate eHSA would serve as a modular platform capable of delivering various therapeutic proteins with potentially long in vivo half-lives.
Collapse
|
86
|
Chen H, Zhang P, Shi Y, Liu C, Zhou Q, Zeng Y, Cheng H, Dai Q, Gao X, Wang X, Liu G. Functional nanovesicles displaying anti-PD-L1 antibodies for programmed photoimmunotherapy. J Nanobiotechnology 2022; 20:61. [PMID: 35109867 PMCID: PMC8811970 DOI: 10.1186/s12951-022-01266-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 01/16/2022] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Photoimmunotherapy is one of the most promising strategies in tumor immunotherapies, but targeted delivery of photosensitizers and adjuvants to tumors remains a major challenge. Here, as a proof of concept, we describe bone marrow mesenchymal stem cell-derived nanovesicles (NVs) displaying anti-PD-L1 antibodies (aPD-L1) that were genetically engineered for targeted drug delivery. RESULTS The high affinity and specificity between aPD-L1 and tumor cells allow aPD-L1 NVs to selectively deliver photosensitizers to cancer tissues and exert potent directed photothermal ablation. The tumor immune microenvironment was programmed via ablation, and the model antigen ovalbumin (OVA) was designed to fuse with aPD-L1. The corresponding membrane vesicles were then extracted as an antigen-antibody integrator (AAI). AAI can work as a nanovaccine with the immune adjuvant R837 encapsulated. This in turn can directly stimulate dendritic cells (DCs) to boast the body's immune response to residual lesions. CONCLUSIONS aPD-L1 NV-based photoimmunotherapy significantly improves the efficacy of photothermal ablation and synergistically enhances subsequent immune activation. This study describes a promising strategy for developing ligand-targeted and personalized cancer photoimmunotherapy.
Collapse
Affiliation(s)
- Hu Chen
- State Key Laboratory of Molecular Vaccinology and Molecular, Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, 361102, China
| | - Pengfei Zhang
- State Key Laboratory of Molecular Vaccinology and Molecular, Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, 361102, China
- Institute of Molecular Immunology, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, 510080, China
| | - Yesi Shi
- State Key Laboratory of Molecular Vaccinology and Molecular, Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, 361102, China
| | - Chao Liu
- State Key Laboratory of Molecular Vaccinology and Molecular, Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, 361102, China
| | - Qianqian Zhou
- Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200336, China
| | - Yun Zeng
- State Key Laboratory of Molecular Vaccinology and Molecular, Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, 361102, China
| | - Hongwei Cheng
- State Key Laboratory of Molecular Vaccinology and Molecular, Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, 361102, China
| | - Qixuan Dai
- State Key Laboratory of Molecular Vaccinology and Molecular, Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, 361102, China
| | - Xing Gao
- State Key Laboratory of Molecular Vaccinology and Molecular, Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, 361102, China
| | - Xiaoyong Wang
- State Key Laboratory of Molecular Vaccinology and Molecular, Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, 361102, China.
| | - Gang Liu
- State Key Laboratory of Molecular Vaccinology and Molecular, Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, 361102, China.
| |
Collapse
|
87
|
Obeng EM, Dzuvor CKO, Danquah MK. Anti-SARS-CoV-1 and -2 nanobody engineering towards avidity-inspired therapeutics. NANO TODAY 2022; 42:101350. [PMID: 34840592 PMCID: PMC8608585 DOI: 10.1016/j.nantod.2021.101350] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 09/22/2021] [Accepted: 11/18/2021] [Indexed: 05/15/2023]
Abstract
In the past two decades, the emergence of coronavirus diseases has been dire distress on both continental and global fronts and has resulted in the search for potent treatment strategies. One crucial challenge in this search is the recurrent mutations in the causative virus spike protein, which lead to viral escape issues. Among the current promising therapeutic discoveries is the use of nanobodies and nanobody-like molecules. While these nanobodies have demonstrated high-affinity interaction with the virus, the unpredictable spike mutations have warranted the need for avidity-inspired therapeutics of potent inhibitors such as nanobodies. This article discusses novel approaches for the design of anti-SARS-CoV-1 and -2 nanobodies to facilitate advanced innovations in treatment technologies. It further discusses molecular interactions and suggests multivalent protein nanotechnology and chemistry approaches to translate mere molecular affinity into avidity.
Collapse
Affiliation(s)
- Eugene M Obeng
- Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia
- Bioengineering Laboratory, Department of Chemical and Biological Engineering, Monash University, Clayton, VIC 3800, Australia
| | - Christian K O Dzuvor
- Bioengineering Laboratory, Department of Chemical and Biological Engineering, Monash University, Clayton, VIC 3800, Australia
| | - Michael K Danquah
- Department of Chemical Engineering, University of Tennessee, Chattanooga 615 McCallie Ave, Chattanooga, TN 37403, United States
| |
Collapse
|
88
|
Liu XY, Zhu MH, Wang XY, Dong X, Liu HJ, Li RY, Jia SC, Lu Q, Zhao M, Sun P, Chen HZ, Fang C. A nano-innate immune system activator for cancer therapy in a 4T1 tumor-bearing mouse model. J Nanobiotechnology 2022; 20:54. [PMID: 35093074 PMCID: PMC8800325 DOI: 10.1186/s12951-022-01265-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Accepted: 01/14/2022] [Indexed: 11/25/2022] Open
Abstract
Background Harnessing the immune system to fight cancer has led to prominent clinical successes. Strategies to stimulate innate immune effectors are attracting considerable interest in cancer therapy. Here, through conjugating multivalent Fc fragments onto the surface of mesoporous silica nanoparticles (MSN), we developed a nanoparticle-based innate immune system activator (NISA) for breast cancer immunotherapy. Methods NISA was prepared through conjugating mouse IgG3 Fc to MSN surface. Then, long-chain PEG5000, which was used to shield Fc to confer nanoparticle colloidal stability, was linked to the MSN surface via matrix metalloprotease-2 (MMP-2)-cleavable peptide (GPLGIAGQC). The activation of multiple components of innate immune system, including complement and the innate cells (macrophages and dendritic cells) and the associated anticancer effect were investigated. Results Fc fragments of NISA can be exposed through hydrolysis of long-chain PEG5000 by highly expressed MMP-2 in tumor microenvironment. Then, effective stimulation and activation of multiple components of innate immune system, including complement, macrophages, and dendritic cells were obtained, leading to efficient antitumor effect in 4T1 breast cancer cells and orthotopic breast tumor model in mice. Conclusions The antitumor potency conferred by NISA highlights the significance of stimulating multiple innate immune elements in cancer immunotherapy. Graphical Abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1186/s12951-022-01265-4.
Collapse
|
89
|
Engineering pan-HIV-1 neutralization potency through multispecific antibody avidity. Proc Natl Acad Sci U S A 2022; 119:2112887119. [PMID: 35064083 PMCID: PMC8795538 DOI: 10.1073/pnas.2112887119] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/15/2021] [Indexed: 02/08/2023] Open
Abstract
The high genetic diversity of HIV-1 continues to be a major barrier to the development of therapeutics for prevention and treatment. Here, we describe the design of an antibody platform that allows assembly of a highly avid, multispecific molecule that targets, simultaneously, the most conserved epitopes on the HIV-1 envelope glycoprotein. The combined multivalency and multispecificity translates into extraordinary neutralization potency and pan-neutralization of HIV-1 strains, surpassing that of the most potent anti-HIV broadly neutralizing antibody cocktails. Deep mining of B cell repertoires of HIV-1–infected individuals has resulted in the isolation of dozens of HIV-1 broadly neutralizing antibodies (bNAbs). Yet, it remains uncertain whether any such bNAbs alone are sufficiently broad and potent to deploy therapeutically. Here, we engineered HIV-1 bNAbs for their combination on a single multispecific and avid molecule via direct genetic fusion of their Fab fragments to the human apoferritin light chain. The resulting molecule demonstrated a remarkable median IC50 value of 0.0009 µg/mL and 100% neutralization coverage of a broad HIV-1 pseudovirus panel (118 isolates) at a 4 µg/mL cutoff—a 32-fold enhancement in viral neutralization potency compared to a mixture of the corresponding HIV-1 bNAbs. Importantly, Fc incorporation on the molecule and engineering to modulate Fc receptor binding resulted in IgG-like bioavailability in vivo. This robust plug-and-play antibody design is relevant against indications where multispecificity and avidity are leveraged simultaneously to mediate optimal biological activity.
Collapse
|
90
|
Mu X, Yuen JSK, Choi J, Zhang Y, Cebe P, Jiang X, Zhang YS, Kaplan DL. Conformation-driven strategy for resilient and functional protein materials. Proc Natl Acad Sci U S A 2022; 119:e2115523119. [PMID: 35074913 PMCID: PMC8795527 DOI: 10.1073/pnas.2115523119] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 12/17/2021] [Indexed: 01/08/2023] Open
Abstract
The exceptional elastic resilience of some protein materials underlies essential biomechanical functions with broad interest in biomedical fields. However, molecular design of elastic resilience is restricted to amino acid sequences of a handful of naturally occurring resilient proteins such as resilin and elastin. Here, we exploit non-resilin/elastin sequences that adopt kinetically stabilized, random coil-dominated conformations to achieve near-perfect resilience comparable with that of resilin and elastin. We also show a direct correlation between resilience and Raman-characterized protein conformations. Furthermore, we demonstrate that metastable conformation of proteins enables the construction of mechanically graded protein materials that exhibit spatially controlled conformations and resilience. These results offer insights into molecular mechanisms of protein elastomers and outline a general conformation-driven strategy for developing resilient and functional protein materials.
Collapse
Affiliation(s)
- Xuan Mu
- Department of Biomedical Engineering, Tufts University, Medford, MA 02155
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA 02139
| | - John S K Yuen
- Department of Biomedical Engineering, Tufts University, Medford, MA 02155
| | - Jaewon Choi
- Department of Biomedical Engineering, Tufts University, Medford, MA 02155
| | - Yixin Zhang
- Department of Biomedical Engineering, Tufts University, Medford, MA 02155
| | - Peggy Cebe
- Department of Physics and Astronomy, Tufts University, Medford, MA 02155
| | - Xiaocheng Jiang
- Department of Biomedical Engineering, Tufts University, Medford, MA 02155
| | - Yu Shrike Zhang
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA 02139;
| | - David L Kaplan
- Department of Biomedical Engineering, Tufts University, Medford, MA 02155;
| |
Collapse
|
91
|
Sahtoe DD, Praetorius F, Courbet A, Hsia Y, Wicky BI, Edman NI, Miller LM, Timmermans BJR, Decarreau J, Morris HM, Kang A, Bera AK, Baker D. Reconfigurable asymmetric protein assemblies through implicit negative design. Science 2022; 375:eabj7662. [PMID: 35050655 PMCID: PMC9881579 DOI: 10.1126/science.abj7662] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Asymmetric multiprotein complexes that undergo subunit exchange play central roles in biology but present a challenge for design because the components must not only contain interfaces that enable reversible association but also be stable and well behaved in isolation. We use implicit negative design to generate β sheet-mediated heterodimers that can be assembled into a wide variety of complexes. The designs are stable, folded, and soluble in isolation and rapidly assemble upon mixing, and crystal structures are close to the computational models. We construct linearly arranged hetero-oligomers with up to six different components, branched hetero-oligomers, closed C4-symmetric two-component rings, and hetero-oligomers assembled on a cyclic homo-oligomeric central hub and demonstrate that such complexes can readily reconfigure through subunit exchange. Our approach provides a general route to designing asymmetric reconfigurable protein systems.
Collapse
Affiliation(s)
- Danny D. Sahtoe
- Department of Biochemistry, University of Washington, Seattle, WA 98195,Institute for Protein Design, University of Washington, Seattle, WA 98195,HHMI, University of Washington, Seattle, WA 98195
| | - Florian Praetorius
- Department of Biochemistry, University of Washington, Seattle, WA 98195,Institute for Protein Design, University of Washington, Seattle, WA 98195
| | - Alexis Courbet
- Department of Biochemistry, University of Washington, Seattle, WA 98195,Institute for Protein Design, University of Washington, Seattle, WA 98195,HHMI, University of Washington, Seattle, WA 98195
| | - Yang Hsia
- Department of Biochemistry, University of Washington, Seattle, WA 98195,Institute for Protein Design, University of Washington, Seattle, WA 98195
| | - Basile I.M. Wicky
- Department of Biochemistry, University of Washington, Seattle, WA 98195,Institute for Protein Design, University of Washington, Seattle, WA 98195
| | - Natasha I. Edman
- Department of Biochemistry, University of Washington, Seattle, WA 98195,Institute for Protein Design, University of Washington, Seattle, WA 98195,Molecular and Cellular Biology Graduate Program, University of Washington, Seattle, WA, USA.,Medical Scientist Training Program, University of Washington, Seattle, WA, USA
| | - Lauren M. Miller
- Department of Biochemistry, University of Washington, Seattle, WA 98195,Institute for Protein Design, University of Washington, Seattle, WA 98195
| | - Bart J. R. Timmermans
- Department of Biochemistry, University of Washington, Seattle, WA 98195,Institute for Protein Design, University of Washington, Seattle, WA 98195
| | - Justin Decarreau
- Department of Biochemistry, University of Washington, Seattle, WA 98195,Institute for Protein Design, University of Washington, Seattle, WA 98195
| | - Hana M. Morris
- Department of Biochemistry, University of Washington, Seattle, WA 98195,Institute for Protein Design, University of Washington, Seattle, WA 98195
| | - Alex Kang
- Department of Biochemistry, University of Washington, Seattle, WA 98195,Institute for Protein Design, University of Washington, Seattle, WA 98195
| | - Asim K. Bera
- Department of Biochemistry, University of Washington, Seattle, WA 98195,Institute for Protein Design, University of Washington, Seattle, WA 98195
| | - David Baker
- Department of Biochemistry, University of Washington, Seattle, WA 98195,Institute for Protein Design, University of Washington, Seattle, WA 98195,HHMI, University of Washington, Seattle, WA 98195,Corresponding author.
| |
Collapse
|
92
|
Kim NH, Choi H, Shahzad ZM, Ki H, Lee J, Chae H, Kim YH. Supramolecular assembly of protein building blocks: from folding to function. NANO CONVERGENCE 2022; 9:4. [PMID: 35024976 PMCID: PMC8755899 DOI: 10.1186/s40580-021-00294-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 12/03/2021] [Indexed: 06/14/2023]
Abstract
Several phenomena occurring throughout the life of living things start and end with proteins. Various proteins form one complex structure to control detailed reactions. In contrast, one protein forms various structures and implements other biological phenomena depending on the situation. The basic principle that forms these hierarchical structures is protein self-assembly. A single building block is sufficient to create homogeneous structures with complex shapes, such as rings, filaments, or containers. These assemblies are widely used in biology as they enable multivalent binding, ultra-sensitive regulation, and compartmentalization. Moreover, with advances in the computational design of protein folding and protein-protein interfaces, considerable progress has recently been made in the de novo design of protein assemblies. Our review presents a description of the components of supramolecular protein assembly and their application in understanding biological phenomena to therapeutics.
Collapse
Affiliation(s)
- Nam Hyeong Kim
- SKKU Advanced Institute of Nanotechnology (SAINT), Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Hojae Choi
- SKKU Advanced Institute of Nanotechnology (SAINT), Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Zafar Muhammad Shahzad
- SKKU Advanced Institute of Nanotechnology (SAINT), Sungkyunkwan University, Suwon, 16419, Republic of Korea
- School of Chemical Engineering, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Heesoo Ki
- Department of Nano Engineering, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Jaekyoung Lee
- Department of Nano Engineering, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Heeyeop Chae
- School of Chemical Engineering, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Yong Ho Kim
- SKKU Advanced Institute of Nanotechnology (SAINT), Sungkyunkwan University, Suwon, 16419, Republic of Korea.
- Department of Nano Engineering, Sungkyunkwan University, Suwon, 16419, Republic of Korea.
- Center for Neuroscience Imaging Research, Institute for Basic Science (IBS), Suwon, 16419, Republic of Korea.
| |
Collapse
|
93
|
Artificial protein assemblies with well-defined supramolecular protein nanostructures. Biochem Soc Trans 2021; 49:2821-2830. [PMID: 34812854 DOI: 10.1042/bst20210808] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 10/28/2021] [Accepted: 11/02/2021] [Indexed: 12/13/2022]
Abstract
Nature uses a wide range of well-defined biomolecular assemblies in diverse cellular processes, where proteins are major building blocks for these supramolecular assemblies. Inspired by their natural counterparts, artificial protein-based assemblies have attracted strong interest as new bio-nanostructures, and strategies to construct ordered protein assemblies have been rapidly expanding. In this review, we provide an overview of very recent studies in the field of artificial protein assemblies, with the particular aim of introducing major assembly methods and unique features of these assemblies. Computational de novo designs were used to build various assemblies with artificial protein building blocks, which are unrelated to natural proteins. Small chemical ligands and metal ions have also been extensively used for strong and bio-orthogonal protein linking. Here, in addition to protein assemblies with well-defined sizes, protein oligomeric and array structures with rather undefined sizes (but with definite repeat protein assembly units) also will be discussed in the context of well-defined protein nanostructures. Lastly, we will introduce multiple examples showing how protein assemblies can be effectively used in various fields such as therapeutics and vaccine development. We believe that structures and functions of artificial protein assemblies will be continuously evolved, particularly according to specific application goals.
Collapse
|
94
|
Xie F, Su P, Pan T, Zhou X, Li H, Huang H, Wang A, Wang F, Huang J, Yan H, Zeng L, Zhang L, Zhou F. Engineering Extracellular Vesicles Enriched with Palmitoylated ACE2 as COVID-19 Therapy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2103471. [PMID: 34665481 PMCID: PMC8646473 DOI: 10.1002/adma.202103471] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 08/21/2021] [Indexed: 05/22/2023]
Abstract
Angiotensin converting enzyme 2 (ACE2) is a key receptor present on cell surfaces that directly interacts with the viral spike (S) protein of the severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2). It is proposed that inhibiting this interaction can be promising in treating COVID-19. Here, the presence of ACE2 in extracellular vesicles (EVs) is reported and the EV-ACE2 levels are determined by protein palmitoylation. The Cys141 and Cys498 residues on ACE2 are S-palmitoylated by zinc finger DHHC-Type Palmitoyltransferase 3 (ZDHHC3) and de-palmitoylated by acyl protein thioesterase 1 (LYPLA1), which is critical for the membrane-targeting of ACE2 and their EV secretion. Importantly, by fusing the S-palmitoylation-dependent plasma membrane (PM) targeting sequence with ACE2, EVs enriched with ACE2 on their surface (referred to as PM-ACE2-EVs) are engineered. It is shown that PM-ACE2-EVs can bind to the SARS-CoV-2 S-RBD with high affinity and block its interaction with cell surface ACE2 in vitro. PM-ACE2-EVs show neutralization potency against pseudotyped and authentic SARS-CoV-2 in human ACE2 (hACE2) transgenic mice, efficiently block viral load of authentic SARS-CoV-2, and thus protect host against SARS-CoV-2-induced lung inflammation. The study provides an efficient engineering protocol for constructing a promising, novel biomaterial for application in prophylactic and therapeutic treatments against COVID-19.
Collapse
Affiliation(s)
- Feng Xie
- School of MedicineZhejiang University City CollegeHangzhou310015China
- Institutes of Biology and Medical ScienceSoochow UniversitySuzhou215123China
| | - Peng Su
- MOE Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling NetworkLife Sciences InstituteZhejiang UniversityHangzhou310058China
| | - Ting Pan
- Center for Infection and Immunity StudiesSchool of MedicineSun Yat‐sen UniversityShenzhen518107China
| | - Xiaoxue Zhou
- MOE Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling NetworkLife Sciences InstituteZhejiang UniversityHangzhou310058China
| | - Heyu Li
- MOE Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling NetworkLife Sciences InstituteZhejiang UniversityHangzhou310058China
| | - Huizhe Huang
- Faculty of Basic Medical SciencesChongqing Medical UniversityMedical College Road 1Chongqing400016China
| | - Aijun Wang
- Department of SurgerySchool of MedicineUC DavisDavisCA95817USA
| | - Fangwei Wang
- MOE Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling NetworkLife Sciences InstituteZhejiang UniversityHangzhou310058China
| | - Jun Huang
- MOE Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling NetworkLife Sciences InstituteZhejiang UniversityHangzhou310058China
| | - Haiyan Yan
- School of MedicineZhejiang University City CollegeHangzhou310015China
| | - Linghui Zeng
- School of MedicineZhejiang University City CollegeHangzhou310015China
| | - Long Zhang
- MOE Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling NetworkLife Sciences InstituteZhejiang UniversityHangzhou310058China
| | - Fangfang Zhou
- Institutes of Biology and Medical ScienceSoochow UniversitySuzhou215123China
| |
Collapse
|
95
|
Zhu J, Avakyan N, Kakkis AA, Hoffnagle AM, Han K, Li Y, Zhang Z, Choi TS, Na Y, Yu CJ, Tezcan FA. Protein Assembly by Design. Chem Rev 2021; 121:13701-13796. [PMID: 34405992 PMCID: PMC9148388 DOI: 10.1021/acs.chemrev.1c00308] [Citation(s) in RCA: 138] [Impact Index Per Article: 34.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Proteins are nature's primary building blocks for the construction of sophisticated molecular machines and dynamic materials, ranging from protein complexes such as photosystem II and nitrogenase that drive biogeochemical cycles to cytoskeletal assemblies and muscle fibers for motion. Such natural systems have inspired extensive efforts in the rational design of artificial protein assemblies in the last two decades. As molecular building blocks, proteins are highly complex, in terms of both their three-dimensional structures and chemical compositions. To enable control over the self-assembly of such complex molecules, scientists have devised many creative strategies by combining tools and principles of experimental and computational biophysics, supramolecular chemistry, inorganic chemistry, materials science, and polymer chemistry, among others. Owing to these innovative strategies, what started as a purely structure-building exercise two decades ago has, in short order, led to artificial protein assemblies with unprecedented structures and functions and protein-based materials with unusual properties. Our goal in this review is to give an overview of this exciting and highly interdisciplinary area of research, first outlining the design strategies and tools that have been devised for controlling protein self-assembly, then describing the diverse structures of artificial protein assemblies, and finally highlighting the emergent properties and functions of these assemblies.
Collapse
Affiliation(s)
| | | | - Albert A. Kakkis
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093-0340, United States
| | - Alexander M. Hoffnagle
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093-0340, United States
| | - Kenneth Han
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093-0340, United States
| | - Yiying Li
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093-0340, United States
| | - Zhiyin Zhang
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093-0340, United States
| | - Tae Su Choi
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093-0340, United States
| | - Youjeong Na
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093-0340, United States
| | - Chung-Jui Yu
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093-0340, United States
| | - F. Akif Tezcan
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093-0340, United States
| |
Collapse
|
96
|
Zeng R, Lv C, Wang C, Zhao G. Bionanomaterials based on protein self-assembly: Design and applications in biotechnology. Biotechnol Adv 2021; 52:107835. [PMID: 34520791 DOI: 10.1016/j.biotechadv.2021.107835] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 09/06/2021] [Accepted: 09/08/2021] [Indexed: 01/13/2023]
Abstract
Elegant protein assembly to generate new biomaterials undergoes extremely rapid development for wide extension of biotechnology applications, which can be a powerful tool not only for creating nanomaterials but also for advancing understanding of the structure of life. Unique biological properties of proteins bestow these artificial biomaterials diverse functions that can permit them to be applied in encapsulation, bioimaging, biocatalysis, biosensors, photosynthetic apparatus, electron transport, magnetogenetic applications, vaccine development and antibodies design. This review gives a perspective view of the latest advances in the construction of protein-based nanomaterials. We initially start with distinguishable, specific interactions to construct sundry nanomaterials through protein self-assembly and concisely expound the assembly mechanism from the design strategy. And then, the design and construction of 0D, 1D, 2D, 3D protein assembled nanomaterials are especially highlighted. Furthermore, the potential applications have been discussed in detail. Overall, this review will illustrate how to fabricate highly sophisticated nanomaterials oriented toward applications in biotechnology based on the rules of supramolecular chemistry.
Collapse
Affiliation(s)
- Ruiqi Zeng
- College of Food Science & Nutritional Engineering, China Agricultural University, Key Laboratory of Functional Dairy, Ministry of Education, Beijing 100083, China
| | - Chenyan Lv
- College of Food Science & Nutritional Engineering, China Agricultural University, Key Laboratory of Functional Dairy, Ministry of Education, Beijing 100083, China
| | - Chengtao Wang
- Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology & Business University, No. 11 Fucheng Road, Haidian District, Beijing 100048, China
| | - Guanghua Zhao
- College of Food Science & Nutritional Engineering, China Agricultural University, Key Laboratory of Functional Dairy, Ministry of Education, Beijing 100083, China.
| |
Collapse
|
97
|
Tanaka M, Kato T, Oda M. Conformational changes of α-helical peptides with different hydrophobic residues induced by metal-ion binding. Biophys Chem 2021; 277:106661. [PMID: 34388679 DOI: 10.1016/j.bpc.2021.106661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 07/08/2021] [Accepted: 07/28/2021] [Indexed: 11/22/2022]
Abstract
We designed peptides that formed helix bundle structures upon binding of the metal-ions to His residues to form a stable hydrophobic core, in order to analyze the effects of Ala, Val, Ile, and Leu residues, located in the hydrophobic core, together with His, on the conformational changes in respective peptides designated as HA, HV, HI, and HL, respectively. Circular dichroism measurements showed that HV and HI changed from random coil to helix bundle structures upon Zn2+ binding, similar to that observed for HA, while HL existed in the helix bundle structure even in the absence of Zn2+. Electron spin resonance measurements showed that Cu2+ coordination of HI and HL was quite different from that of HA and HV, indicating that HA and HV fluctuated to a greater extent in the solution, despite that their apparent α-helical contents being similar to those of HI and HL. This was also supported by the results obtained from the analyses of thermal stabilities. The change in the structural fluctuation for each peptide upon Zn2+ binding was evaluated based on binding thermodynamics using isothermal titration calorimetry. The structural flexibility in the metal-ion-bound state was found to be in the order HA > HV > HI, and that in the metal-ion-unbound state was found to be greater for HI than that for HL.
Collapse
Affiliation(s)
- Masahiro Tanaka
- Faculty of Life and Environmental Sciences, Kyoto Prefectural University, 1-5 Hangi-cho, Shimogamo, Sakyo-ku, Kyoto, Kyoto 606-8522, Japan
| | - Tatsuhisa Kato
- Fukui Institute for Fundamental Chemistry, Kyoto University, 34-4 Takano-Nishihiraki-cho, Sakyo-ku, Kyoto, Kyoto 606-8103, Japan
| | - Masayuki Oda
- Faculty of Life and Environmental Sciences, Kyoto Prefectural University, 1-5 Hangi-cho, Shimogamo, Sakyo-ku, Kyoto, Kyoto 606-8522, Japan; Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, 1-5 Hangi-cho, Shimogamo, Sakyo-ku, Kyoto, Kyoto 606-8522, Japan.
| |
Collapse
|
98
|
Collins LT, Curiel DT. Synthetic Biology Approaches for Engineering Next-Generation Adenoviral Gene Therapies. ACS NANO 2021; 15:13970-13979. [PMID: 34415739 DOI: 10.1021/acsnano.1c04556] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Synthetic biology centers on the design and modular assembly of biological parts so as to construct artificial biological systems. Over the past decade, synthetic biology has blossomed into a highly productive field, yielding advances in diverse areas such as neuroscience, cell-based therapies, and chemical manufacturing. Similarly, the field of gene therapy has made enormous strides both in proof-of-concept studies and in the clinical setting. One viral vector of increasing interest for gene therapy is the adenovirus (Ad). A major part of the Ad's increasing momentum comes from synthetic biology approaches to Ad engineering. Convergence of gene therapy and synthetic biology has enhanced Ad vectors by mitigating Ad toxicity in vivo, providing precise Ad tropisms, and incorporating genetic circuits to make smart therapies which adapt to environmental stimuli. Synthetic biology engineering of Ad vectors may lead to superior gene delivery and editing platforms which could find applications in a wide range of therapeutic contexts.
Collapse
Affiliation(s)
- Logan Thrasher Collins
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, Missouri 63110, United States
| | - David T Curiel
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, Missouri 63110, United States
- Department of Radiation Oncology, Washington University in St. Louis, St. Louis, Missouri 63110, United States
| |
Collapse
|
99
|
Gala M, Žoldák G. Classifying Residues in Mechanically Stable and Unstable Substructures Based on a Protein Sequence: The Case Study of the DnaK Hsp70 Chaperone. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:2198. [PMID: 34578514 PMCID: PMC8467864 DOI: 10.3390/nano11092198] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 08/16/2021] [Accepted: 08/24/2021] [Indexed: 12/17/2022]
Abstract
Artificial proteins can be constructed from stable substructures, whose stability is encoded in their protein sequence. Identifying stable protein substructures experimentally is the only available option at the moment because no suitable method exists to extract this information from a protein sequence. In previous research, we examined the mechanics of E. coli Hsp70 and found four mechanically stable (S class) and three unstable substructures (U class). Of the total 603 residues in the folded domains of Hsp70, 234 residues belong to one of four mechanically stable substructures, and 369 residues belong to one of three unstable substructures. Here our goal is to develop a machine learning model to categorize Hsp70 residues using sequence information. We applied three supervised methods: logistic regression (LR), random forest, and support vector machine. The LR method showed the highest accuracy, 0.925, to predict the correct class of a particular residue only when context-dependent physico-chemical features were included. The cross-validation of the LR model yielded a prediction accuracy of 0.879 and revealed that most of the misclassified residues lie at the borders between substructures. We foresee machine learning models being used to identify stable substructures as candidates for building blocks to engineer new proteins.
Collapse
Affiliation(s)
- Michal Gala
- Department of Biophysics, Faculty of Science, P. J. Šafárik University, Jesena 5, 040 01 Košice, Slovakia;
| | - Gabriel Žoldák
- Center for Interdisciplinary Biosciences, Technology and Innovation Park, P. J. Šafárik University, Trieda SNP 1, 040 11 Košice, Slovakia
| |
Collapse
|
100
|
Hunt AC, Case JB, Park YJ, Cao L, Wu K, Walls AC, Liu Z, Bowen JE, Yeh HW, Saini S, Helms L, Zhao YT, Hsiang TY, Starr TN, Goreshnik I, Kozodoy L, Carter L, Ravichandran R, Green LB, Matochko WL, Thomson CA, Vögeli B, Krüger-Gericke A, VanBlargan LA, Chen RE, Ying B, Bailey AL, Kafai NM, Boyken S, Ljubetič A, Edman N, Ueda G, Chow C, Addetia A, Panpradist N, Gale M, Freedman BS, Lutz BR, Bloom JD, Ruohola-Baker H, Whelan SPJ, Stewart L, Diamond MS, Veesler D, Jewett MC, Baker D. Multivalent designed proteins protect against SARS-CoV-2 variants of concern. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2021:2021.07.07.451375. [PMID: 34268509 PMCID: PMC8282097 DOI: 10.1101/2021.07.07.451375] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Escape variants of SARS-CoV-2 are threatening to prolong the COVID-19 pandemic. To address this challenge, we developed multivalent protein-based minibinders as potential prophylactic and therapeutic agents. Homotrimers of single minibinders and fusions of three distinct minibinders were designed to geometrically match the SARS-CoV-2 spike (S) trimer architecture and were optimized by cell-free expression and found to exhibit virtually no measurable dissociation upon binding. Cryo-electron microscopy (cryoEM) showed that these trivalent minibinders engage all three receptor binding domains on a single S trimer. The top candidates neutralize SARS-CoV-2 variants of concern with IC 50 values in the low pM range, resist viral escape, and provide protection in highly vulnerable human ACE2-expressing transgenic mice, both prophylactically and therapeutically. Our integrated workflow promises to accelerate the design of mutationally resilient therapeutics for pandemic preparedness. ONE-SENTENCE SUMMARY We designed, developed, and characterized potent, trivalent miniprotein binders that provide prophylactic and therapeutic protection against emerging SARS-CoV-2 variants of concern.
Collapse
Affiliation(s)
- Andrew C. Hunt
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL, 60208, USA
- Center for Synthetic Biology, Northwestern University, Evanston, IL, 60208, USA
| | - James Brett Case
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Young-Jun Park
- Department of Biochemistry, University of Washington, Seattle, WA, 98195, USA
| | - Longxing Cao
- Department of Biochemistry, University of Washington, Seattle, WA, 98195, USA
- Institute for Protein Design, University of Washington, Seattle, WA, 98195, USA
| | - Kejia Wu
- Department of Biochemistry, University of Washington, Seattle, WA, 98195, USA
- Institute for Protein Design, University of Washington, Seattle, WA, 98195, USA
| | - Alexandra C. Walls
- Department of Biochemistry, University of Washington, Seattle, WA, 98195, USA
| | - Zhuoming Liu
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - John E. Bowen
- Department of Biochemistry, University of Washington, Seattle, WA, 98195, USA
| | - Hsien-Wei Yeh
- Department of Biochemistry, University of Washington, Seattle, WA, 98195, USA
- Institute for Protein Design, University of Washington, Seattle, WA, 98195, USA
| | - Shally Saini
- Department of Biochemistry, University of Washington, Seattle, WA, 98195, USA
- Institute for Stem Cell and Regenerative Medicine, University of Washington School of Medicine, Seattle, WA, 98109, USA
| | - Louisa Helms
- Institute for Stem Cell and Regenerative Medicine, University of Washington School of Medicine, Seattle, WA, 98109, USA
- Division of Nephrology and Kidney Research Institute, Department of Medicine, University of Washington School of Medicine, Seattle, WA, 98109, USA
| | - Yan Ting Zhao
- Department of Biochemistry, University of Washington, Seattle, WA, 98195, USA
- Institute for Stem Cell and Regenerative Medicine, University of Washington School of Medicine, Seattle, WA, 98109, USA
- Oral Health Sciences, School of Dentistry, University of Washington, Seattle, WA, 98195, USA
| | - Tien-Ying Hsiang
- Department of Immunology, Center for Innate Immunity and Immune Disease, University of Washington, Seattle, WA, 98195, USA
| | - Tyler N. Starr
- Basic Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA, 98109, USA
| | - Inna Goreshnik
- Department of Biochemistry, University of Washington, Seattle, WA, 98195, USA
- Institute for Protein Design, University of Washington, Seattle, WA, 98195, USA
| | - Lisa Kozodoy
- Department of Biochemistry, University of Washington, Seattle, WA, 98195, USA
- Institute for Protein Design, University of Washington, Seattle, WA, 98195, USA
| | - Lauren Carter
- Department of Biochemistry, University of Washington, Seattle, WA, 98195, USA
- Institute for Protein Design, University of Washington, Seattle, WA, 98195, USA
| | - Rashmi Ravichandran
- Department of Biochemistry, University of Washington, Seattle, WA, 98195, USA
- Institute for Protein Design, University of Washington, Seattle, WA, 98195, USA
| | | | | | | | - Bastain Vögeli
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL, 60208, USA
- Center for Synthetic Biology, Northwestern University, Evanston, IL, 60208, USA
| | - Antje Krüger-Gericke
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL, 60208, USA
- Center for Synthetic Biology, Northwestern University, Evanston, IL, 60208, USA
| | - Laura A. VanBlargan
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Rita E. Chen
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, 63110, USA
- Department of Pathology & Immunology, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Baoling Ying
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Adam L. Bailey
- Department of Pathology & Immunology, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Natasha M. Kafai
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, 63110, USA
- Department of Pathology & Immunology, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Scott Boyken
- Department of Biochemistry, University of Washington, Seattle, WA, 98195, USA
- Institute for Protein Design, University of Washington, Seattle, WA, 98195, USA
| | - Ajasja Ljubetič
- Department of Biochemistry, University of Washington, Seattle, WA, 98195, USA
- Institute for Protein Design, University of Washington, Seattle, WA, 98195, USA
| | - Natasha Edman
- Department of Biochemistry, University of Washington, Seattle, WA, 98195, USA
- Institute for Protein Design, University of Washington, Seattle, WA, 98195, USA
| | - George Ueda
- Department of Biochemistry, University of Washington, Seattle, WA, 98195, USA
- Institute for Protein Design, University of Washington, Seattle, WA, 98195, USA
| | - Cameron Chow
- Department of Biochemistry, University of Washington, Seattle, WA, 98195, USA
- Institute for Protein Design, University of Washington, Seattle, WA, 98195, USA
| | - Amin Addetia
- Department of Biochemistry, University of Washington, Seattle, WA, 98195, USA
- The Molecular and Cellular Biology Program, University of Washington, Seattle, WA, 98195, USA
| | - Nuttada Panpradist
- Department of Bioengineering, University of Washington, Seattle, WA, 98195, USA
| | - Michael Gale
- Department of Immunology, Center for Innate Immunity and Immune Disease, University of Washington, Seattle, WA, 98195, USA
| | - Benjamin S. Freedman
- Institute for Stem Cell and Regenerative Medicine, University of Washington School of Medicine, Seattle, WA, 98109, USA
- Division of Nephrology and Kidney Research Institute, Department of Medicine, University of Washington School of Medicine, Seattle, WA, 98109, USA
| | - Barry R. Lutz
- Department of Bioengineering, University of Washington, Seattle, WA, 98195, USA
| | - Jesse D. Bloom
- Basic Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA, 98109, USA
- Howard Hughes Medical Institute, University of Washington, Seattle, WA, 98195, USA
- Department of Genome Sciences, University of Washington, Seattle, WA, 98195, USA
| | - Hannele Ruohola-Baker
- Department of Biochemistry, University of Washington, Seattle, WA, 98195, USA
- Institute for Stem Cell and Regenerative Medicine, University of Washington School of Medicine, Seattle, WA, 98109, USA
| | - Sean P. J. Whelan
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Lance Stewart
- Department of Biochemistry, University of Washington, Seattle, WA, 98195, USA
- Institute for Protein Design, University of Washington, Seattle, WA, 98195, USA
| | - Michael S. Diamond
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, 63110, USA
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, 63110, USA
- Department of Pathology & Immunology, Washington University School of Medicine, St. Louis, MO, 63110, USA
- Andrew M. and Jane M. Bursky Center for Human Immunology and Immunotherapy Programs, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - David Veesler
- Department of Biochemistry, University of Washington, Seattle, WA, 98195, USA
| | - Michael C. Jewett
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL, 60208, USA
- Center for Synthetic Biology, Northwestern University, Evanston, IL, 60208, USA
- Chemistry of Life Processes Institute, Northwestern University, Evanston, IL, 60208, USA
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, IL, 60611, USA
| | - David Baker
- Department of Biochemistry, University of Washington, Seattle, WA, 98195, USA
- Institute for Protein Design, University of Washington, Seattle, WA, 98195, USA
- Howard Hughes Medical Institute, University of Washington, Seattle, WA, 98195, USA
| |
Collapse
|