51
|
Rasheed A, Rayner KJ. Macrophage Responses to Environmental Stimuli During Homeostasis and Disease. Endocr Rev 2021; 42:407-435. [PMID: 33523133 PMCID: PMC8284619 DOI: 10.1210/endrev/bnab004] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Indexed: 12/20/2022]
Abstract
Work over the last 40 years has described macrophages as a heterogeneous population that serve as the frontline surveyors of tissue immunity. As a class, macrophages are found in almost every tissue in the body and as distinct populations within discrete microenvironments in any given tissue. During homeostasis, macrophages protect these tissues by clearing invading foreign bodies and/or mounting immune responses. In addition to varying identities regulated by transcriptional programs shaped by their respective environments, macrophage metabolism serves as an additional regulator to temper responses to extracellular stimuli. The area of research known as "immunometabolism" has been established within the last decade, owing to an increase in studies focusing on the crosstalk between altered metabolism and the regulation of cellular immune processes. From this research, macrophages have emerged as a prime focus of immunometabolic studies, although macrophage metabolism and their immune responses have been studied for centuries. During disease, the metabolic profile of the tissue and/or systemic regulators, such as endocrine factors, become increasingly dysregulated. Owing to these changes, macrophage responses can become skewed to promote further pathophysiologic changes. For instance, during diabetes, obesity, and atherosclerosis, macrophages favor a proinflammatory phenotype; whereas in the tumor microenvironment, macrophages elicit an anti-inflammatory response to enhance tumor growth. Herein we have described how macrophages respond to extracellular cues including inflammatory stimuli, nutrient availability, and endocrine factors that occur during and further promote disease progression.
Collapse
Affiliation(s)
- Adil Rasheed
- University of Ottawa Heart Institute, Ottawa, Ontario, Canada.,Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Katey J Rayner
- University of Ottawa Heart Institute, Ottawa, Ontario, Canada.,Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada.,Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario, Canada
| |
Collapse
|
52
|
Jenkins SJ, Allen JE. The expanding world of tissue-resident macrophages. Eur J Immunol 2021; 51:1882-1896. [PMID: 34107057 DOI: 10.1002/eji.202048881] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 03/02/2021] [Accepted: 06/08/2021] [Indexed: 12/23/2022]
Abstract
The term 'macrophage' encompasses tissue cells that typically share dependence on the same transcriptional regulatory pathways (e.g. the transcription factor PU.1) and growth factors (e.g. CSF1/IL-34). They share a core set of functions that largely arise from a uniquely high phagocytic capacity manifest in their ability to clear dying cells, pathogens and scavenge damaged, toxic or modified host molecules. However, macrophages demonstrate a remarkable degree of tissue-specific functionality and have diverse origins that vary by tissue site and inflammation status. With our understanding of this diversity has come an appreciation of the longevity and replicative capacity of tissue-resident macrophages and thus the realisation that macrophages may persist through tissue perturbations and inflammatory events with important consequences for cell function. Here, we discuss our current understanding of the parameters that regulate macrophage survival and function, focusing on the relative importance of the tissue environment versus cell-intrinsic factors, such as origin, how long a cell has been resident within a tissue and prior history of activation. Thus, we reconsider the view of macrophages as wholly plastic cells and raise many unanswered questions about the relative importance of cell life-history versus environment in macrophage programming and function.
Collapse
Affiliation(s)
- Stephen J Jenkins
- Centre for Inflammation Research, Queens Medical Research Institute, University of Edinburgh, Edinburgh, UK
| | - Judith E Allen
- Lydia Becker Institute of Immunology & Inflammation, Wellcome Centre for Cell Matrix Research, School of Biological Sciences, University of Manchester, Manchester, UK
| |
Collapse
|
53
|
Mohammed Y, Michaud SA, Pětrošová H, Yang J, Ganguly M, Schibli D, Flenniken AM, Nutter LMJ, Adissu HA, Lloyd KCK, McKerlie C, Borchers CH. Proteotyping of knockout mouse strains reveals sex- and strain-specific signatures in blood plasma. NPJ Syst Biol Appl 2021; 7:25. [PMID: 34050187 PMCID: PMC8163790 DOI: 10.1038/s41540-021-00184-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 04/25/2021] [Indexed: 11/24/2022] Open
Abstract
We proteotyped blood plasma from 30 mouse knockout strains and corresponding wild-type mice from the International Mouse Phenotyping Consortium. We used targeted proteomics with internal standards to quantify 375 proteins in 218 samples. Our results provide insights into the manifested effects of each gene knockout at the plasma proteome level. We first investigated possible contamination by erythrocytes during sample preparation and labeled, in one case, up to 11 differential proteins as erythrocyte originated. Second, we showed that differences in baseline protein abundance between female and male mice were evident in all mice, emphasizing the necessity to include both sexes in basic research, target discovery, and preclinical effect and safety studies. Next, we identified the protein signature of each gene knockout and performed functional analyses for all knockout strains. Further, to demonstrate how proteome analysis identifies the effect of gene deficiency beyond traditional phenotyping tests, we provide in-depth analysis of two strains, C8a-/- and Npc2+/-. The proteins encoded by these genes are well-characterized providing good validation of our method in homozygous and heterozygous knockout mice. Ig alpha chain C region, a poorly characterized protein, was among the differentiating proteins in C8a-/-. In Npc2+/- mice, where histopathology and traditional tests failed to differentiate heterozygous from wild-type mice, our data showed significant difference in various lysosomal storage disease-related proteins. Our results demonstrate how to combine absolute quantitative proteomics with mouse gene knockout strategies to systematically study the effect of protein absence. The approach used here for blood plasma is applicable to all tissue protein extracts.
Collapse
Affiliation(s)
- Yassene Mohammed
- University of Victoria-Genome BC Proteomics Centre, Victoria, BC, Canada.
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, Netherlands.
| | - Sarah A Michaud
- University of Victoria-Genome BC Proteomics Centre, Victoria, BC, Canada.
| | - Helena Pětrošová
- University of Victoria-Genome BC Proteomics Centre, Victoria, BC, Canada
| | - Juncong Yang
- University of Victoria-Genome BC Proteomics Centre, Victoria, BC, Canada
| | - Milan Ganguly
- The Center for Phenogenomics, Toronto, ON, Canada
- The Hospital for Sick Children, Toronto, ON, Canada
| | - David Schibli
- University of Victoria-Genome BC Proteomics Centre, Victoria, BC, Canada
| | - Ann M Flenniken
- The Center for Phenogenomics, Toronto, ON, Canada
- Sinai Health Lunenfeld-Tanenbaum Research Institute, Toronto, ON, Canada
| | - Lauryl M J Nutter
- The Center for Phenogenomics, Toronto, ON, Canada
- The Hospital for Sick Children, Toronto, ON, Canada
| | | | - K C Kent Lloyd
- Department of Surgery, School of Medicine, and Mouse Biology Program, University of California, Davis, CA, USA
| | | | - Christoph H Borchers
- Proteomics Centre, Segal Cancer Centre, Lady Davis Institute, Jewish General Hospital, McGill University, Montreal, QC, Canada.
- Gerald Bronfman Department of Oncology, Jewish General Hospital, Montreal, QC, Canada.
- Department of Data Intensive Science and Engineering, Skolkovo Institute of Science and Technology, Skolkovo Innovation Center, Moscow, Russia.
| |
Collapse
|
54
|
Ito T, Shintani Y, Fields L, Shiraishi M, Podaru MN, Kainuma S, Yamashita K, Kobayashi K, Perretti M, Lewis-McDougall F, Suzuki K. Cell barrier function of resident peritoneal macrophages in post-operative adhesions. Nat Commun 2021; 12:2232. [PMID: 33854051 PMCID: PMC8046819 DOI: 10.1038/s41467-021-22536-y] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Accepted: 03/15/2021] [Indexed: 12/20/2022] Open
Abstract
Post-operative adhesions are a leading cause of abdominal surgery-associated morbidity. Exposed fibrin clots on the damaged peritoneum, in which the mesothelial barrier is disrupted, readily adhere to surrounding tissues, resulting in adhesion formation. Here we show that resident F4/80HighCD206− peritoneal macrophages promptly accumulate on the lesion and form a ‘macrophage barrier’ to shield fibrin clots in place of the lost mesothelium in mice. Depletion of this macrophage subset or blockage of CD11b impairs the macrophage barrier and exacerbates adhesions. The macrophage barrier is usually insufficient to fully preclude the adhesion formation; however, it could be augmented by IL-4-based treatment or adoptive transfer of this macrophage subset, resulting in robust prevention of adhesions. By contrast, monocyte-derived recruited peritoneal macrophages are not involved in the macrophage barrier. These results highlight a previously unidentified cell barrier function of a specific macrophage subset, also proposing an innovative approach to prevent post-operative adhesions. Peritoneal adhesions are a major cause of complications after abdominal surgery. Here the authors use a post-operative abdominal adhesion model in mice to show that resident F4/80HighCD206− macrophages form a protective barrier that can be enhanced by IL-4 administration or adoptive transfer of these cells.
Collapse
Affiliation(s)
- Tomoya Ito
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK.
| | - Yusuke Shintani
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Laura Fields
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Manabu Shiraishi
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Mihai-Nicolae Podaru
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Satoshi Kainuma
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Kizuku Yamashita
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Kazuya Kobayashi
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Mauro Perretti
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Fiona Lewis-McDougall
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Ken Suzuki
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK.
| |
Collapse
|
55
|
Blum KM, Roby LC, Zbinden JC, Chang YC, Mirhaidari GJM, Reinhardt JW, Yi T, Barker JC, Breuer CK. Sex and Tamoxifen confound murine experimental studies in cardiovascular tissue engineering. Sci Rep 2021; 11:8037. [PMID: 33850181 PMCID: PMC8044102 DOI: 10.1038/s41598-021-87006-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 02/25/2021] [Indexed: 02/01/2023] Open
Abstract
Tissue engineered vascular grafts hold promise for the creation of functional blood vessels from biodegradable scaffolds. Because the precise mechanisms regulating this process are still under investigation, inducible genetic mouse models are an important and widely used research tool. However, here we describe the importance of challenging the baseline assumption that tamoxifen is inert when used as a small molecule inducer in the context of cardiovascular tissue engineering. Employing a standard inferior vena cava vascular interposition graft model in C57BL/6 mice, we discovered differences in the immunologic response between control and tamoxifen-treated animals, including occlusion rate, macrophage infiltration and phenotype, the extent of foreign body giant cell development, and collagen deposition. Further, differences were noted between untreated males and females. Our findings demonstrate that the host-response to materials commonly used in cardiovascular tissue engineering is sex-specific and critically impacted by exposure to tamoxifen, necessitating careful model selection and interpretation of results.
Collapse
Affiliation(s)
- Kevin M Blum
- Center for Regenerative Medicine, The Abigail Wexner Research Institute, Nationwide Children's Hospital, Columbus, USA
- Department of Biomedical Engineering, The Ohio State University, Columbus, USA
| | - Lauren C Roby
- Center for Regenerative Medicine, The Abigail Wexner Research Institute, Nationwide Children's Hospital, Columbus, USA
- College of Medicine, The Ohio State University, Columbus, USA
| | - Jacob C Zbinden
- Center for Regenerative Medicine, The Abigail Wexner Research Institute, Nationwide Children's Hospital, Columbus, USA
- Department of Biomedical Engineering, The Ohio State University, Columbus, USA
| | - Yu-Chun Chang
- Center for Regenerative Medicine, The Abigail Wexner Research Institute, Nationwide Children's Hospital, Columbus, USA
- Biomedical Sciences Graduate Program, College of Medicine, The Ohio State University, Columbus, USA
| | - Gabriel J M Mirhaidari
- Center for Regenerative Medicine, The Abigail Wexner Research Institute, Nationwide Children's Hospital, Columbus, USA
- Biomedical Sciences Graduate Program, College of Medicine, The Ohio State University, Columbus, USA
| | - James W Reinhardt
- Center for Regenerative Medicine, The Abigail Wexner Research Institute, Nationwide Children's Hospital, Columbus, USA
| | - Tai Yi
- Center for Regenerative Medicine, The Abigail Wexner Research Institute, Nationwide Children's Hospital, Columbus, USA
| | - Jenny C Barker
- Center for Regenerative Medicine, The Abigail Wexner Research Institute, Nationwide Children's Hospital, Columbus, USA
- Department of Plastic and Reconstructive Surgery, The Ohio State University, Columbus, USA
| | - Christopher K Breuer
- Center for Regenerative Medicine, The Abigail Wexner Research Institute, Nationwide Children's Hospital, Columbus, USA.
| |
Collapse
|
56
|
Louwe PA, Badiola Gomez L, Webster H, Perona-Wright G, Bain CC, Forbes SJ, Jenkins SJ. Recruited macrophages that colonize the post-inflammatory peritoneal niche convert into functionally divergent resident cells. Nat Commun 2021; 12:1770. [PMID: 33741914 PMCID: PMC7979918 DOI: 10.1038/s41467-021-21778-0] [Citation(s) in RCA: 84] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 02/10/2021] [Indexed: 02/07/2023] Open
Abstract
Inflammation generally leads to recruitment of monocyte-derived macrophages. What regulates the fate of these cells and to what extent they can assume the identity and function of resident macrophages is unclear. Here, we show that macrophages elicited into the peritoneal cavity during mild inflammation persist long-term but are retained in an immature transitory state of differentiation due to the presence of enduring resident macrophages. By contrast, severe inflammation results in ablation of resident macrophages and a protracted phase wherein the cavity is incapable of sustaining a resident phenotype, yet ultimately elicited cells acquire a mature resident identity. These macrophages also have transcriptionally and functionally divergent features that result from inflammation-driven alterations to the peritoneal cavity micro-environment and, to a lesser extent, effects of origin and time-of-residency. Hence, rather than being predetermined, the fate of inflammation-elicited peritoneal macrophages seems to be regulated by the environment.
Collapse
Affiliation(s)
- P A Louwe
- Centre for Inflammation Research, Queens Medical Research Institute, Edinburgh, EH16 4TJ, United Kingdom
| | - L Badiola Gomez
- Centre for Inflammation Research, Queens Medical Research Institute, Edinburgh, EH16 4TJ, United Kingdom
| | - H Webster
- Institute of Infection, Immunity & Inflammation, University of Glasgow, Glasgow, G12 8TA, United Kingdom
| | - G Perona-Wright
- Institute of Infection, Immunity & Inflammation, University of Glasgow, Glasgow, G12 8TA, United Kingdom
| | - C C Bain
- Centre for Inflammation Research, Queens Medical Research Institute, Edinburgh, EH16 4TJ, United Kingdom
| | - S J Forbes
- Centre for Regenerative Medicine, University of Edinburgh, Edinburgh, EH16 4UU, United Kingdom
| | - S J Jenkins
- Centre for Inflammation Research, Queens Medical Research Institute, Edinburgh, EH16 4TJ, United Kingdom.
| |
Collapse
|
57
|
Hogg C, Panir K, Dhami P, Rosser M, Mack M, Soong D, Pollard JW, Jenkins SJ, Horne AW, Greaves E. Macrophages inhibit and enhance endometriosis depending on their origin. Proc Natl Acad Sci U S A 2021; 118:e2013776118. [PMID: 33536334 PMCID: PMC8017702 DOI: 10.1073/pnas.2013776118] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Macrophages are intimately involved in the pathophysiology of endometriosis, a chronic inflammatory disorder characterized by the growth of endometrial-like tissue (lesions) outside the uterus. By combining genetic and pharmacological monocyte and macrophage depletion strategies we determined the ontogeny and function of macrophages in a mouse model of induced endometriosis. We demonstrate that lesion-resident macrophages are derived from eutopic endometrial tissue, infiltrating large peritoneal macrophages (LpM) and monocytes. Furthermore, we found endometriosis to trigger continuous recruitment of monocytes and expansion of CCR2+ LpM. Depletion of eutopic endometrial macrophages results in smaller endometriosis lesions, whereas constitutive inhibition of monocyte recruitment significantly reduces peritoneal macrophage populations and increases the number of lesions. Reprogramming the ontogeny of peritoneal macrophages such that embryo-derived LpM are replaced by monocyte-derived LpM decreases the number of lesions that develop. We propose a putative model whereby endometrial macrophages are "proendometriosis" while newly recruited monocyte-derived macrophages, possibly in LpM form, are "antiendometriosis." These observations highlight the importance of monocyte-derived macrophages in limiting disease progression.
Collapse
Affiliation(s)
- Chloe Hogg
- Medical Research Council Centre for Reproductive Health, The Queen's Medical Research Institute, The University of Edinburgh, Edinburgh EH16 4TJ, United Kingdom
| | - Kavita Panir
- Centre for Early Life, Warwick Medical School, University of Warwick, CV2 2DX Coventry, United Kingdom
| | - Priya Dhami
- Centre for Early Life, Warwick Medical School, University of Warwick, CV2 2DX Coventry, United Kingdom
| | - Matthew Rosser
- Centre for Early Life, Warwick Medical School, University of Warwick, CV2 2DX Coventry, United Kingdom
| | - Matthias Mack
- Department of Internal Medicine II-Nephrology, University Hospital Regensburg, 93042 Regensburg, Germany
| | - Daniel Soong
- Medical Research Council Centre for Reproductive Health, The Queen's Medical Research Institute, The University of Edinburgh, Edinburgh EH16 4TJ, United Kingdom
| | - Jeffrey W Pollard
- Medical Research Council Centre for Reproductive Health, The Queen's Medical Research Institute, The University of Edinburgh, Edinburgh EH16 4TJ, United Kingdom
| | - Stephen J Jenkins
- Centre for Inflammation Research, The Queen's Medical Research Institute, The University of Edinburgh, Edinburgh EH16 4TJ, United Kingdom
| | - Andrew W Horne
- Medical Research Council Centre for Reproductive Health, The Queen's Medical Research Institute, The University of Edinburgh, Edinburgh EH16 4TJ, United Kingdom
| | - Erin Greaves
- Centre for Early Life, Warwick Medical School, University of Warwick, CV2 2DX Coventry, United Kingdom;
| |
Collapse
|
58
|
Duong L, Radley HG, Lee B, Dye DE, Pixley FJ, Grounds MD, Nelson DJ, Jackaman C. Macrophage function in the elderly and impact on injury repair and cancer. IMMUNITY & AGEING 2021; 18:4. [PMID: 33441138 PMCID: PMC7805172 DOI: 10.1186/s12979-021-00215-2] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Accepted: 01/01/2021] [Indexed: 02/07/2023]
Abstract
Older age is associated with deteriorating health, including escalating risk of diseases such as cancer, and a diminished ability to repair following injury. This rise in age-related diseases/co-morbidities is associated with changes to immune function, including in myeloid cells, and is related to immunosenescence. Immunosenescence reflects age-related changes associated with immune dysfunction and is accompanied by low-grade chronic inflammation or inflammageing. This is characterised by increased levels of circulating pro-inflammatory cytokines such as tumor necrosis factor (TNF), interleukin (IL)-1β and IL-6. However, in healthy ageing, there is a concomitant age-related escalation in anti-inflammatory cytokines such as transforming growth factor-β1 (TGF-β1) and IL-10, which may overcompensate to regulate the pro-inflammatory state. Key inflammatory cells, macrophages, play a role in cancer development and injury repair in young hosts, and we propose that their role in ageing in these scenarios may be more profound. Imbalanced pro- and anti-inflammatory factors during ageing may also have a significant influence on macrophage function and further impact the severity of age-related diseases in which macrophages are known to play a key role. In this brief review we summarise studies describing changes to inflammatory function of macrophages (from various tissues and across sexes) during healthy ageing. We also describe age-related diseases/co-morbidities where macrophages are known to play a key role, focussed on injury repair processes and cancer, plus comment briefly on strategies to correct for these age-related changes.
Collapse
Affiliation(s)
- L Duong
- Curtin Medical School, Curtin Health Innovation Research Institute, Faculty of Health Sciences, Curtin University, Kent Street, 6102, Bentley, Western Australia, Australia
| | - H G Radley
- Curtin Medical School, Curtin Health Innovation Research Institute, Faculty of Health Sciences, Curtin University, Kent Street, 6102, Bentley, Western Australia, Australia
| | - B Lee
- Curtin Medical School, Curtin Health Innovation Research Institute, Faculty of Health Sciences, Curtin University, Kent Street, 6102, Bentley, Western Australia, Australia
| | - D E Dye
- Curtin Medical School, Curtin Health Innovation Research Institute, Faculty of Health Sciences, Curtin University, Kent Street, 6102, Bentley, Western Australia, Australia
| | - F J Pixley
- School of Biomedical Sciences, University of Western Australia, 6009, Nedlands, Western Australia, Australia
| | - M D Grounds
- School of Human Sciences, University of Western Australia, 6009, Nedlands, Western Australia, Australia
| | - D J Nelson
- Curtin Medical School, Curtin Health Innovation Research Institute, Faculty of Health Sciences, Curtin University, Kent Street, 6102, Bentley, Western Australia, Australia
| | - C Jackaman
- Curtin Medical School, Curtin Health Innovation Research Institute, Faculty of Health Sciences, Curtin University, Kent Street, 6102, Bentley, Western Australia, Australia.
| |
Collapse
|
59
|
Bienvenu LA, Noonan J, Wang X, Peter K. Higher mortality of COVID-19 in males: sex differences in immune response and cardiovascular comorbidities. Cardiovasc Res 2020; 116:2197-2206. [PMID: 33063089 PMCID: PMC7665363 DOI: 10.1093/cvr/cvaa284] [Citation(s) in RCA: 197] [Impact Index Per Article: 39.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 09/08/2020] [Accepted: 10/01/2020] [Indexed: 02/07/2023] Open
Abstract
The high mortality rate of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) infection is a critical concern of the coronavirus disease 2019 (COVID-19) pandemic. Strikingly, men account for the majority of COVID-19 deaths, with current figures ranging from 59% to 75% of total mortality. However, despite clear implications in relation to COVID-19 mortality, most research has not considered sex as a critical factor in data analysis. Here, we highlight fundamental biological differences that exist between males and females, and how these may make significant contributions to the male-biased COVID-19 mortality. We present preclinical evidence identifying the influence of biological sex on the expression and regulation of angiotensin-converting enzyme 2 (ACE2), which is the main receptor used by SARS-CoV-2 to enter cells. However, we note that there is a lack of reports showing that sexual dimorphism of ACE2 expression exists and is of functional relevance in humans. In contrast, there is strong evidence, especially in the context of viral infections, that sexual dimorphism plays a central role in the genetic and hormonal regulation of immune responses, both of the innate and the adaptive immune system. We review evidence supporting that ineffective anti-SARS-CoV-2 responses, coupled with a predisposition for inappropriate hyperinflammatory responses, could provide a biological explanation for the male bias in COVID-19 mortality. A prominent finding in COVID-19 is the increased risk of death with pre-existing cardiovascular comorbidities, such as hypertension, obesity, and age. We contextualize how important features of sexual dimorphism and inflammation in COVID-19 may exhibit a reciprocal relationship with comorbidities, and explain their increased mortality risk. Ultimately, we demonstrate that biological sex is a fundamental variable of critical relevance to our mechanistic understanding of SARS-CoV-2 infection and the pursuit of effective COVID-19 preventative and therapeutic strategies.
Collapse
Affiliation(s)
- Laura A Bienvenu
- Atherothrombosis and Vascular Biology Laboratory, Baker Heart and Diabetes Institute, 75 Commercial Rd, Melbourne, VIC 3004, Australia
- Molecular Imaging and Theranostics Laboratory, Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
- Department of Cardiometabolic Health, University of Melbourne, VIC, Australia
| | - Jonathan Noonan
- Atherothrombosis and Vascular Biology Laboratory, Baker Heart and Diabetes Institute, 75 Commercial Rd, Melbourne, VIC 3004, Australia
- Department of Cardiometabolic Health, University of Melbourne, VIC, Australia
- Deparment of Immunology, Monash University, Melbourne, VIC, Australia
- Centre for Immunobiology, College of Medical, Veterinary and Life Sciences, Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, UK
| | - Xiaowei Wang
- Atherothrombosis and Vascular Biology Laboratory, Baker Heart and Diabetes Institute, 75 Commercial Rd, Melbourne, VIC 3004, Australia
- Molecular Imaging and Theranostics Laboratory, Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
- Department of Cardiometabolic Health, University of Melbourne, VIC, Australia
- Department of Medicine, Monash University, Melbourne, VIC, Australia
| | - Karlheinz Peter
- Atherothrombosis and Vascular Biology Laboratory, Baker Heart and Diabetes Institute, 75 Commercial Rd, Melbourne, VIC 3004, Australia
- Department of Cardiometabolic Health, University of Melbourne, VIC, Australia
- Deparment of Immunology, Monash University, Melbourne, VIC, Australia
- Department of Medicine, Monash University, Melbourne, VIC, Australia
| |
Collapse
|
60
|
Consiglio CR, Gollnick SO. Androgen Receptor Signaling Positively Regulates Monocytic Development. Front Immunol 2020; 11:519383. [PMID: 33193298 PMCID: PMC7604537 DOI: 10.3389/fimmu.2020.519383] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Accepted: 09/28/2020] [Indexed: 11/13/2022] Open
Abstract
Myeloid cells are critical cells involved in the orchestration of innate and adaptive immune responses. Most myeloid cells derive from the adult bone marrow in a process called myelopoiesis, a tightly controlled process that ensures constant production of myeloid cells. Sex differences in myeloid cell development have been observed; males exhibit greater monocytic differentiation in the bone marrow, and men have increased blood monocyte numbers when compared to women. Here we use a genetic mouse model of myeloid androgen receptor (AR) knockout (MARKO) and pharmacological inhibition of AR to investigate the role of androgen signaling in monocytic differentiation. We observe that although myeloid AR signaling does not influence total bone marrow cell numbers, it does affect the composition of the bone marrow myeloid population in both homeostatic and emergency settings. Genetic deletion of AR in myeloid cells led to reduced monocytic development in vivo. Similarly, pharmacologic inhibition of AR signaling in vitro reduced monocytic development. However, alteration in monocytic differentiation in the absence of AR signaling did not lead to reduced numbers of circulating myeloid cells, although MARKO male mice display reduced ratio of classical to non-classical monocytes in the blood, implying that blood monocyte subsets are skewed upon myeloid AR deletion. Our results suggest that the sex differences observed in monocytic differentiation are partly attributed to the positive role of the androgen-AR axis in regulating monocytic development directly at the myeloid cell level. Furthermore, we have identified a novel role for AR in regulating blood mature monocyte subset turnover. Investigating how androgen signaling affects monocytic development and monocyte subset heterogeneity will advance our understanding of sex differences in monocytic function at homeostasis and disease and can ultimately impact future therapeutic design targeting monocytes in the clinic.
Collapse
Affiliation(s)
- Camila Rosat Consiglio
- Roswell Park Comprehensive Cancer Center, Department of Immunology, Buffalo, NY, United States
| | - Sandra O Gollnick
- Roswell Park Comprehensive Cancer Center, Department of Immunology, Buffalo, NY, United States.,Roswell Park Comprehensive Cancer Center, Department of Cell Stress, Buffalo, NY, United States
| |
Collapse
|
61
|
|
62
|
Finlay CM, Allen JE. The immune response of inbred laboratory mice to Litomosoides sigmodontis: A route to discovery in myeloid cell biology. Parasite Immunol 2020; 42:e12708. [PMID: 32145033 PMCID: PMC7317388 DOI: 10.1111/pim.12708] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 02/12/2020] [Accepted: 02/24/2020] [Indexed: 12/11/2022]
Abstract
Litomosoides sigmodontis is the only filarial nematode where the full life cycle, from larval delivery to the skin through to circulating microfilaria, can be completed in immunocompetent laboratory mice. It is thus an invaluable tool for the study of filariasis. It has been used for the study of novel anti-helminthic therapeutics, the development of vaccines against filariasis, the development of immunomodulatory drugs for the treatment of inflammatory disease and the study of basic immune responses to filarial nematodes. This review will focus on the latter and aims to summarize how the L sigmodontis model has advanced our basic understanding of immune responses to helminths, led to major discoveries in macrophage biology and provided new insights into the immunological functions of the pleural cavity. Finally, and most importantly L sigmodontis represents a suitable platform to study how host genotype affects immune responses, with the potential for further discovery in myeloid cell biology and beyond.
Collapse
Affiliation(s)
- Conor M Finlay
- Lydia Becker Institute for Immunology & Infection, Faculty of Biology, Medicine & Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, UK
| | - Judith E Allen
- Lydia Becker Institute for Immunology & Infection, Faculty of Biology, Medicine & Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, UK
| |
Collapse
|