51
|
Gupta SV, Schmidt KH. Maintenance of Yeast Genome Integrity by RecQ Family DNA Helicases. Genes (Basel) 2020; 11:E205. [PMID: 32085395 PMCID: PMC7074392 DOI: 10.3390/genes11020205] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 02/11/2020] [Accepted: 02/14/2020] [Indexed: 12/28/2022] Open
Abstract
With roles in DNA repair, recombination, replication and transcription, members of the RecQ DNA helicase family maintain genome integrity from bacteria to mammals. Mutations in human RecQ helicases BLM, WRN and RecQL4 cause incurable disorders characterized by genome instability, increased cancer predisposition and premature adult-onset aging. Yeast cells lacking the RecQ helicase Sgs1 share many of the cellular defects of human cells lacking BLM, including hypersensitivity to DNA damaging agents and replication stress, shortened lifespan, genome instability and mitotic hyper-recombination, making them invaluable model systems for elucidating eukaryotic RecQ helicase function. Yeast and human RecQ helicases have common DNA substrates and domain structures and share similar physical interaction partners. Here, we review the major cellular functions of the yeast RecQ helicases Sgs1 of Saccharomyces cerevisiae and Rqh1 of Schizosaccharomyces pombe and provide an outlook on some of the outstanding questions in the field.
Collapse
Affiliation(s)
- Sonia Vidushi Gupta
- Department of Cell Biology, Microbiology and Molecular Biology, University of South, Florida, Tampa, FL 33620, USA;
| | - Kristina Hildegard Schmidt
- Department of Cell Biology, Microbiology and Molecular Biology, University of South, Florida, Tampa, FL 33620, USA;
- Cancer Biology and Evolution Program, H. Lee Moffitt Cancer Center and Research, Institute, Tampa, FL 33612, USA
| |
Collapse
|
52
|
Kellner V, Luke B. Molecular and physiological consequences of faulty eukaryotic ribonucleotide excision repair. EMBO J 2020; 39:e102309. [PMID: 31833079 PMCID: PMC6996501 DOI: 10.15252/embj.2019102309] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Revised: 10/22/2019] [Accepted: 11/26/2019] [Indexed: 01/11/2023] Open
Abstract
The duplication of the eukaryotic genome is an intricate process that has to be tightly safe-guarded. One of the most frequently occurring errors during DNA synthesis is the mis-insertion of a ribonucleotide instead of a deoxyribonucleotide. Ribonucleotide excision repair (RER) is initiated by RNase H2 and results in error-free removal of such mis-incorporated ribonucleotides. If left unrepaired, DNA-embedded ribonucleotides result in a variety of alterations within chromosomal DNA, which ultimately lead to genome instability. Here, we review how genomic ribonucleotides lead to chromosomal aberrations and discuss how the tight regulation of RER timing may be important for preventing unwanted DNA damage. We describe the structural impact of unrepaired ribonucleotides on DNA and chromatin and comment on the potential consequences for cellular fitness. In the context of the molecular mechanisms associated with faulty RER, we have placed an emphasis on how and why increased levels of genomic ribonucleotides are associated with severe autoimmune syndromes, neuropathology, and cancer. In addition, we discuss therapeutic directions that could be followed for pathologies associated with defective removal of ribonucleotides from double-stranded DNA.
Collapse
Affiliation(s)
- Vanessa Kellner
- Institute of Molecular Biology (IMB)MainzGermany
- Present address:
Department of BiologyNew York UniversityNew YorkNYUSA
| | - Brian Luke
- Institute of Molecular Biology (IMB)MainzGermany
- Institute of Developmental Biology and Neurobiology (IDN)Johannes Gutenberg UniversitätMainzGermany
| |
Collapse
|
53
|
Function of the MYND Domain and C-Terminal Region in Regulating the Subcellular Localization and Catalytic Activity of the SMYD Family Lysine Methyltransferase Set5. Mol Cell Biol 2020; 40:MCB.00341-19. [PMID: 31685550 DOI: 10.1128/mcb.00341-19] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Accepted: 11/01/2019] [Indexed: 11/20/2022] Open
Abstract
SMYD lysine methyltransferases target histones and nonhistone proteins for methylation and are critical regulators of muscle development and implicated in neoplastic transformation. They are characterized by a split catalytic SET domain and an intervening MYND zinc finger domain, as well as an extended C-terminal domain. Saccharomyces cerevisiae contains two SMYD proteins, Set5 and Set6, which share structural elements with the mammalian SMYD enzymes. Set5 is a histone H4 lysine 5, 8, and 12 methyltransferase, implicated in the regulation of stress responses and genome stability. While the SMYD proteins have diverse roles in cells, there are many gaps in our understanding of how these enzymes are regulated. Here, we performed mutational analysis of Set5, combined with phosphoproteomics, to identify regulatory mechanisms for its enzymatic activity and subcellular localization. Our results indicate that the MYND domain promotes Set5 chromatin association in cells and is required for its role in repressing subtelomeric genes. Phosphoproteomics revealed extensive phosphorylation of Set5, and phosphomimetic mutations enhance Set5 catalytic activity but diminish its ability to interact with chromatin in cells. These studies uncover multiple regions within Set5 that regulate its localization and activity and highlight potential avenues for understanding mechanisms controlling the diverse roles of SMYD enzymes.
Collapse
|
54
|
Ding X, Krutzik PO, Ghaffari AA, Zhaozhi Y, Miranda D, Cheng G, Ho CM, Nolan GP, Sanchez DJ. Cellular Signaling Analysis shows antiviral, ribavirin-mediated ribosomal signaling modulation. Antiviral Res 2019; 171:104598. [PMID: 31513822 PMCID: PMC7114107 DOI: 10.1016/j.antiviral.2019.104598] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2019] [Revised: 09/05/2019] [Accepted: 09/07/2019] [Indexed: 11/17/2022]
Abstract
As antiviral drug resistance develops and new viruses emerge there is a pressing need to develop strategies to rapidly develop antiviral therapeutics. Here we use phospho-specific flow cytometry to assess perturbations of many different cellular signaling pathways during treatment with drug combinations that are highly effective in blocking Herpes simplex virus type 1 (HSV-1) infection. We discovered two antiviral drug combinations act on distinct signaling pathways, either STAT1 or S6 phosphorylation, to block HSV-1 infection. We focused on upregulation of S6 phosphorylation by HSV-1 infection, and our subsequent finding that ribavirin antagonizes this upregulation of S6 phosphorylation. We go on to show that the S6 kinase inhibitor SL0101 blocks HSV-1 replication in vitro and in an in vivo animal model of HSV-1 infection. Overall, we have used an unbiased analysis of cellular signaling pathways during treatment by antiviral drug combinations to discover a novel antiviral drug target against HSV-1 infection. The outcomes of the approach we present highlight the importance of analyzing how antiviral drugs modulate cellular and pathogen-induced signaling as a method to discover new drug therapy targets.
Collapse
Affiliation(s)
- Xianting Ding
- Institute for Personalized Medicine, State Key Laboratory of Oncogenes and Related Genes, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, PR China
| | - Peter O Krutzik
- Microbiology & Immunology - Baxter Laboratory, Stanford University, Palo Alto, CA, USA
| | - Amir Ali Ghaffari
- Department of Microbiology, Immunology & Molecular Genetics, University of California, Los Angeles, CA, USA
| | - Yixiu Zhaozhi
- Institute for Personalized Medicine, State Key Laboratory of Oncogenes and Related Genes, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, PR China
| | - Daniel Miranda
- Pharmaceutical Sciences Department, Western University of Health Sciences, Pomona, CA, USA
| | - Genhong Cheng
- Department of Microbiology, Immunology & Molecular Genetics, University of California, Los Angeles, CA, USA
| | - Chih-Ming Ho
- Mechanical and Aerospace Engineering Department, School of Engineering and Applied Science, University of California, Los Angeles, CA, USA
| | - Garry P Nolan
- Microbiology & Immunology - Baxter Laboratory, Stanford University, Palo Alto, CA, USA
| | - David Jesse Sanchez
- Pharmaceutical Sciences Department, Western University of Health Sciences, Pomona, CA, USA.
| |
Collapse
|
55
|
Hassaninasab A, Hsieh LS, Su WM, Han GS, Carman GM. Yck1 casein kinase I regulates the activity and phosphorylation of Pah1 phosphatidate phosphatase from Saccharomyces cerevisiae. J Biol Chem 2019; 294:18256-18268. [PMID: 31645435 DOI: 10.1074/jbc.ra119.011314] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 10/18/2019] [Indexed: 11/06/2022] Open
Abstract
The PAH1-encoded phosphatidate phosphatase in Saccharomyces cerevisiae plays a major role in triacylglycerol synthesis and the control of phospholipid synthesis. For its catalytic function on the nuclear/endoplasmic reticulum membrane, Pah1 translocates to the membrane through its phosphorylation/dephosphorylation. Pah1 phosphorylation on multiple serine/threonine residues is complex and catalyzed by diverse protein kinases. In this work, we demonstrate that Pah1 is phosphorylated by the YCK1-encoded casein kinase I (CKI), regulating Pah1 catalytic activity and phosphorylation. Phosphoamino acid analysis coupled with phosphopeptide mapping of the CKI-phosphorylated Pah1 indicated that it is phosphorylated mainly on multiple serine residues. Using site-directed mutagenesis and phosphorylation analysis of Pah1, we identified eight serine residues (i.e. Ser-114, Ser-475, Ser-511, Ser-602, Ser-677, Ser-705, Ser-748, and Ser-774) as the target sites of CKI. Of these residues, Ser-475 and Ser-511 were specific for CKI, whereas the others were shared by casein kinase II (Ser-705), Cdc28-cyclin B (Ser-602), Pho85-Pho80 (Ser-114, Ser-602, and Ser-748), protein kinase A (Ser-667 and Ser-774), and protein kinase C (Ser-677). CKI-mediated phosphorylation of Pah1 stimulated both its phosphatidate phosphatase activity and its subsequent phosphorylation by casein kinase II. However, the CKI-mediated phosphorylation of Pah1 strongly inhibited its subsequent phosphorylation by Pho85-Pho80, protein kinase A, and protein kinase C. In a reciprocal analysis, Pah1 phosphorylation by Pho85-Pho80 inhibited subsequent phosphorylation by CKI. CKI-mediated Pah1 phosphorylation was also inhibited by a peptide containing the Pah1 residues 506-517, including the kinase-specific Ser-511 residue. These findings advance our understanding of how Pah1 catalytic activity and phosphorylation are regulated by multiple protein kinases.
Collapse
Affiliation(s)
- Azam Hassaninasab
- Department of Food Science and the Rutgers Center for Lipid Research, New Jersey Institute for Food, Nutrition, and Health, Rutgers University, New Brunswick, New Jersey 08901
| | - Lu-Sheng Hsieh
- Department of Food Science and the Rutgers Center for Lipid Research, New Jersey Institute for Food, Nutrition, and Health, Rutgers University, New Brunswick, New Jersey 08901
| | - Wen-Min Su
- Department of Food Science and the Rutgers Center for Lipid Research, New Jersey Institute for Food, Nutrition, and Health, Rutgers University, New Brunswick, New Jersey 08901
| | - Gil-Soo Han
- Department of Food Science and the Rutgers Center for Lipid Research, New Jersey Institute for Food, Nutrition, and Health, Rutgers University, New Brunswick, New Jersey 08901
| | - George M Carman
- Department of Food Science and the Rutgers Center for Lipid Research, New Jersey Institute for Food, Nutrition, and Health, Rutgers University, New Brunswick, New Jersey 08901.
| |
Collapse
|
56
|
Dey P, Su WM, Mirheydari M, Han GS, Carman GM. Protein kinase C mediates the phosphorylation of the Nem1-Spo7 protein phosphatase complex in yeast. J Biol Chem 2019; 294:15997-16009. [PMID: 31501244 DOI: 10.1074/jbc.ra119.010592] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Revised: 09/04/2019] [Indexed: 12/18/2022] Open
Abstract
The Nem1-Spo7 complex in the yeast Saccharomyces cerevisiae is a protein phosphatase required for the nuclear/endoplasmic reticulum membrane localization of Pah1, a phosphatidate phosphatase that produces diacylglycerol for triacylglycerol synthesis at the expense of phospholipid synthesis. In a previous study, we showed that the protein phosphatase is subject to phosphorylation by protein kinase A (PKA). Here, we demonstrate that Nem1-Spo7 is regulated through its phosphorylation by protein kinase C (PKC), which plays multiple roles, including the regulation of lipid synthesis and cell wall integrity. Phosphorylation analyses of Nem1-Spo7 and its synthetic peptides indicate that both subunits of the complex are bona fide PKC substrates. Site-directed mutagenesis of NEM1 and SPO7, coupled with phosphopeptide mapping and immunoblotting with a phosphoserine-specific PKC substrate antibody, revealed that Ser-201 in Nem1 and Ser-22/Ser-28 in Spo7 are major PKC target sites of phosphorylation. Activity analysis of mutant Nem1-Spo7 complexes indicates that the PKC phosphorylation of Nem1 exerts a stimulatory effect, but the phosphorylation of Spo7 has no effect. Lipid-labeling analysis of cells expressing the phosphorylation-deficient alleles of NEM1 and SPO7 indicates that the stimulation of the Nem1-Spo7 activity has the effect of increasing triacylglycerol synthesis. Prephosphorylation of Nem1-Spo7 by PKC inhibits the PKA phosphorylation of Nem1, whereas prephosphorylation of the phosphatase complex by PKA inhibits the PKC phosphorylation of Spo7. Collectively, this work advances the understanding of the Nem1-Spo7 regulation by phosphorylation and its impact on lipid synthesis.
Collapse
Affiliation(s)
- Prabuddha Dey
- Department of Food Science and the Rutgers Center for Lipid Research, New Jersey Institute for Food, Nutrition, and Health, Rutgers University, New Brunswick, New Jersey 08901
| | - Wen-Min Su
- Department of Food Science and the Rutgers Center for Lipid Research, New Jersey Institute for Food, Nutrition, and Health, Rutgers University, New Brunswick, New Jersey 08901
| | - Mona Mirheydari
- Department of Food Science and the Rutgers Center for Lipid Research, New Jersey Institute for Food, Nutrition, and Health, Rutgers University, New Brunswick, New Jersey 08901
| | - Gil-Soo Han
- Department of Food Science and the Rutgers Center for Lipid Research, New Jersey Institute for Food, Nutrition, and Health, Rutgers University, New Brunswick, New Jersey 08901
| | - George M Carman
- Department of Food Science and the Rutgers Center for Lipid Research, New Jersey Institute for Food, Nutrition, and Health, Rutgers University, New Brunswick, New Jersey 08901
| |
Collapse
|
57
|
Janschitz M, Romanov N, Varnavides G, Hollenstein DM, Gérecová G, Ammerer G, Hartl M, Reiter W. Novel interconnections of HOG signaling revealed by combined use of two proteomic software packages. Cell Commun Signal 2019; 17:66. [PMID: 31208443 PMCID: PMC6572760 DOI: 10.1186/s12964-019-0381-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Accepted: 06/04/2019] [Indexed: 12/12/2022] Open
Abstract
Modern quantitative mass spectrometry (MS)-based proteomics enables researchers to unravel signaling networks by monitoring proteome-wide cellular responses to different stimuli. MS-based analysis of signaling systems usually requires an integration of multiple quantitative MS experiments, which remains challenging, given that the overlap between these datasets is not necessarily comprehensive. In a previous study we analyzed the impact of the yeast mitogen-activated protein kinase (MAPK) Hog1 on the hyperosmotic stress-affected phosphorylome. Using a combination of a series of hyperosmotic stress and kinase inhibition experiments, we identified a broad range of direct and indirect substrates of the MAPK. Here we re-evaluate this extensive MS dataset and demonstrate that a combined analysis based on two software packages, MaxQuant and Proteome Discoverer, increases the coverage of Hog1-target proteins by 30%. Using protein-protein proximity assays we show that the majority of new targets gained by this analysis are indeed Hog1-interactors. Additionally, kinetic profiles indicate differential trends of Hog1-dependent versus Hog1-independent phosphorylation sites. Our findings highlight a previously unrecognized interconnection between Hog1 signaling and the RAM signaling network, as well as sphingolipid homeostasis.
Collapse
Affiliation(s)
- Marion Janschitz
- Department of Biochemistry, Max F. Perutz Laboratories, Vienna BioCenter, Vienna, Austria
- Children’s Cancer Research Institute, St. Anna Kinderspital, Vienna, Austria
| | - Natalie Romanov
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Meyerhofstrasse 1, 69117 Heidelberg, Germany
- Current Address: Department of Molecular Sociology, Max Planck Institute of Biophysics, 60438 Frankfurt am Main, Germany
| | - Gina Varnavides
- Mass Spectrometry Facility, Max F. Perutz Laboratories, University of Vienna, Vienna BioCenter, Vienna, Austria
| | | | - Gabriela Gérecová
- Department of Biochemistry, Max F. Perutz Laboratories, Vienna BioCenter, Vienna, Austria
| | - Gustav Ammerer
- Department of Biochemistry, Max F. Perutz Laboratories, Vienna BioCenter, Vienna, Austria
| | - Markus Hartl
- Department of Biochemistry, Max F. Perutz Laboratories, Vienna BioCenter, Vienna, Austria
- Mass Spectrometry Facility, Max F. Perutz Laboratories, University of Vienna, Vienna BioCenter, Vienna, Austria
| | - Wolfgang Reiter
- Mass Spectrometry Facility, Max F. Perutz Laboratories, University of Vienna, Vienna BioCenter, Vienna, Austria
| |
Collapse
|
58
|
Abstract
Litichevskiy et al. describe the first large-scale use of targeted mass spectrometry to systematically investigate phospho-protein and histone modification networks across a panel of cell lines subjected to drug perturbations.
Collapse
|
59
|
Lun XK, Szklarczyk D, Gábor A, Dobberstein N, Zanotelli VRT, Saez-Rodriguez J, von Mering C, Bodenmiller B. Analysis of the Human Kinome and Phosphatome by Mass Cytometry Reveals Overexpression-Induced Effects on Cancer-Related Signaling. Mol Cell 2019; 74:1086-1102.e5. [PMID: 31101498 PMCID: PMC6561723 DOI: 10.1016/j.molcel.2019.04.021] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Revised: 02/06/2019] [Accepted: 04/11/2019] [Indexed: 12/24/2022]
Abstract
Kinase and phosphatase overexpression drives tumorigenesis and drug resistance. We previously developed a mass-cytometry-based single-cell proteomics approach that enables quantitative assessment of overexpression effects on cell signaling. Here, we applied this approach in a human kinome- and phosphatome-wide study to assess how 649 individually overexpressed proteins modulated cancer-related signaling in HEK293T cells in an abundance-dependent manner. Based on these data, we expanded the functional classification of human kinases and phosphatases and showed that the overexpression effects include non-catalytic roles. We detected 208 previously unreported signaling relationships. The signaling dynamics analysis indicated that the overexpression of ERK-specific phosphatases sustains proliferative signaling. This suggests a phosphatase-driven mechanism of cancer progression. Moreover, our analysis revealed a drug-resistant mechanism through which overexpression of tyrosine kinases, including SRC, FES, YES1, and BLK, induced MEK-independent ERK activation in melanoma A375 cells. These proteins could predict drug sensitivity to BRAF-MEK concurrent inhibition in cells carrying BRAF mutations.
Collapse
Affiliation(s)
- Xiao-Kang Lun
- Institute of Molecular Life Sciences, University of Zürich, 8057 Zürich, Switzerland; Molecular Life Sciences PhD Program, Life Science Zürich Graduate School, ETH Zürich and University of Zürich, 8057 Zürich, Switzerland
| | - Damian Szklarczyk
- Institute of Molecular Life Sciences, University of Zürich, 8057 Zürich, Switzerland
| | - Attila Gábor
- Joint Research Centre for Computational Biomedicine, Faculty of Medicine, RWTH Aachen University, 52074 Aachen, Germany
| | - Nadine Dobberstein
- Institute of Molecular Life Sciences, University of Zürich, 8057 Zürich, Switzerland
| | - Vito Riccardo Tomaso Zanotelli
- Institute of Molecular Life Sciences, University of Zürich, 8057 Zürich, Switzerland; Systems Biology PhD Program, Life Science Zürich Graduate School, ETH Zürich and University of Zürich, 8057 Zürich, Switzerland
| | - Julio Saez-Rodriguez
- Joint Research Centre for Computational Biomedicine, Faculty of Medicine, RWTH Aachen University, 52074 Aachen, Germany; European Bioinformatics Institute, European Molecular Biology Laboratory (EMBL-EBI), Hinxton, CB10 1SD Cambridge, UK; Institute for Computational Biomedicine, Faculty of Medicine, Heidelberg University, BIOQUANT, 69120 Heidelberg, Germany
| | - Christian von Mering
- Institute of Molecular Life Sciences, University of Zürich, 8057 Zürich, Switzerland
| | - Bernd Bodenmiller
- Institute of Molecular Life Sciences, University of Zürich, 8057 Zürich, Switzerland.
| |
Collapse
|
60
|
Xiberras J, Klein M, Nevoigt E. Glycerol as a substrate for Saccharomyces cerevisiae based bioprocesses - Knowledge gaps regarding the central carbon catabolism of this 'non-fermentable' carbon source. Biotechnol Adv 2019; 37:107378. [PMID: 30930107 DOI: 10.1016/j.biotechadv.2019.03.017] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 03/22/2019] [Accepted: 03/26/2019] [Indexed: 12/14/2022]
Abstract
Glycerol is an interesting alternative carbon source in industrial bioprocesses due to its higher degree of reduction per carbon atom compared to sugars. During the last few years, significant progress has been made in improving the well-known industrial platform organism Saccharomyces cerevisiae with regard to its glycerol utilization capability, particularly in synthetic medium. This provided a basis for future metabolic engineering focusing on the production of valuable chemicals from glycerol. However, profound knowledge about the central carbon catabolism in synthetic glycerol medium is a prerequisite for such incentives. As a matter of fact, the current assumptions about the actual in vivo fluxes active on glycerol as the sole carbon source have mainly been based on omics data collected in complex media or were even deduced from studies with other non-fermentable carbon sources, such as ethanol or acetate. A number of uncertainties have been identified which particularly regard the role of the glyoxylate cycle, the subcellular localization of the respective enzymes, the contributions of mitochondrial transporters and the active anaplerotic reactions under these conditions. The review scrutinizes the current knowledge, highlights the necessity to collect novel experimental data using cells growing in synthetic glycerol medium and summarizes the current state of the art with regard to the production of valuable fermentation products from a carbon source that has been considered so far as 'non-fermentable' for the yeast S. cerevisiae.
Collapse
Affiliation(s)
- Joeline Xiberras
- Department of Life Sciences and Chemistry, Jacobs University gGmbH, Campus Ring 1, 28759 Bremen, Germany
| | - Mathias Klein
- Department of Life Sciences and Chemistry, Jacobs University gGmbH, Campus Ring 1, 28759 Bremen, Germany
| | - Elke Nevoigt
- Department of Life Sciences and Chemistry, Jacobs University gGmbH, Campus Ring 1, 28759 Bremen, Germany.
| |
Collapse
|
61
|
Sullivan A, Wallace RL, Wellington R, Luo X, Capaldi AP. Multilayered regulation of TORC1-body formation in budding yeast. Mol Biol Cell 2019; 30:400-410. [PMID: 30485160 PMCID: PMC6589571 DOI: 10.1091/mbc.e18-05-0297] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Revised: 11/08/2018] [Accepted: 11/20/2018] [Indexed: 02/05/2023] Open
Abstract
The target of rapamycin kinase complex 1 (TORC1) regulates cell growth and metabolism in eukaryotes. In Saccharomyces cerevisiae, TORC1 activity is known to be controlled by the conserved GTPases, Gtr1/2, and movement into and out of an inactive agglomerate/body. However, it is unclear whether/how these regulatory steps are coupled. Here we show that active Gtr1/2 is a potent inhibitor of TORC1-body formation, but cells missing Gtr1/2 still form TORC1-bodies in a glucose/nitrogen starvation-dependent manner. We also identify 13 new activators of TORC1-body formation and show that seven of these proteins regulate the Gtr1/2-dependent repression of TORC1-body formation, while the remaining proteins drive the subsequent steps in TORC1 agglomeration. Finally, we show that the conserved phosphatidylinositol-3-phosphate (PI(3)P) binding protein, Pib2, forms a complex with TORC1 and overrides the Gtr1/2-dependent repression of TORC1-body formation during starvation. These data provide a unified, systems-level model of TORC1 regulation in yeast.
Collapse
Affiliation(s)
- Arron Sullivan
- Department of Molecular and Cellular Biology, University of Arizona, Tucson, AZ 85721-0206
| | - Ryan L. Wallace
- Department of Molecular and Cellular Biology, University of Arizona, Tucson, AZ 85721-0206
| | - Rachel Wellington
- Department of Molecular and Cellular Biology, University of Arizona, Tucson, AZ 85721-0206
| | - Xiangxia Luo
- Department of Molecular and Cellular Biology, University of Arizona, Tucson, AZ 85721-0206
| | - Andrew P. Capaldi
- Department of Molecular and Cellular Biology, University of Arizona, Tucson, AZ 85721-0206
| |
Collapse
|
62
|
Needham EJ, Parker BL, Burykin T, James DE, Humphrey SJ. Illuminating the dark phosphoproteome. Sci Signal 2019; 12:12/565/eaau8645. [PMID: 30670635 DOI: 10.1126/scisignal.aau8645] [Citation(s) in RCA: 210] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Protein phosphorylation is a major regulator of protein function and biological outcomes. This was first recognized through functional biochemical experiments, and in the past decade, major technological advances in mass spectrometry have enabled the study of protein phosphorylation on a global scale. This rapidly growing field of phosphoproteomics has revealed that more than 100,000 distinct phosphorylation events occur in human cells, which likely affect the function of every protein. Phosphoproteomics has improved the understanding of the function of even the most well-characterized protein kinases by revealing new downstream substrates and biology. However, current biochemical and bioinformatic approaches have only identified kinases for less than 5% of the phosphoproteome, and functional assignments of phosphosites are almost negligible. Notably, our understanding of the relationship between kinases and their substrates follows a power law distribution, with almost 90% of phosphorylation sites currently assigned to the top 20% of kinases. In addition, more than 150 kinases do not have a single known substrate. Despite a small group of kinases dominating biomedical research, the number of substrates assigned to a kinase does not correlate with disease relevance as determined by pathogenic human mutation prevalence and mouse model phenotypes. Improving our understanding of the substrates targeted by all kinases and functionally annotating the phosphoproteome will be broadly beneficial. Advances in phosphoproteomics technologies, combined with functional screening approaches, should make it feasible to illuminate the connectivity and functionality of the entire phosphoproteome, providing enormous opportunities for discovering new biology, therapeutic targets, and possibly diagnostics.
Collapse
Affiliation(s)
- Elise J Needham
- School of Life and Environmental Sciences, University of Sydney, Sydney, NSW 2006, Australia.,Charles Perkins Centre, University of Sydney, Sydney, NSW 2006, Australia
| | - Benjamin L Parker
- School of Life and Environmental Sciences, University of Sydney, Sydney, NSW 2006, Australia.,Charles Perkins Centre, University of Sydney, Sydney, NSW 2006, Australia
| | - Timur Burykin
- Charles Perkins Centre, University of Sydney, Sydney, NSW 2006, Australia
| | - David E James
- School of Life and Environmental Sciences, University of Sydney, Sydney, NSW 2006, Australia. .,Charles Perkins Centre, University of Sydney, Sydney, NSW 2006, Australia.,Sydney Medical School, University of Sydney, Sydney, NSW 2006, Australia
| | - Sean J Humphrey
- School of Life and Environmental Sciences, University of Sydney, Sydney, NSW 2006, Australia. .,Charles Perkins Centre, University of Sydney, Sydney, NSW 2006, Australia
| |
Collapse
|
63
|
Hennessy M, Granade ME, Hassaninasab A, Wang D, Kwiatek JM, Han GS, Harris TE, Carman GM. Casein kinase II-mediated phosphorylation of lipin 1β phosphatidate phosphatase at Ser-285 and Ser-287 regulates its interaction with 14-3-3β protein. J Biol Chem 2019; 294:2365-2374. [PMID: 30617183 DOI: 10.1074/jbc.ra118.007246] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 01/04/2019] [Indexed: 12/20/2022] Open
Abstract
The mammalian lipin 1 phosphatidate phosphatase is a key regulatory enzyme in lipid metabolism. By catalyzing phosphatidate dephosphorylation, which produces diacylglycerol, the enzyme plays a major role in the synthesis of triacylglycerol and membrane phospholipids. The importance of lipin 1 to lipid metabolism is exemplified by cellular defects and lipid-based diseases associated with its loss or overexpression. Phosphorylation of lipin 1 governs whether it is associated with the cytoplasm apart from its substrate or with the endoplasmic reticulum membrane where its enzyme reaction occurs. Lipin 1β is phosphorylated on multiple sites, but less than 10% of them are ascribed to a specific protein kinase. Here, we demonstrate that lipin 1β is a bona fide substrate for casein kinase II (CKII), a protein kinase that is essential to viability and cell cycle progression. Phosphoamino acid analysis and phosphopeptide mapping revealed that lipin 1β is phosphorylated by CKII on multiple serine and threonine residues, with the former being major sites. Mutational analysis of lipin 1β and its peptides indicated that Ser-285 and Ser-287 are both phosphorylated by CKII. Substitutions of Ser-285 and Ser-287 with nonphosphorylatable alanine attenuated the interaction of lipin 1β with 14-3-3β protein, a regulatory hub that facilitates the cytoplasmic localization of phosphorylated lipin 1. These findings advance our understanding of how phosphorylation of lipin 1β phosphatidate phosphatase regulates its interaction with 14-3-3β protein and intracellular localization and uncover a mechanism by which CKII regulates cellular physiology.
Collapse
Affiliation(s)
- Meagan Hennessy
- From the Department of Food Science and the Rutgers Center for Lipid Research, New Jersey Institute for Food, Nutrition, and Health, Rutgers University, New Brunswick, New Jersey 08901 and
| | - Mitchell E Granade
- the Department of Pharmacology, University of Virginia, Charlottesville, Virginia 22908
| | - Azam Hassaninasab
- From the Department of Food Science and the Rutgers Center for Lipid Research, New Jersey Institute for Food, Nutrition, and Health, Rutgers University, New Brunswick, New Jersey 08901 and
| | - Dana Wang
- the Department of Pharmacology, University of Virginia, Charlottesville, Virginia 22908
| | - Joanna M Kwiatek
- From the Department of Food Science and the Rutgers Center for Lipid Research, New Jersey Institute for Food, Nutrition, and Health, Rutgers University, New Brunswick, New Jersey 08901 and
| | - Gil-Soo Han
- From the Department of Food Science and the Rutgers Center for Lipid Research, New Jersey Institute for Food, Nutrition, and Health, Rutgers University, New Brunswick, New Jersey 08901 and
| | - Thurl E Harris
- the Department of Pharmacology, University of Virginia, Charlottesville, Virginia 22908
| | - George M Carman
- From the Department of Food Science and the Rutgers Center for Lipid Research, New Jersey Institute for Food, Nutrition, and Health, Rutgers University, New Brunswick, New Jersey 08901 and
| |
Collapse
|
64
|
Orlando E, Aebersold R. On the contribution of mass spectrometry-based platforms to the field of personalized oncology. Trends Analyt Chem 2019. [DOI: 10.1016/j.trac.2018.10.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
65
|
Ctortecka C, Palve V, Kuenzi BM, Fang B, Sumi NJ, Izumi V, Novakova S, Kinose F, Remsing Rix LL, Haura EB, Koomen JM, Rix U. Functional Proteomics and Deep Network Interrogation Reveal a Complex Mechanism of Action of Midostaurin in Lung Cancer Cells. Mol Cell Proteomics 2018; 17:2434-2447. [PMID: 30217950 PMCID: PMC6283294 DOI: 10.1074/mcp.ra118.000713] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 08/16/2018] [Indexed: 12/21/2022] Open
Abstract
Lung cancer is associated with high prevalence and mortality, and despite significant successes with targeted drugs in genomically defined subsets of lung cancer and immunotherapy, the majority of patients currently does not benefit from these therapies. Through a targeted drug screen, we found the recently approved multi-kinase inhibitor midostaurin to have potent activity in several lung cancer cells independent of its intended target, PKC, or a specific genomic marker. To determine the underlying mechanism of action we applied a layered functional proteomics approach and a new data integration method. Using chemical proteomics, we identified multiple midostaurin kinase targets in these cells. Network-based integration of these targets with quantitative tyrosine and global phosphoproteomics data using protein-protein interactions from the STRING database suggested multiple targets are relevant for the mode of action of midostaurin. Subsequent functional validation using RNA interference and selective small molecule probes showed that simultaneous inhibition of TBK1, PDPK1 and AURKA was required to elicit midostaurin's cellular effects. Immunoblot analysis of downstream signaling nodes showed that combined inhibition of these targets altered PI3K/AKT and cell cycle signaling pathways that in part converged on PLK1. Furthermore, rational combination of midostaurin with the potent PLK1 inhibitor BI2536 elicited strong synergy. Our results demonstrate that combination of complementary functional proteomics approaches and subsequent network-based data integration can reveal novel insight into the complex mode of action of multi-kinase inhibitors, actionable targets for drug discovery and cancer vulnerabilities. Finally, we illustrate how this knowledge can be used for the rational design of synergistic drug combinations with high potential for clinical translation.
Collapse
Affiliation(s)
- Claudia Ctortecka
- Department of Drug Discovery, H. Lee Moffitt Cancer Center & Research Institute, Tampa, Florida 33612
| | - Vinayak Palve
- Department of Drug Discovery, H. Lee Moffitt Cancer Center & Research Institute, Tampa, Florida 33612
| | - Brent M Kuenzi
- Department of Drug Discovery, H. Lee Moffitt Cancer Center & Research Institute, Tampa, Florida 33612; Cancer Biology PhD Program, University of South Florida, Tampa, Florida 33620
| | - Bin Fang
- Proteomics and Metabolomics Core, H. Lee Moffitt Cancer Center & Research Institute, Tampa, Florida 33612
| | - Natalia J Sumi
- Department of Drug Discovery, H. Lee Moffitt Cancer Center & Research Institute, Tampa, Florida 33612; Cancer Biology PhD Program, University of South Florida, Tampa, Florida 33620
| | - Victoria Izumi
- Proteomics and Metabolomics Core, H. Lee Moffitt Cancer Center & Research Institute, Tampa, Florida 33612
| | - Silvia Novakova
- Department of Drug Discovery, H. Lee Moffitt Cancer Center & Research Institute, Tampa, Florida 33612
| | - Fumi Kinose
- Department of Thoracic Oncology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, Florida 33612
| | - Lily L Remsing Rix
- Department of Drug Discovery, H. Lee Moffitt Cancer Center & Research Institute, Tampa, Florida 33612
| | - Eric B Haura
- Department of Thoracic Oncology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, Florida 33612
| | - John Matthew Koomen
- Department of Molecular Oncology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, Florida 33612
| | - Uwe Rix
- Department of Drug Discovery, H. Lee Moffitt Cancer Center & Research Institute, Tampa, Florida 33612.
| |
Collapse
|
66
|
G protein subunit phosphorylation as a regulatory mechanism in heterotrimeric G protein signaling in mammals, yeast, and plants. Biochem J 2018; 475:3331-3357. [PMID: 30413679 DOI: 10.1042/bcj20160819] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Revised: 09/28/2018] [Accepted: 10/02/2018] [Indexed: 12/15/2022]
Abstract
Heterotrimeric G proteins composed of Gα, Gβ, and Gγ subunits are vital eukaryotic signaling elements that convey information from ligand-regulated G protein-coupled receptors (GPCRs) to cellular effectors. Heterotrimeric G protein-based signaling pathways are fundamental to human health [Biochimica et Biophysica Acta (2007) 1768, 994-1005] and are the target of >30% of pharmaceuticals in clinical use [Biotechnology Advances (2013) 31, 1676-1694; Nature Reviews Drug Discovery (2017) 16, 829-842]. This review focuses on phosphorylation of G protein subunits as a regulatory mechanism in mammals, budding yeast, and plants. This is a re-emerging field, as evidence for phosphoregulation of mammalian G protein subunits from biochemical studies in the early 1990s can now be complemented with contemporary phosphoproteomics and genetic approaches applied to a diversity of model systems. In addition, new evidence implicates a family of plant kinases, the receptor-like kinases, which are monophyletic with the interleukin-1 receptor-associated kinase/Pelle kinases of metazoans, as possible GPCRs that signal via subunit phosphorylation. We describe early and modern observations on G protein subunit phosphorylation and its functional consequences in these three classes of organisms, and suggest future research directions.
Collapse
|
67
|
Boutchueng-Djidjou M, Rix U, Haura EB. Bidirectional Adaptive Signaling between cancer and stromal cells: mechanisms and therapeutics. Expert Rev Proteomics 2018; 15:697-699. [PMID: 30251554 DOI: 10.1080/14789450.2018.1521276] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
| | - Uwe Rix
- b Department of Drug Discovery , Moffitt Cancer Center , Tampa , FL , USA.,c Chemical Biology and Molecular Medicine Program , Moffitt Cancer Center , Tampa , FL , USA
| | - Eric B Haura
- a Departments of Thoracic Oncology , Moffitt Cancer Center , Tampa , FL , USA.,c Chemical Biology and Molecular Medicine Program , Moffitt Cancer Center , Tampa , FL , USA
| |
Collapse
|
68
|
Zelezniak A, Vowinckel J, Capuano F, Messner CB, Demichev V, Polowsky N, Mülleder M, Kamrad S, Klaus B, Keller MA, Ralser M. Machine Learning Predicts the Yeast Metabolome from the Quantitative Proteome of Kinase Knockouts. Cell Syst 2018; 7:269-283.e6. [PMID: 30195436 PMCID: PMC6167078 DOI: 10.1016/j.cels.2018.08.001] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Revised: 05/29/2018] [Accepted: 07/31/2018] [Indexed: 02/08/2023]
Abstract
A challenge in solving the genotype-to-phenotype relationship is to predict a cell’s metabolome, believed to correlate poorly with gene expression. Using comparative quantitative proteomics, we found that differential protein expression in 97 Saccharomyces cerevisiae kinase deletion strains is non-redundant and dominated by abundance changes in metabolic enzymes. Associating differential enzyme expression landscapes to corresponding metabolomes using network models provided reasoning for poor proteome-metabolome correlations; differential protein expression redistributes flux control between many enzymes acting in concert, a mechanism not captured by one-to-one correlation statistics. Mapping these regulatory patterns using machine learning enabled the prediction of metabolite concentrations, as well as identification of candidate genes important for the regulation of metabolism. Overall, our study reveals that a large part of metabolism regulation is explained through coordinated enzyme expression changes. Our quantitative data indicate that this mechanism explains more than half of metabolism regulation and underlies the interdependency between enzyme levels and metabolism, which renders the metabolome a predictable phenotype. The proteome of kinase knockouts is dominated by enzyme abundance changes The enzyme expression profiles of kinase knockouts are non-redundant Metabolism is regulated by many expression changes acting in concert Machine learning accurately predicts the metabolome from enzyme abundance
Collapse
Affiliation(s)
- Aleksej Zelezniak
- The Francis Crick Institute, Molecular Biology of Metabolism laboratory, London, UK; Department of Biochemistry and Cambridge Systems Biology Centre, University of Cambridge, Cambridge, UK; Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden; Science for Life Laboratory, KTH - Royal Institute of Technology, Stockholm, Sweden
| | - Jakob Vowinckel
- Department of Biochemistry and Cambridge Systems Biology Centre, University of Cambridge, Cambridge, UK; Biognosys AG, Schlieren, Switzerland
| | - Floriana Capuano
- Department of Biochemistry and Cambridge Systems Biology Centre, University of Cambridge, Cambridge, UK
| | - Christoph B Messner
- The Francis Crick Institute, Molecular Biology of Metabolism laboratory, London, UK
| | - Vadim Demichev
- The Francis Crick Institute, Molecular Biology of Metabolism laboratory, London, UK; Department of Biochemistry and Cambridge Systems Biology Centre, University of Cambridge, Cambridge, UK
| | - Nicole Polowsky
- Department of Biochemistry and Cambridge Systems Biology Centre, University of Cambridge, Cambridge, UK
| | - Michael Mülleder
- The Francis Crick Institute, Molecular Biology of Metabolism laboratory, London, UK; Department of Biochemistry and Cambridge Systems Biology Centre, University of Cambridge, Cambridge, UK
| | - Stephan Kamrad
- The Francis Crick Institute, Molecular Biology of Metabolism laboratory, London, UK; Department of Genetics, Evolution and Environment, University College London, London, UK
| | - Bernd Klaus
- Centre for Statistical Data Analysis, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
| | - Markus A Keller
- Department of Biochemistry and Cambridge Systems Biology Centre, University of Cambridge, Cambridge, UK; Medical University of Innsbruck, Innsbruck, Austria
| | - Markus Ralser
- The Francis Crick Institute, Molecular Biology of Metabolism laboratory, London, UK; Department of Biochemistry and Cambridge Systems Biology Centre, University of Cambridge, Cambridge, UK; Department of Biochemistry, Charité Universitaetsmedizin Berlin, Berlin, Germany.
| |
Collapse
|
69
|
Lu C, Qie Y, Liu S, Wu C, Zhang Z, Liu R, Yang K, Hu H, Xu Y. Selective Actionable and Druggable Protein Kinases Drive the Progression of Neuroendocrine Prostate Cancer. DNA Cell Biol 2018; 37:758-766. [PMID: 29969286 DOI: 10.1089/dna.2018.4193] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Current clinical anti-androgen therapies in advanced prostate cancer (PCa) are driving an increased incidence of neuroendocrine prostate cancer (NEPC), a histological variant exhibiting reduced androgen receptor levels and expression of neuroendocrine markers. The mechanisms underlying the development of NEPC are poorly understood. A set of available data from a well-validated xenograft model of NEPC was used to analyze the exact role of protein kinase (PK) played in the development of NEPC. Fifty-four actionable and druggable PKs, mainly enriched in PI3K-Akt, mTOR, and MAPK signaling pathways, were screened out from the drastically changed PKs during NEPC transdifferentiation. Further analysis based on the crosstalk of these above signaling pathways finally singled out 10 PKs considered drivers and therapeutic targets in the development and treatment of NEPC. In vitro, the variation trend of PK expression observed during NEPC transdifferentiation could be recapitulated in PCa cell lines with different malignant degree. The predicted kinase targets exhibited different sensibilities in the restriction of PC3 cell growth. Selective actionable and druggable PKs may act as drivers in the progression of NEPC, and most of them can be used as potential therapeutic targets in clinical practice.
Collapse
Affiliation(s)
- Chao Lu
- 1 Department of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University , Tianjin, China
| | - Yunkai Qie
- 1 Department of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University , Tianjin, China
| | - Shenglai Liu
- 2 Department of Urology, Sino-Singapore Eco-City Hospital of Tianjin Medical University , Tianjin, China
| | - Changli Wu
- 1 Department of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University , Tianjin, China
| | - Zhihong Zhang
- 1 Department of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University , Tianjin, China
| | - Ranlu Liu
- 1 Department of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University , Tianjin, China
| | - Kuo Yang
- 1 Department of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University , Tianjin, China
| | - Hailong Hu
- 1 Department of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University , Tianjin, China
| | - Yong Xu
- 1 Department of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University , Tianjin, China
| |
Collapse
|
70
|
MacGilvray ME, Shishkova E, Chasman D, Place M, Gitter A, Coon JJ, Gasch AP. Network inference reveals novel connections in pathways regulating growth and defense in the yeast salt response. PLoS Comput Biol 2018; 13:e1006088. [PMID: 29738528 PMCID: PMC5940180 DOI: 10.1371/journal.pcbi.1006088] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Accepted: 03/13/2018] [Indexed: 11/18/2022] Open
Abstract
Cells respond to stressful conditions by coordinating a complex, multi-faceted response that spans many levels of physiology. Much of the response is coordinated by changes in protein phosphorylation. Although the regulators of transcriptome changes during stress are well characterized in Saccharomyces cerevisiae, the upstream regulatory network controlling protein phosphorylation is less well dissected. Here, we developed a computational approach to infer the signaling network that regulates phosphorylation changes in response to salt stress. We developed an approach to link predicted regulators to groups of likely co-regulated phospho-peptides responding to stress, thereby creating new edges in a background protein interaction network. We then use integer linear programming (ILP) to integrate wild type and mutant phospho-proteomic data and predict the network controlling stress-activated phospho-proteomic changes. The network we inferred predicted new regulatory connections between stress-activated and growth-regulating pathways and suggested mechanisms coordinating metabolism, cell-cycle progression, and growth during stress. We confirmed several network predictions with co-immunoprecipitations coupled with mass-spectrometry protein identification and mutant phospho-proteomic analysis. Results show that the cAMP-phosphodiesterase Pde2 physically interacts with many stress-regulated transcription factors targeted by PKA, and that reduced phosphorylation of those factors during stress requires the Rck2 kinase that we show physically interacts with Pde2. Together, our work shows how a high-quality computational network model can facilitate discovery of new pathway interactions during osmotic stress. Cells sense and respond to stressful environments by utilizing complex signaling networks that integrate diverse signals to coordinate a multi-faceted physiological response. Much of this response is controlled by post-translational protein phosphorylation. Although many regulators that mediate changes in protein phosphorylation are known, how these regulators inter-connect in a single regulatory network that can transmit cellular signals is not known. It is also unclear how regulators that promote growth and regulators that activate the stress response interconnect to reorganize resource allocation during stress. Here, we developed an integrated experimental and computational workflow to infer the signaling network that regulates phosphorylation changes during osmotic stress in the budding yeast Saccharomyces cerevisiae. The workflow integrates data measuring protein phosphorylation changes in response to osmotic stress with known physical interactions between yeast proteins from large-scale datasets, along with other information about how regulators recognize their targets. The resulting network suggested new signaling connections between regulators and pathways, including those involved in regulating growth and defense, and predicted new regulators involved in stress defense. Our work highlights the power of using network inference to deliver new insight on how cells coordinate a diverse adaptive strategy to stress.
Collapse
Affiliation(s)
- Matthew E. MacGilvray
- Laboratory of Genetics, University of Wisconsin—Madison, Madison, WI, United States of America
| | - Evgenia Shishkova
- Department of Biomolecular Chemistry, University of Wisconsin—Madison, Madison, WI, United States of America
| | - Deborah Chasman
- Wisconsin Institute for Discovery, University of Wisconsin–Madison, Madison, WI, United States of America
| | - Michael Place
- Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, WI, United States of America
| | - Anthony Gitter
- Department of Biostatistics and Medical Informatics, University of Wisconsin -Madison, Madison, WI, United States of America
- Morgridge Institute for Research, Madison, WI, United States of America
| | - Joshua J. Coon
- Department of Biomolecular Chemistry, University of Wisconsin—Madison, Madison, WI, United States of America
- Morgridge Institute for Research, Madison, WI, United States of America
- Department of Chemistry, University of Wisconsin -Madison, Madison, WI, United States of America
- Genome Center of Wisconsin, Madison, WI, United States of America
| | - Audrey P. Gasch
- Laboratory of Genetics, University of Wisconsin—Madison, Madison, WI, United States of America
- Department of Chemistry, University of Wisconsin -Madison, Madison, WI, United States of America
- * E-mail:
| |
Collapse
|
71
|
Yang G, Hu Y, Fasoyin OE, Yue Y, Chen L, Qiu Y, Wang X, Zhuang Z, Wang S. The Aspergillus flavus Phosphatase CDC14 Regulates Development, Aflatoxin Biosynthesis and Pathogenicity. Front Cell Infect Microbiol 2018; 8:141. [PMID: 29868497 PMCID: PMC5950752 DOI: 10.3389/fcimb.2018.00141] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Accepted: 04/18/2018] [Indexed: 12/24/2022] Open
Abstract
Reversible protein phosphorylation is known to play important roles in the regulation of various cellular processes in eukaryotes. Phosphatase-mediated dephosphorylation are integral components of cellular signal pathways by counteracting the phosphorylation action of kinases. In this study, we characterized the functions of CDC14, a dual-specificity phosphatase in the development, secondary metabolism and crop infection of Aspergillus flavus. Deletion of AflCDC14 resulted in a growth defect and abnormal conidium morphology. Inactivation of AflCDC14 caused defective septum and failure to generate sclerotia. Additionally, the AflCDC14 deletion mutant (ΔCDC14) displayed increased sensitivity to osmotic and cell wall integrity stresses. Importantly, it had a significant increase in aflatoxin production, which was consistent with the up-regulation of the expression levels of aflatoxin biosynthesis related genes in ΔCDC14 mutant. Furthermore, seeds infection assays suggested that AflCDC14 was crucial for virulence of A. flavus. It was also found that the activity of amylase was decreased in ΔCDC14 mutant. AflCDC14-eRFP mainly localized to the cytoplasm and vesicles during coidial germination and mycelial development stages. Taken together, these results not only reveal the importance of the CDC14 phosphatase in the regulation of development, aflatoxin biosynthesis and virulence in A. flavus, but may also provide a potential target for controlling crop infections of this fungal pathogen.
Collapse
Affiliation(s)
- Guang Yang
- Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province, Key Laboratory of Biopesticide and Chemical Biology of Education Ministry, School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yule Hu
- Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province, Key Laboratory of Biopesticide and Chemical Biology of Education Ministry, School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Opemipo E Fasoyin
- Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province, Key Laboratory of Biopesticide and Chemical Biology of Education Ministry, School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yuewei Yue
- Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province, Key Laboratory of Biopesticide and Chemical Biology of Education Ministry, School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Lijie Chen
- Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province, Key Laboratory of Biopesticide and Chemical Biology of Education Ministry, School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yue Qiu
- Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province, Key Laboratory of Biopesticide and Chemical Biology of Education Ministry, School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Xiuna Wang
- Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province, Key Laboratory of Biopesticide and Chemical Biology of Education Ministry, School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Zhenhong Zhuang
- Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province, Key Laboratory of Biopesticide and Chemical Biology of Education Ministry, School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Shihua Wang
- Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province, Key Laboratory of Biopesticide and Chemical Biology of Education Ministry, School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| |
Collapse
|
72
|
Mertins P, Przybylski D, Yosef N, Qiao J, Clauser K, Raychowdhury R, Eisenhaure TM, Maritzen T, Haucke V, Satoh T, Akira S, Carr SA, Regev A, Hacohen N, Chevrier N. An Integrative Framework Reveals Signaling-to-Transcription Events in Toll-like Receptor Signaling. Cell Rep 2018; 19:2853-2866. [PMID: 28658630 DOI: 10.1016/j.celrep.2017.06.016] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2016] [Revised: 04/11/2017] [Accepted: 06/01/2017] [Indexed: 10/19/2022] Open
Abstract
Building an integrated view of cellular responses to environmental cues remains a fundamental challenge due to the complexity of intracellular networks in mammalian cells. Here, we introduce an integrative biochemical and genetic framework to dissect signal transduction events using multiple data types and, in particular, to unify signaling and transcriptional networks. Using the Toll-like receptor (TLR) system as a model cellular response, we generate multifaceted datasets on physical, enzymatic, and functional interactions and integrate these data to reveal biochemical paths that connect TLR4 signaling to transcription. We define the roles of proximal TLR4 kinases, identify and functionally test two dozen candidate regulators, and demonstrate a role for Ap1ar (encoding the Gadkin protein) and its binding partner, Picalm, potentially linking vesicle transport with pro-inflammatory responses. Our study thus demonstrates how deciphering dynamic cellular responses by integrating datasets on various regulatory layers defines key components and higher-order logic underlying signaling-to-transcription pathways.
Collapse
Affiliation(s)
- Philipp Mertins
- Broad Institute of MIT and Harvard, 415 Main Street, Cambridge, MA 02142, USA
| | - Dariusz Przybylski
- Broad Institute of MIT and Harvard, 415 Main Street, Cambridge, MA 02142, USA
| | - Nir Yosef
- Broad Institute of MIT and Harvard, 415 Main Street, Cambridge, MA 02142, USA; Department of Electrical Engineering and Computer Science and Center for Computational Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Jana Qiao
- Broad Institute of MIT and Harvard, 415 Main Street, Cambridge, MA 02142, USA
| | - Karl Clauser
- Broad Institute of MIT and Harvard, 415 Main Street, Cambridge, MA 02142, USA
| | | | - Thomas M Eisenhaure
- Broad Institute of MIT and Harvard, 415 Main Street, Cambridge, MA 02142, USA
| | - Tanja Maritzen
- Molecular Physiology and Cell Biology Section, Leibniz-Institute for Molecular Pharmacology (FMP), 13125 Berlin, Germany
| | - Volker Haucke
- Molecular Physiology and Cell Biology Section, Leibniz-Institute for Molecular Pharmacology (FMP), 13125 Berlin, Germany
| | - Takashi Satoh
- WPI Immunology Frontier Research Center, Osaka University, 3-1 Yamada-oka, Suita, Osaka 565-0871, Japan
| | - Shizuo Akira
- WPI Immunology Frontier Research Center, Osaka University, 3-1 Yamada-oka, Suita, Osaka 565-0871, Japan
| | - Steven A Carr
- Broad Institute of MIT and Harvard, 415 Main Street, Cambridge, MA 02142, USA
| | - Aviv Regev
- Broad Institute of MIT and Harvard, 415 Main Street, Cambridge, MA 02142, USA; Howard Hughes Medical Institute, Department of Biology, MIT, Cambridge, MA 02142, USA.
| | - Nir Hacohen
- Broad Institute of MIT and Harvard, 415 Main Street, Cambridge, MA 02142, USA; Center for Immunology and Inflammatory Diseases and Center for Cancer Research, Massachusetts General Hospital, Charlestown, MA 02129, USA.
| | - Nicolas Chevrier
- Broad Institute of MIT and Harvard, 415 Main Street, Cambridge, MA 02142, USA.
| |
Collapse
|
73
|
Kugeratski FG, Batista M, Lima CVDP, Neilson LJ, da Cunha ES, de Godoy LM, Zanivan S, Krieger MA, Marchini FK. Mitogen-Activated Protein Kinase Kinase 5 Regulates Proliferation and Biosynthetic Processes in Procyclic Forms of Trypanosoma brucei. J Proteome Res 2018; 17:108-118. [PMID: 29043805 DOI: 10.1021/acs.jproteome.7b00415] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The pathogenic protozoan T. brucei alternates into distinct developmental stages in the mammalian and insect hosts. The mitogen-activated protein kinase (MAPK) signaling pathways transduce extracellular stimuli into a range of cellular responses, which ultimately lead to the adaptation to the external environment. Here, we combined a loss of function approach with stable isotope labeling with amino acids in cell culture (SILAC)-based mass spectrometry (MS) to investigate the role of the mitogen-activated protein kinase kinase 5 (MKK5) in T. brucei. The silencing of MKK5 significantly decreased the proliferation of procyclic forms of T. brucei. To shed light on the molecular alterations associated with this phenotype, we measured the total proteome and phosphoproteome of cells silenced for MKK5. In the total proteome, we observed a general decrease in proteins related to ribosome and translation as well as down-regulation of several components of the fatty acids biosynthesis pathway. In addition, we observed alterations in the protein levels and phosphorylation of key metabolic enzymes, which point toward a suppression of the oxidative metabolism. Taken together, our findings show that the silencing of MKK5 alters cell growth, energy metabolism, protein and fatty acids biosynthesis in procyclic T. brucei.
Collapse
Affiliation(s)
- Fernanda G Kugeratski
- CRUK Beatson Institute, Glasgow G61 1BD, U.K
- University of Glasgow, Glasgow G12 8QQ, U.K
| | | | | | | | | | | | - Sara Zanivan
- CRUK Beatson Institute, Glasgow G61 1BD, U.K
- University of Glasgow, Glasgow G12 8QQ, U.K
| | | | | |
Collapse
|
74
|
Renne MF, de Kroon AIPM. The role of phospholipid molecular species in determining the physical properties of yeast membranes. FEBS Lett 2017; 592:1330-1345. [PMID: 29265372 PMCID: PMC5947837 DOI: 10.1002/1873-3468.12944] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Revised: 11/27/2017] [Accepted: 12/11/2017] [Indexed: 12/18/2022]
Abstract
In most eukaryotes, including Saccharomyces cerevisiae, glycerophospholipids are the main membrane lipid constituents. Besides serving as general membrane ‘building blocks’, glycerophospholipids play an important role in determining the physical properties of the membrane, which are crucial for proper membrane function. To ensure optimal physical properties, membrane glycerophospholipid composition and synthesis are tightly regulated. This review will summarize our current knowledge of factors and processes determining the membrane glycerophospholipid composition of the reference eukaryote S. cerevisiae at the level of molecular species. Extrapolating from relevant model membrane data, we also discuss how modulation of the molecular species composition can regulate membrane physical properties.
Collapse
Affiliation(s)
- Mike F. Renne
- Membrane Biochemistry & BiophysicsDepartment of ChemistryBijvoet Center for Biomolecular Research & Institute of BiomembranesUtrecht Universitythe Netherlands
| | - Anton I. P. M. de Kroon
- Membrane Biochemistry & BiophysicsDepartment of ChemistryBijvoet Center for Biomolecular Research & Institute of BiomembranesUtrecht Universitythe Netherlands
| |
Collapse
|
75
|
|
76
|
Characterization of Protein Methyltransferases Rkm1, Rkm4, Efm4, Efm7, Set5 and Hmt1 Reveals Extensive Post-Translational Modification. J Mol Biol 2017; 430:102-118. [PMID: 29183786 DOI: 10.1016/j.jmb.2017.11.009] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Revised: 11/07/2017] [Accepted: 11/22/2017] [Indexed: 01/24/2023]
Abstract
Protein methylation is one of the major post-translational modifications (PTMs) in the cell. In Saccharomyces cerevisiae, over 20 protein methyltransferases (MTases) and their respective substrates have been identified. However, the way in which these MTases are modified and potentially subject to regulation remains poorly understood. Here, we investigated six overexpressed S. cerevisiae protein MTases (Rkm1, Rkm4, Efm4, Efm7, Set5 and Hmt1) to identify PTMs of potential functional relevance. We identified 48 PTM sites across the six MTases, including phosphorylation, acetylation and methylation. Forty-two sites are novel. We contextualized the PTM sites in structural models of the MTases and revealed that many fell in catalytic pockets or enzyme-substrate interfaces. These may regulate MTase activity. Finally, we compared PTMs on Hmt1 with those on its human homologs PRMT1, PRMT3, CARM1, PRMT6 and PRMT8. This revealed that several PTMs are conserved from yeast to human, whereas others are only found in Hmt1. The mass spectrometry proteomics data have been deposited to the ProteomeXchange Consortium via the PRIDE partner repository with the dataset identifier PXD006767.
Collapse
|
77
|
Chymkowitch P, Enserink JM. Regulation of tRNA synthesis by posttranslational modifications of RNA polymerase III subunits. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2017; 1861:310-319. [PMID: 29127063 DOI: 10.1016/j.bbagrm.2017.11.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Revised: 11/05/2017] [Accepted: 11/06/2017] [Indexed: 12/18/2022]
Abstract
RNA polymerase III (RNAPIII) transcribes tRNA genes, 5S RNA as well as a number of other non-coding RNAs. Because transcription by RNAPIII is an energy-demanding process, its activity is tightly linked to the stress levels and nutrient status of the cell. Multiple signaling pathways control RNAPIII activity in response to environmental cues, but exactly how these pathways regulate RNAPIII is still poorly understood. One major target of these pathways is the transcriptional repressor Maf1, which inhibits RNAPIII activity under conditions that are detrimental to cell growth. However, recent studies have found that the cell can also directly regulate the RNAPIII machinery through phosphorylation and sumoylation of RNAPIII subunits. In this review we summarize post-translational modifications of RNAPIII subunits that mainly have been identified in large-scale proteomics studies, and we highlight several examples to discuss their relevance for regulation of RNAPIII.
Collapse
Affiliation(s)
- Pierre Chymkowitch
- Department of Microbiology, Oslo University Hospital, NO-0027 Oslo, Norway.
| | - Jorrit M Enserink
- Department of Molecular Cell Biology, Institute for Cancer Research, the Norwegian Radium Hospital, Montebello, N-0379 Oslo, Norway; Section for Biochemistry and Molecular Biology, Faculty of Mathematics and Natural Sciences, University of Oslo, 0371, Norway.
| |
Collapse
|
78
|
Zeng L, Wang WH, Arrington J, Shao G, Geahlen RL, Hu CD, Tao WA. Identification of Upstream Kinases by Fluorescence Complementation Mass Spectrometry. ACS CENTRAL SCIENCE 2017; 3:1078-1085. [PMID: 29104924 PMCID: PMC5658758 DOI: 10.1021/acscentsci.7b00261] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Indexed: 05/09/2023]
Abstract
Protein kinases and their substrates comprise extensive signaling networks that regulate many diverse cellular functions. However, methods and techniques to systematically identify kinases directly responsible for specific phosphorylation events have remained elusive. Here we describe a novel proteomic strategy termed fluorescence complementation mass spectrometry (FCMS) to identify kinase-substrate pairs in high throughput. The FCMS strategy employs a specific substrate and a kinase library, both of which are fused with fluorescence complemented protein fragments. Transient and weak kinase-substrate interactions in living cells are stabilized by the association of fluorescence protein fragments. These kinase-substrate pairs are then isolated with high specificity and are identified and quantified by LC-MS. FCMS was applied to the identification of both known and novel kinases of the transcription factor, cAMP response element-binding protein (CREB). Novel CREB kinases were validated by in vitro kinase assays, and the phosphorylation sites were unambiguously located. These results uncovered possible new roles for CREB in multiple important signaling pathways and demonstrated the great potential of this new proteomic strategy.
Collapse
Affiliation(s)
- Lingfei Zeng
- Department
of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, Indiana 47907, United States
| | - Wen-Horng Wang
- Department
of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, Indiana 47907, United States
| | - Justine Arrington
- Department
of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Gengbao Shao
- Department
of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, Indiana 47907, United States
| | - Robert L. Geahlen
- Department
of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, Indiana 47907, United States
- Purdue
Center for Cancer Research, Purdue University, West Lafayette, Indiana 47907, United States
| | - Chang-Deng Hu
- Department
of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, Indiana 47907, United States
- Purdue
Center for Cancer Research, Purdue University, West Lafayette, Indiana 47907, United States
| | - W. Andy Tao
- Department
of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, Indiana 47907, United States
- Department
of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
- Department
of Biochemistry, Purdue University, West Lafayette, Indiana 47907, United States
- Purdue
Center for Cancer Research, Purdue University, West Lafayette, Indiana 47907, United States
- E-mail:
| |
Collapse
|
79
|
Guerreiro JF, Mira NP, Santos AXS, Riezman H, Sá-Correia I. Membrane Phosphoproteomics of Yeast Early Response to Acetic Acid: Role of Hrk1 Kinase and Lipid Biosynthetic Pathways, in Particular Sphingolipids. Front Microbiol 2017; 8:1302. [PMID: 28747907 PMCID: PMC5506226 DOI: 10.3389/fmicb.2017.01302] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Accepted: 06/28/2017] [Indexed: 01/02/2023] Open
Abstract
Saccharomyces cerevisiae response and tolerance to acetic acid is critical in industrial biotechnology and in acidic food and beverages preservation. The HRK1 gene, encoding a protein kinase of unknown function belonging to the “Npr1-family” of kinases known to be involved in the regulation of plasma membrane transporters, is an important determinant of acetic acid tolerance. This study was performed to identify the alterations occurring in yeast membrane phosphoproteome profile during the adaptive early response to acetic acid stress (following 1 h of exposure to a sub-lethal inhibitory concentration; 50 mM at pH 4.0) and the effect of HRK1 expression on the phosphoproteome. Results from mass spectrometry analysis following the prefractionation and specific enrichment of phosphorylated peptides using TiO2 beads highlight the contribution of processes related with translation, protein folding and processing, transport, and cellular homeostasis in yeast response to acetic acid stress, with particular relevance for changes in phosphorylation of transport-related proteins, found to be highly dependent on the Hrk1 kinase. Twenty different phosphoproteins known to be involved in lipid and sterol metabolism were found to be differently phosphorylated in response to acetic acid stress, including several phosphopeptides that had not previously been described as being phosphorylated. The suggested occurrence of cellular lipid composition remodeling during the short term yeast response to acetic acid was confirmed: Hrk1 kinase-independent reduction in phytoceramide levels and a reduction in phosphatidylcholine and phosphatidylinositol levels under acetic acid stress in the more susceptible hrk1Δ strain were revealed by a lipidomic analysis.
Collapse
Affiliation(s)
- Joana F Guerreiro
- Institute for Bioengineering and Biosciences, Department of Bioengineering, Instituto Superior Técnico, Universidade de LisboaLisbon, Portugal
| | - Nuno P Mira
- Institute for Bioengineering and Biosciences, Department of Bioengineering, Instituto Superior Técnico, Universidade de LisboaLisbon, Portugal
| | - Aline X S Santos
- Department of Biochemistry, University of GenevaGeneva, Switzerland
| | - Howard Riezman
- Department of Biochemistry, University of GenevaGeneva, Switzerland
| | - Isabel Sá-Correia
- Institute for Bioengineering and Biosciences, Department of Bioengineering, Instituto Superior Técnico, Universidade de LisboaLisbon, Portugal
| |
Collapse
|
80
|
Insights regarding fungal phosphoproteomic analysis. Fungal Genet Biol 2017; 104:38-44. [DOI: 10.1016/j.fgb.2017.03.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Revised: 02/27/2017] [Accepted: 03/07/2017] [Indexed: 11/19/2022]
|
81
|
Chen Y, Nielsen J. Flux control through protein phosphorylation in yeast. FEMS Yeast Res 2017; 16:fow096. [PMID: 27797916 DOI: 10.1093/femsyr/fow096] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/25/2016] [Indexed: 01/26/2023] Open
Abstract
Protein phosphorylation is one of the most important mechanisms regulating metabolism as it can directly modify metabolic enzymes by the addition of phosphate groups. Attributed to such a rapid and reversible mechanism, cells can adjust metabolism rapidly in response to temporal changes. The yeast Saccharomyces cerevisiae, a widely used cell factory and model organism, is reported to show frequent phosphorylation events in metabolism. Studying protein phosphorylation in S. cerevisiae allows for gaining new insight into the function of regulatory networks, which may enable improved metabolic engineering as well as identify mechanisms underlying human metabolic diseases. Here we collect functional phosphorylation events of 41 enzymes involved in yeast metabolism and demonstrate functional mechanisms and the application of this information in metabolic engineering. From a systems biology perspective, we describe the development of phosphoproteomics in yeast as well as approaches to analysing the phosphoproteomics data. Finally, we focus on integrated analyses with other omics data sets and genome-scale metabolic models. Despite the advances, future studies improving both experimental technologies and computational approaches are imperative to expand the current knowledge of protein phosphorylation in S. cerevisiae.
Collapse
Affiliation(s)
- Yu Chen
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China.,Department of Biology and Biological Engineering, Chalmers University of Technology, SE412 96 Gothenburg, Sweden
| | - Jens Nielsen
- Department of Biology and Biological Engineering, Chalmers University of Technology, SE412 96 Gothenburg, Sweden.,Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, DK2800 Kgs. Lyngby, Denmark
| |
Collapse
|
82
|
Abstract
Cdk1 (Cdc28 in yeast) is a cyclin-dependent kinase (CDK) essential for cell cycle progression and cell division in normal cells. However, CDK activity also underpins proliferation of tumor cells, making it a relevant study subject. While numerous targets and processes regulated by Cdc28 have been identified, the exact functions of Cdc28 are only partially understood. To further explore the functions of Cdc28, we systematically overexpressed ∼4800 genes in wild-type (WT) cells and in cells with artificially reduced Cdc28 activity. This screen identified 366 genes that, when overexpressed, specifically compromised cell viability under conditions of reduced Cdc28 activity. Consistent with the crucial functions of Cdc28 in cell cycle regulation and chromosome metabolism, most of these genes have functions in the cell cycle, DNA replication, and transcription. However, a substantial number of genes control processes not directly associated with the cell cycle, indicating that Cdc28 may also regulate these processes. Finally, because the dataset was enriched for direct Cdc28 targets, the results from this screen will aid in identifying novel targets and process regulated by Cdc28.
Collapse
|
83
|
Kanshin E, Giguère S, Jing C, Tyers M, Thibault P. Machine Learning of Global Phosphoproteomic Profiles Enables Discrimination of Direct versus Indirect Kinase Substrates. Mol Cell Proteomics 2017; 16:786-798. [PMID: 28265048 PMCID: PMC5417821 DOI: 10.1074/mcp.m116.066233] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Revised: 02/13/2017] [Indexed: 12/12/2022] Open
Abstract
Mass spectrometry allows quantification of tens of thousands of phosphorylation sites from minute amounts of cellular material. Despite this wealth of information, our understanding of phosphorylation-based signaling is limited, in part because it is not possible to deconvolute substrate phosphorylation that is directly mediated by a particular kinase versus phosphorylation that is mediated by downstream kinases. Here, we describe a framework for assignment of direct in vivo kinase substrates using a combination of selective chemical inhibition, quantitative phosphoproteomics, and machine learning techniques. Our workflow allows classification of phosphorylation events following inhibition of an analog-sensitive kinase into kinase-independent effects of the inhibitor, direct effects on cognate substrates, and indirect effects mediated by downstream kinases or phosphatases. We applied this method to identify many direct targets of Cdc28 and Snf1 kinases in the budding yeast Saccharomyces cerevisiae Global phosphoproteome analysis of acute time-series demonstrated that dephosphorylation of direct kinase substrates occurs more rapidly compared with indirect substrates, both after inhibitor treatment and under a physiological nutrient shift in wt cells. Mutagenesis experiments revealed a high proportion of functionally relevant phosphorylation sites on Snf1 targets. For example, Snf1 itself was inhibited through autophosphorylation on Ser391 and new phosphosites were discovered that modulate the activity of the Reg1 regulatory subunit of the Glc7 phosphatase and the Gal83 β-subunit of SNF1 complex. This methodology applies to any kinase for which a functional analog sensitive version can be constructed to facilitate the dissection of the global phosphorylation network.
Collapse
Affiliation(s)
- Evgeny Kanshin
- From the ‡Institute for Research in Immunology and Cancer
| | | | - Cheng Jing
- From the ‡Institute for Research in Immunology and Cancer
| | - Mike Tyers
- From the ‡Institute for Research in Immunology and Cancer,
- §Department of Medicine
| | - Pierre Thibault
- From the ‡Institute for Research in Immunology and Cancer,
- ¶Department of Chemistry, Université de Montréal, C.P. 6128, Succursale centre-ville, Montréal, Québec, H3C 3J7, Canada
| |
Collapse
|
84
|
The Pivotal Role of Protein Phosphorylation in the Control of Yeast Central Metabolism. G3-GENES GENOMES GENETICS 2017; 7:1239-1249. [PMID: 28250014 PMCID: PMC5386872 DOI: 10.1534/g3.116.037218] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Protein phosphorylation is the most frequent eukaryotic post-translational modification and can act as either a molecular switch or rheostat for protein functions. The deliberate manipulation of protein phosphorylation has great potential for regulating specific protein functions with surgical precision, rather than the gross effects gained by the over/underexpression or complete deletion of a protein-encoding gene. In order to assess the impact of phosphorylation on central metabolism, and thus its potential for biotechnological and medical exploitation, a compendium of highly confident protein phosphorylation sites (p-sites) for the model organism Saccharomyces cerevisiae has been analyzed together with two more datasets from the fungal pathogen Candida albicans. Our analysis highlights the global properties of the regulation of yeast central metabolism by protein phosphorylation, where almost half of the enzymes involved are subject to this sort of post-translational modification. These phosphorylated enzymes, compared to the nonphosphorylated ones, are more abundant, regulate more reactions, have more protein–protein interactions, and a higher fraction of them are ubiquitinated. The p-sites of metabolic enzymes are also more conserved than the background p-sites, and hundreds of them have the potential for regulating metabolite production. All this integrated information has allowed us to prioritize thousands of p-sites in terms of their potential phenotypic impact. This multi-source compendium should enable the design of future high-throughput (HTP) mutation studies to identify key molecular switches/rheostats for the manipulation of not only the metabolism of yeast, but also that of many other biotechnologically and medically important fungi and eukaryotes.
Collapse
|
85
|
TOR Complex 2-Regulated Protein Kinase Fpk1 Stimulates Endocytosis via Inhibition of Ark1/Prk1-Related Protein Kinase Akl1 in Saccharomyces cerevisiae. Mol Cell Biol 2017; 37:MCB.00627-16. [PMID: 28069741 PMCID: PMC5359421 DOI: 10.1128/mcb.00627-16] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Accepted: 01/03/2017] [Indexed: 12/23/2022] Open
Abstract
Depending on the stress, plasma membrane alterations activate or inhibit yeast target of rapamycin (TOR) complex 2, which, in turn, upregulates or downregulates the activity of its essential downstream effector, protein kinase Ypk1. Through phosphorylation of multiple substrates, Ypk1 controls many processes that restore homeostasis. One such substrate is protein kinase Fpk1, which is negatively regulated by Ypk1. Fpk1 phosphorylates and stimulates flippases that translocate aminoglycerophospholipids from the outer to the inner leaflet of the plasma membrane. Fpk1 has additional roles, but other substrates were uncharacterized. We show that Fpk1 phosphorylates and inhibits protein kinase Akl1, related to protein kinases Ark1 and Prk1, which modulate the dynamics of actin patch-mediated endocytosis. Akl1 has two Fpk1 phosphorylation sites (Ark1 and Prk1 have none) and is hypophosphorylated when Fpk1 is absent. Conversely, under conditions that inactivate TORC2-Ypk1 signaling, which alleviates Fpk1 inhibition, Akl1 is hyperphosphorylated. Monitoring phosphorylation of known Akl1 substrates (Sla1 and Ent2) confirmed that Akl1 is hyperactive when not phosphorylated by Fpk1. Fpk1-mediated negative regulation of Akl1 enhances endocytosis, because an Akl1 mutant immune to Fpk1 phosphorylation causes faster dissociation of Sla1 from actin patches, confers elevated resistance to doxorubicin (a toxic compound whose entry requires endocytosis), and impedes Lucifer yellow uptake (a marker of fluid phase endocytosis). Thus, TORC2-Ypk1, by regulating Fpk1-mediated phosphorylation of Akl1, adjusts the rate of endocytosis.
Collapse
|
86
|
Delineating functional principles of the bow tie structure of a kinase-phosphatase network in the budding yeast. BMC SYSTEMS BIOLOGY 2017; 11:38. [PMID: 28298210 PMCID: PMC5353956 DOI: 10.1186/s12918-017-0418-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Accepted: 03/08/2017] [Indexed: 11/10/2022]
Abstract
Background Kinases and phosphatases (KP) form complex self-regulating networks essential for cellular signal processing. In spite of having a wealth of data about interactions among KPs and their substrates, we have very limited models of the structures of the directed networks they form and consequently our ability to formulate hypotheses about how their structure determines the flow of information in these networks is restricted. Results We assembled and studied the largest bona fide kinase-phosphatase network (KP-Net) known to date for the yeast Saccharomyces cerevisiae. Application of the vertex sort (VS) algorithm on the KP-Net allowed us to elucidate its hierarchical structure in which nodes are sorted into top, core and bottom layers, forming a bow tie structure with a strongly connected core layer. Surprisingly, phosphatases tend to sort into the top layer, implying they are less regulated by phosphorylation than kinases. Superposition of the widest range of KP biological properties over the KP-Net hierarchy shows that core layer KPs: (i), receive the largest number of inputs; (ii), form bottlenecks implicated in multiple pathways and in decision-making; (iii), and are among the most regulated KPs both temporally and spatially. Moreover, top layer KPs are more abundant and less noisy than those in the bottom layer. Finally, we showed that the VS algorithm depends on node degrees without biasing the biological results of the sorted network. The VS algorithm is available as an R package (https://cran.r-project.org/web/packages/VertexSort/index.html). Conclusions The KP-Net model we propose possesses a bow tie hierarchical structure in which the top layer appears to ensure highest fidelity and the core layer appears to mediate signal integration and cell state-dependent signal interpretation. Our model of the yeast KP-Net provides both functional insight into its organization as we understand today and a framework for future investigation of information processing in yeast and eukaryotes in general. Electronic supplementary material The online version of this article (doi:10.1186/s12918-017-0418-0) contains supplementary material, which is available to authorized users.
Collapse
|
87
|
Functional Analysis of Kinases and Transcription Factors in Saccharomyces cerevisiae Using an Integrated Overexpression Library. G3-GENES GENOMES GENETICS 2017; 7:911-921. [PMID: 28122947 PMCID: PMC5345721 DOI: 10.1534/g3.116.038471] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Kinases and transcription factors (TFs) are key modulators of important signaling pathways and their activities underlie the proper function of many basic cellular processes such as cell division, differentiation, and development. Changes in kinase and TF dosage are often associated with disease, yet a systematic assessment of the cellular phenotypes caused by the combined perturbation of kinases and TFs has not been undertaken. We used a reverse-genetics approach to study the phenotypic consequences of kinase and TF overexpression (OE) in the budding yeast, Saccharomyces cerevisiae. We constructed a collection of strains expressing stably integrated inducible alleles of kinases and TFs and used a variety of assays to characterize the phenotypes caused by TF and kinase OE. We used the Synthetic Genetic Array (SGA) method to examine dosage-dependent genetic interactions (GIs) between 239 gain-of-function (OE) alleles of TFs and six loss-of-function (LOF) and seven OE kinase alleles, the former identifying Synthetic Dosage Lethal (SDL) interactions and the latter testing a GI we call Double Dosage Lethality (DDL). We identified and confirmed 94 GIs between 65 OE alleles of TFs and 9 kinase alleles. Follow-up experiments validated regulatory relationships between genetically interacting pairs (Cdc28–Stb1 and Pho85–Pdr1), suggesting that GI studies involving OE alleles of regulatory proteins will be a rich source of new functional information.
Collapse
|
88
|
Romanov N, Hollenstein DM, Janschitz M, Ammerer G, Anrather D, Reiter W. Identifying protein kinase-specific effectors of the osmostress response in yeast. Sci Signal 2017; 10:10/469/eaag2435. [PMID: 28270554 DOI: 10.1126/scisignal.aag2435] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The budding yeast Saccharomyces cerevisiae reacts to increased external osmolarity by modifying many cellular processes. Adaptive signaling relies primarily on the high-osmolarity glycerol (HOG) pathway, which is closely related to the mammalian p38 mitogen-activated protein kinase (MAPK) pathway in core architecture. To identify target proteins of the MAPK Hog1, we designed a mass spectrometry-based high-throughput experiment to measure the impact of Hog1 activation or inhibition on the Scerevisiae phosphoproteome. In addition, we analyzed how deletion of RCK2, which encodes a known effector protein kinase target of Hog1, modulated osmotic stress-induced phosphorylation. Our results not only provide an overview of the diversity of cellular functions that are directly and indirectly affected by the activity of the HOG pathway but also enabled an assessment of the Hog1-independent events that occur under osmotic stress conditions. We extended the number of putative Hog1 direct targets by analyzing the modulation of motifs consisting of serine or threonine followed by a proline (S/T-P motif) and subsequently validated these with an in vivo interaction assay. Rck2 appears to act as a central hub for many Hog1-mediated secondary phosphorylation events. This study clarifies many of the direct and indirect effects of HOG signaling and its stress-adaptive functions.
Collapse
Affiliation(s)
- Natalie Romanov
- Department for Biochemistry, Max F. Perutz Laboratories, University of Vienna, Dr. Bohr-Gasse 9, A-1030 Vienna, Austria
| | - David Maria Hollenstein
- Department for Biochemistry, Max F. Perutz Laboratories, University of Vienna, Dr. Bohr-Gasse 9, A-1030 Vienna, Austria
| | - Marion Janschitz
- Department for Biochemistry, Max F. Perutz Laboratories, University of Vienna, Dr. Bohr-Gasse 9, A-1030 Vienna, Austria
| | - Gustav Ammerer
- Department for Biochemistry, Max F. Perutz Laboratories, University of Vienna, Dr. Bohr-Gasse 9, A-1030 Vienna, Austria
| | - Dorothea Anrather
- Mass Spectrometry Facility, Max F. Perutz Laboratories, Dr. Bohr-Gasse 9, A-1030 Vienna, Austria
| | - Wolfgang Reiter
- Department for Biochemistry, Max F. Perutz Laboratories, University of Vienna, Dr. Bohr-Gasse 9, A-1030 Vienna, Austria.
| |
Collapse
|
89
|
Selection maintains signaling function of a highly diverged intrinsically disordered region. Proc Natl Acad Sci U S A 2017; 114:E1450-E1459. [PMID: 28167781 DOI: 10.1073/pnas.1614787114] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Intrinsically disordered regions (IDRs) are characterized by their lack of stable secondary or tertiary structure and comprise a large part of the eukaryotic proteome. Although these regions play a variety of signaling and regulatory roles, they appear to be rapidly evolving at the primary sequence level. To understand the functional implications of this rapid evolution, we focused on a highly diverged IDR in Saccharomyces cerevisiae that is involved in regulating multiple conserved MAPK pathways. We hypothesized that under stabilizing selection, the functional output of orthologous IDRs could be maintained, such that diverse genotypes could lead to similar function and fitness. Consistent with the stabilizing selection hypothesis, we find that diverged, orthologous IDRs can mostly recapitulate wild-type function and fitness in S. cerevisiae We also find that the electrostatic charge of the IDR is correlated with signaling output and, using phylogenetic comparative methods, find evidence for selection maintaining this quantitative molecular trait despite underlying genotypic divergence.
Collapse
|
90
|
Smoly I, Shemesh N, Ziv-Ukelson M, Ben-Zvi A, Yeger-Lotem E. An Asymmetrically Balanced Organization of Kinases versus Phosphatases across Eukaryotes Determines Their Distinct Impacts. PLoS Comput Biol 2017; 13:e1005221. [PMID: 28135269 PMCID: PMC5279721 DOI: 10.1371/journal.pcbi.1005221] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2016] [Accepted: 10/24/2016] [Indexed: 12/22/2022] Open
Abstract
Protein phosphorylation underlies cellular response pathways across eukaryotes and is governed by the opposing actions of phosphorylating kinases and de-phosphorylating phosphatases. While kinases and phosphatases have been extensively studied, their organization and the mechanisms by which they balance each other are not well understood. To address these questions we performed quantitative analyses of large-scale 'omics' datasets from yeast, fly, plant, mouse and human. We uncovered an asymmetric balance of a previously-hidden scale: Each organism contained many different kinase genes, and these were balanced by a small set of highly abundant phosphatase proteins. Kinases were much more responsive to perturbations at the gene and protein levels. In addition, kinases had diverse scales of phenotypic impact when manipulated. Phosphatases, in contrast, were stable, highly robust and flatly organized, with rather uniform impact downstream. We validated aspects of this organization experimentally in nematode, and supported additional aspects by theoretic analysis of the dynamics of protein phosphorylation. Our analyses explain the empirical bias in the protein phosphorylation field toward characterization and therapeutic targeting of kinases at the expense of phosphatases. We show quantitatively and broadly that this is not only a historical bias, but stems from wide-ranging differences in their organization and impact. The asymmetric balance between these opposing regulators of protein phosphorylation is also common to opposing regulators of two other post-translational modification systems, suggesting its fundamental value. Protein phosphorylation is a reversible modification that underlies cellular responses to stimuli across organisms. Historically, the study of protein phosphorylation concentrated on the role of kinases, which introduce the phosphate, at the expense of phosphatases, which remove it. Many kinases have been associated with specific phenotypes and considered attractive drug targets, while phosphatases remained far less characterized. It has been unclear whether this discrepancy is due to historical biases or reflects real systemic differences between these enzymes. By analyzing large-scale ‘omics’ datasets across genes, transcripts, proteins, interactions, and organisms, we uncovered an asymmetric architecture of kinases versus phosphatases that balances between them, determines their distinct impact patterns, and affects their therapeutic potential. This architecture is conserved from yeast to human and is partially shared by two other protein modification systems, suggesting it is a general feature of these systems.
Collapse
Affiliation(s)
- Ilan Smoly
- Department of Computer Science, Ben-Gurion University of the Negev, Beer-Sheva, Israel
- National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Netta Shemesh
- National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva, Israel
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Michal Ziv-Ukelson
- Department of Computer Science, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Anat Ben-Zvi
- National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva, Israel
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Esti Yeger-Lotem
- National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva, Israel
- Department of Clinical Biochemistry and Pharmacology, Ben-Gurion University of the Negev, Beer-Sheva, Israel
- * E-mail:
| |
Collapse
|
91
|
Gonçalves E, Raguz Nakic Z, Zampieri M, Wagih O, Ochoa D, Sauer U, Beltrao P, Saez-Rodriguez J. Systematic Analysis of Transcriptional and Post-transcriptional Regulation of Metabolism in Yeast. PLoS Comput Biol 2017; 13:e1005297. [PMID: 28072816 PMCID: PMC5224888 DOI: 10.1371/journal.pcbi.1005297] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Accepted: 12/07/2016] [Indexed: 11/19/2022] Open
Abstract
Cells react to extracellular perturbations with complex and intertwined responses. Systematic identification of the regulatory mechanisms that control these responses is still a challenge and requires tailored analyses integrating different types of molecular data. Here we acquired time-resolved metabolomics measurements in yeast under salt and pheromone stimulation and developed a machine learning approach to explore regulatory associations between metabolism and signal transduction. Existing phosphoproteomics measurements under the same conditions and kinase-substrate regulatory interactions were used to in silico estimate the enzymatic activity of signalling kinases. Our approach identified informative associations between kinases and metabolic enzymes capable of predicting metabolic changes. We extended our analysis to two studies containing transcriptomics, phosphoproteomics and metabolomics measurements across a comprehensive panel of kinases/phosphatases knockouts and time-resolved perturbations to the nitrogen metabolism. Changes in activity of transcription factors, kinases and phosphatases were estimated in silico and these were capable of building predictive models to infer the metabolic adaptations of previously unseen conditions across different dynamic experiments. Time-resolved experiments were significantly more informative than genetic perturbations to infer metabolic adaptation. This difference may be due to the indirect nature of the associations and of general cellular states that can hinder the identification of causal relationships. This work provides a novel genome-scale integrative analysis to propose putative transcriptional and post-translational regulatory mechanisms of metabolic processes. Phosphorylation is a broad regulatory mechanism with implications in nearly all processes of the cell. However, a global understanding of possible regulatory mechanisms remains elusive. In this study, we examined the potential regulatory role of kinases, phosphatases and transcription-factors in yeast metabolism across a variety of steady-state and dynamic conditions. The main novelty of our analysis was to infer putative regulatory interactions from in silico estimated activity of transcription-factors and kinases/phosphatases. This provided functional information about the proteins important for the experimental conditions at hand that had not been uncovered before. We showed that activity profiles are predictive features to estimate metabolite changes in dynamic experiments, while the same was not visible in steady-state conditions. We also showed that dynamic experiments could be used to recapitulate and provide novel TFs-metabolite and K/Ps-metabolite regulatory associations. We believe these findings illustrates the usefulness of this approach for future integrative studies interested in studying metabolic regulation.
Collapse
Affiliation(s)
- Emanuel Gonçalves
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, Cambridge, United Kingdom
| | - Zrinka Raguz Nakic
- Department of Biology, Institute of Molecular Systems Biology, ETH Zurich, Zurich, Switzerland
| | - Mattia Zampieri
- Department of Biology, Institute of Molecular Systems Biology, ETH Zurich, Zurich, Switzerland
| | - Omar Wagih
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, Cambridge, United Kingdom
| | - David Ochoa
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, Cambridge, United Kingdom
| | - Uwe Sauer
- Department of Biology, Institute of Molecular Systems Biology, ETH Zurich, Zurich, Switzerland
| | - Pedro Beltrao
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, Cambridge, United Kingdom
- * E-mail: (PB); (JSR)
| | - Julio Saez-Rodriguez
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, Cambridge, United Kingdom
- RWTH Aachen University, Faculty of Medicine, Joint Research Center for Computational Biomedicine (JRC-COMBINE), Aachen
- * E-mail: (PB); (JSR)
| |
Collapse
|
92
|
Liu Y, Li J, Du G, Chen J, Liu L. Metabolic engineering of Bacillus subtilis fueled by systems biology: Recent advances and future directions. Biotechnol Adv 2017; 35:20-30. [DOI: 10.1016/j.biotechadv.2016.11.003] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Revised: 10/21/2016] [Accepted: 11/16/2016] [Indexed: 12/25/2022]
|
93
|
Batista M, Kugeratski FG, de Paula Lima CV, Probst CM, Kessler RL, de Godoy LM, Krieger MA, Marchini FK. The MAP kinase MAPKLK1 is essential to Trypanosoma brucei proliferation and regulates proteins involved in mRNA metabolism. J Proteomics 2016; 154:118-127. [PMID: 28039027 DOI: 10.1016/j.jprot.2016.12.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Revised: 11/23/2016] [Accepted: 12/21/2016] [Indexed: 10/20/2022]
Abstract
Protein phosphorylation and dephosphorylation events regulate many cellular processes. The identification of all phosphorylation sites and their association to a respective protein kinase or phosphatase is a challenging and crucial step to have a deeper understanding of the effects of signaling networks on cells. Pathogenic trypanosomatids have a large number of protein kinases and phosphatases in comparison to other organisms, which reinforces the relevance of the phosphorylation process in these early eukaryotes, nevertheless little is known about protein phosphorylation in these protozoa. In this context, the role of a MAP kinase-like kinase (MAPKLK1), observed to be essential to proliferation of procyclic Trypanosoma brucei, was studied. After silencing MAPKLK1 expression by RNAi, the cells were evaluated by SILAC MS-based proteomics and RNA-Seq. We identified 1756 phosphorylation sites of which 384 were not previously described in T. brucei. Despite being essential, few modulations were observed at the phosphorylation patterns and gene expression levels of MAPKLK1 knockdown. These indirect targets and potential substrates of MAPKLK1 are related to key cellular processes enriched to mRNA processing and stability control. SIGNIFICANCE The field of cell signaling is a promising topic of study for trypanosomatids, since little is known about this topic and the gene expression regulation occurs at post-transcriptional level. In this sense, the present work increases the knowledge on protein phosphorylation process in Trypanosoma brucei. We depleted one MAP kinase (MAPKLK1) of T. brucei and evaluated the effects on the cell. We showed that MAPKLK1 is essential to the cell, while few modulations on phosphoproteome, proteome and transcriptome are observed with its depletion. Although in low number, the changes in phosphoproteome were significant, presenting possible substrate candidates of MAPKLK1 and indirect targets related to mRNA processing and stability control, metabolic pathways, among others. This result provides insights in the phosphorylation network of T. brucei, a model organism that impacts human and animal health.
Collapse
Affiliation(s)
- Michel Batista
- Functional Genomics Laboratory, Carlos Chagas Institute, Fiocruz, Curitiba, Parana, Brazil; Mass Spectrometry Facility RPT02H, Carlos Chagas Institute, Fiocruz, Parana, Brazil
| | - Fernanda G Kugeratski
- Functional Genomics Laboratory, Carlos Chagas Institute, Fiocruz, Curitiba, Parana, Brazil
| | - Carla V de Paula Lima
- Functional Genomics Laboratory, Carlos Chagas Institute, Fiocruz, Curitiba, Parana, Brazil
| | - Christian M Probst
- Functional Genomics Laboratory, Carlos Chagas Institute, Fiocruz, Curitiba, Parana, Brazil
| | - Rafael L Kessler
- Functional Genomics Laboratory, Carlos Chagas Institute, Fiocruz, Curitiba, Parana, Brazil
| | - Lyris M de Godoy
- Functional Genomics Laboratory, Carlos Chagas Institute, Fiocruz, Curitiba, Parana, Brazil
| | - Marco A Krieger
- Functional Genomics Laboratory, Carlos Chagas Institute, Fiocruz, Curitiba, Parana, Brazil
| | - Fabricio K Marchini
- Functional Genomics Laboratory, Carlos Chagas Institute, Fiocruz, Curitiba, Parana, Brazil; Mass Spectrometry Facility RPT02H, Carlos Chagas Institute, Fiocruz, Parana, Brazil.
| |
Collapse
|
94
|
Chronological Lifespan in Yeast Is Dependent on the Accumulation of Storage Carbohydrates Mediated by Yak1, Mck1 and Rim15 Kinases. PLoS Genet 2016; 12:e1006458. [PMID: 27923067 PMCID: PMC5140051 DOI: 10.1371/journal.pgen.1006458] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Accepted: 11/03/2016] [Indexed: 12/19/2022] Open
Abstract
Upon starvation for glucose or any other macronutrient, yeast cells exit from the mitotic cell cycle and acquire a set of characteristics that are specific to quiescent cells to ensure longevity. Little is known about the molecular determinants that orchestrate quiescence entry and lifespan extension. Using starvation-specific gene reporters, we screened a subset of the yeast deletion library representing the genes encoding 'signaling' proteins. Apart from the previously characterised Rim15, Mck1 and Yak1 kinases, the SNF1/AMPK complex, the cell wall integrity pathway and a number of cell cycle regulators were shown to be necessary for proper quiescence establishment and for extension of chronological lifespan (CLS), suggesting that entry into quiescence requires the integration of starvation signals transmitted via multiple signaling pathways. The CLS of these signaling mutants, and those of the single, double and triple mutants of RIM15, YAK1 and MCK1 correlates well with the amount of storage carbohydrates but poorly with transition-phase cell cycle status. Combined removal of the glycogen and trehalose biosynthetic genes, especially GSY2 and TPS1, nearly abolishes the accumulation of storage carbohydrates and severely reduces CLS. Concurrent overexpression of GSY2 and TSL1 or supplementation of trehalose to the growth medium ameliorates the severe CLS defects displayed by the signaling mutants (rim15Δyak1Δ or rim15Δmck1Δ). Furthermore, we reveal that the levels of intracellular reactive oxygen species are cooperatively controlled by Yak1, Rim15 and Mck1, and the three kinases mediate the TOR1-regulated accumulation of storage carbohydrates and CLS extension. Our data support the hypothesis that metabolic reprogramming to accumulate energy stores and the activation of anti-oxidant defence systems are coordinated by Yak1, Rim15 and Mck1 kinases to ensure quiescence entry and lifespan extension in yeast.
Collapse
|
95
|
Proteomics approaches to decipher new signaling pathways. Curr Opin Struct Biol 2016; 41:128-134. [DOI: 10.1016/j.sbi.2016.07.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Accepted: 07/11/2016] [Indexed: 01/01/2023]
|
96
|
Compartmentalization of the Cell Membrane. J Mol Biol 2016; 428:4739-4748. [DOI: 10.1016/j.jmb.2016.09.022] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Revised: 09/27/2016] [Accepted: 09/28/2016] [Indexed: 11/20/2022]
|
97
|
Raguz Nakic Z, Seisenbacher G, Posas F, Sauer U. Untargeted metabolomics unravels functionalities of phosphorylation sites in Saccharomyces cerevisiae. BMC SYSTEMS BIOLOGY 2016; 10:104. [PMID: 27846849 PMCID: PMC5109706 DOI: 10.1186/s12918-016-0350-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Accepted: 11/03/2016] [Indexed: 01/08/2023]
Abstract
Background Coordinated through a complex network of kinases and phosphatases, protein phosphorylation regulates essentially all cellular processes in eukaryotes. Recent advances in proteomics enable detection of thousands of phosphorylation sites (phosphosites) in single experiments. However, functionality of the vast majority of these sites remains unclear and we lack suitable approaches to evaluate functional relevance at a pace that matches their detection. Results Here, we assess functionality of 26 phosphosites by introducing phosphodeletion and phosphomimic mutations in 25 metabolic enzymes and regulators from the TOR and HOG signaling pathway in Saccharomyces cerevisiae by phenotypic analysis and untargeted metabolomics. We show that metabolomics largely outperforms growth analysis and recovers 10 out of the 13 previously characterized phosphosites and suggests functionality for several novel sites, including S79 on the TOR regulatory protein Tip41. We analyze metabolic profiles to identify consequences underlying regulatory phosphorylation events and detecting glycerol metabolism to have a so far unknown influence on arginine metabolism via phosphoregulation of the glycerol dehydrogenases. Further, we also find S508 in the MAPKK Pbs2 as a potential link for cross-talking between HOG signaling and the cell wall integrity pathway. Conclusions We demonstrate that metabolic profiles can be exploited for gaining insight into regulatory consequences and biological roles of phosphosites. Altogether, untargeted metabolomics is a fast, sensitive and informative approach appropriate for future large-scale functional analyses of phosphosites. Electronic supplementary material The online version of this article (doi:10.1186/s12918-016-0350-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Zrinka Raguz Nakic
- Institute of Molecular Systems Biology, ETH Zürich, Auguste-Piccard-Hof 1, Zürich, Switzerland.,PhD Program on Systems Biology, Life Science Zürich, Zürich, Switzerland
| | - Gerhard Seisenbacher
- Cell signaling Research Group, Departament de Ciències Experimentals i de la Salut, Universitat Pompeu Fabra, Barcelona, Spain
| | - Francesc Posas
- Cell signaling Research Group, Departament de Ciències Experimentals i de la Salut, Universitat Pompeu Fabra, Barcelona, Spain
| | - Uwe Sauer
- Institute of Molecular Systems Biology, ETH Zürich, Auguste-Piccard-Hof 1, Zürich, Switzerland.
| |
Collapse
|
98
|
Sugiyama N, Ishihama Y. Large-scale profiling of protein kinases for cellular signaling studies by mass spectrometry and other techniques. J Pharm Biomed Anal 2016; 130:264-272. [DOI: 10.1016/j.jpba.2016.05.046] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Revised: 05/26/2016] [Accepted: 05/27/2016] [Indexed: 01/26/2023]
|
99
|
Manatschal C, Farcas AM, Degen MS, Bayer M, Kumar A, Landgraf C, Volkmer R, Barral Y, Steinmetz MO. Molecular basis of Kar9-Bim1 complex function during mating and spindle positioning. Mol Biol Cell 2016; 27:mbc.E16-07-0552. [PMID: 27682587 PMCID: PMC5170556 DOI: 10.1091/mbc.e16-07-0552] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Revised: 09/20/2016] [Accepted: 09/21/2016] [Indexed: 11/17/2022] Open
Abstract
The Kar9 pathway promotes nuclear fusion during mating and spindle alignment during metaphase in budding yeast. How Kar9 supports the different outcome of these two divergent processes is an open question. Here, we show that three sites in the C-terminal disordered domain of Kar9 mediate tight Kar9 interaction with the C-terminal dimerization domain of Bim1 (EB1 orthologue). Site1 and Site2 contain SxIP motifs; however, Site3 defines a novel type of EB1-binding site. Whereas Site2 and Site3 mediate Kar9 recruitment to microtubule tips, nuclear movement and karyogamy, solely Site2 functions in spindle positioning during metaphase. Site1 in turn plays an inhibitory role during mating. Additionally, the Kar9-Bim1 complex is involved in microtubule-independent activities during mating. Together, our data reveal how multiple and partially redundant EB1-binding sites provide a microtubule-associated protein with the means to modulate its biochemical properties to promote different molecular processes during cell proliferation and differentiation.
Collapse
Affiliation(s)
- Cristina Manatschal
- Laboratory of Biomolecular Research, Department of Biology and Chemistry, Paul Scherrer Institut, Villigen PSI, Switzerland
| | - Ana-Maria Farcas
- Institute of Biochemistry, Biology Department, ETH Zürich, Zürich, Switzerland
| | - Miriam Steiner Degen
- Laboratory of Biomolecular Research, Department of Biology and Chemistry, Paul Scherrer Institut, Villigen PSI, Switzerland
| | - Mathias Bayer
- Institute of Biochemistry, Biology Department, ETH Zürich, Zürich, Switzerland
| | - Anil Kumar
- Laboratory of Biomolecular Research, Department of Biology and Chemistry, Paul Scherrer Institut, Villigen PSI, Switzerland
| | - Christiane Landgraf
- Institut für Medizinische Immunologie, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Rudolf Volkmer
- Institut für Medizinische Immunologie, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Yves Barral
- Institute of Biochemistry, Biology Department, ETH Zürich, Zürich, Switzerland
| | - Michel O Steinmetz
- Laboratory of Biomolecular Research, Department of Biology and Chemistry, Paul Scherrer Institut, Villigen PSI, Switzerland
| |
Collapse
|
100
|
Global Phosphoproteomic Analysis Reveals the Involvement of Phosphorylation in Aflatoxins Biosynthesis in the Pathogenic Fungus Aspergillus flavus. Sci Rep 2016; 6:34078. [PMID: 27667718 PMCID: PMC5036175 DOI: 10.1038/srep34078] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Accepted: 09/05/2016] [Indexed: 01/17/2023] Open
Abstract
Aspergillus flavus is a pathogenic fungus that produces toxic and carcinogenic aflatoxins and is the causative agent of aflatoxicosis. A growing body of evidence indicates that reversible phosphorylation plays important roles in regulating diverse functions in this pathogen. However, only a few phosphoproteins of this fungus have been identified, which hampers our understanding of the roles of phosphorylation in A. flavus. So we performed a global and site-specific phosphoproteomic analysis of A. flavus. A total of 598 high-confidence phosphorylation sites were identified in 283 phosphoproteins. The identified phosphoproteins were involved in various biological processes, including signal transduction and aflatoxins biosynthesis. Five identified phosphoproteins associated with MAPK signal transduction and aflatoxins biosynthesis were validated by immunoblotting using phospho-specific antibodies. Further functional studies revealed that phosphorylation of the MAP kinase kinase kinase Ste11 affected aflatoxins biosynthesis in A. flavus. Our data represent the results of the first global survey of protein phosphorylation in A. flavus and reveal previously unappreciated roles for phosphorylation in the regulation of aflatoxins production. The generated dataset can serve as an important resource for the functional analysis of protein phosphorylation in A. flavus and facilitate the elucidation of phosphorylated signaling networks in this pathogen.
Collapse
|