51
|
Li T, Zhang G, Wang L, Li S, Xu X, Gao Y. Defects in mTORC1 Network and mTORC1-STAT3 Pathway Crosstalk Contributes to Non-inflammatory Hepatocellular Carcinoma. Front Cell Dev Biol 2020; 8:225. [PMID: 32363190 PMCID: PMC7182440 DOI: 10.3389/fcell.2020.00225] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2020] [Accepted: 03/16/2020] [Indexed: 02/05/2023] Open
Abstract
Background and Aims Mammalian target of rapamycin complex 1 (mTORC1) is frequently hyperactivated in hepatocellular carcinoma (HCC). Cases of HCC without inflammation and cirrhosis are not rarely seen in clinics. However, the molecular basis of non-inflammatory HCC remains unclear. Methods Spontaneous non-inflammatory HCC in mice was triggered by constitutive elevation of mTORC1 by liver-specific TSC1 knockout (LTsc1KO). A multi-omics approach was utilized on tumor tissues to better understand the molecular basis for the development of HCC in the LTsc1KO model. Results We showed that LTsc1KO in mice triggered spontaneous non-inflammatory HCC, with molecular characteristics similar to those of diethylnitrosamine-mediated non-cirrhotic HCC. Mitochondrial and autophagy defects, as well as hepatic metabolic disorder were manifested in HCC development by LTsc1KO. mTORC1 activation on its own regulated an oncogenic network (DNA-damage-inducible transcript 4, nuclear protein 1, and fibroblast growth factor 21), and mTORC1-signal transducer and activator of transcription pathway crosstalk that altered specific metabolic pathways contributed to the development of non-inflammatory HCC. Conclusion Our findings reveal the mechanisms of mTORC1-driven non-inflammatory HCC and provide insight into further development of a protective strategy against non-inflammatory HCC.
Collapse
Affiliation(s)
- Ting Li
- Department of Hepatobiliary Surgery II, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Guohong Zhang
- Department of Hepatobiliary Surgery II, Zhujiang Hospital, Southern Medical University, Guangzhou, China.,Department of Pathology, Shantou University Medical College, Shantou, China.,Institute of Regenerative Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Linlin Wang
- Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, China.,Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Susu Li
- Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Xiaoping Xu
- Department of Hepatobiliary Surgery II, Zhujiang Hospital, Southern Medical University, Guangzhou, China.,Institute of Regenerative Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, China.,Artificial Organs and Tissue Engineering Centre of Guangdong Province, Guangzhou, China.,State Key Laboratory of Organ Failure Research, Southern Medical University, Guangzhou, China
| | - Yi Gao
- Department of Hepatobiliary Surgery II, Zhujiang Hospital, Southern Medical University, Guangzhou, China.,Institute of Regenerative Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, China.,Artificial Organs and Tissue Engineering Centre of Guangdong Province, Guangzhou, China.,State Key Laboratory of Organ Failure Research, Southern Medical University, Guangzhou, China
| |
Collapse
|
52
|
Damgaard RB, Jolin HE, Allison MED, Davies SE, Titheradge HL, McKenzie ANJ, Komander D. OTULIN protects the liver against cell death, inflammation, fibrosis, and cancer. Cell Death Differ 2020; 27:1457-1474. [PMID: 32231246 PMCID: PMC7206033 DOI: 10.1038/s41418-020-0532-1] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 03/11/2020] [Accepted: 03/13/2020] [Indexed: 12/13/2022] Open
Abstract
Methionine-1 (M1)-linked polyubiquitin chains conjugated by the linear ubiquitin chain assembly complex (LUBAC) control NF-κB activation, immune homoeostasis, and prevents tumour necrosis factor (TNF)-induced cell death. The deubiquitinase OTULIN negatively regulates M1-linked polyubiquitin signalling by removing the chains conjugated by LUBAC, and OTULIN deficiency causes OTULIN-related autoinflammatory syndrome (ORAS) in humans. However, the cellular pathways and physiological functions controlled by OTULIN remain poorly understood. Here, we show that OTULIN prevents development of liver disease in mice and humans. In an ORAS patient, OTULIN deficiency caused spontaneous and progressive steatotic liver disease at 10-13 months of age. Similarly, liver-specific deletion of OTULIN in mice leads to neonatally onset steatosis and hepatitis, akin to the ORAS patient. OTULIN deficiency triggers metabolic alterations, apoptosis, and inflammation in the liver. In mice, steatosis progresses to steatohepatitis, fibrosis and pre-malignant tumour formation by 8 weeks of age, and by the age of 7-12 months the phenotype has advanced to malignant hepatocellular carcinoma. Surprisingly, the pathology in OTULIN-deficient livers is independent of TNFR1 signalling. Instead, we find that steatohepatitis in OTULIN-deficient livers is associated with aberrant mTOR activation, and inhibition of mTOR by rapamycin administration significantly reduces the liver pathology. Collectively, our results reveal that OTULIN is critical for maintaining liver homoeostasis and suggest that M1-linked polyubiquitin chains may play a role in regulation of mTOR signalling and metabolism in the liver.
Collapse
Affiliation(s)
- Rune Busk Damgaard
- Medical Research Council Laboratory of Molecular Biology, Cambridge Biomedical Campus, Francis Crick Avenue, Cambridge, CB2 0QH, UK. .,Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads, 2800 Kgs, Lyngby, Denmark.
| | - Helen E Jolin
- Medical Research Council Laboratory of Molecular Biology, Cambridge Biomedical Campus, Francis Crick Avenue, Cambridge, CB2 0QH, UK
| | - Michael E D Allison
- Liver Unit, Department of Medicine, Cambridge Biomedical Research Centre, Cambridge University Hospitals NHS Foundation Trust, Cambridge, CB2 0QQ, UK
| | - Susan E Davies
- Department of Histopathology, Cambridge University Hospitals NHS Foundation Trust, Cambridge, CB2 0QQ, UK
| | - Hannah L Titheradge
- Birmingham Women's and Children's National Health Service Foundation Trust, Mindelsohn Way, Birmingham, B15 2TG, UK
| | - Andrew N J McKenzie
- Medical Research Council Laboratory of Molecular Biology, Cambridge Biomedical Campus, Francis Crick Avenue, Cambridge, CB2 0QH, UK
| | - David Komander
- Medical Research Council Laboratory of Molecular Biology, Cambridge Biomedical Campus, Francis Crick Avenue, Cambridge, CB2 0QH, UK. .,Ubiquitin Signalling Division, The Walter and Eliza Hall Institute of Medical Research, Royal Parade, Parkville, Melbourne, VIC, 3052, Australia. .,Department of Medical Biology, The University of Melbourne, Melbourne, VIC, 3010, Australia.
| |
Collapse
|
53
|
Nutrient mTORC1 signaling contributes to hepatic lipid metabolism in the pathogenesis of non-alcoholic fatty liver disease. LIVER RESEARCH 2020. [DOI: 10.1016/j.livres.2020.02.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
54
|
Ferrín G, Guerrero M, Amado V, Rodríguez-Perálvarez M, De la Mata M. Activation of mTOR Signaling Pathway in Hepatocellular Carcinoma. Int J Mol Sci 2020; 21:1266. [PMID: 32070029 PMCID: PMC7072933 DOI: 10.3390/ijms21041266] [Citation(s) in RCA: 89] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2020] [Revised: 02/10/2020] [Accepted: 02/11/2020] [Indexed: 12/17/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is the most frequent primary liver cancer and occurs mainly in patients with liver cirrhosis. The mammalian target of rapamycin (mTOR) signaling pathway is involved in many hallmarks of cancer including cell growth, metabolism re-programming, proliferation and inhibition of apoptosis. The mTOR pathway is upregulated in HCC tissue samples as compared with the surrounding liver cirrhotic tissue. In addition, the activation of mTOR is more intense in the tumor edge, thus reinforcing its role in HCC proliferation and spreading. The inhibition of the mTOR pathway by currently available pharmacological compounds (i.e., sirolimus or everolimus) is able to hamper tumor progression both in vitro and in animal models. The use of mTOR inhibitors alone or in combination with other therapies is a very attractive approach, which has been extensively investigated in humans. However, results are contradictory and there is no solid evidence suggesting a true benefit in clinical practice. As a result, neither sirolimus nor everolimus are currently approved to treat HCC or to prevent tumor recurrence after curative surgery. In the present comprehensive review, we analyzed the most recent scientific evidence while providing some insights to understand the gap between experimental and clinical studies.
Collapse
Affiliation(s)
- Gustavo Ferrín
- Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Universidad de Córdoba, 14004 Córdoba, Spain; (G.F.); (M.G.); (V.A.); (M.D.l.M.)
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), 14004 Córdoba, Spain
| | - Marta Guerrero
- Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Universidad de Córdoba, 14004 Córdoba, Spain; (G.F.); (M.G.); (V.A.); (M.D.l.M.)
- Department of Hepatology and Liver Transplantaton, Hospital Universitario Reina Sofía, 14004 Córdoba, Spain
| | - Víctor Amado
- Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Universidad de Córdoba, 14004 Córdoba, Spain; (G.F.); (M.G.); (V.A.); (M.D.l.M.)
- Department of Hepatology and Liver Transplantaton, Hospital Universitario Reina Sofía, 14004 Córdoba, Spain
| | - Manuel Rodríguez-Perálvarez
- Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Universidad de Córdoba, 14004 Córdoba, Spain; (G.F.); (M.G.); (V.A.); (M.D.l.M.)
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), 14004 Córdoba, Spain
- Department of Hepatology and Liver Transplantaton, Hospital Universitario Reina Sofía, 14004 Córdoba, Spain
| | - Manuel De la Mata
- Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Universidad de Córdoba, 14004 Córdoba, Spain; (G.F.); (M.G.); (V.A.); (M.D.l.M.)
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), 14004 Córdoba, Spain
- Department of Hepatology and Liver Transplantaton, Hospital Universitario Reina Sofía, 14004 Córdoba, Spain
| |
Collapse
|
55
|
Bonazzi S, Goold CP, Gray A, Thomsen NM, Nunez J, Karki RG, Gorde A, Biag JD, Malik HA, Sun Y, Liang G, Lubicka D, Salas S, Labbe-Giguere N, Keaney EP, McTighe S, Liu S, Deng L, Piizzi G, Lombardo F, Burdette D, Dodart JC, Wilson CJ, Peukert S, Curtis D, Hamann LG, Murphy LO. Discovery of a Brain-Penetrant ATP-Competitive Inhibitor of the Mechanistic Target of Rapamycin (mTOR) for CNS Disorders. J Med Chem 2020; 63:1068-1083. [PMID: 31955578 DOI: 10.1021/acs.jmedchem.9b01398] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Recent clinical evaluation of everolimus for seizure reduction in patients with tuberous sclerosis complex (TSC), a disease with overactivated mechanistic target of rapamycin (mTOR) signaling, has demonstrated the therapeutic value of mTOR inhibitors for central nervous system (CNS) indications. Given that everolimus is an incomplete inhibitor of the mTOR function, we sought to develop a new mTOR inhibitor that has improved properties and is suitable for CNS disorders. Starting from an in-house purine-based compound, optimization of the physicochemical properties of a thiazolopyrimidine series led to the discovery of the small molecule 7, a potent and selective brain-penetrant ATP-competitive mTOR inhibitor. In neuronal cell-based models of mTOR hyperactivity, 7 corrected the mTOR pathway activity and the resulting neuronal overgrowth phenotype. The new mTOR inhibitor 7 showed good brain exposure and significantly improved the survival rate of mice with neuronal-specific ablation of the Tsc1 gene. These results demonstrate the potential utility of this tool compound to test therapeutic hypotheses that depend on mTOR hyperactivity in the CNS.
Collapse
Affiliation(s)
- Simone Bonazzi
- Global Discovery Chemistry , Novartis Institutes for BioMedical Research , 181 Massachusetts Ave , Cambridge , Massachusetts 02139 , United States
| | - Carleton P Goold
- Neuroscience , Novartis Institutes for BioMedical Research , 22 Windsor Street , Cambridge , Massachusetts 02139 , United States
| | - Audrey Gray
- Neuroscience , Novartis Institutes for BioMedical Research , 22 Windsor Street , Cambridge , Massachusetts 02139 , United States
| | - Noel M Thomsen
- Global Discovery Chemistry , Novartis Institutes for BioMedical Research , 181 Massachusetts Ave , Cambridge , Massachusetts 02139 , United States
| | - Jill Nunez
- Global Discovery Chemistry , Novartis Institutes for BioMedical Research , 181 Massachusetts Ave , Cambridge , Massachusetts 02139 , United States
| | - Rajeshri G Karki
- Global Discovery Chemistry , Novartis Institutes for BioMedical Research , 181 Massachusetts Ave , Cambridge , Massachusetts 02139 , United States
| | - Aakruti Gorde
- Neuroscience , Novartis Institutes for BioMedical Research , 22 Windsor Street , Cambridge , Massachusetts 02139 , United States
| | - Jonathan D Biag
- Neuroscience , Novartis Institutes for BioMedical Research , 22 Windsor Street , Cambridge , Massachusetts 02139 , United States
| | - Hasnain A Malik
- Global Discovery Chemistry , Novartis Institutes for BioMedical Research , 181 Massachusetts Ave , Cambridge , Massachusetts 02139 , United States
| | - Yingchuan Sun
- Global Discovery Chemistry , Novartis Institutes for BioMedical Research , 181 Massachusetts Ave , Cambridge , Massachusetts 02139 , United States
| | - Guiqing Liang
- Pharmacokinetic Sciences , Novartis Institutes for BioMedical Research , 250 Massachusetts Avenue , Cambridge , Massachusetts 02139 , United States
| | - Danuta Lubicka
- Global Drug Development/Technical Research and Development , Novartis Institutes for BioMedical Research , 700 Main Street , Cambridge , Massachusetts 02139 , United States
| | - Sarah Salas
- Neuroscience , Novartis Institutes for BioMedical Research , 22 Windsor Street , Cambridge , Massachusetts 02139 , United States
| | - Nancy Labbe-Giguere
- Global Discovery Chemistry , Novartis Institutes for BioMedical Research , 181 Massachusetts Ave , Cambridge , Massachusetts 02139 , United States
| | - Erin P Keaney
- Global Discovery Chemistry , Novartis Institutes for BioMedical Research , 181 Massachusetts Ave , Cambridge , Massachusetts 02139 , United States
| | - Stephanie McTighe
- Neuroscience , Novartis Institutes for BioMedical Research , 22 Windsor Street , Cambridge , Massachusetts 02139 , United States
| | - Shanming Liu
- Chemical Biology and Therapeutics , Novartis Institutes for BioMedical Research , 181 Massachusetts Ave , Cambridge , Massachusetts 02139 , United States
| | - Lin Deng
- Pharmacokinetic Sciences , Novartis Institutes for BioMedical Research , 250 Massachusetts Avenue , Cambridge , Massachusetts 02139 , United States
| | - Grazia Piizzi
- Global Discovery Chemistry , Novartis Institutes for BioMedical Research , 181 Massachusetts Ave , Cambridge , Massachusetts 02139 , United States
| | - Franco Lombardo
- Pharmacokinetic Sciences , Novartis Institutes for BioMedical Research , 250 Massachusetts Avenue , Cambridge , Massachusetts 02139 , United States
| | - Doug Burdette
- Pharmacokinetic Sciences , Novartis Institutes for BioMedical Research , 250 Massachusetts Avenue , Cambridge , Massachusetts 02139 , United States
| | - Jean-Cosme Dodart
- Neuroscience , Novartis Institutes for BioMedical Research , 22 Windsor Street , Cambridge , Massachusetts 02139 , United States
| | - Christopher J Wilson
- Neuroscience , Novartis Institutes for BioMedical Research , 22 Windsor Street , Cambridge , Massachusetts 02139 , United States
| | - Stefan Peukert
- Global Discovery Chemistry , Novartis Institutes for BioMedical Research , 181 Massachusetts Ave , Cambridge , Massachusetts 02139 , United States
| | - Daniel Curtis
- Neuroscience , Novartis Institutes for BioMedical Research , 22 Windsor Street , Cambridge , Massachusetts 02139 , United States
| | - Lawrence G Hamann
- Global Discovery Chemistry , Novartis Institutes for BioMedical Research , 181 Massachusetts Ave , Cambridge , Massachusetts 02139 , United States
| | - Leon O Murphy
- Chemical Biology and Therapeutics , Novartis Institutes for BioMedical Research , 181 Massachusetts Ave , Cambridge , Massachusetts 02139 , United States
| |
Collapse
|
56
|
Loss of TSC complex enhances gluconeogenesis via upregulation of Dlk1-Dio3 locus miRNAs. Proc Natl Acad Sci U S A 2020; 117:1524-1532. [PMID: 31919282 DOI: 10.1073/pnas.1918931117] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Loss of the tumor suppressor tuberous sclerosis complex 1 (Tsc1) in the liver promotes gluconeogenesis and glucose intolerance. We asked whether this could be attributed to aberrant expression of small RNAs. We performed small-RNA sequencing on liver of Tsc1-knockout mice, and found that miRNAs of the delta-like homolog 1 (Dlk1)-deiodinase iodothyronine type III (Dio3) locus are up-regulated in an mTORC1-dependent manner. Sustained mTORC1 signaling during development prevented CpG methylation and silencing of the Dlk1-Dio3 locus, thereby increasing miRNA transcription. Deletion of miRNAs encoded by the Dlk1-Dio3 locus reduced gluconeogenesis, glucose intolerance, and fasting blood glucose levels. Thus, miRNAs contribute to the metabolic effects observed upon loss of TSC1 and hyperactivation of mTORC1 in the liver. Furthermore, we show that miRNA is a downstream effector of hyperactive mTORC1 signaling.
Collapse
|
57
|
Ni HM, Chao X, Yang H, Deng F, Wang S, Bai Q, Qian H, Cui Y, Cui W, Shi Y, Zong WX, Wang Z, Yang L, Ding WX. Dual Roles of Mammalian Target of Rapamycin in Regulating Liver Injury and Tumorigenesis in Autophagy-Defective Mouse Liver. Hepatology 2019; 70:2142-2155. [PMID: 31095752 PMCID: PMC6858484 DOI: 10.1002/hep.30770] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Accepted: 05/10/2019] [Indexed: 12/13/2022]
Abstract
Autophagy is a lysosomal degradation pathway that degrades cytoplasmic proteins and organelles. Absence of autophagy in hepatocytes has been linked to promoting liver injury and tumorigenesis; however, the mechanisms behind why a lack of autophagy induces these complications are not fully understood. The role of mammalian target of rapamycin (mTOR) in impaired autophagy-induced liver pathogenesis and tumorigenesis was investigated by using liver-specific autophagy related 5 knockout (L-ATG5 KO) mice, L-ATG5/mTOR, and L-ATG5/Raptor double knockout (DKO) mice. We found that deletion of mTOR or Raptor in L-ATG5 KO mice at 2 months of age attenuated hepatomegaly, cell death, and inflammation but not fibrosis. Surprisingly, at 6 months of age, L-ATG5/mTOR DKO and L-ATG5/Raptor DKO mice also had increased hepatic inflammation, fibrosis, and liver injury, similar to the L-ATG5 KO mice. Moreover, more than 50% of L-ATG5/mTOR DKO and L-ATG5/Raptor DKO mice already developed spontaneous tumors, but none of the L-ATG5 KO mice had developed any tumors at 6 months of age. At 9 months of age, all L-ATG5/mTOR DKO and L-ATG5/Raptor DKO had developed liver tumors. Mechanistically, L-ATG5/mTOR DKO and L-ATG5/Raptor DKO mice had decreased levels of hepatic ubiquitinated proteins and persistent nuclear erythroid 2 p45-related factor 2 activation but had increased Akt activation compared with L-ATG5 KO mice. Conclusion: Loss of mTOR signaling attenuates the liver pathogenesis in mice with impaired hepatic autophagy but paradoxically promotes tumorigenesis in mice at a relatively young age. Therefore, the balance of mTOR is critical in regulating the liver pathogenesis and tumorigenesis in mice with impaired hepatic autophagy.
Collapse
Affiliation(s)
- Hong-Min Ni
- Department of Pharmacology, Toxicology and Therapeutics,
The University of Kansas Medical Center, Kansas City, KS 66160;,Correspondence to: Hong-Min Ni, Department of
Pharmacology, Toxicology and Therapeutics; The University of Kansas Medical
Center; MS 1018; 3901 Rainbow Blvd.; Kansas City, Kansas 66160; Phone:
913-588-9813, Fax: 913-588-7501; ; or Wen-Xing Ding,
Department of Pharmacology, Toxicology and Therapeutics; The University of
Kansas Medical Center; MS 1018; 3901 Rainbow Blvd. Kansas City, Kansas 66160;
Phone: 913-588-9813, Fax: 913-588-7501;
| | - Xiaojuan Chao
- Department of Pharmacology, Toxicology and Therapeutics,
The University of Kansas Medical Center, Kansas City, KS 66160
| | - Hua Yang
- Department of Pharmacology, Toxicology and Therapeutics,
The University of Kansas Medical Center, Kansas City, KS 66160;,Department of General Surgery, Shanghai Public Health
Clinical Center, Fudan University, Shanghai, China
| | - Fengyan Deng
- Department of Pharmacology, Toxicology and Therapeutics,
The University of Kansas Medical Center, Kansas City, KS 66160
| | - Shaogui Wang
- Department of Pharmacology, Toxicology and Therapeutics,
The University of Kansas Medical Center, Kansas City, KS 66160
| | - Qingyun Bai
- Department of Pharmacology, Toxicology and Therapeutics,
The University of Kansas Medical Center, Kansas City, KS 66160;,Institute of Chinese Materia Medica, Shanghai University
of Traditional Chinese Medicine, Shanghai, China;,School of chemical and biological engineering, Yichun
University, Jiangxi, China
| | - Hui Qian
- Department of Pharmacology, Toxicology and Therapeutics,
The University of Kansas Medical Center, Kansas City, KS 66160
| | - Yue Cui
- Department of Environmental and Occupational Health
Sciences, University of Washington; Seattle, WA 98159, USA
| | - Wei Cui
- Department of Pathology, The University of Kansas Medical
Center, Kansas City, KS 66160
| | - Yinghong Shi
- Department of Liver Surgery & Transplantation, Liver
Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Wei-Xing Zong
- Department of Chemical Biology, Ernest Mario School of
Pharmacy, Rutgers University, 164 Frelinghuysen Road, Piscataway, NJ 08854,
USA
| | - Zhengtao Wang
- Institute of Chinese Materia Medica, Shanghai University
of Traditional Chinese Medicine, Shanghai, China
| | - Li Yang
- Institute of Chinese Materia Medica, Shanghai University
of Traditional Chinese Medicine, Shanghai, China
| | - Wen-Xing Ding
- Department of Pharmacology, Toxicology and Therapeutics,
The University of Kansas Medical Center, Kansas City, KS 66160;,Correspondence to: Hong-Min Ni, Department of
Pharmacology, Toxicology and Therapeutics; The University of Kansas Medical
Center; MS 1018; 3901 Rainbow Blvd.; Kansas City, Kansas 66160; Phone:
913-588-9813, Fax: 913-588-7501; ; or Wen-Xing Ding,
Department of Pharmacology, Toxicology and Therapeutics; The University of
Kansas Medical Center; MS 1018; 3901 Rainbow Blvd. Kansas City, Kansas 66160;
Phone: 913-588-9813, Fax: 913-588-7501;
| |
Collapse
|
58
|
Concurrent activation of growth factor and nutrient arms of mTORC1 induces oxidative liver injury. Cell Discov 2019; 5:60. [PMID: 31754457 PMCID: PMC6868011 DOI: 10.1038/s41421-019-0131-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Accepted: 10/07/2019] [Indexed: 01/21/2023] Open
Abstract
mTORC1 is a protein kinase important for metabolism and is regulated by growth factor and nutrient signaling pathways, mediated by the Rheb and Rag GTPases, respectively. Here we provide the first animal model in which both pathways were upregulated through concurrent mutations in their GTPase-activating proteins, Tsc1 and Depdc5. Unlike former models that induced limited mTORC1 upregulation, hepatic deletion of both Tsc1 and Depdc5 (DKO) produced strong, synergistic activation of the mTORC1 pathway and provoked pronounced and widespread hepatocyte damage, leading to externally visible liver failure phenotypes, such as jaundice and systemic growth defects. The transcriptome profile of DKO was different from single knockout mutants but similar to those of diseased human livers with severe hepatitis and mouse livers challenged with oxidative stress-inducing chemicals. In addition, DKO liver cells exhibited prominent molecular pathologies associated with excessive endoplasmic reticulum (ER) stress, oxidative stress, DNA damage and inflammation. Although DKO liver pathologies were ameliorated by mTORC1 inhibition, ER stress suppression unexpectedly aggravated them, suggesting that ER stress signaling is not the major conduit of how hyperactive mTORC1 produces liver damage. Interestingly, superoxide scavengers N-acetylcysteine (NAC) and Tempol, chemicals that reduce oxidative stress, were able to recover liver phenotypes, indicating that mTORC1 hyperactivation induced liver damage mainly through oxidative stress pathways. Our study provides a new model of unregulated mTORC1 activation through concomitant upregulation of growth factor and nutrient signaling axes and shows that mTORC1 hyperactivation alone can provoke oxidative tissue injury.
Collapse
|
59
|
Li T, Weng J, Zhang Y, Liang K, Fu G, Li Y, Bai X, Gao Y. mTOR direct crosstalk with STAT5 promotes de novo lipid synthesis and induces hepatocellular carcinoma. Cell Death Dis 2019; 10:619. [PMID: 31409773 PMCID: PMC6692326 DOI: 10.1038/s41419-019-1828-2] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2019] [Revised: 07/18/2019] [Accepted: 07/23/2019] [Indexed: 01/07/2023]
Abstract
Hepatocellular carcinoma (HCC) can be the last step of nonalcoholic fatty liver disease (NAFLD) evolution, and the main characteristic of NAFLD is alteration in lipid metabolism. However, the mechanisms of abnormal lipid metabolism in NAFLD and HCC progression are yet to be identified. Here, we demonstrate that liver-specific activation of mTORC1 promoted the expression of lipid synthesis genes and lead to the development of spontaneous HCC. Genetic mouse models developed spontaneous HCC along with increased expressions of SREBP1, ACC1 and FASN. In addition, high levels of p-STAT5 were observed in the livers and particularly evident in the tumor area. And the synthesis of p-STAT5 was increased in patients along with the increase in SREBP1 synthesis in clinical samples. Moreover, mTORC1 interacts with and phosphorylates the STAT5 in hepatocytes. In conclusion, our data suggested that mTORC1 upregulates SREBP1 transcription via crosstalk with the STAT5 pathway which contributes to the NAFLD-related HCC pathogenesis. And the inhibitor of SREBP1 and mTOR may help to prevent HCC in clinical NAFLD patients.
Collapse
Affiliation(s)
- Ting Li
- Department of Hepatobiliary Surgery II, Zhujiang Hospital, Southern Medical University, Guangzhou, China.
| | - Jun Weng
- Department of Hepatobiliary Surgery II, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Yue Zhang
- Department of Hepatobiliary Surgery II, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Kangyan Liang
- Department of Hepatobiliary Surgery II, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Gongbo Fu
- International Cooperation Laboratory on Signal Transduction, Second Military Medical University, Eastern Hepatobiliary Surgery Hospital, Shanghai, China
| | - Yang Li
- Department of Hepatobiliary Surgery II, Zhujiang Hospital, Southern Medical University, Guangzhou, China.,Institute of Regenerative Medicine, Southern Medical University Zhujiang Hospital, Guangzhou, China.,Artificial Organs and Tissue Engineering Centre of Guangdong Province, Guangzhou, China
| | - Xiaochun Bai
- Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China.
| | - Yi Gao
- Department of Hepatobiliary Surgery II, Zhujiang Hospital, Southern Medical University, Guangzhou, China. .,Institute of Regenerative Medicine, Southern Medical University Zhujiang Hospital, Guangzhou, China. .,Artificial Organs and Tissue Engineering Centre of Guangdong Province, Guangzhou, China. .,State Key Laboratory of Organ Failure Research, Southern Medical University, Guangzhou, China.
| |
Collapse
|
60
|
Ericksen RE, Lim SL, McDonnell E, Shuen WH, Vadiveloo M, White PJ, Ding Z, Kwok R, Lee P, Radda GK, Toh HC, Hirschey MD, Han W. Loss of BCAA Catabolism during Carcinogenesis Enhances mTORC1 Activity and Promotes Tumor Development and Progression. Cell Metab 2019; 29:1151-1165.e6. [PMID: 30661928 PMCID: PMC6506390 DOI: 10.1016/j.cmet.2018.12.020] [Citation(s) in RCA: 183] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Revised: 09/13/2018] [Accepted: 12/21/2018] [Indexed: 02/07/2023]
Abstract
Tumors display profound changes in cellular metabolism, yet how these changes aid the development and growth of tumors is not fully understood. Here we use a multi-omic approach to examine liver carcinogenesis and regeneration, and find that progressive loss of branched-chain amino acid (BCAA) catabolism promotes tumor development and growth. In human hepatocellular carcinomas and animal models of liver cancer, suppression of BCAA catabolic enzyme expression led to BCAA accumulation in tumors, though this was not observed in regenerating liver tissues. The degree of enzyme suppression strongly correlated with tumor aggressiveness, and was an independent predictor of clinical outcome. Moreover, modulating BCAA accumulation regulated cancer cell proliferation in vitro, and tumor burden and overall survival in vivo. Dietary BCAA intake in humans also correlated with cancer mortality risk. In summary, loss of BCAA catabolism in tumors confers functional advantages, which could be exploited by therapeutic interventions in certain cancers.
Collapse
Affiliation(s)
- Russell E Ericksen
- Singapore Bioimaging Consortium, Agency for Science, Technology, and Research, 11 Biopolis Way, 138667 Singapore, Singapore
| | - Siew Lan Lim
- Singapore Bioimaging Consortium, Agency for Science, Technology, and Research, 11 Biopolis Way, 138667 Singapore, Singapore
| | - Eoin McDonnell
- Duke Molecular Physiology Institute, 300 North Duke Street, Durham, NC 27701, USA
| | - Wai Ho Shuen
- Division of Medical Oncology, National Cancer Center Singapore, 11 Hospital Drive, 169610 Singapore, Singapore
| | - Maya Vadiveloo
- Department of Nutrition and Food Sciences, University of Rhode Island, 41 Lower College Road, Kingston, RI 02881, USA
| | - Phillip J White
- Duke Molecular Physiology Institute, 300 North Duke Street, Durham, NC 27701, USA
| | - Zhaobing Ding
- Singapore Bioimaging Consortium, Agency for Science, Technology, and Research, 11 Biopolis Way, 138667 Singapore, Singapore
| | - Royston Kwok
- Singapore Bioimaging Consortium, Agency for Science, Technology, and Research, 11 Biopolis Way, 138667 Singapore, Singapore
| | - Philip Lee
- Singapore Bioimaging Consortium, Agency for Science, Technology, and Research, 11 Biopolis Way, 138667 Singapore, Singapore
| | - George K Radda
- Singapore Bioimaging Consortium, Agency for Science, Technology, and Research, 11 Biopolis Way, 138667 Singapore, Singapore
| | - Han Chong Toh
- Division of Medical Oncology, National Cancer Center Singapore, 11 Hospital Drive, 169610 Singapore, Singapore
| | - Matthew D Hirschey
- Duke Molecular Physiology Institute, 300 North Duke Street, Durham, NC 27701, USA
| | - Weiping Han
- Singapore Bioimaging Consortium, Agency for Science, Technology, and Research, 11 Biopolis Way, 138667 Singapore, Singapore.
| |
Collapse
|
61
|
Adebayo Michael AO, Ko S, Tao J, Moghe A, Yang H, Xu M, Russell JO, Pradhan-Sundd T, Liu S, Singh S, Poddar M, Monga JS, Liu P, Oertel M, Ranganathan S, Singhi A, Rebouissou S, Zucman-Rossi J, Ribback S, Calvisi D, Qvartskhava N, Görg B, Häussinger D, Chen X, Monga SP. Inhibiting Glutamine-Dependent mTORC1 Activation Ameliorates Liver Cancers Driven by β-Catenin Mutations. Cell Metab 2019; 29:1135-1150.e6. [PMID: 30713111 PMCID: PMC6506359 DOI: 10.1016/j.cmet.2019.01.002] [Citation(s) in RCA: 110] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Revised: 12/03/2018] [Accepted: 01/07/2019] [Indexed: 12/12/2022]
Abstract
Based on their lobule location, hepatocytes display differential gene expression, including pericentral hepatocytes that surround the central vein, which are marked by Wnt-β-catenin signaling. Activating β-catenin mutations occur in a variety of liver tumors, including hepatocellular carcinoma (HCC), but no specific therapies are available to treat these tumor subsets. Here, we identify a positive relationship between β-catenin activation, its transcriptional target glutamine synthetase (GS), and p-mTOR-S2448, an indicator of mTORC1 activation. In normal livers of mice and humans, pericentral hepatocytes were simultaneously GS and p-mTOR-S2448 positive, as were β-catenin-mutated liver tumors. Genetic disruption of β-catenin signaling or GS prevented p-mTOR-S2448 expression, while its forced expression in β-catenin-deficient livers led to ectopic p-mTOR-S2448 expression. Further, we found notable therapeutic benefit of mTORC1 inhibition in mutant-β-catenin-driven HCC through suppression of cell proliferation and survival. Thus, mTORC1 inhibitors could be highly relevant in the treatment of liver tumors that are β-catenin mutated and GS positive.
Collapse
Affiliation(s)
- Adeola O Adebayo Michael
- Division of Experimental Pathology, Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; Pittsburgh Liver Research Center, University of Pittsburgh Medical Center and University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Sungjin Ko
- Division of Experimental Pathology, Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; Pittsburgh Liver Research Center, University of Pittsburgh Medical Center and University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Junyan Tao
- Division of Experimental Pathology, Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; Pittsburgh Liver Research Center, University of Pittsburgh Medical Center and University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Akshata Moghe
- Pittsburgh Liver Research Center, University of Pittsburgh Medical Center and University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; Division of Gastroenterology, Hepatology and Nutrition, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Hong Yang
- Division of Experimental Pathology, Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; Department of Medical Ultrasonics, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Meng Xu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an Jiaotong University, Xi'an, PR China; Department of Bioengineering and Therapeutic Sciences and Liver Center, University of California, San Francisco, San Francisco, CA, USA
| | - Jacquelyn O Russell
- Division of Experimental Pathology, Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; Pittsburgh Liver Research Center, University of Pittsburgh Medical Center and University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Tirthadipa Pradhan-Sundd
- Division of Experimental Pathology, Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; Pittsburgh Liver Research Center, University of Pittsburgh Medical Center and University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Silvia Liu
- Division of Experimental Pathology, Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; Pittsburgh Liver Research Center, University of Pittsburgh Medical Center and University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Sucha Singh
- Division of Experimental Pathology, Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; Pittsburgh Liver Research Center, University of Pittsburgh Medical Center and University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Minakshi Poddar
- Division of Experimental Pathology, Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; Pittsburgh Liver Research Center, University of Pittsburgh Medical Center and University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Jayvir S Monga
- Division of Experimental Pathology, Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Pin Liu
- Department of Pediatrics, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, PR China
| | - Michael Oertel
- Division of Experimental Pathology, Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; Pittsburgh Liver Research Center, University of Pittsburgh Medical Center and University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Sarangarajan Ranganathan
- Pittsburgh Liver Research Center, University of Pittsburgh Medical Center and University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; Division of Pediatric Pathology, Department of Pathology, Children's Hospital of Pittsburgh, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Aatur Singhi
- Pittsburgh Liver Research Center, University of Pittsburgh Medical Center and University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; Division of Anatomic Pathology, Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Sandra Rebouissou
- Inserm, UMR-1162, Génomique fonctionnelle des Tumeurs solides, Equipe Labellisée Ligue Contre le Cancer, Paris 75010, France; Université Paris Descartes, Labex Immuno-Oncology, Sorbonne Paris Cité, 75010 Paris, France; Université Paris 13, Sorbonne Paris Cité, UFR SMBH, 93000 Bobigny, France; Université Paris Diderot, IUH, 75010 Paris, France
| | - Jessica Zucman-Rossi
- Inserm, UMR-1162, Génomique fonctionnelle des Tumeurs solides, Equipe Labellisée Ligue Contre le Cancer, Paris 75010, France; Université Paris Descartes, Labex Immuno-Oncology, Sorbonne Paris Cité, 75010 Paris, France; Université Paris 13, Sorbonne Paris Cité, UFR SMBH, 93000 Bobigny, France; Université Paris Diderot, IUH, 75010 Paris, France
| | - Silvia Ribback
- Institute of Pathology, University of Greifswald, Greifswald, Germany
| | - Diego Calvisi
- Institute of Pathology, University of Greifswald, Greifswald, Germany
| | - Natalia Qvartskhava
- Clinic for Gastroenterology, Hepatology and Infectious Diseases, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| | - Boris Görg
- Clinic for Gastroenterology, Hepatology and Infectious Diseases, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| | - Dieter Häussinger
- Clinic for Gastroenterology, Hepatology and Infectious Diseases, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| | - Xin Chen
- Department of Bioengineering and Therapeutic Sciences and Liver Center, University of California, San Francisco, San Francisco, CA, USA
| | - Satdarshan P Monga
- Division of Experimental Pathology, Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; Pittsburgh Liver Research Center, University of Pittsburgh Medical Center and University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; Division of Gastroenterology, Hepatology and Nutrition, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.
| |
Collapse
|
62
|
Denk H, Stumptner C, Abuja PM, Zatloukal K. Sequestosome 1/p62-related pathways as therapeutic targets in hepatocellular carcinoma. Expert Opin Ther Targets 2019; 23:393-406. [PMID: 30987486 DOI: 10.1080/14728222.2019.1601703] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
INTRODUCTION Protein sequestosome 1/p62 (p62) plays a crucial role in vital complex and interacting signaling pathways in normal and neoplastic cells. P62 is involved in autophagy, defense against oxidative stress via activation of the Keap1/Nrf2 system, in protein aggregation and sequestration, and in apoptosis. Autophagy contributes to cell survival and proliferation by eliminating damaged organelles, potentially toxic protein aggregates and invading microorganisms, and by providing nutrients under starvation conditions. The same holds true for oxidative stress defense, which may prevent genomic alterations and tumor initiation but also protect established tumor cells and promote tumor progression. Cross-talk between autophagy and apoptosis is regulated by a signaling network with the involvement of p62. Areas covered: The review deals with structure, function, and regulation of p62 and its role in liver carcinogenesis. Emphasis is placed on mechanisms leading to overexpression of p62 and its accumulation as inclusion bodies in HCC and on the impact of p62-dependent signaling pathways in tumor cells with the aim to explore the possible role of p62 as the therapeutic target. Expert opinion: Depending on the context, targeting p62 or interference with related pathways, such as autophagy, is a potential therapeutic strategy in HCC. However, the heterogeneity of this tumor entity and the complexity and mutual interactions of the p62-dependent pathways involved are challenges for a targeted therapy since interference with p62-mediated regulatory processes could result likewise in inhibition of tumorigenesis and in its promotion and thus provoke harmful side effects. Therapy-related patient stratification based on reliable markers to better define pathogenic principles of the tumor is a necessity when this type of treatment is considered.
Collapse
Affiliation(s)
- Helmut Denk
- a Institute of Pathology , Medical University of Graz , Graz , Austria
| | - Conny Stumptner
- a Institute of Pathology , Medical University of Graz , Graz , Austria
| | - Peter M Abuja
- a Institute of Pathology , Medical University of Graz , Graz , Austria
| | - Kurt Zatloukal
- a Institute of Pathology , Medical University of Graz , Graz , Austria
| |
Collapse
|
63
|
Yu XN, Chen H, Liu TT, Wu J, Zhu JM, Shen XZ. Targeting the mTOR regulatory network in hepatocellular carcinoma: Are we making headway? Biochim Biophys Acta Rev Cancer 2019; 1871:379-391. [PMID: 30951815 DOI: 10.1016/j.bbcan.2019.03.001] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2018] [Revised: 03/20/2019] [Accepted: 03/20/2019] [Indexed: 12/24/2022]
Abstract
The mechanistic target of rapamycin (mTOR) pathway coordinates organismal growth and homeostasis in response to growth factors, nutrients, and cellular energy stage. The pathway regulates several major cellular processes and is implicated in various pathological conditions, including hepatocellular carcinoma (HCC). This review summarizes recent advances of the mTOR pathway, highlights the potential of the mTOR pathway as a therapeutic target, and explores clinical trials targeting the mTOR pathway in HCC. Although the review focuses on the mTOR pathway involved in HCC, more comprehensive discussions (eg, developing a rational design for future trials targeting the mTOR pathway) are also applicable to other tumors.
Collapse
Affiliation(s)
- Xiang-Nan Yu
- Department of Gastroenterology and Hepatology, Zhongshan Hospital of Fudan University, Shanghai, China; Shanghai Institute of Liver Diseases, Zhongshan Hospital of Fudan University, Shanghai, China
| | - Hong Chen
- Department of Endocrinology, Zhongshan Hospital of Fudan University, Shanghai, China
| | - Tao-Tao Liu
- Department of Gastroenterology and Hepatology, Zhongshan Hospital of Fudan University, Shanghai, China; Shanghai Institute of Liver Diseases, Zhongshan Hospital of Fudan University, Shanghai, China
| | - Jian Wu
- Department of Gastroenterology and Hepatology, Zhongshan Hospital of Fudan University, Shanghai, China; Shanghai Institute of Liver Diseases, Zhongshan Hospital of Fudan University, Shanghai, China; Department of Medical Microbiology, Key Laboratory of Medical Molecular Virology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Ji-Min Zhu
- Department of Gastroenterology and Hepatology, Zhongshan Hospital of Fudan University, Shanghai, China; Shanghai Institute of Liver Diseases, Zhongshan Hospital of Fudan University, Shanghai, China.
| | - Xi-Zhong Shen
- Department of Gastroenterology and Hepatology, Zhongshan Hospital of Fudan University, Shanghai, China; Shanghai Institute of Liver Diseases, Zhongshan Hospital of Fudan University, Shanghai, China; Department of Medical Microbiology, Key Laboratory of Medical Molecular Virology, School of Basic Medical Sciences, Fudan University, Shanghai, China.
| |
Collapse
|
64
|
Zeng N, Prodhan U, D'Souza RF, Ramzan F, Mitchell SM, Sharma P, Knowles SO, Roy NC, Sjödin A, Wagner KH, Milan AM, Cameron-Smith D, Mitchell CJ. Regulation of Amino Acid Transporters and Sensors in Response to a High protein Diet: A Randomized Controlled Trial in Elderly Men. J Nutr Health Aging 2019; 23:354-363. [PMID: 30932134 DOI: 10.1007/s12603-019-1171-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
BACKGROUND The mammalian target of rapamycin complex 1 (mTORC1) is fundamental for many cellular processes, yet it is often dysregulated with aging. Increased amino acid (AA) availability is correlated with the expression of AA transporters (AAT) and mTORC1 activity. Although many AA sensors and mediators have been proposed to relay the AA signal to mTORC1, it has not yet been determined if chronic dietary intervention affects the expression of AAT, sensors and mediators and their relationships with mTORC1 activity. OBJECTIVE AND DESIGN This study investigated whether the consumption of a diet containing either the current recommended daily allowance (RDA) of protein intake (0.8 g/kg/d) or twice the RDA (2RDA) for ten weeks affected the expression of targets associated with AA transport, sensing and mTORC1 regulation in 26 older men (70-81 years). METHOD Muscle biopsies were collected before and after the intervention under fasting conditions. Diets were controlled by providing fully prepared meals and snacks. Western blot and quantitative polymerase chain reaction were used to measure protein and gene expression respectively. RESULTS Consumption of 2RDA reduced the protein expression of L-type amino acid transporter 1 (LAT1). However, plasma leucine concentration and basal mTORC1 activity were unaltered. The downregulation of LAT1 did not affect the expression of AA sensors and mediators, including leucyl tRNA synthetase (LRS), cytosolic arginine sensor for mTORC1 (CASTOR1), Sestrin2 and Rag proteins. Instead, total ribosomal protein S6 (RPS6) was upregulated with 2RDA. CONCLUSION Ten weeks of 2RDA diet did not affect the fasting mTORC1 signaling, but increased total RPS6 might suggest improved muscular translational capacity to maintain muscular mass.
Collapse
Affiliation(s)
- N Zeng
- Dr. Cameron Mitchell Faculty of Education | School of Kinesiology, The University of British Columbia | Vancouver Campus, 2553 Wesbrook Mall | Vancouver British Columbia | V6T 1Z3 Canada, Phone 604 827 2072| Cell 604 790 3815,
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
65
|
Obesity-Induced TNFα and IL-6 Signaling: The Missing Link between Obesity and Inflammation-Driven Liver and Colorectal Cancers. Cancers (Basel) 2018; 11:cancers11010024. [PMID: 30591653 PMCID: PMC6356226 DOI: 10.3390/cancers11010024] [Citation(s) in RCA: 176] [Impact Index Per Article: 25.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Revised: 12/20/2018] [Accepted: 12/21/2018] [Indexed: 02/06/2023] Open
Abstract
Obesity promotes the development of numerous cancers, such as liver and colorectal cancers, which is at least partly due to obesity-induced, chronic, low-grade inflammation. In particular, the recruitment and activation of immune cell subsets in the white adipose tissue systemically increase proinflammatory cytokines, such as tumor necrosis factor α (TNFα) and interleukin-6 (IL-6). These proinflammatory cytokines not only impair insulin action in metabolic tissues, but also favor cancer development. Here, we review the current state of knowledge on how obesity affects inflammatory TNFα and IL-6 signaling in hepatocellular carcinoma and colorectal cancers.
Collapse
|
66
|
Sugimoto N, Katakura M, Matsuzaki K, Sumiyoshi E, Yachie A, Shido O. Chronic administration of theobromine inhibits mTOR signal in rats. Basic Clin Pharmacol Toxicol 2018; 124:575-581. [PMID: 30451374 DOI: 10.1111/bcpt.13175] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Accepted: 11/12/2018] [Indexed: 12/23/2022]
Abstract
Theobromine is a caffeine derivative and the primary methylxanthine in Theobroma cacao. We have shown previously that theobromine inhibits the Akt-mammalian target of rapamycin (mTOR) signal in vitro. In this study, we investigated whether orally administered theobromine could inhibit mTOR activity in rats. mTOR is phosphorylated by Akt. Thus, the level of phosphorylated mTOR was used as an index of mTOR activity. Male Wistar rats were divided into two groups. The control group (CN) was fed a normal diet, while the theobromine group (TB) was fed a diet supplemented with 0.05% theobromine for 40 days. We measured body-weights and tissue weights, food and water intake, blood count, concentrations of theobromine in the plasma, liver and brain, and the levels of phosphorylated mTOR in the liver and brain. Orally administered theobromine did not affect the body-weights and tissue weights, food and water intake, and blood count as determined by comparison with levels in rats that were fed standard chow. Theobromine was detected in the plasma, liver and brain obtained from TB rats, but was not detected in tissues obtained from CN rats. The phosphorylated mTOR levels in the liver and brain were significantly lower in TB rats than in CN rats. The results suggest that oral theobromine inhibits mTOR signalling in vivo.
Collapse
Affiliation(s)
- Naotoshi Sugimoto
- Department of Physiology, Graduate School of Medical Science, Kanazawa University, Kanazawa, Japan.,Department of Environmental Physiology, School of Medicine, Shimane University, Izumo, Japan.,Department of Pediatrics, Graduate School of Medical Science, Kanazawa University, Kanazawa, Japan
| | - Masanori Katakura
- Department of Environmental Physiology, School of Medicine, Shimane University, Izumo, Japan.,Department of Nutritional Physiology, Faculty of Pharmaceutical Sciences, Josai University, Sakado, Japan
| | - Kentaro Matsuzaki
- Department of Environmental Physiology, School of Medicine, Shimane University, Izumo, Japan
| | - Eri Sumiyoshi
- Department of Environmental Physiology, School of Medicine, Shimane University, Izumo, Japan
| | - Akihiro Yachie
- Department of Pediatrics, Graduate School of Medical Science, Kanazawa University, Kanazawa, Japan
| | - Osamu Shido
- Department of Environmental Physiology, School of Medicine, Shimane University, Izumo, Japan
| |
Collapse
|
67
|
Caron A, Briscoe DM, Richard D, Laplante M. DEPTOR at the Nexus of Cancer, Metabolism, and Immunity. Physiol Rev 2018; 98:1765-1803. [PMID: 29897294 DOI: 10.1152/physrev.00064.2017] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
DEP domain-containing mechanistic target of rapamycin (mTOR)-interacting protein (DEPTOR) is an important modulator of mTOR, a kinase at the center of two important protein complexes named mTORC1 and mTORC2. These highly studied complexes play essential roles in regulating growth, metabolism, and immunity in response to mitogens, nutrients, and cytokines. Defects in mTOR signaling have been associated with the development of many diseases, including cancer and diabetes, and approaches aiming at modulating mTOR activity are envisioned as an attractive strategy to improve human health. DEPTOR interaction with mTOR represses its kinase activity and rewires the mTOR signaling pathway. Over the last years, several studies have revealed key roles for DEPTOR in numerous biological and pathological processes. Here, we provide the current state of the knowledge regarding the cellular and physiological functions of DEPTOR by focusing on its impact on the mTOR pathway and its role in promoting health and disease.
Collapse
Affiliation(s)
- Alexandre Caron
- Department of Internal Medicine, Division of Hypothalamic Research, The University of Texas Southwestern Medical Center , Dallas, Texas ; Transplant Research Program, Boston Children's Hospital , Boston, Massachusetts ; Department of Pediatrics, Harvard Medical School , Boston, Massachusetts ; Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec (CRIUCPQ), Faculté de Médecine, Université Laval , Québec , Canada ; and Centre de Recherche sur le Cancer de l'Université Laval, Université Laval , Québec , Canada
| | - David M Briscoe
- Department of Internal Medicine, Division of Hypothalamic Research, The University of Texas Southwestern Medical Center , Dallas, Texas ; Transplant Research Program, Boston Children's Hospital , Boston, Massachusetts ; Department of Pediatrics, Harvard Medical School , Boston, Massachusetts ; Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec (CRIUCPQ), Faculté de Médecine, Université Laval , Québec , Canada ; and Centre de Recherche sur le Cancer de l'Université Laval, Université Laval , Québec , Canada
| | - Denis Richard
- Department of Internal Medicine, Division of Hypothalamic Research, The University of Texas Southwestern Medical Center , Dallas, Texas ; Transplant Research Program, Boston Children's Hospital , Boston, Massachusetts ; Department of Pediatrics, Harvard Medical School , Boston, Massachusetts ; Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec (CRIUCPQ), Faculté de Médecine, Université Laval , Québec , Canada ; and Centre de Recherche sur le Cancer de l'Université Laval, Université Laval , Québec , Canada
| | - Mathieu Laplante
- Department of Internal Medicine, Division of Hypothalamic Research, The University of Texas Southwestern Medical Center , Dallas, Texas ; Transplant Research Program, Boston Children's Hospital , Boston, Massachusetts ; Department of Pediatrics, Harvard Medical School , Boston, Massachusetts ; Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec (CRIUCPQ), Faculté de Médecine, Université Laval , Québec , Canada ; and Centre de Recherche sur le Cancer de l'Université Laval, Université Laval , Québec , Canada
| |
Collapse
|
68
|
Wu R, Murali R, Kabe Y, French SW, Chiang YM, Liu S, Sher L, Wang CC, Louie S, Tsukamoto H. Baicalein Targets GTPase-Mediated Autophagy to Eliminate Liver Tumor-Initiating Stem Cell-Like Cells Resistant to mTORC1 Inhibition. Hepatology 2018; 68:1726-1740. [PMID: 29729190 PMCID: PMC6204108 DOI: 10.1002/hep.30071] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Revised: 04/13/2018] [Accepted: 04/30/2018] [Indexed: 12/30/2022]
Abstract
Drug resistance is a major problem in the treatment of liver cancer. Mammalian Target of Rapamycin 1 (mTORC1) inhibitors have been tested for the treatment of liver cancer based on hyperactive mTOR in this malignancy. However, their clinical trials showed poor outcome, most likely due to their ability to upregulate CD133 and promote chemoresistance. The CD133+ tumor-initiating stem cell-like cells (TICs) isolated from mouse and human liver tumors are chemoresistant, and identification of an approach to abrogate this resistance is desired. In search of a compound that rescinds resistance of TICs to mTORC1 inhibition and improves chemotherapy, we identified baicalein (BC), which selectively chemosensitizes TICs and the human hepatocellular carcinoma (HCC) cell line Huh7 cells but not mouse and human primary hepatocytes. Nanobead pull-down and mass-spectrometric analysis, biochemical binding assay, and three-dimensional computational modeling studies reveal BC's ability to competitively inhibit guanosine triphosphate binding of SAR1B guanosine triphosphatase, which is essential for autophagy. Indeed, BC suppresses autophagy induced by an mTORC1 inhibitor and synergizes cell death caused by mTORC1 inhibition in TIC and Huh7 spheroid formation and in the patient-derived xenograft model of HCC. The BC-induced chemosensitization is rescued by SAR1B expression and phenocopied by SAR1B knockdown in cancer cells treated with a mTORC1 inhibitor. Conclusion: These results identify SAR1B as a target in liver TICs and HCC cells resistant to mTORC1 inhibition.
Collapse
Affiliation(s)
- Raymond Wu
- Southern California Research Center for ALPD and Cirrhosis and Department of Pathology, Keck School of Medicine of the University of Southern California, Los Angeles, California, USA
| | - Ramachandran Murali
- Department of Biomedical Sciences, Cedars Sinai Medical Center, Los Angeles, California, USA
| | - Yasuaki Kabe
- Department of Biochemistry, Keio University of School of Medicine, Tokyo, Japan
| | | | - Yi-Ming Chiang
- School of Pharmacy, University of Southern California, Los Angeles, California, USA
| | - Siyu Liu
- School of Pharmacy, University of Southern California, Los Angeles, California, USA
| | - Linda Sher
- Department of Surgery, Keck School of Medicine of the University of Southern California, Los Angeles, California, USA
| | - Clay C. Wang
- School of Pharmacy, University of Southern California, Los Angeles, California, USA
| | - Stan Louie
- School of Pharmacy, University of Southern California, Los Angeles, California, USA
| | - Hidekazu Tsukamoto
- Southern California Research Center for ALPD and Cirrhosis and Department of Pathology, Keck School of Medicine of the University of Southern California, Los Angeles, California, USA
- Department of Veterans Affairs Greater Los Angeles Healthcare System, Los Angeles, California, USA
| |
Collapse
|
69
|
Obesity and gastrointestinal cancer: the interrelationship of adipose and tumour microenvironments. Nat Rev Gastroenterol Hepatol 2018; 15:699-714. [PMID: 30323319 DOI: 10.1038/s41575-018-0069-7] [Citation(s) in RCA: 96] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Increasing recognition of an association between obesity and many cancer types exists, but how the myriad of local and systemic effects of obesity affect key cellular and non-cellular processes within the tumour microenvironment (TME) relevant to carcinogenesis, tumour progression and response to therapies remains poorly understood. The TME is a complex cellular environment in which the tumour exists along with blood vessels, immune cells, fibroblasts, bone marrow-derived inflammatory cells, signalling molecules and the extracellular matrix. Obesity, in particular visceral obesity, might fuel the dysregulation of key pathways relevant to both the adipose microenvironment and the TME, which interact to promote carcinogenesis in at-risk epithelium. The tumour-promoting effects of obesity can occur at the local level as well as systemically via circulating inflammatory, growth factor and metabolic mediators associated with adipose tissue inflammation, as well as paracrine and autocrine effects. This Review explores key pathways linking visceral obesity and gastrointestinal cancer, including inflammation, hypoxia, altered stromal and immune cell function, energy metabolism and angiogenesis.
Collapse
|
70
|
Drusian L, Nigro EA, Mannella V, Pagliarini R, Pema M, Costa ASH, Benigni F, Larcher A, Chiaravalli M, Gaude E, Montorsi F, Capitanio U, Musco G, Frezza C, Boletta A. mTORC1 Upregulation Leads to Accumulation of the Oncometabolite Fumarate in a Mouse Model of Renal Cell Carcinoma. Cell Rep 2018; 24:1093-1104.e6. [PMID: 30067967 DOI: 10.1016/j.celrep.2018.06.106] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Revised: 06/04/2018] [Accepted: 06/27/2018] [Indexed: 12/30/2022] Open
Abstract
Renal cell carcinomas (RCCs) are common cancers diagnosed in more than 350,000 people each year worldwide. Several pathways are de-regulated in RCCs, including mTORC1. However, how mTOR drives tumorigenesis in this context is unknown. The lack of faithful animal models has limited progress in understanding and targeting RCCs. Here, we generated a mouse model harboring the kidney-specific inactivation of Tsc1. These animals develop cysts that evolve into papillae, cystadenomas, and papillary carcinomas. Global profiling confirmed several metabolic derangements previously attributed to mTORC1. Notably, Tsc1 inactivation results in the accumulation of fumarate and in mTOR-dependent downregulation of the TCA cycle enzyme fumarate hydratase (FH). The re-expression of FH in cellular systems lacking Tsc1 partially rescued renal epithelial transformation. Importantly, the mTORC1-FH axis is likely conserved in human RCC specimens. We reveal a role of mTORC1 in renal tumorigenesis, which depends on the oncometabolite fumarate.
Collapse
Affiliation(s)
- Luca Drusian
- Molecular Basis of Cystic Kidney Disorders Unit, Division of Genetics and Cell Biology, IRCCS San Raffaele Scientific Institute, Milan, Italy; PhD Program in Biology and Biotherapy of Cancer, Università Vita-Salute San Raffaele, Milan, Italy
| | - Elisa Agnese Nigro
- Molecular Basis of Cystic Kidney Disorders Unit, Division of Genetics and Cell Biology, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Valeria Mannella
- Biomolecular NMR Unit, Division of Genetics and Cell Biology, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Roberto Pagliarini
- Molecular Basis of Cystic Kidney Disorders Unit, Division of Genetics and Cell Biology, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Monika Pema
- Molecular Basis of Cystic Kidney Disorders Unit, Division of Genetics and Cell Biology, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Ana S H Costa
- MRC, Cancer Unit Cambridge, University of Cambridge, Hutchison/MRC Research Centre, Box 197, Cambridge Biomedical Campus, Cambridge, CB2 0XZ, UK
| | - Fabio Benigni
- Urological Research Institute (URI), IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Alessandro Larcher
- Department of Urology, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Marco Chiaravalli
- Molecular Basis of Cystic Kidney Disorders Unit, Division of Genetics and Cell Biology, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Edoardo Gaude
- MRC, Cancer Unit Cambridge, University of Cambridge, Hutchison/MRC Research Centre, Box 197, Cambridge Biomedical Campus, Cambridge, CB2 0XZ, UK
| | - Francesco Montorsi
- Urological Research Institute (URI), IRCCS San Raffaele Scientific Institute, Milan, Italy; Department of Urology, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Umberto Capitanio
- Urological Research Institute (URI), IRCCS San Raffaele Scientific Institute, Milan, Italy; Department of Urology, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Giovanna Musco
- Biomolecular NMR Unit, Division of Genetics and Cell Biology, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Christian Frezza
- MRC, Cancer Unit Cambridge, University of Cambridge, Hutchison/MRC Research Centre, Box 197, Cambridge Biomedical Campus, Cambridge, CB2 0XZ, UK
| | - Alessandra Boletta
- Molecular Basis of Cystic Kidney Disorders Unit, Division of Genetics and Cell Biology, IRCCS San Raffaele Scientific Institute, Milan, Italy.
| |
Collapse
|
71
|
Huang R, Li T, Ni J, Bai X, Gao Y, Li Y, Zhang P, Gong Y. Different Sex-Based Responses of Gut Microbiota During the Development of Hepatocellular Carcinoma in Liver-Specific Tsc1-Knockout Mice. Front Microbiol 2018; 9:1008. [PMID: 29867896 PMCID: PMC5964185 DOI: 10.3389/fmicb.2018.01008] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Accepted: 04/30/2018] [Indexed: 12/12/2022] Open
Abstract
Gut microbial dysbiosis is correlated with the development of hepatocellular carcinoma (HCC). Therefore, analyzing the changing patterns in gut microbiota during HCC development, especially before HCC occurrence, is essential for the diagnosis and prevention of HCC based on gut microbial composition. However, these changing patterns in HCC are poorly understood, especially considering the sex differences in HCC incidence and mortality. Here, with an aim to determine the relationship between gut microbiota and HCC development in both sexes, and to screen potential microbial biomarkers for HCC diagnosis, we studied the changing patterns in the gut microbiota from mice of both sexes with liver-specific knockout of Tsc1 (LTsc1KO) that spontaneously developed HCC by 9–10 months of age and compared them to the patterns observed in their wide-type Tsc1fl/fl cohorts using high-throughput sequencing. Using the LTsc1KO model, we were able to successfully exclude the continuing influence of diet on the gut microbiota. Based on gut microbial composition, the female LTsc1KO mice exhibited gut microbial disorder earlier than male LTsc1KO mice during the development of HCC. Our findings also indicated that the decrease in the relative abundance of anaerobic bacteria and the increase in the relative abundance of facultative anaerobic bacteria can be used as risk indexes of female HCC, but would be invalid for male HCC. Most of the changes in the gut bacteria were different between female and male LTsc1KO mice. In particular, the increased abundances of Allobaculum, Erysipelotrichaceae, Neisseriaceae, Sutterella, Burkholderiales, and Prevotella species have potential for use as risk indicators of female HCC, and the increased abundances of Paraprevotella, Paraprevotellaceae, and Prevotella can probably be applied as risk indicators of male HCC. These relationships between the gut microbiota and HCC discovered in the present study may serve as a platform for the identification of potential targets for the diagnosis and prevention of HCC in the future.
Collapse
Affiliation(s)
- Rong Huang
- Department of Hepatobiliary Surgery II, Guangdong Provincial Research Center of Artificial Organ and Tissue Engineering, Zhujiang Hospital of Southern Medical University, Guangzhou, China.,State Key Laboratory of Organ Failure Research, Southern Medical University, Guangzhou, China
| | - Ting Li
- Department of Hepatobiliary Surgery II, Guangdong Provincial Research Center of Artificial Organ and Tissue Engineering, Zhujiang Hospital of Southern Medical University, Guangzhou, China.,State Key Laboratory of Organ Failure Research, Southern Medical University, Guangzhou, China
| | - Jiajia Ni
- Department of Hepatobiliary Surgery II, Guangdong Provincial Research Center of Artificial Organ and Tissue Engineering, Zhujiang Hospital of Southern Medical University, Guangzhou, China.,State Key Laboratory of Organ Failure Research, Southern Medical University, Guangzhou, China
| | - Xiaochun Bai
- Department of Cell Biology, School of Basic Medical Science, Southern Medical University, Guangzhou, China
| | - Yi Gao
- Department of Hepatobiliary Surgery II, Guangdong Provincial Research Center of Artificial Organ and Tissue Engineering, Zhujiang Hospital of Southern Medical University, Guangzhou, China.,State Key Laboratory of Organ Failure Research, Southern Medical University, Guangzhou, China
| | - Yang Li
- Department of Hepatobiliary Surgery II, Guangdong Provincial Research Center of Artificial Organ and Tissue Engineering, Zhujiang Hospital of Southern Medical University, Guangzhou, China.,State Key Laboratory of Organ Failure Research, Southern Medical University, Guangzhou, China
| | - Peng Zhang
- Department of Hepatobiliary Surgery II, Guangdong Provincial Research Center of Artificial Organ and Tissue Engineering, Zhujiang Hospital of Southern Medical University, Guangzhou, China.,State Key Laboratory of Organ Failure Research, Southern Medical University, Guangzhou, China
| | - Yan Gong
- Department of Cell Biology, School of Basic Medical Science, Southern Medical University, Guangzhou, China
| |
Collapse
|
72
|
Lutkewitte AJ, Schweitzer GG, Kennon-McGill S, Clemens MM, James LP, Jaeschke H, Finck BN, McGill MR. Lipin deactivation after acetaminophen overdose causes phosphatidic acid accumulation in liver and plasma in mice and humans and enhances liver regeneration. Food Chem Toxicol 2018. [PMID: 29534981 DOI: 10.1016/j.fct.2018.03.014] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Andrew J Lutkewitte
- Div. of Geriatrics and Nutritional Sciences, Dept. of Medicine, Washington University School of Medicine, St. Louis, MO, USA.
| | - George G Schweitzer
- Div. of Geriatrics and Nutritional Sciences, Dept. of Medicine, Washington University School of Medicine, St. Louis, MO, USA.
| | - Stefanie Kennon-McGill
- Dept. of Environmental and Occupational Health, Fay W. Boozman College of Public Health, University of Arkansas for Medical Sciences, Little Rock, AR, USA.
| | - Melissa M Clemens
- Interdisciplinary Biomedical Sciences Graduate Program, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Laura P James
- Dept. of Pediatrics, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, AR, USA.
| | - Hartmut Jaeschke
- Dept. of Pharmacology, Toxicology, and Therapeutics, University of Kansas Medical Center, Kansas City, KS, USA.
| | - Brian N Finck
- Div. of Geriatrics and Nutritional Sciences, Dept. of Medicine, Washington University School of Medicine, St. Louis, MO, USA.
| | - Mitchell R McGill
- Dept. of Environmental and Occupational Health, Fay W. Boozman College of Public Health, University of Arkansas for Medical Sciences, Little Rock, AR, USA.
| |
Collapse
|
73
|
Kim JO, Kim KH, Song IS, Cheon KS, Kim OH, Lee SC, Lee SK, Kim SJ. Potentiation of the anticancer effects of everolimus using a dual mTORC1/2 inhibitor in hepatocellular carcinoma cells. Oncotarget 2018; 8:2936-2948. [PMID: 27935857 PMCID: PMC5356853 DOI: 10.18632/oncotarget.13808] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Accepted: 11/23/2016] [Indexed: 12/12/2022] Open
Abstract
There is lots of evidence to support the critical involvement of mTOR signaling in the carcinogenesis of hepatocellular carcinoma (HCC). However, it has not been determined how the roles of individual mTORC1 and mTORC2 inhibitors played in the HCC therapeutics. We thus compared the effects of everolimus, Ku0063794, and a combination of the two therapies on HCC cells, using various in vitro studies (HepG2, Hep3B, and Huh7 cells), ex vivo culturing of HCC tissues obtained from patients, and the in vivo mouse xenograft model of HCC cells. Our in vitro, ex vivo, and in vivo experiments consistently demonstrated that everolimus and Ku0063794 combination therapy was superior to individual monotherapies, as manifested by higher reduction of proliferation, migration, and invasion of HCC cells, and the higher inhibition of EMT process as well. Although individual monotherapies could not inhibit SIRT1 (positive regulator of EMT) expression, the combination therapy significantly inhibited SIRT1 expression. However, overexpression of SIRT1 mitigated the EMT-inhibiting effect of the combination therapy, suggesting that the combination therapy inhibits the EMT by way of suppressing SIRT1 expression. Therefore, when considering everolimus as an anti-HCC agent, the improved anticancer effects provided by combining it with an inhibitor of both mTORC1 and mTORC2 should be recognized.
Collapse
Affiliation(s)
- Jong-Ok Kim
- Department of Pathology, Daejeon St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Kee-Hwan Kim
- Department of Surgery, Uijeongbu St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - In Sang Song
- Department of Surgery, Chungnam National University Hospital, Daejeon, Republic of Korea
| | - Kwang-Sik Cheon
- Department of Surgery, Chungnam National University Hospital, Daejeon, Republic of Korea
| | - Ok-Hee Kim
- Department of Surgery, Daejeon St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Sang Chul Lee
- Department of Surgery, Daejeon St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Sang Kuon Lee
- Department of Surgery, Daejeon St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Say-June Kim
- Department of Surgery, Daejeon St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| |
Collapse
|
74
|
Nikonorova IA, Mirek ET, Signore CC, Goudie MP, Wek RC, Anthony TG. Time-resolved analysis of amino acid stress identifies eIF2 phosphorylation as necessary to inhibit mTORC1 activity in liver. J Biol Chem 2018; 293:5005-5015. [PMID: 29449374 DOI: 10.1074/jbc.ra117.001625] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Revised: 01/26/2018] [Indexed: 12/31/2022] Open
Abstract
Amino acid availability is sensed by GCN2 (general control nonderepressible 2) and mechanistic target of rapamycin complex 1 (mTORC1), but how these two sensors coordinate their respective signal transduction events remains mysterious. In this study we utilized mouse genetic models to investigate the role of GCN2 in hepatic mTORC1 regulation upon amino acid stress induced by a single injection of asparaginase. We found that deletion of Gcn2 prevented hepatic phosphorylation of eukaryotic initiation factor 2α to asparaginase and instead unleashed mTORC1 activity. This change in intracellular signaling occurred within minutes and resulted in increased 5'-terminal oligopyrimidine mRNA translation instead of activating transcription factor 4 synthesis. Asparaginase also promoted hepatic mRNA levels of several genes which function as mTORC1 inhibitors, and these genes were blunted or blocked in the absence of Gcn2, but their timing could not explain the early discordant effects in mTORC1 signaling. Preconditioning mice with a chemical endoplasmic reticulum stress agent before amino acid stress rescued normal mTORC1 repression in the liver of Gcn2-/- mice but not in livers with both Gcn2 and the endoplasmic reticulum stress kinase, Perk, deleted. Furthermore, treating wildtype and Gcn2-/- mice with ISRIB, an inhibitor of PERK signaling, also failed to alter hepatic mTORC1 responses to asparaginase, although administration of ISRIB alone had an inhibitory GCN2-independent effect on mTORC1 activity. Taken together, the data show that activating transcription factor 4 is not required, but eukaryotic initiation factor 2α phosphorylation is necessary to prevent mTORC1 activation during amino acid stress.
Collapse
Affiliation(s)
- Inna A Nikonorova
- From the Department of Nutritional Sciences, Rutgers, The State University of New Jersey, New Brunswick, New Jersey 08901 and
| | - Emily T Mirek
- From the Department of Nutritional Sciences, Rutgers, The State University of New Jersey, New Brunswick, New Jersey 08901 and
| | - Christina C Signore
- From the Department of Nutritional Sciences, Rutgers, The State University of New Jersey, New Brunswick, New Jersey 08901 and
| | - Michael P Goudie
- From the Department of Nutritional Sciences, Rutgers, The State University of New Jersey, New Brunswick, New Jersey 08901 and
| | - Ronald C Wek
- the Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana 46202
| | - Tracy G Anthony
- From the Department of Nutritional Sciences, Rutgers, The State University of New Jersey, New Brunswick, New Jersey 08901 and
| |
Collapse
|
75
|
Zhang S, Li X, Wang HY, Steven Zheng XF. Beyond regulation of pol III: Role of MAF1 in growth, metabolism, aging and cancer. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2018; 1861:338-343. [PMID: 29407795 DOI: 10.1016/j.bbagrm.2018.01.019] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2017] [Revised: 01/24/2018] [Accepted: 01/28/2018] [Indexed: 11/24/2022]
Abstract
MAF1 was discovered as a master repressor of Pol III-dependent transcription in response to diverse extracellular signals, including growth factor, nutrient and stress. It is regulated through posttranslational mechanisms such as phosphorylation. A prominent upstream regulator of MAF1 is the mechanistic target of rapamycin (mTOR) pathway. mTOR kinase directly phosphorylates MAF1, controlling its localization and transcriptional activity. In mammals, MAF1 has also been shown to regulate Pol I- and Pol II-dependent transcription. Interestingly, MAF1 modulates Pol II activity both as a repressor and activator, depending on specific target genes, to impact on cellular growth and metabolism. While MAF1 represses genes such as TATA-binding protein (TBP) and fatty acid synthase (FASN), it activates the expression of PTEN, a major tumor suppressor and an inhibitor of the mTOR signaling. Increasing evidence indicates that MAF1 plays an important role in different aspects of normal physiology, lifespan and oncogenesis. Here we will review the current knowledge on MAF1 in growth, metabolism, aging and cancer. This article is part of a Special Issue entitled: SI: Regulation of tRNA synthesis and modification in physiological conditions and disease edited by Dr. Boguta Magdalena.
Collapse
Affiliation(s)
- Shanshan Zhang
- State Key Laboratory of Oncology in South China, and Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Xiaoxing Li
- State Key Laboratory of Oncology in South China, and Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Hui-Yun Wang
- State Key Laboratory of Oncology in South China, and Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou 510060, China; Rutgers Cancer Institute of New Jersey and Department of Pharmacology, Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, New Brunswick, NJ 08903, USA
| | - X F Steven Zheng
- State Key Laboratory of Oncology in South China, and Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou 510060, China; Rutgers Cancer Institute of New Jersey and Department of Pharmacology, Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, New Brunswick, NJ 08903, USA.
| |
Collapse
|
76
|
Yamada S, Takashina Y, Watanabe M, Nagamine R, Saito Y, Kamada N, Saito H. Bile acid metabolism regulated by the gut microbiota promotes non-alcoholic steatohepatitis-associated hepatocellular carcinoma in mice. Oncotarget 2018. [PMID: 29515780 PMCID: PMC5839411 DOI: 10.18632/oncotarget.24066] [Citation(s) in RCA: 98] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Gut microbiota plays a significant role in the development of hepatocellular carcinoma (HCC) in non-alcoholic steatohepatitis (NASH). However, understanding of the precise mechanism of this process remains incomplete. A new class steatohepatitis-inducing high-fat diet (HFD), namely STHD-01, can promote the development of HCC without the administration of chemical carcinogens. Using this diet, we comprehensively analyzed changes in the gut microbiota and its metabolic functions during the development of HCC in NASH. Mice fed the STHD-01 developed NASH within 9 weeks. NASH further progressed into HCC by 41 weeks. Treatment with antibiotics significantly attenuated liver pathology and suppressed tumor development, indicating the critical role of the gut microbiota in tumor development in this model. Accumulation of cholesterol and bile acids in the liver and feces increased after feeding the mice with STHD-01. Treatment with antibiotics did not reverse these phenotypes. In contrast, accumulation of secondary bile acids was dramatically reduced after the treatment with antibiotics, suggesting the critical role of the gut microbiota in the conversion of primary bile acids to secondary bile acids. Secondary bile acids such as deoxycholic acid activated the mTOR, pathway in hepatocytes. Activation of mTOR was observed in the liver of mice fed STHD-01, and the activation was reduced when mice were treated with antibiotics. Collectively, bile acid metabolism by the gut microbiota promotes HCC development in STHD-01-induced NASH.
Collapse
Affiliation(s)
- Shoji Yamada
- Division of Pharmacotherapeutics, Faculty of Pharmacy, Keio University, Minato-ku, Tokyo 105-8512, Japan
| | - Yoko Takashina
- Graduate School of Media and Governance, Keio University, Fujisawa, Kanagawa 252-0882, Japan
| | - Mitsuhiro Watanabe
- Graduate School of Media and Governance, Keio University, Fujisawa, Kanagawa 252-0882, Japan
| | - Ryogo Nagamine
- Division of Pharmacotherapeutics, Faculty of Pharmacy, Keio University, Minato-ku, Tokyo 105-8512, Japan
| | - Yoshimasa Saito
- Division of Pharmacotherapeutics, Faculty of Pharmacy, Keio University, Minato-ku, Tokyo 105-8512, Japan.,Division of Gastroenterology and Hepatology, Department of Internal Medicine, Keio University, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Nobuhiko Kamada
- Division of Gastroenterology, Department of Internal Medicine, The University of Michigan Medical School, Ann Arbor, MI, 48109, USA
| | - Hidetsugu Saito
- Division of Pharmacotherapeutics, Faculty of Pharmacy, Keio University, Minato-ku, Tokyo 105-8512, Japan.,Division of Gastroenterology and Hepatology, Department of Internal Medicine, Keio University, Shinjuku-ku, Tokyo 160-8582, Japan
| |
Collapse
|
77
|
Roles and Functions of the Unconventional Prefoldin URI. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1106:95-108. [PMID: 30484155 DOI: 10.1007/978-3-030-00737-9_7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Almost 15 years ago, the URI prefoldin-like complex was discovered by Krek and colleagues in immunoprecipitation experiments conducted in mammalian cells with the aim of identifying new binding partners of the E3 ubiquitin-protein ligase S-phase kinase-associated protein 2 (SKP2) (Gstaiger et al. Science 302(5648):1208-1212, 2003). The URI prefoldin-like complex is a heterohexameric chaperone complex comprising two α and four β subunits (α2β4). The α subunits are URI and STAP1, while the β subunits are PFDN2, PFDN6, and PFDN4r, one of which is probably present in duplicate. Elucidating the roles and functions of these components in vitro and in vivo will help to clarify the mechanistic behavior of what appears to be a remarkably important cellular machine.
Collapse
|
78
|
Weihrauch M, Handschin C. Pharmacological targeting of exercise adaptations in skeletal muscle: Benefits and pitfalls. Biochem Pharmacol 2018; 147:211-220. [PMID: 29061342 PMCID: PMC5850978 DOI: 10.1016/j.bcp.2017.10.006] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Accepted: 10/18/2017] [Indexed: 12/22/2022]
Abstract
Exercise exerts significant effects on the prevention and treatment of many diseases. However, even though some of the key regulators of training adaptation in skeletal muscle have been identified, this biological program is still poorly understood. Accordingly, exercise-based pharmacological interventions for many muscle wasting diseases and also for pathologies that are triggered by a sedentary lifestyle remain scarce. The most efficacious compounds that induce muscle hypertrophy or endurance are hampered by severe side effects and are classified as doping. In contrast, dietary supplements with a higher safety margin exert milder outcomes. In recent years, the design of pharmacological agents that activate the training program, so-called "exercise mimetics", has been proposed, although the feasibility of such an approach is highly debated. In this review, the most recent insights into key regulatory factors and therapeutic approaches aimed at leveraging exercise adaptations are discussed.
Collapse
|
79
|
Guo P, Ma X, Zhao W, Huai W, Li T, Qiu Y, Zhang Y, Han L. TRIM31 is upregulated in hepatocellular carcinoma and promotes disease progression by inducing ubiquitination of TSC1–TSC2 complex. Oncogene 2017; 37:478-488. [DOI: 10.1038/onc.2017.349] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Revised: 08/16/2017] [Accepted: 08/21/2017] [Indexed: 12/20/2022]
|
80
|
Ho DWH, Chan LK, Chiu YT, Xu IMJ, Poon RTP, Cheung TT, Tang CN, Tang VWL, Lo ILO, Lam PWY, Yau DTW, Li MX, Wong CM, Ng IOL. TSC1/2 mutations define a molecular subset of HCC with aggressive behaviour and treatment implication. Gut 2017; 66:1496-1506. [PMID: 27974549 PMCID: PMC5530480 DOI: 10.1136/gutjnl-2016-312734] [Citation(s) in RCA: 88] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Revised: 11/07/2016] [Accepted: 11/23/2016] [Indexed: 12/12/2022]
Abstract
OBJECTIVE We investigated the mutational landscape of mammalian target of rapamycin (mTOR) signalling cascade in hepatocellular carcinomas (HCCs) with chronic HBV background, aiming to evaluate and delineate mutation-dependent mechanism of mTOR hyperactivation in hepatocarcinogenesis. DESIGN We performed next-generation sequencing on human HCC samples and cell line panel. Systematic mutational screening of mTOR pathway-related genes was undertaken and mutant genes were evaluated based on their recurrence. Protein expressions of tuberous sclerosis complex (TSC)1, TSC2 and pRPS6 were assessed by immunohistochemistry in human HCC samples. Rapamycin sensitivity was estimated by colony-formation assay in HCC cell lines and the treatment was further tested using our patient-derived tumour xenograft (PDTX) models. RESULTS We identified and confirmed multiple mTOR components as recurrently mutated in HBV-associated HCCs. Of significance, we detected frequent (16.2%, n=18/111) mutations of TSC1 and TSC2 genes in the HCC samples. The spectrum of TSC1/2 mutations likely disrupts the endogenous gene functions in suppressing the downstream mTOR activity through different mechanisms and leads to more aggressive tumour behaviour. Mutational disruption of TSC1 and TSC2 was also observed in HCC cell lines and our PDTX models. TSC-mutant cells exhibited reduced colony-forming ability on rapamycin treatment. With the use of biologically relevant TSC2-mutant PDTXs, we demonstrated the therapeutic benefits of the hypersensitivity towards rapamycin treatment. CONCLUSIONS Taken together, our findings suggest the significance of previously undocumented mutation-dependent mTOR hyperactivation and frequent TSC1/2 mutations in HBV-associated HCCs. They define a molecular subset of HCC having genetic aberrations in mTOR signalling, with potential significance of effective specific drug therapy.
Collapse
Affiliation(s)
- Daniel W H Ho
- Department of Pathology, The University of Hong Kong, Hong Kong, Hong Kong,State Key Laboratory for Liver Research, The University of Hong Kong, Hong Kong, Hong Kong
| | - Lo K Chan
- Department of Pathology, The University of Hong Kong, Hong Kong, Hong Kong,State Key Laboratory for Liver Research, The University of Hong Kong, Hong Kong, Hong Kong
| | - Yung T Chiu
- Department of Pathology, The University of Hong Kong, Hong Kong, Hong Kong,State Key Laboratory for Liver Research, The University of Hong Kong, Hong Kong, Hong Kong
| | - Iris M J Xu
- Department of Pathology, The University of Hong Kong, Hong Kong, Hong Kong,State Key Laboratory for Liver Research, The University of Hong Kong, Hong Kong, Hong Kong
| | - Ronnie T P Poon
- State Key Laboratory for Liver Research, The University of Hong Kong, Hong Kong, Hong Kong,Department of Surgery, The University of Hong Kong, Hong Kong, Hong Kong
| | - Tan T Cheung
- Department of Surgery, The University of Hong Kong, Hong Kong, Hong Kong
| | - Chung N Tang
- Department of Surgery, Pamela Youde Hospital, Hong Kong, Hong Kong
| | - Victor W L Tang
- Department of Pathology, Pamela Youde Hospital, Hong Kong, Hong Kong
| | - Irene L O Lo
- Department of Surgery, Queen Elizabeth Hospital, Hong Kong, Hong Kong
| | - Polly W Y Lam
- Department of Pathology, Queen Elizabeth Hospital, Hong Kong, Hong Kong
| | - Derek T W Yau
- Department of Pathology, Queen Elizabeth Hospital, Hong Kong, Hong Kong
| | - Miao X Li
- Department of Psychiatry and Center for Genomics Science, The University of Hong Kong, Hong Kong, Hong Kong
| | - Chun M Wong
- Department of Pathology, The University of Hong Kong, Hong Kong, Hong Kong,State Key Laboratory for Liver Research, The University of Hong Kong, Hong Kong, Hong Kong
| | - Irene O L Ng
- Department of Pathology, The University of Hong Kong, Hong Kong, Hong Kong,State Key Laboratory for Liver Research, The University of Hong Kong, Hong Kong, Hong Kong
| |
Collapse
|
81
|
Giakoustidis AE, Giakoustidis DE. Immunosuppression strategies in liver transplantation patient; patients with hepatocellular carcinoma. Immunotherapy 2017; 9:197-206. [PMID: 28128716 DOI: 10.2217/imt-2016-0110] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Hepatocellular carcinoma (HCC) consists the main primary malignant tumor of the liver. There is an underlining liver cirrhosis mainly attributed to chronic hepatitis B virus or hepatitis C virus, alcoholic liver disease, nonalcoholic steatohepatitis and other pathologic conditions. Liver transplantation consists a radical management, treating both cancer and cirrhosis. By introducing the Milan Criteria for liver transplantation in HCC patients there was a 5-year survival escalation. Even though there is a careful selection of patients with HCC for transplantation, recurrent disease is still high. The role of immusuppression therapy is of paramount importance, in order to avoid acute and chronic graft rejection while protecting the patient from tumor recurrence. In recent years newer immunosuppressive agents such as the mTOR inhibitors are proposed, having dual properties, as both immunosuppressive and antitumors agents.
Collapse
Affiliation(s)
- Alexander E Giakoustidis
- Hepato-Pancreato-Biliary Surgery Department, The Royal London Hospital, Barts Health, Whitechapel Road, London E1 1BB, UK
| | - Dimitrios E Giakoustidis
- Division of Transplant Surgery, Department of Surgery, School of Health Sciences, Aristotle University of Thessaloniki & Hippokration General Hospital, Thessaloniki, Greece
| |
Collapse
|
82
|
Wang N, Tan HY, Li S, Feng Y. Atg9b Deficiency Suppresses Autophagy and Potentiates Endoplasmic Reticulum Stress-Associated Hepatocyte Apoptosis in Hepatocarcinogenesis. Theranostics 2017; 7:2325-2338. [PMID: 28740555 PMCID: PMC5505064 DOI: 10.7150/thno.18225] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2016] [Accepted: 03/08/2017] [Indexed: 01/01/2023] Open
Abstract
The aim of this study was to investigate the mechanism underlying autophagy deficiency during hepatic carcinogenesis. For this purpose, we used choline-deficient, amino acid-defined (CDAA) hepatocarcinogenesis model in mice. miRNA microarrays combined with computational target predictions and GO analysis were used to identify molecular processes involved in carcinogenesis. PCR profiler array was employed to detect the dysregulated autophagy-related genes during carcinogenesis. We observed induction of hepatic tumours with increased inflammation, DNA damage, and cell death. These cellular processes were particularly detected upon oncogenic transformation of hepatocytes in which ER stress was excessively induced. Microarray combined with GO analysis showed that transformation of hepatocytes resulted in dysregulated events associated with cytoplasmic vesicle formation, which, in turn, was related to ER stress-induced autophagy. Defects of autophagy were observed in livers harbouring tumours and suffered a loss of expression of autophagy-related protein 9b (Atg9b). Hepatocytes lacking Atg9b were vulnerable to cell death induced by ER stress stimulus mainly caused by accumulation of ubiquitinated proteins. Loss of Atg9b also blocked recruitment of p62-associated ubiquitinated protein for autophagosome-lysosome degradation as Atg9b-driven phagophores may facilitate docking of both LC3 and p62 to initiate autophagy-associated degradation. miR-3091-3p from tumour-derived exosomes, which were internalised by hepatocytes, could suppress Atg9b expression. Observations from this study advance our knowledge about the regulation of autophagy during hepatocarcinogenesis.
Collapse
Affiliation(s)
| | | | | | - Yibin Feng
- School of Chinese Medicine, The University of Hong Kong, Hong Kong S.A.R, PR of China
| |
Collapse
|
83
|
mTORC1 promotes proliferation of immature Schwann cells and myelin growth of differentiated Schwann cells. Proc Natl Acad Sci U S A 2017; 114:E4261-E4270. [PMID: 28484008 PMCID: PMC5448230 DOI: 10.1073/pnas.1620761114] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The myelination of axons in peripheral nerves requires precisely coordinated proliferation and differentiation of Schwann cells (SCs). We found that the activity of the mechanistic target of rapamycin complex 1 (mTORC1), a key signaling hub for the regulation of cellular growth and proliferation, is progressively extinguished as SCs differentiate during nerve development. To study the effects of different levels of sustained mTORC1 hyperactivity in the SC lineage, we disrupted negative regulators of mTORC1, including TSC2 or TSC1, in developing SCs of mutant mice. Surprisingly, the phenotypes ranged from arrested myelination in nerve development to focal hypermyelination in adulthood, depending on the level and timing of mTORC1 hyperactivity. For example, mice lacking TSC2 in developing SCs displayed hyperproliferation of undifferentiated SCs incompatible with normal myelination. However, these defects and myelination could be rescued by pharmacological mTORC1 inhibition. The subsequent reconstitution of SC mTORC1 hyperactivity in adult animals resulted in focal hypermyelination. Together our data suggest a model in which high mTORC1 activity promotes proliferation of immature SCs and antagonizes SC differentiation during nerve development. Down-regulation of mTORC1 activity is required for terminal SC differentiation and subsequent initiation of myelination. In distinction to this developmental role, excessive SC mTORC1 activity stimulates myelin growth, even overgrowth, in adulthood. Thus, our work delineates two distinct functions of mTORC1 in the SC lineage essential for proper nerve development and myelination. Moreover, our studies show that SCs retain their plasticity to myelinate and remodel myelin via mTORC1 throughout life.
Collapse
|
84
|
Nikonorova IA, Al-Baghdadi RJT, Mirek ET, Wang Y, Goudie MP, Wetstein BB, Dixon JL, Hine C, Mitchell JR, Adams CM, Wek RC, Anthony TG. Obesity challenges the hepatoprotective function of the integrated stress response to asparaginase exposure in mice. J Biol Chem 2017; 292:6786-6798. [PMID: 28242759 DOI: 10.1074/jbc.m116.768408] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Revised: 02/17/2017] [Indexed: 01/12/2023] Open
Abstract
Obesity increases risk for liver toxicity by the anti-leukemic agent asparaginase, but the mechanism is unknown. Asparaginase activates the integrated stress response (ISR) via sensing amino acid depletion by the eukaryotic initiation factor 2 (eIF2) kinase GCN2. The goal of this work was to discern the impact of obesity, alone versus alongside genetic disruption of the ISR, on mechanisms of liver protection during chronic asparaginase exposure in mice. Following diet-induced obesity, biochemical analysis of livers revealed that asparaginase provoked hepatic steatosis that coincided with activation of another eIF2 kinase PKR-like endoplasmic reticulum kinase (PERK), a major ISR transducer to ER stress. Genetic loss of Gcn2 intensified hepatic PERK activation to asparaginase, yet surprisingly, mRNA levels of key ISR gene targets such as Atf5 and Trib3 failed to increase. Instead, mechanistic target of rapamycin complex 1 (mTORC1) signal transduction was unleashed, and this coincided with liver dysfunction reflected by a failure to maintain hydrogen sulfide production or apolipoprotein B100 (ApoB100) expression. In contrast, obese mice lacking hepatic activating transcription factor 4 (Atf4) showed an exaggerated ISR and greater loss of endogenous hydrogen sulfide but normal inhibition of mTORC1 and maintenance of ApoB100 during asparaginase exposure. In both genetic mouse models, expression and phosphorylation of Sestrin2, an ATF4 gene target, was increased by asparaginase, suggesting mTORC1 inhibition during asparaginase exposure is not driven via eIF2-ATF4-Sestrin2. In conclusion, obesity promotes a maladaptive ISR during asparaginase exposure. GCN2 functions to repress mTORC1 activity and maintain ApoB100 protein levels independently of Atf4 expression, whereas hydrogen sulfide production is promoted via GCN2-ATF4 pathway.
Collapse
Affiliation(s)
| | - Rana J T Al-Baghdadi
- the Endocrinology and Animal Biosciences Graduate Program, Rutgers, The State University of New Jersey, New Brunswick, New Jersey 08901
| | | | | | | | | | - Joseph L Dixon
- From the Department of Nutritional Sciences, and.,the Rutgers Center for Lipid Research, New Jersey Institute for Food, Nutrition and Health, New Brunswick, New Jersey 08901
| | - Christopher Hine
- the Department of Genetics and Complex Diseases, Harvard T.H. Chan School of Public Health, Boston, Massachusetts 02115
| | - James R Mitchell
- the Department of Genetics and Complex Diseases, Harvard T.H. Chan School of Public Health, Boston, Massachusetts 02115
| | - Christopher M Adams
- the Department of Internal Medicine, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, Iowa 52242, and
| | - Ronald C Wek
- the Department of Biochemistry and Molecular Biology, Indiana University, School of Medicine, Indianapolis, Indiana 46202
| | - Tracy G Anthony
- From the Department of Nutritional Sciences, and .,the Endocrinology and Animal Biosciences Graduate Program, Rutgers, The State University of New Jersey, New Brunswick, New Jersey 08901.,the Rutgers Center for Lipid Research, New Jersey Institute for Food, Nutrition and Health, New Brunswick, New Jersey 08901
| |
Collapse
|
85
|
Loss of hepatic DEPTOR alters the metabolic transition to fasting. Mol Metab 2017; 6:447-458. [PMID: 28462079 PMCID: PMC5404102 DOI: 10.1016/j.molmet.2017.02.005] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Revised: 01/30/2017] [Accepted: 02/13/2017] [Indexed: 01/08/2023] Open
Abstract
Objective The mechanistic target of rapamycin (mTOR) is a serine/threonine kinase that functions into distinct protein complexes (mTORC1 and mTORC2) that regulates growth and metabolism. DEP-domain containing mTOR-interacting protein (DEPTOR) is part of these complexes and is known to reduce their activity. Whether DEPTOR loss affects metabolism and organismal growth in vivo has never been tested. Methods We have generated a conditional transgenic mouse allowing the tissue-specific deletion of DEPTOR. This model was crossed with CMV-cre mice or Albumin-cre mice to generate either whole-body or liver-specific DEPTOR knockout (KO) mice. Results Whole-body DEPTOR KO mice are viable, fertile, normal in size, and do not display any gross physical and metabolic abnormalities. To circumvent possible compensatory mechanisms linked to the early and systemic loss of DEPTOR, we have deleted DEPTOR specifically in the liver, a tissue in which DEPTOR protein is expressed and affected in response to mTOR activation. Liver-specific DEPTOR null mice showed a reduction in circulating glucose upon fasting versus control mice. This effect was not associated with change in hepatic gluconeogenesis potential but was linked to a sustained reduction in circulating glucose during insulin tolerance tests. In addition to the reduction in glycemia, liver-specific DEPTOR KO mice had reduced hepatic glycogen content when fasted. We showed that loss of DEPTOR cell-autonomously increased oxidative metabolism in hepatocytes, an effect associated with increased cytochrome c expression but independent of changes in mitochondrial content or in the expression of genes controlling oxidative metabolism. We found that liver-specific DEPTOR KO mice showed sustained mTORC1 activation upon fasting, and that acute treatment with rapamycin was sufficient to normalize glycemia in these mice. Conclusion We propose a model in which hepatic DEPTOR accelerates the inhibition of mTORC1 during the transition to fasting to adjust metabolism to the nutritional status. Whole-body DEPTOR KO mice are viable and do not display abnormalities. Liver-specific DEPTOR KO mice are hypoglycemic when fasted. Loss of DEPTOR promotes mTORC1 and increases oxidative metabolism. Rapamycin corrects hypoglycemia in liver-specific DEPTOR KO mice.
Collapse
|
86
|
CAMK2γ antagonizes mTORC1 activation during hepatocarcinogenesis. Oncogene 2016; 36:2446-2456. [PMID: 27819676 PMCID: PMC5408319 DOI: 10.1038/onc.2016.400] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Revised: 09/16/2016] [Accepted: 09/23/2016] [Indexed: 02/07/2023]
Abstract
Hepatocellular carcinoma (HCC) is one of the most deadly cancers that still lacks effective treatments. Dysregulation of kinase signaling has frequently been reported to contribute to HCC. In this study, we used bioinformatic approaches to identify kinases that regulate gene expression changes in human HCCs and two murine HCC models. We identified a role for calcium/calmodulin-dependent protein kinases II gamma isoform (CAMK2γ) in hepatocarcinogenesis. CAMK2γ-/- mice displayed severely enhanced chemical-induced hepatocarcinogenesis compared with wild-type controls. Mechanistically, CAMK2γ deletion potentiates hepatic activation of mechanistic target of rapamycin complex 1 (mTORC1), which results in hyperproliferation of hepatocytes. Inhibition of mTORC1 by rapamycin effectively attenuates the compensatory proliferation of hepatocytes in CAMK2γ-/- livers. We further demonstrated that CAMK2γ suppressed growth factor- or insulin-induced mTORC1 activation by inhibiting IRS1/AKT signaling. Taken together, our results reveal a novel mechanism by which CAMK2γ antagonizes mTORC1 activation during hepatocarcinogenesis.
Collapse
|
87
|
Guri Y, Hall MN. mTOR Signaling Confers Resistance to Targeted Cancer Drugs. Trends Cancer 2016; 2:688-697. [PMID: 28741507 DOI: 10.1016/j.trecan.2016.10.006] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Revised: 10/04/2016] [Accepted: 10/05/2016] [Indexed: 12/19/2022]
Abstract
Cancer is a complex disease and a leading cause of death worldwide. Extensive research over decades has led to the development of therapies that target cancer-specific signaling pathways. However, the clinical benefits of such drugs are at best transient due to tumors displaying intrinsic or adaptive resistance. The underlying compensatory pathways that allow cancer cells to circumvent a drug blockade are poorly understood. We review here recent studies suggesting that mammalian TOR (mTOR) signaling is a major compensatory pathway conferring resistance to many cancer drugs. mTOR-mediated resistance can be cell-autonomous or non-cell-autonomous. These findings suggest that mTOR signaling should be monitored routinely in tumors and that an mTOR inhibitor should be considered as a co-therapy.
Collapse
Affiliation(s)
- Yakir Guri
- Biozentrum, University of Basel, Basel, Switzerland
| | | |
Collapse
|
88
|
Taniguchi K, Yamachika S, He F, Karin M. p62/SQSTM1-Dr. Jekyll and Mr. Hyde that prevents oxidative stress but promotes liver cancer. FEBS Lett 2016; 590:2375-97. [PMID: 27404485 DOI: 10.1002/1873-3468.12301] [Citation(s) in RCA: 84] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Revised: 07/08/2016] [Accepted: 07/09/2016] [Indexed: 12/17/2022]
Abstract
p62/SQSTM1 is a multifunctional signaling hub and autophagy adaptor with many binding partners, which allow it to activate mTORC1-dependent nutrient sensing, NF-κB-mediated inflammatory responses, and the NRF2-activated antioxidant defense. p62 recognizes polyubiquitin chains via its C-terminal domain and binds to LC3 via its LIR motif, thereby promoting the autophagic degradation of ubiquitinated cargos. p62 accumulates in many human liver diseases, including nonalcoholic steatohepatitis (NASH) and hepatocellular carcinoma (HCC), where it is a component of Mallory-Denk bodies and intracellular hyaline bodies. Chronic p62 elevation contributes to HCC development by preventing oncogene-induced senescence and death of cancer-initiating cells and enhancing their proliferation. In this review, we discuss p62-mediated signaling pathways and their roles in liver pathophysiology, especially NASH and HCC.
Collapse
Affiliation(s)
- Koji Taniguchi
- Laboratory of Gene Regulation and Signal Transduction, Departments of Pharmacology and Pathology, University of California San Diego, La Jolla, CA, USA.,Department of Surgery and Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan.,Department of Microbiology and Immunology, Keio University School of Medicine, Tokyo, Japan
| | - Shinichiro Yamachika
- Laboratory of Gene Regulation and Signal Transduction, Departments of Pharmacology and Pathology, University of California San Diego, La Jolla, CA, USA
| | - Feng He
- Laboratory of Gene Regulation and Signal Transduction, Departments of Pharmacology and Pathology, University of California San Diego, La Jolla, CA, USA
| | - Michael Karin
- Laboratory of Gene Regulation and Signal Transduction, Departments of Pharmacology and Pathology, University of California San Diego, La Jolla, CA, USA
| |
Collapse
|
89
|
Umemura A, He F, Taniguchi K, Nakagawa H, Yamachika S, Font-Burgada J, Zhong Z, Subramaniam S, Raghunandan S, Duran A, Linares JF, Reina-Campos M, Umemura S, Valasek MA, Seki E, Yamaguchi K, Koike K, Itoh Y, Diaz-Meco MT, Moscat J, Karin M. p62, Upregulated during Preneoplasia, Induces Hepatocellular Carcinogenesis by Maintaining Survival of Stressed HCC-Initiating Cells. Cancer Cell 2016; 29:935-948. [PMID: 27211490 PMCID: PMC4907799 DOI: 10.1016/j.ccell.2016.04.006] [Citation(s) in RCA: 375] [Impact Index Per Article: 41.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Revised: 02/01/2016] [Accepted: 04/18/2016] [Indexed: 12/11/2022]
Abstract
p62 is a ubiquitin-binding autophagy receptor and signaling protein that accumulates in premalignant liver diseases and most hepatocellular carcinomas (HCCs). Although p62 was proposed to participate in the formation of benign adenomas in autophagy-deficient livers, its role in HCC initiation was not explored. Here we show that p62 is necessary and sufficient for HCC induction in mice and that its high expression in non-tumor human liver predicts rapid HCC recurrence after curative ablation. High p62 expression is needed for activation of NRF2 and mTORC1, induction of c-Myc, and protection of HCC-initiating cells from oxidative stress-induced death.
Collapse
Affiliation(s)
- Atsushi Umemura
- Laboratory of Gene Regulation and Signal Transduction, Department of Pharmacology, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA; Department of Molecular Gastroenterology and Hepatology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kawaramachi-Hirokoji, Kamigyo-ku, Kyoto 602-8566, Japan
| | - Feng He
- Laboratory of Gene Regulation and Signal Transduction, Department of Pharmacology, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Koji Taniguchi
- Laboratory of Gene Regulation and Signal Transduction, Department of Pharmacology, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA; Department of Surgery and Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan; Department of Microbiology and Immunology, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Hayato Nakagawa
- Laboratory of Gene Regulation and Signal Transduction, Department of Pharmacology, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA; Department of Gastroenterology, Graduate School of Medicine, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan
| | - Shinichiro Yamachika
- Laboratory of Gene Regulation and Signal Transduction, Department of Pharmacology, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Joan Font-Burgada
- Laboratory of Gene Regulation and Signal Transduction, Department of Pharmacology, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Zhenyu Zhong
- Laboratory of Gene Regulation and Signal Transduction, Department of Pharmacology, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Shankar Subramaniam
- Departments of Bioengineering, Cellular and Molecular Medicine, and Chemistry and Biochemistry, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Sindhu Raghunandan
- Departments of Bioengineering, Cellular and Molecular Medicine, and Chemistry and Biochemistry, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Angeles Duran
- Cancer Metabolism and Signaling Networks Program, Sanford-Burnham-Prebys Medical Discovery Institute, 10901 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Juan F Linares
- Cancer Metabolism and Signaling Networks Program, Sanford-Burnham-Prebys Medical Discovery Institute, 10901 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Miguel Reina-Campos
- Cancer Metabolism and Signaling Networks Program, Sanford-Burnham-Prebys Medical Discovery Institute, 10901 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Shiori Umemura
- Laboratory of Gene Regulation and Signal Transduction, Department of Pharmacology, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA; Department of Obstetrics and Gynecology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kawaramachi-Hirokoji, Kamigyo-ku, Kyoto 602-8566, Japan
| | - Mark A Valasek
- Department of Pathology, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Ekihiro Seki
- Department of Medicine, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA; Division of Gastroenterology, Department of Medicine, Cedars-Sinai Medical Center, 8700 Beverly Boulevard, Los Angeles, CA 90048, USA
| | - Kanji Yamaguchi
- Department of Molecular Gastroenterology and Hepatology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kawaramachi-Hirokoji, Kamigyo-ku, Kyoto 602-8566, Japan
| | - Kazuhiko Koike
- Department of Gastroenterology, Graduate School of Medicine, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan
| | - Yoshito Itoh
- Department of Molecular Gastroenterology and Hepatology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kawaramachi-Hirokoji, Kamigyo-ku, Kyoto 602-8566, Japan
| | - Maria T Diaz-Meco
- Cancer Metabolism and Signaling Networks Program, Sanford-Burnham-Prebys Medical Discovery Institute, 10901 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Jorge Moscat
- Cancer Metabolism and Signaling Networks Program, Sanford-Burnham-Prebys Medical Discovery Institute, 10901 North Torrey Pines Road, La Jolla, CA 92037, USA.
| | - Michael Karin
- Laboratory of Gene Regulation and Signal Transduction, Department of Pharmacology, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA; Department of Pathology, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA.
| |
Collapse
|
90
|
Li Y, Tsang CK, Wang S, Li X, Yang Y, Fu L, Huang W, Li M, Wang H, Zheng XS. MAF1 suppresses AKT-mTOR signaling and liver cancer through activation of PTEN transcription. Hepatology 2016; 63:1928-42. [PMID: 26910647 PMCID: PMC5021206 DOI: 10.1002/hep.28507] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2015] [Accepted: 02/17/2016] [Indexed: 12/12/2022]
Abstract
UNLABELLED The phosphatidylinositol 3-kinase/phosphatidylinositol 3,4,5-trisphosphate 3-phosphatase/protein kinase B/mammalian target of rapamycin (PI3K-PTEN-AKT-mTOR) pathway is a central controller of cell growth and a key driver for human cancer. MAF1 is an mTOR downstream effector and transcriptional repressor of ribosomal and transfer RNA genes. MAF1 expression is markedly reduced in hepatocellular carcinomas, which is correlated with disease progression and poor prognosis. Consistently, MAF1 displays tumor-suppressor activity toward in vitro and in vivo cancer models. Surprisingly, blocking the synthesis of ribosomal and transfer RNAs is insufficient to account for MAF1's tumor-suppressor function. Instead, MAF1 down-regulation paradoxically leads to activation of AKT-mTOR signaling, which is mediated by decreased PTEN expression. MAF1 binds to the PTEN promoter, enhancing PTEN promoter acetylation and activity. CONCLUSION In contrast to its canonical function as a transcriptional repressor, MAF1 can also act as a transcriptional activator for PTEN, which is important for MAF1's tumor-suppressor function. These results have implications in disease staging, prognostic prediction, and AKT-mTOR-targeted therapy in liver cancer. (Hepatology 2016;63:1928-1942).
Collapse
Affiliation(s)
- Yue Li
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer MedicineSun Yat‐sen University Cancer CenterGuangzhouChina
| | - Chi Kwan Tsang
- Rutgers Cancer Institute of New Jersey and Department of Pharmacology, Robert Wood Johnson Medical School, Rutgersthe State University of New JerseyNew BrunswickNJ
| | - Suihai Wang
- State Key Laboratory of Organ Failure Research, Institute of Antibody Engineering, School of BiotechnologySouthern Medical UniversityGuangzhouChina
| | - Xiao‐Xing Li
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer MedicineSun Yat‐sen University Cancer CenterGuangzhouChina
| | - Yang Yang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer MedicineSun Yat‐sen University Cancer CenterGuangzhouChina
| | - Liwu Fu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer MedicineSun Yat‐sen University Cancer CenterGuangzhouChina
| | - Wenlin Huang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer MedicineSun Yat‐sen University Cancer CenterGuangzhouChina
| | - Ming Li
- State Key Laboratory of Organ Failure Research, Institute of Antibody Engineering, School of BiotechnologySouthern Medical UniversityGuangzhouChina
| | - Hui‐Yun Wang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer MedicineSun Yat‐sen University Cancer CenterGuangzhouChina,Rutgers Cancer Institute of New Jersey and Department of Pharmacology, Robert Wood Johnson Medical School, Rutgersthe State University of New JerseyNew BrunswickNJ
| | - X.F. Steven Zheng
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer MedicineSun Yat‐sen University Cancer CenterGuangzhouChina,Rutgers Cancer Institute of New Jersey and Department of Pharmacology, Robert Wood Johnson Medical School, Rutgersthe State University of New JerseyNew BrunswickNJ
| |
Collapse
|
91
|
Karin M, Dhar D. Liver carcinogenesis: from naughty chemicals to soothing fat and the surprising role of NRF2. Carcinogenesis 2016; 37:541-6. [PMID: 27207669 DOI: 10.1093/carcin/bgw060] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Accepted: 04/29/2016] [Indexed: 02/07/2023] Open
Abstract
The liver is a key metabolic organ that is essential for production of blood proteins, lipid and sugar metabolism and detoxification of naturally occurring and foreign harmful chemicals. To maintain its mass and many essential functions, the liver possesses remarkable regenerative capacity, but the latter also renders it highly susceptible to carcinogenesis. In fact, liver cancer often develops in the context of chronic liver injury. Currently, primary liver cancer is the second leading cause of cancer-related deaths, and as the rates of other cancers have been declining, the incidence of liver cancer continues to rise with an alarming rate. Although much remains to be accomplished in regards to liver cancer therapy, we have learned a great deal about the molecular etiology of the most common form of primary liver cancer, hepatocellular carcinoma (HCC). Much of this knowledge has been obtained from studies of mouse models, using either toxic chemicals, a combination of fatty foods and endoplasmic reticulum stress or chronic activation of specific metabolic pathways. Surprisingly, NRF2, a transcription factor that was initially thought to protect the liver from oxidative stress, was found to play a key role in promoting HCC pathogenesis.
Collapse
Affiliation(s)
- Michael Karin
- Laboratory of Gene Regulation and Signal Transduction, Department of Pharmacology, Department of Pathology and Moores Cancer Center, UCSD School of Medicine, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Debanjan Dhar
- Laboratory of Gene Regulation and Signal Transduction, Department of Pharmacology
| |
Collapse
|
92
|
Wang Q, Yu WN, Chen X, Peng XD, Jeon SM, Birnbaum MJ, Guzman G, Hay N. Spontaneous Hepatocellular Carcinoma after the Combined Deletion of Akt Isoforms. Cancer Cell 2016; 29:523-535. [PMID: 26996309 PMCID: PMC4921241 DOI: 10.1016/j.ccell.2016.02.008] [Citation(s) in RCA: 84] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Revised: 12/12/2015] [Accepted: 02/16/2016] [Indexed: 02/07/2023]
Abstract
Akt is frequently hyperactivated in human cancers and is targeted for cancer therapy. However, the physiological consequences of systemic Akt isoform inhibition were not fully explored. We showed that while combined Akt1 and Akt3 deletion in adult mice is tolerated, combined Akt1 and Akt2 deletion induced rapid mortality. Akt2(-/-) mice survived hepatic Akt1 deletion but all developed spontaneous hepatocellular carcinoma (HCC), which is associated with FoxO-dependent liver injury and inflammation. The gene expression signature of HCC-bearing livers is similar to aggressive human HCC. Consistently, neither Akt1(-/-) nor Akt2(-/-) mice are resistant to diethylnitrosamine-induced hepatocarcinogenesis, and Akt2(-/-) mice display a high incidence of lung metastasis. Thus, in contrast to other cancers, hepatic Akt inhibition induces liver injury that could promote HCC.
Collapse
Affiliation(s)
- Qi Wang
- Department of Biochemistry and Molecular Genetics, College of Medicine, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Wan-Ni Yu
- Department of Biochemistry and Molecular Genetics, College of Medicine, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Xinyu Chen
- Department of Biochemistry and Molecular Genetics, College of Medicine, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Xiao-Ding Peng
- Department of Biochemistry and Molecular Genetics, College of Medicine, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Sang-Min Jeon
- Department of Biochemistry and Molecular Genetics, College of Medicine, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Morris J Birnbaum
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, Institute for Diabetes, Obesity and Metabolism, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Grace Guzman
- Department of Pathology, College of Medicine, Cancer Center, University of Illinois Hospital and Health Science Chicago, Chicago, IL 60612, USA
| | - Nissim Hay
- Department of Biochemistry and Molecular Genetics, College of Medicine, University of Illinois at Chicago, Chicago, IL 60607, USA; Research & Development Section, Jesse Brown VA Medical Center, Chicago, IL 60612, USA.
| |
Collapse
|
93
|
Arfianti E, Larter CZ, Lee S, Barn V, Haigh G, Yeh MM, Ioannou GN, Teoh NC, Farrell GC. Obesity and diabetes accelerate hepatocarcinogenesis via hepatocyte proliferation independent of NF-κB or Akt/mTORC1. J Clin Transl Res 2016; 2:26-37. [PMID: 30873458 PMCID: PMC6410642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2016] [Revised: 01/17/2016] [Accepted: 01/19/2016] [Indexed: 11/01/2022] Open
Abstract
BACKGROUND There are strong links between obesity, diabetes and hepatocellular carcinoma (HCC), but molecular mechanisms remain unclear. AIM We tested the proposed involvement of NF-κB, IL-6/STAT3 and Akt/mTORC1 before onset (at 3 months) and at onset (6 months) of accelerated hepatocarcinogenesis in DEN-injected obese and diabetic foz/foz compared to lean wildtype (Wt) mice, and also studied the hepatocyte proliferative response to DNA damage between the obese and lean lines. METHODS Male foz/foz and Wt littermates fed normal chow were DEN-injected (10mg/kg i.p.) at age 12-15 days. To test the effect of mTOR inhibitor on growth of dysplastic hepatocytes, a separate cohort of DEN-injected foz/foz mice was administered rapamycin (4 mg/kg body weight/day). RESULTS foz/foz mice developed obesity, hyperinsulinemia, diabetes, adipokine dysregulation and fatty liver, without increased serum or liver TNF-α or serum IL-6. All DEN-injected foz/foz mice developed HCC by 6 mths vs. 0/10 lean Wt. At 3 mths, there were more dysplastic hepatocytes in DEN-injected foz/foz than Wt, with increased liver injury (serum ALT), hepatocyte apoptosis (M30-positive cells) and proliferation (cyclin D1, cyclin E, PCNA), but neither NF-κB nor STAT3 activation. foz/foz livers exhibited upregulation of DNA damage sensors ATM and ATR, with inadequate cell cycle checkpoint controls (CHK1, CHK2, p53, p21). Akt and mTORC1 were highly activated in livers from foz/foz vs. Wt mice. Despite such activation, rapamycin failed to reduce growth of dysplastic hepatocytes. CONCLUSIONS Accelerated DEN-induced HCC in obese/diabetic mice is linked to enhanced growth of dysplastic hepatocytes that cannot be attributed to NF-κB or IL-6/STAT3 activation, nor to sustained mTORC1 activation. The critical mechanism for obesity-enhanced hepatocarcinogenesis lies in the disconnection between hepatocellular injury with DNA damage, and an unrestrained proliferative response. RELEVANCE FOR PATIENTS This study supports the epidemiological data linking obesity, diabetes and fatty liver disease with increased risk for developing HCC. The findings also suggest that mTORC1 inhibition may not be beneficial in the prevention of obesity-related hepatocarcinogenesis.
Collapse
Affiliation(s)
- Evi Arfianti
- Liver Research Group, Australian National University Medical School, The Canberra Hospital, Australian Capital Territory, Australia
| | - Claire Z Larter
- Liver Research Group, Australian National University Medical School, The Canberra Hospital, Australian Capital Territory, Australia
| | - Seungsoo Lee
- Liver Research Group, Australian National University Medical School, The Canberra Hospital, Australian Capital Territory, Australia
| | - Vanessa Barn
- Liver Research Group, Australian National University Medical School, The Canberra Hospital, Australian Capital Territory, Australia
| | - Geoffrey Haigh
- Division of Gastroenterology, University of Washington, Seattle, Washington, United States
| | - Matthew M. Yeh
- Department of Pathology, University of Washington, Seattle, Washington, United States
| | - George N. Ioannou
- Division of Gastroenterology, University of Washington, Seattle, Washington, United States
| | - Narci C. Teoh
- Liver Research Group, Australian National University Medical School, The Canberra Hospital, Australian Capital Territory, Australia
| | - Geoffrey C. Farrell
- Liver Research Group, Australian National University Medical School, The Canberra Hospital, Australian Capital Territory, Australia
| |
Collapse
|
94
|
Abstract
Although discussion of the obesity epidemic had become a cocktail party cliché, its impact on public health cannot be dismissed. In the past decade, cancer had joined the list of chronic debilitating diseases whose risk is substantially increased by hypernutrition. Here we discuss recent advances in understanding how obesity increases cancer risk and propose a unifying hypothesis according to which the major tumor-promoting mechanism triggered by hypernutrition is the indolent inflammation that takes place at particular organ sites, including liver, pancreas, and gastrointestinal tract. The mechanisms by which excessive fat deposition feeds this tumor-promoting inflammatory flame are diverse and tissue specific.
Collapse
Affiliation(s)
- Joan Font-Burgada
- Laboratory of Gene Regulation and Signal Transduction, Departments of Pharmacology and Pathology, Moores Cancer Center, UCSD School of Medicine, La Jolla, CA 92093-0723, USA
| | - Beicheng Sun
- Liver Transplantation Center of the First Affiliated Hospital and Cancer Center, Nanjing Medical University, Nanjing, Jiangsu Province, P.R. China.
| | - Michael Karin
- Laboratory of Gene Regulation and Signal Transduction, Departments of Pharmacology and Pathology, Moores Cancer Center, UCSD School of Medicine, La Jolla, CA 92093-0723, USA.
| |
Collapse
|
95
|
Nemazanyy I, Montagnac G, Russell RC, Morzyglod L, Burnol AF, Guan KL, Pende M, Panasyuk G. Class III PI3K regulates organismal glucose homeostasis by providing negative feedback on hepatic insulin signalling. Nat Commun 2015; 6:8283. [PMID: 26387534 PMCID: PMC4579570 DOI: 10.1038/ncomms9283] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2015] [Accepted: 08/07/2015] [Indexed: 11/09/2022] Open
Abstract
Defective hepatic insulin receptor (IR) signalling is a pathogenic manifestation of metabolic disorders including obesity and diabetes. The endo/lysosomal trafficking system may coordinate insulin action and nutrient homeostasis by endocytosis of IR and the autophagic control of intracellular nutrient levels. Here we show that class III PI3K--a master regulator of endocytosis, endosomal sorting and autophagy--provides negative feedback on hepatic insulin signalling. The ultraviolet radiation resistance-associated gene protein (UVRAG)-associated class III PI3K complex interacts with IR and is stimulated by insulin treatment. Acute and chronic depletion of hepatic Vps15, the regulatory subunit of class III PI3K, increases insulin sensitivity and Akt signalling, an effect that requires functional IR. This is reflected by FoxO1-dependent transcriptional defects and blunted gluconeogenesis in Vps15 mutant cells. On depletion of Vps15, the metabolic syndrome in genetic and diet-induced models of insulin resistance and diabetes is alleviated. Thus, feedback regulation of IR trafficking and function by class III PI3K may be a therapeutic target in metabolic conditions of insulin resistance.
Collapse
Affiliation(s)
- Ivan Nemazanyy
- Institut Necker-Enfants Malades (INEM), Cedex 14, 75993 Paris, France.,Institut National de la Santé et de la Recherche Médicale (INSERM), Cedex 14, U1151, 75993 Paris, France.,Université Paris Descartes, Sorbonne Paris Cité, 75006 Paris, France
| | - Guillaume Montagnac
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1170, Gustave Roussy Institute, 94805 Villejuif, France
| | - Ryan C Russell
- Department of Pharmacology, University of California at San Diego, La Jolla, California 92093, USA.,Moores Cancer Center, University of California at San Diego, La Jolla, California 92093, USA
| | - Lucille Morzyglod
- Université Paris Descartes, Sorbonne Paris Cité, 75006 Paris, France.,Institut National de la Santé et de la Recherche Médicale (INSERM), U1016, Institut Cochin, 75014 Paris, France.,Centre national de la recherche scientifique (CNRS), UMR8104, 75014 Paris, France
| | - Anne-Françoise Burnol
- Université Paris Descartes, Sorbonne Paris Cité, 75006 Paris, France.,Institut National de la Santé et de la Recherche Médicale (INSERM), U1016, Institut Cochin, 75014 Paris, France.,Centre national de la recherche scientifique (CNRS), UMR8104, 75014 Paris, France
| | - Kun-Liang Guan
- Department of Pharmacology, University of California at San Diego, La Jolla, California 92093, USA.,Moores Cancer Center, University of California at San Diego, La Jolla, California 92093, USA
| | - Mario Pende
- Institut Necker-Enfants Malades (INEM), Cedex 14, 75993 Paris, France.,Institut National de la Santé et de la Recherche Médicale (INSERM), Cedex 14, U1151, 75993 Paris, France.,Université Paris Descartes, Sorbonne Paris Cité, 75006 Paris, France
| | - Ganna Panasyuk
- Institut Necker-Enfants Malades (INEM), Cedex 14, 75993 Paris, France.,Institut National de la Santé et de la Recherche Médicale (INSERM), Cedex 14, U1151, 75993 Paris, France.,Université Paris Descartes, Sorbonne Paris Cité, 75006 Paris, France
| |
Collapse
|
96
|
mTORC2 controls cancer cell survival by modulating gluconeogenesis. Cell Death Discov 2015; 1:15016. [PMID: 27551450 PMCID: PMC4979518 DOI: 10.1038/cddiscovery.2015.16] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2015] [Accepted: 07/06/2015] [Indexed: 12/12/2022] Open
Abstract
For rapid tumor growth, cancer cells often reprogram the cellular metabolic processes to obtain enhanced anabolic precursors and energy. The molecular changes of such metabolic rewiring are far from established. Here we explored the role of mTOR (mechanistic target of rapamycin), which serves as a key regulator of cell growth, proliferation and survival, in the metabolic reprograming of cancer cells. When we inhibited mTOR in human hepatocellular carcinoma (HCC) and renal cell carcinoma (RCC) cells, using pharmacologic inhibitors or by RNA interference, we noticed shuttle of the glycolytic flux to gluconeogenesis pathway along with reduction in cellular proliferation and survival. Augmentation of gluconeogenesis was mechanistically linked to upregulation of the key gluconeogenic enzymes PCK1 and G6PC expressions, enhanced lactate dehydrogenase activity and glucose-derived lipogenesis without causing any attenuation in mitochondrial function. Interestingly, concomitant knocking down of PCK1 and not G6PC along with mTOR pathway could overcome the inhibition of cancer cell proliferation and survival. These observations were validated by identifying distinctive diminution of PCK1 and G6PC expressions in human HCC and RCC transcriptome data. Significant correlation between mTOR-dependent upregulation of PCK1 and cell death in different cancer cell lines further emphasizes the physiological relevance of this pathway. We reveal for the first time that inhibition of mTORC2 and consequent redistribution of glycolytic flux can have a prosurvival role in HCC and RCC cancer cells only in the presence of downregulation of gluconeogenesis pathway genes, thus identifying novel pivots of cancer cell metabolic rewiring and targets for therapy.
Collapse
|
97
|
Chen X, Wang Y, Tao J, Shi Y, Gai X, Huang F, Ma Q, Zhou Z, Chen H, Zhang H, Liu Z, Sun Q, Peng H, Chen R, Jing Y, Yang H, Mao Y, Zhang H. mTORC1 Up-Regulates GP73 to Promote Proliferation and Migration of Hepatocellular Carcinoma Cells and Growth of Xenograft Tumors in Mice. Gastroenterology 2015; 149:741-52.e14. [PMID: 25980751 DOI: 10.1053/j.gastro.2015.05.005] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2014] [Revised: 04/10/2015] [Accepted: 05/06/2015] [Indexed: 02/07/2023]
Abstract
BACKGROUND & AIMS Levels of the Golgi protein 73 (GP73) increase during development of hepatocellular carcinoma (HCC); GP73 is a serum marker for HCC. However, little is known about the mechanisms or effects of GP73 during hepatic carcinogenesis. METHODS GP73 was overexpressed from a retroviral vector in HepG2 cells, which were analyzed in proliferation and migration assays. Xenograft tumors were grown from these cells in nude mice. The effects of monoclonal antibodies against GP73 were studied in mice and cell lines. GP73(-/-), GP73(+/-), and GP73(+/+) mice were given injections of diethylnitrosamine to induce liver injury. Levels of GP73 were reduced in MHCC97H, HCCLM3, and HepG2.215 cell lines using small hairpin RNAs; xenograft tumors were grown in mice from MHCC97H-small hairpin GP73 or MHCC97H-vector cells. We used microarray analysis to compare expression patterns between GP73-knockdown and control MHCC97H cells. We studied the effects of the mechanistic target of rapamycin (mTOR) inhibitor rapamycin on GP73 expression in different cancer cell lines and on growth of tumors in mice. Levels of GP73 and activated mTOR were quantified in human HCC tissues. RESULTS Xenograft tumors grown from HepG2 cells that expressed GP73 formed more rapidly and more metastases than control HepG2 cells in mice. A monoclonal antibody against GP73 reduced proliferation of HepG2 cells and growth of xenograft tumors in mice. GP73(-/-) mice had less liver damage after administration of diethylnitrosamine than GP73(+/-) or GP73(+/+) mice. In phosphatase and tensin homolog-null mouse embryonic fibroblasts with constitutively activated mTOR, GP73 was up-regulated compared with control mouse embryonic fibroblasts; this increase was reversed after incubation with rapamycin. Expression of GP73 also was reduced in HCC and other cancer cell lines incubated with rapamycin. mTORC1 appeared to regulate expression of GP73 in cell lines. Activated mTOR correlated with the level of GP73 in human HCC tissues. Injection of rapamycin slowed the growth of xenograft tumors from MHCC97H-vector cells, compared with MHCC97H-short hairpin GP73 cells. CONCLUSIONS Increased expression of GP73 promotes proliferation and migration of HCC cell lines and growth of xenograft tumors in mice. mTORC1 regulates the expression of GP73, so GP73 up-regulation can be blocked with rapamycin. mTOR inhibitors or other reagents that reduce the level or activity of GP73 might be developed for the treatment of HCC.
Collapse
Affiliation(s)
- Xinxin Chen
- State Key Laboratory of Medical Molecular Biology, Department of Physiology, Collaborative Innovation Center for Cancer Medicine, Institute of Basic Medical Sciences and School of Basic Medicine, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Yanan Wang
- State Key Laboratory of Medical Molecular Biology, Department of Physiology, Collaborative Innovation Center for Cancer Medicine, Institute of Basic Medical Sciences and School of Basic Medicine, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Jun Tao
- State Key Laboratory of Medical Molecular Biology, Department of Physiology, Collaborative Innovation Center for Cancer Medicine, Institute of Basic Medical Sciences and School of Basic Medicine, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Yuzhuo Shi
- State Key Laboratory of Medical Molecular Biology, Department of Physiology, Collaborative Innovation Center for Cancer Medicine, Institute of Basic Medical Sciences and School of Basic Medicine, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Xiaochen Gai
- State Key Laboratory of Medical Molecular Biology, Department of Physiology, Collaborative Innovation Center for Cancer Medicine, Institute of Basic Medical Sciences and School of Basic Medicine, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Fuqiang Huang
- State Key Laboratory of Medical Molecular Biology, Department of Physiology, Collaborative Innovation Center for Cancer Medicine, Institute of Basic Medical Sciences and School of Basic Medicine, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Qian Ma
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian, China
| | - Zhenzhen Zhou
- Department of Physiology, Dalian Medical University, Dalian, China
| | - Hongyu Chen
- State Key Laboratory of Medical Molecular Biology, Department of Physiology, Collaborative Innovation Center for Cancer Medicine, Institute of Basic Medical Sciences and School of Basic Medicine, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Haihong Zhang
- State Key Laboratory of Medical Molecular Biology, Department of Physiology, Collaborative Innovation Center for Cancer Medicine, Institute of Basic Medical Sciences and School of Basic Medicine, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Zhibo Liu
- State Key Laboratory of Medical Molecular Biology, Department of Physiology, Collaborative Innovation Center for Cancer Medicine, Institute of Basic Medical Sciences and School of Basic Medicine, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Qian Sun
- State Key Laboratory of Medical Molecular Biology, Department of Physiology, Collaborative Innovation Center for Cancer Medicine, Institute of Basic Medical Sciences and School of Basic Medicine, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Haiyong Peng
- State Key Laboratory of Medical Molecular Biology, Department of Physiology, Collaborative Innovation Center for Cancer Medicine, Institute of Basic Medical Sciences and School of Basic Medicine, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Rongrong Chen
- State Key Laboratory of Medical Molecular Biology, Department of Physiology, Collaborative Innovation Center for Cancer Medicine, Institute of Basic Medical Sciences and School of Basic Medicine, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Yanling Jing
- State Key Laboratory of Medical Molecular Biology, Department of Physiology, Collaborative Innovation Center for Cancer Medicine, Institute of Basic Medical Sciences and School of Basic Medicine, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Huayu Yang
- Department of Liver Surgery, Peking Union Medical College Hospital, Beijing, China
| | - Yilei Mao
- Department of Liver Surgery, Peking Union Medical College Hospital, Beijing, China
| | - Hongbing Zhang
- State Key Laboratory of Medical Molecular Biology, Department of Physiology, Collaborative Innovation Center for Cancer Medicine, Institute of Basic Medical Sciences and School of Basic Medicine, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China; Institute of Cancer Stem Cell, Dalian Medical University, Dalian, China.
| |
Collapse
|
98
|
Iurlaro R, León-Annicchiarico CL, Muñoz-Pinedo C. Regulation of cancer metabolism by oncogenes and tumor suppressors. Methods Enzymol 2015; 542:59-80. [PMID: 24862260 DOI: 10.1016/b978-0-12-416618-9.00003-0] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Cell proliferation requires the coordination of multiple signaling pathways as well as the provision of metabolic substrates. Nutrients are required to generate such building blocks and their form of utilization differs to significant extents between malignant tissues and their nontransformed counterparts. Thus, oncogenes and tumor suppressor genes regulate the proliferation of cancer cells also by controlling their metabolism. Here, we discuss the central anabolic functions of the signaling pathways emanating from mammalian target of rapamycin, MYC, and hypoxia-inducible factor-1. Moreover, we analyze how oncogenic proteins like phosphoinositide-3-kinase, AKT, and RAS, tumor suppressors such as phosphatase and tensin homolog, retinoblastoma, and p53, as well as other factors associated with the proliferation or survival of cancer cells, such as NF-κB, regulate cellular metabolism.
Collapse
Affiliation(s)
- Raffaella Iurlaro
- Cell Death Regulation Group, Bellvitge Biomedical Research Institute (IDIBELL), Barcelona, Spain
| | | | - Cristina Muñoz-Pinedo
- Cell Death Regulation Group, Bellvitge Biomedical Research Institute (IDIBELL), Barcelona, Spain.
| |
Collapse
|
99
|
Van Nostrand JL, Brisac A, Mello SS, Jacobs SBR, Luong R, Attardi LD. The p53 Target Gene SIVA Enables Non-Small Cell Lung Cancer Development. Cancer Discov 2015; 5:622-35. [PMID: 25813352 DOI: 10.1158/2159-8290.cd-14-0921] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2014] [Accepted: 03/23/2015] [Indexed: 01/28/2023]
Abstract
UNLABELLED Although p53 transcriptional activation potential is critical for its ability to suppress cancer, the specific target genes involved in tumor suppression remain unclear. SIVA is a p53 target gene essential for p53-dependent apoptosis, although it can also promote proliferation through inhibition of p53 in some settings. Thus, the role of SIVA in tumorigenesis remains unclear. Here, we seek to define the contribution of SIVA to tumorigenesis by generating Siva conditional knockout mice. Surprisingly, we find that SIVA loss inhibits non-small cell lung cancer (NSCLC) development, suggesting that SIVA facilitates tumorigenesis. Similarly, SIVA knockdown in mouse and human NSCLC cell lines decreases proliferation and transformation. Consistent with this protumorigenic role for SIVA, high-level SIVA expression correlates with reduced NSCLC patient survival. SIVA acts independently of p53 and, instead, stimulates mTOR signaling and metabolism in NSCLC cells. Thus, SIVA enables tumorigenesis in a p53-independent manner, revealing a potential new cancer therapy target. SIGNIFICANCE These findings collectively reveal a novel role for the p53 target gene SIVA both in regulating metabolism and in enabling tumorigenesis, independently of p53. Importantly, these studies further identify SIVA as a new prognostic marker and as a potential target for NSCLC cancer therapy.
Collapse
Affiliation(s)
- Jeanine L Van Nostrand
- Division of Radiation and Cancer Biology, Department of Radiation Oncology, Stanford University School of Medicine, Stanford, California
| | - Alice Brisac
- Department of Biology, Ecole Normale Supérieure de Lyon, Lyon, France
| | - Stephano S Mello
- Division of Radiation and Cancer Biology, Department of Radiation Oncology, Stanford University School of Medicine, Stanford, California
| | - Suzanne B R Jacobs
- Division of Radiation and Cancer Biology, Department of Radiation Oncology, Stanford University School of Medicine, Stanford, California
| | - Richard Luong
- Department of Comparative Medicine, Stanford University School of Medicine, Stanford, California
| | - Laura D Attardi
- Division of Radiation and Cancer Biology, Department of Radiation Oncology, Stanford University School of Medicine, Stanford, California. Department of Genetics, Stanford University School of Medicine, Stanford, California.
| |
Collapse
|
100
|
Huynh H, Hao HX, Chan SL, Chen D, Ong R, Soo KC, Pochanard P, Yang D, Ruddy D, Liu M, Derti A, Balak MN, Palmer MR, Wang Y, Lee BH, Sellami D, Zhu AX, Schlegel R, Huang A. Loss of Tuberous Sclerosis Complex 2 (TSC2) Is Frequent in Hepatocellular Carcinoma and Predicts Response to mTORC1 Inhibitor Everolimus. Mol Cancer Ther 2015; 14:1224-35. [PMID: 25724664 DOI: 10.1158/1535-7163.mct-14-0768] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2014] [Accepted: 02/17/2015] [Indexed: 11/16/2022]
Abstract
Hepatocellular carcinoma (HCC) is the third leading cause of cancer deaths worldwide and hyperactivation of mTOR signaling plays a pivotal role in HCC tumorigenesis. Tuberous sclerosis complex (TSC), a heterodimer of TSC1 and TSC2, functions as a negative regulator of mTOR signaling. In the current study, we discovered that TSC2 loss-of-function is common in HCC. TSC2 loss was found in 4 of 8 HCC cell lines and 8 of 28 (28.6%) patient-derived HCC xenografts. TSC2 mutations and deletions are likely to be the underlying cause of TSC2 loss in HCC cell lines, xenografts, and primary tumors for most cases. We further demonstrated that TSC2-null HCC cell lines and xenografts had elevated mTOR signaling and, more importantly, were significantly more sensitive to RAD001/everolimus, an mTORC1 inhibitor. These preclinical findings led to the analysis of TSC2 status in HCC samples collected in the EVOLVE-1 clinical trial of everolimus using an optimized immunohistochemistry assay and identified 15 of 139 (10.8%) samples with low to undetectable levels of TSC2. Although the sample size is too small for formal statistical analysis, TSC2-null/low tumor patients who received everolimus tended to have longer overall survival than those who received placebo. Finally, we performed an epidemiology survey of more than 239 Asian HCC tumors and found the frequency of TSC2 loss to be approximately 20% in Asian HBV(+) HCC. Taken together, our data strongly argue that TSC2 loss is a predictive biomarker for the response to everolimus in HCC patients.
Collapse
Affiliation(s)
- Hung Huynh
- Laboratory of Molecular Endocrinology, Division of Cellular and Molecular Research, Humphrey Oei Institute of Cancer Research, National Cancer Centre, Singapore.
| | - Huai-Xiang Hao
- Oncology Translational Medicine, Novartis Institutes for Biomedical Research, Cambridge, Massachusetts
| | - Stephen L Chan
- State Key Laboratory in Oncology in South China, Department of Clinical Oncology, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong, PR China
| | - David Chen
- Oncology Global Development, Novartis Pharmaceuticals Corporation, East Hanover, New Jersey
| | - Richard Ong
- Laboratory of Molecular Endocrinology, Division of Cellular and Molecular Research, Humphrey Oei Institute of Cancer Research, National Cancer Centre, Singapore
| | - Khee Chee Soo
- Laboratory of Molecular Endocrinology, Division of Cellular and Molecular Research, Humphrey Oei Institute of Cancer Research, National Cancer Centre, Singapore
| | - Panisa Pochanard
- Oncology Translational Medicine, Novartis Institutes for Biomedical Research, Cambridge, Massachusetts
| | - David Yang
- Oncology Translational Medicine, Novartis Institutes for Biomedical Research, Cambridge, Massachusetts
| | - David Ruddy
- Oncology Translational Medicine, Novartis Institutes for Biomedical Research, Cambridge, Massachusetts
| | - Manway Liu
- Oncology Translational Medicine, Novartis Institutes for Biomedical Research, Cambridge, Massachusetts
| | - Adnan Derti
- Oncology Translational Medicine, Novartis Institutes for Biomedical Research, Cambridge, Massachusetts
| | - Marissa N Balak
- Oncology Translational Medicine, Novartis Institutes for Biomedical Research, Cambridge, Massachusetts
| | - Michael R Palmer
- Oncology Translational Medicine, Novartis Institutes for Biomedical Research, Cambridge, Massachusetts
| | - Yan Wang
- Oncology Translational Medicine, Novartis Institutes for Biomedical Research, Cambridge, Massachusetts
| | - Benjamin H Lee
- Oncology Translational Medicine, Novartis Institutes for Biomedical Research, Cambridge, Massachusetts
| | - Dalila Sellami
- Oncology Global Development, Novartis Pharmaceuticals Corporation, East Hanover, New Jersey
| | - Andrew X Zhu
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, Massachusetts
| | - Robert Schlegel
- Oncology Translational Medicine, Novartis Institutes for Biomedical Research, Cambridge, Massachusetts
| | - Alan Huang
- Oncology Translational Medicine, Novartis Institutes for Biomedical Research, Cambridge, Massachusetts.
| |
Collapse
|