51
|
Sapir A. Not So Slim Anymore-Evidence for the Role of SUMO in the Regulation of Lipid Metabolism. Biomolecules 2020; 10:E1154. [PMID: 32781719 PMCID: PMC7466032 DOI: 10.3390/biom10081154] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 07/31/2020] [Accepted: 08/03/2020] [Indexed: 12/11/2022] Open
Abstract
One of the basic building blocks of all life forms are lipids-biomolecules that dissolve in nonpolar organic solvents but not in water. Lipids have numerous structural, metabolic, and regulative functions in health and disease; thus, complex networks of enzymes coordinate the different compositions and functions of lipids with the physiology of the organism. One type of control on the activity of those enzymes is the conjugation of the Small Ubiquitin-like Modifier (SUMO) that in recent years has been identified as a critical regulator of many biological processes. In this review, I summarize the current knowledge about the role of SUMO in the regulation of lipid metabolism. In particular, I discuss (i) the role of SUMO in lipid metabolism of fungi and invertebrates; (ii) the function of SUMO as a regulator of lipid metabolism in mammals with emphasis on the two most well-characterized cases of SUMO regulation of lipid homeostasis. These include the effect of SUMO on the activity of two groups of master regulators of lipid metabolism-the Sterol Regulatory Element Binding Protein (SERBP) proteins and the family of nuclear receptors-and (iii) the role of SUMO as a regulator of lipid metabolism in arteriosclerosis, nonalcoholic fatty liver, cholestasis, and other lipid-related human diseases.
Collapse
Affiliation(s)
- Amir Sapir
- Department of Biology and the Environment, Faculty of Natural Sciences, University of Haifa-Oranim, Tivon 36006, Israel
| |
Collapse
|
52
|
SUMOylation stabilizes hSSB1 and enhances the recruitment of NBS1 to DNA damage sites. Signal Transduct Target Ther 2020; 5:80. [PMID: 32576812 PMCID: PMC7311467 DOI: 10.1038/s41392-020-0172-4] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 04/05/2020] [Accepted: 04/08/2020] [Indexed: 12/11/2022] Open
Abstract
Human single-stranded DNA-binding protein 1 (hSSB1) is required for the efficient recruitment of the MRN complex to DNA double-strand breaks and is essential for the maintenance of genome integrity. However, the mechanism by which hSSB1 recruits NBS1 remains elusive. Here, we determined that hSSB1 undergoes SUMOylation at both K79 and K94 under normal conditions and that this modification is dramatically enhanced in response to DNA damage. SUMOylation of hSSB1, which is specifically fine-tuned by PIAS2α, and SENP2, not only stabilizes the protein but also enhances the recruitment of NBS1 to DNA damage sites. Cells with defective hSSB1 SUMOylation are sensitive to ionizing radiation, and global inhibition of SUMOylation by either knocking out UBC9 or adding SUMOylation inhibitors significantly enhances the sensitivity of cancer cells to etoposide. Our findings reveal that SUMOylation, as a novel posttranslational modification of hSSB1, is critical for the functions of this protein, indicating that the use of SUMOylation inhibitors (e.g., 2-D08 and ML-792) may be a new strategy that would benefit cancer patients being treated with chemo- or radiotherapy.
Collapse
|
53
|
Liu Z, Tardat M, Gill ME, Royo H, Thierry R, Ozonov EA, Peters AH. SUMOylated PRC1 controls histone H3.3 deposition and genome integrity of embryonic heterochromatin. EMBO J 2020; 39:e103697. [PMID: 32395866 PMCID: PMC7327501 DOI: 10.15252/embj.2019103697] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 04/09/2020] [Accepted: 04/14/2020] [Indexed: 12/14/2022] Open
Abstract
Chromatin integrity is essential for cellular homeostasis. Polycomb group proteins modulate chromatin states and transcriptionally repress developmental genes to maintain cell identity. They also repress repetitive sequences such as major satellites and constitute an alternative state of pericentromeric constitutive heterochromatin at paternal chromosomes (pat‐PCH) in mouse pre‐implantation embryos. Remarkably, pat‐PCH contains the histone H3.3 variant, which is absent from canonical PCH at maternal chromosomes, which is marked by histone H3 lysine 9 trimethylation (H3K9me3), HP1, and ATRX proteins. Here, we show that SUMO2‐modified CBX2‐containing Polycomb Repressive Complex 1 (PRC1) recruits the H3.3‐specific chaperone DAXX to pat‐PCH, enabling H3.3 incorporation at these loci. Deficiency of Daxx or PRC1 components Ring1 and Rnf2 abrogates H3.3 incorporation, induces chromatin decompaction and breakage at PCH of exclusively paternal chromosomes, and causes their mis‐segregation. Complementation assays show that DAXX‐mediated H3.3 deposition is required for chromosome stability in early embryos. DAXX also regulates repression of PRC1 target genes during oogenesis and early embryogenesis. The study identifies a novel critical role for Polycomb in ensuring heterochromatin integrity and chromosome stability in mouse early development.
Collapse
Affiliation(s)
- Zichuan Liu
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
| | - Mathieu Tardat
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
| | - Mark E Gill
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
| | - Helene Royo
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
| | - Raphael Thierry
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
| | - Evgeniy A Ozonov
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
| | - Antoine Hfm Peters
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland.,Faculty of Sciences, University of Basel, Basel, Switzerland
| |
Collapse
|
54
|
Rabellino A, Khanna KK. The implication of the SUMOylation pathway in breast cancer pathogenesis and treatment. Crit Rev Biochem Mol Biol 2020; 55:54-70. [PMID: 32183544 DOI: 10.1080/10409238.2020.1738332] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Breast cancer is the most commonly diagnosed malignancy in woman worldwide, and is the second most common cause of death in developed countries. The transformation of a normal cell into a malignant derivate requires the acquisition of diverse genomic and proteomic changes, including enzymatic post-translational modifications (PTMs) on key proteins encompassing critical cell signaling events. PTMs occur on proteins after translation, and regulate several aspects of proteins activity, including their localization, activation and turnover. Deregulation of PTMs can potentially lead to tumorigenesis, and several de-regulated PTM pathways contribute to abnormal cell proliferation during breast tumorigenesis. SUMOylation is a PTM that plays a pivotal role in numerous aspects of cell physiology, including cell cycle regulation, protein trafficking and turnover, and DNA damage repair. Consistently with this, the deregulation of the SUMO pathway is observed in different human pathologies, including breast cancer. In this review we will describe the role of SUMOylation in breast tumorigenesis and its implication for breast cancer therapy.
Collapse
Affiliation(s)
- Andrea Rabellino
- QIMR Berghofer Medical Research Institute, Brisbane City, Australia
| | - Kum Kum Khanna
- QIMR Berghofer Medical Research Institute, Brisbane City, Australia
| |
Collapse
|
55
|
Hegde S, Soory A, Kaduskar B, Ratnaparkhi GS. SUMO conjugation regulates immune signalling. Fly (Austin) 2020; 14:62-79. [PMID: 32777975 PMCID: PMC7714519 DOI: 10.1080/19336934.2020.1808402] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 07/30/2020] [Accepted: 08/05/2020] [Indexed: 12/11/2022] Open
Abstract
Post-translational modifications (PTMs) are critical drivers and attenuators for proteins that regulate immune signalling cascades in host defence. In this review, we explore functional roles for one such PTM, the small ubiquitin-like modifier (SUMO). Very few of the SUMO conjugation targets identified by proteomic studies have been validated in terms of their roles in host defence. Here, we compare and contrast potential SUMO substrate proteins in immune signalling for flies and mammals, with an emphasis on NFκB pathways. We discuss, using the few mechanistic studies that exist for validated targets, the effect of SUMO conjugation on signalling and also explore current molecular models that explain regulation by SUMO. We also discuss in detail roles of evolutionary conservation of mechanisms, SUMO interaction motifs, crosstalk of SUMO with other PTMs, emerging concepts such as group SUMOylation and finally, the potentially transforming roles for genome-editing technologies in studying the effect of PTMs.
Collapse
Affiliation(s)
- Sushmitha Hegde
- Biology, Indian Institute of Science Education & Research (IISER), Pune, India
| | - Amarendranath Soory
- Biology, Indian Institute of Science Education & Research (IISER), Pune, India
| | | | | |
Collapse
|
56
|
Global site-specific neddylation profiling reveals that NEDDylated cofilin regulates actin dynamics. Nat Struct Mol Biol 2020; 27:210-220. [PMID: 32015554 DOI: 10.1038/s41594-019-0370-3] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Accepted: 12/27/2019] [Indexed: 01/19/2023]
Abstract
Neddylation is the post-translational protein modification most closely related to ubiquitination. Whereas the ubiquitin-like protein NEDD8 is well studied for its role in activating cullin-RING E3 ubiquitin ligases, little is known about other substrates. We developed serial NEDD8-ubiquitin substrate profiling (sNUSP), a method that employs NEDD8 R74K knock-in HEK293 cells, allowing discrimination of endogenous NEDD8- and ubiquitin-modification sites by MS after Lys-C digestion and K-εGG-peptide enrichment. Using sNUSP, we identified 607 neddylation sites dynamically regulated by the neddylation inhibitor MLN4924 and the de-neddylating enzyme NEDP1, implying that many non-cullin proteins are neddylated. Among the candidates, we characterized lysine 112 of the actin regulator cofilin as a novel neddylation event. Global inhibition of neddylation in developing neurons leads to cytoskeletal defects, altered actin dynamics and neurite growth impairments, whereas site-specific neddylation of cofilin at K112 regulates neurite outgrowth, suggesting that cofilin neddylation contributes to the regulation of neuronal actin organization.
Collapse
|
57
|
Liu C, Peng Z, Li P, Fu H, Feng J, Zhang Y, Liu T, Liu Y, Liu Q, Liu Q, Li D, Wu M. lncRNA RMST Suppressed GBM Cell Mitophagy through Enhancing FUS SUMOylation. MOLECULAR THERAPY-NUCLEIC ACIDS 2020; 19:1198-1208. [PMID: 32069702 PMCID: PMC7019048 DOI: 10.1016/j.omtn.2020.01.008] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 12/24/2019] [Accepted: 01/06/2020] [Indexed: 01/08/2023]
Abstract
Long non-coding RNAs (lncRNAs) play a significant role in post-translational modifications of proteins, yet the importance of lncRNAs for SUMOylation is unknown. rhabdomyosarcoma 2 associated transcript (RMST) expression in glioma tissues and normal brain tissues was measured by quantitative real-time PCR and in situ hybridization. The functional roles of RMST in astrocytomas were demonstrated by a series of in vitro experiments. The potential mechanisms of RMST for SUMOylation were investigated by RNA immunoprecipitation, RNA pull-down, western blotting, and coimmunoprecipitation assays. We first demonstrated the oncogenic activity of lncRNA RMST by inhibiting glioma cells mitophagy. We also first determined that RMST is an enhancer of FUS SUMOylation, especially boosting SUMO1 modification at K333. SUMOylation induced by RMST contributes to the interaction between FUS and heterogeneous nuclear ribonucleoprotein D (hnRNPD) and stabilized their expression and cells mitophagy. Importantly, lncRNA RMST could serve as a promising prognostic factor for glioma patients. Our results demonstrated a previously unknown function of lncRNAs worked as an enhancer in FUS SUMOylation, and RMST will be a significant guide for the development of medications targeting gliomas.
Collapse
Affiliation(s)
- Changhong Liu
- Hunan Provincial Tumor Hospital and the Affiliated Tumor Hospital of Xiangya Medical School, Central South University, Changsha, Hunan 410013, China; Institute of Medical Sciences, The Second Hospital of Shandong University, Jinan, Shandong 250033, China
| | - Zixuan Peng
- Hunan Provincial Tumor Hospital and the Affiliated Tumor Hospital of Xiangya Medical School, Central South University, Changsha, Hunan 410013, China; The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan 410008, China
| | - Peiyao Li
- Hunan Provincial Tumor Hospital and the Affiliated Tumor Hospital of Xiangya Medical School, Central South University, Changsha, Hunan 410013, China; The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan 410008, China
| | - Haijuan Fu
- Hunan Provincial Tumor Hospital and the Affiliated Tumor Hospital of Xiangya Medical School, Central South University, Changsha, Hunan 410013, China; The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan 410008, China
| | - Jianbo Feng
- Hunan Provincial Tumor Hospital and the Affiliated Tumor Hospital of Xiangya Medical School, Central South University, Changsha, Hunan 410013, China; The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan 410008, China
| | - Yan Zhang
- Hunan Provincial Tumor Hospital and the Affiliated Tumor Hospital of Xiangya Medical School, Central South University, Changsha, Hunan 410013, China; The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan 410008, China
| | - Tao Liu
- Hunan Provincial Tumor Hospital and the Affiliated Tumor Hospital of Xiangya Medical School, Central South University, Changsha, Hunan 410013, China; The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan 410008, China
| | - Yang Liu
- Hunan Provincial Tumor Hospital and the Affiliated Tumor Hospital of Xiangya Medical School, Central South University, Changsha, Hunan 410013, China; The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan 410008, China
| | - Qing Liu
- The Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Qiang Liu
- The Third Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| | - Di Li
- Hunan Provincial Tumor Hospital and the Affiliated Tumor Hospital of Xiangya Medical School, Central South University, Changsha, Hunan 410013, China; The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan 410008, China
| | - Minghua Wu
- Hunan Provincial Tumor Hospital and the Affiliated Tumor Hospital of Xiangya Medical School, Central South University, Changsha, Hunan 410013, China; The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan 410008, China.
| |
Collapse
|
58
|
Protein inhibitor of activated STAT1 (PIAS1) inhibits IRF8 activation of Epstein-Barr virus lytic gene expression. Virology 2019; 540:75-87. [PMID: 31743858 DOI: 10.1016/j.virol.2019.11.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Revised: 11/08/2019] [Accepted: 11/09/2019] [Indexed: 11/23/2022]
Abstract
Epstein-Barr virus (EBV), a major human oncogenic pathogen, establishes life-long persistent infections. In latently infected B lymphocytes, the virus persists as an episome in the nucleus. Periodic reactivation of latent virus is controlled by both viral and cellular factors. Our recent studies showed that interferon regulatory factor 8 (IRF8) is required for EBV lytic reactivation while protein inhibitor of activated STAT1 (PIAS1) functions as an EBV restriction factor to block viral reactivation. Here, we show that IRF8 directly binds to the EBV genome and regulates EBV lytic gene expression together with PU.1 and EBV transactivator RTA. Furthermore, our study reveals that PIAS1 antagonizes IRF8/PU.1-mediated lytic gene activation through binding to and inhibiting IRF8. Together, our study establishes IRF8 as a transcriptional activator in promoting EBV reactivation and defines PIAS1 as an inhibitor of IRF8 to limit lytic gene expression.
Collapse
|
59
|
Kumar R, Sabapathy K. RNF4—A Paradigm for SUMOylation‐Mediated Ubiquitination. Proteomics 2019; 19:e1900185. [DOI: 10.1002/pmic.201900185] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 09/13/2019] [Indexed: 01/08/2023]
Affiliation(s)
- Ramesh Kumar
- Cancer & Stem Cell Biology Program Duke–NUS Medical School 8 College Road Singapore 169857 Singapore
| | - Kanaga Sabapathy
- Cancer & Stem Cell Biology Program Duke–NUS Medical School 8 College Road Singapore 169857 Singapore
- Laboratory of Molecular Carcinogenesis Division of Cellular & Molecular Research Humphrey Oei Institute of Cancer Research National Cancer Centre Singapore 11 Hospital Drive Singapore 169610 Singapore
- Department of Biochemistry National University of Singapore 8 Medical Drive Singapore 117597 Singapore
- Institute of Molecular and Cellular Biology 61 Biopolis Drive Singapore 138673 Singapore
| |
Collapse
|
60
|
Wu Q, Aroankins TS, Cheng L, Fenton RA. SUMOylation Landscape of Renal Cortical Collecting Duct Cells. J Proteome Res 2019; 18:3640-3648. [PMID: 31502464 DOI: 10.1021/acs.jproteome.9b00306] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Protein post-translational modification by the small ubiquitin-like modifier (SUMO) is a mechanism that allows a diverse response of cells to stress. Five SUMO family members, SUMO1-5, are expressed in mammals. We hypothesized that because kidney epithelial cells are often subject to stresses arising from various physiological conditions, multiple proteins in the kidney will be SUMOylated. Here, we profiled SUMO1- and SUMO2-modified proteins in a polarized epithelial cell model of the renal cortical collecting duct (mpkCCD14 cells). Modified forms of SUMO1 or SUMO2, with a histidine tag and a Thr to Lys mutation preceding the carboxyl-terminal di-gly motif, were expressed in mpkCCD14 cells, allowing SUMO-conjugated proteins to be purified and identified. Protein mass spectrometry identified 1428 SUMO1 and 1957 SUMO2 sites, corresponding to 741 SUMO1 and 971 SUMO2 proteins. Gene ontology indicated that the function of the majority of SUMOylated proteins in mpkCCD14 cells was related to gene transcription. After treatment of the mpkCCD14 cells for 24 h with aldosterone, the levels of SUMOylation at a specific site on the proton and oligopeptide/antibiotic cotransporter protein Pept2 were greatly increased. In conclusion, the SUMOylation landscape of mpkCCD14 cells suggests that protein modification by SUMOylation is a mechanism within renal epithelial cells to modulate gene transcription under various physiological conditions.
Collapse
Affiliation(s)
- Qi Wu
- InterPrET Center, Department of Biomedicine , Aarhus University , Aarhus DK-8000 , Denmark
| | - Takwa S Aroankins
- InterPrET Center, Department of Biomedicine , Aarhus University , Aarhus DK-8000 , Denmark
| | - Lei Cheng
- InterPrET Center, Department of Biomedicine , Aarhus University , Aarhus DK-8000 , Denmark
| | - Robert A Fenton
- InterPrET Center, Department of Biomedicine , Aarhus University , Aarhus DK-8000 , Denmark
| |
Collapse
|
61
|
Antfolk D, Antila C, Kemppainen K, Landor SKJ, Sahlgren C. Decoding the PTM-switchboard of Notch. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2019; 1866:118507. [PMID: 31301363 PMCID: PMC7116576 DOI: 10.1016/j.bbamcr.2019.07.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 07/03/2019] [Accepted: 07/06/2019] [Indexed: 01/08/2023]
Abstract
The developmentally indispensable Notch pathway exhibits a high grade of pleiotropism in its biological output. Emerging evidence supports the notion of post-translational modifications (PTMs) as a modus operandi controlling dynamic fine-tuning of Notch activity. Although, the intricacy of Notch post-translational regulation, as well as how these modifications lead to multiples of divergent Notch phenotypes is still largely unknown, numerous studies show a correlation between the site of modification and the output. These include glycosylation of the extracellular domain of Notch modulating ligand binding, and phosphorylation of the PEST domain controlling half-life of the intracellular domain of Notch. Furthermore, several reports show that multiple PTMs can act in concert, or compete for the same sites to drive opposite outputs. However, further investigation of the complex PTM crosstalk is required for a complete understanding of the PTM-mediated Notch switchboard. In this review, we aim to provide a consistent and up-to-date summary of the currently known PTMs acting on the Notch signaling pathway, their functions in different contexts, as well as explore their implications in physiology and disease. Furthermore, we give an overview of the present state of PTM research methodology, and allude to a future with PTM-targeted Notch therapeutics.
Collapse
Affiliation(s)
- Daniel Antfolk
- Faculty of Science and Engineering, Cell Biology, Åbo Akademi University, Turku, Finland
| | - Christian Antila
- Faculty of Science and Engineering, Cell Biology, Åbo Akademi University, Turku, Finland
| | - Kati Kemppainen
- Faculty of Science and Engineering, Cell Biology, Åbo Akademi University, Turku, Finland
| | - Sebastian K-J Landor
- Faculty of Science and Engineering, Cell Biology, Åbo Akademi University, Turku, Finland.
| | - Cecilia Sahlgren
- Faculty of Science and Engineering, Cell Biology, Åbo Akademi University, Turku, Finland; Department of Biomedical Engineering, Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, the Netherlands.
| |
Collapse
|
62
|
Chachami G, Stankovic-Valentin N, Karagiota A, Basagianni A, Plessmann U, Urlaub H, Melchior F, Simos G. Hypoxia-induced Changes in SUMO Conjugation Affect Transcriptional Regulation Under Low Oxygen. Mol Cell Proteomics 2019; 18:1197-1209. [PMID: 30926672 PMCID: PMC6553927 DOI: 10.1074/mcp.ra119.001401] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Revised: 03/14/2019] [Indexed: 12/20/2022] Open
Abstract
Hypoxia occurs in pathological conditions, such as cancer, as a result of the imbalance between oxygen supply and consumption by proliferating cells. HIFs are critical molecular mediators of the physiological response to hypoxia but also regulate multiple steps of carcinogenesis including tumor progression and metastasis. Recent data support that sumoylation, the covalent attachment of the Small Ubiquitin-related MOdifier (SUMO) to proteins, is involved in the activation of the hypoxic response and the ensuing signaling cascade. To gain insights into differences of the SUMO1 and SUMO2/3 proteome of HeLa cells under normoxia and cells grown for 48 h under hypoxic conditions, we employed endogenous SUMO-immunoprecipitation in combination with quantitative mass spectrometry (SILAC). The group of proteins whose abundance was increased both in the total proteome and in the SUMO IPs from hypoxic conditions was enriched in enzymes linked to the hypoxic response. In contrast, proteins whose SUMOylation status changed without concomitant change in abundance were predominantly transcriptions factors or transcription regulators. Particularly interesting was transcription factor TFAP2A (Activating enhancer binding Protein 2 alpha), whose sumoylation decreased on hypoxia. TFAP2A is known to interact with HIF-1 and we provide evidence that deSUMOylation of TFAP2A enhances the transcriptional activity of HIF-1 under hypoxic conditions. Overall, these results support the notion that SUMO-regulated signaling pathways contribute at many distinct levels to the cellular response to low oxygen.
Collapse
Affiliation(s)
- Georgia Chachami
- From the ‡Laboratory of Biochemistry, Faculty of Medicine, University of Thessaly, 41500 Larissa, Greece;
- ‡‡Zentrum für Molekulare Biologie der Universität Heidelberg (ZMBH), DKFZ-ZMBH Alliance, Heidelberg University, 69120 Heidelberg, Germany
| | - Nicolas Stankovic-Valentin
- §Zentrum für Molekulare Biologie der Universität Heidelberg (ZMBH), DKFZ-ZMBH Alliance, Heidelberg University, 69120 Heidelberg, Germany
| | - Angeliki Karagiota
- From the ‡Laboratory of Biochemistry, Faculty of Medicine, University of Thessaly, 41500 Larissa, Greece
| | - Angeliki Basagianni
- From the ‡Laboratory of Biochemistry, Faculty of Medicine, University of Thessaly, 41500 Larissa, Greece
| | - Uwe Plessmann
- ¶Bioanalytical Mass Spectrometry Group Max Planck Institute for Biophysical Chemistry, 37077 Göttingen, Germany
| | - Henning Urlaub
- ¶Bioanalytical Mass Spectrometry Group Max Planck Institute for Biophysical Chemistry, 37077 Göttingen, Germany
- ‖Bioanalytics, University Medical Center Göttingen, 37075 Göttingen, Germany
| | - Frauke Melchior
- §Zentrum für Molekulare Biologie der Universität Heidelberg (ZMBH), DKFZ-ZMBH Alliance, Heidelberg University, 69120 Heidelberg, Germany
| | - George Simos
- From the ‡Laboratory of Biochemistry, Faculty of Medicine, University of Thessaly, 41500 Larissa, Greece
- **Gerald Bronfman Department of Oncology, Faculty of Medicine, McGill University, Montreal, Canada
| |
Collapse
|
63
|
Antoniou-Kourounioti M, Mimmack ML, Porter ACG, Farr CJ. The Impact of the C-Terminal Region on the Interaction of Topoisomerase II Alpha with Mitotic Chromatin. Int J Mol Sci 2019; 20:ijms20051238. [PMID: 30871006 PMCID: PMC6429393 DOI: 10.3390/ijms20051238] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Revised: 03/04/2019] [Accepted: 03/08/2019] [Indexed: 02/06/2023] Open
Abstract
Type II topoisomerase enzymes are essential for resolving DNA topology problems arising through various aspects of DNA metabolism. In vertebrates two isoforms are present, one of which (TOP2A) accumulates on chromatin during mitosis. Moreover, TOP2A targets the mitotic centromere during prophase, persisting there until anaphase onset. It is the catalytically-dispensable C-terminal domain of TOP2 that is crucial in determining this isoform-specific behaviour. In this study we show that, in addition to the recently identified chromatin tether domain, several other features of the alpha-C-Terminal Domain (CTD). influence the mitotic localisation of TOP2A. Lysine 1240 is a major SUMOylation target in cycling human cells and the efficiency of this modification appears to be influenced by T1244 and S1247 phosphorylation. Replacement of K1240 by arginine results in fewer cells displaying centromeric TOP2A accumulation during prometaphase-metaphase. The same phenotype is displayed by cells expressing TOP2A in which either of the mitotic phosphorylation sites S1213 or S1247 has been substituted by alanine. Conversely, constitutive modification of TOP2A by fusion to SUMO2 exerts the opposite effect. FRAP analysis of protein mobility indicates that post-translational modification of TOP2A can influence the enzyme's residence time on mitotic chromatin, as well as its subcellular localisation.
Collapse
Affiliation(s)
- Melissa Antoniou-Kourounioti
- Department of Genetics, University of Cambridge, Downing St, Cambridge CB2 3EH, UK.
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, UK.
| | - Michael L Mimmack
- Department of Genetics, University of Cambridge, Downing St, Cambridge CB2 3EH, UK.
- Metabolic Research Laboratories, Wellcome Trust-Medical Research Council Institute of Metabolic Science, University of Cambridge, Cambridge CB2 0QQ, UK.
| | - Andrew C G Porter
- Centre for Haematology, Faculty of Medicine, Imperial College London, Hammersmith Hospital Campus, Du Cane Rd, London W12 0NN, UK.
| | - Christine J Farr
- Department of Genetics, University of Cambridge, Downing St, Cambridge CB2 3EH, UK.
| |
Collapse
|
64
|
Garvin AJ, Walker AK, Densham RM, Chauhan AS, Stone HR, Mackay HL, Jamshad M, Starowicz K, Daza-Martin M, Ronson GE, Lanz AJ, Beesley JF, Morris JR. The deSUMOylase SENP2 coordinates homologous recombination and nonhomologous end joining by independent mechanisms. Genes Dev 2019; 33:333-347. [PMID: 30796017 PMCID: PMC6411010 DOI: 10.1101/gad.321125.118] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Accepted: 12/21/2018] [Indexed: 12/18/2022]
Abstract
SUMOylation (small ubiquitin-like modifier) in the DNA double-strand break (DSB) response regulates recruitment, activity, and clearance of repair factors. However, our understanding of a role for deSUMOylation in this process is limited. Here we identify different mechanistic roles for deSUMOylation in homologous recombination (HR) and nonhomologous end joining (NHEJ) through the investigation of the deSUMOylase SENP2. We found that regulated deSUMOylation of MDC1 prevents excessive SUMOylation and its RNF4-VCP mediated clearance from DSBs, thereby promoting NHEJ. In contrast, we show that HR is differentially sensitive to SUMO availability and SENP2 activity is needed to provide SUMO. SENP2 is amplified as part of the chromosome 3q amplification in many cancers. Increased SENP2 expression prolongs MDC1 focus retention and increases NHEJ and radioresistance. Collectively, our data reveal that deSUMOylation differentially primes cells for responding to DSBs and demonstrates the ability of SENP2 to tune DSB repair responses.
Collapse
Affiliation(s)
- Alexander J Garvin
- Birmingham Centre for Genome Biology, Institute of Cancer and Genomic Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom
| | - Alexandra K Walker
- Birmingham Centre for Genome Biology, Institute of Cancer and Genomic Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom
| | - Ruth M Densham
- Birmingham Centre for Genome Biology, Institute of Cancer and Genomic Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom
| | - Anoop Singh Chauhan
- Birmingham Centre for Genome Biology, Institute of Cancer and Genomic Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom
| | - Helen R Stone
- Birmingham Centre for Genome Biology, Institute of Cancer and Genomic Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom
| | - Hannah L Mackay
- Birmingham Centre for Genome Biology, Institute of Cancer and Genomic Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom
| | - Mohammed Jamshad
- Birmingham Centre for Genome Biology, Institute of Cancer and Genomic Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom
| | - Katarzyna Starowicz
- Birmingham Centre for Genome Biology, Institute of Cancer and Genomic Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom
| | - Manuel Daza-Martin
- Birmingham Centre for Genome Biology, Institute of Cancer and Genomic Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom
| | - George E Ronson
- Birmingham Centre for Genome Biology, Institute of Cancer and Genomic Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom
| | - Alexander J Lanz
- Birmingham Centre for Genome Biology, Institute of Cancer and Genomic Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom
| | - James F Beesley
- Birmingham Centre for Genome Biology, Institute of Cancer and Genomic Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom
| | - Joanna R Morris
- Birmingham Centre for Genome Biology, Institute of Cancer and Genomic Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom
| |
Collapse
|
65
|
Mattern M, Sutherland J, Kadimisetty K, Barrio R, Rodriguez MS. Using Ubiquitin Binders to Decipher the Ubiquitin Code. Trends Biochem Sci 2019; 44:599-615. [PMID: 30819414 DOI: 10.1016/j.tibs.2019.01.011] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 01/23/2019] [Accepted: 01/29/2019] [Indexed: 12/13/2022]
Abstract
Post-translational modifications (PTMs) by ubiquitin (Ub) are versatile, highly dynamic, and involved in nearly all aspects of eukaryote biological function. The reversibility and heterogeneity of Ub chains attached to protein substrates have complicated their isolation, quantification, and characterization. Strategies have emerged to isolate endogenous ubiquitylated targets, including technologies based on the use of Ub-binding peptides, such as tandem-repeated Ub-binding entities (TUBEs). TUBEs allow the identification and characterization of Ub chains, and novel substrates for deubiquitylases (DUBs) and Ub ligases (E3s). Here we review their impact on purification, analysis of pan or chain-selective polyubiquitylated proteins and underline the biological relevance of this information. Together with peptide aptamers and other Ub affinity-based approaches, TUBEs will contribute to unraveling the secrets of the Ub code.
Collapse
Affiliation(s)
- Michael Mattern
- Progenra Inc., 277 Great Valley Parkway, Malvern 19355, Pennsylvania, USA; These authors contributed equally
| | - James Sutherland
- CIC bioGUNE, Technology Park of Bizkaia, Bldg. 801A, 48160 Derio, Spain; These authors contributed equally
| | - Karteek Kadimisetty
- LifeSensors Inc., 271 Great Valley Parkway, Malvern 19355, Pennsylvania, USA
| | - Rosa Barrio
- CIC bioGUNE, Technology Park of Bizkaia, Bldg. 801A, 48160 Derio, Spain
| | - Manuel S Rodriguez
- ITAV-IPBS-UPS CNRS USR3505, 1 place Pierre Potier, Oncopole entrée B, 31106 Toulouse, France.
| |
Collapse
|
66
|
Wright CM, Whitaker RH, Onuiri JE, Blackburn T, McGarity S, Bjornsti MA, Placzek WJ. UBC9 Mutant Reveals the Impact of Protein Dynamics on Substrate Selectivity and SUMO Chain Linkages. Biochemistry 2019; 58:621-632. [PMID: 30574775 DOI: 10.1021/acs.biochem.8b01045] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
SUMO, a conserved ubiquitin-like protein, is conjugated to a multitude of cellular proteins to maintain genomic integrity and resist genotoxic stress. Studies of the SUMO E2 conjugating enzyme mutant, UBC9P123L, suggested that altered substrate specificity enhances cell sensitivity to DNA damaging agents. Using nuclear magnetic resonance chemical shift studies, we confirm that the mutation does not alter the core globular fold of UBC9, while 15N relaxation measurements demonstrate mutant-induced stabilization of distinct chemical states in residues near the active site cysteine and substrate recognition motifs. We further demonstrate that the P123L substitution induces a switch from the preferential addition of SUMO to lysine residues in unstructured sites to acceptor lysines embedded in secondary structures, thereby also inducing alterations in SUMO chain linkages. Our results provide new insights regarding the impact that structural dynamics of UBC9 have on substrate selection and specifically SUMO chain formation. These findings highlight the potential contribution of nonconsensus SUMO targets and/or alternative SUMO chain linkages on DNA damage response and chemotherapeutic sensitivity.
Collapse
|
67
|
Umbaugh CS, Figueiredo ML. Lysines residing in putative Small Ubiquitin-like MOdifier (SUMO) motifs regulate fate and function of 37 KDa laminin receptor. Biochimie 2019; 156:92-99. [DOI: 10.1016/j.biochi.2018.10.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2018] [Accepted: 10/06/2018] [Indexed: 01/17/2023]
|
68
|
Zucchelli C, Tamburri S, Filosa G, Ghitti M, Quilici G, Bachi A, Musco G. Sp140 is a multi-SUMO-1 target and its PHD finger promotes SUMOylation of the adjacent Bromodomain. Biochim Biophys Acta Gen Subj 2018; 1863:456-465. [PMID: 30465816 DOI: 10.1016/j.bbagen.2018.11.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Revised: 10/25/2018] [Accepted: 11/16/2018] [Indexed: 12/15/2022]
Abstract
BACKGROUND Human Sp140 protein is a leukocyte-specific member of the speckled protein (Sp) family (Sp100, Sp110, Sp140, Sp140L), a class of multi-domain nuclear proteins involved in intrinsic immunity and transcriptional regulation. Sp140 regulates macrophage transcriptional program and is implicated in several haematologic malignancies. Little is known about Sp140 structural domains and its post-translational modifications. METHODS We used mass spectrometry and biochemical experiments to investigate endogenous Sp140 SUMOylation in Burkitt's Lymphoma cells and Sp140 SUMOylation sites in HEK293T cells, FLAG-Sp140 transfected and His6-SUMO-1T95K infected. NMR spectroscopy and in vitro SUMOylation reactions were applied to investigate the role of Sp140 PHD finger in the SUMOylation of the adjacent BRD. RESULTS Endogenous Sp140 is a SUMO-1 target, whereby FLAG-Sp140 harbors at least 13 SUMOylation sites distributed along the protein sequence, including the BRD. NMR experiments prove direct binding of the SUMO E2 ligase Ubc9 and SUMO-1 to PHD-BRDSp140. In vitro SUMOylation reactions show that the PHDSp140 behaves as SUMO E3 ligase, assisting intramolecular SUMOylation of the adjacent BRD. CONCLUSIONS Sp140 is multi-SUMOylated and its PHD finger works as versatile protein-protein interaction platform promoting intramolecular SUMOylation of the adjacent BRD. Thus, combinatorial association of Sp140 chromatin binding domains generates a multifaceted interaction scaffold, whose function goes beyond the canonical histone recognition. GENERAL SIGNIFICANCE The addition of Sp140 to the increasing lists of multi-SUMOylated proteins opens new perspectives for molecular studies on Sp140 transcriptional activity, where SUMOylation could represent a regulatory route and a docking surface for the recruitment and assembly of leukocyte-specific transcription regulators.
Collapse
Affiliation(s)
- Chiara Zucchelli
- Biomolecular NMR Unit c/o IRCCS S. Raffaele, Via Olgettina 58, 20132 Milano, Italy
| | - Simone Tamburri
- IFOM-FIRC Institute of Molecular Oncology, Via Adamello 16, 20139 Milano, Italy; San Raffaele Vita-Salute University, Via Olgettina 60, 20132 Milano, Italy
| | - Giuseppe Filosa
- IFOM-FIRC Institute of Molecular Oncology, Via Adamello 16, 20139 Milano, Italy
| | - Michela Ghitti
- Biomolecular NMR Unit c/o IRCCS S. Raffaele, Via Olgettina 58, 20132 Milano, Italy
| | - Giacomo Quilici
- Biomolecular NMR Unit c/o IRCCS S. Raffaele, Via Olgettina 58, 20132 Milano, Italy
| | - Angela Bachi
- IFOM-FIRC Institute of Molecular Oncology, Via Adamello 16, 20139 Milano, Italy.
| | - Giovanna Musco
- Biomolecular NMR Unit c/o IRCCS S. Raffaele, Via Olgettina 58, 20132 Milano, Italy.
| |
Collapse
|
69
|
Lan X, Field MS, Stover PJ. Cell cycle regulation of folate-mediated one-carbon metabolism. WILEY INTERDISCIPLINARY REVIEWS. SYSTEMS BIOLOGY AND MEDICINE 2018; 10:e1426. [PMID: 29889360 PMCID: PMC11875019 DOI: 10.1002/wsbm.1426] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Revised: 04/26/2018] [Accepted: 04/27/2018] [Indexed: 12/25/2022]
Abstract
Folate-mediated one-carbon metabolism (FOCM) comprises a network of interconnected folate-dependent metabolic pathways responsible for serine and glycine interconversion, de novo purine synthesis, de novo thymidylate synthesis and homocysteine remethylation to methionine. These pathways are compartmentalized in the cytosol, nucleus and mitochondria. Individual enzymes within the FOCM network compete for folate cofactors because intracellular folate concentrations are limiting. Although there are feedback mechanisms that regulate the partitioning of folate cofactors among the folate-dependent pathways, less recognized is the impact of cell cycle regulation on FOCM. This review summarizes the evidence for temporal regulation of expression, activity and cellular localization of enzymes and pathways in the FOCM network in mammalian cells through the cell cycle. This article is categorized under: Biological Mechanisms > Metabolism Physiology > Mammalian Physiology in Health and Disease.
Collapse
Affiliation(s)
- Xu Lan
- Division of Nutritional Sciences, Cornell University, Ithaca, New York
| | - Martha S Field
- Division of Nutritional Sciences, Cornell University, Ithaca, New York
| | - Patrick J Stover
- Division of Nutritional Sciences, Cornell University, Ithaca, New York
| |
Collapse
|
70
|
Gärtner A, Wagner K, Hölper S, Kunz K, Rodriguez MS, Müller S. Acetylation of SUMO2 at lysine 11 favors the formation of non-canonical SUMO chains. EMBO Rep 2018; 19:embr.201846117. [PMID: 30201799 DOI: 10.15252/embr.201846117] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Revised: 08/16/2018] [Accepted: 08/17/2018] [Indexed: 12/12/2022] Open
Abstract
Post-translational modifications by ubiquitin-related SUMO modifiers regulate cellular signaling networks and protein homeostasis. While SUMO1 is mainly conjugated to proteins as a monomer, SUMO2/3 can form polymeric chains. Poly-SUMOylation is best understood in the SUMO-targeted ubiquitin ligase (StUbL) pathway, where chains prime proteins for subsequent ubiquitylation by StUbLs. SUMO chains typically form in response to genotoxic or proteotoxic stress and are preferentially linked via lysine 11 of SUMO2/3. Here, we report that K11 of SUMO2/3 undergoes reversible acetylation with SIRT1 being the K11 deacetylase. In a purified in vitro system, acetylation of SUMO2/3 impairs chain formation and restricts chain length. In a cellular context, however, K11 acetyl-mimicking SUMO2 does not affect the StUbL pathway, indicating that in cells non-canonical chains are more prevalent. MS-based SUMO proteomics indeed identified non-canonical chain types under basal and stress conditions. Importantly, mimicking K11 acetylation alters chain architecture by favoring K5- and K35-linked chains, while inhibiting K7 and K21 linkages. These data provide insight into SUMO chain signaling and point to a role of K11 acetylation as a modulator of SUMO2/3 chains.
Collapse
Affiliation(s)
- Anne Gärtner
- Institute of Biochemistry II, Medical School, Goethe University, Frankfurt, Germany
| | - Kristina Wagner
- Institute of Biochemistry II, Medical School, Goethe University, Frankfurt, Germany
| | - Soraya Hölper
- Institute of Biochemistry II, Medical School, Goethe University, Frankfurt, Germany
| | - Kathrin Kunz
- Institute of Biochemistry II, Medical School, Goethe University, Frankfurt, Germany
| | - Manuel S Rodriguez
- Institut des Technologies Avancées en sciences du Vivant-UPS and IPBS-CNRS, Toulouse Cedex 1, France
| | - Stefan Müller
- Institute of Biochemistry II, Medical School, Goethe University, Frankfurt, Germany
| |
Collapse
|
71
|
Wang Z, Wu C, Aslanian A, Yates JR, Hunter T. Defective RNA polymerase III is negatively regulated by the SUMO-Ubiquitin-Cdc48 pathway. eLife 2018; 7:35447. [PMID: 30192228 PMCID: PMC6128692 DOI: 10.7554/elife.35447] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Accepted: 08/21/2018] [Indexed: 12/26/2022] Open
Abstract
Transcription by RNA polymerase III (Pol III) is an essential cellular process, and mutations in Pol III can cause neurodegenerative disease in humans. However, in contrast to Pol II transcription, which has been extensively studied, the knowledge of how Pol III is regulated is very limited. We report here that in budding yeast, Saccharomyces cerevisiae, Pol III is negatively regulated by the Small Ubiquitin-like MOdifier (SUMO), an essential post-translational modification pathway. Besides sumoylation, Pol III is also targeted by ubiquitylation and the Cdc48/p97 segregase; these three processes likely act in a sequential manner and eventually lead to proteasomal degradation of Pol III subunits, thereby repressing Pol III transcription. This study not only uncovered a regulatory mechanism for Pol III, but also suggests that the SUMO and ubiquitin modification pathways and the Cdc48/p97 segregase can be potential therapeutic targets for Pol III-related human diseases.
Collapse
Affiliation(s)
- Zheng Wang
- Molecular and Cell Biology Laboratory, Salk Institute for Biological Studies, La Jolla, United States
| | - Catherine Wu
- Molecular and Cell Biology Laboratory, Salk Institute for Biological Studies, La Jolla, United States
| | - Aaron Aslanian
- Molecular and Cell Biology Laboratory, Salk Institute for Biological Studies, La Jolla, United States.,The Scripps Research Institute, La Jolla, United States
| | - John R Yates
- The Scripps Research Institute, La Jolla, United States
| | - Tony Hunter
- Molecular and Cell Biology Laboratory, Salk Institute for Biological Studies, La Jolla, United States
| |
Collapse
|
72
|
Maneuvers on PCNA Rings during DNA Replication and Repair. Genes (Basel) 2018; 9:genes9080416. [PMID: 30126151 PMCID: PMC6116012 DOI: 10.3390/genes9080416] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Revised: 08/08/2018] [Accepted: 08/09/2018] [Indexed: 12/20/2022] Open
Abstract
DNA replication and repair are essential cellular processes that ensure genome duplication and safeguard the genome from deleterious mutations. Both processes utilize an abundance of enzymatic functions that need to be tightly regulated to ensure dynamic exchange of DNA replication and repair factors. Proliferating cell nuclear antigen (PCNA) is the major coordinator of faithful and processive replication and DNA repair at replication forks. Post-translational modifications of PCNA, ubiquitination and acetylation in particular, regulate the dynamics of PCNA-protein interactions. Proliferating cell nuclear antigen (PCNA) monoubiquitination elicits ‘polymerase switching’, whereby stalled replicative polymerase is replaced with a specialized polymerase, while PCNA acetylation may reduce the processivity of replicative polymerases to promote homologous recombination-dependent repair. While regulatory functions of PCNA ubiquitination and acetylation have been well established, the regulation of PCNA-binding proteins remains underexplored. Considering the vast number of PCNA-binding proteins, many of which have similar PCNA binding affinities, the question arises as to the regulation of the strength and sequence of their binding to PCNA. Here I provide an overview of post-translational modifications on both PCNA and PCNA-interacting proteins and discuss their relevance for the regulation of the dynamic processes of DNA replication and repair.
Collapse
|
73
|
Chanda A, Sarkar A, Bonni S. The SUMO System and TGFβ Signaling Interplay in Regulation of Epithelial-Mesenchymal Transition: Implications for Cancer Progression. Cancers (Basel) 2018; 10:cancers10080264. [PMID: 30096838 PMCID: PMC6115711 DOI: 10.3390/cancers10080264] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Revised: 08/06/2018] [Accepted: 08/06/2018] [Indexed: 02/07/2023] Open
Abstract
Protein post-translational modification by the small ubiquitin-like modifier (SUMO), or SUMOylation, can regulate the stability, subcellular localization or interactome of a protein substrate with key consequences for cellular processes including the Epithelial-Mesenchymal Transition (EMT). The secreted protein Transforming Growth Factor beta (TGFβ) is a potent inducer of EMT in development and homeostasis. Importantly, the ability of TGFβ to induce EMT has been implicated in promoting cancer invasion and metastasis, resistance to chemo/radio therapy, and maintenance of cancer stem cells. Interestingly, TGFβ-induced EMT and the SUMO system intersect with important implications for cancer formation and progression, and novel therapeutics identification.
Collapse
Affiliation(s)
- Ayan Chanda
- Department of Biochemistry and Molecular Biology, The Arnie Charbonneau Cancer Institute, University of Calgary, Calgary, AB T2N 4N1, Canada.
| | - Anusi Sarkar
- Department of Biochemistry and Molecular Biology, The Arnie Charbonneau Cancer Institute, University of Calgary, Calgary, AB T2N 4N1, Canada.
| | - Shirin Bonni
- Department of Biochemistry and Molecular Biology, The Arnie Charbonneau Cancer Institute, University of Calgary, Calgary, AB T2N 4N1, Canada.
| |
Collapse
|
74
|
Site-specific characterization of endogenous SUMOylation across species and organs. Nat Commun 2018; 9:2456. [PMID: 29942033 PMCID: PMC6018634 DOI: 10.1038/s41467-018-04957-4] [Citation(s) in RCA: 151] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Accepted: 06/05/2018] [Indexed: 12/30/2022] Open
Abstract
Small ubiquitin-like modifiers (SUMOs) are post-translational modifications that play crucial roles in most cellular processes. While methods exist to study exogenous SUMOylation, large-scale characterization of endogenous SUMO2/3 has remained technically daunting. Here, we describe a proteomics approach facilitating system-wide and in vivo identification of lysines modified by endogenous and native SUMO2. Using a peptide-level immunoprecipitation enrichment strategy, we identify 14,869 endogenous SUMO2/3 sites in human cells during heat stress and proteasomal inhibition, and quantitatively map 1963 SUMO sites across eight mouse tissues. Characterization of the SUMO equilibrium highlights striking differences in SUMO metabolism between cultured cancer cells and normal tissues. Targeting preferences of SUMO2/3 vary across different organ types, coinciding with markedly differential SUMOylation states of all enzymes involved in the SUMO conjugation cascade. Collectively, our systemic investigation details the SUMOylation architecture across species and organs and provides a resource of endogenous SUMOylation sites on factors important in organ-specific functions. Proteomics is a powerful method to study protein SUMOylation, but system-wide insights into endogenous SUMO2/3 modification events are still sparse. Here, the authors develop a more sensitive SUMO proteomics approach, providing detailed maps of endogenous SUMO2/3 sites in human cells and mouse tissues.
Collapse
|
75
|
Munk S, Sigurðsson JO, Xiao Z, Batth TS, Franciosa G, von Stechow L, Lopez-Contreras AJ, Vertegaal ACO, Olsen JV. Proteomics Reveals Global Regulation of Protein SUMOylation by ATM and ATR Kinases during Replication Stress. Cell Rep 2018; 21:546-558. [PMID: 29020638 DOI: 10.1016/j.celrep.2017.09.059] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Revised: 08/11/2017] [Accepted: 09/18/2017] [Indexed: 11/20/2022] Open
Abstract
The mechanisms that protect eukaryotic DNA during the cumbersome task of replication depend on the precise coordination of several post-translational modification (PTM)-based signaling networks. Phosphorylation is a well-known regulator of the replication stress response, and recently an essential role for SUMOs (small ubiquitin-like modifiers) has also been established. Here, we investigate the global interplay between phosphorylation and SUMOylation in response to replication stress. Using SUMO and phosphoproteomic technologies, we identify thousands of regulated modification sites. We find co-regulation of central DNA damage and replication stress responders, of which the ATR-activating factor TOPBP1 is the most highly regulated. Using pharmacological inhibition of the DNA damage response kinases ATR and ATM, we find that these factors regulate global protein SUMOylation in the protein networks that protect DNA upon replication stress and fork breakage, pointing to integration between phosphorylation and SUMOylation in the cellular systems that protect DNA integrity.
Collapse
Affiliation(s)
- Stephanie Munk
- Proteomics Program, Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark; Center for Chromosome Stability and Center for Healthy Aging, Institute for Cellular and Molecular Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Jón Otti Sigurðsson
- Proteomics Program, Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Zhenyu Xiao
- Department of Molecular Cell Biology, Leiden University Medical Center, 2300 RC Leiden, the Netherlands
| | - Tanveer Singh Batth
- Proteomics Program, Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Giulia Franciosa
- Proteomics Program, Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Louise von Stechow
- Proteomics Program, Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Andres Joaquin Lopez-Contreras
- Center for Chromosome Stability and Center for Healthy Aging, Institute for Cellular and Molecular Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | | | - Jesper Velgaard Olsen
- Proteomics Program, Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark.
| |
Collapse
|
76
|
Pfammatter S, Bonneil E, McManus FP, Thibault P. Gas-Phase Enrichment of Multiply Charged Peptide Ions by Differential Ion Mobility Extend the Comprehensiveness of SUMO Proteome Analyses. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2018; 29:1111-1124. [PMID: 29623662 DOI: 10.1007/s13361-018-1917-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Revised: 02/07/2018] [Accepted: 02/08/2018] [Indexed: 06/08/2023]
Abstract
The small ubiquitin-like modifier (SUMO) is a member of the family of ubiquitin-like modifiers (UBLs) and is involved in important cellular processes, including DNA damage response, meiosis and cellular trafficking. The large-scale identification of SUMO peptides in a site-specific manner is challenging not only because of the low abundance and dynamic nature of this modification, but also due to the branched structure of the corresponding peptides that further complicate their identification using conventional search engines. Here, we exploited the unusual structure of SUMO peptides to facilitate their separation by high-field asymmetric waveform ion mobility spectrometry (FAIMS) and increase the coverage of SUMO proteome analysis. Upon trypsin digestion, branched peptides contain a SUMO remnant side chain and predominantly form triply protonated ions that facilitate their gas-phase separation using FAIMS. We evaluated the mobility characteristics of synthetic SUMO peptides and further demonstrated the application of FAIMS to profile the changes in protein SUMOylation of HEK293 cells following heat shock, a condition known to affect this modification. FAIMS typically provided a 10-fold improvement of detection limit of SUMO peptides, and enabled a 36% increase in SUMO proteome coverage compared to the same LC-MS/MS analyses performed without FAIMS. Graphical Abstract ᅟ.
Collapse
Affiliation(s)
- Sibylle Pfammatter
- Institute for Research in Immunology and Cancer, Université de Montréal, C.P. 6128, Succursale centre-ville, Montréal, Québec, H3C 3J7, Canada
- Department of Chemistry, Université de Montréal, C.P. 6128, Succursale centre-ville, Montréal, Québec, H3C 3J7, Canada
| | - Eric Bonneil
- Institute for Research in Immunology and Cancer, Université de Montréal, C.P. 6128, Succursale centre-ville, Montréal, Québec, H3C 3J7, Canada
| | - Francis P McManus
- Institute for Research in Immunology and Cancer, Université de Montréal, C.P. 6128, Succursale centre-ville, Montréal, Québec, H3C 3J7, Canada
| | - Pierre Thibault
- Institute for Research in Immunology and Cancer, Université de Montréal, C.P. 6128, Succursale centre-ville, Montréal, Québec, H3C 3J7, Canada.
- Department of Chemistry, Université de Montréal, C.P. 6128, Succursale centre-ville, Montréal, Québec, H3C 3J7, Canada.
| |
Collapse
|
77
|
McManus FP, Bourdeau V, Acevedo M, Lopes-Paciencia S, Mignacca L, Lamoliatte F, Rojas Pino JW, Ferbeyre G, Thibault P. Quantitative SUMO proteomics reveals the modulation of several PML nuclear body associated proteins and an anti-senescence function of UBC9. Sci Rep 2018; 8:7754. [PMID: 29773808 PMCID: PMC5958138 DOI: 10.1038/s41598-018-25150-z] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Accepted: 03/28/2018] [Indexed: 12/13/2022] Open
Abstract
Several regulators of SUMOylation have been previously linked to senescence but most targets of this modification in senescent cells remain unidentified. Using a two-step purification of a modified SUMO3, we profiled the SUMO proteome of senescent cells in a site-specific manner. We identified 25 SUMO sites on 23 proteins that were significantly regulated during senescence. Of note, most of these proteins were PML nuclear body (PML-NB) associated, which correlates with the increased number and size of PML-NBs observed in senescent cells. Interestingly, the sole SUMO E2 enzyme, UBC9, was more SUMOylated during senescence on its Lys-49. Functional studies of a UBC9 mutant at Lys-49 showed a decreased association to PML-NBs and the loss of UBC9’s ability to delay senescence. We thus propose both pro- and anti-senescence functions of protein SUMOylation.
Collapse
Affiliation(s)
- Francis P McManus
- Institute of Research in Immunology and Cancer, Université de Montréal, Montréal, QC H3C 3J7, Canada
| | - Véronique Bourdeau
- Department of Biochemistry and Molecular Medicine, Université de Montréal, Montréal, QC H3C 3J7, Canada
| | - Mariana Acevedo
- Department of Biochemistry and Molecular Medicine, Université de Montréal, Montréal, QC H3C 3J7, Canada
| | - Stéphane Lopes-Paciencia
- Department of Biochemistry and Molecular Medicine, Université de Montréal, Montréal, QC H3C 3J7, Canada
| | - Lian Mignacca
- Department of Biochemistry and Molecular Medicine, Université de Montréal, Montréal, QC H3C 3J7, Canada
| | - Frédéric Lamoliatte
- Institute of Research in Immunology and Cancer, Université de Montréal, Montréal, QC H3C 3J7, Canada.,Department of Chemistry, Université de Montréal, Montréal, QC H3C 3J7, Canada
| | - John W Rojas Pino
- Department of Biochemistry and Molecular Medicine, Université de Montréal, Montréal, QC H3C 3J7, Canada
| | - Gerardo Ferbeyre
- Department of Biochemistry and Molecular Medicine, Université de Montréal, Montréal, QC H3C 3J7, Canada.
| | - Pierre Thibault
- Institute of Research in Immunology and Cancer, Université de Montréal, Montréal, QC H3C 3J7, Canada. .,Department of Chemistry, Université de Montréal, Montréal, QC H3C 3J7, Canada.
| |
Collapse
|
78
|
Uzoma I, Hu J, Cox E, Xia S, Zhou J, Rho HS, Guzzo C, Paul C, Ajala O, Goodwin CR, Jeong J, Moore C, Zhang H, Meluh P, Blackshaw S, Matunis M, Qian J, Zhu H. Global Identification of Small Ubiquitin-related Modifier (SUMO) Substrates Reveals Crosstalk between SUMOylation and Phosphorylation Promotes Cell Migration. Mol Cell Proteomics 2018; 17:871-888. [PMID: 29438996 PMCID: PMC5930406 DOI: 10.1074/mcp.ra117.000014] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Revised: 02/07/2018] [Indexed: 12/20/2022] Open
Abstract
Proteomics studies have revealed that SUMOylation is a widely used post-translational modification (PTM) in eukaryotes. However, how SUMO E1/2/3 complexes use different SUMO isoforms and recognize substrates remains largely unknown. Using a human proteome microarray-based activity screen, we identified over 2500 proteins that undergo SUMO E3-dependent SUMOylation. We next constructed a SUMO isoform- and E3 ligase-dependent enzyme-substrate relationship network. Protein kinases were significantly enriched among SUMOylation substrates, suggesting crosstalk between phosphorylation and SUMOylation. Cell-based analyses of tyrosine kinase, PYK2, revealed that SUMOylation at four lysine residues promoted PYK2 autophosphorylation at tyrosine 402, which in turn enhanced its interaction with SRC and full activation of the SRC-PYK2 complex. SUMOylation on WT but not the 4KR mutant of PYK2 further elevated phosphorylation of the downstream components in the focal adhesion pathway, such as paxillin and Erk1/2, leading to significantly enhanced cell migration during wound healing. These studies illustrate how our SUMO E3 ligase-substrate network can be used to explore crosstalk between SUMOylation and other PTMs in many biological processes.
Collapse
Affiliation(s)
- Ijeoma Uzoma
- From the ‡Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
- §The Center for High-Throughput Biology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
| | - Jianfei Hu
- ¶Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
| | - Eric Cox
- §The Center for High-Throughput Biology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
- ‖Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
| | - Shuli Xia
- **Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
- ‡‡Hugo W. Moser Research Institute at Kennedy Krieger, Baltimore, Maryland 21205
| | - Jianying Zhou
- §§Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
| | - Hee-Sool Rho
- From the ‡Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
- §The Center for High-Throughput Biology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
| | - Catherine Guzzo
- ¶¶Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland 21205
| | - Corry Paul
- From the ‡Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
- §The Center for High-Throughput Biology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
| | - Olutobi Ajala
- From the ‡Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
- §The Center for High-Throughput Biology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
| | - C Rory Goodwin
- **Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
- ‡‡Hugo W. Moser Research Institute at Kennedy Krieger, Baltimore, Maryland 21205
| | - Junseop Jeong
- From the ‡Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
- §The Center for High-Throughput Biology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
| | - Cedric Moore
- From the ‡Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
- §The Center for High-Throughput Biology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
| | - Hui Zhang
- §§Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
| | - Pamela Meluh
- §The Center for High-Throughput Biology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
| | - Seth Blackshaw
- §The Center for High-Throughput Biology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
- **Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
| | - Michael Matunis
- ¶¶Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland 21205
| | - Jiang Qian
- ¶Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
| | - Heng Zhu
- From the ‡Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205;
- §The Center for High-Throughput Biology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
| |
Collapse
|
79
|
Yu F, Shi G, Cheng S, Chen J, Wu SY, Wang Z, Xia N, Zhai Y, Wang Z, Peng Y, Wang D, Du JX, Liao L, Duan SZ, Shi T, Cheng J, Chiang CM, Li J, Wong J. SUMO suppresses and MYC amplifies transcription globally by regulating CDK9 sumoylation. Cell Res 2018; 28:670-685. [PMID: 29588524 DOI: 10.1038/s41422-018-0023-9] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Revised: 01/28/2018] [Accepted: 02/11/2018] [Indexed: 01/21/2023] Open
Abstract
Regulation of transcription is fundamental to the control of cellular gene expression and function. Although recent studies have revealed a role for the oncoprotein MYC in amplifying global transcription, little is known as to how the global transcription is suppressed. Here we report that SUMO and MYC mediate opposite effects upon global transcription by controlling the level of CDK9 sumoylation. On one hand, SUMO suppresses global transcription via sumoylation of CDK9, the catalytic subunit of P-TEFb kinase essential for productive transcriptional elongation. On the other hand, MYC amplifies global transcription by antagonizing CDK9 sumoylation. Sumoylation of CDK9 blocks its interaction with Cyclin T1 and thus the formation of active P-TEFb complex. Transcription profiling analyses reveal that SUMO represses global transcription, particularly of moderately to highly expressed genes and by generating a sumoylation-resistant CDK9 mutant, we confirm that sumoylation of CDK9 inhibits global transcription. Together, our data reveal that SUMO and MYC oppositely control global gene expression by regulating the dynamic sumoylation and desumoylation of CDK9.
Collapse
Affiliation(s)
- Fang Yu
- Shanghai Key Laboratory of Regulatory Biology, Fengxian District Central Hospital-ECNU Joint Center of Translational Medicine, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Guang Shi
- Shanghai Key Laboratory of Regulatory Biology, Fengxian District Central Hospital-ECNU Joint Center of Translational Medicine, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, 200241, China.,Key Laboratory of Gene Engineering of the Ministry of Education and Institute of Healthy Aging Research, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
| | - Shimeng Cheng
- Shanghai Key Laboratory of Regulatory Biology, Fengxian District Central Hospital-ECNU Joint Center of Translational Medicine, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Jiwei Chen
- Shanghai Key Laboratory of Regulatory Biology, Fengxian District Central Hospital-ECNU Joint Center of Translational Medicine, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Shwu-Yuan Wu
- Simmons Comprehensive Cancer Center, Department of Biochemistry, and Department of Pharmacology, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX, 75390, USA
| | - Zhiqiang Wang
- Shanghai Key Laboratory of Regulatory Biology, Fengxian District Central Hospital-ECNU Joint Center of Translational Medicine, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Nansong Xia
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Yunhao Zhai
- Shanghai Key Laboratory of Regulatory Biology, Fengxian District Central Hospital-ECNU Joint Center of Translational Medicine, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Zhenxing Wang
- Shanghai Key Laboratory of Regulatory Biology, Fengxian District Central Hospital-ECNU Joint Center of Translational Medicine, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Yu Peng
- Shanghai Key Laboratory of Regulatory Biology, Fengxian District Central Hospital-ECNU Joint Center of Translational Medicine, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Dong Wang
- Shanghai Key Laboratory of Regulatory Biology, Fengxian District Central Hospital-ECNU Joint Center of Translational Medicine, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - James X Du
- Shanghai Key Laboratory of Regulatory Biology, Fengxian District Central Hospital-ECNU Joint Center of Translational Medicine, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Lujian Liao
- Shanghai Key Laboratory of Regulatory Biology, Fengxian District Central Hospital-ECNU Joint Center of Translational Medicine, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Sheng-Zhong Duan
- Laboratory of Oral Microbiology, Shanghai Research Institute of Stomatology, Shanghai Key Laboratory of Stomatology, Ninth People's Hospital, School of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Tieliu Shi
- Shanghai Key Laboratory of Regulatory Biology, Fengxian District Central Hospital-ECNU Joint Center of Translational Medicine, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Jinke Cheng
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Cheng-Ming Chiang
- Simmons Comprehensive Cancer Center, Department of Biochemistry, and Department of Pharmacology, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX, 75390, USA
| | - Jiwen Li
- Shanghai Key Laboratory of Regulatory Biology, Fengxian District Central Hospital-ECNU Joint Center of Translational Medicine, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, 200241, China.
| | - Jiemin Wong
- Shanghai Key Laboratory of Regulatory Biology, Fengxian District Central Hospital-ECNU Joint Center of Translational Medicine, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, 200241, China.
| |
Collapse
|
80
|
Zhang Y, Li Y, Tang B, Zhang CY. The strategies for identification and quantification of SUMOylation. Chem Commun (Camb) 2018; 53:6989-6998. [PMID: 28589199 DOI: 10.1039/c7cc00901a] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
SUMOylation is a post-translational modification that plays critical roles in a multitude of cellular processes including transcription, cellular localization, DNA repair and cell cycle progression. Similar to ubiquitin, the small ubiquitin-like modifiers (SUMOs) are covalently attached to the epsilon amino group of lysine residues in the substrates. To understand the regulation and the dynamics of post-translational modifications (PTMs), the identification and quantification of SUMOylation is strictly needed. Although numerous proteomic approaches have been developed to identify hundreds of SUMO target proteins, the number of SUMOylation signatures identified from endogenous modified proteins is limited, and the identification of precise acceptor sites remains a challenge due to the low abundance of in vivo SUMO-modified proteins and the high activity of SUMO-specific proteases in cell lysates. In particular, very few sensitive strategies are available for accurate quantification of SUMO target proteins. Within the past decade, mass spectrometry-based strategies have been the most popular technologies for proteome-wide studies of SUMOylation. Recently, some new approaches such as single-molecule detection have been introduced. In this review, we summarize the strategies that have been exploited for enrichment, purification and identification of SUMOylation substrates and acceptor sites as well as ultrasensitive quantification of SUMOylation. We highlight the emerging trends in this field as well.
Collapse
Affiliation(s)
- Yan Zhang
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals, Shandong Normal University, Jinan 250014, China.
| | | | | | | |
Collapse
|
81
|
Iribarren PA, Di Marzio LA, Berazategui MA, De Gaudenzi JG, Alvarez VE. SUMO polymeric chains are involved in nuclear foci formation and chromatin organization in Trypanosoma brucei procyclic forms. PLoS One 2018; 13:e0193528. [PMID: 29474435 PMCID: PMC5825156 DOI: 10.1371/journal.pone.0193528] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Accepted: 02/13/2018] [Indexed: 01/10/2023] Open
Abstract
SUMOylation is a post-translational modification conserved in eukaryotic organisms that involves the covalent attachment of the small ubiquitin-like protein SUMO to internal lysine residues in target proteins. This tag usually alters the interaction surface of the modified protein and can be translated into changes in its biological activity, stability or subcellular localization, among other possible outputs. SUMO can be attached as a single moiety or as SUMO polymers in case there are internal acceptor sites in SUMO itself. These chains have been shown to be important for proteasomal degradation as well as for the formation of subnuclear structures such as the synaptonemal complex in Saccharomyces cerevisiae or promyelocytic leukemia nuclear bodies in mammals. In this work, we have examined SUMO chain formation in the protozoan parasite Trypanosoma brucei. Using a recently developed bacterial strain engineered to produce SUMOylated proteins we confirmed the ability of TbSUMO to form polymers and determined the type of linkage using site-directed mutational analysis. By generating transgenic procyclic parasites unable to form chains we demonstrated that although not essential for normal growth, SUMO polymerization determines the localization of the modified proteins in the nucleus. In addition, FISH analysis of telomeres showed a differential positioning depending on the polySUMOylation abilities of the cells. Thus, our observations suggest that TbSUMO chains might play a role in establishing interaction platforms contributing to chromatin organization.
Collapse
Affiliation(s)
- Paula Ana Iribarren
- Instituto de Investigaciones Biotecnológicas Dr. Rodolfo A. Ugalde—Instituto Tecnológico de Chascomús (IIB-INTECH), Universidad Nacional de San Martín (UNSAM)—Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET). Campus Miguelete, Av. 25 de Mayo y Francia, San Martín, Buenos Aires, Argentina
| | - Lucía Ayelén Di Marzio
- Instituto de Investigaciones Biotecnológicas Dr. Rodolfo A. Ugalde—Instituto Tecnológico de Chascomús (IIB-INTECH), Universidad Nacional de San Martín (UNSAM)—Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET). Campus Miguelete, Av. 25 de Mayo y Francia, San Martín, Buenos Aires, Argentina
| | - María Agustina Berazategui
- Instituto de Investigaciones Biotecnológicas Dr. Rodolfo A. Ugalde—Instituto Tecnológico de Chascomús (IIB-INTECH), Universidad Nacional de San Martín (UNSAM)—Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET). Campus Miguelete, Av. 25 de Mayo y Francia, San Martín, Buenos Aires, Argentina
| | - Javier Gerardo De Gaudenzi
- Instituto de Investigaciones Biotecnológicas Dr. Rodolfo A. Ugalde—Instituto Tecnológico de Chascomús (IIB-INTECH), Universidad Nacional de San Martín (UNSAM)—Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET). Campus Miguelete, Av. 25 de Mayo y Francia, San Martín, Buenos Aires, Argentina
- * E-mail: (VEA); (JGDG)
| | - Vanina Eder Alvarez
- Instituto de Investigaciones Biotecnológicas Dr. Rodolfo A. Ugalde—Instituto Tecnológico de Chascomús (IIB-INTECH), Universidad Nacional de San Martín (UNSAM)—Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET). Campus Miguelete, Av. 25 de Mayo y Francia, San Martín, Buenos Aires, Argentina
- * E-mail: (VEA); (JGDG)
| |
Collapse
|
82
|
Kessler BM, Bursomanno S, McGouran JF, Hickson ID, Liu Y. Biochemical and Mass Spectrometry-Based Approaches to Profile SUMOylation in Human Cells. Methods Mol Biol 2018; 1491:131-144. [PMID: 27778286 DOI: 10.1007/978-1-4939-6439-0_10] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Posttranslational modification of proteins with the small ubiquitin-like modifier (SUMO) regulates protein function in the context of cell cycle and DNA repair. The occurrence of SUMOylation is less frequent as compared to protein modification with ubiquitin, and appears to be controlled by a smaller pool of conjugating and deconjugating enzymes. Mass spectrometry has been instrumental in defining specific as well as proteome-wide views of SUMO-dependent biological processes, and several methodological approaches have been developed in the recent past. Here, we provide an overview of the latest experimental approaches to the study of SUMOylation, and also describe hands-on protocols using a combination of biochemistry and mass spectrometry-based technologies to profile proteins that are SUMOylated in human cells.
Collapse
Affiliation(s)
- Benedikt M Kessler
- Target Discovery Institute, Nuffield Department of Medicine, University of Oxford, Roosevelt Drive, Oxford, OX3 7FZ, UK.
| | - Sara Bursomanno
- Center for Chromosome Stability and Center for Healthy Aging, Department of Cellular and Molecular Medicine, University of Copenhagen, Panum Institute, Astra Zeneca, Godsmottagningen MA1, Pepparedsleden, 43183, Mölndal, Sweden
| | - Joanna F McGouran
- Target Discovery Institute, Nuffield Department of Medicine, University of Oxford, Roosevelt Drive, Oxford, OX3 7FZ, UK.,School of Chemistry, Trinity College Dublin, University of Dublin, College Green, Dublin 2, Ireland
| | - Ian D Hickson
- Center for Chromosome Stability and Center for Healthy Aging, Department of Cellular and Molecular Medicine, University of Copenhagen, Panum Institute, Astra Zeneca, Godsmottagningen MA1, Pepparedsleden, 43183, Mölndal, Sweden
| | - Ying Liu
- Center for Chromosome Stability and Center for Healthy Aging, Department of Cellular and Molecular Medicine, University of Copenhagen, Panum Institute, Astra Zeneca, Godsmottagningen MA1, Pepparedsleden, 43183, Mölndal, Sweden
| |
Collapse
|
83
|
Antila CJM, Rraklli V, Blomster HA, Dahlström KM, Salminen TA, Holmberg J, Sistonen L, Sahlgren C. Sumoylation of Notch1 represses its target gene expression during cell stress. Cell Death Differ 2018; 25:600-615. [PMID: 29305585 PMCID: PMC5864205 DOI: 10.1038/s41418-017-0002-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Revised: 09/08/2017] [Accepted: 09/11/2017] [Indexed: 02/06/2023] Open
Abstract
The Notch signaling pathway is a key regulator of stem cells during development, and its deregulated activity is linked to developmental defects and cancer. Transcriptional activation of Notch target genes requires cleavage of the Notch receptor in response to ligand binding, production of the Notch intracellular domain (NICD1), NICD1 migration into the nucleus, and assembly of a transcriptional complex. Post-translational modifications of Notch regulate its trafficking, turnover, and transcriptional activity. Here, we show that NICD1 is modified by small ubiquitin-like modifier (SUMO) in a stress-inducible manner. Sumoylation occurs in the nucleus where NICD1 is sumoylated in the RBPJ-associated molecule (RAM) domain. Although stress and sumoylation enhance nuclear localization of NICD1, its transcriptional activity is attenuated. Molecular modeling indicates that sumoylation can occur within the DNA-bound ternary transcriptional complex, consisting of NICD1, the transcription factor Suppressor of Hairless (CSL), and the co-activator Mastermind-like (MAML) without its disruption. Mechanistically, sumoylation of NICD1 facilitates the recruitment of histone deacetylase 4 (HDAC4) to the Notch transcriptional complex to suppress Notch target gene expression. Stress-induced sumoylation decreases the NICD1-mediated induction of Notch target genes, which was abrogated by expressing a sumoylation-defected mutant in cells and in the developing central nervous system of the chick in vivo. Our findings of the stress-inducible sumoylation of NICD1 reveal a novel context-dependent regulatory mechanism of Notch target gene expression.
Collapse
Affiliation(s)
- Christian J M Antila
- Turku Centre for Biotechnology, University of Turku and Åbo Akademi University, FI-20520, Turku, Finland.,Faculty of Science and Engineering, Åbo Akademi University, FI-20520, Turku, Finland
| | - Vilma Rraklli
- Department of Cell and Molecular Biology, Karolinska Institutet, 285 SE-171 77, Stockholm, Sweden
| | - Henri A Blomster
- Turku Centre for Biotechnology, University of Turku and Åbo Akademi University, FI-20520, Turku, Finland.,Faculty of Science and Engineering, Åbo Akademi University, FI-20520, Turku, Finland
| | - Käthe M Dahlström
- Faculty of Science and Engineering, Åbo Akademi University, FI-20520, Turku, Finland
| | - Tiina A Salminen
- Faculty of Science and Engineering, Åbo Akademi University, FI-20520, Turku, Finland
| | - Johan Holmberg
- Department of Cell and Molecular Biology, Karolinska Institutet, 285 SE-171 77, Stockholm, Sweden
| | - Lea Sistonen
- Turku Centre for Biotechnology, University of Turku and Åbo Akademi University, FI-20520, Turku, Finland.,Faculty of Science and Engineering, Åbo Akademi University, FI-20520, Turku, Finland
| | - Cecilia Sahlgren
- Turku Centre for Biotechnology, University of Turku and Åbo Akademi University, FI-20520, Turku, Finland. .,Faculty of Science and Engineering, Åbo Akademi University, FI-20520, Turku, Finland. .,Department of Biomedical Engineering, Technical University of Eindhoven, 5613 DR, Eindhoven, The Netherlands.
| |
Collapse
|
84
|
Matunis MJ, Rodriguez MS. Concepts and Methodologies to Study Protein SUMOylation: An Overview. Methods Mol Biol 2018; 1475:3-22. [PMID: 27631794 DOI: 10.1007/978-1-4939-6358-4_1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Protein modification by the small ubiquitin-related modifier (SUMO) was simultaneously discovered by several groups at the middle of the 1990s. Although distinct names were proposed including Sentrin, GMP1, PIC1, or SMT3, SUMO became the most popular. Early studies on the functions of SUMOylation focused on activities in the nucleus, including transcription activation, chromatin structure, and DNA repair. However, it is now recognized that SUMOylation affects a large diversity of cellular processes both in the nucleus and the cytoplasm and functions of SUMOylation appear to have undefined limits. SUMO-conjugating enzymes and specific proteases actively regulate the modification status of target proteins. The recent discoveries of ubiquitin-SUMO hybrid chains, multiple SUMO-interacting motifs, and macromolecular complexes regulated by SUMOylation underscore the high complexity of this dynamic reversible system. New conceptual frameworks suggested by these findings have motivated the development of new methodologies to study pre- and post-SUMOylation events in vitro and in vivo, using distinct model organisms. Here we summarize some of the new developments and methodologies in the field, particularly those that will be further elaborated on in the chapters integrating this book.
Collapse
Affiliation(s)
- Michael J Matunis
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, 615 North Wolfe St., Room W8118, Baltimore, MD, 21205, USA.
| | | |
Collapse
|
85
|
Abstract
Protein modification by the small ubiquitin-related modifier (SUMO) protein regulates numerous cellular pathways and mounting evidence reveals a critical role for SUMO in modulating gene expression. Dynamic sumoylation of transcription factors, chromatin-modifying enzymes, histones, and other chromatin-associated factors significantly affects the transcriptional status of the eukaryotic genome. Recent studies have employed high-throughput ChIP-Seq analyses to gain clues regarding the role of the SUMO pathway in regulating chromatin-based transactions. Indeed, the global distribution of SUMO across chromatin reveals an important function for SUMO in controlling transcription, particularly of genes involved in protein synthesis. These newly appreciated patterns of genome-wide sumoylation will inform more directed studies aimed at analyzing how the dynamics of gene expression are controlled by posttranslational SUMO modification.
Collapse
Affiliation(s)
- Nicole R Wilson
- Department of Molecular Biophysics and Biochemistry, Yale University, 266 Whitney Avenue, New Haven, CT, 06520, USA
| | - Mark Hochstrasser
- Department of Molecular Biophysics and Biochemistry, Yale University, 266 Whitney Avenue, New Haven, CT, 06520, USA.
| |
Collapse
|
86
|
SUMO Modification of the RNA-Binding Protein La Regulates Cell Proliferation and STAT3 Protein Stability. Mol Cell Biol 2017; 38:MCB.00129-17. [PMID: 29084811 DOI: 10.1128/mcb.00129-17] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Accepted: 10/19/2017] [Indexed: 01/06/2023] Open
Abstract
The cancer-associated RNA-binding protein La is posttranslationally modified by phosphorylation and sumoylation. Sumoylation of La regulates not only the trafficking of La in neuronal axons but also its association with specific mRNAs. Depletion of La in various types of cancer cell lines impairs cell proliferation; however, the molecular mechanism whereby La supports cell proliferation is not clearly understood. In this study, we address the question of whether sumoylation of La contributes to cell proliferation of HEK293 cells. We show that HEK293 cells stably expressing green fluorescent protein (GFP)-tagged wild-type La (GFP-LaWT) grow faster than cells expressing a sumoylation-deficient mutant La (GFP-LaSD), suggesting a proproliferative function of La in HEK293 cells. Further, we found that STAT3 protein levels were reduced in GFP-LaSD cells due to an increase in STAT3 ubiquitination and that overexpression of STAT3 partially restored cell proliferation. Finally, we present RNA sequencing data from RNA immunoprecipitations (RIPs) and report that mRNAs associated with the cell cycle and ubiquitination are preferentially bound by GFP-LaWT and are less enriched in GFP-LaSD RIPs. Taken together, results of our study support a novel mechanism whereby sumoylation of La promotes cell proliferation by averting ubiquitination-mediated degradation of the STAT3 protein.
Collapse
|
87
|
Rosa-Fernandes L, Rocha VB, Carregari VC, Urbani A, Palmisano G. A Perspective on Extracellular Vesicles Proteomics. Front Chem 2017; 5:102. [PMID: 29209607 PMCID: PMC5702361 DOI: 10.3389/fchem.2017.00102] [Citation(s) in RCA: 82] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Accepted: 11/03/2017] [Indexed: 12/15/2022] Open
Abstract
Increasing attention has been given to secreted extracellular vesicles (EVs) in the past decades, especially in the portrayal of their molecular cargo and role as messengers in both homeostasis and pathophysiological conditions. This review presents the state-of-the-art proteomic technologies to identify and quantify EVs proteins along with their PTMs, interacting partners and structural details. The rapid growth of mass spectrometry-based analytical strategies for protein sequencing, PTMs and structural characterization has improved the level of molecular details that can be achieved from limited amount of EVs isolated from different biological sources. Here we will provide a perspective view on the achievements and challenges on EVs proteome characterization using mass spectrometry. A detailed bioinformatics approach will help us to picture the molecular fingerprint of EVs and understand better their pathophysiological function.
Collapse
Affiliation(s)
- Livia Rosa-Fernandes
- GlycoProteomics Laboratory, Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Victória Bombarda Rocha
- GlycoProteomics Laboratory, Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | | | - Andrea Urbani
- Proteomic and Metabonomic Laboratory, Fondazione Santa Lucia, Rome, Italy.,Institute of Biochemistry and Biochemical Clinic, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Giuseppe Palmisano
- GlycoProteomics Laboratory, Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil.,Proteomic and Metabonomic Laboratory, Fondazione Santa Lucia, Rome, Italy
| |
Collapse
|
88
|
Hughes DJ, Tiede C, Penswick N, Tang AAS, Trinh CH, Mandal U, Zajac KZ, Gaule T, Howell G, Edwards TA, Duan J, Feyfant E, McPherson MJ, Tomlinson DC, Whitehouse A. Generation of specific inhibitors of SUMO-1- and SUMO-2/3-mediated protein-protein interactions using Affimer (Adhiron) technology. Sci Signal 2017; 10:10/505/eaaj2005. [PMID: 29138295 DOI: 10.1126/scisignal.aaj2005] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Because protein-protein interactions underpin most biological processes, developing tools that target them to understand their function or to inform the development of therapeutics is an important task. SUMOylation is the posttranslational covalent attachment of proteins in the SUMO family (SUMO-1, SUMO-2, or SUMO-3), and it regulates numerous cellular pathways. SUMOylated proteins are recognized by proteins with SUMO-interaction motifs (SIMs) that facilitate noncovalent interactions with SUMO. We describe the use of the Affimer system of peptide display for the rapid isolation of synthetic binding proteins that inhibit SUMO-dependent protein-protein interactions mediated by SIMs both in vitro and in cells. Crucially, these synthetic proteins did not prevent SUMO conjugation either in vitro or in cell-based systems, enabling the specific analysis of SUMO-mediated protein-protein interactions. Furthermore, through structural analysis and molecular modeling, we explored the molecular mechanisms that may underlie their specificity in interfering with either SUMO-1-mediated interactions or interactions mediated by either SUMO-2 or SUMO-3. Not only will these reagents enable investigation of the biological roles of SUMOylation, but the Affimer technology used to generate these synthetic binding proteins could also be exploited to design or validate reagents or therapeutics that target other protein-protein interactions.
Collapse
Affiliation(s)
- David J Hughes
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK. .,Biomedical Sciences Research Complex, University of St. Andrews, St. Andrews KY16 9ST, UK
| | - Christian Tiede
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK.,BioScreening Technology Group, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK
| | - Natalie Penswick
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK
| | - Anna Ah-San Tang
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK.,BioScreening Technology Group, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK
| | - Chi H Trinh
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK.,Astbury Centre for Structural Molecular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK
| | - Upasana Mandal
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK.,BioScreening Technology Group, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK
| | - Katarzyna Z Zajac
- BioScreening Technology Group, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK
| | - Thembaninskosi Gaule
- Astbury Centre for Structural Molecular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK
| | - Gareth Howell
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK
| | - Thomas A Edwards
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK.,Astbury Centre for Structural Molecular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK
| | | | | | - Michael J McPherson
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK.,BioScreening Technology Group, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK.,Astbury Centre for Structural Molecular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK
| | - Darren C Tomlinson
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK. .,BioScreening Technology Group, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK.,Astbury Centre for Structural Molecular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK
| | - Adrian Whitehouse
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK. .,Astbury Centre for Structural Molecular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK
| |
Collapse
|
89
|
Morris JR, Garvin AJ. SUMO in the DNA Double-Stranded Break Response: Similarities, Differences, and Cooperation with Ubiquitin. J Mol Biol 2017; 429:3376-3387. [PMID: 28527786 DOI: 10.1016/j.jmb.2017.05.012] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Revised: 05/12/2017] [Accepted: 05/12/2017] [Indexed: 10/19/2022]
Abstract
In recent years, our knowledge of the varied role that ubiquitination plays in promoting signal amplification, novel protein interactions, and protein turnover has progressed rapidly. This is particularly remarkable in the examination of how DNA double-stranded breaks (DSBs) are repaired, with many components of the ubiquitin (Ub) conjugation, de-conjugation, and recognition machinery now identified as key factors in DSB repair. In addition, a member of the Ub-like family, small Ub-like modifier (SUMO), has also been recognised as integral for efficient repair. Here, we summarise our emerging understanding of SUMOylation both as a distinct modification and as a cooperative modification with Ub, using the cellular response to DNA DSBs as the primary setting to compare these modifications.
Collapse
Affiliation(s)
- Joanna R Morris
- Birmingham Centre for Genome Biology and Institute of Cancer and Genomics, Medical and Dental School, University of Birmingham, Edgbaston, B15 2TT, UK.
| | - Alexander J Garvin
- Birmingham Centre for Genome Biology and Institute of Cancer and Genomics, Medical and Dental School, University of Birmingham, Edgbaston, B15 2TT, UK
| |
Collapse
|
90
|
Site-specific identification and quantitation of endogenous SUMO modifications under native conditions. Nat Commun 2017; 8:1171. [PMID: 29079793 PMCID: PMC5660086 DOI: 10.1038/s41467-017-01271-3] [Citation(s) in RCA: 110] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2016] [Accepted: 09/01/2017] [Indexed: 11/25/2022] Open
Abstract
Small ubiquitin-like modifier (SUMO) modification regulates numerous cellular processes. Unlike ubiquitin, detection of endogenous SUMOylated proteins is limited by the lack of naturally occurring protease sites in the C-terminal tail of SUMO proteins. Proteome-wide detection of SUMOylation sites on target proteins typically requires ectopic expression of mutant SUMOs with introduced tryptic sites. Here, we report a method for proteome-wide, site-level detection of endogenous SUMOylation that uses α-lytic protease, WaLP. WaLP digestion of SUMOylated proteins generates peptides containing SUMO-remnant diglycyl-lysine (KGG) at the site of SUMO modification. Using previously developed immuno-affinity isolation of KGG-containing peptides followed by mass spectrometry, we identified 1209 unique endogenous SUMO modification sites. We also demonstrate the impact of proteasome inhibition on ubiquitin and SUMO-modified proteomes using parallel quantitation of ubiquitylated and SUMOylated peptides. This methodological advancement enables determination of endogenous SUMOylated proteins under completely native conditions. SUMOylation is post-translational modification implicated in several biological pathways. Here the authors describe an approach for the global profiling of SUMO attachment sites under native conditions that also allows the parallel determination of SUMO and Ub attachments.
Collapse
|
91
|
Identification of cross talk between SUMOylation and ubiquitylation using a sequential peptide immunopurification approach. Nat Protoc 2017; 12:2342-2358. [DOI: 10.1038/nprot.2017.105] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
92
|
Garvin AJ, Morris JR. SUMO, a small, but powerful, regulator of double-strand break repair. Philos Trans R Soc Lond B Biol Sci 2017; 372:20160281. [PMID: 28847818 PMCID: PMC5577459 DOI: 10.1098/rstb.2016.0281] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/05/2017] [Indexed: 12/11/2022] Open
Abstract
The response to a DNA double-stranded break in mammalian cells is a process of sensing and signalling the lesion. It results in halting the cell cycle and local transcription and in the mediation of the DNA repair process itself. The response is launched through a series of post-translational modification signalling events coordinated by phosphorylation and ubiquitination. More recently modifications of proteins by Small Ubiquitin-like MOdifier (SUMO) isoforms have also been found to be key to coordination of the response (Morris et al. 2009 Nature462, 886-890 (doi:10.1038/nature08593); Galanty et al. 2009 Nature462, 935-939 (doi:10.1038/nature08657)). However our understanding of the role of SUMOylation is slight compared with our growing knowledge of how ubiquitin drives signal amplification and key chromatin interactions. In this review we consider our current knowledge of how SUMO isoforms, SUMO conjugation machinery, SUMO proteases and SUMO-interacting proteins contribute to directing altered chromatin states and to repair-protein kinetics at a double-stranded DNA lesion in mammalian cells. We also consider the gaps in our understanding.This article is part of the themed issue 'Chromatin modifiers and remodellers in DNA repair and signalling'.
Collapse
Affiliation(s)
- Alexander J Garvin
- Birmingham Centre for Genome Biology and Institute of Cancer and Genomic Sciences, Medical and Dental School, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Joanna R Morris
- Birmingham Centre for Genome Biology and Institute of Cancer and Genomic Sciences, Medical and Dental School, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| |
Collapse
|
93
|
Knittle AM, Helkkula M, Johnson MS, Sundvall M, Elenius K. SUMOylation regulates nuclear accumulation and signaling activity of the soluble intracellular domain of the ErbB4 receptor tyrosine kinase. J Biol Chem 2017; 292:19890-19904. [PMID: 28974580 DOI: 10.1074/jbc.m117.794271] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Revised: 09/22/2017] [Indexed: 01/24/2023] Open
Abstract
Erb-B2 receptor tyrosine kinase 4 (ErbB4) is a kinase that can signal via a proteolytically released intracellular domain (ICD) in addition to classical receptor tyrosine kinase-activated signaling cascades. Previously, we have demonstrated that ErbB4 ICD is posttranslationally modified by the small ubiquitin-like modifier (SUMO) and functionally interacts with the PIAS3 SUMO E3 ligase. However, direct evidence of SUMO modification in ErbB4 signaling has remained elusive. Here, we report that the conserved lysine residue 714 in the ErbB4 ICD undergoes SUMO modification, which was reversed by sentrin-specific proteases (SENPs) 1, 2, and 5. Although ErbB4 kinase activity was not necessary for the SUMOylation, the SUMOylated ErbB4 ICD was tyrosine phosphorylated to a higher extent than unmodified ErbB4 ICD. Mutation of the SUMOylation site compromised neither ErbB4-induced phosphorylation of the canonical signaling pathway effectors Erk1/2, Akt, or STAT5 nor ErbB4 stability. In contrast, SUMOylation was required for nuclear accumulation of the ErbB4 ICD. We also found that Lys-714 was located within a leucine-rich stretch, which resembles a nuclear export signal, and could be inactivated by site-directed mutagenesis. Furthermore, SUMOylation modulated the interaction of ErbB4 with chromosomal region maintenance 1 (CRM1), the major nuclear export receptor for proteins. Finally, the SUMO acceptor lysine was functionally required for ErbB4 ICD-mediated inhibition of mammary epithelial cell differentiation in a three-dimensional cell culture model. Our findings indicate that a SUMOylation-mediated mechanism regulates nuclear localization and function of the ICD of ErbB4 receptor tyrosine kinase.
Collapse
Affiliation(s)
- Anna M Knittle
- From the Department of Medical Biochemistry and Genetics, and MediCity Research Laboratory, University of Turku, FI-20520 Turku, Finland.,Turku Doctoral Programmes of Biomedical Sciences and Molecular Medicine, University of Turku, FI-20014 Turku, Finland
| | - Maria Helkkula
- From the Department of Medical Biochemistry and Genetics, and MediCity Research Laboratory, University of Turku, FI-20520 Turku, Finland
| | - Mark S Johnson
- Structural Bioinformatics Laboratory, Biochemistry, Faculty of Science and Engineering, Åbo Akademi University, FI-20500 Turku, Finland, and
| | - Maria Sundvall
- From the Department of Medical Biochemistry and Genetics, and MediCity Research Laboratory, University of Turku, FI-20520 Turku, Finland, .,Department of Oncology and Radiotherapy, University of Turku and Turku University Hospital, FI-20014 Turku, Finland
| | - Klaus Elenius
- From the Department of Medical Biochemistry and Genetics, and MediCity Research Laboratory, University of Turku, FI-20520 Turku, Finland, .,Department of Oncology and Radiotherapy, University of Turku and Turku University Hospital, FI-20014 Turku, Finland
| |
Collapse
|
94
|
Zilio N, Eifler-Olivi K, Ulrich HD. Functions of SUMO in the Maintenance of Genome Stability. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 963:51-87. [PMID: 28197906 DOI: 10.1007/978-3-319-50044-7_4] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Like in most other areas of cellular metabolism, the functions of the ubiquitin-like modifier SUMO in the maintenance of genome stability are manifold and varied. Perturbations of global sumoylation causes a wide spectrum of phenotypes associated with defects in DNA maintenance, such as hypersensitivity to DNA-damaging agents, gross chromosomal rearrangements and loss of entire chromosomes. Consistent with these observations, many key factors involved in various DNA repair pathways have been identified as SUMO substrates. However, establishing a functional connection between a given SUMO target, the cognate SUMO ligase and a relevant phenotype has remained a challenge, mainly because of the difficulties involved in identifying important modification sites and downstream effectors that specifically recognize the target in its sumoylated state. This review will give an overview over the major pathways of DNA repair and genome maintenance influenced by the SUMO system and discuss selected examples of SUMO's actions in these pathways where the biological consequences of the modification have been elucidated.
Collapse
Affiliation(s)
- Nicola Zilio
- Institute of Molecular Biology (IMB), Ackermannweg 4, D-55128, Mainz, Germany
| | | | - Helle D Ulrich
- Institute of Molecular Biology (IMB), Ackermannweg 4, D-55128, Mainz, Germany.
| |
Collapse
|
95
|
Abstract
Protein modification with the small ubiquitin-related modifier (SUMO) can affect protein function, enzyme activity, protein-protein interactions, protein stability, protein targeting and cellular localization. SUMO influences the function and regulation of metabolic enzymes within pathways, and in some cases targets entire metabolic pathways by affecting the activity of transcription factors or by facilitating the translocation of entire metabolic pathways to subcellular compartments. SUMO modification is also a key component of nutrient- and metabolic-sensing mechanisms that regulate cellular metabolism. In addition to its established roles in maintaining metabolic homeostasis, there is increasing evidence that SUMO is a key factor in facilitating cellular stress responses through the regulation and/or adaptation of the most fundamental metabolic processes, including energy and nucleotide metabolism. This review focuses on the role of SUMO in cellular metabolism and metabolic disease.
Collapse
|
96
|
Pawellek A, Ryder U, Tammsalu T, King LJ, Kreinin H, Ly T, Hay RT, Hartley RC, Lamond AI. Characterisation of the biflavonoid hinokiflavone as a pre-mRNA splicing modulator that inhibits SENP. eLife 2017; 6:27402. [PMID: 28884683 PMCID: PMC5619949 DOI: 10.7554/elife.27402] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2017] [Accepted: 09/06/2017] [Indexed: 12/17/2022] Open
Abstract
We have identified the plant biflavonoid hinokiflavone as an inhibitor of splicing in vitro and modulator of alternative splicing in cells. Chemical synthesis confirms hinokiflavone is the active molecule. Hinokiflavone inhibits splicing in vitro by blocking spliceosome assembly, preventing formation of the B complex. Cells treated with hinokiflavone show altered subnuclear organization specifically of splicing factors required for A complex formation, which relocalize together with SUMO1 and SUMO2 into enlarged nuclear speckles containing polyadenylated RNA. Hinokiflavone increases protein SUMOylation levels, both in in vitro splicing reactions and in cells. Hinokiflavone also inhibited a purified, E. coli expressed SUMO protease, SENP1, in vitro, indicating the increase in SUMOylated proteins results primarily from inhibition of de-SUMOylation. Using a quantitative proteomics assay we identified many SUMO2 sites whose levels increased in cells following hinokiflavone treatment, with the major targets including six proteins that are components of the U2 snRNP and required for A complex formation.
Collapse
Affiliation(s)
- Andrea Pawellek
- Centre for Gene Regulation and Expression, School of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Ursula Ryder
- Centre for Gene Regulation and Expression, School of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Triin Tammsalu
- Centre for Gene Regulation and Expression, School of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Lewis J King
- WestCHEM, School of Chemistry, University of Glasgow, Glasgow, United Kingdom
| | - Helmi Kreinin
- WestCHEM, School of Chemistry, University of Glasgow, Glasgow, United Kingdom
| | - Tony Ly
- Centre for Gene Regulation and Expression, School of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Ronald T Hay
- Centre for Gene Regulation and Expression, School of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Richard C Hartley
- WestCHEM, School of Chemistry, University of Glasgow, Glasgow, United Kingdom
| | - Angus I Lamond
- Centre for Gene Regulation and Expression, School of Life Sciences, University of Dundee, Dundee, United Kingdom
| |
Collapse
|
97
|
Daniel JA, Cooper BH, Palvimo JJ, Zhang FP, Brose N, Tirard M. Analysis of SUMO1-conjugation at synapses. eLife 2017; 6. [PMID: 28598330 PMCID: PMC5493437 DOI: 10.7554/elife.26338] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Accepted: 06/07/2017] [Indexed: 12/14/2022] Open
Abstract
SUMO1-conjugation of proteins at neuronal synapses is considered to be a major post-translational regulatory process in nerve cell and synapse function, but the published evidence for SUMO1-conjugation at synapses is contradictory. We employed multiple genetic mouse models for stringently controlled biochemical and immunostaining analyses of synaptic SUMO1-conjugation. By using a knock-in reporter mouse line expressing tagged SUMO1, we could not detect SUMO1-conjugation of seven previously proposed synaptic SUMO1-targets in the brain. Further, immunostaining of cultured neurons from wild-type and SUMO1 knock-out mice showed that anti-SUMO1 immunolabelling at synapses is non-specific. Our findings indicate that SUMO1-conjugation of synaptic proteins does not occur or is extremely rare and hence not detectable using current methodology. Based on our data, we discuss a set of experimental strategies and minimal consensus criteria for the validation of SUMOylation that can be applied to any SUMOylation substrate and SUMO isoform. DOI:http://dx.doi.org/10.7554/eLife.26338.001
Collapse
Affiliation(s)
- James A Daniel
- Max Planck Institute of Experimental Medicine, Molecular Neurobiology, Göttingen, Germany
| | - Benjamin H Cooper
- Max Planck Institute of Experimental Medicine, Molecular Neurobiology, Göttingen, Germany
| | - Jorma J Palvimo
- Institute of Biomedicine, University of Eastern Finland, Kuopio, Finland
| | - Fu-Ping Zhang
- Institute of Biomedicine and Turku Center for Disease Modeling, University of Turku, Turku, Finland
| | - Nils Brose
- Max Planck Institute of Experimental Medicine, Molecular Neurobiology, Göttingen, Germany
| | - Marilyn Tirard
- Max Planck Institute of Experimental Medicine, Molecular Neurobiology, Göttingen, Germany
| |
Collapse
|
98
|
Niskanen EA, Palvimo JJ. Chromatin SUMOylation in heat stress: To protect, pause and organise?: SUMO stress response on chromatin. Bioessays 2017; 39. [PMID: 28440894 DOI: 10.1002/bies.201600263] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Post-translational modifications, e.g. SUMO modifications (SUMOylation), provide a mechanism for swiftly changing a protein's activity. Various stress conditions trigger a SUMO stress response (SSR) - a stress-induced rapid change in the conjugation of SUMO to multiple proteins, which predominantly targets nuclear proteins. The SSR has been postulated to protect stressed cells by preserving the functionality of crucial proteins. However, it is unclear how it exerts its protective functions. Interestingly, heat stress (HS) increases SUMOylation of proteins at active promoters and enhancers. In promoters, HS-induced SUMOylation correlates with gene transcription and stress-induced RNA polymerase II (Pol2) pausing. Conversely, a disappearance of SUMOylation in HS occurs at chromatin anchor points that maintain chromatin-looping structures and the spatial organisation of chromatin. In reviewing the literature, we hypothesise that the SSR regulates Pol2 pausing by modulating the interactions of pausing-regulating proteins, whereas deSUMOylation alters the function of chromatin anchors.
Collapse
Affiliation(s)
- Einari A Niskanen
- University of Eastern Finland, Institute of Biomedicine, Kuopio, Finland
| | - Jorma J Palvimo
- University of Eastern Finland, Institute of Biomedicine, Kuopio, Finland
| |
Collapse
|
99
|
Kamynina E, Lachenauer ER, DiRisio AC, Liebenthal RP, Field MS, Stover PJ. Arsenic trioxide targets MTHFD1 and SUMO-dependent nuclear de novo thymidylate biosynthesis. Proc Natl Acad Sci U S A 2017; 114:E2319-E2326. [PMID: 28265077 PMCID: PMC5373342 DOI: 10.1073/pnas.1619745114] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Arsenic exposure increases risk for cancers and is teratogenic in animal models. Here we demonstrate that small ubiquitin-like modifier (SUMO)- and folate-dependent nuclear de novo thymidylate (dTMP) biosynthesis is a sensitive target of arsenic trioxide (As2O3), leading to uracil misincorporation into DNA and genome instability. Methylenetetrahydrofolate dehydrogenase 1 (MTHFD1) and serine hydroxymethyltransferase (SHMT) generate 5,10-methylenetetrahydrofolate for de novo dTMP biosynthesis and translocate to the nucleus during S-phase, where they form a multienzyme complex with thymidylate synthase (TYMS) and dihydrofolate reductase (DHFR), as well as the components of the DNA replication machinery. As2O3 exposure increased MTHFD1 SUMOylation in cultured cells and in in vitro SUMOylation reactions, and increased MTHFD1 ubiquitination and MTHFD1 and SHMT1 degradation. As2O3 inhibited de novo dTMP biosynthesis in a dose-dependent manner, increased uracil levels in nuclear DNA, and increased genome instability. These results demonstrate that MTHFD1 and SHMT1, which are key enzymes providing one-carbon units for dTMP biosynthesis in the form of 5,10-methylenetetrahydrofolate, are direct targets of As2O3-induced proteolytic degradation, providing a mechanism for arsenic in the etiology of cancer and developmental anomalies.
Collapse
Affiliation(s)
- Elena Kamynina
- Division of Nutritional Sciences, Cornell University, Ithaca, NY 14853
| | - Erica R Lachenauer
- Division of Nutritional Sciences, Cornell University, Ithaca, NY 14853
- Graduate Field of Biology and Biomedical Sciences, Cornell University, Ithaca, NY 14853
| | - Aislyn C DiRisio
- Division of Nutritional Sciences, Cornell University, Ithaca, NY 14853
| | | | - Martha S Field
- Division of Nutritional Sciences, Cornell University, Ithaca, NY 14853
| | - Patrick J Stover
- Division of Nutritional Sciences, Cornell University, Ithaca, NY 14853;
- Graduate Field of Biology and Biomedical Sciences, Cornell University, Ithaca, NY 14853
- Graduate Field of Biochemistry, Molecular and Cell Biology, Cornell University, Ithaca, NY 14853
| |
Collapse
|
100
|
Cai L, Tu J, Song L, Gao Z, Li K, Wang Y, Liu Y, Zhong F, Ge R, Qin J, Ding C, He F. Proteome-wide Mapping of Endogenous SUMOylation Sites in Mouse Testis. Mol Cell Proteomics 2017; 16:717-727. [PMID: 28289178 PMCID: PMC5417816 DOI: 10.1074/mcp.m116.062125] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Revised: 02/27/2017] [Indexed: 01/12/2023] Open
Abstract
SUMOylation is a reversible post-translational modification involved in various critical biological processes. To date, there is limited approach for endogenous wild-type SUMO-modified peptides enrichment and SUMOylation sites identification. In this study, we generated a high-affinity SUMO1 antibody to facilitate the enrichment of endogenous SUMO1-modified peptides from Trypsin/Lys-C protease digestion. Following secondary Glu-C protease digestion, we identified 53 high-confidence SUMO1-modified sites from mouse testis by using high-resolution mass spectrometry. Bioinformatics analyses showed that SUMO1-modified proteins were enriched in transcription regulation and DNA repair. Nab1 was validated to be an authentic SUMOylated protein and Lys479 was identified to be the major SUMOylation site. The SUMOylation of Nab1 enhanced its interaction with HDAC2 and maintained its inhibitory effect on EGR1 transcriptional activity. Therefore, we provided a novel approach to investigating endogenous SUMOylation sites in tissue samples.
Collapse
Affiliation(s)
- Lili Cai
- From the ‡State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, Institutes of Biomedical Sciences, School of Life Sciences, Fudan University, Shanghai 200032, China
| | - Jun Tu
- From the ‡State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, Institutes of Biomedical Sciences, School of Life Sciences, Fudan University, Shanghai 200032, China.,¶Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Lei Song
- §State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Radiation Medicine; National Center for Protein Sciences (The PHOENIX center, Beijing), Beijing 102206, China
| | - Zhihua Gao
- From the ‡State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, Institutes of Biomedical Sciences, School of Life Sciences, Fudan University, Shanghai 200032, China
| | - Kai Li
- §State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Radiation Medicine; National Center for Protein Sciences (The PHOENIX center, Beijing), Beijing 102206, China
| | - Yunzhi Wang
- From the ‡State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, Institutes of Biomedical Sciences, School of Life Sciences, Fudan University, Shanghai 200032, China
| | - Yang Liu
- From the ‡State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, Institutes of Biomedical Sciences, School of Life Sciences, Fudan University, Shanghai 200032, China
| | - Fan Zhong
- From the ‡State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, Institutes of Biomedical Sciences, School of Life Sciences, Fudan University, Shanghai 200032, China
| | - Rui Ge
- From the ‡State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, Institutes of Biomedical Sciences, School of Life Sciences, Fudan University, Shanghai 200032, China
| | - Jun Qin
- §State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Radiation Medicine; National Center for Protein Sciences (The PHOENIX center, Beijing), Beijing 102206, China
| | - Chen Ding
- From the ‡State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, Institutes of Biomedical Sciences, School of Life Sciences, Fudan University, Shanghai 200032, China; .,§State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Radiation Medicine; National Center for Protein Sciences (The PHOENIX center, Beijing), Beijing 102206, China
| | - Fuchu He
- From the ‡State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, Institutes of Biomedical Sciences, School of Life Sciences, Fudan University, Shanghai 200032, China; .,§State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Radiation Medicine; National Center for Protein Sciences (The PHOENIX center, Beijing), Beijing 102206, China
| |
Collapse
|