51
|
Essawy A, Jo S, Beetch M, Lockridge A, Gustafson E, Alejandro EU. O-linked N-acetylglucosamine transferase (OGT) regulates pancreatic α-cell function in mice. J Biol Chem 2021; 296:100297. [PMID: 33460647 PMCID: PMC7949098 DOI: 10.1016/j.jbc.2021.100297] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 01/05/2021] [Accepted: 01/12/2021] [Indexed: 01/06/2023] Open
Abstract
The nutrient sensor O-GlcNAc transferase (OGT) catalyzes posttranslational addition of O-GlcNAc onto target proteins, influencing signaling pathways in response to cellular nutrient levels. OGT is highly expressed in pancreatic glucagon-secreting cells (α-cells), which secrete glucagon in response to hypoglycemia. The objective of this study was to determine whether OGT is necessary for the regulation of α-cell mass and function in vivo. We utilized genetic manipulation to produce two α-cell specific OGT-knockout models: a constitutive glucagon-Cre (αOGTKO) and an inducible glucagon-Cre (i-αOGTKO), which effectively delete OGT in α-cells. Using approaches including immunoblotting, immunofluorescent imaging, and metabolic phenotyping in vivo, we provide the first insight on the role of O-GlcNAcylation in α-cell mass and function. αOGTKO mice demonstrated normal glucose tolerance and insulin sensitivity but displayed significantly lower glucagon levels during both fed and fasted states. αOGTKO mice exhibited significantly lower α-cell glucagon content and α-cell mass at 6 months of age. In fasting, αOGTKO mice showed impaired pyruvate stimulated gluconeogenesis in vivo and reduced glucagon secretion in vitro. i-αOGTKO mice showed similarly reduced blood glucagon levels, defective in vitro glucagon secretion, and normal α-cell mass. Interestingly, both αOGTKO and i-αOGTKO mice had no deficiency in maintaining blood glucose homeostasis under fed or fasting conditions, despite impairment in α-cell mass and function, and glucagon content. In conclusion, these studies provide a first look at the role of OGT signaling in the α-cell, its effect on α-cell mass, and its importance in regulating glucagon secretion in hypoglycemic conditions.
Collapse
Affiliation(s)
- Ahmad Essawy
- Department of Integrative Biology and Physiology, University of Minnesota Medical School, Minneapolis, MN, USA
| | - Seokwon Jo
- Department of Integrative Biology and Physiology, University of Minnesota Medical School, Minneapolis, MN, USA
| | - Megan Beetch
- Department of Integrative Biology and Physiology, University of Minnesota Medical School, Minneapolis, MN, USA
| | - Amber Lockridge
- Department of Integrative Biology and Physiology, University of Minnesota Medical School, Minneapolis, MN, USA
| | - Eric Gustafson
- Department of Integrative Biology and Physiology, University of Minnesota Medical School, Minneapolis, MN, USA
| | - Emilyn U Alejandro
- Department of Integrative Biology and Physiology, University of Minnesota Medical School, Minneapolis, MN, USA.
| |
Collapse
|
52
|
Ma J, Wu C, Hart GW. Analytical and Biochemical Perspectives of Protein O-GlcNAcylation. Chem Rev 2021; 121:1513-1581. [DOI: 10.1021/acs.chemrev.0c00884] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Junfeng Ma
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Georgetown University, Washington D.C. 20057, United States
| | - Ci Wu
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Georgetown University, Washington D.C. 20057, United States
| | - Gerald W. Hart
- Department of Biochemistry and Molecular Biology, Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia 30602, United States
| |
Collapse
|
53
|
Affiliation(s)
- Navdeep S Chandel
- Northwestern University, Feinberg School of Medicine, Chicago, Illinois 60611, USA
| |
Collapse
|
54
|
Caon I, Parnigoni A, Viola M, Karousou E, Passi A, Vigetti D. Cell Energy Metabolism and Hyaluronan Synthesis. J Histochem Cytochem 2021; 69:35-47. [PMID: 32623953 PMCID: PMC7780193 DOI: 10.1369/0022155420929772] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Accepted: 05/01/2020] [Indexed: 02/06/2023] Open
Abstract
Hyaluronan (HA) is a linear glycosaminoglycan (GAG) of extracellular matrix (ECM) synthesized by three hyaluronan synthases (HASes) at the plasma membrane using uridine diphosphate (UDP)-glucuronic acid (UDP-GlcUA) and UDP-N-acetylglucosamine (UDP-GlcNAc) as substrates. The production of HA is mainly regulated by hyaluronan synthase 2 (HAS2), that can be controlled at different levels, from epigenetics to transcriptional and post-translational modifications. HA biosynthesis is an energy-consuming process and, along with HA catabolism, is strongly connected to the maintenance of metabolic homeostasis. The cytoplasmic pool of UDP-sugars is critical for HA synthesis. UDP-GlcNAc is an important nutrient sensor and serves as donor substrate for the O-GlcNAcylation of many cytosolic proteins, including HAS2. This post-translational modification stabilizes HAS2 in the membrane and increases HA production. Conversely, HAS2 can be phosphorylated by AMP activated protein kinase (AMPK), a master metabolic regulator activated by low ATP/AMP ratios, which inhibits HA secretion. Similarly, HAS2 expression and the deposition of HA within the pericellular coat are inhibited by sirtuin 1 (SIRT1), another important energetic sensor, confirming the tight connection between nutrients availability and HA metabolism.
Collapse
Affiliation(s)
- Ilaria Caon
- Department of Medicine and Surgery, University of Insubria, Varese, Italy
| | - Arianna Parnigoni
- Department of Medicine and Surgery, University of Insubria, Varese, Italy
| | - Manuela Viola
- Department of Medicine and Surgery, University of Insubria, Varese, Italy
| | - Evgenia Karousou
- Department of Medicine and Surgery, University of Insubria, Varese, Italy
| | - Alberto Passi
- Department of Medicine and Surgery, University of Insubria, Varese, Italy
| | - Davide Vigetti
- Department of Medicine and Surgery, University of Insubria, Varese, Italy
| |
Collapse
|
55
|
O-GlcNAc stabilizes SMAD4 by inhibiting GSK-3β-mediated proteasomal degradation. Sci Rep 2020; 10:19908. [PMID: 33199824 PMCID: PMC7670456 DOI: 10.1038/s41598-020-76862-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Accepted: 10/28/2020] [Indexed: 12/29/2022] Open
Abstract
O-linked β-N-acetylglucosamine (O-GlcNAc) is a post-translational modification which occurs on the hydroxyl group of serine or threonine residues of nucleocytoplasmic proteins. It has been reported that the presence of this single sugar motif regulates various biological events by altering the fate of target proteins, such as their function, localization, and degradation. This study identified SMAD4 as a novel O-GlcNAc-modified protein. SMAD4 is a component of the SMAD transcriptional complex, a major regulator of the signaling pathway for the transforming growth factor-β (TGF-β). TGF-β is a powerful promoter of cancer EMT and metastasis. This study showed that the amount of SMAD4 proteins changes according to cellular O-GlcNAc levels in human lung cancer cells. This observation was made based on the prolonged half-life of SMAD4 proteins. The mechanism behind this interaction was that O-GlcNAc impeded interactions between SMAD4 and GSK-3β which promote proteasomal degradation of SMAD4. In addition, O-GlcNAc modification on SMAD4 Thr63 was responsible for stabilization. As a result, defects in O-GlcNAcylation on SMAD4 Thr63 attenuated the reporter activity of luciferase, the TGF-β-responsive SMAD binding element (SBE). This study’s findings imply that cellular O-GlcNAc may regulate the TGF-β/SMAD signaling pathway by stabilizing SMAD4.
Collapse
|
56
|
He A, Hu S, Pi Q, Guo Y, Long Y, Luo S, Xia Y. Regulation of O-GlcNAcylation on endothelial nitric oxide synthase by glucose deprivation and identification of its O-GlcNAcylation sites. Sci Rep 2020; 10:19364. [PMID: 33168911 PMCID: PMC7652922 DOI: 10.1038/s41598-020-76340-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Accepted: 10/20/2020] [Indexed: 12/18/2022] Open
Abstract
As an energy-sensitive post-translational modification, O-GlcNAcylation plays a major role in endothelial nitric oxide synthase (eNOS) activity regulation. However, effects of glucose deprivation on eNOS O-GlcNAcylation and the presence of novel O-GlcNAcylation sites of eNOS under glucose deprivation remain unknown. Hence, we aim to determine the effects of glucose deprivation on O-GlcNAcylation and novel O-GlcNAcylation sites of eNOS. Bovine aortic endothelial cells (BAECs) and Sprague-Dawley rats were induced by glucose deprivation and their eNOS O-GlcNAcylation was subjected to immunoblotting. eNOS and transfected eNOS were purified by pull-down assay and immunoprecipitation respectively. Novel O-GlcNAcylation sites of eNOS were predicted by HPLC-MS and MS/MS Ion and determined by immunoblotting. eNOS activity was detected by Elisa and isotope labeling method. In BAECs and rat thoracic aorta, low glucose-associated activation of eNOS was accompanied by elevated O-GlcNAcylation, which did not affect O-linked serine phosphorylation at 1179/1177 residues. Changes in this post-translational modification were associated with increased O-GlcNAc transferase (OGT) expression and were reversed by AMPK knockdown. Immunoblot analysis of cells expressing His-tagged wild-type human eNOS and human eNOS carrying a mutation at the Ser1177 phosphorylation site confirmed an increase in O-GlcNAcylation by glucose deprivation. A marked increase in O-GlcNAcylation indicated that eNOS contained novel O-GlcNAcylation sites that were activated by glucose deprivation. Immunoblot analysis of cells expressing His-tagged human eNOS carrying a mutation at Ser738 and Ser867 confirmed an increase in O-GlcNAcylation by glucose deprivation. Conversely, in His-tagged human eNOS carrying a mutation at Thr866, O-GlcNAcylation was unaffected by glucose deprivation. Differences in culture conditions were identified using two-way analysis of variance (ANOVA), one-way ANOVA, and unpaired Student's t-test. Glucose deprivation increases O-GlcNAcylation and activity of eNOS, potentially by the AMPK-OGT pathway, suggesting that Thr866 is a novel O-GlcNAcylation site involved in glucose-deprivation mediated eNOS activation.
Collapse
Affiliation(s)
- An He
- Division of Cardiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Shupeng Hu
- Division of Cardiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Qiangzhong Pi
- Division of Cardiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Yongzheng Guo
- Division of Cardiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Yang Long
- Division of Cardiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Suxin Luo
- Division of Cardiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Yong Xia
- Division of Cardiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China.
- Institute of Life Science, Chongqing Medical University, Chongqing, 400016, China.
| |
Collapse
|
57
|
Li HJ, Wang Y, Li BX, Yang Y, Guan F, Pang XC, Li X. Roles of ten-eleven translocation family proteins and their O-linked β-N-acetylglucosaminylated forms in cancer development. Oncol Lett 2020; 21:1. [PMID: 33240407 PMCID: PMC7681232 DOI: 10.3892/ol.2020.12262] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Accepted: 10/08/2020] [Indexed: 12/15/2022] Open
Abstract
Members of the ten-eleven translocation (TET) protein family of which three mammalian TET proteins have been discovered so far, catalyze the sequential oxidation of 5-methylcytosine to 5-hydroxymethylcytosine, 5-formylcytosine, and 5-carboxylcytosine which serve an important role in embryonic development and tumor progression. O-GlcNAcylation (O-linked β-N-acetylglucosaminylation) is a reversible post-translational modification known to serve important roles in tumorigenesis and metastasis especially in hematopoietic malignancies such as myelodysplastic syndromes, chronic myelomonocytic leukemia and acute myeloid leukemia. O-GlcNAcylation activity requires only two enzymes: O-GlcNAc transferase (OGT) and O-GlcNAcase (OGA). OGT catalyzes attachment of GlcNAc sugar to serine, threonine and cytosine residues in proteins, while OGA hydrolyzes O-GlcNAc attached to proteins. Numerous recent studies have demonstrated that TETs can be O-GlcNAcylated by OGT, with consequent alteration of TET activity and stability. The present review focuses on the cellular, biological and biochemical functions of TET and its O-GlcNAcylated form and proposes a model of the role of TET/OGT complex in regulation of target proteins during cancer development. In addition, the present review provides directions for future research in this area.
Collapse
Affiliation(s)
- Hong-Jiao Li
- Key Laboratory of Resource Biology and Biotechnology Western China, College of Life Sciences, Northwest University, Xi'an, Shaanxi 710069, P.R. China.,Hematology Institute, School of Medicine, Northwest University, Xi'an, Shaanxi 710069, P.R. China
| | - Yi Wang
- Department of Hematology, Provincial People's Hospital, Xi'an, Shaanxi 710069, P.R. China
| | - Bing-Xin Li
- Key Laboratory of Resource Biology and Biotechnology Western China, College of Life Sciences, Northwest University, Xi'an, Shaanxi 710069, P.R. China.,Hematology Institute, School of Medicine, Northwest University, Xi'an, Shaanxi 710069, P.R. China
| | - Yang Yang
- Key Laboratory of Resource Biology and Biotechnology Western China, College of Life Sciences, Northwest University, Xi'an, Shaanxi 710069, P.R. China
| | - Feng Guan
- Key Laboratory of Resource Biology and Biotechnology Western China, College of Life Sciences, Northwest University, Xi'an, Shaanxi 710069, P.R. China
| | - Xing-Chen Pang
- Key Laboratory of Resource Biology and Biotechnology Western China, College of Life Sciences, Northwest University, Xi'an, Shaanxi 710069, P.R. China.,Hematology Institute, School of Medicine, Northwest University, Xi'an, Shaanxi 710069, P.R. China
| | - Xiang Li
- Key Laboratory of Resource Biology and Biotechnology Western China, College of Life Sciences, Northwest University, Xi'an, Shaanxi 710069, P.R. China.,Hematology Institute, School of Medicine, Northwest University, Xi'an, Shaanxi 710069, P.R. China.,Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu 214000, P.R. China
| |
Collapse
|
58
|
Smith EA, Newton ILG. Genomic Signatures of Honey Bee Association in an Acetic Acid Symbiont. Genome Biol Evol 2020; 12:1882-1894. [PMID: 32870981 PMCID: PMC7664317 DOI: 10.1093/gbe/evaa183] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/24/2020] [Indexed: 12/14/2022] Open
Abstract
Recent declines in the health of the honey bee have startled researchers and lay people alike as honey bees are agriculture's most important pollinator. Honey bees are important pollinators of many major crops and add billions of dollars annually to the US economy through their services. One factor that may influence colony health is the microbial community. Indeed, the honey bee worker digestive tract harbors a characteristic community of bee-specific microbes, and the composition of this community is known to impact honey bee health. However, the honey bee is a superorganism, a colony of eusocial insects with overlapping generations where nestmates cooperate, building a hive, gathering and storing food, and raising brood. In contrast to what is known regarding the honey bee worker gut microbiome, less is known of the microbes associated with developing brood, with food stores, and with the rest of the built hive environment. More recently, the microbe Bombella apis was identified as associated with nectar, with developing larvae, and with honey bee queens. This bacterium is related to flower-associated microbes such as Saccharibacter floricola and other species in the genus Saccharibacter, and initial phylogenetic analyses placed it as sister to these environmental bacteria. Here, we used comparative genomics of multiple honey bee-associated strains and the nectar-associated Saccharibacter to identify genomic changes that may be associated with the ecological transition to honey bee association. We identified several genomic differences in the honey bee-associated strains, including a complete CRISPR/Cas system. Many of the changes we note here are predicted to confer upon Bombella the ability to survive in royal jelly and defend themselves against mobile elements, including phages. Our results are a first step toward identifying potential function of this microbe in the honey bee superorganism.
Collapse
Affiliation(s)
- Eric A Smith
- Department of Biology, Indiana University, Bloomington
| | | |
Collapse
|
59
|
Seo HG, Kim HB, Yoon JY, Kweon TH, Park YS, Kang J, Jung J, Son S, Yi EC, Lee TH, Yang WH, Cho JW. Mutual regulation between OGT and XIAP to control colon cancer cell growth and invasion. Cell Death Dis 2020; 11:815. [PMID: 32994395 PMCID: PMC7525441 DOI: 10.1038/s41419-020-02999-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 07/30/2020] [Accepted: 07/30/2020] [Indexed: 12/31/2022]
Abstract
O-GlcNAc transferase (OGT) is an enzyme that catalyzes the O-GlcNAc modification of nucleocytoplasmic proteins and is highly expressed in many types of cancer. However, the mechanism regulating its expression in cancer cells is not well understood. This study shows that OGT is a substrate of the E3 ubiquitin ligase X-linked inhibitor of apoptosis (XIAP) which plays an important role in cancer pathogenesis. Although LSD2 histone demethylase has already been reported as an E3 ubiquitin ligase in lung cancer cells, we identified XIAP as the main E3 ubiquitin ligase in colon cancer cells. Interestingly, OGT catalyzes the O-GlcNAc modification of XIAP at serine 406 and this modification is required for the E3 ubiquitin ligase activity of XIAP toward specifically OGT. Moreover, O-GlcNAcylation of XIAP suppresses colon cancer cell growth and invasion by promoting the proteasomal degradation of OGT. Therefore, our findings regarding the reciprocal regulation of OGT and XIAP provide a novel molecular mechanism for controlling cancer growth and invasion regulated by OGT and O-GlcNAc modification.
Collapse
Affiliation(s)
- Hyeon Gyu Seo
- Glycosylation Network Research Center, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Han Byeol Kim
- Glycosylation Network Research Center, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea.,Interdisciplinary Program of Integrated OMICS for Biomedical Science, Graduate School, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Ji Young Yoon
- Interdisciplinary Program of Integrated OMICS for Biomedical Science, Graduate School, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Tae Hyun Kweon
- Glycosylation Network Research Center, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea.,Interdisciplinary Program of Integrated OMICS for Biomedical Science, Graduate School, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Yun Soo Park
- Glycosylation Network Research Center, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea.,Interdisciplinary Program of Integrated OMICS for Biomedical Science, Graduate School, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Jingu Kang
- Glycosylation Network Research Center, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea.,Department of Systems Biology, College of Life Science and Biotechnology, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Jinwoo Jung
- Department of Molecular Medicine and Biopharmaceutical Sciences, School of Convergence Science and Technology and College of Medicine or College of Pharmacy, Seoul National University, 28 Yeongeon-dong, Jongno-gu, Seoul, 03080, Republic of Korea
| | - SeongJin Son
- Glycosylation Network Research Center, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea.,Interdisciplinary Program of Integrated OMICS for Biomedical Science, Graduate School, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Eugene C Yi
- Department of Molecular Medicine and Biopharmaceutical Sciences, School of Convergence Science and Technology and College of Medicine or College of Pharmacy, Seoul National University, 28 Yeongeon-dong, Jongno-gu, Seoul, 03080, Republic of Korea
| | - Tae Ho Lee
- Department of Systems Biology, College of Life Science and Biotechnology, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Won Ho Yang
- Glycosylation Network Research Center, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea. .,Department of Systems Biology, College of Life Science and Biotechnology, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea.
| | - Jin Won Cho
- Glycosylation Network Research Center, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea. .,Interdisciplinary Program of Integrated OMICS for Biomedical Science, Graduate School, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea. .,Department of Systems Biology, College of Life Science and Biotechnology, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea.
| |
Collapse
|
60
|
The beta-1, 4-N-acetylglucosaminidase 1 gene, selected by domestication and breeding, is involved in cocoon construction of Bombyx mori. PLoS Genet 2020; 16:e1008907. [PMID: 32667927 PMCID: PMC7363074 DOI: 10.1371/journal.pgen.1008907] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Accepted: 06/03/2020] [Indexed: 12/14/2022] Open
Abstract
Holometabolous insects have distinct larval, pupal, and adult stages. The pupal stage is typically immobile and can be subject to predation, but cocoon offers pupal protection for many insect species. The cocoon provides a space in which the pupa to adult metamorphosis occurs. It also protects the pupa from weather, predators and parasitoids. Silk protein is a precursor of the silk used in cocoon construction. We used the silkworm as a model species to identify genes affecting silk protein synthesis and cocoon construction. We used quantitative genetic analysis to demonstrate that β-1,4-N-acetylglucosaminidase 1 (BmGlcNase1) is associated with synthesis of sericin, the main composite of cocoon. BmGlcNase1 has an expression pattern coupled with silk gland development and cocoon shell weight (CSW) variation, and CSW is an index of the ability to synthesize silk protein. Up-regulated expression of BmGlcNase1 increased sericin content by 13.9% and 22.5% while down-regulation reduced sericin content by 41.2% and 27.3% in the cocoons of females and males, respectively. Genomic sequencing revealed that sequence variation upstream of the BmGlcNase1 transcriptional start site (TSS) is associated with the expression of BmGlcNase1 and CSW. Selective pressure analysis showed that GlcNase1 was differentially selected in insects with and without cocoons (ω1 = 0.044 vs. ω2 = 0.154). This indicates that this gene has a conserved function in the cocooning process of insects. BmGlcNase1 appears to be involved in sericin synthesis and silkworm cocooning. The cocoon provides a protected space for the metamorphosis of many insect species. Silk protein is a precursor of the fiber used for cocoon construction. Deciphering the genetic basis underlying silk protein synthesis will improve our understanding of cocoon construction and the adaptations of species that construct cocoons. We used the silkworm (Bombyx mori) as a model to identify genes affecting silk protein synthesis and cocoon construction. Quantitative genetic analysis was used to show that β-1,4-N-acetylglucosaminidase 1 (BmGlcNase1), a gene selected during silkworm domestication and breeding, is associated with sericin synthesis. Transgenic-based functional validation confirmed that BmGlcNase1 positively regulates sericin content in the silkworm cocoon. The selective pressure of GlcNase1 in the evolution of insects with cocoons is higher than those without cocoons. This indicates that it has a conserved function in the cocooning process. These results reveal aspects of the genetic basis of silk protein synthesis and the cocoon construction of insects.
Collapse
|
61
|
Pravata VM, Omelková M, Stavridis MP, Desbiens CM, Stephen HM, Lefeber DJ, Gecz J, Gundogdu M, Õunap K, Joss S, Schwartz CE, Wells L, van Aalten DMF. An intellectual disability syndrome with single-nucleotide variants in O-GlcNAc transferase. Eur J Hum Genet 2020; 28:706-714. [PMID: 32080367 PMCID: PMC7253464 DOI: 10.1038/s41431-020-0589-9] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Revised: 12/30/2019] [Accepted: 02/04/2020] [Indexed: 01/05/2023] Open
Abstract
Intellectual disability (ID) is a neurodevelopmental condition that affects ~1% of the world population. In total 5-10% of ID cases are due to variants in genes located on the X chromosome. Recently, variants in OGT have been shown to co-segregate with X-linked intellectual disability (XLID) in multiple families. OGT encodes O-GlcNAc transferase (OGT), an essential enzyme that catalyses O-linked glycosylation with β-N-acetylglucosamine (O-GlcNAc) on serine/threonine residues of thousands of nuclear and cytosolic proteins. In this review, we compile the work from the last few years that clearly delineates a new syndromic form of ID, which we propose to classify as a novel Congenital Disorder of Glycosylation (OGT-CDG). We discuss potential hypotheses for the underpinning molecular mechanism(s) that provide impetus for future research studies geared towards informed interventions.
Collapse
Affiliation(s)
- Veronica M. Pravata
- 0000 0004 0397 2876grid.8241.fDivision of Gene Regulation and Expression and School of Life Sciences, University of Dundee, Dundee, UK
| | - Michaela Omelková
- 0000 0004 0397 2876grid.8241.fDivision of Gene Regulation and Expression and School of Life Sciences, University of Dundee, Dundee, UK
| | - Marios P. Stavridis
- 0000 0004 0397 2876grid.8241.fDivision of Cell and Developmental Biology, School of Life Sciences, University of Dundee, Dundee, UK
| | - Chelsea M. Desbiens
- 0000 0004 1936 738Xgrid.213876.9Department of Biochemistry and Molecular Biology and Chemistry, Complex Carbohydrate Research Center, University of Georgia, Athens, GA USA
| | - Hannah M. Stephen
- 0000 0004 1936 738Xgrid.213876.9Department of Biochemistry and Molecular Biology and Chemistry, Complex Carbohydrate Research Center, University of Georgia, Athens, GA USA
| | - Dirk J. Lefeber
- 0000 0004 0444 9382grid.10417.33Department of Neurology, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Centre, 6500 HB Nijmegen, The Netherlands
| | - Jozef Gecz
- 0000 0004 1936 7304grid.1010.0Adelaide Medical School and the Robinson Research Institute, The University of Adelaide, Adelaide, SA Australia
| | - Mehmet Gundogdu
- 0000 0001 2193 314Xgrid.8756.cInstitute of Molecular Cell and System Biology, University of Glasgow, Glasgow, UK
| | - Katrin Õunap
- 0000 0001 0585 7044grid.412269.aDepartment of Clinical Genetics, United Laboratories, Tartu University Hospital, Tartu, Estonia ,0000 0001 0943 7661grid.10939.32Department of Clinical Genetics, Institute of Clinical Medicine, University of Tartu, Tartu, Estonia
| | - Shelagh Joss
- West of Scotland Genetic Service, Queen Elizabeth University Hospital, Glasgow, UK
| | - Charles E. Schwartz
- 0000 0000 8571 0933grid.418307.9Greenwood Genetic Center, Greenwood, SC 29646 USA
| | - Lance Wells
- 0000 0004 1936 738Xgrid.213876.9Department of Biochemistry and Molecular Biology and Chemistry, Complex Carbohydrate Research Center, University of Georgia, Athens, GA USA
| | - Daan M. F. van Aalten
- 0000 0004 0397 2876grid.8241.fDivision of Gene Regulation and Expression and School of Life Sciences, University of Dundee, Dundee, UK ,0000 0001 0379 7164grid.216417.7Institute of Molecular Precision Medicine, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
62
|
McColgan NM, Feeley MN, Woodward AM, Guindolet D, Argüeso P. The O-GlcNAc modification promotes terminal differentiation of human corneal epithelial cells. Glycobiology 2020; 30:872-880. [PMID: 32280968 DOI: 10.1093/glycob/cwaa033] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 03/17/2020] [Accepted: 03/31/2020] [Indexed: 12/19/2022] Open
Abstract
Dynamic modification of nuclear and cytoplasmic proteins with O-linked β-N-acetylglucosamine (O-GlcNAc) plays an important role in orchestrating the transcriptional activity of eukaryotic cells. Here, we report that the O-GlcNAc modification contributes to maintaining ocular surface epithelial homeostasis by promoting mucin biosynthesis and barrier function. We found that induction of human corneal epithelial cell differentiation stimulated the global transfer of O-GlcNAc to both nuclear and cytosolic proteins. Inflammatory conditions, on the other hand, were associated with a reduction in the expression of O-GlcNAc transferase at the ocular surface epithelia. Loss- and gain-of-function studies using small interfering RNA targeting O-GlcNAc transferase, or Thiamet G, a selective inhibitor of O-GlcNAc hydrolase, respectively, revealed that the presence of O-GlcNAc was necessary to promote glycocalyx barrier function. Moreover, we found that Thiamet G triggered a correlative increase in both surface expression of MUC16 and apical epithelial cell area while reducing paracellular permeability. Collectively, these results identify intracellular protein O-glycosylation as a novel pathway responsible for promoting the terminal differentiation of human corneal epithelial cells.
Collapse
Affiliation(s)
- Nicole M McColgan
- Department of Ophthalmology, Schepens Eye Research Institute of Massachusetts Eye and Ear, Harvard Medical School, 20 Staniford St. Boston, MA 02114, USA
| | - Marissa N Feeley
- Department of Ophthalmology, Schepens Eye Research Institute of Massachusetts Eye and Ear, Harvard Medical School, 20 Staniford St. Boston, MA 02114, USA
| | - Ashley M Woodward
- Department of Ophthalmology, Schepens Eye Research Institute of Massachusetts Eye and Ear, Harvard Medical School, 20 Staniford St. Boston, MA 02114, USA
| | | | | |
Collapse
|
63
|
Li H, Zhou J, Sun H, Qiu Z, Gao X, Xu Y. CaMeRe: A Novel Tool for Inference of Cancer Metabolic Reprogramming. Front Oncol 2020; 10:207. [PMID: 32161720 PMCID: PMC7052490 DOI: 10.3389/fonc.2020.00207] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Accepted: 02/06/2020] [Indexed: 12/21/2022] Open
Abstract
Metabolic reprogramming is prevalent in cancer, largely due to its altered chemical environments such as the distinct intracellular concentrations of O2, H2O2 and H+, compared to those in normal tissue cells. The reprogrammed metabolisms are believed to play essential roles in cancer formation and progression. However, it is highly challenging to elucidate how individual normal metabolisms are altered in a cancer-promoting environment; hence for many metabolisms, our knowledge about how they are changed is limited. We present a novel method, CaMeRe (CAncer MEtabolic REprogramming), for identifying metabolic pathways in cancer tissues. Based on the specified starting and ending compounds, along with gene expression data of given cancer tissue samples, CaMeRe identifies metabolic pathways connecting the two compounds via collection of compatible enzymes, which are most consistent with the provided gene-expression data. In addition, cancer-specific knowledge, such as the expression level of bottleneck enzymes in the pathways, is incorporated into the search process, to enable accurate inference of cancer-specific metabolic pathways. We have applied this tool to predict the altered sugar-energy metabolism in cancer, referred to as the Warburg effect, and found the prediction result is highly accurate by checking the appearance and ranking of those key pathways in the results of CaMeRe. Computational evaluation indicates that the tool is fast and capable of handling large metabolic network inference in cancer tissues. Hence, we believe that CaMeRe offers a powerful tool to cancer researchers for their discovery of reprogrammed metabolisms in cancer. The URL of CaMeRe is http://csbl.bmb.uga.edu/CaMeRe/.
Collapse
Affiliation(s)
- Haoyang Li
- Key Laboratory of Symbol Computation and Knowledge Engineering of Ministry of Education, College of Computer Science and Technology, Jilin University, Changchun, China
- Cancer Systems Biology Center, The China-Japan Union Hospital, Jilin University, Changchun, China
| | - Juexiao Zhou
- Department of Biology, Southern University of Science and Technology, Shenzhen, China
| | - Huiyan Sun
- School of Artificial Intelligence, Jilin University, Changchun, China
| | - Zhaowen Qiu
- Institute of Information and Computer Engineering, North East Forestry University, Harbin, China
| | - Xin Gao
- Computer Electrical and Mathematical Sciences and Engineering (CEMSE) Division, Computational Bioscience Research Center (CBRC), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Ying Xu
- Key Laboratory of Symbol Computation and Knowledge Engineering of Ministry of Education, College of Computer Science and Technology, Jilin University, Changchun, China
- Cancer Systems Biology Center, The China-Japan Union Hospital, Jilin University, Changchun, China
- Computational Systems Biology Lab, Department of Biochemistry and Molecular Biology, Institute of Bioinformatics, University of Georgia, Athens, GA, United States
| |
Collapse
|
64
|
Chen PH, Hu J, Wu J, Huynh DT, Smith TJ, Pan S, Bisnett BJ, Smith AB, Lu A, Condon BM, Chi JT, Boyce M. Gigaxonin glycosylation regulates intermediate filament turnover and may impact giant axonal neuropathy etiology or treatment. JCI Insight 2020; 5:127751. [PMID: 31944090 PMCID: PMC7030874 DOI: 10.1172/jci.insight.127751] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2019] [Accepted: 11/21/2019] [Indexed: 12/21/2022] Open
Abstract
Gigaxonin (also known as KLHL16) is an E3 ligase adaptor protein that promotes the ubiquitination and degradation of intermediate filament (IF) proteins. Mutations in human gigaxonin cause the fatal neurodegenerative disease giant axonal neuropathy (GAN), in which IF proteins accumulate and aggregate in axons throughout the nervous system, impairing neuronal function and viability. Despite this pathophysiological significance, the upstream regulation and downstream effects of normal and aberrant gigaxonin function remain incompletely understood. Here, we report that gigaxonin is modified by O-linked β-N-acetylglucosamine (O-GlcNAc), a prevalent form of intracellular glycosylation, in a nutrient- and growth factor–dependent manner. MS analyses of human gigaxonin revealed 9 candidate sites of O-GlcNAcylation, 2 of which — serine 272 and threonine 277 — are required for its ability to mediate IF turnover in gigaxonin-deficient human cell models that we created. Taken together, the results suggest that nutrient-responsive gigaxonin O-GlcNAcylation forms a regulatory link between metabolism and IF proteostasis. Our work may have significant implications for understanding the nongenetic modifiers of GAN phenotypes and for the optimization of gene therapy for this disease.
Collapse
Affiliation(s)
- Po-Han Chen
- Department of Biochemistry
- Department of Molecular Genetics and Microbiology, and
- Center for Genomic and Computational Biology, Duke University School of Medicine, Durham, North Carolina, USA
| | | | - Jianli Wu
- Department of Molecular Genetics and Microbiology, and
- Center for Genomic and Computational Biology, Duke University School of Medicine, Durham, North Carolina, USA
| | | | | | - Samuel Pan
- Department of Molecular Genetics and Microbiology, and
- Center for Genomic and Computational Biology, Duke University School of Medicine, Durham, North Carolina, USA
| | | | - Alexander B. Smith
- Department of Molecular Genetics and Microbiology, and
- Center for Genomic and Computational Biology, Duke University School of Medicine, Durham, North Carolina, USA
| | - Annie Lu
- Department of Molecular Genetics and Microbiology, and
- Center for Genomic and Computational Biology, Duke University School of Medicine, Durham, North Carolina, USA
| | | | - Jen-Tsan Chi
- Department of Molecular Genetics and Microbiology, and
- Center for Genomic and Computational Biology, Duke University School of Medicine, Durham, North Carolina, USA
| | | |
Collapse
|
65
|
The nutrient sensor OGT regulates Hipk stability and tumorigenic-like activities in Drosophila. Proc Natl Acad Sci U S A 2020; 117:2004-2013. [PMID: 31932432 PMCID: PMC6994980 DOI: 10.1073/pnas.1912894117] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Environmental cues such as nutrients alter cellular behaviors by acting on a wide array of molecular sensors inside cells. Of emerging interest is the link observed between effects of dietary sugars on cancer proliferation. Here, we identify the requirements of hexosamine biosynthetic pathway (HBP) and O-GlcNAc transferase (OGT) for Drosophila homeodomain-interacting protein kinase (Hipk)-induced growth abnormalities in response to a high sugar diet. On a normal diet, OGT is both necessary and sufficient for inducing Hipk-mediated tumor-like growth. We further show that OGT maintains Hipk protein stability by blocking its proteasomal degradation and that Hipk is O-GlcNAcylated by OGT. In mammalian cells, human HIPK2 proteins accumulate posttranscriptionally upon OGT overexpression. Mass spectrometry analyses reveal that HIPK2 is at least O-GlcNAc modified at S852, T1009, and S1147 residues. Mutations of these residues reduce HIPK2 O-GlcNAcylation and stability. Together, our data demonstrate a conserved role of OGT in positively regulating the protein stability of HIPKs (fly Hipk and human HIPK2), which likely permits the nutritional responsiveness of HIPKs.
Collapse
|
66
|
Guo J, Zhang G, Ma J, Zhao C, Xue Q, Wang J, Liu W, Liu K, Wang H, Liu N, Song Q, Li J. Detection and identification of O-GlcNAc-modified proteins using 6-azido-6-deoxy-N-acetyl-galactosamine. Org Biomol Chem 2019; 17:4326-4334. [PMID: 30976765 DOI: 10.1039/c9ob00516a] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
An unnatural monosaccharide with a C6-azide, Ac36AzGalNAc, has been developed as a potent and selective probe for O-GlcNAc-modified proteins. Combined with click chemistry, we demonstrate that Ac36AzGalNAc can robustly label O-GlcNAc glycosylation in a wide range of cell lines. Meanwhile, cell imaging and LC-MS/MS proteomics verify its selective activity on O-GlcNAc. More importantly, the protocol presented here provides a general methodology for tracking, capturing and identifying unnatural monosaccharide modified proteins in cells or cell lysates.
Collapse
Affiliation(s)
- Jianshuang Guo
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Haihe Education Park, 38 Tongyan Road, Tianjin 300353, China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
67
|
McArdle Disease: New Insights into Its Underlying Molecular Mechanisms. Int J Mol Sci 2019; 20:ijms20235919. [PMID: 31775340 PMCID: PMC6929006 DOI: 10.3390/ijms20235919] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 11/14/2019] [Accepted: 11/21/2019] [Indexed: 01/05/2023] Open
Abstract
McArdle disease, also known as glycogen storage disease type V (GSDV), is characterized by exercise intolerance, the second wind phenomenon, and high serum creatine kinase activity. Here, we recapitulate PYGM mutations in the population responsible for this disease. Traditionally, McArdle disease has been considered a metabolic myopathy caused by the lack of expression of the muscle isoform of the glycogen phosphorylase (PYGM). However, recent findings challenge this view, since it has been shown that PYGM is present in other tissues than the skeletal muscle. We review the latest studies about the molecular mechanism involved in glycogen phosphorylase activity regulation. Further, we summarize the expression and functional significance of PYGM in other tissues than skeletal muscle both in health and McArdle disease. Furthermore, we examine the different animal models that have served as the knowledge base for better understanding of McArdle disease. Finally, we give an overview of the latest state-of-the-art clinical trials currently being carried out and present an updated view of the current therapies.
Collapse
|
68
|
Paredes F, Williams HC, Quintana RA, San Martin A. Mitochondrial Protein Poldip2 (Polymerase Delta Interacting Protein 2) Controls Vascular Smooth Muscle Differentiated Phenotype by O-Linked GlcNAc (N-Acetylglucosamine) Transferase-Dependent Inhibition of a Ubiquitin Proteasome System. Circ Res 2019; 126:41-56. [PMID: 31656131 DOI: 10.1161/circresaha.119.315932] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
RATIONALE The mitochondrial Poldip2 (protein polymerase interacting protein 2) is required for the activity of the tricarboxylic acid cycle. As a consequence, Poldip2 deficiency induces metabolic reprograming with repressed mitochondrial respiration and increased glycolytic activity. Though homozygous deletion of Poldip2 is lethal, heterozygous mice are viable and show protection against aneurysm and injury-induced neointimal hyperplasia, diseases linked to loss of vascular smooth muscle differentiation. Thus, we hypothesize that the metabolic reprograming induced by Poldip2 deficiency controls VSMC differentiation. OBJECTIVE To determine the role of Poldip2-mediated metabolic reprograming in phenotypic modulation of VSMC. METHODS AND RESULTS We show that Poldip2 deficiency in vascular smooth muscle in vitro and in vivo induces the expression of the SRF (serum response factor), myocardin, and MRTFA (myocardin-related transcription factor A) and dramatically represses KLF4 (Krüppel-like factor 4). Consequently, Poldip2-deficient VSMC and mouse aorta express high levels of contractile proteins and, more significantly, these cells do not dedifferentiate nor acquire macrophage-like characteristics when exposed to cholesterol or PDGF (platelet-derived growth factor). Regarding the mechanism, we found that Poldip2 deficiency upregulates the hexosamine biosynthetic pathway and OGT (O-linked N-acetylglucosamine transferase)-mediated protein O-GlcNAcylation. Increased protein glycosylation causes the inhibition of a nuclear ubiquitin proteasome system responsible for SRF stabilization and KLF4 repression and is required for the establishment of the differentiated phenotype in Poldip2-deficient cells. CONCLUSIONS Our data show that Poldip2 deficiency induces a highly differentiated phenotype in VSMCs through a mechanism that involves regulation of metabolism and proteostasis. Additionally, our study positions mitochondria-initiated signaling as key element of the VSMC differentiation programs that can be targeted to modulate VSMC phenotype during vascular diseases.
Collapse
Affiliation(s)
- Felipe Paredes
- From the Department of Medicine, Division of Cardiology, Emory University, Atlanta, GA
| | - Holly C Williams
- From the Department of Medicine, Division of Cardiology, Emory University, Atlanta, GA
| | - Raymundo A Quintana
- From the Department of Medicine, Division of Cardiology, Emory University, Atlanta, GA
| | - Alejandra San Martin
- From the Department of Medicine, Division of Cardiology, Emory University, Atlanta, GA
| |
Collapse
|
69
|
Regulation of Skeletal Muscle Glucose Transport and Glucose Metabolism by Exercise Training. Nutrients 2019; 11:nu11102432. [PMID: 31614762 PMCID: PMC6835691 DOI: 10.3390/nu11102432] [Citation(s) in RCA: 111] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2019] [Revised: 09/30/2019] [Accepted: 10/08/2019] [Indexed: 12/22/2022] Open
Abstract
Aerobic exercise training and resistance exercise training are both well-known for their ability to improve human health; especially in individuals with type 2 diabetes. However, there are critical differences between these two main forms of exercise training and the adaptations that they induce in the body that may account for their beneficial effects. This article reviews the literature and highlights key gaps in our current understanding of the effects of aerobic and resistance exercise training on the regulation of systemic glucose homeostasis, skeletal muscle glucose transport and skeletal muscle glucose metabolism.
Collapse
|
70
|
Early life exposure of a biocide, CMIT/MIT causes metabolic toxicity via the O-GlcNAc transferase pathway in the nematode C. elegans. Toxicol Appl Pharmacol 2019; 376:1-8. [PMID: 31100289 DOI: 10.1016/j.taap.2019.05.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Revised: 04/28/2019] [Accepted: 05/13/2019] [Indexed: 10/26/2022]
Abstract
Unusual cases of fatal lung injury, later determined to be a result of exposure to chemicals used as humidifier disinfectants, were reported among Korean children from 2006 to 2011. This resulted in considerable study of the pulmonary toxicity of humidifier disinfectant chemicals to establish the causal relationship between exposure and lung disease. However, the systemic toxicity of the former and health effects other than lung disease are not fully understood. Here, we investigated the effect of 5-chloro-2-methyl-4-isothiazoline-3-one and 2-methyl-4-isothiazolin-3-one (CMIT/MIT), among the humidifier disinfectants used in the accidents, on the development of metabolic toxicity in the model organism, Caenorhabditis elegans using an exposure scenario comparison. We screened the potential of CMIT/MIT to induce metabolic toxicity using C. elegans oga-1(ok1207) and ogt-1(ok1474) mutants. We also performed a pathway analysis based on C. elegans transcription factor RNAi library screening to identify the underlying toxicity mechanisms. Finally, to understand the critical window of exposure for metabolic toxicity, responses to exposure during different periods in the life cycles of the worms were compared. We determined that CMIT/MIT could induce metabolic toxicity through O-linked N-acetylglucosamine transferase and early life seems to be the critical window for exposure for metabolic toxicity for this substance. The O-linked N-acetylglucosamine transferase pathway is conserved from worms to humans; our results thus insinuate that early-life exposure to CMIT/MIT could cause metabolic health problems during adult life in humans. We therefore suggest that a systemic toxicity approach should be considered to comprehensively understand the adverse health effects of humidifier disinfectant misuse.
Collapse
|
71
|
Munemoto M, Mukaisho K, Miyashita T, Oyama K, Haba Y, Okamoto K, Kinoshita J, Ninomiya I, Fushida S, Taniura N, Sugihara H, Fujimura T. Roles of the hexosamine biosynthetic pathway and pentose phosphate pathway in bile acid-induced cancer development. Cancer Sci 2019; 110:2408-2420. [PMID: 31215094 PMCID: PMC6676276 DOI: 10.1111/cas.14105] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Revised: 05/17/2019] [Accepted: 05/28/2019] [Indexed: 12/29/2022] Open
Abstract
Esophageal squamous cell carcinomas (ESCCs) as well as adenocarcinomas (EACs) were developed in rat duodenal contents reflux models (reflux model). The present study aimed to shed light on the mechanism by which bile acid stimulation causes cancer onset and progression. Metabolomics analyses were performed on samples of neoplastic and nonneoplastic tissues from reflux models, and K14D, cultivated from a nonmetastatic, primary ESCC, and ESCC-DR, established from a metastatic thoracic lesion. ESCC-DRtca2M was prepared by treating ESCC-DR cells with taurocholic acid (TCA) to accelerate cancer progression. The lines were subjected to comprehensive genomic analyses. In addition, protein expression levels of glucose-6-phosphate dehydrogenase (G6PD), nuclear factor kappa B (NF-κB) (p65) and O-linked N-Acetylglucosamine (O-GlcNAc) were compared among lines. Cancers developed in the reflux models exhibited greater hexosamine biosynthesis pathway (HBP) activation compared with the nonneoplastic tissues. Expression of O-GlcNAc transferase (OGT) increased considerably in both ESCC and EAC compared with nonneoplastic squamous epithelium. Conversely, cell line-based experiments revealed the greater activation of the pentose phosphate pathway (PPP) at higher degrees of malignancy. G6PD overexpression in response to TCA exposure was observed. Both NF-κB (p65) and O-GlcNAc were expressed more highly in ESCC-DRtca2M than in the other cell lines. Moreover, ESCC-DRtca2M cells had additional chromosomal abnormalities in excess of ESCC-DR cells. Overall, glucose metabolism was upregulated in both esophageal cancer tissue and cell lines. While bile acids are not mutagenic, chronic exposure seems to trigger NF-κB(p65) activation, potentially inducing genetic mutations as well as facilitating carcinogenesis and cancer progression. Glucose metabolism was upregulated in both esophageal cancer tissue and cell lines, and the HBP was activated in the former. The cell line-based experiments demonstrated upregulation of the pentose phosphate pathway (PPP) at higher degrees of malignancy. While bile acids are not mutagenic, chronic exposure seems to trigger G6PD overexpression and NF-κB (p65) activation, potentially inducing genetic mutations as well as facilitating carcinogenesis and cancer progression.
Collapse
Affiliation(s)
- Masayoshi Munemoto
- Department of Gastroenterological SurgeryKanazawa University HospitalKanazawaJapan
| | - Ken‐ichi Mukaisho
- Division of Molecular and Diagnostic PathologyDepartment of PathologyShiga University of Medical ScienceOtsuJapan
| | - Tomoharu Miyashita
- Department of Gastroenterological SurgeryKanazawa University HospitalKanazawaJapan
| | - Katsunobu Oyama
- Department of SurgeryPublic Central Hospital of Matto IshikawaHakusanJapan
| | - Yusuke Haba
- Department of Gastroenterological SurgeryKanazawa University HospitalKanazawaJapan
| | - Koichi Okamoto
- Department of Gastroenterological SurgeryKanazawa University HospitalKanazawaJapan
| | - Jun Kinoshita
- Department of Gastroenterological SurgeryKanazawa University HospitalKanazawaJapan
| | - Itasu Ninomiya
- Department of Gastroenterological SurgeryKanazawa University HospitalKanazawaJapan
| | - Sachio Fushida
- Department of Gastroenterological SurgeryKanazawa University HospitalKanazawaJapan
| | - Naoko Taniura
- Division of Molecular and Diagnostic PathologyDepartment of PathologyShiga University of Medical ScienceOtsuJapan
| | - Hiroyuki Sugihara
- Division of Molecular and Diagnostic PathologyDepartment of PathologyShiga University of Medical ScienceOtsuJapan
| | | |
Collapse
|
72
|
Kors S, Geijtenbeek K, Reits E, Schipper-Krom S. Regulation of Proteasome Activity by (Post-)transcriptional Mechanisms. Front Mol Biosci 2019; 6:48. [PMID: 31380390 PMCID: PMC6646590 DOI: 10.3389/fmolb.2019.00048] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Accepted: 06/11/2019] [Indexed: 12/23/2022] Open
Abstract
Intracellular protein synthesis, folding, and degradation are tightly controlled processes to ensure proper protein homeostasis. The proteasome is responsible for the degradation of the majority of intracellular proteins, which are often targeted for degradation via polyubiquitination. However, the degradation rate of proteins is also affected by the capacity of proteasomes to recognize and degrade these substrate proteins. This capacity is regulated by a variety of proteasome modulations including (1) changes in complex composition, (2) post-translational modifications, and (3) altered transcription of proteasomal subunits and activators. Various diseases are linked to proteasome modulation and altered proteasome function. A better understanding of these modulations may offer new perspectives for therapeutic intervention. Here we present an overview of these three proteasome modulating mechanisms to give better insight into the diversity of proteasomes.
Collapse
Affiliation(s)
- Suzan Kors
- Department of Medical Biology, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - Karlijne Geijtenbeek
- Department of Medical Biology, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - Eric Reits
- Department of Medical Biology, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - Sabine Schipper-Krom
- Department of Medical Biology, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
73
|
Akella NM, Ciraku L, Reginato MJ. Fueling the fire: emerging role of the hexosamine biosynthetic pathway in cancer. BMC Biol 2019; 17:52. [PMID: 31272438 PMCID: PMC6610925 DOI: 10.1186/s12915-019-0671-3] [Citation(s) in RCA: 259] [Impact Index Per Article: 43.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023] Open
Abstract
Altered metabolism and deregulated cellular energetics are now considered a hallmark of all cancers. Glucose, glutamine, fatty acids, and amino acids are the primary drivers of tumor growth and act as substrates for the hexosamine biosynthetic pathway (HBP). The HBP culminates in the production of an amino sugar uridine diphosphate N-acetylglucosamine (UDP-GlcNAc) that, along with other charged nucleotide sugars, serves as the basis for biosynthesis of glycoproteins and other glycoconjugates. These nutrient-driven post-translational modifications are highly altered in cancer and regulate protein functions in various cancer-associated processes. In this review, we discuss recent progress in understanding the mechanistic relationship between the HBP and cancer.
Collapse
Affiliation(s)
- Neha M Akella
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, PA, 19102, USA
| | - Lorela Ciraku
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, PA, 19102, USA
| | - Mauricio J Reginato
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, PA, 19102, USA.
| |
Collapse
|
74
|
Breda CNDS, Davanzo GG, Basso PJ, Saraiva Câmara NO, Moraes-Vieira PMM. Mitochondria as central hub of the immune system. Redox Biol 2019; 26:101255. [PMID: 31247505 PMCID: PMC6598836 DOI: 10.1016/j.redox.2019.101255] [Citation(s) in RCA: 200] [Impact Index Per Article: 33.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Revised: 06/01/2019] [Accepted: 06/10/2019] [Indexed: 02/08/2023] Open
Abstract
Nearly 130 years after the first insights into the existence of mitochondria, new rolesassociated with these organelles continue to emerge. As essential hubs that dictate cell fate, mitochondria integrate cell physiology, signaling pathways and metabolism. Thus, recent research has focused on understanding how these multifaceted functions can be used to improve inflammatory responses and prevent cellular dysfunction. Here, we describe the role of mitochondria on the development and function of immune cells, highlighting metabolic aspects and pointing out some metabolic- independent features of mitochondria that sustain cell function.
Collapse
Affiliation(s)
- Cristiane Naffah de Souza Breda
- Transplantation Immunobiology Lab, Department of Immunology, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| | - Gustavo Gastão Davanzo
- Laboratory of Immunometabolism, Department of Genetics, Evolution, Microbiology and Immunology, Institute of Biology, University of Campinas, Campinas, Brazil
| | - Paulo José Basso
- Transplantation Immunobiology Lab, Department of Immunology, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| | - Niels Olsen Saraiva Câmara
- Transplantation Immunobiology Lab, Department of Immunology, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Brazil.
| | - Pedro Manoel Mendes Moraes-Vieira
- Laboratory of Immunometabolism, Department of Genetics, Evolution, Microbiology and Immunology, Institute of Biology, University of Campinas, Campinas, Brazil.
| |
Collapse
|
75
|
Gu J, Jin N, Ma D, Chu D, Iqbal K, Gong CX, Liu F. Calpain I Activation Causes GLUT3 Proteolysis and Downregulation of O-GlcNAcylation in Alzheimer's Disease Brain. J Alzheimers Dis 2019; 62:1737-1746. [PMID: 29614685 DOI: 10.3233/jad-171047] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Impairment of cerebral glucose uptake/metabolism in individuals with Alzheimer's disease (AD) is believed to lead to downregulation of protein O-GlcNAcylation, which contributes to tau pathogenesis through tau hyperphosphorylation. Level of glucose transporter 3 (GLUT3), a neuronal specific glucose transporter, is decreased in AD brain, which may contribute to impaired brain glucose uptake/metabolism. However, what causes the reduction of GLUT3 in AD brain is not fully understood. Here, we report 1) that decrease of GLUT3 is associated with the reduction of protein O-GlcNAcylation in AD brain, 2) that GLUT3 level is negatively correlated with calpain I activation in human brain, 3) that calpain I proteolyzes GLUT3 at the N-terminus in vitro, and 4) that activation of calpain I is negatively correlated with protein O-GlcNAcylation in AD brain. Furthermore, we found that overexpression of GLUT3 enhances protein O-GlcNAcylation in N2a cells. Overexpression of calpain I suppresses protein O-GlcNAcylation in these cells. These findings suggest a novel mechanism by which calpain I overactivation leads to GLUT3 degradation and the consequent down-regulation of protein O-GlcNAcylation in AD brain.
Collapse
Affiliation(s)
- Jianlan Gu
- Department of Biochemistry and Molecular Biology, School of Medicine, Nantong University, Nantong, Jiangsu, China.,Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education of China, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu, China
| | - Nana Jin
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education of China, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu, China
| | - Denglei Ma
- Department of Pharmacology, Xuanwu Hospital of Capital Medical University, Beijing, China
| | - Dandan Chu
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education of China, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu, China
| | - Khalid Iqbal
- Department of Neurochemistry, Inge Grundke-Iqbal Research Floor, New York State Institute for Basic Research in Developmental Disabilities, Staten Island, NY, USA
| | - Cheng-Xin Gong
- Department of Neurochemistry, Inge Grundke-Iqbal Research Floor, New York State Institute for Basic Research in Developmental Disabilities, Staten Island, NY, USA
| | - Fei Liu
- Department of Neurochemistry, Inge Grundke-Iqbal Research Floor, New York State Institute for Basic Research in Developmental Disabilities, Staten Island, NY, USA
| |
Collapse
|
76
|
Ansari SA, Emerald BS. The Role of Insulin Resistance and Protein O-GlcNAcylation in Neurodegeneration. Front Neurosci 2019; 13:473. [PMID: 31143098 PMCID: PMC6521730 DOI: 10.3389/fnins.2019.00473] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Accepted: 04/26/2019] [Indexed: 12/15/2022] Open
Abstract
Metabolic syndrome including obesity and type 2 diabetes is increasing at an alarming rate worldwide. Similarly, there has been an increase in the cases of neurodegenerative diseases such as Alzheimer’s disease (AD) possibility due to increase in elderly population in the past few decades. Both, metabolic diseases and AD have one common feature that is insulin resistance. Recent studies suggest a link between the regulatory functions of insulin in the brain and AD. Hypoglycemia, a characteristic feature of AD may be a result of impaired insulin signaling in the affected regions of the brain. O-GlcNAcylation is a post-translational protein modification, the levels of which are dependent on the availability of glucose inside the cells. Hyperphosphorylation of Tau is a major molecular feature, which leads to its aggregation and neurotoxicity in AD. In addition, impaired processing of Amyloid precursor protein (APP) leading to toxic amyloid β (Aβ) aggregation is also implicated in the pathogenesis of AD. Both APP and Tau are also found to be O-GlcNAcylated. Reduced O-GlcNAcylation of APP and Tau due to hypoglycemia is found to be associated with their pathological features in AD brain. Recent studies have also identified perturbed O-GlcNAcylation/phosphorylation of several other proteins important for normal neuronal function, which may be contributing to the neuropathological development in AD. Herein, we discuss about the uptake and distribution of insulin inside the brain, brain insulin signaling and insulin resistance as well as its relation to neurodegenerative diseases with a special focus on protein O-GlcNAcylation and its potential role in the treatment of AD.
Collapse
Affiliation(s)
- Suraiya A Ansari
- Department of Biochemistry, College of Medicine and Health Sciences, UAE University, Al Ain, United Arab Emirates
| | - Bright Starling Emerald
- Department of Anatomy, College of Medicine and Health Sciences, UAE University, Al Ain, United Arab Emirates
| |
Collapse
|
77
|
Gao J, Yang Y, Qiu R, Zhang K, Teng X, Liu R, Wang Y. Proteomic analysis of the OGT interactome: novel links to epithelial-mesenchymal transition and metastasis of cervical cancer. Carcinogenesis 2019; 39:1222-1234. [PMID: 30052810 PMCID: PMC6175026 DOI: 10.1093/carcin/bgy097] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Accepted: 07/22/2018] [Indexed: 12/19/2022] Open
Abstract
The role of O-GlcNAc transferase (OGT) in gene regulation and tumor invasion is poorly understood. Here, we have identified several previously undiscovered OGT-interacting proteins, including the PRMT5/WDR77 complex, the PRC2 complex, the ten-eleven translocation (TET) family, the CRL4B complex and the nucleosome remodeling and deacetylase (NuRD) complex. Genome-wide analysis of target genes responsive to OGT resulted in identification of a cohort of genes including SNAI1 and ING4 that are critically involved in cell epithelial–mesenchymal transition and invasion/metastasis. We have demonstrated that OGT promotes carcinogenesis and metastasis of cervical cancer cells. OGT’s expression is significantly upregulated in cervical cancer, and low OGT level is correlated with improved prognosis. Our study has thus revealed a mechanistic link between OGT and tumor progression, providing potential prognostic indicators and targets for cancer therapy.
Collapse
Affiliation(s)
- Jie Gao
- 2011 Collaborative Innovation Center of Tianjin for Medical Epigenetics, Tianjin Key Laboratory of Cellular and Molecular Immunology, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Yang Yang
- 2011 Collaborative Innovation Center of Tianjin for Medical Epigenetics, Tianjin Key Laboratory of Cellular and Molecular Immunology, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Rongfang Qiu
- 2011 Collaborative Innovation Center of Tianjin for Medical Epigenetics, Tianjin Key Laboratory of Cellular and Molecular Immunology, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Kai Zhang
- 2011 Collaborative Innovation Center of Tianjin for Medical Epigenetics, Tianjin Key Laboratory of Cellular and Molecular Immunology, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Xu Teng
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Ruiqiong Liu
- Cancer Center, The Second Hospital of Shandong University, Jinan, China
| | - Yan Wang
- 2011 Collaborative Innovation Center of Tianjin for Medical Epigenetics, Tianjin Key Laboratory of Cellular and Molecular Immunology, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China.,Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| |
Collapse
|
78
|
Rauth M, Freund P, Orlova A, Grünert S, Tasic N, Han X, Ruan HB, Neubauer HA, Moriggl R. Cell Metabolism Control Through O-GlcNAcylation of STAT5: A Full or Empty Fuel Tank Makes a Big Difference for Cancer Cell Growth and Survival. Int J Mol Sci 2019; 20:E1028. [PMID: 30818760 PMCID: PMC6429193 DOI: 10.3390/ijms20051028] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 02/21/2019] [Accepted: 02/22/2019] [Indexed: 12/23/2022] Open
Abstract
O-GlcNAcylation is a post-translational modification that influences tyrosine phosphorylation in healthy and malignant cells. O-GlcNAc is a product of the hexosamine biosynthetic pathway, a side pathway of glucose metabolism. It is essential for cell survival and proper gene regulation, mirroring the metabolic status of a cell. STAT3 and STAT5 proteins are essential transcription factors that can act in a mutational context-dependent manner as oncogenes or tumor suppressors. They regulate gene expression for vital processes such as cell differentiation, survival, or growth, and are also critically involved in metabolic control. The role of STAT3/5 proteins in metabolic processes is partly independent of their transcriptional regulatory role, but is still poorly understood. Interestingly, STAT3 and STAT5 are modified by O-GlcNAc in response to the metabolic status of the cell. Here, we discuss and summarize evidence of O-GlcNAcylation-regulating STAT function, focusing in particular on hyperactive STAT5A transplant studies in the hematopoietic system. We emphasize that a single O-GlcNAc modification is essential to promote development of neoplastic cell growth through enhancing STAT5A tyrosine phosphorylation. Inhibition of O-GlcNAcylation of STAT5A on threonine 92 lowers tyrosine phosphorylation of oncogenic STAT5A and ablates malignant transformation. We conclude on strategies for new therapeutic options to block O-GlcNAcylation in combination with tyrosine kinase inhibitors to target neoplastic cancer cell growth and survival.
Collapse
Affiliation(s)
- Manuel Rauth
- Institute of Animal Breeding and Genetics, University of Veterinary Medicine Vienna, 1210 Vienna, Austria.
| | - Patricia Freund
- Institute of Animal Breeding and Genetics, University of Veterinary Medicine Vienna, 1210 Vienna, Austria.
| | - Anna Orlova
- Institute of Animal Breeding and Genetics, University of Veterinary Medicine Vienna, 1210 Vienna, Austria.
- Ludwig Boltzmann Institute for Cancer Research, 1090 Vienna, Austria.
| | | | | | - Xiaonan Han
- Key Laboratory of Human Disease Comparative Medicine, the Ministry of Health, Institute of Laboratory Animal Sciences (ILAS), Beijing 100730, China.
- Chinese Academy of Medical Science (CAMS) and Peking Union Medical College (PUMC), Beijing 100006, China.
- Division of Gastroenterology, Hepatology and Nutrition, Cincinnati Children's Hospital Medical Center (CCHMC), Cincinnati, OH 45229-3026, USA.
| | - Hai-Bin Ruan
- Department of Integrative Biology and Physiology, University of Minnesota Medical School, Minneapolis, MN 55455, USA.
| | - Heidi A Neubauer
- Institute of Animal Breeding and Genetics, University of Veterinary Medicine Vienna, 1210 Vienna, Austria.
| | - Richard Moriggl
- Institute of Animal Breeding and Genetics, University of Veterinary Medicine Vienna, 1210 Vienna, Austria.
- Ludwig Boltzmann Institute for Cancer Research, 1090 Vienna, Austria.
- Medical University Vienna, Vienna 1090, Austria.
| |
Collapse
|
79
|
Wang H, Tran PT. Author's view: epithelial plasticity metabolically reprograms normal cells towards a neoplastic-prone state. Mol Cell Oncol 2019; 6:1543485. [PMID: 30788419 PMCID: PMC6370387 DOI: 10.1080/23723556.2018.1543485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Revised: 10/30/2018] [Accepted: 10/30/2018] [Indexed: 11/08/2022]
Abstract
We have uncovered that epithelial plasticity programs metabolically reprogram epithelial lung cells by increasing expression of genes (e.g., glutamine-fructose-6-phosphate transaminase 2 – GFPT2 and UDP-N-acetylglucosamine pyrophosphorylase 1 – UAP1) critical for the hexosamine biosynthetic pathway (HBP) and elevating global protein O-GlcNAcylation – a specific type of glycosylation. We found that increased O-GlcNAcylation could suppress oncogene-induced senescence tumor suppressor pathways that ultimately led to accelerated KrasG12D-driven lung tumorigenesis.
Collapse
Affiliation(s)
- Hailun Wang
- Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Phuoc T Tran
- Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA.,The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA.,The James Buchanan Brady Urological Institute and Department of Urology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
80
|
Maamoun H, Benameur T, Pintus G, Munusamy S, Agouni A. Crosstalk Between Oxidative Stress and Endoplasmic Reticulum (ER) Stress in Endothelial Dysfunction and Aberrant Angiogenesis Associated With Diabetes: A Focus on the Protective Roles of Heme Oxygenase (HO)-1. Front Physiol 2019; 10:70. [PMID: 30804804 PMCID: PMC6378556 DOI: 10.3389/fphys.2019.00070] [Citation(s) in RCA: 85] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Accepted: 01/21/2019] [Indexed: 12/17/2022] Open
Abstract
Type-2 diabetes prevalence is continuing to rise worldwide due to physical inactivity and obesity epidemic. Diabetes and fluctuations of blood sugar are related to multiple micro- and macrovascular complications, that are attributed to oxidative stress, endoplasmic reticulum (ER) activation and inflammatory processes, which lead to endothelial dysfunction characterized, among other features, by reduced availability of nitric oxide (NO) and aberrant angiogenic capacity. Several enzymatic anti-oxidant and anti-inflammatory agents have been found to play protective roles against oxidative stress and its downstream signaling pathways. Of particular interest, heme oxygenase (HO) isoforms, specifically HO-1, have attracted much attention as major cytoprotective players in conditions associated with inflammation and oxidative stress. HO operates as a key rate-limiting enzyme in the process of degradation of the iron-containing molecule, heme, yielding the following byproducts: carbon monoxide (CO), iron, and biliverdin. Because HO-1 induction was linked to pro-oxidant states, it has been regarded as a marker of oxidative stress; however, accumulating evidence has established multiple cytoprotective roles of the enzyme in metabolic and cardiovascular disorders. The cytoprotective effects of HO-1 depend on several cellular mechanisms including the generation of bilirubin, an anti-oxidant molecule, from the degradation of heme; the induction of ferritin, a strong chelator of free iron; and the release of CO, that displays multiple anti-inflammatory and anti-apoptotic actions. The current review article describes the major molecular mechanisms contributing to endothelial dysfunction and altered angiogenesis in diabetes with a special focus on the interplay between oxidative stress and ER stress response. The review summarizes the key cytoprotective roles of HO-1 against hyperglycemia-induced endothelial dysfunction and aberrant angiogenesis and discusses the major underlying cellular mechanisms associated with its protective effects.
Collapse
Affiliation(s)
- Hatem Maamoun
- Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Tarek Benameur
- College of Medicine, King Faisal University, Al-Ahsa, Saudi Arabia
| | - Gianfranco Pintus
- Department of Biomedical Sciences, College of Health Sciences, Qatar University, Doha, Qatar
| | - Shankar Munusamy
- Department of Pharmaceutical and Administrative Sciences, College of Pharmacy and Health Sciences, Drake University, Des Moines, IA, United States
| | - Abdelali Agouni
- Department of Pharmaceutical Sciences, College of Pharmacy, Qatar University, Doha, Qatar
| |
Collapse
|
81
|
Jiang M, Xu B, Li X, Shang Y, Chu Y, Wang W, Chen D, Wu N, Hu S, Zhang S, Li M, Wu K, Yang X, Liang J, Nie Y, Fan D. O-GlcNAcylation promotes colorectal cancer metastasis via the miR-101-O-GlcNAc/EZH2 regulatory feedback circuit. Oncogene 2019; 38:301-316. [PMID: 30093632 PMCID: PMC6336687 DOI: 10.1038/s41388-018-0435-5] [Citation(s) in RCA: 97] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Revised: 07/14/2018] [Accepted: 07/17/2018] [Indexed: 12/21/2022]
Abstract
Advanced colorectal cancer (CRC) is one of the deadliest cancers, and the 5-year survival rate of patients with metastasis is extremely low. The epithelial-mesenchymal transition (EMT) is considered essential for metastatic CRC, but the fundamental molecular basis underlying this effect remains unknown. Here, we identified that O-GlcNAcylation, a unique posttranslational modification (PTM) involved in cancer metabolic reprogramming, increased the metastatic capability of CRC. The levels of O-GlcNAcylation were increased in the metastatic CRC tissues and cell lines, which likely promoted the EMT by enhancing EZH2 protein stability and function. The CRC patients with higher levels of O-GlcNAcylation exhibited greater lymph node metastasis potential and lower overall survival. Bioinformatic analysis and luciferase reporter assays revealed that both O-GlcNAcylation transferase (OGT) and EZH2 are posttranscriptionally inhibited by microRNA-101. In addition, O-GlcNAcylation and H3K27me3 modification in the miR-101 promoter region further inhibited the transcription of miR-101, resulting in the upregulation of OGT and EZH2 in metastatic CRC, thus forming a vicious cycle. In this study, we demonstrated that O-GlcNAcylation, which is negatively regulated by microRNA-101, likely promotes CRC metastasis by enhancing EZH2 protein stability and function. Reducing O-GlcNAcylation may be a potential therapeutic strategy for metastatic CRC.
Collapse
Affiliation(s)
- Mingzuo Jiang
- State key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases and Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, China
| | - Bing Xu
- State key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases and Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, China
- Department of Gastroenterology, Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, Shaanxi Province, China
| | - Xiaowei Li
- State key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases and Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, China
| | - Yulong Shang
- State key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases and Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, China
| | - Yi Chu
- State key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases and Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, China
| | - Weijie Wang
- State key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases and Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, China
| | - Di Chen
- State key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases and Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, China
| | - Nan Wu
- State key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases and Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, China
- Lab of Tissue Engineering, Faculty of Life Science, Northwest University, Xi'an, China
| | - Sijun Hu
- State key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases and Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, China
| | - Song Zhang
- State key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases and Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, China
| | - Mengbin Li
- State key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases and Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, China
| | - Kaichun Wu
- State key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases and Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, China
| | - Xiaoyong Yang
- Department of molecular cellular and developmental biology, Yale University, New Haven, USA
| | - Jie Liang
- State key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases and Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, China
| | - Yongzhan Nie
- State key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases and Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, China.
| | - Daiming Fan
- State key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases and Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, China.
| |
Collapse
|
82
|
Ferreira LT, Figueiredo AC, Orr B, Lopes D, Maiato H. Dissecting the role of the tubulin code in mitosis. Methods Cell Biol 2018; 144:33-74. [PMID: 29804676 DOI: 10.1016/bs.mcb.2018.03.040] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Mitosis is an essential process that takes place in all eukaryotes and involves the equal division of genetic material from a parental cell into two identical daughter cells. During mitosis, chromosome movement and segregation are orchestrated by a specialized structure known as the mitotic spindle, composed of a bipolar array of microtubules. The fundamental structure of microtubules comprises of α/β-tubulin heterodimers that associate head-to-tail and laterally to form hollow filaments. In vivo, microtubules are modified by abundant and evolutionarily conserved tubulin posttranslational modifications (PTMs), giving these filaments the potential for a wide chemical diversity. In recent years, the concept of a "tubulin code" has emerged as an extralayer of regulation governing microtubule function. A range of tubulin isoforms, each with a diverse set of PTMs, provides a readable code for microtubule motors and other microtubule-associated proteins. This chapter focuses on the complexity of tubulin PTMs with an emphasis on detyrosination and summarizes the methods currently used in our laboratory to experimentally manipulate these modifications and study their impact in mitosis.
Collapse
Affiliation(s)
- Luísa T Ferreira
- Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal; i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
| | - Ana C Figueiredo
- Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal; i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
| | - Bernardo Orr
- Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal; i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
| | - Danilo Lopes
- Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal; i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
| | - Helder Maiato
- Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal; i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal; Faculdade de Medicina, Universidade do Porto, Porto, Portugal.
| |
Collapse
|
83
|
Pereira MS, Alves I, Vicente M, Campar A, Silva MC, Padrão NA, Pinto V, Fernandes Â, Dias AM, Pinho SS. Glycans as Key Checkpoints of T Cell Activity and Function. Front Immunol 2018; 9:2754. [PMID: 30538706 PMCID: PMC6277680 DOI: 10.3389/fimmu.2018.02754] [Citation(s) in RCA: 109] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Accepted: 11/08/2018] [Indexed: 12/20/2022] Open
Abstract
The immune system is highly controlled and fine-tuned by glycosylation, through the addition of a diversity of carbohydrates structures (glycans) to virtually all immune cell receptors. Despite a relative backlog in understanding the importance of glycans in the immune system, due to its inherent complexity, remarkable findings have been highlighting the essential contributions of glycosylation in the regulation of both innate and adaptive immune responses with important implications in the pathogenesis of major diseases such as autoimmunity and cancer. Glycans are implicated in fundamental cellular and molecular processes that regulate both stimulatory and inhibitory immune pathways. Besides being actively involved in pathogen recognition through interaction with glycan-binding proteins (such as C-type lectins), glycans have been also shown to regulate key pathophysiological steps within T cell biology such as T cell development and thymocyte selection; T cell activity and signaling as well as T cell differentiation and proliferation. These effects of glycans in T cells functions highlight their importance as determinants of either self-tolerance or T cell hyper-responsiveness which ultimately might be implicated in the creation of tolerogenic pathways in cancer or loss of immunological tolerance in autoimmunity. This review discusses how specific glycans (with a focus on N-linked glycans) act as regulators of T cell biology and their implications in disease.
Collapse
Affiliation(s)
- Márcia S Pereira
- Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP) Porto, Portugal.,Institute for Research and Innovation in Health (I3S) Porto, Portugal.,Institute of Biomedical Sciences of Abel Salazar, University of Porto Porto, Portugal
| | - Inês Alves
- Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP) Porto, Portugal.,Institute for Research and Innovation in Health (I3S) Porto, Portugal.,Medical Faculty, University of Porto Porto, Portugal
| | - Manuel Vicente
- Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP) Porto, Portugal.,Institute for Research and Innovation in Health (I3S) Porto, Portugal.,Institute of Biomedical Sciences of Abel Salazar, University of Porto Porto, Portugal
| | - Ana Campar
- Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP) Porto, Portugal.,Institute for Research and Innovation in Health (I3S) Porto, Portugal.,Institute of Biomedical Sciences of Abel Salazar, University of Porto Porto, Portugal.,Centro Hospitalar do Porto Porto, Portugal
| | - Mariana C Silva
- Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP) Porto, Portugal.,Institute for Research and Innovation in Health (I3S) Porto, Portugal
| | - Nuno A Padrão
- Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP) Porto, Portugal.,Institute for Research and Innovation in Health (I3S) Porto, Portugal.,Medical Faculty, University of Porto Porto, Portugal
| | - Vanda Pinto
- Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP) Porto, Portugal.,Institute for Research and Innovation in Health (I3S) Porto, Portugal
| | - Ângela Fernandes
- Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP) Porto, Portugal.,Institute for Research and Innovation in Health (I3S) Porto, Portugal
| | - Ana M Dias
- Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP) Porto, Portugal.,Institute for Research and Innovation in Health (I3S) Porto, Portugal
| | - Salomé S Pinho
- Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP) Porto, Portugal.,Institute for Research and Innovation in Health (I3S) Porto, Portugal.,Medical Faculty, University of Porto Porto, Portugal
| |
Collapse
|
84
|
O-deGlcNAcylation is required for Entamoeba histolytica-induced HepG2 cell death. Microb Pathog 2018; 123:285-295. [DOI: 10.1016/j.micpath.2018.07.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 07/12/2018] [Accepted: 07/12/2018] [Indexed: 11/17/2022]
|
85
|
Taparra K, Wang H, Malek R, Lafargue A, Barbhuiya MA, Wang X, Simons BW, Ballew M, Nugent K, Groves J, Williams RD, Shiraishi T, Verdone J, Yildirir G, Henry R, Zhang B, Wong J, Wang KKH, Nelkin BD, Pienta KJ, Felsher D, Zachara NE, Tran PT. O-GlcNAcylation is required for mutant KRAS-induced lung tumorigenesis. J Clin Invest 2018; 128:4924-4937. [PMID: 30130254 DOI: 10.1172/jci94844] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Accepted: 08/16/2018] [Indexed: 12/13/2022] Open
Abstract
Mutant KRAS drives glycolytic flux in lung cancer, potentially impacting aberrant protein glycosylation. Recent evidence suggests aberrant KRAS drives flux of glucose into the hexosamine biosynthetic pathway (HBP). HBP is required for various glycosylation processes, such as protein N- or O-glycosylation and glycolipid synthesis. However, its function during tumorigenesis is poorly understood. One contributor and proposed target of KRAS-driven cancers is a developmentally conserved epithelial plasticity program called epithelial-mesenchymal transition (EMT). Here we showed in novel autochthonous mouse models that EMT accelerated KrasG12D lung tumorigenesis by upregulating expression of key enzymes of the HBP pathway. We demonstrated that HBP was required for suppressing KrasG12D-induced senescence, and targeting HBP significantly delayed KrasG12D lung tumorigenesis. To explore the mechanism, we investigated protein glycosylation downstream of HBP and found elevated levels of O-linked β-N-acetylglucosamine (O-GlcNAcylation) posttranslational modification on intracellular proteins. O-GlcNAcylation suppressed KrasG12D oncogene-induced senescence (OIS) and accelerated lung tumorigenesis. Conversely, loss of O-GlcNAcylation delayed lung tumorigenesis. O-GlcNAcylation of proteins SNAI1 and c-MYC correlated with the EMT-HBP axis and accelerated lung tumorigenesis. Our results demonstrated that O-GlcNAcylation was sufficient and required to accelerate KrasG12D lung tumorigenesis in vivo, which was reinforced by epithelial plasticity programs.
Collapse
Affiliation(s)
- Kekoa Taparra
- Department of Radiation Oncology and Molecular Radiation Sciences, Sidney Kimmel Comprehensive Cancer Center.,Program in Cellular and Molecular Medicine
| | - Hailun Wang
- Department of Radiation Oncology and Molecular Radiation Sciences, Sidney Kimmel Comprehensive Cancer Center
| | - Reem Malek
- Department of Radiation Oncology and Molecular Radiation Sciences, Sidney Kimmel Comprehensive Cancer Center
| | - Audrey Lafargue
- Department of Radiation Oncology and Molecular Radiation Sciences, Sidney Kimmel Comprehensive Cancer Center
| | - Mustafa A Barbhuiya
- Department of Radiation Oncology and Molecular Radiation Sciences, Sidney Kimmel Comprehensive Cancer Center
| | - Xing Wang
- Department of Radiation Oncology and Molecular Radiation Sciences, Sidney Kimmel Comprehensive Cancer Center
| | - Brian W Simons
- Department of Urology, James Buchanan Brady Urological Institute
| | - Matthew Ballew
- Department of Radiation Oncology and Molecular Radiation Sciences, Sidney Kimmel Comprehensive Cancer Center
| | - Katriana Nugent
- Department of Radiation Oncology and Molecular Radiation Sciences, Sidney Kimmel Comprehensive Cancer Center
| | | | - Russell D Williams
- Department of Radiation Oncology and Molecular Radiation Sciences, Sidney Kimmel Comprehensive Cancer Center
| | - Takumi Shiraishi
- Department of Urology, James Buchanan Brady Urological Institute
| | - James Verdone
- Department of Urology, James Buchanan Brady Urological Institute
| | | | | | - Bin Zhang
- Department of Radiation Oncology and Molecular Radiation Sciences, Sidney Kimmel Comprehensive Cancer Center
| | - John Wong
- Department of Radiation Oncology and Molecular Radiation Sciences, Sidney Kimmel Comprehensive Cancer Center
| | - Ken Kang-Hsin Wang
- Department of Radiation Oncology and Molecular Radiation Sciences, Sidney Kimmel Comprehensive Cancer Center
| | - Barry D Nelkin
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Kenneth J Pienta
- Department of Biological Chemistry, and.,Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Dean Felsher
- Division of Medical Oncology, Departments of Medicine and Pathology, Stanford University School of Medicine, Stanford, California, USA
| | - Natasha E Zachara
- Department of Biological Chemistry, and.,Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Phuoc T Tran
- Department of Radiation Oncology and Molecular Radiation Sciences, Sidney Kimmel Comprehensive Cancer Center.,Program in Cellular and Molecular Medicine.,Department of Urology, James Buchanan Brady Urological Institute.,Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
86
|
Wu ZL, Tatge TJ, Grill AE, Zou Y. Detecting and Imaging O-GlcNAc Sites Using Glycosyltransferases: A Systematic Approach to Study O-GlcNAc. Cell Chem Biol 2018; 25:1428-1435.e3. [PMID: 30100348 DOI: 10.1016/j.chembiol.2018.07.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Revised: 05/20/2018] [Accepted: 07/05/2018] [Indexed: 12/17/2022]
Abstract
O-GlcNAcylation is a reversible serine/threonine glycosylation for regulating protein activity and availability inside cells. In a given protein, O-GlcNAcylated and unoccupied O-linked β-N-acetylglucosamine (O-GlcNAc) sites are referred to as closed and open sites, respectively. The balance between open and closed sites is believed to be dynamically regulated. In this report, closed sites are detected using in vitro incorporation of GalNAz by B3GALNT2, and open sites are detected by in vitro incorporation of GlcNAz by O-GlcNAc transferase (OGT), via click chemistry. For assessing total O-GlcNAc sites, a sample is O-GlcNAcylated in vitro by OGT before detecting by B3GALNT2. The methods are demonstrated on purified recombinant proteins including CK2, AKT1, and PFKFB3, and cellular extracts of HEK cells. Through O-GlcNAc imaging, the modification degree of O-GlcNAc in nuclei of Chinese hamster ovary cells was estimated. The detection and imaging of both open and closed O-GlcNAc sites provide a systematic approach to study this important post-translational modification.
Collapse
Affiliation(s)
- Zhengliang L Wu
- Department of Enzyme, Bio-techne, R&D Systems, Inc., 614 McKinley Place N.E., Minneapolis, MN 55413, USA.
| | - Timothy J Tatge
- Department of Enzyme, Bio-techne, R&D Systems, Inc., 614 McKinley Place N.E., Minneapolis, MN 55413, USA
| | - Alex E Grill
- Department of Product Support Process Improvement, Bio-techne, R&D Systems, Inc., 614 McKinley Place N.E., Minneapolis, MN 55413, USA
| | - Yonglong Zou
- Department of Antibody Application Quality Control, Bio-techne, R&D Systems, Inc., 614 McKinley Place N.E., Minneapolis, MN 55413, USA
| |
Collapse
|
87
|
Compton PD, Kelleher NL, Gunawardena J. Estimating the Distribution of Protein Post-Translational Modification States by Mass Spectrometry. J Proteome Res 2018; 17:2727-2734. [PMID: 29945451 DOI: 10.1021/acs.jproteome.8b00150] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Post-translational modifications (PTMs) of proteins play a central role in cellular information encoding, but the complexity of PTM state has been challenging to unravel. A single molecule can exhibit a "modform" or combinatorial pattern of co-occurring PTMs across multiple sites, and a molecular population can exhibit a distribution of amounts of different modforms. How can this "modform distribution" be estimated by mass spectrometry (MS)? Bottom-up MS, based on cleavage into peptides, destroys correlations between PTMs on different peptides, but it is conceivable that multiple proteases with appropriate patterns of cleavage could reconstruct the modform distribution. We introduce a mathematical language for describing MS measurements and show, on the contrary, that no matter how many distinct proteases are available, the shortfall in information required for reconstruction worsens exponentially with increasing numbers of sites. Whereas top-down MS on intact proteins can do better, current technology cannot prevent the exponential worsening. However, our analysis also shows that all forms of MS yield linear equations for modform amounts. This permits different MS protocols to be integrated and the modform distribution to be constrained within a high-dimensional "modform region", which may offer a feasible proxy for analyzing information encoding.
Collapse
Affiliation(s)
- Philip D Compton
- Department of Chemistry , Northwestern University , Evanston , Illinois 60208 , United States
| | - Neil L Kelleher
- Department of Chemistry , Northwestern University , Evanston , Illinois 60208 , United States.,Department of Molecular Biosciences , Northwestern University , Evanston , Illinois 60208 , United States
| | - Jeremy Gunawardena
- Department of Systems Biology , Harvard Medical School , Boston , Massachusetts 02115 , United States
| |
Collapse
|
88
|
O-GlcNAcylation regulates the stability and enzymatic activity of the histone methyltransferase EZH2. Proc Natl Acad Sci U S A 2018; 115:7302-7307. [PMID: 29941599 DOI: 10.1073/pnas.1801850115] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Protein O-glycosylation by attachment of β-N-acetylglucosamine (GlcNAc) to the Ser or Thr residue is a major posttranslational glycosylation event and is often associated with protein folding, stability, and activity. The methylation of histone H3 at Lys-27 catalyzed by the methyltransferase EZH2 was known to suppress gene expression and cancer development, and we previously reported that the O-GlcNAcylation of EZH2 at S76 stabilized EZH2 and facilitated the formation of H3K27me3 to inhibit tumor suppression. In this study, we employed a fluorescence-based method of sugar labeling combined with mass spectrometry to investigate EZH2 glycosylation and identified five O-GlcNAcylation sites. We also find that mutation of one or more of the O-GlcNAcylation sites S73A, S76A, S84A, and T313A in the N-terminal region decreases the stability of EZH2, but does not affect its association with the PRC2 components SUZ12 and EED. Mutation of the C-terminal O-GlcNAcylation site (S729A) in the catalytic domain of EZH2 abolishes the di- and trimethylation activities, but not the monomethylation of H3K27, nor the integrity of the PRC2/EZH2 core complex. Our results show the effect of individual O-GlcNAcylation sites on the function of EZH2 and suggest an alternative approach to tumor suppression through selective inhibition of EZH2 O-GlcNAcylation.
Collapse
|
89
|
The Nutrient-Sensing Hexosamine Biosynthetic Pathway as the Hub of Cancer Metabolic Rewiring. Cells 2018; 7:cells7060053. [PMID: 29865240 PMCID: PMC6025041 DOI: 10.3390/cells7060053] [Citation(s) in RCA: 117] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Revised: 05/29/2018] [Accepted: 05/31/2018] [Indexed: 12/12/2022] Open
Abstract
Alterations in glucose and glutamine utilizing pathways and in fatty acid metabolism are currently considered the most significant and prevalent metabolic changes observed in almost all types of tumors. Glucose, glutamine and fatty acids are the substrates for the hexosamine biosynthetic pathway (HBP). This metabolic pathway generates the “sensing molecule” UDP-N-Acetylglucosamine (UDP-GlcNAc). UDP-GlcNAc is the substrate for the enzymes involved in protein N- and O-glycosylation, two important post-translational modifications (PTMs) identified in several proteins localized in the extracellular space, on the cell membrane and in the cytoplasm, nucleus and mitochondria. Since protein glycosylation controls several key aspects of cell physiology, aberrant protein glycosylation has been associated with different human diseases, including cancer. Here we review recent evidence indicating the tight association between the HBP flux and cell metabolism, with particular emphasis on the post-transcriptional and transcriptional mechanisms regulated by the HBP that may cause the metabolic rewiring observed in cancer. We describe the implications of both protein O- and N-glycosylation in cancer cell metabolism and bioenergetics; focusing our attention on the effect of these PTMs on nutrient transport and on the transcriptional regulation and function of cancer-specific metabolic pathways.
Collapse
|
90
|
Constable S, Lim JM, Vaidyanathan K, Wells L. O-GlcNAc transferase regulates transcriptional activity of human Oct4. Glycobiology 2018; 27:927-937. [PMID: 28922739 DOI: 10.1093/glycob/cwx055] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Accepted: 06/10/2017] [Indexed: 01/06/2023] Open
Abstract
O-linked β-N-acetylglucosamine (O-GlcNAc) is a single sugar modification found on many different classes of nuclear and cytoplasmic proteins. Addition of this modification, by the enzyme O-linked N-acetylglucosamine transferase (OGT), is dynamic and inducible. One major class of proteins modified by O-GlcNAc is transcription factors. O-GlcNAc regulates transcription factor properties through a variety of different mechanisms including localization, stability and transcriptional activation. Maintenance of embryonic stem (ES) cell pluripotency requires tight regulation of several key transcription factors, many of which are modified by O-GlcNAc. Octamer-binding protein 4 (Oct4) is one of the key transcription factors required for pluripotency of ES cells and more recently, the generation of induced pluripotent stem (iPS) cells. The action of Oct4 is modulated by the addition of several post-translational modifications, including O-GlcNAc. Previous studies in mice found a single site of O-GlcNAc addition responsible for transcriptional regulation. This study was designed to determine if this mechanism is conserved in humans. We mapped 10 novel sites of O-GlcNAc attachment on human Oct4, and confirmed a role for OGT in transcriptional activation of Oct4 at a site distinct from that found in mouse that allows distinction between different Oct4 target promoters. Additionally, we uncovered a potential new role for OGT that does not include its catalytic function. These results confirm that human Oct4 activity is being regulated by OGT by a mechanism that is distinct from mouse Oct4.
Collapse
Affiliation(s)
- Sandii Constable
- Complex Carbohydrate Research Center and Department of Biochemistry and Molecular Biology, The University of Georgia, 315 Riverbend Road, Athens, GA 30602, USA
| | - Jae-Min Lim
- Complex Carbohydrate Research Center and Department of Biochemistry and Molecular Biology, The University of Georgia, 315 Riverbend Road, Athens, GA 30602, USA.,Department of Chemistry, Changwon National University, Changwon, Gyeongnam 641-773, South Korea
| | - Krithika Vaidyanathan
- Complex Carbohydrate Research Center and Department of Biochemistry and Molecular Biology, The University of Georgia, 315 Riverbend Road, Athens, GA 30602, USA
| | - Lance Wells
- Complex Carbohydrate Research Center and Department of Biochemistry and Molecular Biology, The University of Georgia, 315 Riverbend Road, Athens, GA 30602, USA
| |
Collapse
|
91
|
Shi H, Munk A, Nielsen TS, Daughtry MR, Larsson L, Li S, Høyer KF, Geisler HW, Sulek K, Kjøbsted R, Fisher T, Andersen MM, Shen Z, Hansen UK, England EM, Cheng Z, Højlund K, Wojtaszewski JFP, Yang X, Hulver MW, Helm RF, Treebak JT, Gerrard DE. Skeletal muscle O-GlcNAc transferase is important for muscle energy homeostasis and whole-body insulin sensitivity. Mol Metab 2018. [PMID: 29525407 PMCID: PMC6001359 DOI: 10.1016/j.molmet.2018.02.010] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Objective Given that cellular O-GlcNAcylation levels are thought to be real-time measures of cellular nutrient status and dysregulated O-GlcNAc signaling is associated with insulin resistance, we evaluated the role of O-GlcNAc transferase (OGT), the enzyme that mediates O-GlcNAcylation, in skeletal muscle. Methods We assessed O-GlcNAcylation levels in skeletal muscle from obese, type 2 diabetic people, and we characterized muscle-specific OGT knockout (mKO) mice in metabolic cages and measured energy expenditure and substrate utilization pattern using indirect calorimetry. Whole body insulin sensitivity was assessed using the hyperinsulinemic euglycemic clamp technique and tissue-specific glucose uptake was subsequently evaluated. Tissues were used for histology, qPCR, Western blot, co-immunoprecipitation, and chromatin immunoprecipitation analyses. Results We found elevated levels of O-GlcNAc-modified proteins in obese, type 2 diabetic people compared with well-matched obese and lean controls. Muscle-specific OGT knockout mice were lean, and whole body energy expenditure and insulin sensitivity were increased in these mice, consistent with enhanced glucose uptake and elevated glycolytic enzyme activities in skeletal muscle. Moreover, enhanced glucose uptake was also observed in white adipose tissue that was browner than that of WT mice. Interestingly, mKO mice had elevated mRNA levels of Il15 in skeletal muscle and increased circulating IL-15 levels. We found that OGT in muscle mediates transcriptional repression of Il15 by O-GlcNAcylating Enhancer of Zeste Homolog 2 (EZH2). Conclusions Elevated muscle O-GlcNAc levels paralleled insulin resistance and type 2 diabetes in humans. Moreover, OGT-mediated signaling is necessary for proper skeletal muscle metabolism and whole-body energy homeostasis, and our data highlight O-GlcNAcylation as a potential target for ameliorating metabolic disorders. Type 2 diabetic humans have elevated O-GlcNAc levels in skeletal muscle. Knockout of OGT in muscle elevates whole body insulin sensitivity. Knockout of OGT in muscle increases resistance to diet-induced obesity. Muscle-specific OGT knockout mice have elevated plasma IL-15 levels. OGT in muscle controls Il15 expression by O-GlcNAcylation and inhibition of EZH2.
Collapse
Affiliation(s)
- Hao Shi
- Department of Animal and Poultry Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
| | - Alexander Munk
- Section of Integrative Physiology, Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, DK2200, Denmark
| | - Thomas S Nielsen
- Section of Integrative Physiology, Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, DK2200, Denmark
| | - Morgan R Daughtry
- Department of Animal and Poultry Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
| | - Louise Larsson
- Section of Integrative Physiology, Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, DK2200, Denmark
| | - Shize Li
- Department of Animal and Poultry Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
| | - Kasper F Høyer
- Section of Integrative Physiology, Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, DK2200, Denmark; Department of Endocrinology and Internal Medicine, Aarhus University Hospital, Aarhus, DK8000, Denmark
| | - Hannah W Geisler
- Department of Animal and Poultry Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
| | - Karolina Sulek
- Section of Integrative Physiology, Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, DK2200, Denmark
| | - Rasmus Kjøbsted
- Section of Molecular Physiology, Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Copenhagen, DK2100, Denmark
| | - Taylor Fisher
- Department of Animal and Poultry Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
| | - Marianne M Andersen
- Section of Integrative Physiology, Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, DK2200, Denmark
| | - Zhengxing Shen
- Department of Animal and Poultry Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
| | - Ulrik K Hansen
- Section of Integrative Physiology, Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, DK2200, Denmark
| | - Eric M England
- Department of Animal and Poultry Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
| | - Zhiyong Cheng
- Department of Human Nutrition, Foods, and Exercise, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
| | - Kurt Højlund
- Department of Endocrinology, Odense University Hospital, Odense, Denmark; Section of Molecular Diabetes and Metabolism, Institute of Molecular Medicine and Institute of Clinical Research, University of Southern Denmark, Odense, Denmark
| | - Jørgen F P Wojtaszewski
- Section of Molecular Physiology, Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Copenhagen, DK2100, Denmark
| | - Xiaoyong Yang
- Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Matthew W Hulver
- Department of Human Nutrition, Foods, and Exercise, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA; The Virginia Tech Metabolic Phenotyping Core, Blacksburg, VA 24061, USA
| | - Richard F Helm
- Department of Biochemistry, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
| | - Jonas T Treebak
- Section of Integrative Physiology, Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, DK2200, Denmark.
| | - David E Gerrard
- Department of Animal and Poultry Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA.
| |
Collapse
|
92
|
Kim DI, Cutler JA, Na CH, Reckel S, Renuse S, Madugundu AK, Tahir R, Goldschmidt HL, Reddy KL, Huganir RL, Wu X, Zachara NE, Hantschel O, Pandey A. BioSITe: A Method for Direct Detection and Quantitation of Site-Specific Biotinylation. J Proteome Res 2018; 17:759-769. [PMID: 29249144 PMCID: PMC6092923 DOI: 10.1021/acs.jproteome.7b00775] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Biotin-based labeling strategies are widely employed to study protein-protein interactions, subcellular proteomes and post-translational modifications, as well as, used in drug discovery. While the high affinity of streptavidin for biotin greatly facilitates the capture of biotinylated proteins, it still presents a challenge, as currently employed, for the recovery of biotinylated peptides. Here we describe a strategy designated Biotinylation Site Identification Technology (BioSITe) for the capture of biotinylated peptides for LC-MS/MS analyses. We demonstrate the utility of BioSITe when applied to proximity-dependent labeling methods, APEX and BioID, as well as biotin-based click chemistry strategies for identifying O-GlcNAc-modified sites. We demonstrate the use of isotopically labeled biotin for quantitative BioSITe experiments that simplify differential interactome analysis and obviate the need for metabolic labeling strategies such as SILAC. Our data also highlight the potential value of site-specific biotinylation in providing spatial and topological information about proteins and protein complexes. Overall, we anticipate that BioSITe will replace the conventional methods in studies where detection of biotinylation sites is important.
Collapse
Affiliation(s)
- Dae In Kim
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, United States
| | - Jevon A. Cutler
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, United States
- Pre-Doctoral Training Program in Human Genetics, McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, United States
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, United States
| | - Chan Hyun Na
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, United States
- Center for Proteomics Discovery, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, United States
| | - Sina Reckel
- Swiss Institute for Experimental Cancer Research (ISREC), School of Life Sciences, École polytechnique fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Santosh Renuse
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, United States
- Center for Proteomics Discovery, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, United States
| | - Anil K. Madugundu
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, United States
- Institute of Bioinformatics, International Technology Park, Bangalore 560066, India
| | - Raiha Tahir
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, United States
- Biochemistry, Cellular and Molecular Biology Graduate Program, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, United States
| | - Hana L. Goldschmidt
- Solomon H. Snyder Department of Neuroscience, Kavli Neuroscience Discovery Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, United States
| | - Karen L. Reddy
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, United States
- Center for Epigenetics, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, United States
| | - Richard L. Huganir
- Solomon H. Snyder Department of Neuroscience, Kavli Neuroscience Discovery Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, United States
| | - Xinyan Wu
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, United States
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, United States
| | - Natasha E. Zachara
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, United States
| | - Oliver Hantschel
- Swiss Institute for Experimental Cancer Research (ISREC), School of Life Sciences, École polytechnique fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Akhilesh Pandey
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, United States
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, United States
- Center for Proteomics Discovery, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, United States
- Departments of Pathology and Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, United States
| |
Collapse
|
93
|
Cork GK, Thompson J, Slawson C. Real Talk: The Inter-play Between the mTOR, AMPK, and Hexosamine Biosynthetic Pathways in Cell Signaling. Front Endocrinol (Lausanne) 2018; 9:522. [PMID: 30237786 PMCID: PMC6136272 DOI: 10.3389/fendo.2018.00522] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Accepted: 08/21/2018] [Indexed: 12/22/2022] Open
Abstract
O-linked N-acetylglucosamine, better known as O-GlcNAc, is a sugar post-translational modification participating in a diverse range of cell functions. Disruptions in the cycling of O-GlcNAc mediated by O-GlcNAc transferase (OGT) and O-GlcNAcase (OGA), respectively, is a driving force for aberrant cell signaling in disease pathologies, such as diabetes, obesity, Alzheimer's disease, and cancer. Production of UDP-GlcNAc, the metabolic substrate for OGT, by the Hexosamine Biosynthetic Pathway (HBP) is controlled by the input of amino acids, fats, and nucleic acids, making O-GlcNAc a key nutrient-sensor for fluctuations in these macromolecules. The mammalian target of rapamycin (mTOR) and AMP-activated protein kinase (AMPK) pathways also participate in nutrient-sensing as a means of controlling cell activity and are significant factors in a variety of pathologies. Research into the individual nutrient-sensitivities of the HBP, AMPK, and mTOR pathways has revealed a complex regulatory dynamic, where their unique responses to macromolecule levels coordinate cell behavior. Importantly, cross-talk between these pathways fine-tunes the cellular response to nutrients. Strong evidence demonstrates that AMPK negatively regulates the mTOR pathway, but O-GlcNAcylation of AMPK lowers enzymatic activity and promotes growth. On the other hand, AMPK can phosphorylate OGT leading to changes in OGT function. Complex sets of interactions between the HBP, AMPK, and mTOR pathways integrate nutritional signals to respond to changes in the environment. In particular, examining these relationships using systems biology approaches might prove a useful method of exploring the complex nature of cell signaling. Overall, understanding the complex interactions of these nutrient pathways will provide novel mechanistic information into how nutrients influence health and disease.
Collapse
Affiliation(s)
- Gentry K. Cork
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, KS, United States
- Department of Pathology, University of Kansas Medical Center, Kansas City, KS, United States
| | - Jeffrey Thompson
- Department of Biostatistics, University of Kansas Medical Center, Kansas City, KS, United States
| | - Chad Slawson
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, KS, United States
- *Correspondence: Chad Slawson
| |
Collapse
|
94
|
Ferron M, Denis M, Persello A, Rathagirishnan R, Lauzier B. Protein O-GlcNAcylation in Cardiac Pathologies: Past, Present, Future. Front Endocrinol (Lausanne) 2018; 9:819. [PMID: 30697194 PMCID: PMC6340935 DOI: 10.3389/fendo.2018.00819] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Accepted: 12/31/2018] [Indexed: 01/22/2023] Open
Abstract
O-GlcNAcylation is a ubiquitous and reversible post-translational protein modification that has recently gained renewed interest due to the rapid development of analytical tools and new molecules designed to specifically increase the level of protein O-GlcNAcylation. The level of O-GlcNAc modification appears to have either deleterious or beneficial effects, depending on the context (exposure time, pathophysiological context). While high O-GlcNAcylation levels are mostly reported in chronic diseases, the increase in O-GlcNAc level in acute stresses such as during ischemia reperfusion or hemorrhagic shock is reported to be beneficial in vitro, ex vivo, or in vivo. In this context, an increase in O-GlcNAc levels could be a potential new cardioprotective therapy, but the ambivalent effects of protein O-GlcNAcylation augmentation remains as a key problem to be solved prior to their transfer to the clinic. The emergence of new analytical tools has opened new avenues to decipher the mechanisms underlying the beneficial effects associated with an O-GlcNAc level increase. A better understanding of the exact roles of O-GlcNAc on protein function, targeting or stability will help to develop more targeted approaches. The aim of this review is to discuss the mechanisms and potential beneficial impact of O-GlcNAc modulation, and its potential as a new clinical target in cardiology.
Collapse
Affiliation(s)
- Marine Ferron
- Montreal Heart Institute, Montreal, QC, Canada
- l'institut du thorax, INSERM, CNRS, UNIV Nantes, Nantes, France
- *Correspondence: Marine Ferron
| | - Manon Denis
- l'institut du thorax, INSERM, CNRS, UNIV Nantes, Nantes, France
| | | | | | | |
Collapse
|
95
|
Krause MW, Love DC, Ghosh SK, Wang P, Yun S, Fukushige T, Hanover JA. Nutrient-Driven O-GlcNAcylation at Promoters Impacts Genome-Wide RNA Pol II Distribution. Front Endocrinol (Lausanne) 2018; 9:521. [PMID: 30250452 PMCID: PMC6139338 DOI: 10.3389/fendo.2018.00521] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Accepted: 08/21/2018] [Indexed: 01/07/2023] Open
Abstract
Nutrient-driven O-GlcNAcylation has been linked to epigenetic regulation of gene expression in metazoans. In C. elegans, O-GlcNAc marks the promoters of over 800 developmental, metabolic, and stress-related genes; these O-GlcNAc marked genes show a strong 5', promoter-proximal bias in the distribution of RNA Polymerase II (Pol II). In response to starvation or feeding, the steady state distribution of O-GlcNAc at promoters remain nearly constant presumably due to dynamic cycling mediated by the transferase OGT-1 and the O-GlcNAcase OGA-1. However, in viable mutants lacking either of these enzymes of O-GlcNAc metabolism, the nutrient-responsive GlcNAcylation of promoters is dramatically altered. Blocked O-GlcNAc cycling leads to a striking nutrient-dependent accumulation of O-GlcNAc on RNA Pol II. O-GlcNAc cycling mutants also show an exaggerated, nutrient-responsive redistribution of promoter-proximal RNA Pol II isoforms and extensive transcriptional deregulation. Our findings suggest a complex interplay between the O-GlcNAc modification at promoters, the kinase-dependent "CTD-code," and co-factors regulating RNA Pol II dynamics. Nutrient-responsive O-GlcNAc cycling may buffer the transcriptional apparatus from dramatic swings in nutrient availability by modulating promoter activity to meet metabolic and developmental needs.
Collapse
Affiliation(s)
- Michael W. Krause
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Dona C. Love
- Laboratory of Cell and Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Salil K. Ghosh
- Laboratory of Cell and Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Peng Wang
- Laboratory of Cell and Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Sijung Yun
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Tetsunari Fukushige
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, United States
| | - John A. Hanover
- Laboratory of Cell and Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, United States
- *Correspondence: John A. Hanover
| |
Collapse
|
96
|
Krick S, Helton ES, Hutcheson SB, Blumhof S, Garth JM, Denson RS, Zaharias RS, Wickham H, Barnes JW. FGF23 Induction of O-Linked N-Acetylglucosamine Regulates IL-6 Secretion in Human Bronchial Epithelial Cells. Front Endocrinol (Lausanne) 2018; 9:708. [PMID: 30538676 PMCID: PMC6277595 DOI: 10.3389/fendo.2018.00708] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Accepted: 11/09/2018] [Indexed: 12/31/2022] Open
Abstract
The hexosamine biosynthetic pathway (HBP) generates the substrate for the O-linked β-N-acetylglucosamine (O-GlcNAc) modification of proteins. The HBP also serves as a stress sensor and has been reported to be involved with nuclear factor of activated T-cells (NFAT) activation, which can contribute to multiple cellular processes including cell metabolism, proliferation, and inflammation. In our previously published report, Fibroblast Growth Factor (FGF) 23, an important endocrine pro-inflammatory mediator, was shown to activate the FGFR4/phospholipase Cγ (PLCγ)/nuclear factor of activated T-cells (NFAT) signaling in chronic inflammatory airway diseases such as cystic fibrosis (CF) and chronic obstructive pulmonary disease (COPD). Here, we demonstrate that FGF23 increased the O-GlcNAc modification of proteins in HBECs. Furthermore, the increase in O-GlcNAc levels by FGF23 stimulation resulted in the downstream activation of NFAT and secretion of interleukin-6 (IL-6). Conversely, inhibition of FGF23 signaling and/or O-GlcNAc transferase (OGT)/O-GlcNAc reversed these effects. Collectively, these data suggest that FGF23 induced IL-6 upregulation and secretion is, at least, partially mediated via the activation of the HBP and O-GlcNAc levels in HBECs. These findings identify a novel link whereby FGF23 and the augmentation of O-GlcNAc levels regulate airway inflammation through NFAT activation and IL-6 upregulation in HBECs. The crosstalk between these signaling pathways may contribute to the pathogenesis of chronic inflammatory airway diseases such as COPD and CF as well as metabolic syndromes, including diabetes.
Collapse
Affiliation(s)
- Stefanie Krick
- Division of Pulmonary, Allergy and Critical Care Medicine, School of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Eric Scott Helton
- Division of Pulmonary, Allergy and Critical Care Medicine, School of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Samuel B. Hutcheson
- Division of Pulmonary, Allergy and Critical Care Medicine, School of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Scott Blumhof
- Division of Pulmonary, Allergy and Critical Care Medicine, School of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Jaleesa M. Garth
- Division of Pulmonary, Allergy and Critical Care Medicine, School of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Rebecca S. Denson
- Division of Pulmonary, Allergy and Critical Care Medicine, School of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
- Hillel Connections Program, Bloom Hillel, University of Alabama, Tuscaloosa, AL, United States
| | - Rennan S. Zaharias
- Division of Pulmonary, Allergy and Critical Care Medicine, School of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Hannah Wickham
- Division of Pulmonary, Allergy and Critical Care Medicine, School of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
- Hillel Connections Program, Bloom Hillel, University of Alabama, Tuscaloosa, AL, United States
| | - Jarrod W. Barnes
- Division of Pulmonary, Allergy and Critical Care Medicine, School of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
- *Correspondence: Jarrod W. Barnes
| |
Collapse
|
97
|
Parween S, Varghese DS, Ardah MT, Prabakaran AD, Mensah-Brown E, Emerald BS, Ansari SA. Higher O-GlcNAc Levels Are Associated with Defects in Progenitor Proliferation and Premature Neuronal Differentiation during in-Vitro Human Embryonic Cortical Neurogenesis. Front Cell Neurosci 2017; 11:415. [PMID: 29311838 PMCID: PMC5742625 DOI: 10.3389/fncel.2017.00415] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2017] [Accepted: 12/12/2017] [Indexed: 11/13/2022] Open
Abstract
The nutrient responsive O-GlcNAcylation is a dynamic post-translational protein modification found on several nucleocytoplasmic proteins. Previous studies have suggested that hyperglycemia induces the levels of total O-GlcNAcylation inside the cells. Hyperglycemia mediated increase in protein O-GlcNAcylation has been shown to be responsible for various pathologies including insulin resistance and Alzheimer's disease. Since maternal hyperglycemia during pregnancy is associated with adverse neurodevelopmental outcomes in the offspring, it is intriguing to identify the effect of increased protein O-GlcNAcylation on embryonic neurogenesis. Herein using human embryonic stem cells (hESCs) as model, we show that increased levels of total O-GlcNAc is associated with decreased neural progenitor proliferation and premature differentiation of cortical neurons, reduced AKT phosphorylation, increased apoptosis and defects in the expression of various regulators of embryonic corticogenesis. As defects in proliferation and differentiation during neurodevelopment are common features of various neurodevelopmental disorders, increased O-GlcNAcylation could be one mechanism responsible for defective neurodevelopmental outcomes in metabolically compromised pregnancies such as diabetes.
Collapse
Affiliation(s)
- Shama Parween
- Department of Biochemistry, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Divya S Varghese
- Department of Biochemistry, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Mustafa T Ardah
- Department of Biochemistry, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Ashok D Prabakaran
- Department of Anatomy, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Eric Mensah-Brown
- Department of Anatomy, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Bright Starling Emerald
- Department of Anatomy, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Suraiya A Ansari
- Department of Biochemistry, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| |
Collapse
|
98
|
Peng C, Zhu Y, Zhang W, Liao Q, Chen Y, Zhao X, Guo Q, Shen P, Zhen B, Qian X, Yang D, Zhang JS, Xiao D, Qin W, Pei H. Regulation of the Hippo-YAP Pathway by Glucose Sensor O-GlcNAcylation. Mol Cell 2017; 68:591-604.e5. [PMID: 29100056 DOI: 10.1016/j.molcel.2017.10.010] [Citation(s) in RCA: 208] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2017] [Revised: 06/07/2017] [Accepted: 10/06/2017] [Indexed: 01/01/2023]
Abstract
The Hippo pathway is crucial in organ size control and tissue homeostasis, with deregulation leading to cancer. An extracellular nutrition signal, such as glucose, regulates the Hippo pathway activation. However, the mechanisms are still not clear. Here, we found that the Hippo pathway is directly regulated by the hexosamine biosynthesis pathway (HBP) in response to metabolic nutrients. Mechanistically, the core component of Hippo pathway (YAP) is O-GlcNAcylated by O-GlcNAc transferase (OGT) at serine 109. YAP O-GlcNAcylation disrupts its interaction with upstream kinase LATS1, prevents its phosphorylation, and activates its transcriptional activity. And this activation is not dependent on AMPK. We also identified OGT as a YAP-regulated gene that forms a feedback loop. Finally, we confirmed that glucose-induced YAP O-GlcNAcylation and activation promoted tumorigenesis. Together, our data establish a molecular mechanism and functional significance of the HBP in directly linking extracellular glucose signal to the Hippo-YAP pathway and tumorigenesis.
Collapse
Affiliation(s)
- Changmin Peng
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Industrial Microbiology Key Lab, College of Biotechnology, Tianjin University of Science and Technology, No 29, 13ST. TEDA, Tianjin 300457, China; State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing 102206, China
| | - Yue Zhu
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing 102206, China; Anhui Medical University, Hefei 230032, China; Beijing Institute of Radiation Medicine, Beijing 102206, China
| | - Wanjun Zhang
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing 102206, China
| | - Qinchao Liao
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Industrial Microbiology Key Lab, College of Biotechnology, Tianjin University of Science and Technology, No 29, 13ST. TEDA, Tianjin 300457, China
| | - Yali Chen
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing 102206, China
| | - Xinyuan Zhao
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing 102206, China
| | - Qiang Guo
- Cell Signaling and Epigenetics Laboratory, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, Zhejiang, China
| | - Pan Shen
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing 102206, China
| | - Bei Zhen
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing 102206, China
| | - Xiaohong Qian
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing 102206, China
| | - Dong Yang
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing 102206, China
| | - Jin-San Zhang
- Cell Signaling and Epigenetics Laboratory, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, Zhejiang, China
| | - Dongguang Xiao
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Industrial Microbiology Key Lab, College of Biotechnology, Tianjin University of Science and Technology, No 29, 13ST. TEDA, Tianjin 300457, China
| | - Weijie Qin
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing 102206, China.
| | - Huadong Pei
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing 102206, China; Department of Biochemistry and Molecular Medicine, George Washington University School of Medicine and Health Science, 2300 Eye Street, N.W., Washington, DC 20037, USA.
| |
Collapse
|
99
|
Rani L, Mallajosyula SS. Phosphorylation versus O-GlcNAcylation: Computational Insights into the Differential Influences of the Two Competitive Post-Translational Modifications. J Phys Chem B 2017; 121:10618-10638. [DOI: 10.1021/acs.jpcb.7b08790] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Lata Rani
- Department of Chemistry, Indian Institute of Technology Gandhinagar, Palaj, Gandhinagar, Gujarat, India - 382355
| | - Sairam S. Mallajosyula
- Department of Chemistry, Indian Institute of Technology Gandhinagar, Palaj, Gandhinagar, Gujarat, India - 382355
| |
Collapse
|
100
|
Ma X, Li H, He Y, Hao J. The emerging link between O-GlcNAcylation and neurological disorders. Cell Mol Life Sci 2017; 74:3667-3686. [PMID: 28534084 PMCID: PMC11107615 DOI: 10.1007/s00018-017-2542-9] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2016] [Revised: 04/23/2017] [Accepted: 05/16/2017] [Indexed: 12/15/2022]
Abstract
O-linked β-N-acetylglucosaminylation (O-GlcNAcylation) is involved in the regulation of many cellular cascades and neurological diseases such as Alzheimer's disease (AD), Parkinson's disease (PD), and stroke. In the brain, the expression of O-GlcNAcylation is notably heightened, as is that of O-linked N-acetylglucosaminyltransferase (OGT) and β-N-acetylglucosaminidase (OGA), the presence of which is prominent in many regions of neurological importance. Most importantly, O-GlcNAcylation is believed to contribute to the normal functioning of neurons; conversely, its dysregulation participates in the pathogenesis of neurological disorders. In neurodegenerative diseases, O-GlcNAcylation of the brain's key proteins, such as tau and amyloid-β, interacts with their phosphorylation, thereby triggering the formation of neurofibrillary tangles and amyloid plaques. An increase of O-GlcNAcylation by pharmacological intervention prevents neuronal loss. Additionally, O-GlcNAcylation is stress sensitive, and its elevation is cytoprotective. Increased O-GlcNAcylation ameliorated brain damage in victims of both trauma-hemorrhage and stroke. In this review, we summarize the current understanding of O-GlcNAcylation's physiological and pathological roles in the nervous system and provide a foundation for development of a therapeutic strategy for neurological disorders.
Collapse
Affiliation(s)
- Xiaofeng Ma
- Department of Neurology and Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - He Li
- Department of Neurology and Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Yating He
- Department of Neurology and Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Junwei Hao
- Department of Neurology and Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, 300052, China.
| |
Collapse
|