51
|
Dal Mas C, Rossato L, Shimizu T, Oliveira EB, da Silva Junior PI, Meis JF, Colombo AL, Hayashi MAF. Effects of the Natural Peptide Crotamine from a South American Rattlesnake on Candida auris, an Emergent Multidrug Antifungal Resistant Human Pathogen. Biomolecules 2019; 9:biom9060205. [PMID: 31141959 PMCID: PMC6627186 DOI: 10.3390/biom9060205] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 04/15/2019] [Accepted: 04/29/2019] [Indexed: 01/25/2023] Open
Abstract
Invasive Candida infections are an important growing medical concern and treatment options are limited to a few antifungal drug classes, with limited efficacies depending on the infecting organism. In this scenario, invasive infections caused by multiresistant Candida auris are emerging in several places around the world as important healthcare-associated infections. As antimicrobial peptides (AMPs) exert their activities primarily through mechanisms involving membrane disruption, they have a lower chance of inducing drug resistance than general chemical antimicrobials. Interestingly, we previously described the potent candicidal effect of a rattlesnake AMP, crotamine, against standard and treatment-resistant clinical isolates, with no hemolytic activity. We evaluated the antifungal susceptibility of several Candida spp. strains cultured from different patients by using the Clinical and Laboratory Standards Institute (CLSI) microdilution assay, and the antifungal activity of native crotamine was evaluated by a microbial growth inhibition microdilution assay. Although all Candida isolates evaluated here showed resistance to amphotericin B and fluconazole, crotamine (40–80 µM) exhibited in vitro activity against most isolates tested. We suggest that this native polypeptide from the South American rattlesnake Crotalus durissus terrificus has potential as a structural model for the generation of a new class of antimicrobial compounds with the power to fight against multiresistant Candida spp.
Collapse
Affiliation(s)
- Caroline Dal Mas
- Departamento de Farmacologia, Escola Paulista de Medicina (EPM), Universidade Federal de São Paulo (UNIFESP), São Paulo SP 04038-032, Brazil.
| | - Luana Rossato
- Departamento de Medicina, Escola Paulista de Medicina (EPM), Universidade Federal de São Paulo (UNIFESP), São Paulo SP 04038-032, Brazil.
| | - Thaís Shimizu
- Departamento de Farmacologia, Escola Paulista de Medicina (EPM), Universidade Federal de São Paulo (UNIFESP), São Paulo SP 04038-032, Brazil.
| | - Eduardo B Oliveira
- Departamento de Bioquímica e Imunologia, Universidade de São Paulo (USP-RP), Ribeirão Preto SP 14049-900, Brazil.
| | - Pedro I da Silva Junior
- Special Laboratory for Applied Toxinology (LETA), Center of Toxins, Immune-Response and Cell Signaling (CeTICS), Butantan Institute, São Paulo SP 05503-900, Brazil.
| | - Jacques F Meis
- Center of Expertise in Mycology Radboudumc/CWZ, Department of Medical Microbiology and Infectious Diseases, Canisius-Wilhelmina Hospital (CWZ), 6532 Nijmegen, The Netherlands.
| | - Arnaldo Lopes Colombo
- Departamento de Medicina, Escola Paulista de Medicina (EPM), Universidade Federal de São Paulo (UNIFESP), São Paulo SP 04038-032, Brazil.
| | - Mirian A F Hayashi
- Departamento de Farmacologia, Escola Paulista de Medicina (EPM), Universidade Federal de São Paulo (UNIFESP), São Paulo SP 04038-032, Brazil.
| |
Collapse
|
52
|
Vipin C, Mujeeburahiman M, Ashwini P, Arun AB, Rekha PD. Anti-biofilm and cytoprotective activities of quercetin against Pseudomonas aeruginosa isolates. Lett Appl Microbiol 2019; 68:464-471. [PMID: 30762887 DOI: 10.1111/lam.13129] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Revised: 01/21/2019] [Accepted: 02/11/2019] [Indexed: 12/31/2022]
Abstract
Increase in infection with multidrug resistant Pseudomonas aeruginosa is a serious global challenge in healthcare. Pseudomonas aeruginosa is capable of causing human infection in various sites and complicates the infection due to its virulence factors. This study was aimed to investigate the effect of quercetin, a dietary flavonoid against the virulence factors of P. aeruginosa and its cell protective effects on epithelial cells. Bactericidal activity, anti-biofilm activity and effect on different virulence factors were carried out using standard methods by using five P. aeruginosa isolates. Cytotoxicity and cell protective effect of quercetin was evaluated by trypan blue dye exclusion assay. All the tested isolates were completely inhibited (100%) by quercetin at a concentration of 500 μg ml-1 . It showed significant (P < 0·05) inhibitory effect on virulence factors including biofilm formation and showed significant protective effect on HEK 293T cells infected with P. aeruginosa strains. This study supports the role of quercetin against P. aeruginosa, by inhibiting virulence factors as well as its cytoprotective activity during bacterial infection either by attenuating the virulence or providing direct protective effect to the host cells. SIGNIFICANCE AND IMPACT OF THE STUDY: The increase in infections caused by opportunistic pathogen Pseudomonas aeruginosa is a serious concern in the health care system. This study describes the beneficial effects of a dietary flavonoid, quercetin against pathogenic P. aeruginosa strains and its protective effect against the P. aeruginosa infection in HEK 293T cells in vitro.
Collapse
Affiliation(s)
- C Vipin
- Yenepoya Research Centre, Yenepoya University, Mangalore, India.,Department of Urology, Yenepoya Medical College Hospital, Yenepoy a University, Mangalore, India
| | - M Mujeeburahiman
- Department of Urology, Yenepoya Medical College Hospital, Yenepoy a University, Mangalore, India
| | - P Ashwini
- Yenepoya Research Centre, Yenepoya University, Mangalore, India
| | - A B Arun
- Yenepoya Research Centre, Yenepoya University, Mangalore, India
| | - P-D Rekha
- Yenepoya Research Centre, Yenepoya University, Mangalore, India
| |
Collapse
|
53
|
Rocha MFG, Sales JA, da Rocha MG, Galdino LM, de Aguiar L, Pereira-Neto WDA, de Aguiar Cordeiro R, Castelo-Branco DDSCM, Sidrim JJC, Brilhante RSN. Antifungal effects of the flavonoids kaempferol and quercetin: a possible alternative for the control of fungal biofilms. BIOFOULING 2019; 35:320-328. [PMID: 31066306 DOI: 10.1080/08927014.2019.1604948] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Revised: 03/20/2019] [Accepted: 04/02/2019] [Indexed: 06/09/2023]
Abstract
This study aimed to determine the minimum inhibitory concentration (MIC) of kaempferol and quercetin against planktonic and biofilm forms of the Candida parapsilosis complex. Initially, nine C. parapsilosis sensu stricto, nine C. orthopsilosis and nine C. metapsilosis strains were used. Planktonic susceptibility to kaempferol and quercetin was assessed. Growing and mature biofilms were then exposed to the flavonoids at MIC or 10xMIC, respectively, and theywere also analyzed by confocal laser scanning microscopy. The MIC ranges were 32-128 µg ml-1 for kaempferol and 0.5-16 µg ml-1 for quercetin. Kaempferol and quercetin decreased (P < 0.05) the metabolic activity and biomass of growing biofilms of the C. parapsilosis complex. As for mature biofilms, the metabolic effects of the flavonoids varied, according to the cryptic species, but kaempferol caused an overall reduction in biofilm biomass. Microscopic analyses showed restructuring of biofilms after flavonoid exposure. These results highlight the potential use of these compounds as sustainable resources for the control of fungal biofilms.
Collapse
Affiliation(s)
- Marcos Fábio Gadelha Rocha
- a Department of Pathology and Legal Medicine , Postgraduate Program in Medical Microbiology, Specialized Medical Mycology Center, Federal University of Ceará , Fortaleza , Ceará , Brazil
- b School of Veterinary Medicine , Postgraduate Program in Veterinary Sciences, State University of Ceará , Fortaleza , Ceará , Brazil
| | - Jamille Alencar Sales
- b School of Veterinary Medicine , Postgraduate Program in Veterinary Sciences, State University of Ceará , Fortaleza , Ceará , Brazil
| | - Maria Gleiciane da Rocha
- b School of Veterinary Medicine , Postgraduate Program in Veterinary Sciences, State University of Ceará , Fortaleza , Ceará , Brazil
| | - Livia Maria Galdino
- a Department of Pathology and Legal Medicine , Postgraduate Program in Medical Microbiology, Specialized Medical Mycology Center, Federal University of Ceará , Fortaleza , Ceará , Brazil
| | - Lara de Aguiar
- b School of Veterinary Medicine , Postgraduate Program in Veterinary Sciences, State University of Ceará , Fortaleza , Ceará , Brazil
| | - Waldemiro de Aquino Pereira-Neto
- a Department of Pathology and Legal Medicine , Postgraduate Program in Medical Microbiology, Specialized Medical Mycology Center, Federal University of Ceará , Fortaleza , Ceará , Brazil
| | - Rossana de Aguiar Cordeiro
- a Department of Pathology and Legal Medicine , Postgraduate Program in Medical Microbiology, Specialized Medical Mycology Center, Federal University of Ceará , Fortaleza , Ceará , Brazil
| | - Débora de Souza Collares Maia Castelo-Branco
- a Department of Pathology and Legal Medicine , Postgraduate Program in Medical Microbiology, Specialized Medical Mycology Center, Federal University of Ceará , Fortaleza , Ceará , Brazil
| | - José Júlio Costa Sidrim
- a Department of Pathology and Legal Medicine , Postgraduate Program in Medical Microbiology, Specialized Medical Mycology Center, Federal University of Ceará , Fortaleza , Ceará , Brazil
| | - Raimunda Sâmia Nogueira Brilhante
- a Department of Pathology and Legal Medicine , Postgraduate Program in Medical Microbiology, Specialized Medical Mycology Center, Federal University of Ceará , Fortaleza , Ceará , Brazil
| |
Collapse
|
54
|
Cheng H, Mou Z, Wang W, Zhang W, Wang Z, Zhang M, Yang E, Sun D. Chitosan-catechin coating as an antifungal and preservable agent for postharvest satsuma oranges. J Food Biochem 2019; 43:e12779. [PMID: 31353588 DOI: 10.1111/jfbc.12779] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Revised: 12/28/2018] [Accepted: 01/07/2019] [Indexed: 12/20/2022]
Abstract
The antifungal properties of chitosan-catechin coating and the effect of fruit preservation were studied. We used catechin to modify chitosan to prepare a coating. The purpose of the study was to use chitosan-catechin coating to prolong the preservation time of satsuma oranges. In vitro experiments, the results showed that the antifungal activity of chitosan-catechin increased with increasing concentration, and the results are also significantly effect of comparing to chitosan and catechin alone (*p < 0.05). In vivo studies, chitosan-catechin coating treatment significantly reduced rot caused by Penicillium Citrinum and Aspergillus niger. The physiological and biochemical indexes of the chitosan-catechin coating treatment group were significantly higher than those of the control group (*p ≤ 0.05). In the toxicity test, mice injected with chitosan-catechin solution showed no significant difference compared to the control group. These results indicate that this chitosan-catechin coating may be useful as an antifungal and preserving agent for satsuma oranges. PRACTICAL APPLICATIONS: The fruit after harvest every year is a large loss due to improper storage, and the preservation of fruits is an effective way to reduce losses. The traditional fruit wrap is not degradable, and the preservation effect is relatively general. The chitosan film is a new type of edible fruit wrap, which has the advantages of being edible and easily degradable, and can effectively reduce environmental pollution. Adding catechin to the preparation process of chitosan film can better improve the fresh-keeping effect and prolong the preservation time of the fruit.
Collapse
Affiliation(s)
- Hao Cheng
- School of Life Sciences, Anhui Agricultural University, Hefei, China
| | - Zhipeng Mou
- School of Life Sciences, Anhui Agricultural University, Hefei, China
| | - Weiyun Wang
- School of Life Sciences, Anhui Agricultural University, Hefei, China
| | - Weiwei Zhang
- School of Life Sciences, Anhui Agricultural University, Hefei, China
| | - Zhiyan Wang
- School of Life Sciences, Anhui Agricultural University, Hefei, China
| | - Mingjun Zhang
- School of Life Sciences, Anhui Agricultural University, Hefei, China
| | - Endong Yang
- School of Life Sciences, Anhui Agricultural University, Hefei, China
| | - Dongdong Sun
- School of Life Sciences, Anhui Agricultural University, Hefei, China
| |
Collapse
|
55
|
Bashandy SAE, El Awdan SA, Mohamed SM, Omara EAA. Allium porrum and Bauhinia Variegata Mitigate Acute Liver Failure and Nephrotoxicity Induced by Thioacetamide in Male Rats. Indian J Clin Biochem 2019; 35:147-157. [PMID: 32226246 DOI: 10.1007/s12291-018-0803-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2018] [Accepted: 11/29/2018] [Indexed: 10/27/2022]
Abstract
The present work has been designed to investigate the hepatoprotective and renoprotective efficiency of alcoholic extract of Allium porrum and Bauhinia variegata leaves in thioacetamide-induced toxicity in adult Wistar rats. Allium porrum leaf extract, Bauhinia variegata leaf extract and their combinations were orally administered for 14 days then TAA (300 mg/kg) i.p. was injected once and the rats were sacrificed 2 days later. Plasma AST, ALT, GGT, total bilirubin, creatinine, urea, uric acid, triglyceride, cholesterol, HDL and LDL were measured. Liver MDA, GSH, CAT, SOD and TNF-α were evaluated. Histological examination was performed. The rats treated with TAA showed a significant increase in AST, ALT, GGT, total bilirubin, creatinine, urea, uric acid, total, triglyceride, cholesterol and HDL while it led to a significant decrease in protein and HDL. The treatment of rats with TAA resulted in a significant decrease of the hepatic GSH, SOD and CAT and a significant elevation of MDA and TNF-α. Allium porrum and Bauhinia variegata extracts alleviated the toxic effects of TAA on the liver and the kidney. In conclusion, treatment with Allium porrum and Bauhinia variegata extracts and their combination reduced deleterious effects of TAA on liver through antioxidant and anti-inflammatory properties.
Collapse
Affiliation(s)
- Samir A E Bashandy
- 1Department of Pharmacology, Medical Division, National Research Centre, 33 El Bohouth St, Dokki, Cairo Egypt
| | - Sally A El Awdan
- 1Department of Pharmacology, Medical Division, National Research Centre, 33 El Bohouth St, Dokki, Cairo Egypt
| | - Samy M Mohamed
- 2Medicinal and Aromatic Plants Research Department, National Research Centre, 33 El Buhoothst, Dokki, Cairo Egypt
| | - Enayat Abdel Aziz Omara
- 1Department of Pharmacology, Medical Division, National Research Centre, 33 El Bohouth St, Dokki, Cairo Egypt
| |
Collapse
|
56
|
Batista de Andrade Neto J, Alexandre Josino MA, Rocha da Silva C, de Sousa Campos R, Aires do Nascimento FBS, Sampaio LS, Gurgel do Amaral Valente Sá L, de Sá Carneiro I, Dias Barroso FD, Juvêncio da Silva L, Lima de Mesquita JR, Cavalcanti BC, Odorico de Moraes M, Nobre Júnior HV. A mechanistic approach to the in-vitro resistance modulating effects of fluoxetine against meticillin resistant Staphylococcus aureus strains. Microb Pathog 2018; 127:335-340. [PMID: 30529514 DOI: 10.1016/j.micpath.2018.11.056] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Revised: 11/30/2018] [Accepted: 11/30/2018] [Indexed: 12/25/2022]
Abstract
Emergence of methicilin resistant Staphylococcus aureus (MRSA) strains is a major cause of infirmity worldwide and has limited our therapeutic options against these pathogens. In this regard, the search for candidates with an antimicrobial activity, with a greater efficacy and a lower toxicity, is necessary. As a result, there is greater need to search for resistance modifying agents which, in combination with existing drugs, will restore the efficacy of these drugs. The antibacterial effect of fluoxetine was determined by a broth microdilution method (the M07-A9 method of the Clinical and Laboratory Standard Institute) and flow cytometry techniques in which the probable mechanism of action of the compound was also assessed. The isolates used in the study belonged to the Laboratory of Bioprospecting of Antimicrobial Molecules (LABIMAN) of the Federal University of Ceará. After 24 h, Methicillin-resistant Sthaphylococcus aureus (MRSA) strains showed fluoxetine MICs equal to 64 μg/mL and 128 μg/mL, respectively. Cytometric analysis showed that treatment with fluoxetine caused alterations to the integrity of the plasma membranes and DNA damage, which led to cell death, probably by apoptosis.
Collapse
Affiliation(s)
- João Batista de Andrade Neto
- School of Pharmacy, Laboratory of Bioprospection in Antimicrobial Molecules (LABIMAN), Federal University of Ceara, Fortaleza, CE, Brazil
| | - Maria Aparecida Alexandre Josino
- School of Pharmacy, Laboratory of Bioprospection in Antimicrobial Molecules (LABIMAN), Federal University of Ceara, Fortaleza, CE, Brazil
| | - Cecília Rocha da Silva
- School of Pharmacy, Laboratory of Bioprospection in Antimicrobial Molecules (LABIMAN), Federal University of Ceara, Fortaleza, CE, Brazil; Christus University Center (UNICHRISTUS), Fortaleza, CE, Brazil
| | - Rosana de Sousa Campos
- School of Pharmacy, Laboratory of Bioprospection in Antimicrobial Molecules (LABIMAN), Federal University of Ceara, Fortaleza, CE, Brazil; Christus University Center (UNICHRISTUS), Fortaleza, CE, Brazil
| | | | - Letícia Serpa Sampaio
- School of Pharmacy, Laboratory of Bioprospection in Antimicrobial Molecules (LABIMAN), Federal University of Ceara, Fortaleza, CE, Brazil
| | - Lívia Gurgel do Amaral Valente Sá
- School of Pharmacy, Laboratory of Bioprospection in Antimicrobial Molecules (LABIMAN), Federal University of Ceara, Fortaleza, CE, Brazil
| | - Igor de Sá Carneiro
- School of Pharmacy, Laboratory of Bioprospection in Antimicrobial Molecules (LABIMAN), Federal University of Ceara, Fortaleza, CE, Brazil
| | - Fátima Daiana Dias Barroso
- School of Pharmacy, Laboratory of Bioprospection in Antimicrobial Molecules (LABIMAN), Federal University of Ceara, Fortaleza, CE, Brazil
| | - Lisandra Juvêncio da Silva
- School of Pharmacy, Laboratory of Bioprospection in Antimicrobial Molecules (LABIMAN), Federal University of Ceara, Fortaleza, CE, Brazil
| | | | - Bruno Coelho Cavalcanti
- Department of Physiology and Pharmacology, Federal University of Ceara, Fortaleza, CE, Brazil
| | | | - Hélio Vitoriano Nobre Júnior
- School of Pharmacy, Laboratory of Bioprospection in Antimicrobial Molecules (LABIMAN), Federal University of Ceara, Fortaleza, CE, Brazil.
| |
Collapse
|
57
|
Wang T, Shao J, Da W, Li Q, Shi G, Wu D, Wang C. Strong Synergism of Palmatine and Fluconazole/Itraconazole Against Planktonic and Biofilm Cells of Candida Species and Efflux-Associated Antifungal Mechanism. Front Microbiol 2018; 9:2892. [PMID: 30559726 PMCID: PMC6287112 DOI: 10.3389/fmicb.2018.02892] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Accepted: 11/12/2018] [Indexed: 01/13/2023] Open
Abstract
Fungal infections caused by Candida albicans and non-albicans Candida [NAC] species are becoming a growing threat in immunodeficient population, people with long-term antibiotic treatment and patients enduring kinds of catheter intervention. The resistance to one or more than one conventional antifungal agents contributes greatly to the widespread propagation of Candida infections. The severity of fungal infection requires the discovery of novel antimycotics and the extensive application of combination strategy. In this study, a group of Candida standard and clinical strains including C. albicans as well as several NAC species were employed to evaluate the antifungal potentials of palmatine (PAL) alone and in combination with fluconazole (FLC)/itraconazole (ITR) by microdilution method, checkerboard assay, gram staining, spot assay, and rhodamine 6G efflux test. Subsequently, the expressions of transporter-related genes, namely CDR1, CDR2, MDR1, and FLU1 for C. albicans, CDR1 and MDR1 for Candida tropicalis and Candida parapsilosis, ABC1 and ABC2 for Candida krusei, CDR1, CDR2, and SNQ2 for Candida glabrata were analyzed by qRT-PCR. The susceptibility test showed that PAL presented strong synergism with FLC and ITR with fractional inhibitory concentration index (FICI) in a range of 0.0049-0.75 for PAL+FLC and 0.0059-0.3125 for PAL+ITR in planktonic cells, 0.125-0.375 for PAL+FLC and 0.0938-0.3125 for PAL+ITR in biofilms. The susceptibility results were also confirmed by gram staining and spot assay. After combinations, a vast quantity of rhodamine 6G could not be pumped out as considerably intracellular red fluorescence was accumulated. Meanwhile, the expressions of efflux-associated genes were evaluated and presented varying degrees of inhibition. These results indicated that PAL was a decent antifungal synergist to promote the antifungal efficacy of azoles (such as FLC and ITR), and the underlying antifungal mechanism might be linked with the inhibition of efflux pumps and the elevation of intracellular drug content.
Collapse
Affiliation(s)
- Tianming Wang
- Laboratory of Biochemistry and Molecular Biology, College of Integrated Chinese and Western Medicine (College of Life Science), Anhui University of Chinese Medicine, Hefei, China
| | - Jing Shao
- Laboratory of Pathogenic Biology and Immunology, College of Integrated Chinese and Western Medicine (College of Life Science), Anhui University of Chinese Medicine, Hefei, China
| | - Wenyue Da
- Laboratory of Pathogenic Biology and Immunology, College of Integrated Chinese and Western Medicine (College of Life Science), Anhui University of Chinese Medicine, Hefei, China
| | - Qianqian Li
- Laboratory of Pathogenic Biology and Immunology, College of Integrated Chinese and Western Medicine (College of Life Science), Anhui University of Chinese Medicine, Hefei, China
| | - Gaoxiang Shi
- Laboratory of Pathogenic Biology and Immunology, College of Integrated Chinese and Western Medicine (College of Life Science), Anhui University of Chinese Medicine, Hefei, China
| | - Daqiang Wu
- Laboratory of Pathogenic Biology and Immunology, College of Integrated Chinese and Western Medicine (College of Life Science), Anhui University of Chinese Medicine, Hefei, China
| | - Changzhong Wang
- Laboratory of Pathogenic Biology and Immunology, College of Integrated Chinese and Western Medicine (College of Life Science), Anhui University of Chinese Medicine, Hefei, China
| |
Collapse
|
58
|
Kim S, Woo ER, Lee DG. Synergistic Antifungal Activity of Isoquercitrin: Apoptosis and Membrane Permeabilization Related to Reactive Oxygen Species inCandida albicans. IUBMB Life 2018; 71:283-292. [DOI: 10.1002/iub.1973] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2018] [Revised: 10/21/2018] [Accepted: 10/29/2018] [Indexed: 12/18/2022]
Affiliation(s)
- Suhyun Kim
- School of Life Sciences, BK21 Plus KNU Creative BioResearch Group; Kyungpook National University; Daegu Korea
| | - Eun-Rhan Woo
- College of Pharmacy; Chosun University; Gwangju Republic of Korea
| | - Dong Gun Lee
- School of Life Sciences, BK21 Plus KNU Creative BioResearch Group; Kyungpook National University; Daegu Korea
| |
Collapse
|
59
|
Bettencourt AP, Castro M, Silva JP, Fernandes F, Coutinho OP, Sousa MJ, Proença MF, Areias FM. Phenolic Imidazole Derivatives with Dual Antioxidant/Antifungal Activity: Synthesis and Structure-Activity Relationship. Med Chem 2018; 15:341-351. [PMID: 30295192 DOI: 10.2174/1573406414666181005143431] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Revised: 07/20/2018] [Accepted: 09/30/2018] [Indexed: 01/07/2023]
Abstract
BACKGROUND Previous publications show that the addition of a phenolic antioxidant to an antifungal agent, considerably enhances the antifungal activity. OBJECTIVE Synthesis of novel compounds combining phenolic units with linear or cyclic nitrogencontaining organic molecules with antioxidant/antifungal activity using methodologies previously developed in the group. METHODS Several N- [1,2-dicyano-2- (arylidenamino) vinyl]-O-alkylformamidoximes 3 were synthesized and cyclized to 4,5-dicyano-N- (N´-alcoxyformimidoyl)-2-arylimidazoles 4 upon reflux in DMF, in the presence of manganese dioxide or to 6-cyano-8-arylpurines 5 when the reagent was refluxed in acetonitrile with an excess of triethylamine. These compounds were tested for their antioxidant activity by cyclic voltammetry, DPPH radical (DPPH•) assay and deoxyribose degradation assay. The minimum inhibitory concentration (MIC) of all compounds was evaluated against two yeast species, Saccharomyces cerevisiae and Candida albicans, and against bacteria Bacillus subtilis (Gram-positive) and Escherichia coli (Gram negative). Their cytotoxicity was evaluated in fibroblasts. RESULTS Among the synthetised compounds, five presented higher antioxidant activity than reference antioxidant Trolox and from these compounds, four presented antifungal activity without toxic effects in fibroblasts and bacteria. CONCLUSION Four novel compounds presented dual antioxidant/antifungal activity at concentrations that are not toxic to bacteria and fibroblasts. The active molecules can be used as an inspiration for further studies in this area.
Collapse
Affiliation(s)
- Ana P Bettencourt
- Department of Chemistry, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| | - Marián Castro
- BioFarma Research Group, Center for Research in Molecular Medicine and Chronic Diseases (CiMUS), Universidade de Santiago de Compostela, Avenida de Barcelona 22, 15782 Santiago de Compostela, Spain
| | - João P Silva
- Department of Biology, Campus de Gualtar, Universidade do Minho, 4710-057 Braga, Portugal
| | - Francisco Fernandes
- Department of Chemistry, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| | - Olga P Coutinho
- Department of Biology, Campus de Gualtar, Universidade do Minho, 4710-057 Braga, Portugal
| | - Maria J Sousa
- CBMA (Centre of Molecular and Environmental Biology), Department of Biology, Campus de Gualtar, Universidade do Minho, 4710-057 Braga, Portugal
| | - Maria Fernanda Proença
- Department of Chemistry, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| | - Filipe M Areias
- Department of Chemistry, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal.,CBMA (Centre of Molecular and Environmental Biology), Department of Biology, Campus de Gualtar, Universidade do Minho, 4710-057 Braga, Portugal.,School of Chemical Sciences and Engineering, Yachay Tech University, Yachay City of Knowledge, 100650-Urcuqui, Ecuador
| |
Collapse
|
60
|
Bettencourt A, Castro M, Silva J, Fernandes F, Coutinho O, Sousa MJ, Proença MF, Areias F. New Nitrogen Compounds Coupled to Phenolic Units with Antioxidant and Antifungal Activities: Synthesis and Structure⁻Activity Relationship. Molecules 2018; 23:E2530. [PMID: 30282927 PMCID: PMC6222605 DOI: 10.3390/molecules23102530] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2018] [Revised: 09/27/2018] [Accepted: 10/02/2018] [Indexed: 12/20/2022] Open
Abstract
A selection of 1-amino-2-arylidenamine-1,2-(dicyano)ethenes 3 was synthesized and cyclized to 2-aryl-4,5-dicyano-1H-imidazoles 4 upon reflux in ethyl acetate/acetonitrile, in the presence of manganese dioxide. These compounds were tested for their antioxidant capacity by cyclic voltammetry, 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical and deoxyribose degradation assays. The minimum inhibitory concentration of all compounds was evaluated against two yeast species, Saccharomyces cerevisiae and Candida albicans. Their toxicity was tested in mammal fibroblasts. Among the synthesised compounds, two presented dual antioxidant/antifungal activity without toxic effects in fibroblasts. The new compounds synthesized in this work are potential biochemical tools and/or therapeutic drugs.
Collapse
Affiliation(s)
- Ana Bettencourt
- Department of Chemistry, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal.
| | - Marián Castro
- Department of Pharmacology, Center for Research in Molecular Medicine and Chronic Diseases (CiMUS), Universidade de Santiago de Compostela, Avenida de Barcelona 22, 15782 Santiago de Compostela, Spain.
| | - João Silva
- Department of Biology, Universidade do Minho, Campus de Gualtar, 4710-057 Braga, Portugal.
| | - Francisco Fernandes
- Department of Chemistry, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal.
| | - Olga Coutinho
- Department of Biology, Universidade do Minho, Campus de Gualtar, 4710-057 Braga, Portugal.
| | - M João Sousa
- Department of Biology, Universidade do Minho, Campus de Gualtar, 4710-057 Braga, Portugal.
| | - M Fernanda Proença
- Department of Chemistry, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal.
| | - Filipe Areias
- Department of Chemistry, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal.
- Department of Biology, Universidade do Minho, Campus de Gualtar, 4710-057 Braga, Portugal.
- School of Chemical Science and Engineering, Yachay Tech University, Yachay City of Knowledge, 100650 Urcuqui, Ecuador.
| |
Collapse
|
61
|
Bezerra CF, Rocha JE, Nascimento Silva MKD, de Freitas TS, de Sousa AK, dos Santos ATL, da Cruz RP, Ferreira MH, da Silva JCP, Machado AJT, Carneiro JNP, Sales DL, Coutinho HDM, Ribeiro PRV, de Brito ES, Morais-Braga MFB. Analysis by UPLC-MS-QTOF and antifungal activity of guava (Psidium guajava L.). Food Chem Toxicol 2018; 119:122-132. [DOI: 10.1016/j.fct.2018.05.021] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Revised: 05/02/2018] [Accepted: 05/07/2018] [Indexed: 12/11/2022]
|
62
|
Oliveira DM, Silva TFR, Martins MM, de Morais SAL, Chang R, de Aquino FJT, da Silva CV, Teixeira TL, Martins CHG, Moraes TS, Cunha LCS, Pivatto M, de Oliveira A. Antifungal and cytotoxicity activities of Banisteriopsis argyrophylla leaves. J Pharm Pharmacol 2018; 70:1541-1552. [PMID: 30136729 DOI: 10.1111/jphp.12996] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Accepted: 07/21/2018] [Indexed: 12/29/2022]
Abstract
OBJECTIVES This work aimed to evaluate the antifungal and cytotoxic activity of the EtOH extract and fractions of Banisteriopsis argyrophylla leaves, and to perform the identification of these bioactive metabolites. METHODS The EtOAc fraction (EAF) obtained from the ethanolic extract of B. argyrophylla leaves showed better antifungal potential against Candida spp. In this fraction, ten flavonoids have been identified by UHPLC-ESI-MSn . Then, EAF was submitted to column chromatography to give four new fractions (A1-A4). The cytotoxicity was determined against Vero cells. KEY FINDINGS The EAF showed better antifungal potential against Candida spp. with minimum inhibitory concentrations (MICs) between 31.25 and 93.75 μg/ml. The (-)-catechin (fraction A1) showed a MIC of 2.83 μg/ml against Candida glabrata. Fractions A2, A3 and A4 were rich in quercetins and kaempferols and showed good inhibitory concentrations (5.86-46.87 μg/ml) against C. albicans, C. glabrata and C. tropicalis. CONCLUSIONS The EtOH extract, fractions and the isolated (-)-catechin showed lower toxicity to Vero cells than cisplatin, used as a positive control. Thus, the leaves of B. argyrophylla are a promising source of antifungal agents.
Collapse
Affiliation(s)
- Daiane M Oliveira
- Nucleus of Research in Natural Products (NuPPeN), Institute of Chemistry, Federal University of Uberlândia, Uberlândia, Brazil
| | - Tomás F R Silva
- Nucleus of Research in Natural Products (NuPPeN), Institute of Chemistry, Federal University of Uberlândia, Uberlândia, Brazil
| | - Mário M Martins
- Nucleus of Research in Natural Products (NuPPeN), Institute of Chemistry, Federal University of Uberlândia, Uberlândia, Brazil
| | - Sérgio A L de Morais
- Nucleus of Research in Natural Products (NuPPeN), Institute of Chemistry, Federal University of Uberlândia, Uberlândia, Brazil
| | - Roberto Chang
- Nucleus of Research in Natural Products (NuPPeN), Institute of Chemistry, Federal University of Uberlândia, Uberlândia, Brazil
| | - Francisco J T de Aquino
- Nucleus of Research in Natural Products (NuPPeN), Institute of Chemistry, Federal University of Uberlândia, Uberlândia, Brazil
| | - Claudio V da Silva
- Trypanosomatids Laboratory (LATRI), Institute of Biomedical Sciences, Federal University of Uberlândia, Uberlândia, Brazil
| | - Thaise L Teixeira
- Trypanosomatids Laboratory (LATRI), Institute of Biomedical Sciences, Federal University of Uberlândia, Uberlândia, Brazil
| | - Carlos H G Martins
- Nucleus of Research in Sciences and Technology, Laboratory of Research in Applied Microbiology (LaPeMA), University of Franca, Franca, Brazil
| | - Thaís S Moraes
- Nucleus of Research in Sciences and Technology, Laboratory of Research in Applied Microbiology (LaPeMA), University of Franca, Franca, Brazil
| | - Luís C S Cunha
- Bioprospecting Center for Natural Products (NuBiProN), Chemistry Department, Federal Institute of Triângulo Mineiro, Uberaba, Brazil
| | - Marcos Pivatto
- Nucleus of Research in Natural Products (NuPPeN), Institute of Chemistry, Federal University of Uberlândia, Uberlândia, Brazil
| | - Alberto de Oliveira
- Nucleus of Research in Natural Products (NuPPeN), Institute of Chemistry, Federal University of Uberlândia, Uberlândia, Brazil
| |
Collapse
|
63
|
Shin B, Park W. Zoonotic Diseases and Phytochemical Medicines for Microbial Infections in Veterinary Science: Current State and Future Perspective. Front Vet Sci 2018; 5:166. [PMID: 30140679 PMCID: PMC6095004 DOI: 10.3389/fvets.2018.00166] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Accepted: 07/02/2018] [Indexed: 12/14/2022] Open
Abstract
Diseases caused by bacterial infections in small-scale and industrial livestock are becoming serious global health concern in veterinary science. Zoonotic bacteria, including Staphylococcus, Campylobacter, and Bartonella species, that infect animals and humans cause various illnesses, such as fever, diarrhea, and related complications. Bacterial diseases in animals can be treated with various classes of antibiotics, including fluoroquinolones, beta-lactams, aminoglycosides, and macrolides. However, the overuse and misuse of antibiotics have led to drug resistance in infectious agents, e.g., methicillin-resistant Staphylococcus; this hampers the treatment of infections in livestock, and such problems are increasing worldwide. Dietary phytochemicals and herbal medicines are useful and viable alternatives to pharmaceuticals because they are economical, effective, non-resistance-forming, renewable, and environmentally friendly. They are small molecules with high structural diversity that cause selective stress to or stimulation of resident microbiota, consequently causing an abundance of such microorganisms; thus, they can be used in preventing various diseases, ranging from metabolic and inflammatory diseases to cancer. In addition, the antioxidant effects of phytochemicals prevent substantial losses in the livestock industry by increasing animal fertility and preventing diseases. Potentially effective plant extracts could be used in combination with antibiotics to decrease the required dose of antibiotics and increase their effectiveness. This strategy can help avoid the side effects of chemical antimicrobials and allow the effective use of phytochemicals for treating diseases. Furthermore, phytochemicals are considered as potential alternatives to antibiotics because of their economical, non-resistance-forming and environmentally friendly properties. Flavonoids such as resveratrol, epigallocatechin gallate, and phenols such as galangin, puerarin, and ursolic acid are proven to be effective as antimicrobial agents. This review provides invaluable information about the types of microbial infections in animals and the current knowledge on phytotherapeutic agents classified by their mode of actions. It also provides insights into potential strategies for effectively treating animal infections using phytochemicals.
Collapse
Affiliation(s)
| | - Woojun Park
- Laboratory of Molecular Environmental Microbiology, Department of Environmental Sciences and Ecological Engineering, Korea University, Seoul, South Korea
| |
Collapse
|
64
|
Green Tea Catechins: Their Use in Treating and Preventing Infectious Diseases. BIOMED RESEARCH INTERNATIONAL 2018; 2018:9105261. [PMID: 30105263 PMCID: PMC6076941 DOI: 10.1155/2018/9105261] [Citation(s) in RCA: 161] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Accepted: 06/10/2018] [Indexed: 12/19/2022]
Abstract
Green tea is one of the most popular drinks consumed worldwide. Produced mainly in Asian countries from the leaves of the Camellia sinensis plant, the potential health benefits have been widely studied. Recently, researchers have studied the ability of green tea to eradicate infectious agents and the ability to actually prevent infections. The important components in green tea that show antimicrobial properties are the catechins. The four main catechins that occur in green tea are (-)-epicatechin (EC), (-)-epicatechin-3-gallate (ECG), (-)-epigallocatechin (EGC), and (-)-epigallocatechin-3-gallate (EGCG). Of these catechins, EGCG and EGC are found in the highest amounts in green tea and have been the subject of most of the studies. These catechins have been shown to demonstrate a variety of antimicrobial properties, both to organisms affected and in mechanisms used. Consumption of green tea has been shown to distribute these compounds and/or their metabolites throughout the body, which allows for not only the possibility of treatment of infections but also the prevention of infections.
Collapse
|
65
|
Bard GCV, Taveira GB, Souza TAM, Mello ÉO, Souza SB, Ramos AC, Carvalho AO, Pereira LS, Zottich U, Rodrigues R, Gomes VM. Coffea canephora Peptides in Combinatorial Treatment with Fluconazole: Antimicrobial Activity against Phytopathogenic Fungus. Int J Microbiol 2018; 2018:8546470. [PMID: 30123275 PMCID: PMC6079426 DOI: 10.1155/2018/8546470] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Revised: 05/09/2018] [Accepted: 05/26/2018] [Indexed: 01/11/2023] Open
Abstract
The objective of the present study was to evaluate the antimicrobial activity of the Cc-LTP2 and Cc-GRP peptides isolated from Coffea canephora seeds and their possible synergistic activity with the azole drug fluconazole and characterize their mechanisms of action on cells of pathogenic fungi. Cc-LTP2 and Cc-GRP alone or in combination with 20 µg/mL of fluconazole were evaluated for their antimicrobial activity on the fungus Fusarium solani, and the effects of these peptides on the permeability of membranes and the induction of oxidative stress were determined. Our results show that these peptides at a concentration of 400 µg/mL combined with 20 µg/mL of fluconazole were able to inhibit the growth of the tested fungi, promote changes in their growth pattern, permeabilize the membrane, and induce reactive oxygen species (ROS). Some of these results were also observed with the peptides alone or with fluconazole alone, suggesting that the peptides act synergistically, promoting the potentiation of antimicrobial action. In this study, it was shown that Cc-LTP2 and Cc-GRP in combination with fluconazole were able to inhibit the growth of the fungus F. solani, to promote permeabilization of its membrane, and to induce the production of ROS, suggesting a combinatorial activity between the peptides and fluconazole.
Collapse
Affiliation(s)
- Gabriela C. V. Bard
- Centro de Biociências e Biotecnologia, Universidade Estadual do Norte Fluminense, 28013-602 Campos dos Goytacazes, RJ, Brazil
| | - Gabriel B. Taveira
- Centro de Biociências e Biotecnologia, Universidade Estadual do Norte Fluminense, 28013-602 Campos dos Goytacazes, RJ, Brazil
| | - Thaynã A. M. Souza
- Centro de Biociências e Biotecnologia, Universidade Estadual do Norte Fluminense, 28013-602 Campos dos Goytacazes, RJ, Brazil
| | - Érica O. Mello
- Centro de Biociências e Biotecnologia, Universidade Estadual do Norte Fluminense, 28013-602 Campos dos Goytacazes, RJ, Brazil
| | - Sávio B. Souza
- Centro de Biociências e Biotecnologia, Universidade Estadual do Norte Fluminense, 28013-602 Campos dos Goytacazes, RJ, Brazil
| | - Alessandro C. Ramos
- Centro de Biociências e Biotecnologia, Universidade Estadual do Norte Fluminense, 28013-602 Campos dos Goytacazes, RJ, Brazil
| | - André O. Carvalho
- Centro de Biociências e Biotecnologia, Universidade Estadual do Norte Fluminense, 28013-602 Campos dos Goytacazes, RJ, Brazil
| | - Lídia S. Pereira
- Centro de Ciências e Tecnologias Agropecuárias, Universidade Estadual do Norte Fluminense, 28013-602 Campos dos Goytacazes, RJ, Brazil
| | - Umberto Zottich
- Centro de Ciências da Saúde, Universidade Federal de Roraima, Boa Vista, RR, Brazil
| | - Rosana Rodrigues
- Centro de Ciências e Tecnologias Agropecuárias, Universidade Estadual do Norte Fluminense, 28013-602 Campos dos Goytacazes, RJ, Brazil
| | - Valdirene M. Gomes
- Centro de Biociências e Biotecnologia, Universidade Estadual do Norte Fluminense, 28013-602 Campos dos Goytacazes, RJ, Brazil
| |
Collapse
|
66
|
Carmona-Gutierrez D, Bauer MA, Zimmermann A, Aguilera A, Austriaco N, Ayscough K, Balzan R, Bar-Nun S, Barrientos A, Belenky P, Blondel M, Braun RJ, Breitenbach M, Burhans WC, Büttner S, Cavalieri D, Chang M, Cooper KF, Côrte-Real M, Costa V, Cullin C, Dawes I, Dengjel J, Dickman MB, Eisenberg T, Fahrenkrog B, Fasel N, Fröhlich KU, Gargouri A, Giannattasio S, Goffrini P, Gourlay CW, Grant CM, Greenwood MT, Guaragnella N, Heger T, Heinisch J, Herker E, Herrmann JM, Hofer S, Jiménez-Ruiz A, Jungwirth H, Kainz K, Kontoyiannis DP, Ludovico P, Manon S, Martegani E, Mazzoni C, Megeney LA, Meisinger C, Nielsen J, Nyström T, Osiewacz HD, Outeiro TF, Park HO, Pendl T, Petranovic D, Picot S, Polčic P, Powers T, Ramsdale M, Rinnerthaler M, Rockenfeller P, Ruckenstuhl C, Schaffrath R, Segovia M, Severin FF, Sharon A, Sigrist SJ, Sommer-Ruck C, Sousa MJ, Thevelein JM, Thevissen K, Titorenko V, Toledano MB, Tuite M, Vögtle FN, Westermann B, Winderickx J, Wissing S, Wölfl S, Zhang ZJ, Zhao RY, Zhou B, Galluzzi L, Kroemer G, Madeo F. Guidelines and recommendations on yeast cell death nomenclature. MICROBIAL CELL (GRAZ, AUSTRIA) 2018; 5:4-31. [PMID: 29354647 PMCID: PMC5772036 DOI: 10.15698/mic2018.01.607] [Citation(s) in RCA: 130] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Accepted: 12/29/2017] [Indexed: 12/18/2022]
Abstract
Elucidating the biology of yeast in its full complexity has major implications for science, medicine and industry. One of the most critical processes determining yeast life and physiology is cel-lular demise. However, the investigation of yeast cell death is a relatively young field, and a widely accepted set of concepts and terms is still missing. Here, we propose unified criteria for the defi-nition of accidental, regulated, and programmed forms of cell death in yeast based on a series of morphological and biochemical criteria. Specifically, we provide consensus guidelines on the differ-ential definition of terms including apoptosis, regulated necrosis, and autophagic cell death, as we refer to additional cell death rou-tines that are relevant for the biology of (at least some species of) yeast. As this area of investigation advances rapidly, changes and extensions to this set of recommendations will be implemented in the years to come. Nonetheless, we strongly encourage the au-thors, reviewers and editors of scientific articles to adopt these collective standards in order to establish an accurate framework for yeast cell death research and, ultimately, to accelerate the pro-gress of this vibrant field of research.
Collapse
Affiliation(s)
| | - Maria Anna Bauer
- Institute of Molecular Biosciences, NAWI Graz, University of Graz, Graz, Austria
| | - Andreas Zimmermann
- Institute of Molecular Biosciences, NAWI Graz, University of Graz, Graz, Austria
| | - Andrés Aguilera
- Centro Andaluz de Biología, Molecular y Medicina Regenerativa-CABIMER, Universidad de Sevilla, Sevilla, Spain
| | | | - Kathryn Ayscough
- Department of Biomedical Science, University of Sheffield, Sheffield, United Kingdom
| | - Rena Balzan
- Department of Physiology and Biochemistry, University of Malta, Msida, Malta
| | - Shoshana Bar-Nun
- Department of Biochemistry and Molecular Biology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Antonio Barrientos
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, USA
- Department of Neurology, University of Miami Miller School of Medi-cine, Miami, USA
| | - Peter Belenky
- Department of Molecular Microbiology and Immunology, Brown University, Providence, USA
| | - Marc Blondel
- Institut National de la Santé et de la Recherche Médicale UMR1078, Université de Bretagne Occidentale, Etablissement Français du Sang Bretagne, CHRU Brest, Hôpital Morvan, Laboratoire de Génétique Moléculaire, Brest, France
| | - Ralf J. Braun
- Institute of Cell Biology, University of Bayreuth, Bayreuth, Germany
| | | | - William C. Burhans
- Department of Molecular and Cellular Biology, Roswell Park Cancer Institute, Buffalo, NY, USA
| | - Sabrina Büttner
- Institute of Molecular Biosciences, NAWI Graz, University of Graz, Graz, Austria
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | | | - Michael Chang
- European Research Institute for the Biology of Ageing, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Katrina F. Cooper
- Dept. Molecular Biology, Graduate School of Biomedical Sciences, Rowan University, Stratford, USA
| | - Manuela Côrte-Real
- Center of Molecular and Environmental Biology, Department of Biology, University of Minho, Braga, Portugal
| | - Vítor Costa
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal
- Departamento de Biologia Molecular, Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal
| | | | - Ian Dawes
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, Australia
| | - Jörn Dengjel
- Department of Biology, University of Fribourg, Fribourg, Switzerland
| | - Martin B. Dickman
- Institute for Plant Genomics and Biotechnology, Texas A&M University, Texas, USA
| | - Tobias Eisenberg
- Institute of Molecular Biosciences, NAWI Graz, University of Graz, Graz, Austria
- BioTechMed Graz, Graz, Austria
| | - Birthe Fahrenkrog
- Laboratory Biology of the Nucleus, Institute for Molecular Biology and Medicine, Université Libre de Bruxelles, Charleroi, Belgium
| | - Nicolas Fasel
- Department of Biochemistry, University of Lausanne, Lausanne, Switzerland
| | - Kai-Uwe Fröhlich
- Institute of Molecular Biosciences, NAWI Graz, University of Graz, Graz, Austria
| | - Ali Gargouri
- Laboratoire de Biotechnologie Moléculaire des Eucaryotes, Center de Biotechnologie de Sfax, Sfax, Tunisia
| | - Sergio Giannattasio
- Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies, National Research Council, Bari, Italy
| | - Paola Goffrini
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parma, Italy
| | - Campbell W. Gourlay
- Kent Fungal Group, School of Biosciences, University of Kent, Canterbury, United Kingdom
| | - Chris M. Grant
- Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom
| | - Michael T. Greenwood
- Department of Chemistry and Chemical Engineering, Royal Military College, Kingston, Ontario, Canada
| | - Nicoletta Guaragnella
- Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies, National Research Council, Bari, Italy
| | | | - Jürgen Heinisch
- Department of Biology and Chemistry, University of Osnabrück, Osnabrück, Germany
| | - Eva Herker
- Heinrich Pette Institute, Leibniz Institute for Experimental Virology, Hamburg, Germany
| | | | - Sebastian Hofer
- Institute of Molecular Biosciences, NAWI Graz, University of Graz, Graz, Austria
| | | | - Helmut Jungwirth
- Institute of Molecular Biosciences, NAWI Graz, University of Graz, Graz, Austria
| | - Katharina Kainz
- Institute of Molecular Biosciences, NAWI Graz, University of Graz, Graz, Austria
| | - Dimitrios P. Kontoyiannis
- Division of Internal Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Paula Ludovico
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, Minho, Portugal
- ICVS/3B’s - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Stéphen Manon
- Institut de Biochimie et de Génétique Cellulaires, UMR5095, CNRS & Université de Bordeaux, Bordeaux, France
| | - Enzo Martegani
- Department of Biotechnolgy and Biosciences, University of Milano-Bicocca, Milano, Italy
| | - Cristina Mazzoni
- Instituto Pasteur-Fondazione Cenci Bolognetti - Department of Biology and Biotechnology "C. Darwin", La Sapienza University of Rome, Rome, Italy
| | - Lynn A. Megeney
- Sprott Center for Stem Cell Research, Ottawa Hospital Research Institute, The Ottawa Hospital, Ottawa, Canada
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Canada
- Department of Medicine, Division of Cardiology, University of Ottawa, Ottawa, Canada
| | - Chris Meisinger
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Jens Nielsen
- Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden
- Novo Nordisk Foundation Center for Biosustainability, Chalmers University of Technology, Gothenburg, Sweden
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, DK2800 Lyngby, Denmark
| | - Thomas Nyström
- Institute for Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Heinz D. Osiewacz
- Institute for Molecular Biosciences, Goethe University, Frankfurt am Main, Germany
| | - Tiago F. Outeiro
- Department of Experimental Neurodegeneration, Center for Nanoscale Microscopy and Molecular Physiology of the Brain, Center for Biostructural Imaging of Neurodegeneration, University Medical Center Göttingen, Göttingen, Germany
- Max Planck Institute for Experimental Medicine, Göttingen, Germany
- Institute of Neuroscience, The Medical School, Newcastle University, Framlington Place, Newcastle Upon Tyne, NE2 4HH, United Kingdom
- CEDOC, Chronic Diseases Research Centre, NOVA Medical School, Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Lisboa, Portugal
| | - Hay-Oak Park
- Department of Molecular Genetics, The Ohio State University, Columbus, OH, USA
| | - Tobias Pendl
- Institute of Molecular Biosciences, NAWI Graz, University of Graz, Graz, Austria
| | - Dina Petranovic
- Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden
- Novo Nordisk Foundation Center for Biosustainability, Chalmers University of Technology, Gothenburg, Sweden
| | - Stephane Picot
- Malaria Research Unit, SMITh, ICBMS, UMR 5246 CNRS-INSA-CPE-University Lyon, Lyon, France
- Institut of Parasitology and Medical Mycology, Hospices Civils de Lyon, Lyon, France
| | - Peter Polčic
- Department of Biochemistry, Faculty of Natural Sciences, Comenius University in Bratislava, Bratislava, Slovak Republic
| | - Ted Powers
- Department of Molecular and Cellular Biology, College of Biological Sciences, UC Davis, Davis, California, USA
| | - Mark Ramsdale
- Biosciences, University of Exeter, Exeter, United Kingdom
| | - Mark Rinnerthaler
- Department of Cell Biology and Physiology, Division of Genetics, University of Salzburg, Salzburg, Austria
| | - Patrick Rockenfeller
- Institute of Molecular Biosciences, NAWI Graz, University of Graz, Graz, Austria
- Kent Fungal Group, School of Biosciences, University of Kent, Canterbury, United Kingdom
| | | | - Raffael Schaffrath
- Institute of Biology, Division of Microbiology, University of Kassel, Kassel, Germany
| | - Maria Segovia
- Department of Ecology, Faculty of Sciences, University of Malaga, Malaga, Spain
| | - Fedor F. Severin
- A.N. Belozersky Institute of physico-chemical biology, Moscow State University, Moscow, Russia
| | - Amir Sharon
- School of Plant Sciences and Food Security, Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Stephan J. Sigrist
- Institute for Biology/Genetics, Freie Universität Berlin, Berlin, Germany
| | - Cornelia Sommer-Ruck
- Institute of Molecular Biosciences, NAWI Graz, University of Graz, Graz, Austria
| | - Maria João Sousa
- Center of Molecular and Environmental Biology, Department of Biology, University of Minho, Braga, Portugal
| | - Johan M. Thevelein
- Laboratory of Molecular Cell Biology, Institute of Botany and Microbiology, KU Leuven, Leuven, Belgium
- Center for Microbiology, VIB, Leuven-Heverlee, Belgium
| | - Karin Thevissen
- Centre of Microbial and Plant Genetics, KU Leuven, Leuven, Belgium
| | | | - Michel B. Toledano
- Institute for Integrative Biology of the Cell (I2BC), SBIGEM, CEA-Saclay, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Mick Tuite
- Kent Fungal Group, School of Biosciences, University of Kent, Canterbury, United Kingdom
| | - F.-Nora Vögtle
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | | | - Joris Winderickx
- Department of Biology, Functional Biology, KU Leuven, Leuven-Heverlee, Belgium
| | | | - Stefan Wölfl
- Institute of Pharmacy and Molecu-lar Biotechnology, Heidelberg University, Heidelberg, Germany
| | - Zhaojie J. Zhang
- Department of Zoology and Physiology, University of Wyoming, Laramie, USA
| | - Richard Y. Zhao
- Department of Pathology, University of Maryland School of Medicine, Baltimore, USA
| | - Bing Zhou
- School of Life Sciences, Tsinghua University, Beijing, China
| | - Lorenzo Galluzzi
- Department of Radiation Oncology, Weill Cornell Medical College, New York, NY, USA
- Sandra and Edward Meyer Cancer Center, New York, NY, USA
- Université Paris Descartes/Paris V, Paris, France
| | - Guido Kroemer
- Université Paris Descartes/Paris V, Paris, France
- Equipe 11 Labellisée Ligue Contre le Cancer, Centre de Recherche des Cordeliers, Paris, France
- Cell Biology and Metabolomics Platforms, Gustave Roussy Comprehensive Cancer Center, Villejuif, France
- INSERM, U1138, Paris, France
- Université Pierre et Marie Curie/Paris VI, Paris, France
- Pôle de Biologie, Hôpital Européen Georges Pompidou, Paris, France
- Institute, Department of Women’s and Children’s Health, Karolinska University Hospital, Stockholm, Sweden
| | - Frank Madeo
- Institute of Molecular Biosciences, NAWI Graz, University of Graz, Graz, Austria
- BioTechMed Graz, Graz, Austria
| |
Collapse
|
67
|
Cavalcanti Filho JRN, Silva TF, Nobre WQ, Oliveira de Souza LI, Silva e Silva Figueiredo CS, de Figueiredo RCBQ, de Gusmão NB, Silva MV, Nascimento da Silva LC, Correia MTDS. Antimicrobial activity of Buchenavia tetraphylla against Candida albicans strains isolated from vaginal secretions. PHARMACEUTICAL BIOLOGY 2017; 55:1521-1527. [PMID: 28376640 PMCID: PMC7011787 DOI: 10.1080/13880209.2017.1304427] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Revised: 01/25/2017] [Accepted: 03/03/2017] [Indexed: 06/07/2023]
Abstract
CONTEXT Buchenavia tetraphylla (Aubl.) RA Howard (Combretaceae: Combretoideae) is an ethnomedicinal plant with reported antifungal action. OBJECTIVE This study evaluates the antimicrobial activity of B. tetraphylla leaf extracts against clinical isolates of Candida albicans. The morphological alterations, combinatory effects with fluconazole and the cytotoxicity of the active extract were analyzed. MATERIALS AND METHODS Extracts were obtained using different solvents (hexane: BTHE; chloroform: BTCE; ethyl acetate: BTEE; and methanol: BTME). Antimicrobial activity was determined by the broth microdilution method using nine strains of C. albicans isolated from vaginal secretions and one standard strain (UFPEDA 1007). RESULTS All extracts showed anti-C. albicans activity, including against the azole-resistant strains. The MIC values ranged from 156 to 2500 μg/mL for the BTHE; 156 to 1250 μg/mL for the BTCE; 625 to 1250 μg/mL for the BTME and 625 μg/mL to 2500 μg/mL for the BTEE. BTME showed the best anti-C. albicans activity. This extract demonstrated additive/synergistic interactions with fluconazole. Scanning electron microscopy analysis suggested that the BTME interferes with the cell division and development of C. albicans. BTME showed IC50 values of 981 and 3935 μg/mL, against J774 macrophages and human erythrocytes, respectively. This extract also enhanced the production of nitric oxide by J774 macrophages. DISCUSSION AND CONCLUSION Buchenavia tetraphylla methanolic extract (BTME) is a great source of antimicrobial compounds that are able to enhance the action of fluconazole against different C. albicans strains; this action seems related to inhibition of cell division.
Collapse
Affiliation(s)
| | - Tiago Fonseca Silva
- Departamento de Bioquímica, Universidade Federal de Pernambuco, Recife, Brasil
- Curso de Farmácia, Faculdade Pernambucana de Saúde, Recife, Brasil
| | | | | | | | | | | | - Márcia Vanusa Silva
- Departamento de Bioquímica, Universidade Federal de Pernambuco, Recife, Brasil
| | - Luís Cláudio Nascimento da Silva
- Curso de Farmácia, Faculdade Pernambucana de Saúde, Recife, Brasil
- Programa de Pós-graduação, Universidade CEUMA, Sao Luis, Brasil
| | | |
Collapse
|
68
|
Malongane F, McGaw LJ, Mudau FN. The synergistic potential of various teas, herbs and therapeutic drugs in health improvement: a review. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2017; 97:4679-4689. [PMID: 28585285 DOI: 10.1002/jsfa.8472] [Citation(s) in RCA: 77] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Revised: 05/29/2017] [Accepted: 05/31/2017] [Indexed: 06/07/2023]
Abstract
Tea is one of the most widely consumed non-alcoholic beverages in the world next to water. It is classified as Camellia sinensis and non-Camellia sinensis (herbal teas). The common bioactive compounds found mainly in green teas are flavan-3-ols (catechins) (also called flavanols), proanthocyanidins (tannins) and flavonols. Black tea contains theaflavins and thearubigins and white tea contains l-theanine and gamma-aminobutyric acid (GABA), while herbal teas contain diverse polyphenols. Phytochemicals in tea exhibit antimicrobial, anti-diabetic and anti-cancer activities that are perceived to be helpful in managing chronic diseases linked to lifestyle. Many of these phytochemicals are reported to be biologically active when combined. Knowledge of the synergistic interactions of tea with other teas or herbs in terms of biological activities will be of benefit for therapeutic enhancement. There is evidence that various types of teas act synergistically in exhibiting health benefits to humans, improving consumer acceptance and economic value. Similar observations have been made when teas and herbs or medicinal drugs were combined. The aim of this review is to highlight potential beneficial synergies between combinations of different types of teas, tea and herbs, and tea and medicinal drugs. © 2017 Society of Chemical Industry.
Collapse
Affiliation(s)
- Florence Malongane
- Department Life and Consumer Sciences, College of Agriculture and Environmental Sciences, University of South Africa, Florida, South Africa
| | - Lyndy J McGaw
- Phytomedicine Programme, Department of Paraclinical Sciences, University of Pretoria, Pretoria, South Africa
| | - Fhatuwani N Mudau
- Department of Agriculture and Animal Health, College of Agriculture and Environmental Sciences, University of South Africa, Florida, South Africa
| |
Collapse
|
69
|
Mail MH, Himratul-Aznita WH, Musa MY. Anti-hyphal properties of potential bioactive compounds for oral rinse in suppression of Candidagrowth. BIOTECHNOL BIOTEC EQ 2017. [DOI: 10.1080/13102818.2017.1348255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
Affiliation(s)
- Mohd Hafiz Mail
- Department of Oral and Craniofacial Sciences, Faculty of Dentistry, University of Malaya, Kuala Lumpur, Malaysia
| | - Wan Harun Himratul-Aznita
- Department of Oral and Craniofacial Sciences, Faculty of Dentistry, University of Malaya, Kuala Lumpur, Malaysia
| | - Md Yusoff Musa
- Institute of Biological Sciences, Faculty of Science, University of Malaya, Kuala Lumpur, Malaysia
| |
Collapse
|
70
|
Chandar B, Poovitha S, Ilango K, MohanKumar R, Parani M. Inhibition of New Delhi Metallo-β-Lactamase 1 (NDM-1) Producing Escherichia coli IR-6 by Selected Plant Extracts and Their Synergistic Actions with Antibiotics. Front Microbiol 2017; 8:1580. [PMID: 28878746 PMCID: PMC5572277 DOI: 10.3389/fmicb.2017.01580] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Accepted: 08/03/2017] [Indexed: 11/13/2022] Open
Abstract
Improper use of antibiotics has led to a great concern in the development of pathogenic microbial resistance. New Delhi metallo-β-lactamase 1 (NDM-1) producing bacteria are resistant to most of the β-lactam antibiotics, and so far, no new compounds have been clinically tested against these bacteria. In this study, ethanol extracts from the leaves of 240 medicinal plant species were screened for antibacterial activity against an NDM-1 Escherichia coli strain. The extracts that showed antibacterial activity were then tested for minimum inhibitory concentrations (MICs) and zones of inhibition. The extract from Combretum albidum G. Don, Hibiscus acetosella Welw. ex Hiern, Hibiscus cannabinus L., Hibiscus furcatus Willd., Punica granatum L., and Tamarindus indica L. showed bactericidal activity between 5 and 15 mg/ml and the MIC was between 2.56 and 5.12 mg/ml. All six plant extracts inhibited activity of the NDM-1 enzyme in vitro, and the IC50 value ranged between 0.50 and 1.2 ng/μl. Disruption of bacterial cell wall integrity by the plant extracts was clearly visible with scanning electron microscopy. Increases in membrane permeability caused 79.4–89.7% bacterial cell deaths as investigated by fluorescence-activated cell sorting. All the plant extracts showed synergistic effects when combined with colistin [fractional inhibitory concentration (ΣFIC) = 0.125–0.375], meropenem (ΣFIC = 0.09–0.313), and tetracycline (ΣFIC = 0.125–0.313). Thus, the plant extracts can be fractionated for the identification of active compounds, which could be used as new antibacterial compounds for the development of drugs against NDM-1 E. coli in addition to their use in combination therapy.
Collapse
Affiliation(s)
- Brinda Chandar
- Genomics Laboratory, Department of Genetic Engineering, School of Bioengineering, SRM UniversityKattankulathur, India
| | - Sundar Poovitha
- Genomics Laboratory, Department of Genetic Engineering, School of Bioengineering, SRM UniversityKattankulathur, India
| | - Kaliappan Ilango
- Interdisciplinary Institute of Indian System of Medicine, SRM UniversityKattankulathur, India
| | - Ramasamy MohanKumar
- Interdisciplinary Institute of Indian System of Medicine, SRM UniversityKattankulathur, India
| | - Madasamy Parani
- Genomics Laboratory, Department of Genetic Engineering, School of Bioengineering, SRM UniversityKattankulathur, India
| |
Collapse
|
71
|
Kumar SN, Mohandas C. An Antifungal Mechanism of Protolichesterinic Acid from the Lichen Usnea albopunctata Lies in the Accumulation of Intracellular ROS and Mitochondria-Mediated Cell Death Due to Apoptosis in Candida tropicalis. Front Pharmacol 2017; 8:301. [PMID: 28611662 PMCID: PMC5447038 DOI: 10.3389/fphar.2017.00301] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Accepted: 05/10/2017] [Indexed: 12/12/2022] Open
Abstract
Candida species causes superficial and life-threatening systemic infections and are difficult to treat due to the resistance of these organism to various clinically used drugs. Protolichesterinic acid is a well-known lichen compound. Although the antibacterial activity of protolichesterinic acid has been reported earlier, the antifungal property and its mechanism of action are still largely unidentified. The goal of the present investigation is to explore the anticandidal activity and mechanism of action of protolichesterinic acid, especially against Candida tropicalis. The Minimum Inhibitory Concentration (MIC) value was established through microdilution techniques against four Candida species and out of four species tested, C. tropicalis showed a significant effect (MIC: 2 μg/ml). In the morphological interference assay, we observed the enhanced inhibition of hyphae when the cells were treated with protolichesterinic acid. Time-kill assay demonstrated that the maximum rate of killing was recorded between 2 and 6 h. C. tropicalis exposed to protolichesterinic acid exhibited an increased ROS production, which is one of the key factors of fungal death. The rise in ROS was due to the dysfunction of mitochondria caused by protolichesterinic acid. We confirmed that protolichesterinic acid-induced dysfunction of mitochondria in C. tropicalis. The damage of cell membrane due to protolichesterinic acid treatment was confirmed by the influx of propidium iodide and was further confirmed by the release of potassium ions. The treatment of protolichesterinic acid also triggered calcium ion signaling. Moreover, it commenced apoptosis which is clearly evidenced by Annexin V and propidium iodide staining. Interestingly protolichesterinic acid recorded excellent immunomodulatory property when tested against lymphocytes. Finally protolichesterinic acid showed low toxicity toward a normal human cell line Foreskin (FS) normal fibroblast. In in vivo test, protolichesterinic acid significantly enhanced the survival of C. tropicalis infected Caenorhabditis elegans. This investigation proposes that the protolichesterinic acid induces apoptosis in C. tropicalis via the enhanced accumulation of intracellular ROS and mitochondrial damage, which leads fungal cell death via apoptosis. Our work revealed a new key aspect of mechanisms of action of protolichesterinic acid in Candida species. This article is the first study on the antifungal and mechanism of action of protolichesterinic acid in Candida species.
Collapse
Affiliation(s)
- S N Kumar
- Division of Crop Protection, Central Tuber Crops Research InstituteSreekariyam, India
| | - C Mohandas
- Division of Crop Protection, Central Tuber Crops Research InstituteSreekariyam, India
| |
Collapse
|
72
|
Synergistic antifungal activity of the lipophilic fraction of Hypericum carinatum and fluconazole. REVISTA BRASILEIRA DE FARMACOGNOSIA-BRAZILIAN JOURNAL OF PHARMACOGNOSY 2017. [DOI: 10.1016/j.bjp.2016.08.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
73
|
Lu M, Li T, Wan J, Li X, Yuan L, Sun S. Antifungal effects of phytocompounds on Candida species alone and in combination with fluconazole. Int J Antimicrob Agents 2016; 49:125-136. [PMID: 28040409 DOI: 10.1016/j.ijantimicag.2016.10.021] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2016] [Revised: 09/14/2016] [Accepted: 10/14/2016] [Indexed: 12/14/2022]
Abstract
Invasive fungal infections caused by Candida spp. remain the most predominant nosocomial fungal infections. Owing to the increased use of antifungal agents, resistance of Candida spp. to antimycotics has emerged frequently, especially to fluconazole (FLC). To cope with this issue, new efforts have been dedicated to discovering novel antimycotics or new agents that can enhance the susceptibility of Candida spp. to existing antimycotics. The secondary metabolites of plants represent a large library of compounds that are important sources for new drugs or compounds suitable for further modification. Research on the anti-Candida activities of phytocompounds has been carried out in recent years and the results showed that a series of phytocompounds have anti-Candida properties, such as phenylpropanoids, flavonoids, terpenoids and alkaloids. Among these phytocompounds, some displayed potent antifungal activity, with minimum inhibitory concentrations (MICs) of ≤8 µg/mL, and several compounds were even more effective against drug-resistant Candida spp. than FLC or itraconazole (e.g. honokiol, magnolol and shikonin). Interestingly, quite a few phytocompounds not only displayed anti-Candida activity alone but also synergised with FLC against Candida spp., even leading to a reversal of FLC resistance. This review focuses on summarising the anti-Candida activities of phytocompounds as well as the interactions of phytocompounds with FLC. In addition, we briefly overview the synergistic mechanisms and present the structure of the antimycotic phytocompounds. Hopefully, this analysis will provide insight into antifungal agent discovery and new approaches against antifungal drug resistance.
Collapse
Affiliation(s)
- Mengjiao Lu
- School of Pharmaceutical Sciences, Shandong University, Jinan, Shandong Province 250012, China
| | - Tao Li
- Intensive Care Unit, Qianfoshan Hospital affiliated to Shandong University, Jinan, Shandong Province 250014, China
| | - Jianjian Wan
- Department of Respiratory, Yucheng People's Hospital, Yucheng, Shandong Province 251200, China
| | - Xiuyun Li
- School of Pharmaceutical Sciences, Shandong University, Jinan, Shandong Province 250012, China
| | - Lei Yuan
- Department of Pharmacy, Baodi District People's Hospital, Tianjin 301800, China
| | - Shujuan Sun
- Department of Pharmacy, Qianfoshan Hospital Affiliated to Shandong University, Jinan, Shandong Province 250014, China.
| |
Collapse
|
74
|
R M Machado GD, Pippi B, Dalla Lana DF, Amaral APS, Teixeira ML, Souza KCBD, Fuentefria AM. Reversal of fluconazole resistance induced by a synergistic effect with Acca sellowiana in Candida glabrata strains. PHARMACEUTICAL BIOLOGY 2016; 54:2410-2419. [PMID: 27050162 DOI: 10.3109/13880209.2016.1158286] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
CONTEXT The increased incidence of non-albicans Candida (NAC) resistant to fluconazole (FLZ) makes it necessary to use new therapeutic alternatives. Acca sellowiana (O.berg) Burret (Myrtaceae) is a guava with several proven biological activities. The interaction with fluconazole can be a feasible alternative to overcome this resistance. OBJECTIVE This study evaluates the in vitro antifungal activity of fractions obtained from the lyophilized aqueous extract of the leaves of A. sellowiana against resistant strains of NAC. MATERIALS AND METHODS The antifungal activity of the fractions was evaluated at 500 μg/mL by microdilution method. Checkerboard assay was performed to determine the effect of the combination of the F2 fraction and antifungal at concentrations: MIC/4, MIC/2, MIC, MIC × 2 and MIC × 4. RESULTS Candida glabrata showed the lowest MIC values (500-3.90 μg/mL) and the F2 active fraction was the most effective. The association of F2 with FLZ showed a strong synergistic effect (FICI ≤ 0.5) against 100% of C. glabrata resistant isolates. Moreover, the F2 active fraction has demonstrated that probably acts in the cell wall of these yeasts. There was no observed acute dermal toxicity of lyophilized aqueous extract of leaves of A. sellowiana on pig ear skin cells. DISCUSSION AND CONCLUSION The interaction between substances present in the F2 active fraction is possibly responsible for the antifungal activity presented by this fraction. This study is unprecedented and suggests that the combination of F2 active fraction and FLZ might be used as an alternative treatment for mucocutaneus infections caused by C. glabrata resistant.
Collapse
Affiliation(s)
- Gabriella da R M Machado
- a Programa de Pós Graduação em Microbiologia Agrícola e do Ambiente , Universidade Federal do Rio Grande do Sul , Porto Alegre , Brazil
| | - Bruna Pippi
- a Programa de Pós Graduação em Microbiologia Agrícola e do Ambiente , Universidade Federal do Rio Grande do Sul , Porto Alegre , Brazil
| | - Daiane Flores Dalla Lana
- b Programa de Pós Graduação em Ciências Farmacêuticas , Universidade Federal do Rio Grande do Sul , Porto Alegre , Brazil
| | - Ana Paula S Amaral
- c Departamento de Farmacociências, Curso de Farmácia , Universidade Federal de Ciências da Saúde de Porto Alegre , Porto Alegre , Brazil
| | - Mário Lettieri Teixeira
- d Laboratório de Farmacologia, Instituto Federal Catarinense, Campus Concórdia , Concórdia , Brazil
| | - Kellen C B de Souza
- c Departamento de Farmacociências, Curso de Farmácia , Universidade Federal de Ciências da Saúde de Porto Alegre , Porto Alegre , Brazil
| | - Alexandre M Fuentefria
- a Programa de Pós Graduação em Microbiologia Agrícola e do Ambiente , Universidade Federal do Rio Grande do Sul , Porto Alegre , Brazil
- b Programa de Pós Graduação em Ciências Farmacêuticas , Universidade Federal do Rio Grande do Sul , Porto Alegre , Brazil
| |
Collapse
|
75
|
Shao J, Shi G, Wang T, Wu D, Wang C. Antiproliferation of Berberine in Combination with Fluconazole from the Perspectives of Reactive Oxygen Species, Ergosterol and Drug Efflux in a Fluconazole-Resistant Candida tropicalis Isolate. Front Microbiol 2016; 7:1516. [PMID: 27721812 PMCID: PMC5034683 DOI: 10.3389/fmicb.2016.01516] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Accepted: 09/09/2016] [Indexed: 01/23/2023] Open
Abstract
Candida tropicalis has emerged as an important pathogenic fungus in nosocomial infections due to its recalcitrant resistance to conventional antifungal agents, especially to fluconazole (FLC). Berberine (BBR) is a bioactive herbal-originated alkaloids and has been reported to possess antifungal functions against C. albicans. In this paper, we tried to figure out the antifungal mechanisms of BBR and/or FLC in a clinical C. tropicalis isolate 2006. In the microdilution test, the minimum inhibitory concentration (MIC) of BBR was found 16 μg/mL with fractional inhibitory concentration index (FICI) 0.13 in C. tropicalis 2006. The synergism of BBR and FLC was also confirmed microscopically. After the treatments of BBR and/or FLC, the studies revealed that (i) FLC facilitated BBR to increase reactive oxygen species (ROS), (ii) FLC enhanced the intranuclear accumulation of BBR, (iii) BBR decreased the extracellular rhodamine 123 (Rh123) via inhibiting efflux transporters, (iv) FLC assisted BBR to reduce ergosterol content, and (v) BBR in combined with FLC largely downregulated the expressions of Candida drug resistance 1 (CDR1) and CDR2 but impact slightly multidrug resistance 1 (MDR1), and upregulate the expression of ergosterol 11 (ERG11). These results suggested that BBR could become a potent antifungal drug to strengthen FLC efficacy in FLC-resistant C. tropicalis via ROS increase, intracellular BBR accumulation, ergosterol decrease and efflux inhibition.
Collapse
Affiliation(s)
- Jing Shao
- Laboratory of Microbiology and Immunology, School of Chinese and Western Integrative Medicine, Anhui University of Chinese Medicine Hefei, China
| | - GaoXiang Shi
- Laboratory of Microbiology and Immunology, School of Chinese and Western Integrative Medicine, Anhui University of Chinese Medicine Hefei, China
| | - TianMing Wang
- Laboratory of Biochemistry and Molecular Biology, School of Chinese and Western Integrative Medicine, Anhui University of Chinese Medicine Hefei, China
| | - DaQiang Wu
- Laboratory of Microbiology and Immunology, School of Chinese and Western Integrative Medicine, Anhui University of Chinese Medicine Hefei, China
| | - ChangZhong Wang
- Laboratory of Microbiology and Immunology, School of Chinese and Western Integrative Medicine, Anhui University of Chinese Medicine Hefei, China
| |
Collapse
|
76
|
Li C, Lev S, Saiardi A, Desmarini D, Sorrell TC, Djordjevic JT. Inositol Polyphosphate Kinases, Fungal Virulence and Drug Discovery. J Fungi (Basel) 2016; 2:jof2030024. [PMID: 29376941 PMCID: PMC5753137 DOI: 10.3390/jof2030024] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Revised: 08/23/2016] [Accepted: 08/30/2016] [Indexed: 12/31/2022] Open
Abstract
Opportunistic fungi are a major cause of morbidity and mortality world-wide, particularly in immunocompromised individuals. Developing new treatments to combat invasive fungal disease is challenging given that fungal and mammalian host cells are eukaryotic, with similar organization and physiology. Even therapies targeting unique fungal cell features have limitations and drug resistance is emerging. New approaches to the development of antifungal drugs are therefore needed urgently. Cryptococcus neoformans, the commonest cause of fungal meningitis worldwide, is an accepted model for studying fungal pathogenicity and driving drug discovery. We recently characterized a phospholipase C (Plc1)-dependent pathway in C. neoformans comprising of sequentially-acting inositol polyphosphate kinases (IPK), which are involved in synthesizing inositol polyphosphates (IP). We also showed that the pathway is essential for fungal cellular function and pathogenicity. The IP products of the pathway are structurally diverse, each consisting of an inositol ring, with phosphate (P) and pyrophosphate (PP) groups covalently attached at different positions. This review focuses on (1) the characterization of the Plc1/IPK pathway in C. neoformans; (2) the identification of PP-IP₅ (IP₇) as the most crucial IP species for fungal fitness and virulence in a mouse model of fungal infection; and (3) why IPK enzymes represent suitable candidates for drug development.
Collapse
Affiliation(s)
- Cecilia Li
- Centre for Infectious Diseases and Microbiology, The Westmead Institute for Medical Research, The University of Sydney, Westmead, NSW 2145, Australia.
| | - Sophie Lev
- Centre for Infectious Diseases and Microbiology, The Westmead Institute for Medical Research, The University of Sydney, Westmead, NSW 2145, Australia.
| | - Adolfo Saiardi
- Medical Research Council Laboratory for Molecular Cell Biology, University College London, London WC1E 6BT, UK.
| | - Desmarini Desmarini
- Centre for Infectious Diseases and Microbiology, The Westmead Institute for Medical Research, The University of Sydney, Westmead, NSW 2145, Australia.
| | - Tania C Sorrell
- Centre for Infectious Diseases and Microbiology, The Westmead Institute for Medical Research, The University of Sydney, Westmead, NSW 2145, Australia.
- Marie Bashir Institute for Infectious Diseases and Biosecurity, University of Sydney, Westmead, NSW 2145, Australia.
- Westmead Hospital, Westmead, NSW 2145, Australia.
| | - Julianne T Djordjevic
- Centre for Infectious Diseases and Microbiology, The Westmead Institute for Medical Research, The University of Sydney, Westmead, NSW 2145, Australia.
- Marie Bashir Institute for Infectious Diseases and Biosecurity, University of Sydney, Westmead, NSW 2145, Australia.
- Westmead Hospital, Westmead, NSW 2145, Australia.
| |
Collapse
|
77
|
Psidium guajava L. and Psidium brownianum Mart ex DC.: Chemical composition and anti – Candida effect in association with fluconazole. Microb Pathog 2016; 95:200-207. [DOI: 10.1016/j.micpath.2016.04.013] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2015] [Revised: 04/11/2016] [Accepted: 04/12/2016] [Indexed: 01/21/2023]
|
78
|
Berberine Antifungal Activity in Fluconazole-Resistant Pathogenic Yeasts: Action Mechanism Evaluated by Flow Cytometry and Biofilm Growth Inhibition in Candida spp. Antimicrob Agents Chemother 2016; 60:3551-7. [PMID: 27021328 PMCID: PMC4879420 DOI: 10.1128/aac.01846-15] [Citation(s) in RCA: 72] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Accepted: 03/19/2016] [Indexed: 01/21/2023] Open
Abstract
The incidence of fungal infections and, in particular, the incidence of fungal antibiotic resistance, which is associated with biofilm formation, have significantly increased, contributing to morbidity and mortality. Thus, new therapeutic strategies need to be developed. In this context, natural products have emerged as a major source of possible antifungal agents. Berberine is a protoberberine-type isoquinoline alkaloid isolated from the roots, rhizomes, and stem bark of natural herbs, such as Berberis aquifolium, Berberis vulgaris, Berberis aristata, and Hydrastis canadensis, and of Phellodendron amurense. Berberine has been proven to have broad antibacterial and antifungal activity. In the present study, the potential antifungal effect of berberine against fluconazole-resistant Candida and Cryptococcus neoformans strains, as well as against the biofilm form of Candida spp., was assessed. The antifungal effect of berberine was determined by a broth microdilution method (the M27-A3 method of the Clinical and Laboratory Standards Institute) and flow cytometry techniques, in which the probable mechanism of action of the compound was also assessed. For biofilm assessment, a colorimetric 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide (MTT) assay was used to determine the susceptibility of sessile cells. The isolates used in the study belonged to the Laboratory of Bioprospection and Experiments in Yeast (LABEL) of the Federal University of Ceará. After 24 and 72 h, fluconazole-resistant Candida and Cryptococcus neoformans strains showed berberine MICs equal to 8 μg/ml and 16 μg/ml, respectively. Cytometric analysis showed that treatment with berberine caused alterations to the integrity of the plasma and mitochondrial membranes and DNA damage, which led to cell death, probably by apoptosis. Assessment of biofilm-forming isolates after treatment showed statistically significant reductions in biofilm cell activity (P < 0.001).
Collapse
|
79
|
Wang YH, Dong HH, Zhao F, Wang J, Yan F, Jiang YY, Jin YS. The synthesis and synergistic antifungal effects of chalcones against drug resistant Candida albicans. Bioorg Med Chem Lett 2016; 26:3098-3102. [PMID: 27210436 DOI: 10.1016/j.bmcl.2016.05.013] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2016] [Revised: 04/13/2016] [Accepted: 05/03/2016] [Indexed: 11/27/2022]
Abstract
To identify effective and low toxicity synergistic antifungal compounds, 24 derivatives of chalcone were synthesized to restore the effectiveness of fluconazole against fluconazole-resistant Candida albicans. The minimal inhibitory concentration (MIC80) and the fractional inhibitory concentration index (FICI) of the antifungal synergist fluconazole were measured against fluconazole-resistant Candida albicans. This was done via methods established by the clinical and laboratory standards institute (CLSI). Of the synthesized compounds, 2'-hydroxy-4'-methoxychalcone (8) exhibited the most potent in vitro (FICI=0.007) effects. The structure activity relationship of the compounds are then discussed.
Collapse
Affiliation(s)
- Yuan-Hua Wang
- School of Pharmacy, Second Military Medical University, Shanghai 200433, China; School of Pharmacy, Weifang Medical University, Weifang, Shandong Province 261053, China
| | - Huai-Huai Dong
- School of Pharmacy, Second Military Medical University, Shanghai 200433, China
| | - Fei Zhao
- School of Pharmacy, Second Military Medical University, Shanghai 200433, China
| | - Jie Wang
- School of Pharmacy, Weifang Medical University, Weifang, Shandong Province 261053, China
| | - Fang Yan
- School of Pharmacy, Weifang Medical University, Weifang, Shandong Province 261053, China
| | - Yuan-Ying Jiang
- School of Pharmacy, Second Military Medical University, Shanghai 200433, China.
| | - Yong-Sheng Jin
- School of Pharmacy, Second Military Medical University, Shanghai 200433, China.
| |
Collapse
|
80
|
Teodoro GR, Ellepola K, Seneviratne CJ, Koga-Ito CY. Potential Use of Phenolic Acids as Anti-Candida Agents: A Review. Front Microbiol 2015; 6:1420. [PMID: 26733965 PMCID: PMC4685070 DOI: 10.3389/fmicb.2015.01420] [Citation(s) in RCA: 101] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Accepted: 11/30/2015] [Indexed: 12/13/2022] Open
Abstract
There has been a sharp rise in the occurrence of Candida infections and associated mortality over the last few years, due to the growing body of immunocompromised population. Limited number of currently available antifungal agents, undesirable side effects and toxicity, as well as emergence of resistant strains pose a considerable clinical challenge for the treatment of candidiasis. Therefore, molecules that derived from natural sources exhibiting considerable antifungal properties are a promising source for the development of novel anti-candidal therapy. Phenolic compounds isolated from natural sources possess antifungal properties of interest. Particularly, phenolic acids have shown promising in vitro and in vivo activity against Candida species. However, studies on their mechanism of action alone or in synergism with known antifungals are still scarce. This review attempts to discuss the potential use, proposed mechanisms of action and limitations of the phenolic acids in anti-candidal therapy.
Collapse
Affiliation(s)
- Guilherme R Teodoro
- Oral Biopathology Graduate Program, São José dos Campos Institute of Science and Technology, Universidade Estadual Paulista São José dos Campos, Brazil
| | - Kassapa Ellepola
- Oral Sciences, Faculty of Dentistry, National University of Singapore Singapore, Singapore
| | - Chaminda J Seneviratne
- Oral Sciences, Faculty of Dentistry, National University of Singapore Singapore, Singapore
| | - Cristiane Y Koga-Ito
- Oral Biopathology Graduate Program, São José dos Campos Institute of Science and Technology, Universidade Estadual PaulistaSão José dos Campos, Brazil; Department of Environmental Engineering and Biopathology Graduate Program, São José dos Campos Institute of Science and Technology, Universidade Estadual PaulistaSão José dos Campos, Brazil
| |
Collapse
|
81
|
Shao J, Zhang M, Wang T, Li Y, Wang C. The roles of CDR1, CDR2, and MDR1 in kaempferol-induced suppression with fluconazole-resistant Candida albicans. PHARMACEUTICAL BIOLOGY 2015; 54:984-92. [PMID: 26459663 PMCID: PMC11132302 DOI: 10.3109/13880209.2015.1091483] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2014] [Accepted: 09/03/2015] [Indexed: 06/05/2023]
Abstract
CONTEXT Fungal infections caused by fluconazole-resistant Candida albicans are an intractable clinical problem, calling for new efficient antifungal drugs. Kaempferol, an active flavonoid, has been considered a potential candidate against Candida species. OBJECTIVE This work investigates the resistance reversion of kaempferol in fluconazole-resistant C. albicans and the underlying mechanism. MATERIALS AND METHODS The antifungal activities of fluconazole and/or kaempferol were assessed by a series of standard procedures including broth microdilution method, checkerboard assay and time-kill (T-K) test in nine clinical strains as well as a standard reference isolate of C. albicans. Subsequently, the morphological changes, the efflux of rhodamine 6G, and the expressions of CDR 1, CDR 2, and MDR 1 were analysed by scanning electron microscope (SEM), inverted fluorescence microscope and quantitative reverse transcription polymerase chain reaction (qRT-PCR) in C. albicans z2003. RESULTS For all the tested C. albicans strains, the minimum inhibitory concentrations (MICs) of fluconazole and kaempferol ranged 0.25-32 and 128-256 μg/mL with a range of fractional inhibitory concentration index of 0.257-0.531. In C. albicans z2003, the expression of both CDR 1 and CDR 2 were decreased after exposure to kaempferol alone with negligible rhodamine 6G accumulation, while the expression of CDR 1, CDR 2 and MDR 1 were all decreased when fluconazole and kaempferol were used concomitantly with notable fluorescence of rhodamine 6G observed. DISCUSSION AND CONCLUSION Kaempferol-induced reversion in fluconazole-resistant C. albicans might be likely due to the suppression of the expression of CDR1, CDR2 and MDR1.
Collapse
Affiliation(s)
- Jing Shao
- Laboratory of Microbiology and Immunology, School of Chinese and Western Integrative Medicine, Anhui University of Chinese Medicine, Hefei, China
| | - MengXiang Zhang
- Laboratory of Microbiology and Immunology, School of Chinese and Western Integrative Medicine, Anhui University of Chinese Medicine, Hefei, China
| | - TianMing Wang
- Laboratory of Biochemistry and Molecular Biology, School of Chinese and Western Integrative Medicine, Anhui University of Chinese Medicine, Hefei, China, and
| | - Yue Li
- Gynecology of Traditional Chinese Medicine, Clinical College of Traditional Chinese Medicine, Anhui University of Chinese Medicine, Hefei, China
| | - ChangZhong Wang
- Laboratory of Microbiology and Immunology, School of Chinese and Western Integrative Medicine, Anhui University of Chinese Medicine, Hefei, China
| |
Collapse
|
82
|
Premachandra IDUA, Scott KA, Shen C, Wang F, Lane S, Liu H, Van Vranken DL. Potent Synergy between Spirocyclic Pyrrolidinoindolinones and Fluconazole against Candida albicans. ChemMedChem 2015; 10:1672-86. [PMID: 26263912 PMCID: PMC4682886 DOI: 10.1002/cmdc.201500271] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2015] [Indexed: 11/12/2022]
Abstract
A spiroindolinone, (1S,3R,3aR,6aS)-1-benzyl-6'-chloro-5-(4-fluorophenyl)-7'-methylspiro[1,2,3a,6a-tetrahydropyrrolo[3,4-c]pyrrole-3,3'-1H-indole]-2',4,6-trione, was previously reported to enhance the antifungal effect of fluconazole against Candida albicans. A diastereomer of this compound was synthesized, along with various analogues. Many of the compounds were shown to enhance the antifungal effect of fluconazole against C. albicans, some with exquisite potency. One spirocyclic piperazine derivative, which we have named synazo-1, was found to enhance the effect of fluconazole with an EC50 value of 300 pM against a susceptible strain of C. albicans and going as low as 2 nM against some resistant strains. Synazo-1 exhibits true synergy with fluconazole, with an FIC index below 0.5 in the strains tested. Synazo-1 exhibited low toxicity in mammalian cells relative to the concentrations required for antifungal synergy.
Collapse
Affiliation(s)
| | - Kevin A Scott
- Department of Chemistry, University of California, Irvine, 1102 Natural Sciences 2, Irvine, CA 92697-2025 (USA)
| | - Chengtian Shen
- Department of Chemistry, University of California, Irvine, 1102 Natural Sciences 2, Irvine, CA 92697-2025 (USA)
| | - Fuqiang Wang
- Department of Biological Chemistry, University of California, Irvine, 825 Health Sciences Road, Medical Sciences I, Irvine, CA 92697-1700 (USA)
| | - Shelley Lane
- Department of Biological Chemistry, University of California, Irvine, 825 Health Sciences Road, Medical Sciences I, Irvine, CA 92697-1700 (USA)
| | - Haoping Liu
- Department of Biological Chemistry, University of California, Irvine, 825 Health Sciences Road, Medical Sciences I, Irvine, CA 92697-1700 (USA)
| | - David L Van Vranken
- Department of Chemistry, University of California, Irvine, 1102 Natural Sciences 2, Irvine, CA 92697-2025 (USA).
| |
Collapse
|
83
|
Luiz RLF, Vila TVM, de Mello JCP, Nakamura CV, Rozental S, Ishida K. Proanthocyanidins polymeric tannin from Stryphnodendron adstringens are active against Candida albicans biofilms. BMC COMPLEMENTARY AND ALTERNATIVE MEDICINE 2015; 15:68. [PMID: 25886244 PMCID: PMC4369060 DOI: 10.1186/s12906-015-0597-4] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/19/2014] [Accepted: 02/28/2015] [Indexed: 11/25/2022]
Abstract
Background Biofilm formation is important in Candida albicans pathogenesis and constitutes a mechanism of antifungal resistance. Thus, we evaluated the effect of proanthocyanidins polymer-rich fractions from Stryphnodendron adstringens (fraction F2 and subfraction F2.4) against C. albicans biofilms. Methods Firstly, the antifungal activity of F2 and F2.4 against planktonic cells of Candida albicans (ATCC 10231) was determined using broth microdilution method. Anti-biofilm effect of F2 and F2.4 was evaluated during biofilm formation or on mature biofilm of C. albicans and compared with standard antifungals amphotericin B and fluconazole. Metabolic activity of sessile and dispersion cells from biofilms after antifungal treatments were measured using a tetrazolium reduction assay and the biofilm total biomass was quantified by crystal violet-based assay. Morphological alterations after treatments were observed using scanning electron microscopy. Results The anti-biofilm effect of F2 and F2.4 were comparable to standard antifungals (amphotericin B and fluconazole). F2 and F2.4 treatments reduced biofilm metabolic activity (in sessile and in dispersion cells) during biofilm formation, and in mature biofilms, unlike fluconazole, which only prevents the biofilm formation. Treatments with F2, F2.4 or fluconazole reduced biofilm biomass during biofilm formation, but not in mature biofilm. Amphotericin B presented higher inhibitory effect on biofilm formation and on mature biofilm of C. albicans. F2 and F2.4 treatments led to the appearance of dumbbell-shaped blastoconidia and of blastoconidia clusters in biofilms. Conclusion Proanthocyanidins polymer-rich fractions from S. adstringens successfully inhibited C. albicans planktonic growth and biofilm development, and they represent a potential new agent for the treatment of biofilm-associated candidiasis.
Collapse
|
84
|
Liu W, Li LP, Zhang JD, Li Q, Shen H, Chen SM, He LJ, Yan L, Xu GT, An MM, Jiang YY. Synergistic antifungal effect of glabridin and fluconazole. PLoS One 2014; 9:e103442. [PMID: 25058485 PMCID: PMC4110026 DOI: 10.1371/journal.pone.0103442] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2014] [Accepted: 07/01/2014] [Indexed: 02/02/2023] Open
Abstract
The incidence of invasive fungal infections is increasing in recent years. The present study mainly investigated glabridin (Gla) alone and especially in combination with fluconazole (FLC) against Cryptococcus neoformans and Candida species (Candida albicans, Candida tropicalis, Candida krusei, Candida parapsilosis and Candida Glabratas) by different methods. The minimal inhibitory concentration (MIC) and the minimal fungicidal concentration (MFC) indicated that Gla possessed a broad-spectrum antifungal activity at relatively high concentrations. After combining with FLC, Gla exerted a potent synergistic effect against drug-resistant C. albicans and C. tropicalis at lower concentrations when interpreted by fractional inhibitory concentration index (FICI). Disk diffusion test and time-killing test confirming the synergistic fungicidal effect. Cell growth tests suggested that the synergistic effect of the two drugs depended more on the concentration of Gla. The cell envelop damage including a significant decrease of cell size and membrane permeability increasing were found after Gla treatment. Together, our results suggested that Gla possessed a synergistic effect with FLC and the cell envelope damage maybe contributed to the synergistic effect, which providing new information for developing novel antifungal agents.
Collapse
Affiliation(s)
- Wei Liu
- Tongji University School of Medicine, Shanghai, China
| | - Li Ping Li
- Tongji University School of Medicine, Shanghai, China
| | | | - Qun Li
- Tongji University School of Medicine, Shanghai, China
| | - Hui Shen
- Tongji University School of Medicine, Shanghai, China
| | - Si Min Chen
- Tongji University School of Medicine, Shanghai, China
| | - Li Juan He
- Tongji University School of Medicine, Shanghai, China
| | - Lan Yan
- New Drug Research and Development Center, School of Pharmacy, Second Military Medical University, Shanghai, China
| | - Guo Tong Xu
- Tongji University School of Medicine, Shanghai, China
| | - Mao Mao An
- Tongji University School of Medicine, Shanghai, China
| | - Yuan Ying Jiang
- Tongji University School of Medicine, Shanghai, China; New Drug Research and Development Center, School of Pharmacy, Second Military Medical University, Shanghai, China
| |
Collapse
|
85
|
Xu C, Yagiz Y, Hsu WY, Simonne A, Lu J, Marshall MR. Antioxidant, antibacterial, and antibiofilm properties of polyphenols from muscadine grape (Vitis rotundifolia Michx.) pomace against selected foodborne pathogens. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2014; 62:6640-6649. [PMID: 24865879 DOI: 10.1021/jf501073q] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Polyphenols are predominantly secondary metabolites in muscadine grapes, playing an important role in the species' strong resistance to pests and diseases. This study examined the above property by evaluating the antioxidant, antibacterial, and antibiofilm activities of muscadine polyphenols against selected foodborne pathogens. Results showed that antioxidant activity for different polyphenols varied greatly, ranging from 5 to 11.1 mmol Trolox/g. Antioxidant and antibacterial activities for polyphenols showed a positive correlation. Muscadine polyphenols exhibited a broad spectrum of antibacterial activity against tested foodborne pathogens, especially Staphylococcus aureus (MIC = 67-152 mg/L). Muscadine polyphenols at 4 × MIC caused nearly a 5 log10 CFU/mL drop in cell viability for S. aureus in 6 h with lysis, whereas at 0.5 × MIC they inhibited its biofilm formation and at 16 × MIC they eradicated biofilms. Muscadine polyphenols showed synergy with antibiotics and maximally caused a 6.2 log10 CFU/mL drop in cell viability at subinhibitory concentration.
Collapse
Affiliation(s)
- Changmou Xu
- Department of Food Science and Human Nutrition and ‡Department of Family, Youth and Community Sciences, University of Florida , Gainesville, Florida 32611, United States
| | | | | | | | | | | |
Collapse
|