51
|
Sujathan S, Singh A. Investigation of Potential Drivers of Elevated Uranium Prevalence in Indian Groundwaters with a Unified Speciation Model. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:1970-1986. [PMID: 36693168 DOI: 10.1021/acs.est.2c08524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Elevated uranium (U) (>WHO limit of 30 μg L-1) in Indian groundwaters is primarily considered geogenic, but the specific mineralogical sources and mechanisms for U mobilization are poorly understood. In this contribution, statistical and geochemical analyses of well-constrained metadata of Indian groundwater quality (n = 342 of 8543) were performed to identify key parameters and processes that influence U concentrations. For geochemical predictions, a unified speciation model was developed from a carefully compiled and updated thermodynamic database of inorganic, organic (Stockholm Humic model), and surface complexation reactions and associated constants. Critical U contamination was found at shallow depths (<100 m) within the Indo-Gangetic plain, as determined by bivariate nonparametric Kendall's Taub and probability-based association tests. Analysis of aquifer redox states, multivariate hierarchical clusters, and principal components indicated that U contamination was predominant not just in oxic but mixed (oxic-anoxic) aquifers under high Fe, Mn, and SO4 concentrations, presumably due to U release from dissolution of Fe/Mn oxides or Fe sulfides and silicate weathering. Most groundwaters were undersaturated with respect to relevant U-bearing solids despite being supersaturated with respect to atmospheric CO2 (average pCO2 of reported dissolved inorganic carbonate (DIC) data = 10-1.57 atm). Yet, dissolved U did not appear to be mass limited, as predicted solubilities from reported sediment concentrations of U were ∼3 orders of magnitude higher. Integration of surface complexation models of U on typical aquifer adsorbents, ferrihydrite, goethite, and manganese dioxide, was necessary to explain dissolved U concentrations. Uranium contamination probabilities with increasing dissolved Ca and Mn exhibited minima at equilibrium solubilities of calcite [∼50 mg L-1] and rhodochrosite [∼0.14 mg L-1], respectively, at an average groundwater pH of ∼7.5. A potential indirect control of such U-free carbonate solids on U mobilization was suggested. For locations (n = 37) where dissolved organic carbon was also reported, organic complexes of U contributed negligibly to dominant U speciation at the groundwater pH. Overall, the unified model suggested competitive dissolution-precipitation and adsorption-desorption controls on U speciation. The model provides a quantitative framework that can be extended to understand dominant mobilization mechanisms of geogenic U in aquifers worldwide after suitable modifications to the relevant aquifer parameters.
Collapse
Affiliation(s)
- Surya Sujathan
- Department of Civil Engineering, Center for Environmental Science and Engineering, Indian Institute of Technology Kanpur, Kanpur 208016, Uttar Pradesh, India
| | - Abhas Singh
- Department of Civil Engineering, Center for Environmental Science and Engineering, Indian Institute of Technology Kanpur, Kanpur 208016, Uttar Pradesh, India
| |
Collapse
|
52
|
Wang Y, Ren S, Wang P, Wang B, Hu K, Li J, Wang Y, Li Z, Li S, Li W, Peng Y. Autotrophic denitrification using Fe(II) as an electron donor: A novel prospective denitrification process. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 858:159721. [PMID: 36306837 DOI: 10.1016/j.scitotenv.2022.159721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 10/21/2022] [Accepted: 10/21/2022] [Indexed: 06/16/2023]
Abstract
As a newly identified nitrogen loss pathway, the nitrate-dependent ferrous oxidation (NDFO) process is emerging as a research hotspot in the field of low carbon to nitrogen ratio (C/N) wastewater treatment. This review article provides an overview of the NDFO process and summarizes the functional microorganisms associated with NDFO from different perspectives. The potential mechanisms by which external factors such as influent pH, influent Fe(II)/N (mol), organic carbon, and chelating agents affect NDFO performance are also thoroughly discussed. As the electron-transfer mechanism of the NDFO process is still largely unknown, the extensive chemical Fe(II)-oxidizing nitrite-reducing pathway (NDFOchem) of the NDFO process is described here, and the potential enzymatic electron transfer mechanisms involved are summarized. On this basis, a three-stage electron transfer pathway applicable to low C/N wastewater is proposed. Furthermore, the impact of Fe(III) mineral products on the NDFO process is revisited, and existing crusting prevention strategies are summarized. Finally, future challenges facing the NDFO process and new research directions are discussed, with the aim of further promoting the development and application of the NDFO process in the field of nitrogen removal.
Collapse
Affiliation(s)
- Yaning Wang
- College of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China; Key laboratory of Yellow River Water Environment in Gansu Province, Lanzhou 730070, China
| | - Shuang Ren
- College of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China; Key laboratory of Yellow River Water Environment in Gansu Province, Lanzhou 730070, China
| | - Peng Wang
- College of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China; Key laboratory of Yellow River Water Environment in Gansu Province, Lanzhou 730070, China.
| | - Bo Wang
- School of Geosciences, China University of Petroleum, Qingdao 266580, China
| | - Kaiyao Hu
- College of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China; Key laboratory of Yellow River Water Environment in Gansu Province, Lanzhou 730070, China
| | - Jie Li
- College of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China; Key laboratory of Yellow River Water Environment in Gansu Province, Lanzhou 730070, China; Gansu membrane science and technology research institute Co.,Ltd., Lanzhou 730020, China; Key Laboratory for Resources Utilization Technology of Unconventional Water of Gansu Province, Lanzhou 730020, China
| | - Yae Wang
- College of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China; Key laboratory of Yellow River Water Environment in Gansu Province, Lanzhou 730070, China
| | - Zongxing Li
- Key Laboratory of Ecohydrology of Inland River Basin/Gansu Qilian Mountains Ecology Research Center, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Sumei Li
- College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China
| | - Wang Li
- Taiyuan university of technology, Taiyuan 030024, China; State Key Laboratory of Clean and Efficient Coal Utilization, Taiyuan 030024, China
| | - Yuzhuo Peng
- College of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China; Key laboratory of Yellow River Water Environment in Gansu Province, Lanzhou 730070, China
| |
Collapse
|
53
|
Chen S, Zhou B, Chen H, Yuan R. Iron mediated autotrophic denitrification for low C/N ratio wastewater: A review. ENVIRONMENTAL RESEARCH 2023; 216:114687. [PMID: 36356669 DOI: 10.1016/j.envres.2022.114687] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 10/06/2022] [Accepted: 10/25/2022] [Indexed: 06/16/2023]
Abstract
In recent years, iron mediated autotrophic denitrification has been a concern because it overcomes the absence of organic carbon and has been successfully used in denitrification for low C/N ratio wastewater. However, there is currently a lack of a more systematic summary of iron-based materials that can be used for denitrification, and no detailed overview about the mechanism of iron mediated autotrophic denitrification has been reported. In this study, the iron materials with different valence states that can be used for denitrification were summarized, and emphasized, as well as the mechanism in different interaction systems were emphasize. In addition, the contribution of various microorganisms in nitrate reduction were analyzed and the effects of operating conditions and water quality were evaluated. Finally, the challenges and shortcomings of the denitrification process were discussed aiming to find better practical engineering applications of iron-based denitrification.
Collapse
Affiliation(s)
- Shaoting Chen
- Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, Department of Environmental Science and Engineering, School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Beihai Zhou
- Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, Department of Environmental Science and Engineering, School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Huilun Chen
- Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, Department of Environmental Science and Engineering, School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Rongfang Yuan
- Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, Department of Environmental Science and Engineering, School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, China.
| |
Collapse
|
54
|
He Y, Zeng X, Xu F, Shao Z. Diversity of Mixotrophic Neutrophilic Thiosulfate- and Iron-Oxidizing Bacteria from Deep-Sea Hydrothermal Vents. Microorganisms 2022; 11:microorganisms11010100. [PMID: 36677390 PMCID: PMC9861301 DOI: 10.3390/microorganisms11010100] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 12/22/2022] [Accepted: 12/22/2022] [Indexed: 01/04/2023] Open
Abstract
At deep-sea hydrothermal vents, sulfur oxidation and iron oxidation are of the highest importance to microbial metabolisms, which are thought to contribute mainly in chemolithoautotrophic groups. In this study, 17 mixotrophic neutrophilic thiosulfate- and iron-oxidizing bacteria were isolated from hydrothermal fields on the Carlsberg Ridge in the Indian Ocean, nine to the γ-proteobacteria (Halomonas (4), Pseudomonas (2), Marinobacter (2), and Rheinheimera (1)), seven to the α-proteobacteria (Thalassospira, Qipengyuania, Salipiger, Seohaeicola, Martelella, Citromicrobium, and Aurantimonas), and one to the Actinobacteria (Agromyces), as determined by their 16S rRNA and genome sequences. The physiological characterization of these isolates revealed wide versatility in electron donors (Fe(II) and Mn(II), or thiosulfate) and a variety of lifestyles as lithotrophic or heterotrophic, microaerobic, or anaerobic. As a representative strain, Pseudomonas sp. IOP_13 showed its autotrophic gowth from 105 cells/ml to 107 cells/ml;carbon dioxide fixation capacity with the δ13CVPDB in the biomass increased from -27.42‱ to 3460.06‱; the thiosulfate-oxidizing ability with produced SO42- increased from 60 mg/L to 287 mg/L; and the iron-oxidizing ability with Fe(II) decreased from 10 mM to 5.2 mM. In addition, iron-oxide crust formed outside the cells. Gene coding for energy metabolism involved in possible iron, manganese, and sulfur oxidation, and denitrification was identified by their genome analysis. This study sheds light on the function of the mixotrophic microbial community in the iron/manganese/sulfur cycles and the carbon fixation of the hydrothermal fields.
Collapse
|
55
|
Chen Y, Li X, Liu T, Li F, Sun W, Young LY, Huang W. Metagenomic analysis of Fe(II)-oxidizing bacteria for Fe(III) mineral formation and carbon assimilation under microoxic conditions in paddy soil. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 851:158068. [PMID: 35987227 DOI: 10.1016/j.scitotenv.2022.158068] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 08/08/2022] [Accepted: 08/12/2022] [Indexed: 06/15/2023]
Abstract
Microbially mediated Fe(II) oxidation is prevalent and thought to be central to many biogeochemical processes in paddy soils. However, we have limited insights into the Fe(II) oxidation process in paddy fields, considered the world's largest engineered wetland, where microoxic conditions are ubiquitous. In this study, microaerophilic Fe(II) oxidizing bacteria (FeOB) from paddy soil were enriched in gradient tubes with FeS, FeCO3, and Fe3(PO4)2 as iron sources to investigate their capacity for Fe(II) oxidation and carbon assimilation. Results showed that the highest rate of Fe(II) oxidation (k = 0.836 mM d-1) was obtained in the FeCO3 tubes, and cells grown in the Fe3(PO4)2 tubes yielded maximum assimilation amounts of 13C-NaHCO3 of 1.74% on Day 15. Amorphous Fe(III) oxides were found in all the cell bands with iron substrates as a result of microbial Fe(II) oxidation. Metagenomics analysis of the enriched microbes targeted genes encoding iron oxidase Cyc2, oxygen-reducing terminal oxidase, and ribulose-bisphosphate carboxylase, with results indicated that the potential Fe(II) oxidizers include nitrate-reducing FeOB (Dechloromonas and Thiobacillus), Curvibacter, and Magnetospirillum. By combining cultivation-dependent and metagenomic approaches, our results found a number of FeOB from paddy soil under microoxic conditions, which provide insight into the complex biogeochemical interactions of iron and carbon within paddy fields. The contribution of the FeOB to the element cycling in rice-growing regions deserves further investigation.
Collapse
Affiliation(s)
- Yating Chen
- Institute for Disaster Management and Reconstruction, Sichuan University-Hong Kong Polytechnic University, Chengdu 610207, China
| | - Xiaomin Li
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China.
| | - Tongxu Liu
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-Environmental Pollution Control and Management, Institute of Eco-Environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
| | - Fangbai Li
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-Environmental Pollution Control and Management, Institute of Eco-Environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China.
| | - Weimin Sun
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-Environmental Pollution Control and Management, Institute of Eco-Environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
| | - Lily Y Young
- Department of Environmental Sciences, Rutgers University, New Brunswick, NJ 08901, USA
| | - Weilin Huang
- Department of Environmental Sciences, Rutgers University, New Brunswick, NJ 08901, USA
| |
Collapse
|
56
|
Zhang Q, Xu X, Zhang R, Shao B, Fan K, Zhao L, Ji X, Ren N, Lee DJ, Chen C. The mixed/mixotrophic nitrogen removal for the effective and sustainable treatment of wastewater: From treatment process to microbial mechanism. WATER RESEARCH 2022; 226:119269. [PMID: 36279615 DOI: 10.1016/j.watres.2022.119269] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 08/25/2022] [Accepted: 10/16/2022] [Indexed: 06/16/2023]
Abstract
Biological nitrogen removal (BNR) is one of the most important environmental concerns in the field of wastewater treatment. The conventional BNR process based on heterotrophic nitrogen removal (HeNR) is suffering from several limitations, including external carbon source dependence, excessive sludge production, and greenhouse gas emissions. Through the mediation of autotrophic nitrogen removal (AuNR), mixed/mixotrophic nitrogen removal (MixNR) offers a viable solution to the optimization of the BNR process. Here, the recent advance and characteristics of MixNR process guided by sulfur-driven autotrophic denitrification (SDAD) and anammox are summarized in this review. Additionally, we discuss the functional microorganisms in different MixNR systems, shedding light on metabolic mechanisms and microbial interactions. The significance of MixNR for carbon reduction in the BNR process has also been noted. The knowledge gaps and the future research directions that may facilitate the practical application of the MixNR process are highlighted. Overall, the prospect of the MixNR process is attractive, and this review will provide guidance for the future implementation of MixNR process as well as deciphering the microbially metabolic mechanisms.
Collapse
Affiliation(s)
- Quan Zhang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Room 1433, Harbin, Heilongjiang 150090, China
| | - Xijun Xu
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Room 1433, Harbin, Heilongjiang 150090, China
| | - Ruochen Zhang
- School of Civil and Transportation Engineering, Hebei University of Technology, Tianjin 300401, China
| | - Bo Shao
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Room 1433, Harbin, Heilongjiang 150090, China
| | - Kaili Fan
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Room 1433, Harbin, Heilongjiang 150090, China
| | - Lei Zhao
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Room 1433, Harbin, Heilongjiang 150090, China
| | - Xiaoming Ji
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Nanqi Ren
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Room 1433, Harbin, Heilongjiang 150090, China
| | - Duu-Jong Lee
- Department of Mechanical Engineering, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, China; Department of Chemical Engineering and Materials Science, Yuan Ze University, Chung-li, 32003, Taiwan
| | - Chuan Chen
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Room 1433, Harbin, Heilongjiang 150090, China.
| |
Collapse
|
57
|
Yang H, Deng L, Yang H, Xiao Y, Zheng D. Promotion of nitrogen removal in a zero-valent iron-mediated nitrogen removal system operated in co-substrate mode. CHEMOSPHERE 2022; 307:135779. [PMID: 35868531 DOI: 10.1016/j.chemosphere.2022.135779] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Revised: 06/21/2022] [Accepted: 07/16/2022] [Indexed: 06/15/2023]
Abstract
In this study, the performance and mechanism of nitrogen removal were investigated in a zero-valent iron-mediated nitrogen removal system operated in co-substrate mode with sodium acetate as the organic carbon source. The results showed that the additional organic matter had the capacity to promote NH4+-N and total inorganic nitrogen (TIN) removal with efficiencies of 91.09% and 84.10%, and increases of 60.06% and 75.32% compared with the control group, respectively. The organic matter also stimulated the production of extracellular polymer substances that reduced the passivation and toxicity of iron to microorganisms. The ammonia oxidation activity was 2.5 times higher than that in the control group, and the anammonia oxidation activity and denitrification activity were substantially higher than in the control group with TIN removal efficiencies of 1.02 and 1.19 mgN/(gVSS·d), respectively. In addition, the organic matter increased the enrichment of the heterotrophic denitrification bacterium Diaphorobacter and facultative iron salt-based bacterium Dechloromonas.
Collapse
Affiliation(s)
- Han Yang
- Biogas Institute of Ministry of Agriculture and Rural Affairs, Chengdu 610041, China; Laboratory of Development and Application of Rural Renewable Energy, Ministry of Agriculture and Rural Affairs, Chengdu 610041, China; Chengdu Drainage Limited Liability Company, Chengdu 610000, China
| | - Liangwei Deng
- Biogas Institute of Ministry of Agriculture and Rural Affairs, Chengdu 610041, China; Laboratory of Development and Application of Rural Renewable Energy, Ministry of Agriculture and Rural Affairs, Chengdu 610041, China
| | - Hongnan Yang
- Biogas Institute of Ministry of Agriculture and Rural Affairs, Chengdu 610041, China; Laboratory of Development and Application of Rural Renewable Energy, Ministry of Agriculture and Rural Affairs, Chengdu 610041, China
| | - Youqian Xiao
- Biogas Institute of Ministry of Agriculture and Rural Affairs, Chengdu 610041, China; Laboratory of Development and Application of Rural Renewable Energy, Ministry of Agriculture and Rural Affairs, Chengdu 610041, China
| | - Dan Zheng
- Biogas Institute of Ministry of Agriculture and Rural Affairs, Chengdu 610041, China; Laboratory of Development and Application of Rural Renewable Energy, Ministry of Agriculture and Rural Affairs, Chengdu 610041, China.
| |
Collapse
|
58
|
Bi Z, Zhang Q, Xu X, Yuan Y, Ren N, Lee DJ, Chen C. Perspective on inorganic electron donor-mediated biological denitrification process for low C/N wastewaters. BIORESOURCE TECHNOLOGY 2022; 363:127890. [PMID: 36075347 DOI: 10.1016/j.biortech.2022.127890] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 08/28/2022] [Accepted: 08/29/2022] [Indexed: 06/15/2023]
Abstract
Nitrate is the most common water environmental pollutant in the world. Inorganic electron donor-mediated denitrification is a typical process with significant advantages in treating low carbon-nitrogen ratio water and wastewater and has attracted extensive research attention. This review summarizes the denitrification processes using inorganic substances, including hydrogen, reductive sulfur compounds, zero-valent iron, and iron oxides, ammonium nitrogen, and other reductive heavy metal ions as electron donors. Aspects on the functional microorganisms, critical metabolic pathways, limiting factors and mathematical modeling are outlined. Also, the typical inorganic electron donor-mediated denitrification processes and their mechanism, the available microorganisms, process enhancing approaches and the engineering potentials, are compared and discussed. Finally, the prospects of developing the next generation inorganic electron donor-mediated denitrification process is put forward.
Collapse
Affiliation(s)
- Zhihao Bi
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, Heilongjiang Province 150090, China
| | - Quan Zhang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, Heilongjiang Province 150090, China
| | - Xijun Xu
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, Heilongjiang Province 150090, China
| | - Yuan Yuan
- College of Biological Engineering, Beijing Polytechnic, Beijing 10076, China
| | - Nanqi Ren
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, Heilongjiang Province 150090, China; Shenzhen Graduate School, Harbin Institute of Technology, Shenzhen 518055, China
| | - Duu-Jong Lee
- Department of Mechanical Engineering, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong; Department of Chemical Engineering and Materials Science, Yuan Ze University, Chung-li 32003, Taiwan
| | - Chuan Chen
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, Heilongjiang Province 150090, China.
| |
Collapse
|
59
|
Engel M, Noël V, Kukkadapu RK, Boye K, Bargar JR, Fendorf S. Nitrate Controls on the Extent and Type of Metal Retention in Fine-Grained Sediments of a Simulated Aquifer. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:14452-14461. [PMID: 36206030 DOI: 10.1021/acs.est.2c03403] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Aquifer groundwater quality is largely controlled by sediment composition and physical heterogeneity, which commonly sustains a unique redox gradient pattern. Attenuation of heavy metals within these heterogeneous aquifers is reliant on multiple factors, including redox conditions and redox-active species that can further influence biogeochemical cycling. Here, we simulated an alluvial aquifer system using columns filled with natural coarse-grained sediments and two domains of fine-grained sediment lenses. Our goal was to examine heavy metal (Ni and Zn) attenuation within a complex aquifer network and further explore nitrate-rich groundwater conditions. The fine-grained sediment lenses sustained reducing conditions and served as a sink for Ni sequestration─in the form of Ni-silicates, Ni-organic matter, and a dominant Ni-sulfide phase. The silicate clay and sulfide pools were also important retention mechanisms for Zn; however, Ni was associated more extensively with organic matter compared to Zn, which formed layered double hydroxides. Nitrate-rich conditions promoted denitrification within the lenses that was coupled to the oxidation of Fe(II) and the concomitant precipitation of an Fe(III) phase with higher structural distortion. A decreased metal sulfide pool also resulted, where nitrate-rich conditions generated an average 20% decrease in solid-phase Ni, Zn, and Fe. Ultimately, nitrate plays a significant role in the aquifer's biogeochemical cycling and the capacity to retain heavy metals.
Collapse
Affiliation(s)
- Maya Engel
- Department of Earth System Science, Stanford University, Stanford, California 94305, United States
- Geochemistry and Biogeochemistry Group, SLAC National Accelerator Laboratory, Menlo Park, California 94025, United States
| | - Vincent Noël
- Geochemistry and Biogeochemistry Group, SLAC National Accelerator Laboratory, Menlo Park, California 94025, United States
| | - Ravi K Kukkadapu
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, Washington, 99354, United States
| | - Kristin Boye
- Geochemistry and Biogeochemistry Group, SLAC National Accelerator Laboratory, Menlo Park, California 94025, United States
| | - John R Bargar
- Geochemistry and Biogeochemistry Group, SLAC National Accelerator Laboratory, Menlo Park, California 94025, United States
| | - Scott Fendorf
- Department of Earth System Science, Stanford University, Stanford, California 94305, United States
| |
Collapse
|
60
|
Wei M, Zeng X, Han X, Shao Z, Xie Q, Dong C, Wang Y, Qiu Z. Potential autotrophic carbon-fixer and Fe(II)-oxidizer Alcanivorax sp. MM125-6 isolated from Wocan hydrothermal field. Front Microbiol 2022; 13:930601. [PMID: 36316996 PMCID: PMC9616709 DOI: 10.3389/fmicb.2022.930601] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 09/09/2022] [Indexed: 12/02/2022] Open
Abstract
The genus Alcanivorax is common in various marine environments, including in hydrothermal fields. They were previously recognized as obligate hydrocarbonoclastic bacteria, but their potential for autotrophic carbon fixation and Fe(II)-oxidation remains largely elusive. In this study, an in situ enrichment experiment was performed using a hydrothermal massive sulfide slab deployed 300 m away from the Wocan hydrothermal vent. Furthermore, the biofilms on the surface of the slab were used as an inoculum, with hydrothermal massive sulfide powder from the same vent as an energy source, to enrich the potential iron oxidizer in the laboratory. Three dominant bacterial families, Alcanivoraceae, Pseudomonadaceae, and Rhizobiaceae, were enriched in the medium with hydrothermal massive sulfides. Subsequently, strain Alcanivorax sp. MM125-6 was isolated from the enrichment culture. It belongs to the genus Alcanivorax and is closely related to Alcanivorax profundimaris ST75FaO-1 T (98.9% sequence similarity) indicated by a phylogenetic analysis based on 16S rRNA gene sequences. Autotrophic growth experiments on strain MM125-6 revealed that the cell concentrations were increased from an initial 7.5 × 105 cells/ml to 3.13 × 108 cells/ml after 10 days, and that the δ13C VPDB in the cell biomass was also increased from 234.25‰ on day 2 to gradually 345.66 ‰ on day 10. The gradient tube incubation showed that bands of iron oxides and cells formed approximately 1 and 1.5 cm, respectively, below the air-agarose medium interface. In addition, the SEM-EDS data demonstrated that it can also secrete acidic exopolysaccharides and adhere to the surface of sulfide minerals to oxidize Fe(II) with NaHCO3 as the sole carbon source, which accelerates hydrothermal massive sulfide dissolution. These results support the conclusion that strain MM125-6 is capable of autotrophic carbon fixation and Fe(II) oxidization chemoautotrophically. This study expands our understanding of the metabolic versatility of the Alcanivorax genus as well as their important role(s) in coupling hydrothermal massive sulfide weathering and iron and carbon cycles in hydrothermal fields.
Collapse
Affiliation(s)
- Mingcong Wei
- Ocean College, Zhejiang University, Zhoushan, China
- Key Laboratory of Submarine Geosciences, Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou, China
| | - Xiang Zeng
- Key Laboratory of Marine Biogenetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, China
| | - Xiqiu Han
- Ocean College, Zhejiang University, Zhoushan, China
- Key Laboratory of Submarine Geosciences, Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou, China
| | - Zongze Shao
- Key Laboratory of Marine Biogenetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, China
| | - Qian Xie
- Key Laboratory of Submarine Geosciences, Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou, China
- School of Oceanography, Shanghai Jiao Tong University, Shanghai, China
| | - Chuanqi Dong
- Key Laboratory of Submarine Geosciences, Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou, China
- College of Marine Geosciences, Ocean University of China, Qingdao, China
| | - Yejian Wang
- Key Laboratory of Submarine Geosciences, Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou, China
| | - Zhongyan Qiu
- Key Laboratory of Submarine Geosciences, Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou, China
| |
Collapse
|
61
|
Li J, Zeng W, Liu H, Zhan M, Miao H. Achieving deep autotrophic nitrogen removal in aerated biofilter driven by sponge iron: Performance and mechanism. ENVIRONMENTAL RESEARCH 2022; 213:113653. [PMID: 35691384 DOI: 10.1016/j.envres.2022.113653] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 06/02/2022] [Accepted: 06/08/2022] [Indexed: 06/15/2023]
Abstract
Different from anammox, the combination of Fe (III) reduction coupled to anaerobic ammonium oxidation (Feammox) and nitrate/nitrite dependent ferrous oxidation (NDFO) do not require to control nitrite accumulation. Furthermore, sponge iron can avoid continuous iron supplementation in practice and is a good iron source for the occurrence of Feammox and NDFO in wastewater treatment. Therefore, a biofilter using sponge iron as carrier treating low nitrogen wastewater was built. In this study, the performances of nitrogen removal were explored under different hydraulic retention times (HRT) and gas-water ratios in sponge iron biofilter. And the pathways of nitrogen removal were analyzed by activity tests. The results showed ammonia removal efficiency reached 94.1% and total inorganic nitrogen removal efficiency was up to 70.6% at HRT of 19 h and gas-water ratio of 18. Compared to nitrogen removal by adsorption under non-aeration, the activity tests showed that total inorganic nitrogen loss was caused by Feammox and NDFO after aeration. The results of microbial communities showed that appearances of nitrifier-Nitrosomonadaceae, Feammox bacteria-Clostridiaceae and NDFO bacteria-Gallionellaceae resulted in deep nitrogen removal after aeration, in which Nitrosomonadaceae and Clostridiaceae contributed to ammonia removal and Gallionellaceae contributed to nitrite/nitrate reduction to nitrogen gas. Therefore, it was feasible to achieve deep autotrophic nitrogen removal and Fe (II) and Fe (III) cycle in sponge iron biofilter.
Collapse
Affiliation(s)
- Jianmin Li
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Beijing University of Technology, Beijing, 100124, China
| | - Wei Zeng
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Beijing University of Technology, Beijing, 100124, China.
| | - Hong Liu
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Beijing University of Technology, Beijing, 100124, China
| | - Mengjia Zhan
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Beijing University of Technology, Beijing, 100124, China
| | - HaoHao Miao
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Beijing University of Technology, Beijing, 100124, China
| |
Collapse
|
62
|
Zhang L, Li W, Li J, Wang Y, Xie H, Zhao W. A novel iron-mediated nitrogen removal technology of ammonium oxidation coupled to nitrate/nitrite reduction: Recent advances. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 319:115779. [PMID: 35982573 DOI: 10.1016/j.jenvman.2022.115779] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 07/15/2022] [Accepted: 07/15/2022] [Indexed: 06/15/2023]
Affiliation(s)
- Lihong Zhang
- School of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou, 730070, People's Republic of China; Gansu Membrane Science and Technology Research Institute Co.,Ltd., Lanzhou, 730020, People's Republic of China; Key Laboratory for Resources Utilization Technology of Unconventional Water of Gansu Province, Lanzhou, 730020, People's Republic of China
| | - Wenxuan Li
- NUS Environmental Research Institute, National University of Singapore, 5A Engineering Drive 1, #02-01 T-Lab Building, Singapore, 117411, Singapore
| | - Jie Li
- School of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou, 730070, People's Republic of China.
| | - Ya'e Wang
- School of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou, 730070, People's Republic of China
| | - Huina Xie
- School of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou, 730070, People's Republic of China
| | - Wei Zhao
- School of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou, 730070, People's Republic of China
| |
Collapse
|
63
|
Stromecki A, Murray L, Fullerton H, Moyer CL. Unexpected diversity found within benthic microbial mats at hydrothermal springs in Crater Lake, Oregon. Front Microbiol 2022; 13:876044. [PMID: 36187998 PMCID: PMC9516098 DOI: 10.3389/fmicb.2022.876044] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 08/09/2022] [Indexed: 11/18/2022] Open
Abstract
Crater Lake, Oregon is an oligotrophic freshwater caldera lake fed by thermally and chemically enriched hydrothermal springs. These vents distinguish Crater Lake from other freshwater systems and provide a unique ecosystem for study. This study examines the community structure of benthic microbial mats occurring with Crater Lake hydrothermal springs. Small subunit rRNA gene amplicon sequencing from eight bacterial mats was used to assess community structure. These revealed a relatively homogeneous, yet diverse bacterial community. High alpha diversity and low beta diversity indicate that these communities are likely fueled by homogeneous hydrothermal fluids. An examination of autotrophic taxa abundance indicates the potential importance of iron and sulfur inputs to the primary productivity of these mats. Chemoautotrophic potential within the mats was dominated by iron oxidation from Gallionella and Mariprofundus and by sulfur oxidation from Sulfuricurvum and Thiobacillus with an additional contribution of nitrite oxidation from Nitrospira. Metagenomic analysis showed that cbbM genes were identified as Gallionella and that aclB genes were identified as Nitrospira, further supporting these taxa as autotrophic drivers of the community. The detection of several taxa containing arsC and nirK genes suggests that arsenic detoxification and denitrification processes are likely co-occurring in addition to at least two modes of carbon fixation. These data link the importance of the detected autotrophic metabolisms driven by fluids derived from benthic hydrothermal springs to Crater Lake’s entire lentic ecosystem.
Collapse
Affiliation(s)
- Amanda Stromecki
- Department of Biology, Western Washington University, Bellingham, WA, United States
| | - Laura Murray
- Department of Biology, Western Washington University, Bellingham, WA, United States
| | - Heather Fullerton
- Department of Biology, College of Charleston, Charleston, SC, United States
| | - Craig L. Moyer
- Department of Biology, Western Washington University, Bellingham, WA, United States
- *Correspondence: Craig L. Moyer,
| |
Collapse
|
64
|
Wang W, Ding B, Hu Y, Zhang H, He Y, She Y, Li Z. Evidence for the occurrence of Feammox coupled with nitrate-dependent Fe(II) oxidation in natural enrichment cultures. CHEMOSPHERE 2022; 303:134903. [PMID: 35551943 DOI: 10.1016/j.chemosphere.2022.134903] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 05/05/2022] [Accepted: 05/06/2022] [Indexed: 06/15/2023]
Abstract
Feammox is a newly discovered process of anaerobic ammonium oxidation driven by Fe(III) reduction. Nitrate-dependent Fe(II) oxidation (NDFO) is the coupling of Fe(II) oxidation and nitrate reduction to produce N2 under anaerobic conditions. It has not been reported whether the coupling of the two reactions exists in natural enrichment. In this study, enrichment culture experiments were carrired out to prove the occurrence of Feammox with NDFO. The results indicated that the nitrogen and iron cycle were formed during natural enrichment cultures, including Fe(III) reduction and NH4+-N was oxidation to NO3--N, NO2--N and N2, Fe(III) and Fe(II) were cyclically formed, and Fe(II) was oxidized with NO3--N reduced to N2. The removal efficiencies of ammonium nitrogen and total nitrogen in the incubation were about 92.9% and 20% respectively. Organic carbon experiments indicate that sodium acetate can promote the initial NO3--N removal and a low concentration of organic carbon limited the NDFO process because iron-oxidizing bacteria are mixotrophic microorganisms. The added 9,10-anthraquinone-2,6-disulfonate (AQDS) in the later stage can promote NDFO to remove nitrate, thereby increasing the TN removal efficiency to 50%. 15N-isotope tracer incubations provided direct evidence for the occurrence of Feammox coupled to NDFO, with rates producing 30N2 of Feammox (0.024-0.0288 mg N·L-1·d-1) and NDFO (0.0465-0.0833 mg N·L-1·d-1) in three groups (Wetland/Wheat soil/Sediment). 16S rRNA sequencing further demonstrated that Pseudomonas, Rhodanobacter, Acinetobacter and Thermomonas were the dominant generas among the enrichment cultures, and these bacteria belonged to FeOB and FeRB, which may further promote Feammox coupled to NDFO in the cultivation system.
Collapse
Affiliation(s)
- Wei Wang
- State Key Laboratory of Pollution Control and Resource Reuse, Nanjing University, Nanjing, 210023, China; School of the Environment, Nanjing University, Nanjing, 210023, China
| | - Bangjing Ding
- State Key Laboratory of Pollution Control and Resource Reuse, Nanjing University, Nanjing, 210023, China; School of the Environment, Nanjing University, Nanjing, 210023, China; Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China
| | - Youyou Hu
- State Key Laboratory of Pollution Control and Resource Reuse, Nanjing University, Nanjing, 210023, China; School of the Environment, Nanjing University, Nanjing, 210023, China
| | - Hui Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, Nanjing University, Nanjing, 210023, China; School of the Environment, Nanjing University, Nanjing, 210023, China
| | - Yanqing He
- State Key Laboratory of Pollution Control and Resource Reuse, Nanjing University, Nanjing, 210023, China; School of the Environment, Nanjing University, Nanjing, 210023, China
| | - Yuecheng She
- State Key Laboratory of Pollution Control and Resource Reuse, Nanjing University, Nanjing, 210023, China; School of the Environment, Nanjing University, Nanjing, 210023, China
| | - Zhengkui Li
- State Key Laboratory of Pollution Control and Resource Reuse, Nanjing University, Nanjing, 210023, China; School of the Environment, Nanjing University, Nanjing, 210023, China.
| |
Collapse
|
65
|
Zhao L, Xue L, Wang L, Liu C, Li Y. Simultaneous heterotrophic and FeS 2-based ferrous autotrophic denitrification process for low-C/N ratio wastewater treatment: Nitrate removal performance and microbial community analysis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 829:154682. [PMID: 35307420 DOI: 10.1016/j.scitotenv.2022.154682] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 03/05/2022] [Accepted: 03/15/2022] [Indexed: 06/14/2023]
Abstract
Heterotrophic-autotrophic denitrification reduces the cost of wastewater treatment and the risk of excess chemical oxygen demanded (COD) in the effluent. A mixotrophic denitrification system involving mixed heterotrophic and ferrous autotrophic bacteria was investigated to treat low-C/N ratio (C/N, defined as chemical oxygen demand (COD)/total nitrogen (TN)) wastewater with pyrite and organic carbon as electron donors. The system yielded effluent total nitrogen (TN) of 0.38 mg/L in 48 h due to a synergistic effect when the C/N ratio was 0.5 and influent nitrate nitrogen (NO3--N) was 20 mg/L; this TN value was significantly lower than those of the heterotrophic system (14.08 mg/L) and ferrous autotrophic system (12.00 mg/L). The highest abundance of the narG gene was observed in the mixotrophic denitrification system, along with more abundant microbial species. The dominant denitrification bacteria in each system included Thaurea, Ferritrophicum, Pseudomonas, and Thiobacillus, which varied with the initial inoculum source and the environment. Nevertheless, the abundance of the heterotrophic bacteria Thaurea decreased with prolonged operation of the systems. Together, these results implied that the simultaneous heterotrophic and FeS2-based ferrous autotrophic denitrification process can be an alternative approach for the treatment of low-C/N ratio wastewater.
Collapse
Affiliation(s)
- Lianfang Zhao
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Xikang Road, Nanjing 210098, China.
| | - Liuying Xue
- College of Environment, Hohai University, Xikang Road, Nanjing 210098, China
| | - Li Wang
- College of Environment, Hohai University, Xikang Road, Nanjing 210098, China
| | - Cheng Liu
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China
| | - Ying Li
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China
| |
Collapse
|
66
|
Wang X, Xie GJ, Tian N, Dang CC, Cai C, Ding J, Liu BF, Xing DF, Ren NQ, Wang Q. Anaerobic microbial manganese oxidation and reduction: A critical review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 822:153513. [PMID: 35101498 DOI: 10.1016/j.scitotenv.2022.153513] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Revised: 01/24/2022] [Accepted: 01/25/2022] [Indexed: 06/14/2023]
Abstract
Manganese is a vital heavy metal abundant in terrestrial and aquatic environments. Anaerobic manganese redox reactions mediated by microorganisms have been recognized for a long time, which promote elements mobility and bioavailability in the environment. Biological anaerobic redox of manganese serves two reactions, including Mn(II) oxidation and Mn(IV) reduction. This review provides a comprehensive analysis of manganese redox cycles in the environment, closely related to greenhouse gas mitigation, the fate of nutrients, microbial bioremediation, and global biogeochemical cycle, including nitrogen, sulfur, and carbon. The oxidation and reduction of manganese occur cyclically and simultaneously in the environment. Anaerobic reduction of Mn(IV) receives electrons from methane, ammonium and sulfide, while Mn(II) can function as an electron source for manganese-oxidizing microorganisms for autotrophic denitrification and photosynthesis. The anaerobic redox transition between Mn(II) and Mn(IV) promotes a dynamic biogeochemical cycle coupled to microorganisms in water, soil and sediment environments. The discussion of reaction mechanisms, microorganism diversity, environmental influence bioremediation and application identify the research gaps for future investigation, which provides promising opportunities for further development of biotechnological applications to remediate contaminated environments.
Collapse
Affiliation(s)
- Xuan Wang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Guo-Jun Xie
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China.
| | - Ning Tian
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Cheng-Cheng Dang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Chen Cai
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Jie Ding
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Bing-Feng Liu
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - De-Feng Xing
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Nan-Qi Ren
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Qilin Wang
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Ultimo, NSW 2007, Australia
| |
Collapse
|
67
|
Salinity Impact on Composition and Activity of Nitrate-Reducing Fe(II)-Oxidizing Microorganisms in Saline Lakes. Appl Environ Microbiol 2022; 88:e0013222. [PMID: 35499328 DOI: 10.1128/aem.00132-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Nitrate-reducing Fe(II)-oxidizing (NRFeOx) microorganisms contribute to nitrogen, carbon, and iron cycling in freshwater and marine ecosystems. However, NRFeOx microorganisms have not been investigated in hypersaline lakes, and their identity, as well as their activity in response to salinity, is unknown. In this study, we combined cultivation-based most probable number (MPN) counts with Illumina MiSeq sequencing to analyze the abundance and community compositions of NRFeOx microorganisms enriched from five lake sediments with different salinities (ranging from 0.67 g/L to 346 g/L). MPN results showed that the abundance of NRFeOx microorganisms significantly (P < 0.05) decreased with increasing lake salinity, from 7.55 × 103 to 8.09 cells/g dry sediment. The community composition of the NRFeOx enrichment cultures obtained from the MPNs differed distinctly among the five lakes and clustered with lake salinity. Two stable enrichment cultures, named FeN-EHL and FeN-CKL, were obtained from microcosm incubations of sediment from freshwater Lake Erhai and hypersaline Lake Chaka. The culture FeN-EHL was dominated by genus Gallionella (68.4%), while the culture FeN-CKL was dominated by genus Marinobacter (71.2%), with the former growing autotrophically and the latter requiring an additional organic substrate (acetate) and Fe(II) oxidation, caused to a large extent by chemodenitrification [reaction of nitrite with Fe(II)]. Short-range ordered Fe(III) (oxyhydr)oxides were the product of Fe(II) oxidation, and the cells were partially attached to or encrusted by the formed iron minerals in both cultures. In summary, different types of interactions between Fe(II) and nitrate-reducing bacteria may exist in freshwater and hypersaline lakes, i.e., autotrophic NRFeOx and chemodenitrification in freshwater and hypersaline environments, respectively. IMPORTANCE NRFeOx microorganisms are globally distributed in various types of environments and play a vital role in iron transformation and nitrate and heavy metal removal. However, most known NRFeOx microorganisms were isolated from freshwater and marine environments, while their identity and activity under hypersaline conditions remain unknown. Here, we demonstrated that salinity may affect the abundance, identity, and nutrition modes of NRFeOx microorganisms. Autotrophy was only detectable in a freshwater lake but not in the saline lake investigated. We enriched a mixotrophic culture capable of nitrate-reducing Fe(II) oxidation from hypersaline lake sediments. However, Fe(II) oxidation was probably caused by abiotic nitrite reduction (chemodenitrification) rather than by a biologically mediated process. Consequently, our study suggests that in hypersaline environments, Fe(II) oxidation is largely caused by chemodentrification initiated by nitrite formation by chemoheterotrophic bacteria, and additional experiments are needed to demonstrate whether or to what extent Fe(II) is enzymatically oxidized.
Collapse
|
68
|
Singh D, Sinha RK, Singh P, Roy N, Mukherjee S. Astrobiological Potential of Fe/Mg Smectites with Special Emphasis on Jezero Crater, Mars 2020 Landing Site. ASTROBIOLOGY 2022; 22:579-597. [PMID: 35171004 DOI: 10.1089/ast.2021.0013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Life is known to adapt in accordance with its surrounding environment and sustainable resources available to it. Since harsh conditions would have precluded any possible aerobic evolution of life at the martian surface, it is plausible that martian life, should it exist, would have evolved in such a way as to derive energy from more optimum resources. Iron is one of the most abundant elements present in the martian crust and occurs at about twice the amount present on Earth. Clay minerals contribute to about half the iron found in soils and sediments. On Earth, clay acts as an electron donor as well as an acceptor in the carbon cycles and thereby supports a wide variety of metabolic reactions. In this context, we consider the potential of Fe/Mg smectites, one of the most widely reported hydrated minerals on Mars, for preservation of macro- and microscopic biosignatures. We proceed by understanding the environmental conditions during the formation of smectites and various microbes and metabolic processes associated with them as indicated in Earth-based studies. We also explore the possibility of biosignatures and their identification within the Mars 2020 landing site (Jezero Crater) by using the astrobiological payloads on board the Perseverance rover.
Collapse
Affiliation(s)
- Deepali Singh
- School of Environmental Sciences, Jawaharlal Nehru University, New Delhi, India
| | | | - Priyadarshini Singh
- School of Environmental Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Nidhi Roy
- School of Environmental Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Saumitra Mukherjee
- School of Environmental Sciences, Jawaharlal Nehru University, New Delhi, India
| |
Collapse
|
69
|
Pang S, Li N, Luo H, Luo X, Shen T, Yang Y, Jiang J. Autotrophic Fe-Driven Biological Nitrogen Removal Technologies for Sustainable Wastewater Treatment. Front Microbiol 2022; 13:895409. [PMID: 35572701 PMCID: PMC9100419 DOI: 10.3389/fmicb.2022.895409] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Accepted: 04/08/2022] [Indexed: 11/13/2022] Open
Abstract
Fe-driven biological nitrogen removal (FeBNR) has become one of the main technologies in water pollution remediation due to its economy, safety and mild reaction conditions. This paper systematically summarizes abiotic and biotic reactions in the Fe and N cycles, including nitrate/nitrite-dependent anaerobic Fe(II) oxidation (NDAFO) and anaerobic ammonium oxidation coupled with Fe(III) reduction (Feammox). The biodiversity of iron-oxidizing microorganisms for nitrate/nitrite reduction and iron-reducing microorganisms for ammonium oxidation are reviewed. The effects of environmental factors, e.g., pH, redox potential, Fe species, extracellular electron shuttles and natural organic matter, on the FeBNR reaction rate are analyzed. Current application advances in natural and artificial wastewater treatment are introduced with some typical experimental and application cases. Autotrophic FeBNR can treat low-C/N wastewater and greatly benefit the sustainable development of environmentally friendly biotechnologies for advanced nitrogen control.
Collapse
Affiliation(s)
- Suyan Pang
- Key Laboratory of Songliao Aquatic Environment, School of Municipal and Environmental Engineering, Ministry of Education, Jilin Jianzhu University, Changchun, China
| | - Ning Li
- Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China
- Guangdong Provincial Engineering Technology Research Center for Life and Health of River & Lake, Pearl River Water Resources Research Institute, Pearl River Water Resources Commission of the Ministry of Water Resources, Guangzhou, China
- *Correspondence: Ning Li, ;
| | - Huan Luo
- Guangdong Provincial Engineering Technology Research Center for Life and Health of River & Lake, Pearl River Water Resources Research Institute, Pearl River Water Resources Commission of the Ministry of Water Resources, Guangzhou, China
| | - Xiaonan Luo
- Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China
| | - Tong Shen
- Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China
| | - Yanan Yang
- Guangdong Provincial Engineering Technology Research Center for Life and Health of River & Lake, Pearl River Water Resources Research Institute, Pearl River Water Resources Commission of the Ministry of Water Resources, Guangzhou, China
| | - Jin Jiang
- Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China
| |
Collapse
|
70
|
Xu L, Su J, Ali A, Chang Q, Shi J, Yang Y. Denitrification performance of nitrate-dependent ferrous (Fe 2+) oxidizing Aquabacterium sp. XL4: Adsorption mechanisms of bio-precipitation of phenol and estradiol. JOURNAL OF HAZARDOUS MATERIALS 2022; 427:127918. [PMID: 34863560 DOI: 10.1016/j.jhazmat.2021.127918] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 11/03/2021] [Accepted: 11/24/2021] [Indexed: 06/13/2023]
Abstract
In this study, a nitrate-dependent ferrous (Fe2+) oxidizing strain under anaerobic conditions was selected and identified as XL4, which belongs to Aquabacterium. The Box-Behnken design (BBD) was used to optimize the growth conditions of strain XL4, and the nitrate removal efficiency of strain XL4 (with 10% inoculation dosage, v/v) could reach 91.41% under the conditions of 30.34 ℃, pH of 6.91, and Fe2+ concentration of 19.69 mg L-1. The results of Fluorescence excitation-emission matrix spectra (EEM) revealed that the intensity of soluble microbial products (SMP), aromatic proteins and the fulvic-like materials were obvious difference under different Fe2+ concentration, pH, and temperature. X-ray diffraction (XRD) data confirmed that the main components of bio-precipitation were Fe3O4 and FeO(OH), which were believed to be responsible for the adsorption of phenol and estradiol. Furthermore, the maximum adsorption capacity of bio-precipitation for phenol and estradiol under the optimal conditions were 192.6 and 65.4 mg g-1, respectively. On the other hand, the adsorption process of phenol and estradiol by bio-precipitation confirmed to the pseudo-second-order and Langmuir model, which shows that the adsorption process is chemical adsorption and occurs on the uniform surface.
Collapse
Affiliation(s)
- Liang Xu
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Junfeng Su
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China.
| | - Amjad Ali
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Qiao Chang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Jun Shi
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Yuzhu Yang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| |
Collapse
|
71
|
Price A, Macey MC, Pearson VK, Schwenzer SP, Ramkissoon NK, Olsson-Francis K. Oligotrophic Growth of Nitrate-Dependent Fe 2+-Oxidising Microorganisms Under Simulated Early Martian Conditions. Front Microbiol 2022; 13:800219. [PMID: 35418959 PMCID: PMC8997339 DOI: 10.3389/fmicb.2022.800219] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 02/24/2022] [Indexed: 11/30/2022] Open
Abstract
Nitrate-dependent Fe2+ oxidation (NDFO) is a microbially mediated process observed in many anaerobic, low-nutrient (oligotrophic) neutral-alkaline environments on Earth, which describes oxidation of Fe2+ to Fe3+ in tandem with microbial nitrate reduction. Evidence suggests that similar environments existed on Mars during the Noachian epoch (4.1-3.7 Ga) and in periodic, localised environments more recently, indicating that NDFO metabolism could have played a role in a potential early martian biosphere. In this paper, three NDFO microorganisms, Acidovorax sp. strain BoFeN1, Pseudogulbenkiania sp. strain 2002 and Paracoccus sp. strain KS1, were assessed for their ability to grow oligotrophically in simulated martian brines and in a minimal medium with olivine as a solid Fe2+ source. These simulant-derived media were developed from modelled fluids based on the geochemistry of Mars sample locations at Rocknest (contemporary Mars soil), Paso Robles (sulphur-rich soil), Haematite Slope (haematite-rich soil) and a Shergottite meteorite (common basalt). The Shergottite medium was able to support growth of all three organisms, while the contemporary Mars medium supported growth of Acidovorax sp. strain BoFeN1 and Pseudogulbenkiania sp. strain 2002; however, growth was not accompanied by significant Fe2+ oxidation. Each of the strains was also able to grow in oligotrophic minimal media with olivine as the sole Fe2+ source. Biomineralised cells of Pseudogulbenkiania sp. strain 2002 were identified on the surface of the olivine, representing a potential biosignature for NDFO microorganisms in martian samples. The results suggest that NDFO microorganisms could have thrived in early martian groundwaters under oligotrophic conditions, depending on the local lithology. This can guide missions in identifying palaeoenvironments of interest for biosignature detection. Indeed, biomineralised cells identified on the olivine surface provide a previously unexplored mechanism for the preservation of morphological biosignatures in the martian geological record.
Collapse
Affiliation(s)
- Alex Price
- School of Environment, Earth and Ecosystem Sciences, Faculty of Science, Technology, Engineering, and Mathematics, The Open University, Milton Keynes, United Kingdom
| | - Michael C. Macey
- School of Environment, Earth and Ecosystem Sciences, Faculty of Science, Technology, Engineering, and Mathematics, The Open University, Milton Keynes, United Kingdom
| | - Victoria K. Pearson
- School of Physical Sciences, Faculty of Science, Technology, Engineering, and Mathematics, The Open University, Milton Keynes, United Kingdom
| | - Susanne P. Schwenzer
- School of Environment, Earth and Ecosystem Sciences, Faculty of Science, Technology, Engineering, and Mathematics, The Open University, Milton Keynes, United Kingdom
| | - Nisha K. Ramkissoon
- School of Environment, Earth and Ecosystem Sciences, Faculty of Science, Technology, Engineering, and Mathematics, The Open University, Milton Keynes, United Kingdom
| | - Karen Olsson-Francis
- School of Environment, Earth and Ecosystem Sciences, Faculty of Science, Technology, Engineering, and Mathematics, The Open University, Milton Keynes, United Kingdom
| |
Collapse
|
72
|
Zhang C, Liu S, Hussain S, Li L, Baiome BA, Xiao S, Cao H. Fe(II) Addition Drives Soil Bacterial Co-Ocurrence Patterns and Functions Mediated by Anaerobic and Chemoautotrophic Taxa. Microorganisms 2022; 10:microorganisms10030547. [PMID: 35336122 PMCID: PMC8950066 DOI: 10.3390/microorganisms10030547] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 02/04/2022] [Accepted: 02/05/2022] [Indexed: 12/10/2022] Open
Abstract
Iron is among the most abundant elements in the soil of paddy fields, and its valence state and partitioning can be transformed by flooding and drainage alternations. However, little is known about the function of soil microbes that interact with Fe(II). In this study, sandy and loamy soils originating from rice fields were treated with Fe(II) at low and high concentrations. The findings demonstrate that additional Fe(II) has various effects on the soil’s microbial community structure and metabolic pathways. We conclude that Fe(II) at high concentrations reduced bacterial abundance and diversity in two textured paddy soils, yet the abundance in loamy soils was higher than it was in sandy soil. Additionally, in environments with high Fe(II) levels, the relative abundance of both anaerobic and chemoautotrophic bacteria increased. The Fe(II) concentration was positively correlated with total reduced substances but negatively correlated with redox potential and pH. Co-occurrence networks revealed that Fe(II) significantly promoted interactions with the most anaerobic and chemoautotrophic bacteria. In addition, adding Fe(II) greatly increased the number of more complex bacterial networks, and an increase in the number of mutually beneficial taxa occurred. We found that Fe(II) promoted the methane pathway, the Calvin cycle, and nitrate reduction to small but significant extents. These pathways involve the growth and interrelation of autotrophic and anaerobic bacteria. These results suggest that changes in the bacterial community structure occur in many dry–wet alternating environments.
Collapse
Affiliation(s)
- Chenyang Zhang
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture and Rural Affair, College of Life Sciences, Nanjing Agricultural University, 6 Tongwei Road, Nanjing 210095, China; (C.Z.); (S.L.); (S.H.); (L.L.); (B.A.B.)
| | - Senlin Liu
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture and Rural Affair, College of Life Sciences, Nanjing Agricultural University, 6 Tongwei Road, Nanjing 210095, China; (C.Z.); (S.L.); (S.H.); (L.L.); (B.A.B.)
- Wellington Research Group, School of Life Sciences, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, UK
| | - Sarfraz Hussain
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture and Rural Affair, College of Life Sciences, Nanjing Agricultural University, 6 Tongwei Road, Nanjing 210095, China; (C.Z.); (S.L.); (S.H.); (L.L.); (B.A.B.)
| | - Lifeng Li
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture and Rural Affair, College of Life Sciences, Nanjing Agricultural University, 6 Tongwei Road, Nanjing 210095, China; (C.Z.); (S.L.); (S.H.); (L.L.); (B.A.B.)
| | - Baiome Abdelmaguid Baiome
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture and Rural Affair, College of Life Sciences, Nanjing Agricultural University, 6 Tongwei Road, Nanjing 210095, China; (C.Z.); (S.L.); (S.H.); (L.L.); (B.A.B.)
| | - Shuiqing Xiao
- School of Intercultural Studies, Jiangxi Normal University, Nanchang 330022, China;
| | - Hui Cao
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture and Rural Affair, College of Life Sciences, Nanjing Agricultural University, 6 Tongwei Road, Nanjing 210095, China; (C.Z.); (S.L.); (S.H.); (L.L.); (B.A.B.)
- Correspondence: ; Tel./Fax: +86-025-8439-6753
| |
Collapse
|
73
|
Wei J, Zhang X, Xia L, Yuan W, Zhou Z, Brüggmann N. Role of chemical reactions in the nitrogenous trace gas emissions and nitrogen retention: A meta-analysis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 808:152141. [PMID: 34871694 DOI: 10.1016/j.scitotenv.2021.152141] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Revised: 11/07/2021] [Accepted: 11/28/2021] [Indexed: 06/13/2023]
Abstract
Increasing evidence has been found that chemical reactions affect significantly the terrestrial nitrogen (N) cycle, which was previously assumed to be mainly dominated by biological processes. Due to the limitation of knowledge and analytical techniques, it is currently challenging to discern the contribution of biotic and abiotic processes to the terrestrial N cycle for geobiologists and biogeochemists alike. To better understand the role of abiotic reactions in the terrestrial N cycle, it is necessary to comprehend the chemical controls on nitrogenous trace gas emissions and N retention in soil under various environmental conditions. In this manuscript, we assess the role of abiotic reactions in nitrous oxide (N2O) and nitric oxide (NO) emissions as well as N retention through a meta-analysis using all related peer-reviewed publications before August 2020. Results show that abiotic reactions contributed 29.3-37.7% and 44.0-57.0% to the total N2O emission and N retention, representing 3.7-4.7 and 4.0-6.0 Tg year-1 of global terrestrial N2O emission and N retention, respectively. Much higher NO production was observed in sterilized soils than that in unsterilized treatments indicating the major contribution of chemical reactions to NO emission and rapid microbial reduction of NO to N2O and N2. Chemical hydroxylamine oxidation accounts for the largest abiotic contribution to N2O emission, while chemical nitrite reduction and fixation represent for the largest contribution to abiotic NO production and soil N retention, respectively. Factors influencing the abiotic processes include pH, total organic carbon (TOC), total nitrogen (TN), the ratio of carbon to nitrogen (C/N), and transition metals. These results broadened our knowledge about the mechanisms involved in chemical N reactions and provided a simplified estimation about their contribution to nitrogenous trace gas emission and N retention, which is meaningful to further study interactions of biologically and chemically mediated reactions in biogeochemical N cycle.
Collapse
Affiliation(s)
- Jing Wei
- School of Atmospheric Sciences, Sun Yat-sen University, Zhuhai, Guangdong 519082, China; Forschungszentrum Jülich GmbH, Institute of Bio- and Geosciences, Agrosphere (IBG-3), Wilhelm-Johnen-Straße, 52425 Jülich, Germany; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, Guangdong 519082, China.
| | - Xinying Zhang
- College of Environmental and Chemical Engineering, Shanghai University, 99 Shangda Road, Shanghai 200444, China
| | - Longlong Xia
- Institute for Meteorology and Climate Research (IMK-IFU), Karlsruhe Institute of Technology, Garmisch-Partenkirchen 82467, Germany
| | - Wenping Yuan
- School of Atmospheric Sciences, Sun Yat-sen University, Zhuhai, Guangdong 519082, China; Guangdong Province Key Laboratory for Climate Change and Natural Disaster Studies, Sun Yat-sen University, Zhuhai 519082, China; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, Guangdong 519082, China
| | - Zhanyan Zhou
- School of Atmospheric Sciences, Sun Yat-sen University, Zhuhai, Guangdong 519082, China
| | - Nicolas Brüggmann
- Forschungszentrum Jülich GmbH, Institute of Bio- and Geosciences, Agrosphere (IBG-3), Wilhelm-Johnen-Straße, 52425 Jülich, Germany
| |
Collapse
|
74
|
Macías-Pérez LA, Levard C, Barakat M, Angeletti B, Borschneck D, Poizat L, Achouak W, Auffan M. Contrasted microbial community colonization of a bauxite residue deposit marked by a complex geochemical context. JOURNAL OF HAZARDOUS MATERIALS 2022; 424:127470. [PMID: 34687997 DOI: 10.1016/j.jhazmat.2021.127470] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 09/24/2021] [Accepted: 10/06/2021] [Indexed: 06/13/2023]
Abstract
Bauxite residue is the alkaline byproduct generated during alumina extraction and is commonly landfilled in open-air deposits. The growth in global alumina production have raised environmental concerns about these deposits since no large-scale reuses exist to date. Microbial-driven techniques including bioremediation and critical metal bio-recovery are now considered sustainable and cost-effective methods to revalorize bauxite residues. However, the establishment of microbial communities and their active role in these strategies are still poorly understood. We thus determined the geochemical composition of different bauxite residues produced in southern France and explored the development of bacterial and fungal communities using Illumina high-throughput sequencing. Physicochemical parameters were influenced differently by the deposit age and the bauxite origin. Taxonomical analysis revealed an early-stage microbial community dominated by haloalkaliphilic microorganisms and strongly influenced by chemical gradients. Microbial richness, diversity and network complexity increased significantly with the deposit age, reaching an equilibrium community composition similar to typical soils after decades of natural weathering. Our results suggested that salinity, pH, and toxic metals affected the bacterial community structure, while fungal community composition showed no clear correlations with chemical variations.
Collapse
Affiliation(s)
- Luis Alberto Macías-Pérez
- Aix Marseille Université, CNRS, IRD, INRAE, Collège de France, CEREGE, Technopôle de l'Arbois-Méditerranée, BP80, 13545 Aix-en-Provence, France; Aix Marseille Univ, CEA, CNRS, BIAM, LEMIRE, Laboratory of Microbial Ecology of the Rhizosphere, ECCOREV FR 3098, F-13108 St-Paul-lez-Durance, France.
| | - Clément Levard
- Aix Marseille Université, CNRS, IRD, INRAE, Collège de France, CEREGE, Technopôle de l'Arbois-Méditerranée, BP80, 13545 Aix-en-Provence, France.
| | - Mohamed Barakat
- Aix Marseille Univ, CEA, CNRS, BIAM, LEMIRE, Laboratory of Microbial Ecology of the Rhizosphere, ECCOREV FR 3098, F-13108 St-Paul-lez-Durance, France.
| | - Bernard Angeletti
- Aix Marseille Université, CNRS, IRD, INRAE, Collège de France, CEREGE, Technopôle de l'Arbois-Méditerranée, BP80, 13545 Aix-en-Provence, France.
| | - Daniel Borschneck
- Aix Marseille Université, CNRS, IRD, INRAE, Collège de France, CEREGE, Technopôle de l'Arbois-Méditerranée, BP80, 13545 Aix-en-Provence, France.
| | | | - Wafa Achouak
- Aix Marseille Univ, CEA, CNRS, BIAM, LEMIRE, Laboratory of Microbial Ecology of the Rhizosphere, ECCOREV FR 3098, F-13108 St-Paul-lez-Durance, France.
| | - Mélanie Auffan
- Aix Marseille Université, CNRS, IRD, INRAE, Collège de France, CEREGE, Technopôle de l'Arbois-Méditerranée, BP80, 13545 Aix-en-Provence, France; Civil and Environmental Engineering, Duke University, Durham, NC 27708, USA.
| |
Collapse
|
75
|
Li S, Liao Y, Pang Y, Dong X, Strous M, Ji G. Denitrification and dissimilatory nitrate reduction to ammonia in long-term lake sediment microcosms with iron(II). THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 807:150835. [PMID: 34627917 DOI: 10.1016/j.scitotenv.2021.150835] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 09/19/2021] [Accepted: 10/02/2021] [Indexed: 06/13/2023]
Abstract
Nitrate is an abundant pollutant in aquatic environments. Competition between the nitrate reduction processes, denitrification, which converts nitrate into nitrogen gas, and dissimilatory nitrate reduction to ammonia (DNRA), which converts nitrate into ammonia, decides whether an ecosystem removes or retains nitrogen. The presence of iron was previously reported to stimulate DNRA while sometimes inhibiting denitrification in in-situ studies, but long-term effect of iron(II) inputs on the competition is unknown. Here we inoculated long-term microcosms with sediments from two freshwater lakes. During 540 days of incubations, the microcosms with nitrate and Fe(II) additions of both lakes were able to sustain high nitrate reduction rates. Lepidocrocite was produced as a product of iron oxidation. We found both denitrification and DNRA were stimulated by nitrate and iron in the absence of external organic carbon addition. Phylogenetic analysis of denitrification genes, nirK and nirS, and DNRA genes, nirB and nrfA, was performed with metagenomic sequencing results. Enrichment was shown for reported Fe(II)-dependent nitrate reducers associated with nirS and nirB. Most of these bacteria are affiliated with Betaproteobacteria. From 16S rRNA gene analysis, Betaproteobacteria was enriched as well. In parallel, heterotrophic denitrifiers and methanotrophic DNRA archaea increased in abundance. Our results suggested heterotrophic and Fe(II)-dependent nitrate reducers both contributed to denitrification and DNRA in long-term microcosm incubations provided with iron.
Collapse
Affiliation(s)
- Shengjie Li
- Key Laboratory of Water and Sediment Sciences, Ministry of Education, Department of Environmental Engineering, Peking University, Beijing 100871, China; Department of Geoscience, University of Calgary, Calgary, AB T2N 1N4, Canada
| | - Yinhao Liao
- Key Laboratory of Water and Sediment Sciences, Ministry of Education, Department of Environmental Engineering, Peking University, Beijing 100871, China
| | - Yunmeng Pang
- Key Laboratory of Water and Sediment Sciences, Ministry of Education, Department of Environmental Engineering, Peking University, Beijing 100871, China; Collaborative Innovation Center for Advanced Nuclear Energy Technology, INET, Tsinghua University, Beijing 100084, China
| | - Xiaoli Dong
- Department of Geoscience, University of Calgary, Calgary, AB T2N 1N4, Canada
| | - Marc Strous
- Department of Geoscience, University of Calgary, Calgary, AB T2N 1N4, Canada
| | - Guodong Ji
- Key Laboratory of Water and Sediment Sciences, Ministry of Education, Department of Environmental Engineering, Peking University, Beijing 100871, China.
| |
Collapse
|
76
|
‘Candidatus ferrigenium straubiae’ sp. nov., ‘Candidatus ferrigenium bremense’ sp. nov., ‘Candidatus ferrigenium altingense’ sp. nov., are autotrophic Fe(II)-oxidizing bacteria of the family Gallionellaceae. Syst Appl Microbiol 2022; 45:126306. [DOI: 10.1016/j.syapm.2022.126306] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 02/06/2022] [Accepted: 02/07/2022] [Indexed: 01/04/2023]
|
77
|
Tian L, Yan B, Ou Y, Liu H, Cheng L, Jiao P. Effectiveness of Exogenous Fe 2+ on Nutrient Removal in Gravel-Based Constructed Wetlands. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19031475. [PMID: 35162498 PMCID: PMC8835606 DOI: 10.3390/ijerph19031475] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 01/21/2022] [Accepted: 01/22/2022] [Indexed: 11/16/2022]
Abstract
A group of microcosm-scale unplanted constructed wetlands (CWs) were established to evaluate the effectiveness of exogenous Fe2+ addition on ammonium nitrogen (NH4+-N), nitrate nitrogen (NO3--N), and total phosphorus (TP) removal. The addition of Fe2+ concentrations were 5 mg/L (CW-Fe5), 10 mg/L (CW-Fe10), 20 mg/L (CW-Fe20), 30 mg/L (CW-Fe30), and 0 mg/L (CW-CK). The microbial community in CWs was also analyzed to reveal the enhancement mechanism of pollutant removal. The results showed that the addition of Fe2+ could significantly (p < 0.05) reduce the NO3--N concentration in the CWs. When 10 mg/L Fe2+ was added and the hydraulic retention time (HRT) was 8 h, the highest removal rate of NO3--N was 88.66%. For NH4+-N, when the HRT was 8-24 h, the removal rate of CW-Fe5 was the highest (35.23% at 8 h and 59.24% at 24 h). When the HRT was 48-72 h, the removal rate of NH4+-N in CWs with 10 mg/L Fe2+ addition was the highest (85.19% at 48 h and 88.66% and 72 h). The removal rate of TP in all CWs was higher than 57.06%, compared with CW-CK, it increased 0.63-31.62% in CWs with Fe2+ addition; the final effluent TP concentration in CW-Fe5 (0.13 mg/L) and CW-Fe10 (0.16 mg/L) met the class III water standards in Surface Water Environmental Quality Standards of China (GB3838-2002). Microbical diversity indexes, including Shannon and Chao1, were significantly lower (p < 0.05) in Fe2+ amended treatment than that in CW-CK treatment. Furthermore, phylum Firmicutes, family Carnobacteriaceae, and genus Trichococcus in Fe2+ amended treatments was significantly (p < 0.05) higher than that in CW-CK treatment. Fe3+ reducing bacteria, such as Trichococcus genus, belonging to the Carnobacteriaceae in family-level, and Lactobacillales order affiliated to Firmicutes in the phylum-level, can reduce the oxidized Fe3+ to Fe2+ and continue to provide electrons for nitrate. It is recommended to consider adding an appropriate amount of iron into the water to strengthen its purifying capacity effect for constructed artificial wetlands in the future.
Collapse
Affiliation(s)
- Liping Tian
- Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China;
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Baixing Yan
- Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China;
- Jilin Provincial Engineering Center of CWs Design in Cold Region & Beautiful Country Construction, Changchun 130102, China
- Correspondence: (B.Y.); (Y.O.)
| | - Yang Ou
- Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China;
- Jilin Provincial Engineering Center of CWs Design in Cold Region & Beautiful Country Construction, Changchun 130102, China
- Correspondence: (B.Y.); (Y.O.)
| | - Huiping Liu
- College of Plant Protection, Jilin Agricultural University, Changchun 130118, China; (H.L.); (L.C.)
| | - Lei Cheng
- College of Plant Protection, Jilin Agricultural University, Changchun 130118, China; (H.L.); (L.C.)
| | - Peng Jiao
- College of Resources and Environment, Jilin Agricultural University, Changchun 130118, China;
| |
Collapse
|
78
|
Tian T, Zhou K, Li YS, Liu DF, Yu HQ. Recovery of Iron-Dependent Autotrophic Denitrification Activity from Cell-Iron Mineral Aggregation-Induced Reversible Inhibition by Low-Intensity Ultrasonication. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:595-604. [PMID: 34932326 DOI: 10.1021/acs.est.1c05553] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Iron-dependent autotrophic denitrification (IDAD) has garnered increasing interests as an efficient method for removing nitrogen from wastewater with a low carbon to nitrogen ratio. However, an inevitable deterioration of IDAD performance casts a shadow over its further development. In this work, the hidden cause for such a deterioration is uncovered, and a viable solution to this problem is provided. Batch test results reveal that the aggregation of microbial cells and iron-bearing minerals induced a cumulative and reversible inhibition on the activity of IDAD sludge. Extracellular polymeric substances were found to play a glue-like role in the cell-iron mineral aggregates, where microbial cells were caged, and their metabolisms were suppressed. Adopting low-intensity ultrasound treatment efficiently restored the IDAD activity by disintegrating such aggregates rather than stimulating the microbial metabolism. Moreover, the ultrasonication-assisted IDAD bioreactor exhibited an advantageous nitrogen removal efficiency (with a maximum enhancement of 72.3%) and operational stability compared to the control one, demonstrating a feasible strategy to achieve long-term stability of the IDAD process. Overall, this work provides a better understanding about the mechanism for the performance deterioration and a simple approach to maintain the stability of IDAD.
Collapse
Affiliation(s)
- Tian Tian
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, China
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education, China), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Ke Zhou
- School of Resources and Environmental Engineering, Hefei University of Technology, Hefei 230009, China
| | - Yu-Sheng Li
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Dong-Feng Liu
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Han-Qing Yu
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, China
- School of Resources and Environmental Engineering, Hefei University of Technology, Hefei 230009, China
| |
Collapse
|
79
|
Zhu J, Yan X, Zhou L, Li N, Liao C, Wang X. Insight of bacteria and archaea in Feammox community enriched from different soils. ENVIRONMENTAL RESEARCH 2022; 203:111802. [PMID: 34343555 DOI: 10.1016/j.envres.2021.111802] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 07/26/2021] [Accepted: 07/27/2021] [Indexed: 06/13/2023]
Abstract
Anaerobic ammonium oxidation coupled to Fe(III) reduction, known as Feammox, is a newly discovered nitrogen-cycling process, which serves an important role in the pathways of nitrogen loss in the environment. However, the specific types of microorganisms involved in Feammox currently remain unclear. In this study, we selected two groups of soil samples (paddy and mine), from considerably different habitats in South China, to acclimate Feammox colonies. The Paddy Group had a shorter lag period than the Mine Group, while the ammonium transformation rate was nearly equal in both groups in the mature period. The emergence of the Feammox activity was found to be associated with the increased abundance of iron-reducing bacteria, especially Clostridium_sensu_stricto_12, Desulfitobacterium, Thermoanaerobaculum, Anaeromyxobacter and Geobacter. Ammonium oxidizing archaea and methanogens were dominant among the known archaea. These findings extend our knowledge of the microbial community composition of the potential Feammox microbes from soils under different environmental conditions, which broadens our understanding of this important Fe/N transformation process.
Collapse
Affiliation(s)
- Jiaxuan Zhu
- MOE Key Laboratory of Pollution Processes and Environmental Criteria/Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, No. 38 Tongyan Road, Jinnan District, Tianjin, 300350, China
| | - Xuejun Yan
- MOE Key Laboratory of Pollution Processes and Environmental Criteria/Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, No. 38 Tongyan Road, Jinnan District, Tianjin, 300350, China
| | - Lean Zhou
- School of Hydraulic Engineering, Changsha University of Science & Technology, Changsha, 410114, China
| | - Nan Li
- School of Environmental Science and Engineering, Tianjin University, No. 92 Weijin Road, Nankai District, Tianjin, 300072, China
| | - Chengmei Liao
- MOE Key Laboratory of Pollution Processes and Environmental Criteria/Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, No. 38 Tongyan Road, Jinnan District, Tianjin, 300350, China.
| | - Xin Wang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria/Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, No. 38 Tongyan Road, Jinnan District, Tianjin, 300350, China.
| |
Collapse
|
80
|
Barron A, Sun J, Passaretti S, Sbarbati C, Barbieri M, Colombani N, Jamieson J, Bostick BC, Zheng Y, Mastrocicco M, Petitta M, Prommer H. In situ arsenic immobilisation for coastal aquifers using stimulated iron cycling: Lab-based viability assessment. APPLIED GEOCHEMISTRY : JOURNAL OF THE INTERNATIONAL ASSOCIATION OF GEOCHEMISTRY AND COSMOCHEMISTRY 2022; 136:105155. [PMID: 34955596 PMCID: PMC8699153 DOI: 10.1016/j.apgeochem.2021.105155] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Arsenic (As) is one of the most harmful and widespread groundwater contaminants globally. Besides the occurrence of geogenic As pollution, there is also a large number of sites that have been polluted by anthropogenic activities, with many of those requiring active remediation to reduce their environmental impact. Cost-effective remedial strategies are however still sorely needed. At the laboratory-scale in situ formation of magnetite through the joint addition of nitrate and Fe(II) has shown to be a promising new technique. However, its applicability under a wider range of environmental conditions still needs to be assessed. Here we use sediment and groundwater from a severely polluted coastal aquifer and explore the efficiency of nitrate-Fe(II) treatments in mitigating dissolved As concentrations. In selected experiments >99% of dissolved As was removed, compared to unamended controls, and maintained upon addition of lactate, a labile organic carbon source. Pre- and post experimental characterisation of iron (Fe) mineral phases suggested a >90% loss of amorphous Fe oxides in favour of increased crystalline, recalcitrant oxide and sulfide phases. Magnetite formation did not occur via the nitrate-dependent oxidation of the amended Fe(II) as originally expected. Instead, magnetite is thought to have formed by the Fe(II)-catalysed transformation of pre-existing amorphous and crystalline Fe oxides. The extent of amorphous and crystalline Fe oxide transformation was then limited by the exhaustion of dissolved Fe(II). Elevated phosphate concentrations lowered the treatment efficacy indicating joint removal of phosphate is necessary for maximum impact. The remedial efficiency was not impacted by varying salinities, thus rendering the tested approach a viable remediation method for coastal aquifers.
Collapse
Affiliation(s)
- Alyssa Barron
- School of Earth Sciences, University of Western Australia, Crawley, WA, Australia
- CSIRO Land and Water, Wembley Australia
| | - Jing Sun
- School of Earth Sciences, University of Western Australia, Crawley, WA, Australia
- CSIRO Land and Water, Wembley Australia
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, China
| | | | - Chiara Sbarbati
- Dept. of Earth Sciences, “Sapienza” University of Roma, Roma, Italy
| | | | | | - James Jamieson
- School of Earth Sciences, University of Western Australia, Crawley, WA, Australia
- CSIRO Land and Water, Wembley Australia
| | | | - Yan Zheng
- School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen (China)
| | | | - Marco Petitta
- Dept. of Earth Sciences, “Sapienza” University of Roma, Roma, Italy
| | - Henning Prommer
- School of Earth Sciences, University of Western Australia, Crawley, WA, Australia
- CSIRO Land and Water, Wembley Australia
| |
Collapse
|
81
|
Shrestha R, Černoušek T, Stoulil J, Kovářová H, Sihelská K, Špánek R, Ševců A, Steinová J. Anaerobic microbial corrosion of carbon steel under conditions relevant for deep geological repository of nuclear waste. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 800:149539. [PMID: 34392220 DOI: 10.1016/j.scitotenv.2021.149539] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 08/04/2021] [Accepted: 08/04/2021] [Indexed: 06/13/2023]
Abstract
We examined microbial corrosion of carbon steel in synthetic bentonite pore water inoculated with natural underground water containing microorganisms over a period of 780-days under sterile and anaerobic conditions. Corrosion behaviour was determined using the mass loss method, SEM-EDS analysis and Raman spectroscopy, while qualitative and quantitative changes in the microbial community were analysed using molecular-biological tools (16S rDNA amplicon sequencing and qPCR analysis, respectively). Corrosion rates were significantly higher in the biotic environment (compared with an abiotic environment), with significant localisation of corrosion attacks of up to 1 mm arising within 12-months. Nitrate reducing bacteria, such as Pseudomonas, Brevundimonas and Methyloversatilis, dominated the microbial consortium, the high abundance of Methyloversatilis correlating with periods of highest localised corrosion penetrations, suggesting that this bacterium plays an important role in microbially influenced corrosion. Our results indicate that nitrate-reducing bacteria could represent a potential threat to waste canisters under nuclear repository conditions.
Collapse
Affiliation(s)
- Rojina Shrestha
- Institute for Nanomaterials, Advanced Technologies and Innovations, Technical University of Liberec, Bendlova 1407/7, Liberec 1 461 17, Czech Republic
| | - Tomáš Černoušek
- Research Center Řež, Department of Nuclear Fuel Cycle, Husinec-Řež 130 25068, Czech Republic
| | - Jan Stoulil
- University of Chemistry and Technology, Department of Metals and Corrosion Engineering, Technická 5, Prague 166 28, Czech Republic
| | - Hana Kovářová
- Research Center Řež, Department of Nuclear Fuel Cycle, Husinec-Řež 130 25068, Czech Republic
| | - Kristína Sihelská
- Research Center Řež, Department of Nuclear Fuel Cycle, Husinec-Řež 130 25068, Czech Republic
| | - Roman Špánek
- Institute for Nanomaterials, Advanced Technologies and Innovations, Technical University of Liberec, Bendlova 1407/7, Liberec 1 461 17, Czech Republic
| | - Alena Ševců
- Institute for Nanomaterials, Advanced Technologies and Innovations, Technical University of Liberec, Bendlova 1407/7, Liberec 1 461 17, Czech Republic
| | - Jana Steinová
- Department of Botany, Faculty of Science, Charles University in Prague, Benátská 2, Prague 128 01, Czech Republic; Institute for Nanomaterials, Advanced Technologies and Innovations, Technical University of Liberec, Bendlova 1407/7, Liberec 1 461 17, Czech Republic.
| |
Collapse
|
82
|
Dopffel N, Jamieson J, Bryce C, Joshi P, Mansor M, Siade A, Prommer H, Kappler A. Temperature dependence of nitrate-reducing Fe(II) oxidation by Acidovorax strain BoFeN1 - evaluating the role of enzymatic vs. abiotic Fe(II) oxidation by nitrite. FEMS Microbiol Ecol 2021; 97:6442174. [PMID: 34849752 DOI: 10.1093/femsec/fiab155] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 11/24/2021] [Indexed: 11/14/2022] Open
Abstract
Fe(II) oxidation coupled to nitrate reduction is a widely observed metabolism. However, to what extent the observed Fe(II) oxidation is driven enzymatically or abiotically by metabolically produced nitrite remains puzzling. To distinguish between biotic and abiotic reactions, we cultivated the mixotrophic nitrate-reducing Fe(II)-oxidizing Acidovorax strain BoFeN1 over a wide range of temperatures and compared it to abiotic Fe(II) oxidation by nitrite at temperatures up to 60°C. The collected experimental data were subsequently analyzed through biogeochemical modeling. At 5°C, BoFeN1 cultures consumed acetate and reduced nitrate but did not significantly oxidize Fe(II). Abiotic Fe(II) oxidation by nitrite at different temperatures showed an Arrhenius-type behavior with an activation energy of 80±7 kJ/mol. Above 40°C, the kinetics of Fe(II) oxidation were abiotically driven, whereas at 30°C, where BoFeN1 can actively metabolize, the model-based interpretation strongly suggested that an enzymatic pathway was responsible for a large fraction (ca. 62%) of the oxidation. This result was reproduced even when no additional carbon source was present. Our results show that at below 30°C, i.e., at temperatures representing most natural environments, biological Fe(II) oxidation was largely responsible for overall Fe(II) oxidation, while abiotic Fe(II) oxidation by nitrite played a less important role.
Collapse
Affiliation(s)
- Nicole Dopffel
- Norwegian Research Center - NORCE, 22 Nygårdstangen, 5838 Bergen, Norway
- Geomicrobiology, Center for Applied Geosciences, University of Tübingen, 72074 Tübingen, Germany
| | - James Jamieson
- School of Earth Sciences, University of Western Australia, 35 Stirling Highway, 6009 Crawley, Australia
- CSIRO Land and Water, 147 Underwood Avenue, 6014 Floreat, Australia
| | - Casey Bryce
- School of Earth Sciences, University of Bristol, Queens Road, Bristol BS8 1RJ, United Kingdom
| | - Prachi Joshi
- Geomicrobiology, Center for Applied Geosciences, University of Tübingen, 72074 Tübingen, Germany
| | - Muammar Mansor
- Geomicrobiology, Center for Applied Geosciences, University of Tübingen, 72074 Tübingen, Germany
| | - Adam Siade
- School of Earth Sciences, University of Western Australia, 35 Stirling Highway, 6009 Crawley, Australia
- CSIRO Land and Water, 147 Underwood Avenue, 6014 Floreat, Australia
| | - Henning Prommer
- School of Earth Sciences, University of Western Australia, 35 Stirling Highway, 6009 Crawley, Australia
- CSIRO Land and Water, 147 Underwood Avenue, 6014 Floreat, Australia
| | - Andreas Kappler
- Geomicrobiology, Center for Applied Geosciences, University of Tübingen, 72074 Tübingen, Germany
- Cluster of Excellence EXC 2124: Controlling Microbes to Fight Infection, University of Tubingen, 72074 Tübingen, Germany
| |
Collapse
|
83
|
Chen C, Shen Y, Li Y, Zhang W, Zhao FJ. Demethylation of the Antibiotic Methylarsenite is Coupled to Denitrification in Anoxic Paddy Soil. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:15484-15494. [PMID: 34730345 DOI: 10.1021/acs.est.1c04167] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Arsenic (As) biomethylation is an important component of the As biogeochemical cycle, which produces methylarsenite [MAs(III)] as an intermediate product. Its high toxicity is used by some microbes as an antibiotic to kill off other microbes and gain a competitive advantage. Some aerobic microbes have evolved a detoxification mechanism to demethylate MAs(III) via the dioxygenase C-As lyase ArsI. How MAs(III) is demethylated under anoxic conditions is unclear. We found that nitrate addition to a flooded paddy soil enhanced MAs(III) demethylation. A facultative anaerobe Bacillus sp. CZDM1 isolated from the soil was able to demethylate MAs(III) under anoxic nitrate-reducing conditions. A putative C-As lyase gene (BcarsI) was identified in the genome of strain CZDM1. The expression of BcarsI in the As-sensitive Escherichia coli AW3110 conferred the bacterium the ability to demethylate MAs(III) under anoxic nitrate-reducing condition and enhanced its resistance to MAs(III). Both Bacillus sp. CZDM1 and E. coli AW3110 harboring BcarsI could not demethylate MAs(III) under fermentative conditions. Five conserved amino acid resides of cysteine, histidine, and glutamic acid are essential for MAs(III) demethylation under anoxic nitrate-reducing conditions. Putative arsI genes are widely present in denitrifying bacteria, with 75% of the sequenced genomes containing arsI, also possessing dissimilatory nitrate reductase genes narG or napA. These results reveal a novel mechanism in which MAs(III) is demethylated via ArsI by coupling to denitrification, and such a mechanism is likely to be common in an anoxic environment such as paddy soils and wetlands.
Collapse
Affiliation(s)
- Chuan Chen
- Jiangsu Key Laboratory for Organic Waste Utilization, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Yang Shen
- Jiangsu Key Laboratory for Organic Waste Utilization, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Yuanhe Li
- Jiangsu Key Laboratory for Organic Waste Utilization, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Wenwen Zhang
- Jiangsu Key Laboratory for Organic Waste Utilization, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Fang-Jie Zhao
- Jiangsu Key Laboratory for Organic Waste Utilization, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
84
|
Wang X, Prévoteau A, Rabaey K. Impact of Periodic Polarization on Groundwater Denitrification in Bioelectrochemical Systems. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:15371-15379. [PMID: 34727498 DOI: 10.1021/acs.est.1c03586] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Nitrate contamination is a common problem in groundwater around the world. Nitrate can be cathodically reduced in bioelectrochemical systems using autotrophic denitrifiers with low energy investment and without chemical addition. Successful denitrification was demonstrated in previous studies in both microbial fuel cells and microbial electrolysis cells (MECs) with continuous current flow, whereas the impact of intermittent current supply (e.g., in a fluidized-bed system) on denitrification and particularly the electron-storing capacity of the denitrifying electroactive biofilms (EABs) on the cathodes have not been studied in depth. In this study, two continuously fed MECs were operated in parallel under continuous and periodic polarization modes over 280 days, respectively. Under continuous polarization, the maximum denitrification rate reached 233 g NO3--N/m3/d with 98% nitrate removal (0.6 mg NO3--N/L in the effluent) with negligible intermediate production, while under a 30 s open-circuit/30 s polarization mode, 86% of nitrate was removed at a maximum rate of 205 g NO3--N/m3/d (4.5 mg NO3--N/L in the effluent) with higher N2O production (6.6-9.3 mg N/L in the effluent). Conversely, periodic polarization could be an interesting approach in other bioelectrochemical processes if the generation of chemical intermediates (partially reduced or oxidized) should be favored. Similar microbial communities dominated byGallionellaceaewere found in both MECs; however, swapping the polarization modes and the electrochemical analyses suggested that the periodically polarized EABs probably developed a higher ability for electron storage and transfer, which supported the direct electron transfer pathway in discontinuous operation or fluidized biocathodes.
Collapse
Affiliation(s)
- Xiaofei Wang
- Center for Microbial Ecology and Technology (CMET), Ghent University, Coupure Links 653, 9000 Ghent, Belgium
- Centre for Advanced Process Technology for Urban Resource Recovery (CAPTURE), Frieda Saeysstraat 1, 9000 Ghent, Belgium
| | - Antonin Prévoteau
- Center for Microbial Ecology and Technology (CMET), Ghent University, Coupure Links 653, 9000 Ghent, Belgium
- Centre for Advanced Process Technology for Urban Resource Recovery (CAPTURE), Frieda Saeysstraat 1, 9000 Ghent, Belgium
| | - Korneel Rabaey
- Center for Microbial Ecology and Technology (CMET), Ghent University, Coupure Links 653, 9000 Ghent, Belgium
- Centre for Advanced Process Technology for Urban Resource Recovery (CAPTURE), Frieda Saeysstraat 1, 9000 Ghent, Belgium
| |
Collapse
|
85
|
Pang Y, Wang J. Various electron donors for biological nitrate removal: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 794:148699. [PMID: 34214813 DOI: 10.1016/j.scitotenv.2021.148699] [Citation(s) in RCA: 163] [Impact Index Per Article: 40.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 06/22/2021] [Accepted: 06/22/2021] [Indexed: 06/13/2023]
Abstract
Nitrate (NO3-) pollution in water and wastewater has become a serious global issue. Biological denitrification, which reduces NO3- to N2 (nitrogen gas) by denitrifying microorganisms, is an efficient and economical process for the removal of NO3- from water and wastewater. During the denitrification process, electron donor is required to provide electrons for reduction of NO3-. A variety of electron donors, including organic and inorganic compounds, can be used for denitrification. This paper reviews the state of the art of various electron donors used for biological denitrification. Depending on the types of electron donors, denitrification can be classified into heterotrophic and autotrophic denitrification. Heterotrophic denitrification utilizes organic compounds as electron donors, including low-molecular-weight organics (e.g. acetate, methanol, glucose, benzene, methane, etc.) and high-molecular-weight organics (e.g. cellulose, polylactic acid, polycaprolactone, etc.); while autotrophic denitrification utilizes inorganic compounds as electron donors, including hydrogen (H2), reduced sulfur compounds (e.g. sulfide, element sulfur and thiosulfate), ferrous iron (Fe2+), iron sulfides (e.g. FeS, Fe1-xS and FeS2), arsenite (As(Ш)) and manganese (Mn(II)). The biological denitrification processes and the representative denitrifying microorganisms are summarized based on different electron donors, and their denitrification performance, operating costs and environmental impacts are compared and discussed. The pilot- or full-scale applications were summarized. The concluding remarks and future prospects were provided. The biodegradable polymers mediated heterotrophic denitrification, as well as H2 and sulfur mediated autotrophic denitrification are promising denitrification processes for NO3- removal from various types of water and wastewater.
Collapse
Affiliation(s)
- Yunmeng Pang
- Laboratory of Environmental Technology, INET, Tsinghua University, Beijing 100084, PR China
| | - Jianlong Wang
- Laboratory of Environmental Technology, INET, Tsinghua University, Beijing 100084, PR China; Beijing Key Laboratory of Radioactive Waste Treatment, INET, Tsinghua University, Beijing 100084, PR China.
| |
Collapse
|
86
|
Diversity and Metabolic Potentials of As(III)-Oxidizing Bacteria in Activated Sludge. Appl Environ Microbiol 2021; 87:e0176921. [PMID: 34756059 DOI: 10.1128/aem.01769-21] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Biological arsenite [As(III)] oxidation is an important process in the removal of toxic arsenic (As) from contaminated water. However, the diversity and metabolic potentials of As(III)-oxidizing bacteria (AOB) responsible for As(III) oxidation in wastewater treatment facilities are not well documented. In this study, two groups of bioreactors inoculated with activated sludge were operated under anoxic or oxic conditions to treat As-containing synthetic wastewater. Batch tests of inoculated sludges from the bioreactors further indicated that microorganisms could use nitrate or oxygen as electron acceptors to stimulate biological As(III) oxidation, suggesting the potentials of this process in wastewater treatment facilities. In addition, DNA-based stable isotope probing (DNA-SIP) was performed to identify the putative AOB in the activated sludge. Bacteria associated with Thiobacillus were identified as nitrate-dependent AOB, while bacteria associated with Hydrogenophaga were identified as aerobic AOB in activated sludge. Metagenomic binning reconstructed a number of high-quality metagenome-assembled genomes (MAGs) associated with the putative AOB. Functional genes encoding As resistance, As(III) oxidation, denitrification, and carbon fixation were identified in these MAGs, suggesting their potentials for chemoautotrophic As(III) oxidation. In addition, the presence of genes encoding secondary metabolite biosynthesis and extracellular polymeric substance metabolism in these MAGs may facilitate the proliferation of these AOB in activated sludge and enhance their capacity for As(III) oxidation. IMPORTANCE AOB play an important role in the removal of toxic arsenic from wastewater. Most of the AOB have been isolated from natural environments. However, knowledge regarding the structure and functional roles of As(III)-oxidizing communities in wastewater treatment facilities is not well documented. The combination of DNA-SIP and metagenomic binning provides an opportunity to elucidate the diversity of in situ AOB community inhabiting the activated sludges. In this study, the putative AOB responsible for As(III) oxidation in wastewater treatment facilities were identified, and their metabolic potentials, including As(III) oxidation, denitrification, carbon fixation, secondary metabolite biosynthesis, and extracellular polymeric substance metabolism, were investigated. This observation provides an understanding of anoxic and/or oxic AOB during the As(III) oxidation process in wastewater treatment facilities, which may contribute to the removal of As from contaminated water.
Collapse
|
87
|
Pontér S, Rodushkin I, Engström E, Rodushkina K, Paulukat C, Peinerud E, Widerlund A. Early diagenesis of anthropogenic uranium in lakes receiving deep groundwater from the Kiruna mine, northern Sweden. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 793:148441. [PMID: 34174600 DOI: 10.1016/j.scitotenv.2021.148441] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 06/02/2021] [Accepted: 06/09/2021] [Indexed: 06/13/2023]
Abstract
The uranium (U) concentrations and isotopic composition of waters and sediment cores were used to investigate the transport and accumulation of U in a water system (tailings pond, two lakes, and the Kalix River) receiving mine waters from the Kiruna mine. Concentrations of dissolved U decrease two orders of magnitude between the inflow of mine waters and in the Kalix River, while the concentration of the element bound to particulate matter increases, most likely due to sorption on iron‑manganese hydroxides and organic matter. The vertical distribution of U in the water column differs between two polluted lakes with a potential indication of dissolved U supply from sediment's pore waters at anoxic conditions. Since the beginning of exposure in the 1950s, U concentrations in lake sediments have increased >20-fold, reaching concentrations above 50 μg g-1. The distribution of anthropogenic U between the lakes does not follow the distribution of other mine water contaminants, with a higher relative proportion of U accumulating in the sediments of the second lake. Concentrations of redox-sensitive elements in the sediment core as well as Fe isotopic composition were used to re-construct past redox-conditions potentially controlling early diagenesis of U in surface sediments. Two analytical techniques (ICP-SFMS and MC-ICP-MS) were used for the determination of U isotopic composition, providing an extra dimension in the understanding of processes in the system. The (234 U)/(238 U) activity ratio (AR) is rather uniform in the tailings pond but varies considerably in water and lake sediments providing a potential tracer for U transport from the Kiruna mine through the water system, and U immobilization in sediments. The U mass balance in the Rakkurijoki system as well as the amount of anthropogenic U accumulated in lake sediments were evaluated, indicating the immobilization in the two lakes of 170 kg and 285 kg U, respectively.
Collapse
Affiliation(s)
- Simon Pontér
- Division of Geosciences and Environmental Engineering, Luleå University of Technology, S-971 87 Luleå, Sweden; ALS Laboratory Group, ALS Scandinavia AB, Aurorum 10, S-977 75 Luleå, Sweden.
| | - Ilia Rodushkin
- Division of Geosciences and Environmental Engineering, Luleå University of Technology, S-971 87 Luleå, Sweden; ALS Laboratory Group, ALS Scandinavia AB, Aurorum 10, S-977 75 Luleå, Sweden.
| | - Emma Engström
- Division of Geosciences and Environmental Engineering, Luleå University of Technology, S-971 87 Luleå, Sweden; ALS Laboratory Group, ALS Scandinavia AB, Aurorum 10, S-977 75 Luleå, Sweden.
| | - Katerina Rodushkina
- ALS Laboratory Group, ALS Scandinavia AB, Aurorum 10, S-977 75 Luleå, Sweden.
| | - Cora Paulukat
- ALS Laboratory Group, ALS Scandinavia AB, Aurorum 10, S-977 75 Luleå, Sweden.
| | - Elsa Peinerud
- Luossavaara-Kiirunavaara AB, S-981 86 Kiruna, Sweden.
| | - Anders Widerlund
- Division of Geosciences and Environmental Engineering, Luleå University of Technology, S-971 87 Luleå, Sweden.
| |
Collapse
|
88
|
Ahn JY, Hwang I, Park N, Park SH. Laboratory and field study on changes in water quality and increase in dissolved iron during riverbank filtration. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:50142-50152. [PMID: 33950421 DOI: 10.1007/s11356-021-14101-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Accepted: 04/20/2021] [Indexed: 06/12/2023]
Abstract
Changes in the water quality by the riverbank filtration (RBF) process were investigated in the field-scale demonstration sites. The overall water quality was improved by RBF, but Fe2+ concentration significantly increased in the riverbank-filtered water more than in the river water. This result would be caused by the interaction between the iron minerals and the river water in the aquifer and the influx of the hinterland groundwater into RBF wells. Dissolution properties of iron from the aquifer soils cored at the sites were evaluated through incubation experiment considering various values of redox potential (Eh), dissolved oxygen (DO), and hydrogen-ion concentration exponent (pH). These results presented that at the incubator with the final Eh of 470 mV, DO of 3.4, and pH of 4.53, the iron from the aquifer soil was most dissolved, and the pyrite and siderite contents in the aquifer soil decreased significantly from 11.5 to 6.22% and from 50.8 to 24.5%, respectively. Based on changes of ion concentrations (such as Fe2+, Fe3+, SO42- and NO3-) and iron species in the incubators, it was believed that pyrite and siderite minerals in the aquifer soils cause an increase in the Fe2+ concentration with the absence of DO and an increase in the Fe2+ and Fe3+ concentrations with the presence of DO. The dissolution rates of iron minerals into Fe2+ and Fe3+ were dependent on Eh, pH, and DO and were more sensitive to Eh and pH than DO. The results of this study can provide information on RBF site selection and its operation.
Collapse
Affiliation(s)
- Jun-Young Ahn
- Department of Civil and Environmental Engineering, Pusan National University, 2, Busandaehak-ro 63beon-gil, Geumjeong-gu, Busan, 46241, Republic of Korea
| | - Inseong Hwang
- Department of Civil and Environmental Engineering, Pusan National University, 2, Busandaehak-ro 63beon-gil, Geumjeong-gu, Busan, 46241, Republic of Korea
| | - Namsik Park
- Department of Civil Engineering, Dong-A University, 37 Nakdong-Daero 550beon-gil, Saha-gu, Busan, 49315, Republic of Korea
| | - Sung-Hyuk Park
- Department of Civil Engineering, Dong-A University, 37 Nakdong-Daero 550beon-gil, Saha-gu, Busan, 49315, Republic of Korea.
| |
Collapse
|
89
|
Xue X, Wang D, Yi X, Li Y, Han H. Simultaneously autotrophic denitrification and organics degradation in low-strength coal gasification wastewater (LSCGW) treatment via microelectrolysis-triggered Fe(II)/Fe(III) cycle. CHEMOSPHERE 2021; 278:130460. [PMID: 33838412 DOI: 10.1016/j.chemosphere.2021.130460] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Revised: 03/24/2021] [Accepted: 03/27/2021] [Indexed: 06/12/2023]
Abstract
The autotrophic iron-depended denitrification (AIDD), triggered by microelectrolysis, was established in the microelectrolysis-assistant up-flow anaerobic sludge blanket (MEA-UASB) with the purpose of low-strength coal gasification wastewater (LSCGW) treatment while control UASB operated in parallel. The results revealed that chemical oxygen demand (COD) removal efficiency and total nitrogen (TN) removal load at optimum current (2.5 A/m3) in MEA-UASB (83.2 ± 2.6% and 0.220 ± 0.010 kg N/m3·d) were 1.42-fold and 1.57-fold higher than those (58.5 ± 2.1% and 0.139 ± 0.011 kg N/m3·d) in UASB, verifying that AIDD and following dissimilatory iron reduction (DIR) process could offer the novel pathway to solve the electron donor-deficient and traditionally denitrification-infeasible problems. High-throughput 16S rRNA gene pyrosequencing shown that iron-oxidizing denitrifiers (Thiobacillus and Acidovorax species) and iron reducing bacteria (Geothrix and Ignavibacterium speices), acted as microbial iron cycle of contributors, were specially enriched at optimum operating condition. Additionally, the activities of microbial electron transfer chain, electron transporters (complex I, II, III and cytochrome c) and abundance of genes encoding important enzymes (narG, nirK/S, norB and nosZ) were remarkably promoted, suggesting that electron transport and consumption capacities were stimulated during denitrification process. This study could shed light on better understanding about microelectrolysis-triggered AIDD for treatment of refractory LSCGW and further widen its application potential in the future.
Collapse
Affiliation(s)
- Xiaofang Xue
- Department of Environmental Science and Engineering, College of Ecology and Environment, Hainan University, Haikou, 570228, China.
| | - Dexin Wang
- Department of Environmental Science and Engineering, College of Ecology and Environment, Hainan University, Haikou, 570228, China.
| | - Xuesong Yi
- Department of Environmental Science and Engineering, College of Ecology and Environment, Hainan University, Haikou, 570228, China.
| | - Yangyang Li
- Operation Services Division of Hospital Wastewater Treatment, General Affairs Department, Sanya Central Hospital, Sanya, 520000, China.
| | - Hongjun Han
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, China.
| |
Collapse
|
90
|
Wang C, Huang Y, Zhang C, Zhang Y, Yuan K, Xue W, Liu Y, Liu Y, Liu Z. Inhibition effects of long-term calcium-magnesia phosphate fertilizer application on Cd uptake in rice: Regulation of the iron-nitrogen coupling cycle driven by the soil microbial community. JOURNAL OF HAZARDOUS MATERIALS 2021; 416:125916. [PMID: 34492849 DOI: 10.1016/j.jhazmat.2021.125916] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 04/13/2021] [Accepted: 04/14/2021] [Indexed: 06/13/2023]
Abstract
Cadmium (Cd) pollution in paddy soil seriously endangers food safety production. To investigate the effects and microbiological mechanisms of calcium-magnesium-phosphate (CMP) fertilizer application on Cd reduction in rice, field experiments were conducted in Cd-contaminated paddy soil. Compared with conventional compound fertilizer, CMP fertilizer treatments inhibited Cd uptake through plant roots, significantly decreasing Cd content in rice grains from 0.340 to 0.062 mg/kg. Soil pH and total Ca, Mg and P contents increased after CMP fertilizer application, resulting in a further decrease in soil available Cd content from 0.246 to 0.181 mg/kg. Specific extraction analysis recorded a decrease in both available Fe content and the ratio of nitrate to ammonium nitrogen, indicating that the soil Fe-N cycle was affected by the addition of CMP fertilizer. This finding was also recorded using soil bacterial community sequencing, with CMP fertilizer promoting the progress of nitrate-dependent Fe-oxidation driven by Thiobacillus (1.60-2.83%) and subsequent dissimilatory nitrate reduction to ammonium (DNRA) driven by Ignavibacteriae (1.01-1.92%); Fe-reduction driven by Anaeromyxobacter (3.09-2.23%) was also inhibited. Our results indicate that CMP fertilizer application regulates the Fe-N coupling cycle driven by the soil microbial community to benefit remediation of Cd contaminated paddy soil.
Collapse
Affiliation(s)
- Changrong Wang
- Key Laboratory of Original Agro-Environmental Pollution Prevention and Control, Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, People's Republic of China
| | - Yongchun Huang
- Key Laboratory of Original Agro-Environmental Pollution Prevention and Control, Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, People's Republic of China
| | - Changbo Zhang
- Key Laboratory of Original Agro-Environmental Pollution Prevention and Control, Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, People's Republic of China
| | - Yahui Zhang
- School of Environmental and Municipal Engineering, Tianjin Chengjian University, Tianjin 300384, People's Republic of China
| | - Kai Yuan
- Key Laboratory of Original Agro-Environmental Pollution Prevention and Control, Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, People's Republic of China
| | - Weijie Xue
- Key Laboratory of Original Agro-Environmental Pollution Prevention and Control, Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, People's Republic of China
| | - Yaping Liu
- School of Environmental and Municipal Engineering, Tianjin Chengjian University, Tianjin 300384, People's Republic of China
| | - Yuemin Liu
- School of Environmental and Municipal Engineering, Tianjin Chengjian University, Tianjin 300384, People's Republic of China
| | - Zhongqi Liu
- Key Laboratory of Original Agro-Environmental Pollution Prevention and Control, Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, People's Republic of China.
| |
Collapse
|
91
|
Nitrate Removal by a Novel Lithoautotrophic Nitrate-Reducing, Iron(II)-Oxidizing Culture Enriched from a Pyrite-Rich Limestone Aquifer. Appl Environ Microbiol 2021; 87:e0046021. [PMID: 34085863 DOI: 10.1128/aem.00460-21] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Nitrate removal in oligotrophic environments is often limited by the availability of suitable organic electron donors. Chemolithoautotrophic bacteria may play a key role in denitrification in aquifers depleted in organic carbon. Under anoxic and circumneutral pH conditions, iron(II) was hypothesized to serve as an electron donor for microbially mediated nitrate reduction by Fe(II)-oxidizing (NRFeOx) microorganisms. However, lithoautotrophic NRFeOx cultures have never been enriched from any aquifer, and as such, there are no model cultures available to study the physiology and geochemistry of this potentially environmentally relevant process. Using iron(II) as an electron donor, we enriched a lithoautotrophic NRFeOx culture from nitrate-containing groundwater of a pyrite-rich limestone aquifer. In the enriched NRFeOx culture that does not require additional organic cosubstrates for growth, within 7 to 11 days, 0.3 to 0.5 mM nitrate was reduced and 1.3 to 2 mM iron(II) was oxidized, leading to a stoichiometric NO3-/Fe(II) ratio of 0.2, with N2 and N2O identified as the main nitrate reduction products. Short-range ordered Fe(III) (oxyhydr)oxides were the product of iron(II) oxidation. Microorganisms were observed to be closely associated with formed minerals, but only few cells were encrusted, suggesting that most of the bacteria were able to avoid mineral precipitation at their surface. Analysis of the microbial community by long-read 16S rRNA gene sequencing revealed that the culture is dominated by members of the Gallionellaceae family that are known as autotrophic, neutrophilic, and microaerophilic iron(II) oxidizers. In summary, our study suggests that NRFeOx mediated by lithoautotrophic bacteria can lead to nitrate removal in anthropogenically affected aquifers. IMPORTANCE Removal of nitrate by microbial denitrification in groundwater is often limited by low concentrations of organic carbon. In these carbon-poor ecosystems, nitrate-reducing bacteria that can use inorganic compounds such as Fe(II) (NRFeOx) as electron donors could play a major role in nitrate removal. However, no lithoautotrophic NRFeOx culture has been successfully isolated or enriched from this type of environment, and as such, there are no model cultures available to study the rate-limiting factors of this potentially important process. Here, we present the physiology and microbial community composition of a novel lithoautotrophic NRFeOx culture enriched from a fractured aquifer in southern Germany. The culture is dominated by a putative Fe(II) oxidizer affiliated with the Gallionellaceae family and performs nitrate reduction coupled to Fe(II) oxidation leading to N2O and N2 formation without the addition of organic substrates. Our analyses demonstrate that lithoautotrophic NRFeOx can potentially lead to nitrate removal in nitrate-contaminated aquifers.
Collapse
|
92
|
Methanogenic Biodegradation of iso-Alkanes by Indigenous Microbes from Two Different Oil Sands Tailings Ponds. Microorganisms 2021; 9:microorganisms9081569. [PMID: 34442648 PMCID: PMC8400375 DOI: 10.3390/microorganisms9081569] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 07/18/2021] [Accepted: 07/20/2021] [Indexed: 11/16/2022] Open
Abstract
iso-Alkanes, a major fraction of the solvents used in bitumen extraction from oil sand ores, are slow to biodegrade in anaerobic tailings ponds. We investigated methanogenic biodegradation of iso-alkane mixtures comprising either three (2-methylbutane, 2-methylpentane, 3-methylpentane) or five (2-methylbutane, 2-methylpentane, 2-methylhexane, 2-methylheptane, 2-methyloctane) iso-alkanes representing paraffinic and naphtha solvents, respectively. Mature fine tailings (MFT) collected from two tailings ponds, having different residual solvents (paraffinic solvent in Canadian Natural Upgrading Limited (CNUL) and naphtha in Canadian Natural Resources Limited (CNRL)), were amended separately with the two mixtures and incubated in microcosms for ~1600 d. The indigenous microbes in CNUL MFT produced methane from the three-iso-alkane mixture after a lag of ~200 d, completely depleting 2-methylpentane while partially depleting 2-methylbutane and 3-methylpentane. CNRL MFT exhibited a similar degradation pattern for the three iso-alkanes after a lag phase of ~700 d, but required 1200 d before beginning to produce methane from the five-iso-alkane mixture, preferentially depleting components in the order of decreasing carbon chain length. Peptococcaceae members were key iso-alkane-degraders in both CNUL and CNRL MFT but were associated with different archaeal partners. Co-dominance of acetoclastic (Methanosaeta) and hydrogenotrophic (Methanolinea and Methanoregula) methanogens was observed in CNUL MFT during biodegradation of three-iso-alkanes whereas CNRL MFT was enriched in Methanoregula during biodegradation of three-iso-alkanes and in Methanosaeta with five-iso-alkanes. This study highlights the different responses of indigenous methanogenic microbial communities in different oil sands tailings ponds to iso-alkanes.
Collapse
|
93
|
Huang YM, Straub D, Blackwell N, Kappler A, Kleindienst S. Meta-omics Reveal Gallionellaceae and Rhodanobacter Species as Interdependent Key Players for Fe(II) Oxidation and Nitrate Reduction in the Autotrophic Enrichment Culture KS. Appl Environ Microbiol 2021; 87:e0049621. [PMID: 34020935 PMCID: PMC8276803 DOI: 10.1128/aem.00496-21] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Accepted: 05/16/2021] [Indexed: 01/04/2023] Open
Abstract
Nitrate reduction coupled to Fe(II) oxidation (NRFO) has been recognized as an environmentally important microbial process in many freshwater ecosystems. However, well-characterized examples of autotrophic nitrate-reducing Fe(II)-oxidizing bacteria are rare, and their pathway of electron transfer as well as their interaction with flanking community members remain largely unknown. Here, we applied meta-omics (i.e., metagenomics, metatranscriptomics, and metaproteomics) to the nitrate-reducing Fe(II)-oxidizing enrichment culture KS growing under autotrophic or heterotrophic conditions and originating from freshwater sediment. We constructed four metagenome-assembled genomes with an estimated completeness of ≥95%, including the key players of NRFO in culture KS, identified as Gallionellaceae sp. and Rhodanobacter sp. The Gallionellaceae sp. and Rhodanobacter sp. transcripts and proteins likely involved in Fe(II) oxidation (e.g., mtoAB, cyc2, and mofA), denitrification (e.g., napGHI), and oxidative phosphorylation (e.g., respiratory chain complexes I to V) along with Gallionellaceae sp. transcripts and proteins for carbon fixation (e.g., rbcL) were detected. Overall, our results indicate that in culture KS, the Gallionellaceae sp. and Rhodanobacter sp. are interdependent: while Gallionellaceae sp. fixes CO2 and provides organic compounds for Rhodanobacter sp., Rhodanobacter sp. likely detoxifies NO through NO reduction and completes denitrification, which cannot be performed by Gallionellaceae sp. alone. Additionally, the transcripts and partial proteins of cbb3- and aa3-type cytochrome c suggest the possibility for a microaerophilic lifestyle of the Gallionellaceae sp., yet culture KS grows under anoxic conditions. Our findings demonstrate that autotrophic NRFO is performed through cooperation among denitrifying and Fe(II)-oxidizing bacteria, which might resemble microbial interactions in freshwater environments. IMPORTANCE Nitrate-reducing Fe(II)-oxidizing bacteria are widespread in the environment, contribute to nitrate removal, and influence the fate of the greenhouse gases nitrous oxide and carbon dioxide. The autotrophic growth of nitrate-reducing Fe(II)-oxidizing bacteria is rarely investigated and not fully understood. The most prominent model system for this type of study is the enrichment culture KS. To gain insights into the metabolism of nitrate reduction coupled to Fe(II) oxidation in the absence of organic carbon and oxygen, we performed metagenomic, metatranscriptomic, and metaproteomic analyses of culture KS and identified Gallionellaceae sp. and Rhodanobacter sp. as interdependent key Fe(II) oxidizers in culture KS. Our work demonstrates that autotrophic nitrate reduction coupled to Fe(II) oxidation is not performed by an individual strain but is a cooperation of at least two members of the bacterial community in culture KS. These findings serve as a foundation for our understanding of nitrate-reducing Fe(II)-oxidizing bacteria in the environment.
Collapse
Affiliation(s)
- Yu-Ming Huang
- Microbial Ecology, Center for Applied Geoscience, University of Tübingen, Tübingen, Germany
- Geomicrobiology, Center for Applied Geoscience, University of Tübingen, Tübingen, Germany
| | - Daniel Straub
- Microbial Ecology, Center for Applied Geoscience, University of Tübingen, Tübingen, Germany
- Quantitative Biology Center (QBiC), University of Tübingen, Tübingen, Germany
| | - Nia Blackwell
- Microbial Ecology, Center for Applied Geoscience, University of Tübingen, Tübingen, Germany
| | - Andreas Kappler
- Geomicrobiology, Center for Applied Geoscience, University of Tübingen, Tübingen, Germany
- Cluster of Excellence, EXC 2124, “Controlling Microbes to Fight Infections,” University of Tübingen, Tübingen, Germany
| | - Sara Kleindienst
- Microbial Ecology, Center for Applied Geoscience, University of Tübingen, Tübingen, Germany
| |
Collapse
|
94
|
Huang YM, Straub D, Kappler A, Smith N, Blackwell N, Kleindienst S. A Novel Enrichment Culture Highlights Core Features of Microbial Networks Contributing to Autotrophic Fe(II) Oxidation Coupled to Nitrate Reduction. Microb Physiol 2021; 31:280-295. [PMID: 34218232 DOI: 10.1159/000517083] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 05/03/2021] [Indexed: 11/19/2022]
Abstract
Fe(II) oxidation coupled to nitrate reduction (NRFO) has been described for many environments. Yet very few autotrophic microorganisms catalysing NRFO have been cultivated and their diversity, as well as their mechanisms for NRFO in situ remain unclear. A novel autotrophic NRFO enrichment culture, named culture BP, was obtained from freshwater sediment. After more than 20 transfers, culture BP oxidized 8.22 mM of Fe(II) and reduced 2.42 mM of nitrate within 6.5 days under autotrophic conditions. We applied metagenomic, metatranscriptomic, and metaproteomic analyses to culture BP to identify the microorganisms involved in autotrophic NRFO and to unravel their metabolism. Overall, twelve metagenome-assembled genomes (MAGs) were constructed, including a dominant Gallionellaceae sp. MAG (≥71% relative abundance). Genes and transcripts associated with potential Fe(II) oxidizers in culture BP, identified as a Gallionellaceae sp., Noviherbaspirillum sp., and Thiobacillus sp., were likely involved in metal oxidation (e.g., cyc2, mtoA), denitrification (e.g., nirK/S, norBC), carbon fixation (e.g., rbcL), and oxidative phosphorylation. The putative Fe(II)-oxidizing protein Cyc2 was detected for the Gallionellaceae sp. Overall, a complex network of microbial interactions among several Fe(II) oxidizers and denitrifiers was deciphered in culture BP that might resemble NRFO mechanisms in situ. Furthermore, 16S rRNA gene amplicon sequencing from environmental samples revealed 36 distinct Gallionellaceae taxa, including the key player of NRFO from culture BP (approx. 0.13% relative abundance in situ). Since several of these in situ-detected Gallionellaceae taxa were closely related to the key player in culture BP, this suggests that the diversity of organisms contributing to NRFO might be higher than currently known.
Collapse
Affiliation(s)
- Yu-Ming Huang
- Microbial Ecology, Center for Applied Geoscience, University of Tuebingen, Tuebingen, Germany.,Geomicrobiology, Center for Applied Geoscience, University of Tuebingen, Tuebingen, Germany
| | - Daniel Straub
- Microbial Ecology, Center for Applied Geoscience, University of Tuebingen, Tuebingen, Germany.,Quantitative Biology Center (QBiC), University of Tuebingen, Tuebingen, Germany
| | - Andreas Kappler
- Geomicrobiology, Center for Applied Geoscience, University of Tuebingen, Tuebingen, Germany.,Cluster of Excellence, EXC 2124, "Controlling Microbes to Fight Infections," University of Tübingen, Tübingen, Germany
| | - Nicole Smith
- Microbial Ecology, Center for Applied Geoscience, University of Tuebingen, Tuebingen, Germany
| | - Nia Blackwell
- Microbial Ecology, Center for Applied Geoscience, University of Tuebingen, Tuebingen, Germany
| | - Sara Kleindienst
- Microbial Ecology, Center for Applied Geoscience, University of Tuebingen, Tuebingen, Germany
| |
Collapse
|
95
|
Sun S, Gu X, Zhang M, Tang L, He S. Response mechanism of different electron donors for treating secondary effluent in ecological floating bed. BIORESOURCE TECHNOLOGY 2021; 332:125083. [PMID: 33826983 DOI: 10.1016/j.biortech.2021.125083] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Revised: 03/23/2021] [Accepted: 03/25/2021] [Indexed: 06/12/2023]
Abstract
Electron donors have been widely used to improve denitrification performance. However, it is controversial which electron donor could be chosen. In this study, three electron donors were used to improve nitrogen removal from ecological floating beds (EFBs). The results showed that TN removal efficiency was 49-80%, 46-81%, and 45-79% in EFB-C (sodium acetate), EFB-S (sodium thiosulfate), EFB-Fe (iron scraps), respectively. Nitrification was limited in EFB-C and EFB-S while denitrification in EFB-Fe. The TN removal in the three EFBs were almost equivalent when HRT was 3 days. Lowest CH4 and N2O emissions were measured in EFB-Fe. Nitrifying and denitrifying bacteria were mainly concentrated in the root rhizospheres while iron cycle related and anammox bacteria were mainly concentrated on iron scraps surface. Heterotrophic denitrification and autotrophic denitrification were mainly attributed to TN removal in EFB-C and EFB-S, respectively. Autotrophic, heterotrophic denitrification and anammox contributed to TN removal in EFB-Fe.
Collapse
Affiliation(s)
- Shanshan Sun
- School of Environmental Science and Engineering, Shanghai Jiaotong University, Shanghai 200240, PR China
| | - Xushun Gu
- School of Environmental Science and Engineering, Shanghai Jiaotong University, Shanghai 200240, PR China
| | - Manping Zhang
- School of Environmental Science and Engineering, Shanghai Jiaotong University, Shanghai 200240, PR China
| | - Li Tang
- Shanghai Engineering Research Center of Landscape Water Environment, Shanghai 200031, PR China; Shanghai Landscape Architecture Design Institute , Shanghai 200031, PR China
| | - Shengbing He
- School of Environmental Science and Engineering, Shanghai Jiaotong University, Shanghai 200240, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 20092, PR China; Shanghai Engineering Research Center of Landscape Water Environment, Shanghai 200031, PR China.
| |
Collapse
|
96
|
Huang J, Jones A, Waite TD, Chen Y, Huang X, Rosso KM, Kappler A, Mansor M, Tratnyek PG, Zhang H. Fe(II) Redox Chemistry in the Environment. Chem Rev 2021; 121:8161-8233. [PMID: 34143612 DOI: 10.1021/acs.chemrev.0c01286] [Citation(s) in RCA: 207] [Impact Index Per Article: 51.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Iron (Fe) is the fourth most abundant element in the earth's crust and plays important roles in both biological and chemical processes. The redox reactivity of various Fe(II) forms has gained increasing attention over recent decades in the areas of (bio) geochemistry, environmental chemistry and engineering, and material sciences. The goal of this paper is to review these recent advances and the current state of knowledge of Fe(II) redox chemistry in the environment. Specifically, this comprehensive review focuses on the redox reactivity of four types of Fe(II) species including aqueous Fe(II), Fe(II) complexed with ligands, minerals bearing structural Fe(II), and sorbed Fe(II) on mineral oxide surfaces. The formation pathways, factors governing the reactivity, insights into potential mechanisms, reactivity comparison, and characterization techniques are discussed with reference to the most recent breakthroughs in this field where possible. We also cover the roles of these Fe(II) species in environmental applications of zerovalent iron, microbial processes, biogeochemical cycling of carbon and nutrients, and their abiotic oxidation related processes in natural and engineered systems.
Collapse
Affiliation(s)
- Jianzhi Huang
- Department of Civil and Environmental Engineering, Case Western Reserve University, 2104 Adelbert Road, Cleveland, Ohio 44106, United States
| | - Adele Jones
- UNSW Water Research Centre, School of Civil and Environmental Engineering, University of New South Wales, Sydney, New South Wales 2052, Australia
| | - T David Waite
- UNSW Water Research Centre, School of Civil and Environmental Engineering, University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Yiling Chen
- Institute of Environmental and Ecological Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Xiaopeng Huang
- Physical Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Kevin M Rosso
- Physical Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Andreas Kappler
- Geomicrobiology, Center for Applied Geosciences, University of Tuebingen, 72076 Tuebingen, Germany
| | - Muammar Mansor
- Geomicrobiology, Center for Applied Geosciences, University of Tuebingen, 72076 Tuebingen, Germany
| | - Paul G Tratnyek
- School of Public Health, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, Oregon 97239, United States
| | - Huichun Zhang
- Department of Civil and Environmental Engineering, Case Western Reserve University, 2104 Adelbert Road, Cleveland, Ohio 44106, United States
| |
Collapse
|
97
|
Carboni MF, Florentino AP, Costa RB, Zhan X, Lens PNL. Enrichment of Autotrophic Denitrifiers From Anaerobic Sludge Using Sulfurous Electron Donors. Front Microbiol 2021; 12:678323. [PMID: 34163455 PMCID: PMC8215349 DOI: 10.3389/fmicb.2021.678323] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 04/22/2021] [Indexed: 02/05/2023] Open
Abstract
This study compared the rates and microbial community development in batch bioassays on autotrophic denitrification using elemental sulfur (S0), pyrite (FeS2), thiosulfate (S2O3 2-), and sulfide (S2-) as electron donor. The performance of two inocula was compared: digested sludge (DS) from a wastewater treatment plant of a dairy industry and anaerobic granular sludge (GS) from a UASB reactor treating dairy wastewater. All electron donors supported the development of a microbial community with predominance of autotrophic denitrifiers during the enrichments, except for sulfide. For the first time, pyrite revealed to be a suitable substrate for the growth of autotrophic denitrifiers developing a microbial community with predominance of the genera Thiobacillus, Thioprofundum, and Ignavibacterium. Thiosulfate gave the highest denitrification rates removing 10.94 mM NO3 - day-1 and 8.98 mM NO3 - day-1 by DS and GS, respectively. This was 1.5 and 6 times faster than elemental sulfur and pyrite, respectively. Despite the highest denitrification rates observed in thiosulfate-fed enrichments, an evaluation of the most relevant parameters for a technological application revealed elemental sulfur as the best electron donor for autotrophic denitrification with a total cost of 0.38 € per m3 of wastewater treated.
Collapse
Affiliation(s)
- M. F. Carboni
- Department of Microbiology, School of Natural Sciences and Ryan Institute, National University of Ireland Galway, Galway, Ireland
| | - A. P. Florentino
- Department of Microbiology, School of Natural Sciences and Ryan Institute, National University of Ireland Galway, Galway, Ireland
| | - R. B. Costa
- Department of Biochemistry and Organic Chemistry, Institute of Chemistry, São Paulo State University, Araraquara, Brazil
| | - X. Zhan
- Department of Civil Engineering, School of Engineering, College of Science and Engineering, National University of Ireland Galway, Galway, Ireland
| | - P. N. L. Lens
- Department of Microbiology, School of Natural Sciences and Ryan Institute, National University of Ireland Galway, Galway, Ireland
| |
Collapse
|
98
|
Qin S, Zhang X, He S, Huang J. Improvement of nitrogen removal with iron scraps in floating treatment wetlands. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:17878-17890. [PMID: 33398766 DOI: 10.1007/s11356-020-12177-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Accepted: 12/21/2020] [Indexed: 06/12/2023]
Abstract
Floating treatment wetland (FTW) in restoration of low C/N ratio wastewater was deemed to a frequently used method. However, the nitrate removal performance in floating beds was limited due to insufficient organic carbon sources. Iron scraps as a potential electron donor was beneficial to the NO3--N reduction. To research the removal performance and mechanism of denitrification in FTW with iron scraps, FTW with Iris pseudacorus was built, and iron scraps were added as an electron donor to improve nitrogen removal efficiency. The batch experimental results demonstrated that the proper mass ratio of iron scraps to NO3--N was 500:1. With iron scraps, the NO3--N removal efficiency of FTW and control system increased significantly to 98.04% and 44.42% respectively in 2 weeks, while there was no obvious influence on the removal of NH4+-N. After adding iron scraps, the proportion of bacteria in the systems related to iron cycle and the relative abundance of nitrifying and denitrifying bacteria have increased obviously. By calculating the nitrogen balance, nitrogen reduction via plant uptake accounted for 8.79%, and the microbial denitrification was the main nitrogen removal pathway in FTW.
Collapse
Affiliation(s)
- Si Qin
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Dong Chuan Road 800, Shanghai, 200240, People's Republic of China
| | - Xiaoyi Zhang
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Dong Chuan Road 800, Shanghai, 200240, People's Republic of China
| | - Shengbing He
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Dong Chuan Road 800, Shanghai, 200240, People's Republic of China.
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, People's Republic of China.
- Shanghai Engineering Research Center of Landscape Water Environment, Shanghai, 200031, People's Republic of China.
| | - Jungchen Huang
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Dong Chuan Road 800, Shanghai, 200240, People's Republic of China
| |
Collapse
|
99
|
Cockell CS, Wordsworth R, Whiteford N, Higgins PM. Minimum Units of Habitability and Their Abundance in the Universe. ASTROBIOLOGY 2021; 21:481-489. [PMID: 33513037 DOI: 10.1089/ast.2020.2350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Although the search for habitability is a much-vaunted objective in the study of planetary environments, the material requirements for an environment to be habitable can be met with relatively few ingredients. In this hypothesis paper, the minimum material requirements for habitability are first re-evaluated, necessarily based on life "as we know it." From this vantage point, we explore examples of the minimum number of material requirements for habitable conditions to arise in a planetary environment, which we illustrate with "minimum habitability diagrams." These requirements raise the hypothesis that habitable conditions may be common throughout the universe. If the hypothesis was accepted, then the discovery of life would remain an important discovery, but habitable conditions on their own would be an unremarkable feature of the material universe. We discuss how minimum units of habitability provide a parsimonious way to consider the minimum number of geological inferences about a planetary body, and the minimum number of atmospheric components that must be measured, for example in the case of exoplanets, to be able to make assessments of habitability.
Collapse
Affiliation(s)
- Charles S Cockell
- UK Centre for Astrobiology, School of Physics and Astronomy, University of Edinburgh, Edinburgh, UK
| | - Robin Wordsworth
- Department of Earth and Planetary Sciences, Harvard University, Cambridge, Massachusetts, USA
| | - Niall Whiteford
- Institute for Astronomy, Royal Observatory, Blackford Hill, Edinburgh, UK
| | - Peter M Higgins
- UK Centre for Astrobiology, School of Physics and Astronomy, University of Edinburgh, Edinburgh, UK
- Institute for Astronomy, Royal Observatory, Blackford Hill, Edinburgh, UK
| |
Collapse
|
100
|
Tong H, Chen M, Lv Y, Liu C, Zheng C, Xia Y. Changes in the microbial community during microbial microaerophilic Fe(II) oxidation at circumneutral pH enriched from paddy soil. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2021; 43:1305-1317. [PMID: 32975698 DOI: 10.1007/s10653-020-00725-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2020] [Accepted: 09/15/2020] [Indexed: 06/11/2023]
Abstract
Fe(II)-oxidizing bacteria (FeOB) are important catalysts for iron cycling in iron-rich marine, groundwater, and freshwater environments. However, few studies have reported the distribution and diversity of these bacteria in flooded paddy soils. This study investigates the microbial structure and diversity of microaerophilic Fe(II)-oxidizing bacteria (mFeOB) and their possible role in Fe(II) oxidation in iron-rich paddy soils. Using enrichment experiments that employed serial transfers, the changes in microaerophilic microbial community were examined via 16S rRNA gene high-throughput sequencing. During enrichments, the Fe(II) oxidation rate decreased as transfers increased, and the maximum rate of Fe(II) oxidation was observed in the first transfer (0.197 mM day-1). Results from X-ray diffraction of minerals and scanning electron microscopy of the cell-mineral aggregates revealed that cell surfaces in all transfers were partly covered with amorphous iron oxide formed by FeOB. After four transfers, the phyla of Proteobacteria had a dominant presence that reached up to 95%. Compared with the original soil, the relative abundances of Cupriavidus, Massilia, Pseudomonas, Ralstonia, Sphingomonas, and Variovorax increased in FeS gradient tubes and became dominant genera after transfers. Cupriavidus, Pseudomonas, and Ralstonia have been identified as FeOB previously. Furthermore, the structure of the microbial community tended to be stable as transfers increased, indicating that other bacterial species might perform important roles in Fe(II) oxidation. These results suggest the potential involvement of mFeOB and these other microorganisms in the Fe(II)-oxidizing process of soils. It will be helpful for future studies to consider their role in related biogeochemical processes, such as transformation of organic matters and heavy metals.
Collapse
Affiliation(s)
- Hui Tong
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Guangdong Institute of Eco-environmental Science and Technology, Guangdong Academy of Sciences, Guangzhou, 510650, China
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, 550081, China
| | - Manjia Chen
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Guangdong Institute of Eco-environmental Science and Technology, Guangdong Academy of Sciences, Guangzhou, 510650, China
| | - Yahui Lv
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Guangdong Institute of Eco-environmental Science and Technology, Guangdong Academy of Sciences, Guangzhou, 510650, China
| | - Chengshuai Liu
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, 550081, China.
- CAS Center for Excellence in Quaternary Science and Global Change, Xi'an, 710061, China.
| | - Chunju Zheng
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, 550081, China
| | - Yafei Xia
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, 550081, China
| |
Collapse
|