51
|
Abstract
The human pathogenic nematode Strongyloides stercoralis infects approximately 30-100 million people worldwide. Analysis of the adaptive immune response to S. stercoralis beyond descriptive studies is challenging, as no murine model for the complete infection cycle is available. However, the combined employment of different models each capable of modelling some features of S. stercoralis life cycle and pathology has advanced our understanding of the immunological mechanisms involved in host defence. Here we review: (i) studies using S. stercoralis third stage larvae implanted in diffusion chambers in the subcutaneous tissue of mice that allow analysis of the immune response to the human pathogenic Strongyloides species; (ii) studies using Strongyloides ratti and Strongyloides venezuelensis that infect mice and rats to extend the analysis to the parasites intestinal life stage and (iii) studies using S. stercoralis infected gerbils to analyse the hyperinfection syndrome, a severe complication of human strongyloidiasis that is not induced by rodent specific Strongyloides spp. We provide an overview of the information accumulated so far showing that Strongyloides spp. elicits a classical Th2 response that culminates in different, site specific, effector functions leading to either entrapment and killing of larvae in the tissues or expulsion of parasitic adults from the intestine.
Collapse
|
52
|
Trichinella spiralis Paramyosin Binds Human Complement C1q and Inhibits Classical Complement Activation. PLoS Negl Trop Dis 2015; 9:e0004310. [PMID: 26720603 PMCID: PMC4697845 DOI: 10.1371/journal.pntd.0004310] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2015] [Accepted: 11/27/2015] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND Trichinella spiralis expresses paramyosin (Ts-Pmy) as a defense mechanism. Ts-Pmy is a functional protein with binding activity to human complement C8 and C9 and thus plays a role in evading the attack of the host's immune system. In the present study, the binding activity of Ts-Pmy to human complement C1q and its ability to inhibit classical complement activation were investigated. METHODS AND FINDINGS The binding of recombinant and natural Ts-Pmy to human C1q were determined by ELISA, Far Western blotting and immunoprecipitation, respectively. Binding of recombinant Ts-Pmy (rTs-Pmy) to C1q inhibited C1q binding to IgM and consequently inhibited C3 deposition. The lysis of antibody-sensitized erythrocytes (EAs) elicited by the classical complement pathway was also inhibited in the presence of rTs-Pmy. In addition to inhibiting classical complement activation, rTs-Pmy also suppressed C1q binding to THP-1-derived macrophages, thereby reducing C1q-induced macrophages migration. CONCLUSION Our results suggest that T. spiralis paramyosin plays an important role in immune evasion by interfering with complement activation through binding to C1q in addition to C8 and C9.
Collapse
|
53
|
Rückerl D, Allen JE. Macrophage proliferation, provenance, and plasticity in macroparasite infection. Immunol Rev 2015; 262:113-33. [PMID: 25319331 PMCID: PMC4324133 DOI: 10.1111/imr.12221] [Citation(s) in RCA: 75] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Macrophages have long been center stage in the host response to microbial infection, but only in the past 10–15 years has there been a growing appreciation for their role in helminth infection and the associated type 2 response. Through the actions of the IL-4 receptor α (IL-4Rα), type 2 cytokines result in the accumulation of macrophages with a distinctive activation phenotype. Although our knowledge of IL-4Rα-induced genes is growing rapidly, the specific functions of these macrophages have yet to be established in most disease settings. Understanding the interplay between IL-4Rα-activated macrophages and the other cellular players is confounded by the enormous transcriptional heterogeneity within the macrophage population and by their highly plastic nature. Another level of complexity is added by the new knowledge that tissue macrophages can be derived either from a resident prenatal population or from blood monocyte recruitment and that IL-4 can increase macrophage numbers through proliferative expansion. Here, we review current knowledge on the contribution of macrophages to helminth killing and wound repair, with specific attention paid to distinct cellular origins and plasticity potential.
Collapse
Affiliation(s)
- Dominik Rückerl
- Institute for Immunology and Infection Research, School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| | | |
Collapse
|
54
|
Chávez-Galán L, Olleros ML, Vesin D, Garcia I. Much More than M1 and M2 Macrophages, There are also CD169(+) and TCR(+) Macrophages. Front Immunol 2015; 6:263. [PMID: 26074923 PMCID: PMC4443739 DOI: 10.3389/fimmu.2015.00263] [Citation(s) in RCA: 334] [Impact Index Per Article: 33.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2015] [Accepted: 05/12/2015] [Indexed: 12/18/2022] Open
Abstract
Monocytes are considered to be precursor cells of the mononuclear phagocytic system, and macrophages are one of the leading members of this cellular system. Macrophages play highly diverse roles in maintaining an organism's integrity by either directly participating in pathogen elimination or repairing tissue under sterile inflammatory conditions. There are different subpopulations of macrophages and each one has its own characteristics and functions. In this review, we summarize present knowledge on the polarization of macrophages that allows the generation of subpopulations called classically activated macrophages or M1 and alternative activated macrophages or M2. Furthermore, there are macrophages that their origin and characterization still remain unclear but have been involved as main players in some human pathologies. Thus, we also review three other categories of macrophages: tumor-associated macrophages, CD169(+) macrophages, and the recently named TCR(+) macrophages. Based on the literature, we provide information on the molecular characterization of these macrophage subpopulations and their specific involvement in several human pathologies such as cancer, infectious diseases, obesity, and asthma. The refined characterization of the macrophage subpopulations can be useful in designing new strategies, supplementing those already established for the treatment of diseases using macrophages as a therapeutic target.
Collapse
Affiliation(s)
- Leslie Chávez-Galán
- Department of Pathology and Immunology, Faculty of Medicine, Centre Medical Universitaire (CMU), University of Geneva, Geneva, Switzerland
- Laboratory of Integrative Immunology, National Institute of Respiratory Diseases Ismael Cosio Villegas, Mexico City, Mexico
| | - Maria L. Olleros
- Department of Pathology and Immunology, Faculty of Medicine, Centre Medical Universitaire (CMU), University of Geneva, Geneva, Switzerland
| | - Dominique Vesin
- Department of Pathology and Immunology, Faculty of Medicine, Centre Medical Universitaire (CMU), University of Geneva, Geneva, Switzerland
| | - Irene Garcia
- Department of Pathology and Immunology, Faculty of Medicine, Centre Medical Universitaire (CMU), University of Geneva, Geneva, Switzerland
| |
Collapse
|
55
|
Toledo R, Muñoz-Antoli C, Esteban JG. Strongyloidiasis with emphasis on human infections and its different clinical forms. ADVANCES IN PARASITOLOGY 2015; 88:165-241. [PMID: 25911368 DOI: 10.1016/bs.apar.2015.02.005] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Strongyloidiasis (caused by Strongyloides stercoralis, and to a lesser extent by Strongyloides fuelleborni) is one of the most neglected tropical diseases with endemic areas and affecting more than 100 million people worldwide. Chronic infections in endemic areas can be maintained for decades through the autoinfective cycle with the L3 filariform larvae. In these endemic areas, misdiagnosis, inadequate treatment and the facilitation of the hyperinfection syndrome by immunosuppression are frequent and contribute to a high mortality rate. Despite the serious health impact of strongyloidiasis, it is a neglected disease and very little is known about this parasite and the disease when compared to other helminth infections. Control of the disease is difficult because of the many gaps in our knowledge of strongyloidiasis. We examine the recent literature on different aspects of strongyloidiasis with emphasis in those aspects that need further research.
Collapse
Affiliation(s)
- Rafael Toledo
- Departamento de Parasitología, Universidad de Valencia, Valencia, Spain
| | | | | |
Collapse
|
56
|
Allen JE, Sutherland TE, Rückerl D. IL-17 and neutrophils: unexpected players in the type 2 immune response. Curr Opin Immunol 2015; 34:99-106. [PMID: 25794823 DOI: 10.1016/j.coi.2015.03.001] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2015] [Revised: 02/26/2015] [Accepted: 03/02/2015] [Indexed: 02/08/2023]
Abstract
The study of immunity to helminth infection has been central to understanding the function of type 2 cytokines and their targets. Although type 2 cytokines are considered anti-inflammatory and promote tissue repair, they also contribute to allergy and fibrosis. Here, we utilise data from helminth infection models, to illustrate that IL-17 and neutrophils, typically associated with pro-inflammatory responses, are intimately linked with type 2 immunity. Neutrophils work with IL-4Rα-activated macrophages to control incoming larvae but this comes at a cost of enhanced tissue damage. Chitinase like proteins (CLPs) bridge these diverse outcomes, inducing both protective IL-17 and reparative Th2 responses. Dysregulation of CLPs, IL-17 and neutrophils likely contribute to disease severity and pathology associated with type 2 immunity.
Collapse
Affiliation(s)
- Judith E Allen
- Centre for Immunity, Infection and Evolution, School of Biological Sciences, University of Edinburgh, Charlotte Auerbach Road, Edinburgh EH9 3FL, United Kingdom.
| | - Tara E Sutherland
- Centre for Immunity, Infection and Evolution, School of Biological Sciences, University of Edinburgh, Charlotte Auerbach Road, Edinburgh EH9 3FL, United Kingdom
| | - Dominik Rückerl
- Centre for Immunity, Infection and Evolution, School of Biological Sciences, University of Edinburgh, Charlotte Auerbach Road, Edinburgh EH9 3FL, United Kingdom
| |
Collapse
|
57
|
Esser-von Bieren J, Volpe B, Kulagin M, Sutherland DB, Guiet R, Seitz A, Marsland BJ, Verbeek JS, Harris NL. Antibody-mediated trapping of helminth larvae requires CD11b and Fcγ receptor I. THE JOURNAL OF IMMUNOLOGY 2014; 194:1154-63. [PMID: 25548226 DOI: 10.4049/jimmunol.1401645] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Infections with intestinal helminths severely impact on human and veterinary health, particularly through the damage that these large parasites inflict when migrating through host tissues. Host immunity often targets the motility of tissue-migrating helminth larvae, which ideally should be mimicked by anti-helminth vaccines. However, the mechanisms of larval trapping are still poorly defined. We have recently reported an important role for Abs in the rapid trapping of tissue-migrating larvae of the murine parasite Heligmosomoides polygyrus bakeri. Trapping was mediated by macrophages (MΦ) and involved complement, activating FcRs, and Arginase-1 (Arg1) activity. However, the receptors and Ab isotypes responsible for MΦ adherence and Arg1 induction remained unclear. Using an in vitro coculture assay of H. polygyrus bakeri larvae and bone marrow-derived MΦ, we now identify CD11b as the major complement receptor mediating MΦ adherence to the larval surface. However, larval immobilization was largely independent of CD11b and instead required the activating IgG receptor FcγRI (CD64) both in vitro and during challenge H. polygyrus bakeri infection in vivo. FcγRI signaling also contributed to the upregulation of MΦ Arg1 expression in vitro and in vivo. Finally, IgG2a/c was the major IgG subtype from early immune serum bound by FcγRI on the MΦ surface, and purified IgG2c could trigger larval immobilization and Arg1 expression in MΦ in vitro. Our findings reveal a novel role for IgG2a/c-FcγRI-driven MΦ activation in the efficient trapping of tissue-migrating helminth larvae and thus provide important mechanistic insights vital for anti-helminth vaccine development.
Collapse
Affiliation(s)
- Julia Esser-von Bieren
- Swiss Vaccine Research Institute, Global Health Institute, Swiss Federal Institute of Technology, Lausanne, 1015 Lausanne, Switzerland
| | - Beatrice Volpe
- Swiss Vaccine Research Institute, Global Health Institute, Swiss Federal Institute of Technology, Lausanne, 1015 Lausanne, Switzerland
| | - Manuel Kulagin
- Swiss Vaccine Research Institute, Global Health Institute, Swiss Federal Institute of Technology, Lausanne, 1015 Lausanne, Switzerland
| | - Duncan B Sutherland
- Swiss Vaccine Research Institute, Global Health Institute, Swiss Federal Institute of Technology, Lausanne, 1015 Lausanne, Switzerland
| | - Romain Guiet
- Bioimaging and Optics Core Facility, Swiss Federal Institute of Technology, Lausanne, 1015 Lausanne, Switzerland
| | - Arne Seitz
- Bioimaging and Optics Core Facility, Swiss Federal Institute of Technology, Lausanne, 1015 Lausanne, Switzerland
| | - Benjamin J Marsland
- Faculty of Biology and Medicine, Respiratory Division, University Hospital, Vaud, University of Lausanne, 1011 Lausanne, Switzerland; and
| | - J Sjef Verbeek
- Department of Human Genetics, Leiden University Medical Center, 2300 RC Leiden, the Netherlands
| | - Nicola L Harris
- Swiss Vaccine Research Institute, Global Health Institute, Swiss Federal Institute of Technology, Lausanne, 1015 Lausanne, Switzerland;
| |
Collapse
|
58
|
Sutherland TE, Logan N, Rückerl D, Humbles AA, Allan SM, Papayannopoulos V, Stockinger B, Maizels RM, Allen JE. Chitinase-like proteins promote IL-17-mediated neutrophilia in a tradeoff between nematode killing and host damage. Nat Immunol 2014; 15:1116-25. [PMID: 25326751 PMCID: PMC4338525 DOI: 10.1038/ni.3023] [Citation(s) in RCA: 162] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2014] [Accepted: 09/26/2014] [Indexed: 12/12/2022]
Abstract
Enzymatically inactive chitinase-like proteins (CLPs) such as BRP-39, Ym1 and Ym2 are established markers of immune activation and pathology, yet their functions are essentially unknown. We found that Ym1 and Ym2 induced the accumulation of neutrophils through the expansion of γδ T cell populations that produced interleukin 17 (IL-17). While BRP-39 did not influence neutrophilia, it was required for IL-17 production in γδ T cells, which suggested that regulation of IL-17 is an inherent feature of mouse CLPs. Analysis of a nematode infection model, in which the parasite migrates through the lungs, revealed that the IL-17 and neutrophilic inflammation induced by Ym1 limited parasite survival but at the cost of enhanced lung injury. Our studies describe effector functions of CLPs consistent with innate host defense traits of the chitinase family.
Collapse
Affiliation(s)
- Tara E Sutherland
- Institute of Immunology and Infection Research, Centre for Immunity Infection and Evolution, School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| | - Nicola Logan
- Institute of Immunology and Infection Research, Centre for Immunity Infection and Evolution, School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| | - Dominik Rückerl
- Institute of Immunology and Infection Research, Centre for Immunity Infection and Evolution, School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| | - Alison A Humbles
- Department of Respiratory, Inflammation &Autoimmunity, MedImmune, Gaithersburg, Maryland, USA
| | - Stuart M Allan
- Faculty of Life Sciences, University of Manchester, Manchester, UK
| | - Venizelos Papayannopoulos
- Division of Molecular Immunology, Medical Research Council National Institute for Medical Research, London, UK
| | - Brigitta Stockinger
- Division of Molecular Immunology, Medical Research Council National Institute for Medical Research, London, UK
| | - Rick M Maizels
- Institute of Immunology and Infection Research, Centre for Immunity Infection and Evolution, School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| | - Judith E Allen
- Institute of Immunology and Infection Research, Centre for Immunity Infection and Evolution, School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| |
Collapse
|
59
|
Barros N, Montes M. Infection and Hyperinfection with Strongyloides stercoralis: Clinical Presentation, Etiology of Disease, and Treatment Options. CURRENT TROPICAL MEDICINE REPORTS 2014. [DOI: 10.1007/s40475-014-0030-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
60
|
Neutrophils prime a long-lived effector macrophage phenotype that mediates accelerated helminth expulsion. Nat Immunol 2014; 15:938-46. [PMID: 25173346 PMCID: PMC4479254 DOI: 10.1038/ni.2984] [Citation(s) in RCA: 255] [Impact Index Per Article: 23.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2014] [Accepted: 08/04/2014] [Indexed: 12/14/2022]
Abstract
We examined the role of innate cells in acquired resistance to the natural murine parasitic nematode, Nippostrongylus brasiliensis. Macrophages obtained from lungs as late as 45 d after N. brasiliensis inoculation were able to transfer accelerated parasite clearance to naive recipients. Primed macrophages adhered to larvae in vitro and triggered increased mortality of parasites. Neutrophil depletion in primed mice abrogated the protective effects of transferred macrophages and inhibited their in vitro binding to larvae. Neutrophils in parasite-infected mice showed a distinct transcriptional profile and promoted alternatively activated M2 macrophage polarization through secretory factors including IL-13. Differentially activated neutrophils in the context of a type 2 immune response therefore prime a long-lived effector macrophage phenotype that directly mediates rapid nematode damage and clearance.
Collapse
|
61
|
Allen JE, Sutherland TE. Host protective roles of type 2 immunity: parasite killing and tissue repair, flip sides of the same coin. Semin Immunol 2014; 26:329-40. [PMID: 25028340 PMCID: PMC4179909 DOI: 10.1016/j.smim.2014.06.003] [Citation(s) in RCA: 175] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2014] [Accepted: 06/19/2014] [Indexed: 12/15/2022]
Abstract
Type 2 immunity is associated with both helminth infection and responses to injury. Pathways involved in tissue repair and helminth immunity overlap. The IL-4Rα is central to accelerating both repair and helminth control. Adaptive immunity contributes to more rapid wound repair.
Metazoan parasites typically induce a type 2 immune response, characterized by T helper 2 (Th2) cells that produce the cytokines IL-4, IL-5 and IL-13 among others. The type 2 response is host protective, reducing the number of parasites either through direct killing in the tissues, or expulsion from the intestine. Type 2 immunity also protects the host against damage mediated by these large extracellular parasites as they migrate through the body. At the center of both the innate and adaptive type 2 immune response, is the IL-4Rα that mediates many of the key effector functions. Here we highlight the striking overlap between the molecules, cells and pathways that mediate both parasite control and tissue repair. We have proposed that adaptive Th2 immunity evolved out of our innate repair pathways to mediate both accelerated repair and parasite control in the face of continual assault from multicellular pathogens. Type 2 cytokines are involved in many aspects of mammalian physiology independent of helminth infection. Therefore understanding the evolutionary relationship between helminth killing and tissue repair should provide new insight into immune mechanisms of tissue protection in the face of physical injury.
Collapse
Affiliation(s)
- Judith E Allen
- Centre for Immunity, Infection & Evolution, School of Biological Sciences, University of Edinburgh, Edinburgh, UK.
| | - Tara E Sutherland
- Centre for Immunity, Infection & Evolution, School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| |
Collapse
|
62
|
Vaccines to combat river blindness: expression, selection and formulation of vaccines against infection with Onchocerca volvulus in a mouse model. Int J Parasitol 2014; 44:637-46. [PMID: 24907553 DOI: 10.1016/j.ijpara.2014.04.006] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2014] [Revised: 04/15/2014] [Accepted: 04/16/2014] [Indexed: 01/21/2023]
Abstract
Human onchocerciasis is a neglected tropical disease caused by Onchocerca volvulus and an important cause of blindness and chronic disability in the developing world. Although mass drug administration of ivermectin has had a profound effect on control of the disease, additional tools are critically needed including the need for a vaccine against onchocerciasis. The objectives of the present study were to: (i) select antigens with known vaccine pedigrees as components of a vaccine; (ii) produce the selected vaccine antigens under controlled conditions, using two expression systems and in one laboratory and (iii) evaluate their vaccine efficacy using a single immunisation protocol in mice. In addition, we tested the hypothesis that joining protective antigens as a fusion protein or in combination, into a multivalent vaccine, would improve the ability of the vaccine to induce protective immunity. Out of eight vaccine candidates tested in this study, Ov-103, Ov-RAL-2 and Ov-CPI-2M were shown to reproducibly induce protective immunity when administered individually, as fusion proteins or in combination. Although there was no increase in the level of protective immunity induced by combining the antigens into one vaccine, these antigens remain strong candidates for inclusion in a vaccine to control onchocerciasis in humans.
Collapse
|
63
|
Bonne-Année S, Kerepesi LA, Hess JA, Wesolowski J, Paumet F, Lok JB, Nolan TJ, Abraham D. Extracellular traps are associated with human and mouse neutrophil and macrophage mediated killing of larval Strongyloides stercoralis. Microbes Infect 2014; 16:502-11. [PMID: 24642003 PMCID: PMC4076910 DOI: 10.1016/j.micinf.2014.02.012] [Citation(s) in RCA: 96] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2013] [Revised: 02/27/2014] [Accepted: 02/28/2014] [Indexed: 01/21/2023]
Abstract
Neutrophils are multifaceted cells that are often the immune system's first line of defense. Human and murine cells release extracellular DNA traps (ETs) in response to several pathogens and diseases. Neutrophil extracellular trap (NET) formation is crucial to trapping and killing extracellular pathogens. Aside from neutrophils, macrophages and eosinophils also release ETs. We hypothesized that ETs serve as a mechanism of ensnaring the large and highly motile helminth parasite Strongyloides stercoralis thereby providing a static target for the immune response. We demonstrated that S. stercoralis larvae trigger the release of ETs by human neutrophils and macrophages. Analysis of NETs revealed that NETs trapped but did not kill larvae. Induction of NETs was essential for larval killing by human but not murine neutrophils and macrophages in vitro. In mice, extracellular traps were induced following infection with S. stercoralis larvae and were present in the microenvironment of worms being killed in vivo. These findings demonstrate that NETs ensnare the parasite facilitating larval killing by cells of the immune system.
Collapse
Affiliation(s)
- Sandra Bonne-Année
- Department of Microbiology and Immunology, Thomas Jefferson University, 233 S. 10th Street, Philadelphia, PA 19107, USA
| | - Laura A Kerepesi
- Department of Microbiology and Immunology, Thomas Jefferson University, 233 S. 10th Street, Philadelphia, PA 19107, USA
| | - Jessica A Hess
- Department of Microbiology and Immunology, Thomas Jefferson University, 233 S. 10th Street, Philadelphia, PA 19107, USA
| | - Jordan Wesolowski
- Department of Microbiology and Immunology, Thomas Jefferson University, 233 S. 10th Street, Philadelphia, PA 19107, USA
| | - Fabienne Paumet
- Department of Microbiology and Immunology, Thomas Jefferson University, 233 S. 10th Street, Philadelphia, PA 19107, USA
| | - James B Lok
- Department of Pathobiology, University of Pennsylvania, School of Veterinary Medicine, 3800 Spruce Street, Philadelphia, PA 19104, USA
| | - Thomas J Nolan
- Department of Pathobiology, University of Pennsylvania, School of Veterinary Medicine, 3800 Spruce Street, Philadelphia, PA 19104, USA
| | - David Abraham
- Department of Microbiology and Immunology, Thomas Jefferson University, 233 S. 10th Street, Philadelphia, PA 19107, USA.
| |
Collapse
|
64
|
Ndlovu H, Darby M, Froelich M, Horsnell W, Lühder F, Hünig T, Brombacher F. Inducible deletion of CD28 prior to secondary nippostrongylus brasiliensis infection impairs worm expulsion and recall of protective memory CD4⁺ T cell responses. PLoS Pathog 2014; 10:e1003906. [PMID: 24516382 PMCID: PMC3916406 DOI: 10.1371/journal.ppat.1003906] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2012] [Accepted: 12/16/2013] [Indexed: 12/31/2022] Open
Abstract
IL-13 driven Th2 immunity is indispensable for host protection against infection with the gastrointestinal nematode Nippostronglus brasiliensis. Disruption of CD28 mediated costimulation impairs development of adequate Th2 immunity, showing an importance for CD28 during the initiation of an immune response against this pathogen. In this study, we used global CD28−/− mice and a recently established mouse model that allows for inducible deletion of the cd28 gene by oral administration of tamoxifen (CD28−/loxCre+/−+TM) to resolve the controversy surrounding the requirement of CD28 costimulation for recall of protective memory responses against pathogenic infections. Following primary infection with N. brasiliensis, CD28−/− mice had delayed expulsion of adult worms in the small intestine compared to wild-type C57BL/6 mice that cleared the infection by day 9 post-infection. Delayed expulsion was associated with reduced production of IL-13 and reduced serum levels of antigen specific IgG1 and total IgE. Interestingly, abrogation of CD28 costimulation in CD28−/loxCre+/− mice by oral administration of tamoxifen prior to secondary infection with N. brasiliensis resulted in impaired worm expulsion, similarly to infected CD28−/− mice. This was associated with reduced production of the Th2 cytokines IL-13 and IL-4, diminished serum titres of antigen specific IgG1 and total IgE and a reduced CXCR5+ TFH cell population. Furthermore, total number of CD4+ T cells and B220+ B cells secreting Th1 and Th2 cytokines were significantly reduced in CD28−/− mice and tamoxifen treated CD28−/loxCre+/− mice compared to C57BL/6 mice. Importantly, interfering with CD28 costimulatory signalling before re-infection impaired the recruitment and/or expansion of central and effector memory CD4+ T cells and follicular B cells to the draining lymph node of tamoxifen treated CD28−/loxCre+/− mice. Therefore, it can be concluded that CD28 costimulation is essential for conferring host protection during secondary N. brasiliensis infection. CD28 is an important costimulatory molecule, involved in the activation of naive T cells, enhancing cytokine production, preventing T cell anergy and apoptosis. Furthermore, CD28 plays a crucial role in the organisation of secondary lymphoid tissue by assisting in the recruitment of T cells into the B cell follicles, thus promoting germinal center formation, isotype switching and B cell maturation. The requirement of CD28 costimulatory signalling during recall of memory responses against infections has remained controversial. Hence, here we utilised a mouse model that allowed for inducible deletion of the cd28 gene (CD28−/loxCre+/−) by oral administration of tamoxifen to resolve this controversy. CD28−/− mice and mice given tamoxifen prior to secondary infection failed to expel adult N. brasiliensis worms. This was related to reduced production of the Th2 cytokines IL-13 and IL-4, diminished type 2 antibody titres, and a reduced number of memory CD4+ T cells. In summary, CD28 is crucial for protection against N. brasiliensis secondary infection and plays a key role in the recruitment of TFH cells, memory CD4+ T cells and follicular B cells.
Collapse
Affiliation(s)
- Hlumani Ndlovu
- International Center for Genetic Engineering and Biotechnology (ICGEB), Cape Town Component and Institute of Infectious Diseases and Molecular Medicine (IIDMM), Division of Immunology, University of Cape Town, Cape Town, South Africa
| | - Mathew Darby
- International Center for Genetic Engineering and Biotechnology (ICGEB), Cape Town Component and Institute of Infectious Diseases and Molecular Medicine (IIDMM), Division of Immunology, University of Cape Town, Cape Town, South Africa
| | - Monika Froelich
- Institute for Virology and Immunology, University of Würzburg, Würzburg, Germany
| | - William Horsnell
- International Center for Genetic Engineering and Biotechnology (ICGEB), Cape Town Component and Institute of Infectious Diseases and Molecular Medicine (IIDMM), Division of Immunology, University of Cape Town, Cape Town, South Africa
| | - Fred Lühder
- Department of Neuroimmunology, Institute of Multiple Sclerosis Research and The Hertie Foundation, University Medical Center Göttingen, Göttingen, Germany
| | - Thomas Hünig
- Institute for Virology and Immunology, University of Würzburg, Würzburg, Germany
| | - Frank Brombacher
- International Center for Genetic Engineering and Biotechnology (ICGEB), Cape Town Component and Institute of Infectious Diseases and Molecular Medicine (IIDMM), Division of Immunology, University of Cape Town, Cape Town, South Africa
- * E-mail:
| |
Collapse
|
65
|
Jang JC, Nair MG. Alternatively Activated Macrophages Revisited: New Insights into the Regulation of Immunity, Inflammation and Metabolic Function following Parasite Infection. ACTA ACUST UNITED AC 2014; 9:147-156. [PMID: 24772059 DOI: 10.2174/1573395509666131210232548] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The role of macrophages in homeostatic conditions and the immune system range from clearing debris to recognizing and killing pathogens. While classically activated macrophages (CAMacs) are induced by T helper type 1 (Th1) cytokines and exhibit microbicidal properties, Th2 cytokines promote alternative activation of macrophages (AAMacs). AAMacs contribute to the killing of helminth parasites and mediate additional host-protective processes such as regulating inflammation and wound healing. Yet, other parasites susceptible to Th1 type responses can exploit alternative activation of macrophages to diminish Th1 immune responses and prolong infection. In this review, we will delineate the factors that mediate alternative activation (e.g. Th2 cytokines and chitin) and the resulting downstream signaling events (e.g. STAT6 signaling). Next, the specific AAMac-derived factors (e.g. Arginase1) that contribute to resistance or susceptibility to parasitic infections will be summarized. Finally, we will conclude with the discussion of additional AAMac functions beyond immunity to parasites, including the regulation of inflammation, wound healing and the regulation of metabolic disorders.
Collapse
Affiliation(s)
- Jessica C Jang
- Division of Biomedical Sciences, School of Medicine, University of California Riverside, Riverside, CA
| | - Meera G Nair
- Division of Biomedical Sciences, School of Medicine, University of California Riverside, Riverside, CA
| |
Collapse
|