51
|
Abstract
Shiga toxin-producing Escherichia coli (STEC) strains are commonly found in the intestine of ruminant species of wild and domestic animals. Excretion of STEC with animal feces results in a broad contamination of food and the environment. Humans get infected with STEC through ingestion of contaminated food, by contact with the environment, and from STEC-excreting animals and humans. STEC strains can behave as human pathogens, and some of them, called enterohemorrhagic E. coli (EHEC), may cause hemorrhagic colitis (HC) and hemolytic-uremic syndrome (HUS). Because of the diversity of STEC types, detection strategies for STEC and EHEC are based on the identification of Shiga toxins or the underlying genes. Cultural enrichment of STEC from test samples is needed for identification, and different protocols were developed for this purpose. Multiplex real-time PCR protocols (ISO/CEN TS13136 and USDA/FSIS MLG5B.01) have been developed to specifically identify EHEC by targeting the LEE (locus of enterocyte effacement)-encoded eae gene and genes for EHEC-associated O groups. The employment of more genetic markers (nle and CRISPR) is a future challenge for better identification of EHEC from any kinds of samples. The isolation of STEC or EHEC from a sample is required for confirmation, and different cultivation protocols and media for this purpose have been developed. Most STEC strains present in food, animals, and the environment are eae negative, but some of these strains can cause HC and HUS in humans as well. Phenotypic assays and molecular tools for typing EHEC and STEC strains are used to detect and characterize human pathogenic strains among members of the STEC group.
Collapse
|
52
|
Delannoy S, Chaves BD, Ison SA, Webb HE, Beutin L, Delaval J, Billet I, Fach P. Revisiting the STEC Testing Approach: Using espK and espV to Make Enterohemorrhagic Escherichia coli (EHEC) Detection More Reliable in Beef. Front Microbiol 2016; 7:1. [PMID: 26834723 PMCID: PMC4722105 DOI: 10.3389/fmicb.2016.00001] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Accepted: 01/05/2016] [Indexed: 11/29/2022] Open
Abstract
Current methods for screening Enterohemorrhagic Escherichia coli (EHEC) O157 and non-O157 in beef enrichments typically rely on the molecular detection of stx, eae, and serogroup-specific wzx or wzy gene fragments. As these genetic markers can also be found in some non-EHEC strains, a number of "false positive" results are obtained. Here, we explore the suitability of five novel molecular markers, espK, espV, ureD, Z2098, and CRISPRO26:H11 as candidates for a more accurate screening of EHEC strains of greater clinical significance in industrialized countries. Of the 1739 beef enrichments tested, 180 were positive for both stx and eae genes. Ninety (50%) of these tested negative for espK, espV, ureD, and Z2098, but 12 out of these negative samples were positive for the CRISPRO26:H11 gene marker specific for a newly emerging virulent EHEC O26:H11 French clone. We show that screening for stx, eae, espK, and espV, in association with the CRISPRO26:H11 marker is a better approach to narrow down the EHEC screening step in beef enrichments. The number of potentially positive samples was reduced by 48.88% by means of this alternative strategy compared to the European and American reference methods, thus substantially improving the discriminatory power of EHEC screening systems. This approach is in line with the EFSA (European Food Safety Authority) opinion on pathogenic STEC published in 2013.
Collapse
Affiliation(s)
- Sabine Delannoy
- Food Safety Laboratory, Université Paris-Est, Anses (French Agency for Food, Environmental and Occupational Health and Safety), Platform IdentyPathMaisons-Alfort, France
| | - Byron D. Chaves
- Department of Animal and Food Sciences, Texas Tech UniversityLubbock, TX, USA
| | - Sarah A. Ison
- Department of Animal and Food Sciences, Texas Tech UniversityLubbock, TX, USA
| | - Hattie E. Webb
- Department of Animal and Food Sciences, Texas Tech UniversityLubbock, TX, USA
| | - Lothar Beutin
- Division of Microbial Toxins, National Reference Laboratory for Escherichia coli, Federal Institute for Risk AssessmentBerlin, Germany
| | - José Delaval
- Laboratoire de Touraine, (LDA37) Conseil DépartementalTours, France
| | | | - Patrick Fach
- Food Safety Laboratory, Université Paris-Est, Anses (French Agency for Food, Environmental and Occupational Health and Safety), Platform IdentyPathMaisons-Alfort, France
| |
Collapse
|
53
|
Álvarez-Suárez ME, Otero A, García-López ML, Santos JA. Microbiological Examination of Bulk Tank Goat's Milk in the Castilla y León Region in Northern Spain. J Food Prot 2015; 78:2227-32. [PMID: 26613918 DOI: 10.4315/0362-028x.jfp-15-133] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The purpose of the study was to evaluate the microbiological status (mesophilic aerobic microorganism counts) of 68 samples of bulk tank goat's milk and determine the risk associated with the foodborne pathogens Staphylococcus aureus, enteropathogenic and Shiga toxin-producing Escherichia coli, and Cronobacter sakazakii. Most samples (83.8%) complied with the limits of mesophilic aerobe counts set in the European Union for milk of species other than cows. A total of 144 isolates of coagulase-positive staphylococci were characterized, and 11 (7.6%) of them carried staphylococcal enterotoxin (SE) genes of the classical types (encoding SEA to SEE), distributed as follows: 4 carried the SEA gene, 1 the SEB gene, and 6 the SED gene. C. sakazakii was not detected in any sample. Regarding detection of E. coli virulence-related genes in enriched milk samples, 12 milk samples were positive only for the presence of stx genes, 4 were positive for both stx and eae genes, and 20 were negative for stx amplification and positive for eae amplification. Seven enteropathogenic E. coli and 9 Shiga toxin-producing E. coli isolates (one of them of serogroup O157) were recovered. In conclusion, goat's milk produced on farms in Castilla y León is generally in accordance with European Union standards, but the presence of pathogenic E. coli isolates indicates that the consumption of raw goat's milk may pose a risk to public health.
Collapse
Affiliation(s)
- María-Elena Álvarez-Suárez
- Department of Food Hygiene and Food Technology, Veterinary Faculty, University of León, E-24071 Léon, Spain
| | - Andrés Otero
- Department of Food Hygiene and Food Technology, Veterinary Faculty, University of León, E-24071 Léon, Spain
| | - María-Luisa García-López
- Department of Food Hygiene and Food Technology, Veterinary Faculty, University of León, E-24071 Léon, Spain
| | - Jesús A Santos
- Department of Food Hygiene and Food Technology, Veterinary Faculty, University of León, E-24071 Léon, Spain.
| |
Collapse
|
54
|
Krüger A, Lucchesi PMA, Sanso AM, Etcheverría AI, Bustamante AV, Burgán J, Fernández L, Fernández D, Leotta G, Friedrich AW, Padola NL, Rossen JWA. Genetic characterization of Shiga toxin-producing Escherichia coli O26:H11 strains isolated from animal, food, and clinical samples. Front Cell Infect Microbiol 2015; 5:74. [PMID: 26539413 PMCID: PMC4612136 DOI: 10.3389/fcimb.2015.00074] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Accepted: 10/05/2015] [Indexed: 11/16/2022] Open
Abstract
The Shiga-toxin producing Escherichia coli (STEC) may cause serious illness in human. Here we analyze O26:H11 strains known to be among the most reported STEC strains causing human infections. Genetic characterization of strains isolated from animal, food, and clinical specimens in Argentina showed that most carried either stx1a or stx2a subtypes. Interestingly, stx2a-positive O26:H11 rarely isolated from cattle in other countries showed to be an important proportion of O26:H11 strains circulating in cattle and food in our region. Seventeen percent of the isolates harbored more than one gene associated with antimicrobial resistance. In addition to stx, all strains contained the virulence genes eae-β, tir, efa, iha, espB, cif, espA, espF, espJ, nleA, nleB, nleC, and iss; and all except one contained ehxA, espP, and cba genes. On the other hand, toxB and espI genes were exclusively observed in stx2-positive isolates, whereas katP was only found in stx1a-positive isolates. Our results show that O26:H11 STEC strains circulating in Argentina, including those isolated from humans, cattle, and meat products, present a high pathogenic potential, and evidence that cattle can be a reservoir of O26:H11 strains harboring stx2a.
Collapse
Affiliation(s)
- Alejandra Krüger
- Laboratorio de Inmunoquímica y Biotecnología, Facultad de Ciencias Veterinarias, Centro de Investigación Veterinaria de Tandil, Consejo Nacional de Investigaciones Científicas y Técnicas, Comisión de Investigaciones Científicas, Universidad Nacional del Centro de la Provincia de Buenos Aires Tandil, Argentina
| | - Paula M A Lucchesi
- Laboratorio de Inmunoquímica y Biotecnología, Facultad de Ciencias Veterinarias, Centro de Investigación Veterinaria de Tandil, Consejo Nacional de Investigaciones Científicas y Técnicas, Comisión de Investigaciones Científicas, Universidad Nacional del Centro de la Provincia de Buenos Aires Tandil, Argentina
| | - A Mariel Sanso
- Laboratorio de Inmunoquímica y Biotecnología, Facultad de Ciencias Veterinarias, Centro de Investigación Veterinaria de Tandil, Consejo Nacional de Investigaciones Científicas y Técnicas, Comisión de Investigaciones Científicas, Universidad Nacional del Centro de la Provincia de Buenos Aires Tandil, Argentina
| | - Analía I Etcheverría
- Laboratorio de Inmunoquímica y Biotecnología, Facultad de Ciencias Veterinarias, Centro de Investigación Veterinaria de Tandil, Consejo Nacional de Investigaciones Científicas y Técnicas, Comisión de Investigaciones Científicas, Universidad Nacional del Centro de la Provincia de Buenos Aires Tandil, Argentina
| | - Ana V Bustamante
- Laboratorio de Inmunoquímica y Biotecnología, Facultad de Ciencias Veterinarias, Centro de Investigación Veterinaria de Tandil, Consejo Nacional de Investigaciones Científicas y Técnicas, Comisión de Investigaciones Científicas, Universidad Nacional del Centro de la Provincia de Buenos Aires Tandil, Argentina
| | - Julia Burgán
- Laboratorio de Inmunoquímica y Biotecnología, Facultad de Ciencias Veterinarias, Centro de Investigación Veterinaria de Tandil, Consejo Nacional de Investigaciones Científicas y Técnicas, Comisión de Investigaciones Científicas, Universidad Nacional del Centro de la Provincia de Buenos Aires Tandil, Argentina
| | - Luciana Fernández
- Laboratorio de Inmunoquímica y Biotecnología, Facultad de Ciencias Veterinarias, Centro de Investigación Veterinaria de Tandil, Consejo Nacional de Investigaciones Científicas y Técnicas, Comisión de Investigaciones Científicas, Universidad Nacional del Centro de la Provincia de Buenos Aires Tandil, Argentina
| | - Daniel Fernández
- Laboratorio de Inmunoquímica y Biotecnología, Facultad de Ciencias Veterinarias, Centro de Investigación Veterinaria de Tandil, Consejo Nacional de Investigaciones Científicas y Técnicas, Comisión de Investigaciones Científicas, Universidad Nacional del Centro de la Provincia de Buenos Aires Tandil, Argentina
| | - Gerardo Leotta
- Línea Seguridad Alimentaria, Instituto de Genética Veterinaria Ing. F.N. Dulout, Consejo Nacional de Investigaciones Científicas y Técnicas La Plata, Argentina
| | - Alexander W Friedrich
- Department of Medical Microbiology, University Medical Center Groningen, University of Groningen Groningen, Netherlands
| | - Nora L Padola
- Laboratorio de Inmunoquímica y Biotecnología, Facultad de Ciencias Veterinarias, Centro de Investigación Veterinaria de Tandil, Consejo Nacional de Investigaciones Científicas y Técnicas, Comisión de Investigaciones Científicas, Universidad Nacional del Centro de la Provincia de Buenos Aires Tandil, Argentina
| | - John W A Rossen
- Department of Medical Microbiology, University Medical Center Groningen, University of Groningen Groningen, Netherlands
| |
Collapse
|
55
|
Contamination of Hospital Water Supplies in Gilan, Iran, with Legionella pneumophila, Escherichia coli, and Pseudomonas aeruginosa. Interdiscip Perspect Infect Dis 2015; 2015:809842. [PMID: 26448745 PMCID: PMC4576014 DOI: 10.1155/2015/809842] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2015] [Revised: 08/23/2015] [Accepted: 08/26/2015] [Indexed: 11/17/2022] Open
Abstract
This study is designed to determine the contamination degree of hospital water supplies with Pseudomonas aeruginosa, Legionella pneumophila, and E. coli in Gilan, Iran. Samples were collected directly into sterile containers and concentrated by centrifuge. Half part of any sample transferred to yeast extract broth and the second part transferred to Trypticase Soy Broth and incubated for 3 days. DNA was extracted by using commercial kit. Four rounds of PCR were performed as follows: multiplex PCR for detecting Pseudomonas aeruginosa, Integron 1, and Metallo-β-lactamases gene; PCR for detecting Legionella pneumophila and mip gene separately; PCR for detecting E. coli; and another PCR for detecting whole bacterial presence. Contamination rates of cold, warm, and incubator water samples with P. aeruginosa, were 16.6%, 37.5%, and 6.8% consequently. Degrees of contamination with L. pneumophila were 3.3%, 9.3%, and 10.9% and with E. coli were zero, 6.2%, and zero. Total bacterial contamination of cold, warm, and incubator water samples was 93.3%, 84.4%, and 89.0% consequently. Metallo-β-lactamases gene was found in 20.0% of all samples. Contamination degree with P. aeruginosa was considerable and with L. pneumophila was moderate. Metallo-β-lactamases gene was found frequently indicating widespread multiple drug resistance bacteria. We suggest using new decontamination method based on nanotechnology.
Collapse
|
56
|
Abstract
Enteropathogenic Escherichia coli (EPEC) strains induce morphological changes in infected epithelial cells. The resulting attaching and effacing (A/E) lesion is characterized by intimate bacterial adherence to epithelial cells, with microvillus destruction, cytoskeletal rearrangement, and aggregation of host cytoskeletal proteins. This review presents an overview of the adhesion mechanisms used for the colonization of the human gastrointestinal tract by EPEC. The mechanisms underlying EPEC adhesion, prior to and during the formation of the A/E lesion, and the host cytosolic responses to bacterial infection leading to diarrheal disease are discussed.
Collapse
|
57
|
Feng Y, Yang Q, Wang L, Li G, Lv X, Han Q, Liu X, Xia X. Survey of Microbial Contamination and Characterization ofEscherichia coliin Kiwifruit Orchards in Shaanxi, China, 2013. Foodborne Pathog Dis 2015; 12:857-63. [DOI: 10.1089/fpd.2015.1967] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Affiliation(s)
- Yuqing Feng
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, China
| | - Qinnan Yang
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, China
| | - Lingfang Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, China
| | - Guanghui Li
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, China
| | - Xiaoying Lv
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, China
| | - Qi'an Han
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, China
| | - Xiaobo Liu
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, China
| | - Xiaodong Xia
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, China
| |
Collapse
|
58
|
Microbiological analysis of pre-packed sweet basil (Ocimum basilicum) and coriander (Coriandrum sativum) leaves for the presence of Salmonella spp. and Shiga toxin-producing E. coli. Int J Food Microbiol 2015; 208:11-8. [DOI: 10.1016/j.ijfoodmicro.2015.05.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2014] [Revised: 02/03/2015] [Accepted: 05/16/2015] [Indexed: 11/21/2022]
|
59
|
Ison SA, Delannoy S, Bugarel M, Nightingale KK, Webb HE, Renter DG, Nagaraja TG, Loneragan GH, Fach P. Genetic Diversity and Pathogenic Potential of Attaching and Effacing Escherichia coli O26:H11 Strains Recovered from Bovine Feces in the United States. Appl Environ Microbiol 2015; 81:3671-8. [PMID: 25795673 PMCID: PMC4421050 DOI: 10.1128/aem.00397-15] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2015] [Accepted: 03/15/2015] [Indexed: 12/28/2022] Open
Abstract
Escherichia coli O26 has been identified as the most common non-O157 Shiga toxin-producing E. coli (STEC) serogroup to cause human illnesses in the United States and has been implicated in outbreaks around the world. E. coli has high genomic plasticity, which facilitates the loss or acquisition of virulence genes. Attaching and effacing E. coli (AEEC) O26 strains have frequently been isolated from bovine feces, and there is a need to better characterize the relatedness of these strains to defined molecular pathotypes and to describe the extent of their genetic diversity. High-throughput real-time PCR was used to screen 178 E. coli O26 isolates from a single U.S. cattle feedlot, collected from May to July 2011, for the presence or absence of 25 O26 serogroup-specific and virulence-associated markers. The selected markers were capable of distinguishing these strains into molecularly defined groups (yielding 18 unique marker combinations). Analysis of the clustered regularly interspaced short palindromic repeat 1 (CRISPR1) and CRISPR2a loci further discriminated isolates into 24 CRISPR types. The combination of molecular markers and CRISPR typing provided 20.8% diversity. The recent CRISPR PCR target SP_O26-E, which was previously identified only in stx2-positive O26:H11 human clinical strains, was identified in 96.4% (161/167 [95% confidence interval, 99.2 to 93.6%]) of the stx-negative AEEC O26:H11 bovine fecal strains. This supports that these stx-negative strains may have previously contained a prophage carrying stx or could acquire this prophage, thus possibly giving them the potential to become pathogenic to humans. These results show that investigation of specific genetic markers may further elucidate our understanding of the genetic diversity of AEEC O26 strains in bovine feces.
Collapse
Affiliation(s)
- Sarah A Ison
- Texas Tech University, Department of Animal and Food Sciences, Lubbock, Texas, USA
| | - Sabine Delannoy
- French Agency for Food, Environmental and Occupational Health and Safety, Food Safety Laboratory, Platform IdentyPath, Maisons-Alfort, France
| | - Marie Bugarel
- Texas Tech University, Department of Animal and Food Sciences, Lubbock, Texas, USA
| | - Kendra K Nightingale
- Texas Tech University, Department of Animal and Food Sciences, Lubbock, Texas, USA
| | - Hattie E Webb
- Texas Tech University, Department of Animal and Food Sciences, Lubbock, Texas, USA
| | - David G Renter
- Kansas State University, Department of Diagnostic Medicine Pathobiology, Manhattan, Kansas, USA
| | - Tiruvoor G Nagaraja
- Kansas State University, Department of Diagnostic Medicine Pathobiology, Manhattan, Kansas, USA
| | - Guy H Loneragan
- Texas Tech University, Department of Animal and Food Sciences, Lubbock, Texas, USA
| | - Patrick Fach
- French Agency for Food, Environmental and Occupational Health and Safety, Food Safety Laboratory, Platform IdentyPath, Maisons-Alfort, France
| |
Collapse
|
60
|
Yan X, Fratamico PM, Bono JL, Baranzoni GM, Chen CY. Genome sequencing and comparative genomics provides insights on the evolutionary dynamics and pathogenic potential of different H-serotypes of Shiga toxin-producing Escherichia coli O104. BMC Microbiol 2015; 15:83. [PMID: 25887577 PMCID: PMC4393859 DOI: 10.1186/s12866-015-0413-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2014] [Accepted: 03/12/2015] [Indexed: 01/22/2023] Open
Abstract
BACKGROUND Various H-serotypes of the Shiga toxin-producing Escherichia coli (STEC) O104, including H4, H7, H21, and H¯, have been associated with sporadic cases of illness and have caused food-borne outbreaks globally. In the U.S., STEC O104:H21 caused an outbreak associated with milk in 1994. However, there is little known on the evolutionary origins of STEC O104 strains, and how genotypic diversity contributes to pathogenic potential of various O104 H-antigen serotypes isolated from different ecological niches and/or geographical regions. RESULTS Two STEC O104:H21 (milk outbreak strain) and O104:H7 (cattle isolate) strains were shot-gun sequenced, and the genomes were closed. The intimin (eae) gene, involved in the attaching-effacing phenotype of diarrheagenic E. coli, was not found in either strain. Examining various O104 genome sequences, we found that two "complete" left and right end portions of the locus of enterocyte effacement (LEE) pathogenicity island were present in 13 O104 strains; however, the central portion of LEE was missing, where the eae gene is located. In O104:H4 strains, the missing central portion of the LEE locus was replaced by a pathogenicity island carrying the aidA (adhesin involved in diffuse adherence) gene and antibiotic resistance genes commonly carried on plasmids. Enteroaggregative E. coli-specific virulence genes and European outbreak O104:H4-specific stx2-encoding Escherichia P13374 or Escherichia TL-2011c bacteriophages were missing in some of the O104:H4 genome sequences available from public databases. Most of the genomic variations in the strains examined were due to the presence of different mobile genetic elements, including prophages and genomic island regions. The presence of plasmids carrying virulence-associated genes may play a role in the pathogenic potential of O104 strains. CONCLUSIONS The two strains sequenced in this study (O104:H21 and O104:H7) are genetically more similar to each other than to the O104:H4 strains that caused an outbreak in Germany in 2011 and strains found in Central Africa. A hypothesis on strain evolution and pathogenic potential of various H-serotypes of E. coli O104 strains is proposed.
Collapse
Affiliation(s)
- Xianghe Yan
- USDA, Agricultural Research Service, Eastern Regional Research Center, 600 E. Mermaid Lane, 19038, Wyndmoor, PA, USA.
- U.S. Department of Agriculture, Eastern Regional Research Center, Agricultural Research Service, 600 East Mermaid Lane, 19038, Wyndmoor, PA, USA.
| | - Pina M Fratamico
- USDA, Agricultural Research Service, Eastern Regional Research Center, 600 E. Mermaid Lane, 19038, Wyndmoor, PA, USA.
| | - James L Bono
- USDA, Agricultural Research Service, Meat Animal Research Center, Clay Center, NE, 68933, USA.
| | - Gian Marco Baranzoni
- USDA, Agricultural Research Service, Eastern Regional Research Center, 600 E. Mermaid Lane, 19038, Wyndmoor, PA, USA.
| | - Chin-Yi Chen
- USDA, Agricultural Research Service, Eastern Regional Research Center, 600 E. Mermaid Lane, 19038, Wyndmoor, PA, USA.
| |
Collapse
|
61
|
Keokilwe L, Olivier A, Burger WP, Joubert H, Venter EH, Morar-Leather D. Bacterial enteritis in ostrich (Struthio Camelus) chicks in the Western Cape Province, South Africa. Poult Sci 2015; 94:1177-83. [PMID: 25840967 DOI: 10.3382/ps/pev084] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/15/2015] [Indexed: 11/20/2022] Open
Abstract
Ostrich (Struthio camelus) chicks less than 3 mo age are observed to experience a high mortality rate that is often associated with enteritis. This study was undertaken to investigate the infectious bacteria implicated in ostrich chick enteritis. Postmortems were performed on 122 ostrich chicks aged from 1 d to 3 mo and intestinal samples were subjected to bacterial culture. Bacterial isolates were typed by PCR and serotyping. Escherichia coli (E. coli; 49%) was the most frequently isolated from the samples followed by Clostridium perfringens (C. perfringens; 20%), Enterococcus spp. (16%), and Salmonella spp. (7%). Of the E. coli, 39% were categorized as enteropathogenic E. coli, 4% enterotoxigenic E. coli, and no enterohaemorrhagic E. coli were found. The majority (93%) of C. perfringens was Type A and only 7% was Type E. C. perfringens Types B through D were not present. The netB gene that encodes NetB toxin was identified from 16% of the C. perfringens isolated. All the C. perfringens Type E harbored the netB gene and just 10% of the C. perfringens Type A had this gene. Three Salmonella serotypes were identified: Salmonella Muenchen (S. Muenchen; 80%), S. Hayindongo (13%), and S. Othmarschen (7%). The indication is that the cause of enteritis in ostrich chicks is bacterial-involving: enteropathogenic E. coli and enterotoxigenic E. coli; C. perfringens Types A and E (with the possible influence of netB gene); and S. Muenchen, S. Hayindongo, and S. Othmarschen.
Collapse
Affiliation(s)
- L Keokilwe
- Botswana National Veterinary Laboratory, Private Bag 0035, Gaborone, Botswana Department of Veterinary Tropical Diseases, Faculty of Veterinary Science, University of Pretoria, Onderstepoort 0110, South Africa
| | - A Olivier
- Ostrich Research Laboratory, P.O. Box 241, Oudtshoorn 6620, South Africa
| | - W P Burger
- Private Veterinary Consultant, P.O. Box 788, Oudtshoorn 6620, South Africa
| | - H Joubert
- Deltamune Laboratories, 248 Jean Avenue, Lyttleton, Centurion 0157, South Africa
| | - E H Venter
- Department of Veterinary Tropical Diseases, Faculty of Veterinary Science, University of Pretoria, Onderstepoort 0110, South Africa
| | - D Morar-Leather
- Department of Veterinary Tropical Diseases, Faculty of Veterinary Science, University of Pretoria, Onderstepoort 0110, South Africa
| |
Collapse
|
62
|
Son I, Binet R, Lin A, Hammack TS, Kase JA. Identification of five Shiga toxin-producing Escherichia coli genes by Luminex microbead-based suspension array. J Microbiol Methods 2015; 111:108-10. [DOI: 10.1016/j.mimet.2015.02.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2015] [Revised: 02/12/2015] [Accepted: 02/12/2015] [Indexed: 12/25/2022]
|
63
|
Xi M, Feng Y, Li Q, Yang Q, Zhang B, Li G, Shi C, Xia X. Prevalence, distribution, and diversity of Escherichia coli in plants manufacturing goat milk powder in Shaanxi, China. J Dairy Sci 2015; 98:2260-7. [PMID: 25682141 DOI: 10.3168/jds.2014-9057] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2014] [Accepted: 01/04/2015] [Indexed: 11/19/2022]
Abstract
The aim of the study was to investigate the prevalence, distribution, and diversity of Escherichia coli in goat-milk-powder plants in Shaanxi, China. Three plants manufacturing goat milk powder in Shaanxi province were visited once for sampling during 2012 and 2013. Samples were taken for isolation of E. coli. Isolates were characterized by antimicrobial susceptibility testing and detection of virulence genes. All isolates were further examined by pulsed-field gel electrophoresis analysis. In total, 53 E. coli strains were isolated from 32 positive samples out of 534 samples. Among E. coli isolates, resistance was most frequently observed to trimethoprim-sulfamethoxazole (75.5%), whereas all isolates were sensitive to gatifloxacin, kanamycin, amikacin, and amoxicillin-clavulanate. The 6 virulence genes of pathogenic E. coli were not detected. Pulsed-field gel electrophoresis results showed that E. coli strains in plants were genetically diverse and milk storage tank could be an important contamination source. This study could provide useful information for plants manufacturing goat milk powder to establish proper management practices that help minimize the chance of microbial contamination.
Collapse
Affiliation(s)
- Meili Xi
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yuqing Feng
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Qiong Li
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Qinnan Yang
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Baigang Zhang
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Guanghui Li
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Chao Shi
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xiaodong Xia
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China.
| |
Collapse
|
64
|
Ndlovu T, Le Roux M, Khan W, Khan S. Co-detection of virulent Escherichia coli genes in surface water sources. PLoS One 2015; 10:e0116808. [PMID: 25659126 PMCID: PMC4320055 DOI: 10.1371/journal.pone.0116808] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2014] [Accepted: 12/15/2014] [Indexed: 11/28/2022] Open
Abstract
McNemar’s test and the Pearson Chi-square were used to assess the co-detection and observed frequency, respectively, for potentially virulent E. coli genes in river water. Conventional multiplex Polymerase Chain Reaction (PCR) assays confirmed the presence of the aggR gene (69%), ipaH gene (23%) and the stx gene (15%) carried by Enteroaggregative E. coli (EAEC), Enteroinvasive E. coli (EIEC) and Enterohermorrhagic E. coli (EHEC), respectively, in river water samples collected from the Berg River (Paarl, South Africa). Only the aggR gene was present in 23% of samples collected from the Plankenburg River system (Stellenbosch, South Africa). In a comparative study, real-time multiplex PCR assays confirmed the presence of aggR (EAEC) in 69%, stx (EHEC) in 15%, ipaH (EIEC) in 31% and eae (EPEC) in 8% of the river water samples collected from the Berg River. In the Plankenburg River, aggR (EAEC) was detected in 46% of the samples, while eae (EPEC) was present in 15% of the water samples analyzed using real-time multiplex PCR in the Plankenburg River. Pearson Chi-square showed that there was no statistical difference (p > 0.05) between the conventional and real-time multiplex PCRs for the detection of virulent E. coli genes in water samples. However, the McNemar’s test showed some variation in the co-detection of virulent E. coli genes, for example, there was no statistical difference in the misclassification of the discordant results for stx versus ipaH, which implies that the ipaH gene was frequently detected with the stx gene. This study thus highlights the presence of virulent E. coli genes in river water and while early detection is crucial, quantitative microbial risk analysis has to be performed to identify and estimate the risk to human health.
Collapse
Affiliation(s)
- Thando Ndlovu
- Department of Biomedical Sciences, Faculty of Health and Wellness Sciences, Cape Peninsula University of Technology, PO Box 1906, Bellville, 7535, South Africa
| | - Marcellous Le Roux
- Department of Biomedical Sciences, Faculty of Health and Wellness Sciences, Cape Peninsula University of Technology, PO Box 1906, Bellville, 7535, South Africa
| | - Wesaal Khan
- Department of Microbiology, Faculty of Science, Stellenbosch University, Private Bag X1, Stellenbosch, 7602, South Africa
| | - Sehaam Khan
- Department of Biomedical Sciences, Faculty of Health and Wellness Sciences, Cape Peninsula University of Technology, PO Box 1906, Bellville, 7535, South Africa
- * E-mail:
| |
Collapse
|
65
|
Draft Genome of Escherichia coli O146 Isolate from Maulana Azad Medical College, New Delhi, India. GENOME ANNOUNCEMENTS 2015; 3:3/1/e01515-14. [PMID: 25657280 PMCID: PMC4319573 DOI: 10.1128/genomea.01515-14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Here, we report the draft genome sequence of enteropathogenic Escherichia coli (EPEC) O146 strain isolated from a 1-year-old child with acute diarrhea in Delhi who recovered completely. The multidrug transporter (mdtABCD) gene, responsible for drug resistance, is present. The strain also contains the astA gene, an additional virulence determinant.
Collapse
|
66
|
Bibbal D, Loukiadis E, Kérourédan M, Ferré F, Dilasser F, Peytavin de Garam C, Cartier P, Oswald E, Gay E, Auvray F, Brugère H. Prevalence of carriage of Shiga toxin-producing Escherichia coli serotypes O157:H7, O26:H11, O103:H2, O111:H8, and O145:H28 among slaughtered adult cattle in France. Appl Environ Microbiol 2015; 81:1397-1405. [PMID: 25527532 PMCID: PMC4309698 DOI: 10.1128/aem.03315-14] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2014] [Accepted: 12/10/2014] [Indexed: 11/20/2022] Open
Abstract
The main pathogenic enterohemorrhagic Escherichia coli (EHEC) strains are defined as Shiga toxin (Stx)-producing E. coli (STEC) belonging to one of the following serotypes: O157:H7, O26:H11, O103:H2, O111:H8, and O145:H28. Each of these five serotypes is known to be associated with a specific subtype of the intimin-encoding gene (eae). The objective of this study was to evaluate the prevalence of bovine carriers of these “top five” STEC in the four adult cattle categories slaughtered in France. Fecal samples were collected from 1,318 cattle, including 291 young dairy bulls, 296 young beef bulls, 337 dairy cows, and 394 beef cows. A total of 96 E. coli isolates, including 33 top five STEC and 63 atypical enteropathogenic E. coli (aEPEC) isolates, with the same genetic characteristics as the top five STEC strains except that they lacked an stx gene, were recovered from these samples.O157:H7 was the most frequently isolated STEC serotype. The prevalence of top five STEC (all serotypes included) was 4.5% in young dairy bulls, 2.4% in young beef bulls, 1.8% in dairy cows, and 1.0% in beef cows. It was significantly higher in young dairy bulls (P<0.05) than in the other 3 categories. The basis for these differences between categories remains to be elucidated. Moreover,simultaneous carriage of STEC O26:H11 and STEC O103:H2 was detected in one young dairy bull. Lastly, the prevalence of bovine carriers of the top five STEC, evaluated through a weighted arithmetic mean of the prevalence by categories, was estimated to 1.8% in slaughtered adult cattle in France.
Collapse
Affiliation(s)
- Delphine Bibbal
- INSERM UMR1043, INRA USC1360, INP-ENVT ESC, Université de Toulouse, Toulouse, France
| | - Estelle Loukiadis
- Université de Lyon, VetAgro Sup, LMAP Laboratory, National Reference Laboratory for E. coli (Including VTEC), Marcy l'Etoile, France
- Université de Lyon, UMR 5557 Microbial Ecology, Université de Lyon 1, CNRS, VetAgro Sup, Research Group on Bacterial Opportunistic Pathogens and Environment, Villeurbanne, France
| | - Monique Kérourédan
- INSERM UMR1043, INRA USC1360, INP-ENVT ESC, Université de Toulouse, Toulouse, France
| | - Franck Ferré
- Université de Lyon, VetAgro Sup, LMAP Laboratory, National Reference Laboratory for E. coli (Including VTEC), Marcy l'Etoile, France
| | - Françoise Dilasser
- Université Paris-Est, Anses, Laboratory for Food Safety, Maisons-Alfort, France
| | | | | | - Eric Oswald
- INSERM UMR1043, INRA USC1360, CHU de Toulouse, Hôpital Purpan, Toulouse, France
| | - Emilie Gay
- Anses, Lyon Laboratory, Epidemiology Unit, Lyon, France
| | - Frédéric Auvray
- Université Paris-Est, Anses, Laboratory for Food Safety, Maisons-Alfort, France
| | - Hubert Brugère
- INSERM UMR1043, INRA USC1360, INP-ENVT ESC, Université de Toulouse, Toulouse, France
| |
Collapse
|
67
|
Abstract
Adhesins are a group of proteins in enterohemorrhagic Escherichia coli (EHEC) that are involved in the attachment or colonization of this pathogen to abiotic (plastic or steel) and biological surfaces, such as those found in bovine and human intestines. This review provides the most up-to-date information on these essential adhesion factors, summarizing important historical discoveries and analyzing the current and future state of this research. In doing so, the proteins intimin and Tir are discussed in depth, especially regarding their role in the development of attaching and effacing lesions and in EHEC virulence. Further, a series of fimbrial proteins (Lpf1, Lpf2, curli, ECP, F9, ELF, Sfp, HCP, and type 1 fimbriae) are also described, emphasizing their various contributions to adherence and colonization of different surfaces and their potential use as genetic markers in detection and classification of different EHEC serotypes. This review also discusses the role of several autotransporter proteins (EhaA-D, EspP, Saa and Sab, and Cah), as well as other proteins associated with adherence, such as flagella, EibG, Iha, and OmpA. While these proteins have all been studied to varying degrees, all of the adhesins summarized in this chapter have been linked to different stages of the EHEC life cycle, making them good targets for the development of more effective diagnostics and therapeutics.
Collapse
Affiliation(s)
- Brian D. McWilliams
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, 77555. USA
| | - Alfredo G. Torres
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, 77555. USA
- Department of Pathology and Sealy Center for Vaccine Development, University of Texas Medical Branch, Galveston, Texas, 77555. USA
| |
Collapse
|
68
|
Microbial safety and sanitary quality of strawberry primary production in Belgium: risk factors for Salmonella and Shiga toxin-producing Escherichia coli contamination. Appl Environ Microbiol 2015; 81:2562-70. [PMID: 25636845 DOI: 10.1128/aem.03930-14] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Strawberries are an important fruit in Belgium in both production and consumption, but little information is available about the presence of Salmonella and Shiga toxin-producing Escherichia coli (STEC) in these berries, the risk factors in agricultural production, and possible specific mitigation options. In 2012, a survey was undertaken of three soil and three soilless cultivation systems in Belgium. No Salmonella spp. were isolated. No STEC was detected in the strawberry samples (0 of 72), but STEC was detected by PCR in 11 of 78 irrigation water and 2 of 24 substrate samples. Culture isolates were obtained for 2 of 11 PCR-positive irrigation water samples and 2 of 2 substrate samples. Multivariable logistic regression analysis revealed elevated generic E. coli numbers (the odds ratio [OR] for a 1 log increase being 4.6) as the most important risk factor for STEC, together with the berry-picking season (elevated risk in summer). The presence of generic E. coli in the irrigation water (≥1 CFU per 100 ml) was mainly influenced by the type of irrigation water (collected rainfall water stored in ponds was more often contaminated than groundwater pumped from boreholes [OR = 5.8]) and the lack of prior treatment (untreated water versus water subjected to sand filtration prior to use [OR = 19.2]). The follow-up study in 2013 at one of the producer locations indicated cattle to be the most likely source of STEC contamination of the irrigation water.
Collapse
|
69
|
Leo JC, Oberhettinger P, Schütz M, Linke D. The inverse autotransporter family: intimin, invasin and related proteins. Int J Med Microbiol 2014; 305:276-82. [PMID: 25596886 DOI: 10.1016/j.ijmm.2014.12.011] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Intimin and invasin are adhesins and central virulence factors of attaching and effacing bacteria, such as enterohaemorrhagic Escherichia coli, and enteropathogenic Yersiniae, respectively. These proteins are prototypes of a large family of adhesins distributed widely in Gram-negative bacteria. It is now evident that this protein family represents a previously unrecognized autotransporter secretion system, termed type Ve secretion. In contrast to classical autotransport, where the transmembrane β-barrel domain or translocation unit is C-terminal to the extracellular region or passenger domain, type Ve-secreted proteins have an inverted topology with the passenger domain C-terminal to the translocation unit; hence the term inverse autotransporter. This minireview covers the recent advances in elucidating the structure and biogenesis of inverse autotransporters.
Collapse
Affiliation(s)
- Jack C Leo
- Department of Biosciences, University of Oslo, 0316 Oslo, Norway
| | - Philipp Oberhettinger
- Interfaculty Institute for Microbiology and Infection Medicine, University Clinics Tübingen, 72076 Tübingen, Germany
| | - Monika Schütz
- Interfaculty Institute for Microbiology and Infection Medicine, University Clinics Tübingen, 72076 Tübingen, Germany
| | - Dirk Linke
- Department of Biosciences, University of Oslo, 0316 Oslo, Norway; Max Planck Institute for Developmental Biology, Department of Protein Evolution, 72076 Tübingen, Germany.
| |
Collapse
|
70
|
Marin J, Maluta R, Borges C, Beraldo L, Maesta S, Lemos M, Ruiz U, Ávila F, Rigobelo E. Fate of non O157 Shigatoxigenic Escherichia coli in ovine manure composting. ARQ BRAS MED VET ZOO 2014. [DOI: 10.1590/1678-6001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Livestock manure may contain pathogenic microorganisms which pose a risk to the health of animal or humans if the manure is not adequately treated or disposed of. To determine the fate of Shiga toxigenic Escherichia coli (STEC) non O157 in composted manure from naturally colonized sheep, fresh manure was obtained from animals carrying bacterial cells with stx1/ stx2 genes. Two composting systems were used, aerated and non-aerated, and the experiments were done in Dracena city, São Paulo State. Every week, for seven weeks, one manure sample from six different points in both systems was collected and cultured to determine the presence of E. coli, the presence of the virulence genes in the cells, and also the susceptibility to 10 antimicrobial drugs. The temperature was verified at each sampling. STEC non-O157 survived for 49 days in both composting systems. E. coli non-STEC showing a high degree of antibiotic resistance was recovered all long the composting period. No relationship was established between the presence of virulence genes and antibiotic resistance. The presence of virulence genes and multiple antibiotic resistances in E. coli implicates a potential risk for these genes spread in the human food chain, which is a reason for concern.
Collapse
|
71
|
Clayton JB, Danzeisen JL, Trent AM, Murphy T, Johnson TJ. Longitudinal Characterization of Escherichia coli in Healthy Captive Non-Human Primates. Front Vet Sci 2014; 1:24. [PMID: 26664923 PMCID: PMC4668849 DOI: 10.3389/fvets.2014.00024] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2014] [Accepted: 10/31/2014] [Indexed: 11/25/2022] Open
Abstract
The gastrointestinal (GI) tracts of non-human primates (NHPs) are well known to harbor Escherichia coli, a known commensal of human beings and animals. While E. coli is a normal inhabitant of the mammalian gut, it also exists in a number of pathogenic forms or pathotypes, including those with predisposition for the GI tract as well as the urogenital tract. Diarrhea in captive NHPs has long been a problem in both zoo settings and research colonies, including the Como Zoo. It is an animal welfare concern, as well as a public health concern. E. coli has not been extensively studied; therefore, a study was performed during the summer of 2009 in collaboration with a zoo in Saint Paul, MN, which was previously experiencing an increased incidence and severity of diarrhea among their NHP collection. Fresh fecal samples were collected weekly from each member of the primate collection, between June and August of 2009, and E. coli were isolated. A total of 33 individuals were included in the study, representing eight species. E. coli isolates were examined for their genetic relatedness, phylogenetic relationships, plasmid replicon types, virulence gene profiles, and antimicrobial susceptibility profiles. A number of isolates were identified containing virulence genes commonly found in several different E. coli pathotypes, and there was evidence of clonal transmission of isolates between animals and over time. Overall, the manifestation of chronic diarrhea in the Como Zoo primate collection is a complex problem whose solution will require regular screening for microbial agents and consideration of environmental causes. This study provides some insight toward the sharing of enteric bacteria between such animals.
Collapse
Affiliation(s)
- Jonathan B Clayton
- Department of Veterinary and Biomedical Sciences, College of Veterinary Medicine, University of Minnesota , Saint Paul, MN , USA
| | - Jessica L Danzeisen
- Department of Veterinary and Biomedical Sciences, College of Veterinary Medicine, University of Minnesota , Saint Paul, MN , USA
| | - Ava M Trent
- Department of Veterinary Population Medicine, College of Veterinary Medicine, University of Minnesota , Saint Paul, MN , USA
| | - Tami Murphy
- Como Park Zoo & Conservatory , Saint Paul, MN , USA
| | - Timothy J Johnson
- Department of Veterinary and Biomedical Sciences, College of Veterinary Medicine, University of Minnesota , Saint Paul, MN , USA
| |
Collapse
|
72
|
Dutta S, Pazhani GP, Nataro JP, Ramamurthy T. Heterogenic virulence in a diarrheagenic Escherichia coli: evidence for an EPEC expressing heat-labile toxin of ETEC. Int J Med Microbiol 2014; 305:47-54. [PMID: 25465159 DOI: 10.1016/j.ijmm.2014.10.006] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2014] [Revised: 10/12/2014] [Accepted: 10/20/2014] [Indexed: 01/29/2023] Open
Abstract
We have encountered an Escherichia coli strain isolated from a child with acute diarrhea. This strain harbored eae and elt genes encoding for E. coli attaching and effacing property and heat-labile enterotoxin of EPEC and ETEC, respectively. Due to the presence of these distinct virulence factors, we named this uncommon strain as EPEC/ETEC hybrid. The elt gene was identified in a conjugally transferable plasmid of the EPEC/ETEC hybrid. In addition, several virulence genes in the locus of enterocyte effacement have been identified, which confirms that the EPEC/ETEC has an EPEC genetic background. The hybrid nature of this strain was further confirmed by using tissue culture assays. In the multi locus sequence typing (MLST) analysis, the EPEC/ETEC belonged to the sequence type ST328 and was belonging to ST278 Cplx. Sequence analysis of the plasmid DNA revealed presence of six large contigs with several insertion sequences. A phage integrase gene and the prophages of gp48 and gp49 have been found in the upstream of eltAB. In the downstream of elt, an urovirulence loci adhesion encoding (pap) cluster containing papG, and papC were also identified. Similar to other reports, we have identified a heterogenic virulence in a diarrheagenic E. coli but with different combination of genes.
Collapse
Affiliation(s)
- Sanjucta Dutta
- Division of Bacteriology, National Institute of Cholera and Enteric Diseases, Kolkata, India
| | - Gururaja P Pazhani
- Division of Bacteriology, National Institute of Cholera and Enteric Diseases, Kolkata, India
| | - James P Nataro
- Department of Pediatrics, University of Virginia School of Medicine, Charlottesville, Virginia
| | | |
Collapse
|
73
|
Ahmed SF, Shaheen HI, Abdel-Messih IA, Mostafa M, Putnam SD, Kamal KA, Sayed ANE, Frenck RW, Sanders JW, Klena JD, Wierzba TF. The epidemiological and clinical characteristics of diarrhea associated with enteropathogenic, enteroaggregative and diffuse-adherent Escherichia coli in Egyptian children. J Trop Pediatr 2014; 60:397-400. [PMID: 25122630 DOI: 10.1093/tropej/fmu034] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
A total of 220 enteroadherent Escherichia coli were identified from 729 Egyptian children with diarrhea using the HEp-2 adherence assay. Enteropathogenic E.coli (EPEC = 38) was common among children <6 months old and provoked vomiting, while diffuse-adhering E.coli (DAEC = 109) induced diarrheal episodes of short duration, and enteroaggregative E.coli (EAEC = 73) induced mild non-persistent diarrhea. These results suggest that EPEC is associated with infantile diarrhea in Egyptian children.
Collapse
Affiliation(s)
- Salwa F Ahmed
- Research Science Directorate, US Naval Medical Research Unit No. 3, Cairo, Egypt
| | - Hind I Shaheen
- Research Science Directorate, US Naval Medical Research Unit No. 3, Cairo, Egypt
| | | | - Manal Mostafa
- Research Science Directorate, US Naval Medical Research Unit No. 3, Cairo, Egypt
| | - Shannon D Putnam
- Research Science Directorate, US Naval Medical Research Unit No. 3, Cairo, Egypt
| | - Karim A Kamal
- Research Science Directorate, US Naval Medical Research Unit No. 3, Cairo, Egypt
| | | | - Robert W Frenck
- Research Science Directorate, US Naval Medical Research Unit No. 3, Cairo, Egypt
| | - John W Sanders
- Research Science Directorate, US Naval Medical Research Unit No. 3, Cairo, Egypt
| | - John D Klena
- Research Science Directorate, US Naval Medical Research Unit No. 3, Cairo, Egypt
| | - Thomas F Wierzba
- Research Science Directorate, US Naval Medical Research Unit No. 3, Cairo, Egypt
| |
Collapse
|
74
|
Wu Q, Xi M, Lv X, Xu Y, Feng Y, Li Q, Yang Q, Xia X. Presence and antimicrobial susceptibility of Escherichia coli recovered from retail chicken in China. J Food Prot 2014; 77:1773-7. [PMID: 25285496 DOI: 10.4315/0362-028x.jfp-14-080] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The aim of this study was to determine the prevalence and antimicrobial susceptibility of Escherichia coli in retail whole chicken in the People 9 s Republic of China. Five hundred seventy-six raw whole chicken samples, randomly purchased from 146 farmers' markets or supermarkets in four provinces from March through December 2010, were analyzed for E. coli contamination, and the E. coli isolates were further tested for the presence of virulence genes and antimicrobial susceptibility. The overall positive rate for E. coli in retail chicken was 69.1%. E. coli prevalence was the highest in Beijing (86.8%), followed by Henan province (78.5%), Shaanxi province (65.3%), and the lowest prevalence was found in Sichuan province (45.8%). Among 398 isolates recovered, only the eae gene was detected in one isolate; no other virulence genes were detected. Resistance was most common to tetracycline (84.4%), followed by nalidixic acid (74.1%), ampicillin (71.1%), trimethoprim-sulfamethoxazole (70.1%), amoxicillin-clavulanic acid (68.8%), and streptomycin (58.5%). Lower resistance was detected to chloramphenicol (43.7%), kanamycin (42.7%), ciprofloxacin (30.2%), gentamicin (29.4%), cefoperazone (13.6%), amikacin (12.6%), gatifloxacin (8%), and cefoxitin (7.8%). Only 3.8% of the isolates were susceptible to all tested antimicrobials. Six percent of the isolates displayed resistance to one antimicrobial, 6.3% to two, and 83.9% to three or more of the antimicrobials. Our findings indicate that retail chicken in China was commonly contaminated with E. coli, and many E. coli strains exhibited multiple drug resistance. The implementation of good manufacturing practices throughout the poultry production chain is necessary to reduce E. coli contamination in retail chicken, and the prudent use of antibiotics is imperative in poultry production in China.
Collapse
Affiliation(s)
- Qian Wu
- College of Food Science and Engineering, Northwest A&F University, 28 Xinong Road, Yangling, Shaanxi, 712100, People's Republic of China
| | - Meili Xi
- College of Food Science and Engineering, Northwest A&F University, 28 Xinong Road, Yangling, Shaanxi, 712100, People's Republic of China
| | - Xiaoying Lv
- College of Food Science and Engineering, Northwest A&F University, 28 Xinong Road, Yangling, Shaanxi, 712100, People's Republic of China
| | - Yunfeng Xu
- College of Food Science and Engineering, Northwest A&F University, 28 Xinong Road, Yangling, Shaanxi, 712100, People's Republic of China
| | - Yuqing Feng
- College of Food Science and Engineering, Northwest A&F University, 28 Xinong Road, Yangling, Shaanxi, 712100, People's Republic of China
| | - Qiong Li
- College of Food Science and Engineering, Northwest A&F University, 28 Xinong Road, Yangling, Shaanxi, 712100, People's Republic of China
| | - Qinnan Yang
- College of Food Science and Engineering, Northwest A&F University, 28 Xinong Road, Yangling, Shaanxi, 712100, People's Republic of China
| | - Xiaodong Xia
- College of Food Science and Engineering, Northwest A&F University, 28 Xinong Road, Yangling, Shaanxi, 712100, People's Republic of China.
| |
Collapse
|
75
|
Characterization of urinary tract infection-associated Shiga toxin-producing Escherichia coli. Infect Immun 2014; 82:4631-42. [PMID: 25156739 DOI: 10.1128/iai.01701-14] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Enterohemorrhagic Escherichia coli (EHEC), a subgroup of Shiga toxin (Stx)-producing E. coli (STEC), is a leading cause of diarrhea and hemolytic-uremic syndrome (HUS) in humans. However, urinary tract infections (UTIs) caused by this microorganism but not associated with diarrhea have occasionally been reported. We geno- and phenotypically characterized three EHEC isolates obtained from the urine of hospitalized patients suffering from UTIs. These isolates carried typical EHEC virulence markers and belonged to HUS-associated E. coli (HUSEC) clones, but they lacked virulence markers typical of uropathogenic E. coli. One isolate exhibited a localized adherence (LA)-like pattern on T24 urinary bladder epithelial cells. Since the glycosphingolipids (GSLs) globotriaosylceramide (Gb3Cer) and globotetraosylceramide (Gb4Cer) are well-known receptors for Stx but also for P fimbriae, a major virulence factor of extraintestinal pathogenic E. coli (ExPEC), the expression of Gb3Cer and Gb4Cer by T24 cells and in murine urinary bladder tissue was examined by thin-layer chromatography and mass spectrometry. We provide data indicating that Stxs released by the EHEC isolates bind to Gb3Cer and Gb4Cer isolated from T24 cells, which were susceptible to Stx. All three EHEC isolates expressed stx genes upon growth in urine. Two strains were able to cause UTI in a murine infection model and could not be outcompeted in urine in vitro by typical uropathogenic E. coli isolates. Our results indicate that despite the lack of ExPEC virulence markers, EHEC variants may exhibit in certain suitable hosts, e.g., in hospital patients, a uropathogenic potential. The contribution of EHEC virulence factors to uropathogenesis remains to be further investigated.
Collapse
|
76
|
In vivo activity of cefquinome against Escherichia coli in the thighs of neutropenic mice. Antimicrob Agents Chemother 2014; 58:5943-6. [PMID: 25070101 DOI: 10.1128/aac.03446-14] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Cefquinome is a cephalosporin with broad-spectrum antibacterial activity, including activity against enteric Gram-negative bacilli such as Escherichia coli. We utilized a neutropenic mouse model of colibacillosis to examine the pharmacodynamic (PD) characteristics of cefquinome, as measured by organism number in homogenized thigh cultures after 24 h of therapy. Serum drug levels following 4-fold-escalating single doses of cefquinome were measured by liquid chromatography-tandem mass spectrometry (LC-MS/MS). The pharmacokinetic (PK) properties of cefquinome were linear over a dose range of 10 to 640 mg/kg of body weight. Serum half-lives ranged from 0.29 to 0.32 h. Dose fractionation studies over a 24-h dose range of 2.5 to 320 mg/kg were conducted every 3, 6, 12, or 24 h. Nonlinear regression analysis was used to determine which pharmacodynamic parameter best correlated with efficacy. The free percentage of the dosing interval that the serum levels exceed the MIC (fT>MIC) was the PK-PD index that best correlated with efficacy (R(2) = 73% for E. coli, compared with 13% for the maximum concentration of the free drug in serum [fCmax]/MIC and 45% for the free-drug area under the concentration-time curve from 0 to 24 h [fAUC0-24]/MIC). Subsequently, we employed a similar dosing strategy by using 4-fold-increasing total cefquinome doses administered every 4 h to treat animals infected with four additional E. coli isolates. A sigmoid maximum-effect (Emax) model was used to estimate the magnitudes of the %fT>MIC associated with net bacterial stasis, a 1-log10 CFU reduction from baseline, and a 2-log10 CFU reduction from baseline; the corresponding values were 28.01% ± 2.27%, 37.23% ± 4.05%, and 51.69% ± 9.72%. The potent bactericidal activity makes cefquinome an attractive option for the treatment of infections caused by E. coli.
Collapse
|
77
|
Tozzoli R, Grande L, Michelacci V, Ranieri P, Maugliani A, Caprioli A, Morabito S. Shiga toxin-converting phages and the emergence of new pathogenic Escherichia coli: a world in motion. Front Cell Infect Microbiol 2014; 4:80. [PMID: 24999453 PMCID: PMC4064290 DOI: 10.3389/fcimb.2014.00080] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2014] [Accepted: 06/01/2014] [Indexed: 11/28/2022] Open
Abstract
Shiga toxin (Stx)-producing Escherichia coli (STEC) are pathogenic E. coli causing diarrhea, hemorrhagic colitis (HC) and hemolytic uremic syndrome (HUS). STEC are characterized by a constellation of virulence factors additional to Stx and have long been regarded as capable to cause HC and HUS when possessing the ability of inducing the attaching and effacing (A/E) lesion to the enterocyte, although strains isolated from such severe infections sometimes lack this virulence feature. Interestingly, the capability to cause the A/E lesion is shared with another E. coli pathogroup, the Enteropathogenic E. coli (EPEC). In the very recent times, a different type of STEC broke the scene causing a shift in the paradigm for HUS-associated STEC. In 2011, a STEC O104:H4 caused a large outbreak with more than 800 HUS and 50 deaths. Such a strain presented the adhesion determinants of Enteroaggregative E. coli (EAggEC). We investigated the possibility that, besides STEC and EAggEC, other pathogenic E. coli could be susceptible to infection with stx-phages. A panel of stx2-phages obtained from STEC isolated from human disease was used to infect experimentally E. coli strains representing all the known pathogenic types, including both diarrheagenic E. coli (DEC) and extra-intestinal pathogenic E. coli (ExPEC). We observed that all the E. coli pathogroups used in the infection experiments were susceptible to the infection. Our results suggest that the stx2-phages used may not have specificity for E. coli adapted to the intestinal environment, at least in the conditions used. Additionally, we could only observe transient lysogens suggesting that the event of stable stx2-phage acquisition occurs rarely.
Collapse
Affiliation(s)
- Rosangela Tozzoli
- European Reference Laboratory for Escherichia coli, Dipartimento di Sanità Pubblica Veterinaria e Sicurezza Alimentare, Istituto Superiore di Sanità Rome, Italy
| | - Laura Grande
- European Reference Laboratory for Escherichia coli, Dipartimento di Sanità Pubblica Veterinaria e Sicurezza Alimentare, Istituto Superiore di Sanità Rome, Italy
| | - Valeria Michelacci
- European Reference Laboratory for Escherichia coli, Dipartimento di Sanità Pubblica Veterinaria e Sicurezza Alimentare, Istituto Superiore di Sanità Rome, Italy
| | - Paola Ranieri
- European Reference Laboratory for Escherichia coli, Dipartimento di Sanità Pubblica Veterinaria e Sicurezza Alimentare, Istituto Superiore di Sanità Rome, Italy
| | - Antonella Maugliani
- European Reference Laboratory for Escherichia coli, Dipartimento di Sanità Pubblica Veterinaria e Sicurezza Alimentare, Istituto Superiore di Sanità Rome, Italy
| | - Alfredo Caprioli
- European Reference Laboratory for Escherichia coli, Dipartimento di Sanità Pubblica Veterinaria e Sicurezza Alimentare, Istituto Superiore di Sanità Rome, Italy
| | - Stefano Morabito
- European Reference Laboratory for Escherichia coli, Dipartimento di Sanità Pubblica Veterinaria e Sicurezza Alimentare, Istituto Superiore di Sanità Rome, Italy
| |
Collapse
|
78
|
Son I, Binet R, Maounounen-Laasri A, Lin A, Hammack TS, Kase JA. Detection of five Shiga toxin-producing Escherichia coli genes with multiplex PCR. Food Microbiol 2014; 40:31-40. [DOI: 10.1016/j.fm.2013.11.016] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2013] [Revised: 11/05/2013] [Accepted: 11/29/2013] [Indexed: 01/04/2023]
|
79
|
Identification and characterization of a peculiar vtx2-converting phage frequently present in verocytotoxin-producing Escherichia coli O157 isolated from human infections. Infect Immun 2014; 82:3023-32. [PMID: 24799627 DOI: 10.1128/iai.01836-14] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Certain verocytotoxin-producing Escherichia coli (VTEC) O157 phage types (PTs), such as PT8 and PT2, are associated with severe human infections, while others, such as PT21, seem to be restricted to cattle. In an attempt to delve into the mechanisms underlying such a differential distribution of PTs, we performed microarray comparison of human PT8 and animal PT21 VTEC O157 isolates. The main differences observed were in the vtx2-converting phages, with the PT21 strains bearing a phage identical to that present in the reference strain EDL933, BP933W, and all the PT8 isolates displaying lack of hybridization in some regions of the phage genome. We focused on the region spanning the gam and cII genes and developed a PCR tool to investigate the presence of PT8-like phages in a panel of VTEC O157 strains belonging to different PTs and determined that a vtx2 phage reacting with the primers deployed, which we named Φ8, was more frequent in VTEC O157 strains from human disease than in bovine strains. No differences were observed in the production of the VT2 mRNA when Φ8-positive strains were compared with VTEC O157 possessing BP933W. Nevertheless, we show that the gam-cII region of phage Φ8 might carry genetic determinants downregulating the transcription of the genes encoding the components of the type III secretion system borne on the locus of enterocyte effacement pathogenicity island.
Collapse
|
80
|
|
81
|
Alonso MZ, Sanz ME, Padola NL, Lucchesi PMA. [Characterization of enteropathogenic Escherichia coli (EPEC) strains isolated during the chicken slaughtering process]. Rev Argent Microbiol 2014; 46:122-5. [PMID: 25011596 DOI: 10.1016/s0325-7541(14)70060-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2014] [Accepted: 04/11/2014] [Indexed: 11/23/2022] Open
Abstract
In Argentina, EPEC is one of the most prevalent agents isolated from children with diarrhea. Because contamination with this pathotype could occur during slaughter, the aim of this study was to isolate and characterize EPEC strains obtained from live animals (cloacae), eviscerated carcasses, washed carcasses and water from chillers. Twenty nine isolates of atypical EPEC were characterized. These isolates presented a wide variety of serotypes, some of which (O2:H40, O8:H19 and O108:H9) had been reported in other animal species. Serotype O45:H8, previously isolated from children with diarrhea was also found. Isolates of serotypes O2:H40, O108:H9 and O123:H32 were detected at different stages of the slaughtering process, suggesting that the process is not adequately performed. This latter fact highlights the importance of reinforcing control and hygienic measures at different stages of the chicken slaughtering process in order to reduce microbial contamination.
Collapse
Affiliation(s)
- Mónica Z Alonso
- Laboratorio de Inmunoquímica y Biotecnología, Centro de Investigación Veterinaria de Tandil (CIVETAN)-CONICET-CICPBA, Facultad de Ciencias Veterinarias, UNCPBA, Tandil, Argentina
| | - Marcelo E Sanz
- Laboratorio de Inmunoquímica y Biotecnología, Centro de Investigación Veterinaria de Tandil (CIVETAN)-CONICET-CICPBA, Facultad de Ciencias Veterinarias, UNCPBA, Tandil, Argentina
| | - Nora L Padola
- Laboratorio de Inmunoquímica y Biotecnología, Centro de Investigación Veterinaria de Tandil (CIVETAN)-CONICET-CICPBA, Facultad de Ciencias Veterinarias, UNCPBA, Tandil, Argentina.
| | - Paula M A Lucchesi
- Laboratorio de Inmunoquímica y Biotecnología, Centro de Investigación Veterinaria de Tandil (CIVETAN)-CONICET-CICPBA, Facultad de Ciencias Veterinarias, UNCPBA, Tandil, Argentina
| |
Collapse
|
82
|
Ayaz ND, Gencay YE, Erol I. Prevalence and molecular characterization of sorbitol fermenting and non-fermenting Escherichia coli O157:H7+/H7– isolated from cattle at slaughterhouse and slaughterhouse wastewater. Int J Food Microbiol 2014; 174:31-8. [DOI: 10.1016/j.ijfoodmicro.2014.01.002] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2013] [Revised: 12/31/2013] [Accepted: 01/02/2014] [Indexed: 10/25/2022]
|
83
|
Sorbitol non-fermenting shiga toxin-producing Escherichia coli in cattle on smallholdings. Epidemiol Infect 2014; 143:94-103. [PMID: 24576531 DOI: 10.1017/s0950268814000351] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
We investigated faecal samples collected from the rectum of 518 cattle on 371 randomly selected smallholdings in Bangladesh for the presence of sorbitol non-fermenting (SN-F) shiga toxin-producing Escherichia coli (STEC). The SN-F isolates were tested for the presence of rfb O157, stx1, stx2, eae and hlyA genes by polymerase chain reaction (PCR). Seven SN-F isolates lacking these genes were profiled by pulsed-field gel electrophoresis (PFGE) to verify their clonality. SN-F E. coli was identified in 44 [8·5%, 95% confidence interval (CI) 6·4-11·2] samples; of these, 28 (5·4%, 95% CI 3·8-7·7) had shiga toxin-producing strains, although only two carried the rfb O157 gene. Thirteen isolates carried the hlyA gene while 18 harboured the eae gene. Based on PFGE, six pulsotypes were observed among the seven isolates that had no virulence genes. To the best of our knowledge this is the first report on shiga toxin-producing E. coli from direct rectal faecal samples of cattle on smallholdings.
Collapse
|
84
|
Li Z, Li D, Zhang D, Yamaguchi Y. Determination and quantification of Escherichia coli by capillary electrophoresis. Analyst 2014; 139:6113-7. [DOI: 10.1039/c4an01649a] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Capillary electrophoresis (CE) is widely employed for the separation of nucleic acids or protein, but it is rarely applied in the quantification ofEscherichia coli(E. coli).
Collapse
Affiliation(s)
- Zhenqing Li
- Engineering Research Center of Optical Instrument and System
- Ministry of Education
- Shanghai Key Lab of Modern Optical System
- University of Shanghai for Science and Technology
- Shanghai 200093, China
| | - De Li
- Engineering Research Center of Optical Instrument and System
- Ministry of Education
- Shanghai Key Lab of Modern Optical System
- University of Shanghai for Science and Technology
- Shanghai 200093, China
| | - Dawei Zhang
- Engineering Research Center of Optical Instrument and System
- Ministry of Education
- Shanghai Key Lab of Modern Optical System
- University of Shanghai for Science and Technology
- Shanghai 200093, China
| | - Yoshinori Yamaguchi
- Photonics and Bio-medical Research Institute
- Department of Physics Faculty of Science
- East China University of Science and Technology
- Shanghai 200237, China
- Department of Applied Physics
| |
Collapse
|
85
|
Isolation of Escherichia coli 0157:H7 strain from fecal samples of zoo animal. ScientificWorldJournal 2013; 2013:843968. [PMID: 24489514 PMCID: PMC3893011 DOI: 10.1155/2013/843968] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2013] [Accepted: 09/29/2013] [Indexed: 11/21/2022] Open
Abstract
The isolation and characterization of Escherichia coli O157:H7 strains from 22 out of 174 fecal samples from petting zoo animals representing twenty-two different species (camel, lion, goats, zebra, bear, baboon monkey, Siberian monkey, deer, elk, llama, pony, horses, fox, kangaroo, wolf, porcupine, chickens, tiger, ostrich, hyena, dogs, and wildcats) were investigated. One petting Al-Zawraa zoological society of Baghdad was investigated for E. coli O157:H7 over a 16-month period that spanned two summer and two autumn seasons. Variation in the occurrence of E. coli O157:H7-positive petting zoo animals was observed, with animals being culture positive only in the summer months but not in the spring, autumn, or winter. E. coli O157:H7 isolates were distinguished by agglutination with E. coli O157:H7 latex reagent (Oxoid), identified among the isolates, which showed that multiple E. coli strains were isolated from one petting zoo animal, in which a single animal simultaneously shed multiple E. coli strains; E. coli O157:H7 was isolated only by selective enrichment culture of 2 g of petting zoo animal feces. In contrast, strains other than O157:H7 were cultured from feces of petting zoo animals without enrichment.
Collapse
|
86
|
Intimin gene (eae) subtype-based real-time PCR strategy for specific detection of Shiga toxin-producing Escherichia coli serotypes O157:H7, O26:H11, O103:H2, O111:H8, and O145:H28 in cattle feces. Appl Environ Microbiol 2013; 80:1177-84. [PMID: 24296503 DOI: 10.1128/aem.03161-13] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Shiga toxin-producing Escherichia coli (STEC) strains belonging to serotypes O157:H7, O26:H11, O103:H2, O111:H8, and O145:H28 are known to be associated with particular subtypes of the intimin gene (eae), namely, γ1, β1, ε, θ, and γ1, respectively. This study aimed at evaluating the usefulness of their detection for the specific detection of these five main pathogenic STEC serotypes in cattle feces. Using real-time PCR assays, 58.7% of 150 fecal samples were found positive for at least one of the four targeted eae subtypes. The simultaneous presence of stx, eae, and one of the five O group markers was found in 58.0% of the samples, and the five targeted stx plus eae plus O genetic combinations were detected 143 times. However, taking into consideration the association between eae subtypes and O group markers, the resulting stx plus eae subtype plus O combinations were detected only 46 times. The 46 isolation assays performed allowed recovery of 22 E. coli strains belonging to one of the five targeted STEC serogroups. In contrast, only 2 of 39 isolation assays performed on samples that were positive for stx, eae and an O group marker, but that were negative for the corresponding eae subtype, were successful. Characterization of the 24 E. coli isolates showed that 6 were STEC, including 1 O157:H7, 3 O26:H11, and 2 O145:H28. The remaining 18 strains corresponded to atypical enteropathogenic E. coli (aEPEC). Finally, the more discriminating eae subtype-based PCR strategy described here may be helpful for the specific screening of the five major STEC in cattle feces.
Collapse
|
87
|
Estimating the prevalence of potential enteropathogenic Escherichia coli and intimin gene diversity in a human community by monitoring sanitary sewage. Appl Environ Microbiol 2013; 80:119-27. [PMID: 24141131 DOI: 10.1128/aem.02747-13] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Presently, the understanding of bacterial enteric diseases in the community and their virulence factors relies almost exclusively on clinical disease reporting and examination of clinical pathogen isolates. This study aimed to investigate the feasibility of an alternative approach that monitors potential enteropathogenic Escherichia coli (EPEC) and enterohemorrhagic E. coli (EHEC) prevalence and intimin gene (eae) diversity in a community by directly quantifying and characterizing target virulence genes in the sanitary sewage. The quantitative PCR (qPCR) quantification of the eae, stx1, and stx2 genes in sanitary sewage samples collected over a 13-month period detected eae in all 13 monthly sewage samples at significantly higher abundance (93 to 7,240 calibrator cell equivalents [CCE]/100 ml) than stx1 and stx2, which were detected sporadically. The prevalence level of potential EPEC in the sanitary sewage was estimated by calculating the ratio of eae to uidA, which averaged 1.0% (σ = 0.4%) over the 13-month period. Cloning and sequencing of the eae gene directly from the sewage samples covered the majority of the eae diversity in the sewage and detected 17 unique eae alleles belonging to 14 subtypes. Among them, eae-β2 was identified to be the most prevalent subtype in the sewage, with the highest detection frequency in the clone libraries (41.2%) and within the different sampling months (85.7%). Additionally, sewage and environmental E. coli isolates were also obtained and used to determine the detection frequencies of the virulence genes as well as eae genetic diversity for comparison.
Collapse
|
88
|
Lorenz SC, Son I, Maounounen-Laasri A, Lin A, Fischer M, Kase JA. Prevalence of hemolysin genes and comparison of ehxA subtype patterns in Shiga toxin-producing Escherichia coli (STEC) and non-STEC strains from clinical, food, and animal sources. Appl Environ Microbiol 2013; 79:6301-11. [PMID: 23934487 PMCID: PMC3811216 DOI: 10.1128/aem.02200-13] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2013] [Accepted: 07/30/2013] [Indexed: 11/20/2022] Open
Abstract
Shiga toxin-producing Escherichia coli (STEC) belonging to certain serogroups (e.g., O157 and O26) can cause serious conditions like hemolytic-uremic syndrome (HUS), but other strains might be equally pathogenic. While virulence factors, like stx and eae, have been well studied, little is known about the prevalence of the E. coli hemolysin genes (hlyA, ehxA, e-hlyA, and sheA) in association with these factors. Hemolysins are potential virulence factors, and ehxA and hlyA have been associated with human illness, but the significance of sheA is unknown. Hence, 435 E. coli strains belonging to 62 different O serogroups were characterized to investigate gene presence and phenotypic expression of hemolysis. We further investigated ehxA subtype patterns in E. coli isolates from clinical, animal, and food sources. While sheA and ehxA were widely distributed, e-hlyA and hlyA were rarely found. Most strains (86.7%) were hemolytic, and significantly more hemolytic (95%) than nonhemolytic strains (49%) carried stx and/or eae (P < 0.0001). ehxA subtyping, as performed by using PCR in combination with restriction fragment length polymorphism analysis, resulted in six closely related subtypes (>94.2%), with subtypes A/D being eae-negative STECs and subtypes B, C, E, and F eae positive. Unexpectedly, ehxA subtype patterns differed significantly between isolates collected from different sources (P < 0.0001), suggesting that simple linear models of exposure and transmission need modification; animal isolates carried mostly subtypes A/C (39.3%/42.9%), food isolates carried mainly subtype A (81.9%), and clinical isolates carried mainly subtype C (66.4%). Certain O serogroups correlated with particular ehxA subtypes: subtype A with O104, O113, and O8; B exclusively with O157; C with O26, O111, and O121.
Collapse
Affiliation(s)
- Sandra C. Lorenz
- U.S. Food and Drug Administration, Center for Food Safety and Applied Nutrition, Division of Microbiology, College Park, Maryland, USA
- University of Hamburg, Hamburg School of Food Science, Institute of Food Chemistry, Hamburg, Germany
| | - Insook Son
- U.S. Food and Drug Administration, Center for Food Safety and Applied Nutrition, Division of Microbiology, College Park, Maryland, USA
| | - Anna Maounounen-Laasri
- U.S. Food and Drug Administration, Center for Food Safety and Applied Nutrition, Division of Microbiology, College Park, Maryland, USA
| | - Andrew Lin
- U.S. Food and Drug Administration, San Francisco District Laboratory, Alameda, California, USA
| | - Markus Fischer
- University of Hamburg, Hamburg School of Food Science, Institute of Food Chemistry, Hamburg, Germany
| | - Julie A. Kase
- U.S. Food and Drug Administration, Center for Food Safety and Applied Nutrition, Division of Microbiology, College Park, Maryland, USA
| |
Collapse
|
89
|
Occurrence of potentially human-pathogenic Escherichia coli O103 in Norwegian sheep. Appl Environ Microbiol 2013; 79:7502-9. [PMID: 24077709 DOI: 10.1128/aem.01825-13] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The investigation of an outbreak of hemorrhagic-uremic syndrome in Norway in 2006 indicated that the outbreak strain Escherichia coli O103:H25 could originate from sheep. A national survey of the Norwegian sheep population was performed, with the aim of identifying and describing a possible reservoir of potentially human-pathogenic E. coli O103, in particular of the H types 2 and 25. The investigation of fecal samples from 585 sheep flocks resulted in 1,222 E. coli O103 isolates that were analyzed for the presence of eae and stx genes, while a subset of 369 isolates was further examined for flagellar antigens (H typing), stx subtypes, bfpA, astA, and molecular typing by pulsed-field gel electrophoresis (PFGE). The total ovine E. coli O103 serogroup was genetically diverse by numbers of H types, virulotypes, and PFGE banding patterns identified, although a tendency of clustering toward serotypes was seen. The flocks positive for potentially human-pathogenic E. coli O103 were geographically widely distributed, and no association could be found with county or geographical region. The survey showed that eae-negative, stx-negative E. coli O103, probably nonpathogenic to humans, is very common in sheep, with 27.5% of flocks positive. Moreover, the study documented a low prevalence (0.7%) of potentially human-pathogenic Shiga toxin-producing E. coli O103:H2, while STEC O103:H25 was not detected. However, 3.1% and 5.8% of the flocks were positive for enteropathogenic E. coli O103 belonging to H types 2 and 25, respectively. These isolates are of concern as potential human pathogens by themselves but more importantly as possible precursors for human-pathogenic STEC.
Collapse
|
90
|
Rad HS, Mousavi SL, Rasooli I, Amani J, Nadooshan MRJ. EspA-Intimin chimeric protein, a candidate vaccine against Escherichia coli O157:H7. IRANIAN JOURNAL OF MICROBIOLOGY 2013; 5:244-51. [PMID: 24475331 PMCID: PMC3895562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
BACKGROUND AND OBJECTIVE Enterohemorrhagic Escherichia coli (EHEC) O157:H7 is an important enteric pathogen in human causing bloody or nonbloody diarrhea, which may be complicated by hemolytic uremic syndrome (HUS). Cattle are an important reservoir of EHEC. This research aims at vaccination with a divalent chimer protein composed of EspA120 and Intimin 282 and its preventive effect of EHEC O157 colonization in mice rectal epithelium. MATERIALS AND METHODS A divalent recombinant EspA-Intimin (EI) protein containing EspA120 and Intimin280 attached with a linker was amplified from a trivalent construct and cloned in pET-28a (+) vector. The immunization was conducted in mice after expression and purification of the recombinant EI (rEI). RESULTS Mice subcutaneously immunized with rEI, elicited significant rEI specific serum IgG antibodies and showed significantly decreased E.coli O157:H7 shedding compared to the control group. CONCLUSION The chimeric recombinant protein induced strong humoral response as well as protection against oral challenges with live E.coli O157:H7.
Collapse
Affiliation(s)
- Hamid Sedighian Rad
- Applied Microbiology Research Center, Baqiyatallah Medical Science University, Tehran
| | - Seyed Latif Mousavi
- Department of Biology, Faculty of Basic Sciences, Shahed University, Tehran, Iran, Corresponding author: Prof. Seyed Latif Mousavi, Address: Department of Biology, Faculty of Basic Sciences, Shahed University, Tehran-Qom Highway,Tehran, Iran. Tel: +98-21-51212600, Fax: +98-21-51212601. E-mail:
| | - Iraj Rasooli
- Department of Biology, Faculty of Basic Sciences, Shahed University, Tehran, Iran
| | - Jafar Amani
- Applied Microbiology Research Center, Baqiyatallah Medical Science University, Tehran
| | | |
Collapse
|
91
|
Nimri LF. Escherichia albertii, a newly emerging enteric pathogen with poorly defined properties. Diagn Microbiol Infect Dis 2013; 77:91-5. [PMID: 23938305 DOI: 10.1016/j.diagmicrobio.2013.06.028] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2013] [Revised: 06/13/2013] [Accepted: 06/21/2013] [Indexed: 10/26/2022]
Abstract
Escherichia albertii is a newly emerging enteric pathogen that has been associated with sporadic infections among humans and birds. Selected coliform isolates were screened for allelic variation in 2 housekeeping genes (lysP and mdh) specific for E. albertii. The 48 strains that were identified as E. albertii were tested for 15 virulence markers and biochemical and serogical properties. All E. albertii strains were non-motile, fermented D-glucose (with gas), D-mannitol, and D-mannose, but failed to ferment lactose and other sugars. Variable positive reactions were noted for other tests. Most strains were rough or failed to agglutinate with Shigella boydii 13 antisera and E. coli antisera with few exceptions. All strains were positive for the eaeA gene, and variable numbers were positive for the cdtB, phoE, ehxA, and stx2f genes. Results illustrate the variability extent within this lineage and highlight the importance of accurately distinguishing it within the genus Escherichia and including information within commercial databases to improve their identification.
Collapse
Affiliation(s)
- Laila F Nimri
- Department of Medical Laboratory Sciences, Jordan University of Science and Technology, Irbid, Jordan.
| |
Collapse
|
92
|
Genetic characterization of atypical enteropathogenic Escherichia coli isolates from ewes' milk, sheep farm environments, and humans by multilocus sequence typing and pulsed-field gel electrophoresis. Appl Environ Microbiol 2013; 79:5864-9. [PMID: 23872571 DOI: 10.1128/aem.01809-13] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
A collection of 81 isolates of enteropathogenic Escherichia coli (EPEC) was obtained from samples of bulk tank sheep milk (62 isolates), ovine feces (4 isolates), sheep farm environment (water, 4 isolates; air, 1 isolate), and human stool samples (9 isolates). The strains were considered atypical EPEC organisms, carrying the eae gene without harboring the pEAF plasmid. Multilocus sequence typing (MLST) was carried out with seven housekeeping genes and 19 sequence types (ST) were detected, with none of them having been previously reported for atypical EPEC. The most frequent ST included 41 strains isolated from milk and human stool samples. Genetic typing by pulsed-field gel electrophoresis (PFGE) resulted in 57 patterns which grouped in 24 clusters. Comparison of strains isolated from the different samples showed phylogenetic relationships between milk and human isolates and also between milk and water isolates. The results obtained show a possible risk for humans due to the presence of atypical EPEC in ewes' milk and suggest a transmission route for this emerging pathogen through contaminated water.
Collapse
|
93
|
Adhesion of Diarrheagenic Escherichia coli and Inhibition by Glycocompounds Engaged in the Mucosal Innate Immunity. BIOLOGY 2013; 2:810-31. [PMID: 24832810 PMCID: PMC3960885 DOI: 10.3390/biology2020810] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/26/2013] [Revised: 05/18/2013] [Accepted: 05/22/2013] [Indexed: 11/17/2022]
Abstract
Escherichia coli colonizes the human intestine shortly after birth, with most strains engaging in a commensal relationship. However, some E. coli strains have evolved toward acquiring genetic traits associated with virulence. Currently, five categories of enteroadherent E. coli strains are well-recognized, and are classified in regard to expressed adhesins and the strategy used during the colonization. The high morbidity associated with diarrhea has motivated investigations focusing on E. coli adhesins, as well on factors that inhibit bacterial adherence. Breastfeeding has proved to be the most effective strategy for preventing diarrhea in children. Aside from the immunoglobulin content, glycocompounds and oligosaccharides in breast milk play a critical role in the innate immunity against diarrheagenic E. coli strains. This review summarizes the colonization factors and virulence strategies exploited by diarrheagenic E. coli strains, addressing the inhibitory effects that oligosaccharides and glycocompounds, such as lactoferrin and free secretory components, exert on the adherence and virulence of these strains. This review thus provides an overview of experimental data indicating that human milk glycocompounds are responsible for the universal protective effect of breastfeeding against diarrheagenic E. coli pathotypes.
Collapse
|
94
|
Pinaka O, Pournaras S, Mouchtouri V, Plakokefalos E, Katsiaflaka A, Kolokythopoulou F, Barboutsi E, Bitsolas N, Hadjichristodoulou C. Shiga toxin-producing Escherichia coli in Central Greece: prevalence and virulence genes of O157:H7 and non-O157 in animal feces, vegetables, and humans. Eur J Clin Microbiol Infect Dis 2013; 32:1401-8. [PMID: 23677425 DOI: 10.1007/s10096-013-1889-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2013] [Accepted: 04/22/2013] [Indexed: 11/26/2022]
Abstract
In Greece, Shiga toxin-producing Escherichia coli (STEC) have only been sporadically reported. The objective of this study was to estimate the prevalence of STEC and Escherichia coli O157:H7 in farm animals, vegetables, and humans in Greece. A total number of 1,010 fecal samples were collected from farm animals (sheep, goats, cattle, chickens, pigs), 667 diarrheal samples from humans, and 60 from vegetables, which were cultured in specific media for STEC isolates. Enzyme-linked immunosorbent assay (ELISA) was used to detect toxin-producing colonies, which, subsequently, were subjected to a multiplex polymerase chain reaction (PCR) for stx1, stx2, eae, rfbE O157, and fliC h7 genes. Eighty isolates (7.9 %) from animal samples were found to produce Shiga toxin by ELISA, while by PCR, O157 STEC isolates were detected from 8 (0.8 %) samples and non-O157 STEC isolates from 43 (4.2 %) samples. STEC isolates were recovered mainly from sheep and goats, rarely from cattle, and not from pigs and chickens, suggesting that small ruminants constitute a potential risk for human infections. However, only three human specimens (0.4 %) were positive for the detection of Shiga toxins and all were PCR-negative. Similarly, all 60 vegetable samples were negative for toxin production and for toxin genes, but three samples (two roman rockets and one spinach) were positive by PCR for rfbE O157 and fliC h7 genes. These findings indicate that sheep, goats, cattle, and leafy vegetables can be a reservoir of STEC and Escherichia coli O157:H7 isolates in Greece, which are still rarely detected among humans.
Collapse
Affiliation(s)
- O Pinaka
- Department of Hygiene and Epidemiology, Faculty of Medicine, University of Thessaly, 22 Papakiriazi Street, 41222, Larissa, Greece
| | | | | | | | | | | | | | | | | |
Collapse
|
95
|
Use of antibody responses against locus of enterocyte effacement (LEE)-encoded antigens to monitor enterohemorrhagic Escherichia coli infections on cattle farms. Appl Environ Microbiol 2013; 79:3677-83. [PMID: 23563950 DOI: 10.1128/aem.01029-13] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Enterohemorrhagic Escherichia coli (EHEC) is a significant zoonotic pathogen causing severe disease associated with watery and bloody diarrhea, hemorrhagic colitis, and the hemolytic-uremic syndrome (HUS) in humans. Infections are frequently associated with contact with EHEC-contaminated ruminant feces. Both natural and experimental infection of cattle induces serum antibodies against the LEE-encoded proteins intimin, EspA, EspB, and Tir and the Shiga toxins Stx1 and Stx2, although the latter are poorly immunogenic in cattle. We determined whether antibodies and/or the kinetics of antibody responses against intimin, Tir, EspA, and/or EspB can be used for monitoring EHEC infections in beef cattle herds in order to reduce carcass contamination at slaughter. We examined the presence of serum antibodies against recombinant O157:H7 E. coli intimin EspA, EspB, and Tir during a cross-sectional study on 12 cattle farms and during a longitudinal time course study on two EHEC-positive cattle farms. We searched for a possible correlation between intimin, Tir, EspA, and/or EspB antibodies and fecal excretion of EHEC O157, O145, O111, O103, or O26 seropathotypes. The results indicated that serum antibody responses to EspB and EspA might be useful for first-line screening at the herd level for EHEC O157, O26, and most likely also for EHEC O103 infections. However, antibody responses against EspB are of less use for monitoring individual animals, since some EHEC-shedding animals did not show antibody responses and since serum antibody responses against EspB could persist for several months even when shedding had ceased.
Collapse
|
96
|
Kudva IT, Hovde CJ, John M. Adherence of non-O157 Shiga toxin-producing Escherichia coli to bovine recto-anal junction squamous epithelial cells appears to be mediated by mechanisms distinct from those used by O157. Foodborne Pathog Dis 2013; 10:375-81. [PMID: 23510495 PMCID: PMC3661034 DOI: 10.1089/fpd.2012.1382] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
This study presents evidence that the pattern (diffuse or aggregative) of adherence of clinically relevant non-O157 Shiga toxin-producing Escherichia coli (STEC) to bovine recto-anal junction squamous epithelial cells is similar to that of E. coli O157, although the mechanisms of adherence appear to be distinct. Our results further suggest that novel adhesins, and not Intimin, are likely involved in non-O157 STEC adherence to bovine recto-anal junction squamous epithelial cells. These findings have important implications for the development of efficacious modalities for blocking adherence of non-O157 STEC to bovine gastrointestinal epithelial cells.
Collapse
Affiliation(s)
- Indira T Kudva
- Food Safety and Enteric Pathogens Research Unit, National Animal Disease Center, Agricultural Research Service, U.S. Department of Agriculture, Ames, Iowa 50010, USA.
| | | | | |
Collapse
|
97
|
Ramoneda M, Foncuberta M, Simón M, Sabaté S, Ferrer M, Herrera S, Landa B, Musté N, Martí R, Trabado V, Carbonell O, Vila M, Espelt M, Ramírez B, Durán J. Prevalence of verotoxigenic Escherichia coli
O157 (VTEC O157) and compliance with microbiological safety standards in bovine carcasses from an industrial beef slaughter plant. Lett Appl Microbiol 2013; 56:408-13. [DOI: 10.1111/lam.12062] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2012] [Revised: 02/08/2013] [Accepted: 02/24/2013] [Indexed: 11/27/2022]
Affiliation(s)
- M. Ramoneda
- Agència de Salut Pública de Barcelona (ASPB Public Health Agency of Barcelona); Barcelona Spain
| | - M. Foncuberta
- Agència de Salut Pública de Barcelona (ASPB Public Health Agency of Barcelona); Barcelona Spain
- CIBER of Epidemiology and Public Health (CIBERESP); Madrid Spain
| | - M. Simón
- Agència de Salut Pública de Barcelona (ASPB Public Health Agency of Barcelona); Barcelona Spain
| | - S. Sabaté
- Agència de Salut Pública de Barcelona (ASPB Public Health Agency of Barcelona); Barcelona Spain
| | - M.D. Ferrer
- Agència de Salut Pública de Barcelona (ASPB Public Health Agency of Barcelona); Barcelona Spain
| | - S. Herrera
- Centro Nacional de Microbiología (National Center for Microbiology); Instituto de Salud Carlos III; Madrid Spain
| | - B. Landa
- Agència de Salut Pública de Barcelona (ASPB Public Health Agency of Barcelona); Barcelona Spain
| | - N. Musté
- Agència de Salut Pública de Barcelona (ASPB Public Health Agency of Barcelona); Barcelona Spain
| | - R. Martí
- Agència de Salut Pública de Barcelona (ASPB Public Health Agency of Barcelona); Barcelona Spain
| | - V. Trabado
- Agència de Salut Pública de Barcelona (ASPB Public Health Agency of Barcelona); Barcelona Spain
| | - O. Carbonell
- Agència de Salut Pública de Barcelona (ASPB Public Health Agency of Barcelona); Barcelona Spain
| | - M. Vila
- Agència de Salut Pública de Barcelona (ASPB Public Health Agency of Barcelona); Barcelona Spain
| | - M. Espelt
- Agència de Salut Pública de Barcelona (ASPB Public Health Agency of Barcelona); Barcelona Spain
| | - B. Ramírez
- Agència de Salut Pública de Barcelona (ASPB Public Health Agency of Barcelona); Barcelona Spain
| | - J. Durán
- Agència de Salut Pública de Barcelona (ASPB Public Health Agency of Barcelona); Barcelona Spain
| |
Collapse
|
98
|
Farrokh C, Jordan K, Auvray F, Glass K, Oppegaard H, Raynaud S, Thevenot D, Condron R, De Reu K, Govaris A, Heggum K, Heyndrickx M, Hummerjohann J, Lindsay D, Miszczycha S, Moussiegt S, Verstraete K, Cerf O. Review of Shiga-toxin-producing Escherichia coli (STEC) and their significance in dairy production. Int J Food Microbiol 2013; 162:190-212. [DOI: 10.1016/j.ijfoodmicro.2012.08.008] [Citation(s) in RCA: 185] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2012] [Revised: 07/31/2012] [Accepted: 08/01/2012] [Indexed: 01/08/2023]
|
99
|
Fujioka M, Otomo Y, Ahsan CR. A novel single-step multiplex polymerase chain reaction assay for the detection of diarrheagenic Escherichia coli. J Microbiol Methods 2013; 92:289-92. [DOI: 10.1016/j.mimet.2012.12.010] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2012] [Revised: 12/11/2012] [Accepted: 12/11/2012] [Indexed: 11/25/2022]
|
100
|
Mansan-Almeida R, Pereira AL, Giugliano LG. Diffusely adherent Escherichia coli strains isolated from children and adults constitute two different populations. BMC Microbiol 2013; 13:22. [PMID: 23374248 PMCID: PMC3577467 DOI: 10.1186/1471-2180-13-22] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2012] [Accepted: 01/16/2013] [Indexed: 12/22/2022] Open
Abstract
Background Diffusely adherent Escherichia coli (DAEC) have been considered a diarrheagenic category of E. coli for which several potential virulence factors have been described in the last few years. Despite this, epidemiological studies involving DAEC have shown inconsistent results. In this work, two different collections of DAEC possessing Afa/Dr genes, from children and adults, were studied regarding characteristics potentially associated to virulence. Results DAEC strains were recovered in similar frequencies from diarrheic and asymptomatic children, and more frequently from adults with diarrhea (P < 0.01) than from asymptomatic adults. Association with diarrhea (P < 0.05) was found for SAT-positive strains recovered from children and for curli-positive strains recovered from adults. Mixed biofilms involving DAEC and a Citrobacter freundii strain have shown an improved ability to form biofilms in relation to the monocultures. Control strains have shown a greater diversity of Afa/Dr adhesins and higher frequencies of cellulose, TTSS, biofilm formation and induction of IL-8 secretion than strains from cases of diarrhea in children. Conclusions DAEC strains possessing Afa/Dr genes isolated from children and adults represent two different bacterial populations. DAEC strains carrying genes associated to virulence can be found as part of the normal microbiota present in asymptomatic children.
Collapse
Affiliation(s)
- Rosane Mansan-Almeida
- Laboratório de Microbiologia, Departamento de Biologia Celular, Universidade de Brasília, Brasília, DF, 70910-900, Brazil
| | | | | |
Collapse
|