51
|
Exploration of space to achieve scientific breakthroughs. Biotechnol Adv 2020; 43:107572. [PMID: 32540473 DOI: 10.1016/j.biotechadv.2020.107572] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 05/05/2020] [Accepted: 05/29/2020] [Indexed: 12/13/2022]
Abstract
Living organisms adapt to changing environments using their amazing flexibility to remodel themselves by a process called evolution. Environmental stress causes selective pressure and is associated with genetic and phenotypic shifts for better modifications, maintenance, and functioning of organismal systems. The natural evolution process can be used in complement to rational strain engineering for the development of desired traits or phenotypes as well as for the production of novel biomaterials through the imposition of one or more selective pressures. Space provides a unique environment of stressors (e.g., weightlessness and high radiation) that organisms have never experienced on Earth. Cells in the outer space reorganize and develop or activate a range of molecular responses that lead to changes in cellular properties. Exposure of cells to the outer space will lead to the development of novel variants more efficiently than on Earth. For instance, natural crop varieties can be generated with higher nutrition value, yield, and improved features, such as resistance against high and low temperatures, salt stress, and microbial and pest attacks. The review summarizes the literature on the parameters of outer space that affect the growth and behavior of cells and organisms as well as complex colloidal systems. We illustrate an understanding of gravity-related basic biological mechanisms and enlighten the possibility to explore the outer space environment for application-oriented aspects. This will stimulate biological research in the pursuit of innovative approaches for the future of agriculture and health on Earth.
Collapse
|
52
|
Criscuolo F, Sueur C, Bergouignan A. Human Adaptation to Deep Space Environment: An Evolutionary Perspective of the Foreseen Interplanetary Exploration. Front Public Health 2020; 8:119. [PMID: 32391303 PMCID: PMC7193087 DOI: 10.3389/fpubh.2020.00119] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Accepted: 03/24/2020] [Indexed: 01/21/2023] Open
Abstract
Long-term and deep space exploration is a prevailing dream that is becoming a reality. Is that so? The answer to this question depends on how the main actors of space exploration, i.e., politicians, scientists, and engineers, define “long-term” and the ultimate goals of the current space programs. Presently, long-term refers to few months or years, which is equivalent to the time necessary for a manned mission to reach another planet and return to Earth. Such a space mission is a tremendous scientific challenge associated with multidisciplinary issues spanning from technology to medicine biology, social, and psychological science. It has been a priority of the main westernized societies that has attracted the brightest and most innovative scientific minds since World War II. At first the stakes were mainly political in order to demonstrate to other countries power and strength. It progressively became a scientific motivation to uncover the secrets of the Universe and life's origin, and potentially to find traces of distant life. More recently, a desire to colonize space and exploit resources on other planets has emerged as a new dream. Although the journey to Mars is still a prospective and traveling in deep space a further elusive goal, one can question the ultimate implications of deep space exploration over the long-term.
Collapse
Affiliation(s)
| | - Cédric Sueur
- Université de Strasbourg, CNRS, IPHC UMR 7178, Strasbourg, France
| | - Audrey Bergouignan
- Université de Strasbourg, CNRS, IPHC UMR 7178, Strasbourg, France.,Division of Endocrinology, Metabolism and Diabetes, Anschutz Health & Wellness Center, University of Colorado, Anschutz Medical Campus, Aurora, CO, United States
| |
Collapse
|
53
|
Gilbert R, Torres M, Clemens R, Hateley S, Hosamani R, Wade W, Bhattacharya S. Spaceflight and simulated microgravity conditions increase virulence of Serratia marcescens in the Drosophila melanogaster infection model. NPJ Microgravity 2020; 6:4. [PMID: 32047838 PMCID: PMC7000411 DOI: 10.1038/s41526-019-0091-2] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Accepted: 11/21/2019] [Indexed: 12/14/2022] Open
Abstract
While it has been shown that astronauts suffer immune disorders after spaceflight, the underlying causes are still poorly understood and there are many variables to consider when investigating the immune system in a complex environment. Additionally, there is growing evidence that suggests that not only is the immune system being altered, but the pathogens that infect the host are significantly influenced by spaceflight and ground-based spaceflight conditions. In this study, we demonstrate that Serratia marcescens (strain Db11) was significantly more lethal to Drosophila melanogaster after growth on the International Space Station than ground-based controls, but the increased virulence phenotype of S. marcescens did not persist after the bacterial cultures were passaged on the ground. Increased virulence was also observed in bacteria that were grown in simulated microgravity conditions on the ground using the rotating wall vessel. Increased virulence of the space-flown bacteria was similar in magnitude between wild-type flies and those that were mutants for the well-characterized immune pathways Imd and Toll, suggesting that changes to the host immune system after infection are likely not a major factor contributing towards increased susceptibility of ground-reared flies infected with space-flown bacteria. Characterization of the bacteria shows that at later timepoints spaceflight bacteria grew at a greater rate than ground controls in vitro, and in the host. These results suggest complex physiological changes occurring in pathogenic bacteria in space environments, and there may be novel mechanisms mediating these physiological effects that need to be characterized.
Collapse
Affiliation(s)
- Rachel Gilbert
- NASA Postdoctoral Program, Universities Space Research Association, NASA Ames Research Center, Moffett Field, CA USA
| | - Medaya Torres
- 2FILMSS/Bionetics, NASA Ames Research Center, Moffett Field, CA USA
| | - Rachel Clemens
- 2FILMSS/Bionetics, NASA Ames Research Center, Moffett Field, CA USA
| | - Shannon Hateley
- 3Department of Molecular and Cell Biology, University of California, Berkeley, CA USA
| | - Ravikumar Hosamani
- NASA Postdoctoral Program, Universities Space Research Association, NASA Ames Research Center, Moffett Field, CA USA
| | - William Wade
- 2FILMSS/Bionetics, NASA Ames Research Center, Moffett Field, CA USA
| | | |
Collapse
|
54
|
Rubinfien J, Atabay KD, Nichols NM, Tanner NA, Pezza JA, Gray MM, Wagner BM, Poppin JN, Aken JT, Gleason EJ, Foley KD, Copeland DS, Kraves S, Alvarez Saavedra E. Nucleic acid detection aboard the International Space Station by colorimetric loop-mediated isothermal amplification (LAMP). FASEB Bioadv 2020; 2:160-165. [PMID: 32161905 PMCID: PMC7059625 DOI: 10.1096/fba.2019-00088] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 10/30/2019] [Accepted: 12/30/2019] [Indexed: 12/22/2022] Open
Abstract
Human spaceflight endeavors present an opportunity to expand our presence beyond Earth. To this end, it is crucial to understand and diagnose effects of long‐term space travel on the human body. Developing tools for targeted, on‐site detection of specific DNA sequences will allow us to establish research and diagnostics platforms that will benefit space programs. We describe a simple DNA diagnostic method that utilizes colorimetric loop‐mediated isothermal amplification (LAMP) to enable detection of a repetitive telomeric DNA sequence in as little as 30 minutes. A proof of concept assay for this method was carried out using existing hardware on the International Space Station and the results were read instantly by an astronaut through a simple color change of the reaction mixture. LAMP offers a novel platform for on‐orbit DNA‐based diagnostics that can be deployed on the International Space Station and to the broader benefit of space programs.
Collapse
Affiliation(s)
| | - Kutay D Atabay
- Whitehead Institute for Biomedical Research Massachusetts Institute of Technology Cambridge MA USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
55
|
Romswinkel A, Infanger M, Dietz C, Strube F, Kraus A. The Role of C-X-C Chemokine Receptor Type 4 (CXCR4) in Cell Adherence and Spheroid Formation of Human Ewing's Sarcoma Cells under Simulated Microgravity. Int J Mol Sci 2019; 20:ijms20236073. [PMID: 31810195 PMCID: PMC6929163 DOI: 10.3390/ijms20236073] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Accepted: 11/29/2019] [Indexed: 12/17/2022] Open
Abstract
We studied the behavior of Ewing's Sarcoma cells of the line A673 under simulated microgravity (s-µg). These cells express two prominent markers-the oncogene EWS/FLI1 and the chemokine receptor CXCR4, which is used as a target of treatment in several types of cancer. The cells were exposed to s-µg in a random-positioning machine (RPM) for 24 h in the absence and presence of the CXCR4 inhibitor AMD3100. Then, their morphology and cytoskeleton were examined. The expression of selected mutually interacting genes was measured by qRT-PCR and protein accumulation was determined by western blotting. After 24 h incubation on the RPM, a splitting of the A673 cell population in adherent and spheroid cells was observed. Compared to 1 g control cells, EWS/FLI1 was significantly upregulated in the adherent cells and in the spheroids, while CXCR4 and CD44 expression were significantly enhanced in spheroids only. Transcription of CAV-1 was upregulated and DKK2 and VEGF-A were down-regulated in both, adherent in spheroid cells, respectively. Regarding, protein accumulation EWS/FLI1 was enhanced in adherent cells only, but CD44 decreased in spheroids and adherent cells. Inhibition of CXCR4 did not change spheroid count, or structure. Under s-µg, the tumor marker EWS/FLI1 is intensified, while targeting CXCR4, which influences adhesion proteins, did not affect spheroid formation.
Collapse
Affiliation(s)
| | | | | | | | - Armin Kraus
- Correspondence: ; Tel.: +49-391-67-15599; Fax: +49-391-67-15588
| |
Collapse
|
56
|
A Simulated Microgravity Environment Causes a Sustained Defect in Epithelial Barrier Function. Sci Rep 2019; 9:17531. [PMID: 31772208 PMCID: PMC6879622 DOI: 10.1038/s41598-019-53862-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Accepted: 10/31/2019] [Indexed: 02/06/2023] Open
Abstract
Intestinal epithelial cell (IEC) junctions constitute a robust barrier to invasion by viruses, bacteria and exposure to ingested agents. Previous studies showed that microgravity compromises the human immune system and increases enteropathogen virulence. However, the effects of microgravity on epithelial barrier function are poorly understood. The aims of this study were to identify if simulated microgravity alters intestinal epithelial barrier function (permeability), and susceptibility to barrier-disrupting agents. IECs (HT-29.cl19a) were cultured on microcarrier beads in simulated microgravity using a rotating wall vessel (RWV) for 18 days prior to seeding on semipermeable supports to measure ion flux (transepithelial electrical resistance (TER)) and FITC-dextran (FD4) permeability over 14 days. RWV cells showed delayed apical junction localization of the tight junction proteins, occludin and ZO-1. The alcohol metabolite, acetaldehyde, significantly decreased TER and reduced junctional ZO-1 localization, while increasing FD4 permeability in RWV cells compared with static, motion and flask control cells. In conclusion, simulated microgravity induced an underlying and sustained susceptibility to epithelial barrier disruption upon removal from the microgravity environment. This has implications for gastrointestinal homeostasis of astronauts in space, as well as their capability to withstand the effects of agents that compromise intestinal epithelial barrier function following return to Earth.
Collapse
|
57
|
Amselem S. Remote Controlled Autonomous Microgravity Lab Platforms for Drug Research in Space. Pharm Res 2019; 36:183. [PMID: 31741058 DOI: 10.1007/s11095-019-2703-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Accepted: 09/13/2019] [Indexed: 12/23/2022]
Abstract
Research conducted in microgravity conditions has the potential to yield new therapeutics, as advances can be achieved in the absence of phenomena such as sedimentation, hydrostatic pressure and thermally-induced convection. The outcomes of such studies can significantly contribute to many scientific and technological fields, including drug discovery. This article reviews the existing traditional microgravity platforms as well as emerging ideas for enabling microgravity research focusing on SpacePharma's innovative autonomous remote-controlled microgravity labs that can be launched to space aboard nanosatellites to perform drug research in orbit. The scientific literature is reviewed and examples of life science fields that have benefited from studies in microgravity conditions are given. These include the use of microgravity environment for chemical applications (protein crystallization, drug polymorphism, self-assembly of biomolecules), pharmaceutical studies (microencapsulation, drug delivery systems, behavior and stability of colloidal formulations, antibiotic drug resistance), and biological research, including accelerated models for aging, investigation of bacterial virulence , tissue engineering using organ-on-chips in space, enhanced stem cells proliferation and differentiation.
Collapse
Affiliation(s)
- Shimon Amselem
- SpacePharma R&D Israel LTD, 1st Aba Even Av, 4672519, Herzliya Pituach, Israel.
- SpacePharma SA, Rue l'Armeratte 3, 2950, Courgenay, Switzerland.
| |
Collapse
|
58
|
Sheet S, Yesupatham S, Ghosh K, Choi MS, Shim KS, Lee YS. Modulatory effect of low-shear modeled microgravity on stress resistance, membrane lipid composition, virulence, and relevant gene expression in the food-borne pathogen Listeria monocytogenes. Enzyme Microb Technol 2019; 133:109440. [PMID: 31874690 DOI: 10.1016/j.enzmictec.2019.109440] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Revised: 09/27/2019] [Accepted: 10/04/2019] [Indexed: 12/17/2022]
Abstract
The present study investigated the influence of low-shear modeled microgravity (LSMMG) conditions on Listeria monocytogenes stress response (heat, cold, and acid), membrane fatty acid composition, and virulence potential as well as stress-/virulence-associated gene expression. The results showed that LSMMG-cultivated cells had lower survival rate and lower D-values under heat and acid stress conditions compared to cells grown under normal gravity (NG). Interestingly, the cold resistance was elevated in cells cultivated under LSMMG conditions when compared to NG conditions. A higher amount of anteiso-branched chain fatty acids and lower ratio of iso/anteiso were observed in LSMMG cultured cells, which would contribute to increased membrane fluidity. Under LSMMG conditions, upregulated expression of cold stress-related genes (cspA, cspB, and cspD) was noticed but no change in expression was observed for heat (dnaK, groES, clpC, clpP, and clpE) and acid stress-related genes (sigB). The LSMMG-grown cells showed inferior virulence capacity in terms of infection, cell cycle arrest, and apoptosis induction in Caco-2 cells compared to those grown under NG conditions. Approximately 3.65, 2.13, 4.02, and 2.65-fold downregulation of prfA, hly, inlA, and bsh genes, respectively, in LSMMG-cultured cells might be the reason for reduced virulence. In conclusion, these findings suggest that growth under LSMMG conditions stimulates alterations in L. monocytogenes stress/virulence response, perhaps due to changes in lipid composition and related genes expression.
Collapse
Affiliation(s)
- Sunirmal Sheet
- Department of Forest Science and Technology, College of Agriculture and Life Sciences,Chonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju-si, Jeollabuk-do, Republic of Korea
| | - Sathishkumar Yesupatham
- Department of Forest Science and Technology, College of Agriculture and Life Sciences,Chonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju-si, Jeollabuk-do, Republic of Korea; Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daehak-Ro, Daejeon, Republic of Korea
| | - Kuntal Ghosh
- Department of Biological Sciences, Midnapore City College, Kuturiya, P.O. Bhadutala, Pin-721129, Paschim Medinipur, West Bengal, India
| | - Mi-Sook Choi
- Department of Forest Science and Technology, College of Agriculture and Life Sciences,Chonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju-si, Jeollabuk-do, Republic of Korea
| | - Kwan Seob Shim
- Department of Animal Biotechnology, College of Agriculture and Life Sciences, Chonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju-si, Jeollabuk-do, Republic of Korea
| | - Yang Soo Lee
- Department of Forest Science and Technology, College of Agriculture and Life Sciences,Chonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju-si, Jeollabuk-do, Republic of Korea.
| |
Collapse
|
59
|
Kim HW, Rhee MS. Novel Antibiotic Testing Approaches Reveal Reduced Antibiotic Efficacy Against Shiga Toxin-Producing Escherichia coli O157:H7 Under Simulated Microgravity. Front Microbiol 2019; 9:3214. [PMID: 30619237 PMCID: PMC6308135 DOI: 10.3389/fmicb.2018.03214] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Accepted: 12/11/2018] [Indexed: 11/13/2022] Open
Abstract
As a foodborne and environmental pathogen, Shiga toxin-producing Escherichia coli O157:H7 could pose a health threat to immunocompromised astronauts during a space mission. In this study, novel approaches, including real-time testing and direct evaluation of resistance mechanisms, were used to evaluate antibiotic efficacy against E. coli O157:H7 under low-shear modeled microgravity (LSMMG) produced using a rotary cell culture system. When compared with normal gravity (NG), bacterial growth was increased under LSMMG in the presence of sub-inhibitory nalidixic acid concentrations and there was an accompanying up-regulation of stress-related genes. LSMMG also induced transcriptional changes of the virulence genes stx1 and stx2, highlighting the potential risk of inappropriate antibiotic use during a spaceflight. The degree of bacterial cell damage induced by the antibiotics was reduced under LSMMG, suggesting low induction of reactive oxygen species. Efflux pumps were also shown to play an important role in these responses. Increased cell filamentation was observed under LSMMG upon ampicillin treatment, possibly reflecting a protective mechanism against exposure to antibiotics. These observations indicate that, in the presence of antibiotics, the survival of E. coli O157:H7 is greater under LSMMG than under NG, indicating that antibiotic therapies may need to be adjusted during space missions.
Collapse
Affiliation(s)
- Hye Won Kim
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, South Korea
| | - Min Suk Rhee
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, South Korea
| |
Collapse
|
60
|
Transcriptional profiling of the mutualistic bacterium Vibrio fischeri and an hfq mutant under modeled microgravity. NPJ Microgravity 2018; 4:25. [PMID: 30588486 PMCID: PMC6299092 DOI: 10.1038/s41526-018-0060-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Accepted: 11/05/2018] [Indexed: 02/06/2023] Open
Abstract
For long-duration space missions, it is critical to maintain health-associated homeostasis between astronauts and their microbiome. To achieve this goal it is important to more fully understand the host–symbiont relationship under the physiological stress conditions of spaceflight. To address this issue we examined the impact of a spaceflight analog, low-shear-modeled microgravity (LSMMG), on the transcriptome of the mutualistic bacterium Vibrio fischeri. Cultures of V. fischeri and a mutant defective in the global regulator Hfq (∆hfq) were exposed to either LSMMG or gravity conditions for 12 h (exponential growth) and 24 h (stationary phase growth). Comparative transcriptomic analysis revealed few to no significant differentially expressed genes between gravity and the LSMMG conditions in the wild type or mutant V. fischeri at exponential or stationary phase. There was, however, a pronounced change in transcriptomic profiles during the transition between exponential and stationary phase growth in both V. fischeri cultures including an overall decrease in gene expression associated with translational activity and an increase in stress response. There were also several upregulated stress genes specific to the LSMMG condition during the transition to stationary phase growth. The ∆hfq mutants exhibited a distinctive transcriptome profile with a significant increase in transcripts associated with flagellar synthesis and transcriptional regulators under LSMMG conditions compared to gravity controls. These results indicate the loss of Hfq significantly influences gene expression under LSMMG conditions in a bacterial symbiont. Together, these results improve our understanding of the mechanisms by which microgravity alters the physiology of beneficial host-associated microbes.
Collapse
|
61
|
Sheet S, Sathishkumar Y, Choi MS, Lee YS. Insight into Pseudomonas aeruginosa pyocyanin production under low-shear modeled microgravity. Bioprocess Biosyst Eng 2018; 42:267-277. [PMID: 30535586 DOI: 10.1007/s00449-018-2031-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Accepted: 10/22/2018] [Indexed: 11/28/2022]
Abstract
Long-term space flight impairs the immune system of astronauts, rendering them vulnerable to opportunistic infections. Pseudomonas aeruginosa causes opportunistic infections, particularly in individuals with a compromised immune system; it can be a major health hazard for astronauts during space flight missions. Hence, the production of the most abundant redox active virulence factor, pyocyanin by P. aeruginosa, was assessed under low-shear modeled microgravity (LSMMG) conditions, simulated using a high aspect ratio vessel. Moreover, we evaluated changes in the expression of genes involved in pyocyanin biosynthesis and genes involved in the MexGHI-OpmD operon quorum sensing. Extracellular DNA and H2O2 production were measured, and their correlation with pyocyanin production was examined. Interestingly, the pyocyanin quantity was 2.58-fold lower in the LSMMG conditions compared to the normal gravity. LSMMG caused downregulation of the genes associated with pyocyanin biosynthesis. Interestingly, extracellular DNA and H2O2 release were significantly high in the normal gravity environment. Scanning electron microscopy revealed aggregation and elongated cells under LSMMG. Taken together, these findings suggest that LSMMG did not induce pyocyanin secretion in P. aeruginosa.
Collapse
Affiliation(s)
- Sunirmal Sheet
- Department of Forest Science and Technology, College of Agriculture and Life Sciences, Chonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju-si, Jeollabuk-do, Republic of Korea
| | - Yesupatham Sathishkumar
- Department of Forest Science and Technology, College of Agriculture and Life Sciences, Chonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju-si, Jeollabuk-do, Republic of Korea
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daehak-ro, Daejeon, Republic of Korea
| | - Mi-Sook Choi
- Department of Forest Science and Technology, College of Agriculture and Life Sciences, Chonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju-si, Jeollabuk-do, Republic of Korea
| | - Yang Soo Lee
- Department of Forest Science and Technology, College of Agriculture and Life Sciences, Chonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju-si, Jeollabuk-do, Republic of Korea.
| |
Collapse
|
62
|
Modeling Host-Pathogen Interactions in the Context of the Microenvironment: Three-Dimensional Cell Culture Comes of Age. Infect Immun 2018; 86:IAI.00282-18. [PMID: 30181350 DOI: 10.1128/iai.00282-18] [Citation(s) in RCA: 104] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Tissues and organs provide the structural and biochemical landscapes upon which microbial pathogens and commensals function to regulate health and disease. While flat two-dimensional (2-D) monolayers composed of a single cell type have provided important insight into understanding host-pathogen interactions and infectious disease mechanisms, these reductionist models lack many essential features present in the native host microenvironment that are known to regulate infection, including three-dimensional (3-D) architecture, multicellular complexity, commensal microbiota, gas exchange and nutrient gradients, and physiologically relevant biomechanical forces (e.g., fluid shear, stretch, compression). A major challenge in tissue engineering for infectious disease research is recreating this dynamic 3-D microenvironment (biological, chemical, and physical/mechanical) to more accurately model the initiation and progression of host-pathogen interactions in the laboratory. Here we review selected 3-D models of human intestinal mucosa, which represent a major portal of entry for infectious pathogens and an important niche for commensal microbiota. We highlight seminal studies that have used these models to interrogate host-pathogen interactions and infectious disease mechanisms, and we present this literature in the appropriate historical context. Models discussed include 3-D organotypic cultures engineered in the rotating wall vessel (RWV) bioreactor, extracellular matrix (ECM)-embedded/organoid models, and organ-on-a-chip (OAC) models. Collectively, these technologies provide a more physiologically relevant and predictive framework for investigating infectious disease mechanisms and antimicrobial therapies at the intersection of the host, microbe, and their local microenvironments.
Collapse
|
63
|
Nemoto S, Ohnuki S, Abe F, Ohya Y. Simulated microgravity triggers characteristic morphology and stress response in Saccharomyces cerevisiae. Yeast 2018; 36:85-97. [PMID: 30350382 DOI: 10.1002/yea.3361] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2018] [Revised: 10/15/2018] [Accepted: 10/16/2018] [Indexed: 01/20/2023] Open
Abstract
Reduction of gravity results in changes in gene expression and morphology in the budding yeast Saccharomyces cerevisiae. We studied the genes responsible for the morphological changes induced by simulated microgravity (SMG) using the yeast morphology data. We comprehensively captured the features of the morphological changes in yeast cells cultured in SMG with CalMorph, a high-throughput image-processing system. Statistical analysis revealed that 95 of 501 morphological traits were significantly affected, which included changes in bud direction, the ratio of daughter to mother cell size, the random daughter cell shape, the large mother cell size, bright nuclei in the M phase, and the decrease in angle between two nuclei. We identified downregulated genes that impacted the morphological changes in conditions of SMG by focusing on each of the morphological features individually. Gene Ontology (GO)-enrichment analysis indicated that morphological changes under conditions of SMG were caused by cooperative downregulation of 103 genes annotated to six GO terms, which included cytoplasmic ribonucleoprotein granule, RNA elongation, mitotic cell cycle phase transition, nucleocytoplasmic transport, protein-DNA complex subunit organization, and RNA localization. P-body formation was also promoted under conditions of SMG. These results suggest that cooperative downregulation of multiple genes occurs in conditions of SMG.
Collapse
Affiliation(s)
- Shota Nemoto
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Japan
| | - Shinsuke Ohnuki
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Japan
| | - Fumiyoshi Abe
- Department of Chemistry and Biological Science, College of Science and Engineering, Aoyama Gakuin University, Sagamihara, Japan
| | - Yoshikazu Ohya
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Japan.,AIST-UTokyo Advanced Operando-Measurement Technology Open Innovation Laboratory (OPERANDO-OIL), National Institute of Advanced Industrial Science and Technology (AIST), Kashiwa, Japan
| |
Collapse
|
64
|
Senatore G, Mastroleo F, Leys N, Mauriello G. Effect of microgravity & space radiation on microbes. Future Microbiol 2018; 13:831-847. [PMID: 29745771 DOI: 10.2217/fmb-2017-0251] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
One of the new challenges facing humanity is to reach increasingly further distant space targets. It is therefore of upmost importance to understand the behavior of microorganisms that will unavoidably reach the space environment together with the human body and equipment. Indeed, microorganisms could activate their stress defense mechanisms, modifying properties related to human pathogenesis. The host-microbe interactions, in fact, could be substantially affected under spaceflight conditions and the study of microorganisms' growth and activity is necessary for predicting these behaviors and assessing precautionary measures during spaceflight. This review gives an overview of the effects of microgravity and space radiation on microorganisms both in real and simulated conditions.
Collapse
Affiliation(s)
- Giuliana Senatore
- Department of Agricultural Sciences, University of Naples Federico II, 80055 Portici, Naples, Italy
| | - Felice Mastroleo
- Microbiology Unit, Belgian Nuclear Research Centre (SCK•CEN), 2400 Mol, Belgium
| | - Natalie Leys
- Microbiology Unit, Belgian Nuclear Research Centre (SCK•CEN), 2400 Mol, Belgium
| | - Gianluigi Mauriello
- Department of Agricultural Sciences, University of Naples Federico II, 80055 Portici, Naples, Italy
| |
Collapse
|
65
|
|
66
|
Morokuma J, Durant F, Williams KB, Finkelstein JM, Blackiston DJ, Clements T, Reed DW, Roberts M, Jain M, Kimel K, Trauger SA, Wolfe BE, Levin M. Planarian regeneration in space: Persistent anatomical, behavioral, and bacteriological changes induced by space travel. ACTA ACUST UNITED AC 2017; 4:85-102. [PMID: 28616247 PMCID: PMC5469732 DOI: 10.1002/reg2.79] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Revised: 03/27/2017] [Accepted: 04/21/2017] [Indexed: 12/14/2022]
Abstract
Regeneration is regulated not only by chemical signals but also by physical processes, such as bioelectric gradients. How these may change in the absence of the normal gravitational and geomagnetic fields is largely unknown. Planarian flatworms were moved to the International Space Station for 5 weeks, immediately after removing their heads and tails. A control group in spring water remained on Earth. No manipulation of the planaria occurred while they were in orbit, and space‐exposed worms were returned to our laboratory for analysis. One animal out of 15 regenerated into a double‐headed phenotype—normally an extremely rare event. Remarkably, amputating this double‐headed worm again, in plain water, resulted again in the double‐headed phenotype. Moreover, even when tested 20 months after return to Earth, the space‐exposed worms displayed significant quantitative differences in behavior and microbiome composition. These observations may have implications for human and animal space travelers, but could also elucidate how microgravity and hypomagnetic environments could be used to trigger desired morphological, neurological, physiological, and bacteriomic changes for various regenerative and bioengineering applications.
Collapse
Affiliation(s)
- Junji Morokuma
- Allen Discovery Center at Tufts University Biology Department Tufts University 200 Boston Ave., Suite 4600 Medford MA 02155-4243 USA
| | - Fallon Durant
- Allen Discovery Center at Tufts University Biology Department Tufts University 200 Boston Ave., Suite 4600 Medford MA 02155-4243 USA
| | - Katherine B Williams
- Allen Discovery Center at Tufts University Biology Department Tufts University 200 Boston Ave., Suite 4600 Medford MA 02155-4243 USA
| | - Joshua M Finkelstein
- Allen Discovery Center at Tufts University Biology Department Tufts University 200 Boston Ave., Suite 4600 Medford MA 02155-4243 USA
| | - Douglas J Blackiston
- Allen Discovery Center at Tufts University Biology Department Tufts University 200 Boston Ave., Suite 4600 Medford MA 02155-4243 USA
| | - Twyman Clements
- Kentucky Space LLC, 200 West Vine St., Suite 420 Lexington KY 40507 USA
| | - David W Reed
- NASA Kennedy Space Center Space Station Processing Facility Building M7-0360, Kennedy Space Center FL 32899 USA
| | - Michael Roberts
- Center for the Advancement of Science in Space (CASIS) 6905 N. Wickham Rd., Suite 500 Melbourne FL 32940 USA
| | - Mahendra Jain
- Kentucky Space LLC, 200 West Vine St., Suite 420 Lexington KY 40507 USA
| | - Kris Kimel
- Exomedicine Institute 200 West Vine St. Lexington KY 40507 USA
| | - Sunia A Trauger
- Harvard University Small Molecule Mass Spectrometry Facility 52 Oxford St. Cambridge MA 02138 USA
| | - Benjamin E Wolfe
- Allen Discovery Center at Tufts University Biology Department Tufts University 200 Boston Ave., Suite 4600 Medford MA 02155-4243 USA
| | - Michael Levin
- Allen Discovery Center at Tufts University Biology Department Tufts University 200 Boston Ave., Suite 4600 Medford MA 02155-4243 USA
| |
Collapse
|
67
|
The adaptation of Escherichia coli cells grown in simulated microgravity for an extended period is both phenotypic and genomic. NPJ Microgravity 2017. [PMID: 28649637 PMCID: PMC5460176 DOI: 10.1038/s41526-017-0020-1] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Microorganisms impact spaceflight in a variety of ways. They play a positive role in biological systems, such as waste water treatment but can be problematic through buildups of biofilms that can affect advanced life support. Of special concern is the possibility that during extended missions, the microgravity environment will provide positive selection for undesirable genomic changes. Such changes could affect microbial antibiotic sensitivity and possibly pathogenicity. To evaluate this possibility, Escherichia coli (lac plus) cells were grown for over 1000 generations on Luria Broth medium under low-shear modeled microgravity conditions in a high aspect rotating vessel. This is the first study of its kind to grow bacteria for multiple generations over an extended period under low-shear modeled microgravity. Comparisons were made to a non-adaptive control strain using growth competitions. After 1000 generations, the final low-shear modeled microgravity-adapted strain readily outcompeted the unadapted lac minus strain. A portion of this advantage was maintained when the low-shear modeled microgravity strain was first grown in a shake flask environment for 10, 20, or 30 generations of growth. Genomic sequencing of the 1000 generation strain revealed 16 mutations. Of the five changes affecting codons, none were neutral. It is not clear how significant these mutations are as individual changes or as a group. It is concluded that part of the long-term adaptation to low-shear modeled microgravity is likely genomic. The strain was monitored for acquisition of antibiotic resistance by VITEK analysis throughout the adaptation period. Despite the evidence of genomic adaptation, resistance to a variety of antibiotics was never observed.
Collapse
|
68
|
Shi J, Wang Y, He J, Li P, Jin R, Wang K, Xu X, Hao J, Zhang Y, Liu H, Chen X, Wu H, Ge Q. Intestinal microbiota contributes to colonic epithelial changes in simulated microgravity mouse model. FASEB J 2017; 31:3695-3709. [PMID: 28495755 DOI: 10.1096/fj.201700034r] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Accepted: 04/24/2017] [Indexed: 12/30/2022]
Abstract
Exposure to microgravity leads to alterations in multiple systems, but microgravity-related changes in the gastrointestinal tract and its clinical significance have not been well studied. We used the hindlimb unloading (HU) mouse model to simulate a microgravity condition and investigated the changes in intestinal microbiota and colonic epithelial cells. Compared with ground-based controls (Ctrls), HU affected fecal microbiota composition with a profile that was characterized by the expansion of Firmicutes and decrease of Bacteroidetes. The colon epithelium of HU mice showed decreased goblet cell numbers, reduced epithelial cell turnover, and decreased expression of genes that are involved in defense and inflammatory responses. As a result, increased susceptibility to dextran sulfate sodium-induced epithelial injury was observed in HU mice. Cohousing of Ctrl mice with HU mice resulted in HU-like epithelial changes in Ctrl mice. Transplantation of feces from Ctrl to HU mice alleviated these epithelial changes in HU mice. Results indicate that HU changes intestinal microbiota, which leads to altered colonic epithelial cell homeostasis, impaired barrier function, and increased susceptibility to colitis. We further demonstrate that alteration in gastrointestinal motility may contribute to HU-associated dysbiosis. These animal results emphasize the necessity of evaluating astronauts' intestinal homeostasis during distant space travel.-Shi, J., Wang, Y., He, J., Li, P., Jin, R., Wang, K., Xu, X., Hao, J., Zhang, Y., Liu, H., Chen, X., Wu, H., Ge, Q. Intestinal microbiota contributes to colonic epithelial changes in simulated microgravity mouse model.
Collapse
Affiliation(s)
- Junxiu Shi
- Key Laboratory of Medical Immunology, Ministry of Health, Department of Immunology, School of Basic Medical Sciences, Peking University Health Sciences Center, Beijing, China
| | - Yifan Wang
- Key Laboratory of Medical Immunology, Ministry of Health, Department of Immunology, School of Basic Medical Sciences, Peking University Health Sciences Center, Beijing, China
| | - Jian He
- State Key Laboratory of Space Medicine Fundamentals and Application, Chinese Astronaut Research and Training Center, Beijing, China
| | - Pingping Li
- Shengjing Hospital, China Medical University, Hepin District, Shenyang, China
| | - Rong Jin
- Key Laboratory of Medical Immunology, Ministry of Health, Department of Immunology, School of Basic Medical Sciences, Peking University Health Sciences Center, Beijing, China
| | - Ke Wang
- Key Laboratory of Medical Immunology, Ministry of Health, Department of Immunology, School of Basic Medical Sciences, Peking University Health Sciences Center, Beijing, China
| | - Xi Xu
- Center for Molecular Metabolism, Nanjing University of Science and Technology, Nanjing, China
| | - Jie Hao
- Key Laboratory of Medical Immunology, Ministry of Health, Department of Immunology, School of Basic Medical Sciences, Peking University Health Sciences Center, Beijing, China
| | - Yan Zhang
- Key Laboratory of Medical Immunology, Ministry of Health, Department of Immunology, School of Basic Medical Sciences, Peking University Health Sciences Center, Beijing, China
| | - Hongju Liu
- Shengjing Hospital, China Medical University, Hepin District, Shenyang, China
| | - Xiaoping Chen
- Shengjing Hospital, China Medical University, Hepin District, Shenyang, China
| | - Hounan Wu
- Peking University Medical and Health Analytical Center, Peking University Health Science Center, Beijing, China
| | - Qing Ge
- Key Laboratory of Medical Immunology, Ministry of Health, Department of Immunology, School of Basic Medical Sciences, Peking University Health Sciences Center, Beijing, China;
| |
Collapse
|
69
|
Shao D, Yao L, Riaz MS, Zhu J, Shi J, Jin M, Huang Q, Yang H. Simulated microgravity affects some biological characteristics of Lactobacillus acidophilus. Appl Microbiol Biotechnol 2017; 101:3439-3449. [PMID: 28013406 DOI: 10.1007/s00253-016-8059-6] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2016] [Revised: 12/01/2016] [Accepted: 12/07/2016] [Indexed: 01/20/2023]
Abstract
The effects of weightlessness on enteric microorganisms have been extensively studied, but have mainly been focused on pathogens. As a major component of the microbiome of the human intestinal tract, probiotics are important to keep the host healthy. Accordingly, understanding their changes under weightlessness conditions has substantial value. This study was carried out to investigate the characteristics of Lactobacillus acidophilus, a typical probiotic for humans, under simulated microgravity (SMG) conditions. The results revealed that SMG had no significant impact on the morphology of L. acidophilus, but markedly shortened its lag phase, enhanced its growth rate, acid tolerance ability up to pH < 2.5, and the bile resistance at the bile concentration of <0.05%. SMG also decreased the sensitivity of L. acidophilus to cefalexin, sulfur gentamicin, and sodium penicillin. No obvious effect of SMG was observed on the adhesion ability of L. acidophilus to Caco-2 cells. Moreover, after SMG treatment, both the culture of L. acidophilus and its liquid phase exhibited higher antibacterial activity against S. typhimurium and S. aureus in a time-dependent manner. The SMG treatment also increased the in vitro cholesterol-lowering ability of L. acidophilus by regulating the expression of the key cholesterol metabolism genes CYP7A1, ABCB11, LDLR, and HMGCR in the HepG2 cell line. Thus, the SMG treatment did have considerable influence on some biological activities and characteristics of L. acidophilus related to human health. These findings provided valuable information for understanding the influence of probiotics on human health under simulated microgravity conditions, at least.
Collapse
Affiliation(s)
- Dongyan Shao
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, 127 Youyi West Road, Xi'an, Shaanxi, 710072, China
| | - Linbo Yao
- State Key Laboratory of Crop Stress Biology in Arid Area, College of Life Sciences, Northwest A & F University, 28 Xinong Road, Yangling, Shaanxi, 712100, China
| | - Muhammad Shahid Riaz
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, 127 Youyi West Road, Xi'an, Shaanxi, 710072, China
| | - Jing Zhu
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, 127 Youyi West Road, Xi'an, Shaanxi, 710072, China
| | - Junling Shi
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, 127 Youyi West Road, Xi'an, Shaanxi, 710072, China.
| | - Mingliang Jin
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, 127 Youyi West Road, Xi'an, Shaanxi, 710072, China
| | - Qingsheng Huang
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, 127 Youyi West Road, Xi'an, Shaanxi, 710072, China
| | - Hui Yang
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, 127 Youyi West Road, Xi'an, Shaanxi, 710072, China
| |
Collapse
|
70
|
Investigation of simulated microgravity effects on Streptococcus mutans physiology and global gene expression. NPJ Microgravity 2017. [PMID: 28649626 PMCID: PMC5460135 DOI: 10.1038/s41526-016-0006-4] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Astronauts have been previously shown to exhibit decreased salivary lysozyme and increased dental calculus and gingival inflammation in response to space flight, host factors that could contribute to oral diseases such as caries and periodontitis. However, the specific physiological response of caries-causing bacteria such as Streptococcus mutans to space flight and/or ground-based simulated microgravity has not been extensively investigated. In this study, high aspect ratio vessel S. mutans simulated microgravity and normal gravity cultures were assessed for changes in metabolite and transcriptome profiles, H2O2 resistance, and competence in sucrose-containing biofilm media. Stationary phase S. mutans simulated microgravity cultures displayed increased killing by H2O2 compared to normal gravity control cultures, but competence was not affected. RNA-seq analysis revealed that expression of 153 genes was up-regulated ≥2-fold and 94 genes down-regulated ≥2-fold during simulated microgravity high aspect ratio vessel growth. These included a number of genes located on extrachromosomal elements, as well as genes involved in carbohydrate metabolism, translation, and stress responses. Collectively, these results suggest that growth under microgravity analog conditions promotes changes in S. mutans gene expression and physiology that may translate to an altered cariogenic potential of this organism during space flight missions. The gene expression patterns, metabolism and physiology of tooth cavities-causing microbes change in a space-like gravity environment. These findings could help explain why astronauts are at a greater risk for dental diseases when in space. Kelly Rice and colleagues from the University of Florida, Gainesville, USA, cultured Streptococcus mutans bacteria under simulated microgravity and normal gravity conditions. The bacteria grown in microgravity were more susceptible to killing with hydrogen peroxide, tended to aggregate in more compact cellular structures, showed changes in their metabolite profile and expressed around 250 genes at levels that were either much higher or lower than normal gravity control cultures. These genes included many involved in carbohydrate metabolism, protein production and stress responses. The observed changes collectively suggest that space flight and microgravity could alter the cavities-causing potential of S. mutans.
Collapse
|
71
|
Najrana T, Sanchez-Esteban J. Mechanotransduction as an Adaptation to Gravity. Front Pediatr 2016; 4:140. [PMID: 28083527 PMCID: PMC5183626 DOI: 10.3389/fped.2016.00140] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Accepted: 12/12/2016] [Indexed: 12/22/2022] Open
Abstract
Gravity has played a critical role in the development of terrestrial life. A key event in evolution has been the development of mechanisms to sense and transduce gravitational force into biological signals. The objective of this manuscript is to review how living organisms on Earth use mechanotransduction as an adaptation to gravity. Certain cells have evolved specialized structures, such as otoliths in hair cells of the inner ear and statoliths in plants, to respond directly to the force of gravity. By conducting studies in the reduced gravity of spaceflight (microgravity) or simulating microgravity in the laboratory, we have gained insights into how gravity might have changed life on Earth. We review how microgravity affects prokaryotic and eukaryotic cells at the cellular and molecular levels. Genomic studies in yeast have identified changes in genes involved in budding, cell polarity, and cell separation regulated by Ras, PI3K, and TOR signaling pathways. Moreover, transcriptomic analysis of late pregnant rats have revealed that microgravity affects genes that regulate circadian clocks, activate mechanotransduction pathways, and induce changes in immune response, metabolism, and cells proliferation. Importantly, these studies identified genes that modify chromatin structure and methylation, suggesting that long-term adaptation to gravity may be mediated by epigenetic modifications. Given that gravity represents a modification in mechanical stresses encounter by the cells, the tensegrity model of cytoskeletal architecture provides an excellent paradigm to explain how changes in the balance of forces, which are transmitted across transmembrane receptors and cytoskeleton, can influence intracellular signaling pathways and gene expression.
Collapse
Affiliation(s)
- Tanbir Najrana
- Department of Pediatrics, Alpert Medical School of Brown University, Women & Infants Hospital of Rhode Island, Providence, RI, USA
| | - Juan Sanchez-Esteban
- Department of Pediatrics, Alpert Medical School of Brown University, Women & Infants Hospital of Rhode Island, Providence, RI, USA
| |
Collapse
|
72
|
Higginson EE, Galen JE, Levine MM, Tennant SM. Microgravity as a biological tool to examine host-pathogen interactions and to guide development of therapeutics and preventatives that target pathogenic bacteria. Pathog Dis 2016; 74:ftw095. [PMID: 27630185 DOI: 10.1093/femspd/ftw095] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/31/2016] [Indexed: 12/16/2022] Open
Abstract
Space exploration programs have long been interested in the effects of spaceflight on biology. This research is important not only in its relevance to future deep space exploration, but also because it has allowed investigators to ask questions about how gravity impacts cell behavior here on Earth. In the 1980s, scientists designed and built the first rotating wall vessel, capable of mimicking the low shear environment found in space. This vessel has since been used to investigate growth of both microorganisms and human tissue cells in low shear modeled microgravity conditions. Bacterial behavior has been shown to be altered both in space and under simulated microgravity conditions. In some cases, bacteria appear attenuated, whereas in others virulence is enhanced. This has consequences not only for manned spaceflight, but poses larger questions about the ability of bacteria to sense the world around them. By using the microgravity environment as a tool, we can exploit this phenomenon in the search for new therapeutics and preventatives against pathogenic bacteria for use both in space and on Earth.
Collapse
Affiliation(s)
- Ellen E Higginson
- Center for Vaccine Development and Institute for Global Health, University of Maryland School of Medicine, Baltimore, MD 21201, USA Department of Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - James E Galen
- Center for Vaccine Development and Institute for Global Health, University of Maryland School of Medicine, Baltimore, MD 21201, USA Department of Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Myron M Levine
- Center for Vaccine Development and Institute for Global Health, University of Maryland School of Medicine, Baltimore, MD 21201, USA Department of Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, USA Department of Pediatrics, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Sharon M Tennant
- Center for Vaccine Development and Institute for Global Health, University of Maryland School of Medicine, Baltimore, MD 21201, USA Department of Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| |
Collapse
|
73
|
Roy R, Shilpa PP, Bagh S. A Systems Biology Analysis Unfolds the Molecular Pathways and Networks of Two Proteobacteria in Spaceflight and Simulated Microgravity Conditions. ASTROBIOLOGY 2016; 16:677-689. [PMID: 27623197 DOI: 10.1089/ast.2015.1420] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
UNLABELLED Bacteria are important organisms for space missions due to their increased pathogenesis in microgravity that poses risks to the health of astronauts and for projected synthetic biology applications at the space station. We understand little about the effect, at the molecular systems level, of microgravity on bacteria, despite their significant incidence. In this study, we proposed a systems biology pipeline and performed an analysis on published gene expression data sets from multiple seminal studies on Pseudomonas aeruginosa and Salmonella enterica serovar Typhimurium under spaceflight and simulated microgravity conditions. By applying gene set enrichment analysis on the global gene expression data, we directly identified a large number of new, statistically significant cellular and metabolic pathways involved in response to microgravity. Alteration of metabolic pathways in microgravity has rarely been reported before, whereas in this analysis metabolic pathways are prevalent. Several of those pathways were found to be common across studies and species, indicating a common cellular response in microgravity. We clustered genes based on their expression patterns using consensus non-negative matrix factorization. The genes from different mathematically stable clusters showed protein-protein association networks with distinct biological functions, suggesting the plausible functional or regulatory network motifs in response to microgravity. The newly identified pathways and networks showed connection with increased survival of pathogens within macrophages, virulence, and antibiotic resistance in microgravity. Our work establishes a systems biology pipeline and provides an integrated insight into the effect of microgravity at the molecular systems level. KEY WORDS Systems biology-Microgravity-Pathways and networks-Bacteria. Astrobiology 16, 677-689.
Collapse
Affiliation(s)
- Raktim Roy
- 1 Department of Chemistry and Biochemistry, Presidency University , Kolkata, India
| | - P Phani Shilpa
- 1 Department of Chemistry and Biochemistry, Presidency University , Kolkata, India
| | - Sangram Bagh
- 2 Biophysics and Structural Genomics Division, Saha Institute of Nuclear Physics , Kolkata, India
| |
Collapse
|
74
|
The Bacterial iprA Gene Is Conserved across Enterobacteriaceae, Is Involved in Oxidative Stress Resistance, and Influences Gene Expression in Salmonella enterica Serovar Typhimurium. J Bacteriol 2016; 198:2166-79. [PMID: 27246569 DOI: 10.1128/jb.00144-16] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Accepted: 05/24/2016] [Indexed: 01/30/2023] Open
Abstract
UNLABELLED The iprA gene (formerly known as yaiV or STM0374) is located in a two-gene operon in the Salmonella enterica serovar Typhimurium genome and is associated with altered expression during spaceflight and rotating-wall-vessel culture conditions that increase virulence. However, iprA is uncharacterized in the literature. In this report, we present the first targeted characterization of this gene, which revealed that iprA is highly conserved across Enterobacteriaceae We found that S Typhimurium, Escherichia coli, and Enterobacter cloacae ΔiprA mutant strains display a multi-log-fold increase in oxidative stress resistance that is complemented using a plasmid-borne wild-type (WT) copy of the S Typhimurium iprA gene. This observation was also associated with increased catalase activity, increased S Typhimurium survival in macrophages, and partial dependence on the katE gene and full dependence on the rpoS gene. Our results indicate that IprA protein activity is sensitive to deletion of the N- and C-terminal 10 amino acids, while a region that includes amino acids 56 to 80 is dispensable for activity. RNA sequencing (RNA-Seq) analysis revealed several genes altered in expression in the S Typhimurium ΔiprA mutant strain compared to the WT, including those involved in fimbria formation, spvABCD-mediated virulence, ethanolamine utilization, the phosphotransferase system (PTS) transport, and flagellin phase switching from FlgB to FliC (likely a stochastic event) and several genes of hypothetical or putative function. IMPORTANCE Overall, this work reveals that the conserved iprA gene measurably influences bacterial biology and highlights the pool of currently uncharacterized genes that are conserved across bacterial genomes. These genes represent potentially useful targets for bacterial engineering, vaccine design, and other possible applications.
Collapse
|
75
|
Wang H, Yan Y, Rong D, Wang J, Wang H, Liu Z, Wang J, Yang R, Han Y. Increased biofilm formation ability in Klebsiella pneumoniae after short-term exposure to a simulated microgravity environment. Microbiologyopen 2016; 5:793-801. [PMID: 27185296 PMCID: PMC5061716 DOI: 10.1002/mbo3.370] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2016] [Revised: 03/17/2016] [Accepted: 03/29/2016] [Indexed: 01/11/2023] Open
Abstract
Biofilm formation is closely related to the pathogenetic processes of Klebsiella pneumoniae, which frequently causes infections in immunocompromised individuals. The immune system of astronauts is compromised in spaceflight. Accordingly, K. pneumoniae, which used to be isolated from orbiting spacecraft and astronauts, poses potential threats to the health of astronauts and mission security. Microgravity is a key environmental cue during spaceflight. Therefore, determining its effects on bacterial biofilm formation is necessary. In this study, K. pneumoniae ATCC BAA-1705 was exposed to a simulated microgravity (SMG) environment. K. pneumoniae grown under SMG formed thicker biofilms compared with those under normal gravity (NG) control after 2 weeks of subculture. Two indicative dyes (i.e., Congo red and calcofluor) specifically binding to cellulose fibers and/or fimbriae were utilized to reconfirm the enhanced biofilm formation ability of K. pneumoniae grown under SMG. Further analysis showed that the biofilms formed by SMG-treated K. pneumoniae were susceptible to cellulase digestion. Yeast cells mannose-resistant agglutination by K. pneumoniae type 3 fimbriae was more obvious in the SMG group, which suggests that cellulose production and type 3 fimbriae expression in K. pneumoniae were both enhanced under the SMG condition. Transcriptomic analysis showed that 171 genes belonging to 15 functional categories were dysregulated in this organism exposed to the SMG conditions compared with those in the NG group, where the genes responsible for the type 3 fimbriae (mrkABCDF) and its regulator (mrkH) were upregulated.
Collapse
Affiliation(s)
- Haili Wang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, 100071, China
| | - Yanfeng Yan
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, 100071, China
| | - Dan Rong
- Department of Medical Monitoring and Support, Astronaut Center of China, Beijing, 100094, China
| | - Jing Wang
- Animal Husbandry Base Teaching and Research Section, College of Animal Science and Technology, Hebei North University, Zhangjiakou, Hebei, 075131, China
| | - Hongduo Wang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, 100071, China
| | - Zizhong Liu
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, 100071, China
| | - Jiaping Wang
- Department of Medical Monitoring and Support, Astronaut Center of China, Beijing, 100094, China
| | - Ruifu Yang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, 100071, China.
| | - Yanping Han
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, 100071, China.
| |
Collapse
|
76
|
Coil DA, Neches RY, Lang JM, Brown WE, Severance M, Cavalier D, Eisen JA. Growth of 48 built environment bacterial isolates on board the International Space Station (ISS). PeerJ 2016; 4:e1842. [PMID: 27019789 PMCID: PMC4806633 DOI: 10.7717/peerj.1842] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2016] [Accepted: 03/02/2016] [Indexed: 12/17/2022] Open
Abstract
Background. While significant attention has been paid to the potential risk of pathogenic microbes aboard crewed spacecraft, the non-pathogenic microbes in these habitats have received less consideration. Preliminary work has demonstrated that the interior of the International Space Station (ISS) has a microbial community resembling those of built environments on Earth. Here we report the results of sending 48 bacterial strains, collected from built environments on Earth, for a growth experiment on the ISS. This project was a component of Project MERCCURI (Microbial Ecology Research Combining Citizen and University Researchers on ISS). Results. Of the 48 strains sent to the ISS, 45 of them showed similar growth in space and on Earth using a relative growth measurement adapted for microgravity. The vast majority of species tested in this experiment have also been found in culture-independent surveys of the ISS. Only one bacterial strain showed significantly different growth in space. Bacillus safensis JPL-MERTA-8-2 grew 60% better in space than on Earth. Conclusions. The majority of bacteria tested were not affected by conditions aboard the ISS in this experiment (e.g., microgravity, cosmic radiation). Further work on Bacillus safensis could lead to interesting insights on why this strain grew so much better in space.
Collapse
Affiliation(s)
- David A Coil
- Genome Center, University of California , Davis, CA , United States
| | - Russell Y Neches
- Genome Center, University of California , Davis, CA , United States
| | - Jenna M Lang
- Genome Center, University of California , Davis, CA , United States
| | - Wendy E Brown
- Genome Center, University of California, Davis, CA, United States; Science Cheerleader, Philadelphia, PA, United States
| | - Mark Severance
- Science Cheerleader, Philadelphia, PA, United States; SciStarter.com, Philadelphia, PA, United States
| | - Darlene Cavalier
- Science Cheerleader, Philadelphia, PA, United States; SciStarter.com, Philadelphia, PA, United States
| | - Jonathan A Eisen
- Genome Center, University of California, Davis, CA, United States; Department of Medical Microbiology and Immunology, University of California, Davis, CA, United States; Department of Evolution and Ecology, University of California, Davis, CA, United States
| |
Collapse
|
77
|
Kalpana D, Im C, Lee YS. Comparative growth, cross stress resistance, transcriptomics of Streptococcus pyogenes cultured under low shear modeled microgravity and normal gravity. Saudi J Biol Sci 2016; 23:24-33. [PMID: 26858535 PMCID: PMC4705266 DOI: 10.1016/j.sjbs.2015.02.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2014] [Revised: 01/29/2015] [Accepted: 02/01/2015] [Indexed: 12/30/2022] Open
Abstract
Streptococcus pyogenes is commonly found on pharynx, mouth and rarely on skin, lower gastrointestinal tract. It is a potential pathogen causing tonsillitis, pneumonia, endocarditis. The present study was undertaken to study the effects of low shear modeled microgravity on growth, morphology, antibiotic resistance, cross-stress resistance to various stresses and alteration in gene expression of S. pyogenes. The growth analysis performed using UV-Visible spectroscopy indicated decrease in growth of S. pyogenes under low shear modeled microgravity. Morphological analysis by Bio-transmission electron microscopy (TEM), Bio-scanning electron microscopy (SEM) did not reveal much difference between normal and low shear modeled microgravity grown S. pyogenes. The sensitivity of S. pyogenes to antibiotics ampicillin, penicillin, streptomycin, kanamycin, hygromycin, rifampicin indicates that the bacterium is resistant to hygromycin. Further S. pyogenes cultured under low shear modeled microgravity was found to be more sensitive to ampicillin and rifampicin as compared with normal gravity grown S. pyogenes. The bacteria were tested for the acid, osmotic, temperature and oxidative cross stress resistances. The gene expression of S. pyogenes under low shear modeled microgravity analyzed by microarray revealed upregulation of 26 genes and down regulation of 22 genes by a fold change of 1.5.
Collapse
Affiliation(s)
- Duraisamy Kalpana
- Department of Forest Science and Technology, Institute of Agricultural Science and Technology, Chonbuk National University, Jeonju, South Korea
- Department of Bioresources and Food Science, College of life and Environmental Sciences, Konkuk University, Seoul, South Korea
| | - Chanki Im
- Department of Forest Science and Technology, Institute of Agricultural Science and Technology, Chonbuk National University, Jeonju, South Korea
| | - Yang Soo Lee
- Department of Forest Science and Technology, Institute of Agricultural Science and Technology, Chonbuk National University, Jeonju, South Korea
| |
Collapse
|
78
|
Sathishkumar Y, Krishnaraj C, Rajagopal K, Sen D, Lee YS. High throughput de novo RNA sequencing elucidates novel responses in Penicillium chrysogenum under microgravity. Bioprocess Biosyst Eng 2015; 39:223-31. [PMID: 26603994 DOI: 10.1007/s00449-015-1506-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Accepted: 11/10/2015] [Indexed: 12/24/2022]
Abstract
In this study, the transcriptional alterations in Penicillium chrysogenum under simulated microgravity conditions were analyzed for the first time using an RNA-Seq method. The increasing plethora of eukaryotic microbial flora inside the spaceship demands the basic understanding of fungal biology in the absence of gravity vector. Penicillium species are second most dominant fungal contaminant in International Space Station. Penicillium chrysogenum an industrially important organism also has the potential to emerge as an opportunistic pathogen for the astronauts during the long-term space missions. But till date, the cellular mechanisms underlying the survival and adaptation of Penicillium chrysogenum to microgravity conditions are not clearly elucidated. A reference genome for Penicillium chrysogenum is not yet available in the NCBI database. Hence, we performed comparative de novo transcriptome analysis of Penicillium chrysogenum grown under microgravity versus normal gravity. In addition, the changes due to microgravity are documented at the molecular level. Increased response to the environmental stimulus, changes in the cell wall component ABC transporter/MFS transporters are noteworthy. Interestingly, sustained increase in the expression of Acyl-coenzyme A: isopenicillin N acyltransferase (Acyltransferase) under microgravity revealed the significance of gravity in the penicillin production which could be exploited industrially.
Collapse
Affiliation(s)
- Yesupatham Sathishkumar
- Department of Forest Science and Technology, College of Agriculture and Life Sciences, Chonbuk National University, Jeonju, 561-756, Republic of Korea.
| | - Chandran Krishnaraj
- Department of Food Science and Technology, College of Agriculture and Life Sciences, Chonbuk National University, Jeonju, 561-756, Republic of Korea
| | | | - Dwaipayan Sen
- School of Biosciences and Technology, VIT University, Vellore, 632014, India
- Cellular and Molecular Therapeutics Laboratory, Centre for Biomaterials, Cellular and Molecular Theranostics, School of Biosciences and Technology, VIT University, Vellore, 632014, India
| | - Yang Soo Lee
- Department of Forest Science and Technology, College of Agriculture and Life Sciences, Chonbuk National University, Jeonju, 561-756, Republic of Korea.
| |
Collapse
|
79
|
A Three-Dimensional Cell Culture Model To Study Enterovirus Infection of Polarized Intestinal Epithelial Cells. mSphere 2015; 1:mSphere00030-15. [PMID: 27303677 PMCID: PMC4863623 DOI: 10.1128/msphere.00030-15] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Accepted: 10/26/2015] [Indexed: 11/20/2022] Open
Abstract
Despite serving as the primary entry portal for coxsackievirus B (CVB), little is known about CVB infection of the intestinal epithelium, owing at least in part to the lack of suitable in vivo models and the inability of cultured cells to recapitulate the complexity and structure associated with the gastrointestinal (GI) tract. Here, we report on the development of a three-dimensional (3-D) organotypic cell culture model of Caco-2 cells to model CVB infection of the gastrointestinal epithelium. We show that Caco-2 cells grown in 3-D using the rotating wall vessel (RWV) bioreactor recapitulate many of the properties of the intestinal epithelium, including the formation of well-developed tight junctions, apical-basolateral polarity, brush borders, and multicellular complexity. In addition, transcriptome analyses using transcriptome sequencing (RNA-Seq) revealed the induction of a number of genes associated with intestinal epithelial differentiation and/or intestinal processes in vivo when Caco-2 cells were cultured in 3-D. Applying this model to CVB infection, we found that although the levels of intracellular virus production were similar in two-dimensional (2-D) and 3-D Caco-2 cell cultures, the release of infectious CVB was enhanced in 3-D cultures at early stages of infection. Unlike CVB, the replication of poliovirus (PV) was significantly reduced in 3-D Caco-2 cell cultures. Collectively, our studies show that Caco-2 cells grown in 3-D using the RWV bioreactor provide a cell culture model that structurally and transcriptionally represents key aspects of cells in the human GI tract and can thus be used to expand our understanding of enterovirus-host interactions in intestinal epithelial cells. IMPORTANCE Coxsackievirus B (CVB), a member of the enterovirus family of RNA viruses, is associated with meningitis, pericarditis, diabetes, dilated cardiomyopathy, and myocarditis, among other pathologies. CVB is transmitted via the fecal-oral route and encounters the epithelium lining the gastrointestinal tract early in infection. The lack of suitable in vivo and in vitro models to study CVB infection of the gastrointestinal epithelium has limited our understanding of the events that surround infection of these specialized cells. Here, we report on the development of a three-dimensional (3-D) organotypic cell culture model of human intestinal epithelial cells that better models the gastrointestinal epithelium in vivo. By applying this 3-D model, which recapitulates many aspects of the gastrointestinal epithelium in vivo, to the study of CVB infection, our work provides a new cell system to model the mechanisms by which CVB infects the intestinal epithelium, which may have a profound impact on CVB pathogenesis. Podcast: A podcast concerning this article is available.
Collapse
|
80
|
Guo Y, Li J, Liu J, Wang T, Li Y, Yuan Y, Zhao J, Chang D, Fang X, Li T, Wang J, Dai W, Fang C, Liu C. Effects of Space Environment on Genome, Transcriptome, and Proteome of Klebsiella pneumoniae. Arch Med Res 2015; 46:609-18. [DOI: 10.1016/j.arcmed.2015.11.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2015] [Accepted: 11/02/2015] [Indexed: 01/26/2023]
|
81
|
Devarayan K, Sathishkumar Y, Lee YS, Kim BS. Effect of Microgravity on Fungistatic Activity of an α-Aminophosphonate Chitosan Derivative against Aspergillus niger. PLoS One 2015; 10:e0139303. [PMID: 26468641 PMCID: PMC4607506 DOI: 10.1371/journal.pone.0139303] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2015] [Accepted: 09/12/2015] [Indexed: 11/18/2022] Open
Abstract
Biocontamination within the international space station is ever increasing mainly due to human activity. Control of microorganisms such as fungi and bacteria are important to maintain the well-being of the astronauts during long-term stay in space since the immune functions of astronauts are compromised under microgravity. For the first time control of the growth of an opportunistic pathogen, Aspergillus niger, under microgravity is studied in the presence of α-aminophosphonate chitosan. A low-shear modelled microgravity was used to mimic the conditions similar to space. The results indicated that the α-aminophosphonate chitosan inhibited the fungal growth significantly under microgravity. In addition, the inhibition mechanism of the modified chitosan was studied by UV-Visible spectroscopy and cyclic voltammetry. This work highlighted the role of a bio-based chitosan derivative to act as a disinfectant in space stations to remove fungal contaminants.
Collapse
Affiliation(s)
- Kesavan Devarayan
- Department of BIN Convergence Technology, Chonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju-si, Jeollabuk-do 54896, Republic of Korea
- Department of Basic Sciences, College of Fisheries Engineering, Tamil Nadu Fisheries University, Nagapattinam, India
| | - Yesupatham Sathishkumar
- Department of Forest Science and Technology, College of Agriculture and Life Sciences, Chonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju-si, Jeollabuk-do 54896, Republic of Korea
| | - Yang Soo Lee
- Department of Forest Science and Technology, College of Agriculture and Life Sciences, Chonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju-si, Jeollabuk-do 54896, Republic of Korea
| | - Byoung-Suhk Kim
- Department of Organic Materials & Fiber Engineering, Chonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju-si, Jeollabuk-do 54896, Republic of Korea
- Department of BIN Convergence Technology, Chonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju-si, Jeollabuk-do 54896, Republic of Korea
| |
Collapse
|
82
|
Prakash M, Fried R, Götze O, May F, Frings-Meuthen P, Mulder E, Valentini J, Fox M, Fried M, Schwizer W, Misselwitz B. Microgravity Simulated by the 6° Head-Down Tilt Bed Rest Test Increases Intestinal Motility but Fails to Induce Gastrointestinal Symptoms of Space Motion Sickness. Dig Dis Sci 2015; 60:3053-61. [PMID: 26055239 DOI: 10.1007/s10620-015-3738-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2015] [Accepted: 05/28/2015] [Indexed: 12/09/2022]
Abstract
BACKGROUND Space motion sickness (SMS) is the most relevant medical problem during the first days in microgravity. Studies addressing pathophysiology in space face severe technical challenges and microgravity is frequently simulated using the 6° head-down tilt bed rest test (HDT). AIM We were aiming to test whether SMS could be simulated by HDT, identify related changes in gastrointestinal physiology and test for beneficial effects of exercise interventions. METHODS HDT was performed in ten healthy individuals. Each individual was tested in three study campaigns varying by a 30-min daily exercise intervention of either standing, an upright exercise regimen, or no intervention. Gastrointestinal symptoms, stool characteristics, gastric emptying time, and small intestinal transit were assessed using standardized questionnaires, (13)C octanoate breath test, and H2 lactulose breath test, respectively, before and at day 2 and 5 of HDT. RESULTS Individuals described no or minimal gastrointestinal symptoms during HDT. Gastric emptying remained unchanged relative to baseline data collection (BDC). At day 2 of HDT the H₂ peak of the lactulose test appeared earlier (mean ± standard error for BDC-1, HDT2, HDT5: 198 ± 7, 139 ± 18, 183 ± 10 min; p: 0.040), indicating accelerated small intestinal transit. Furthermore, during HDT, stool was softer and stool mass increased (BDC: 47 ± 6, HDT: 91 ± 12, recovery: 53 ± 8 g/day; p: 0.014), indicating accelerated colonic transit. Exercise interventions had no effect. CONCLUSION HDT did not induce symptoms of SMS. During HDT, gastric emptying remained unchanged, but small and large intestinal transit was accelerated.
Collapse
Affiliation(s)
- Meher Prakash
- Division of Gastroenterology and Hepatology, University Hospital Zurich and Zurich University, Rämistr. 100, 8091, Zurich, Switzerland
| | - Ron Fried
- Division of Gastroenterology and Hepatology, University Hospital Zurich and Zurich University, Rämistr. 100, 8091, Zurich, Switzerland
| | - Oliver Götze
- Division of Hepatology, Department of Medicine II, University Hospital Würzburg, Würzburg, Germany
| | - Francisca May
- Institute of Aerospace Medicine, German Aerospace Center (DLR), Cologne, Germany
| | - Petra Frings-Meuthen
- Institute of Aerospace Medicine, German Aerospace Center (DLR), Cologne, Germany
| | - Edwin Mulder
- Institute of Aerospace Medicine, German Aerospace Center (DLR), Cologne, Germany
| | - Judit Valentini
- Swiss Center of Excellence for Agricultural Research (Agroscope), Bern, Switzerland
| | - Mark Fox
- Division of Gastroenterology and Hepatology, University Hospital Zurich and Zurich University, Rämistr. 100, 8091, Zurich, Switzerland.,Zurich Integrative Human Physiology Group, University of Zurich, Zurich, Switzerland
| | - Michael Fried
- Division of Gastroenterology and Hepatology, University Hospital Zurich and Zurich University, Rämistr. 100, 8091, Zurich, Switzerland.,Zurich Integrative Human Physiology Group, University of Zurich, Zurich, Switzerland
| | - Werner Schwizer
- Division of Gastroenterology and Hepatology, University Hospital Zurich and Zurich University, Rämistr. 100, 8091, Zurich, Switzerland.,Zurich Integrative Human Physiology Group, University of Zurich, Zurich, Switzerland
| | - Benjamin Misselwitz
- Division of Gastroenterology and Hepatology, University Hospital Zurich and Zurich University, Rämistr. 100, 8091, Zurich, Switzerland.
| |
Collapse
|
83
|
Abstract
Manned space flight induces a reduction in immune competence among crew and is likely to cause deleterious changes to the composition of the gastrointestinal, nasal, and respiratory bacterial flora, leading to an increased risk of infection. The space flight environment may also affect the susceptibility of microorganisms within the spacecraft to antibiotics, key components of flown medical kits, and may modify the virulence characteristics of bacteria and other microorganisms that contaminate the fabric of the International Space Station and other flight platforms. This review will consider the impact of true and simulated microgravity and other characteristics of the space flight environment on bacterial cell behavior in relation to the potential for serious infections that may appear during missions to astronomical objects beyond low Earth orbit.
Collapse
|
84
|
|
85
|
Zhang X, Fang X, Liu C. Genomic and Proteomic Analysis of Escherichia coli After Spaceflight Reveals Changes Involving Metabolic Pathways. Arch Med Res 2015; 46:181-5. [DOI: 10.1016/j.arcmed.2015.03.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2015] [Accepted: 03/25/2015] [Indexed: 12/12/2022]
|
86
|
Rosenzweig JA, Ahmed S, Eunson J, Chopra AK. Low-shear force associated with modeled microgravity and spaceflight does not similarly impact the virulence of notable bacterial pathogens. Appl Microbiol Biotechnol 2014; 98:8797-807. [PMID: 25149449 DOI: 10.1007/s00253-014-6025-8] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2014] [Revised: 08/06/2014] [Accepted: 08/08/2014] [Indexed: 12/18/2022]
Abstract
As their environments change, microbes experience various threats and stressors, and in the hypercompetitive microbial world, dynamism and the ability to rapidly respond to such changes allow microbes to outcompete their nutrient-seeking neighbors. Viewed in that light, the very difference between microbial life and death depends on effective stress response mechanisms. In addition to the more commonly studied temperature, nutritional, and chemical stressors, research has begun to characterize microbial responses to physical stress, namely low-shear stress. In fact, microbial responses to low-shear modeled microgravity (LSMMG), which emulates the microgravity experienced in space, have been studied quite widely in both prokaryotes and eukaryotes. Interestingly, LSMMG-induced changes in the virulence potential of several Gram-negative enteric bacteria, e.g., an increased enterotoxigenic Escherichia coli-mediated fluid secretion in ligated ileal loops of mice, an increased adherent invasive E. coli-mediated infectivity of Caco-2 cells, an increased Salmonella typhimurium-mediated invasion of both epithelial and macrophage cells, and S. typhimurium hypervirulence phenotype in BALB/c mice when infected by the intraperitoneal route. Although these were some examples where virulence of the bacteria was increased, there are instances where organisms became less virulent under LSMMG, e.g., hypovirulence of Yersinia pestis in cell culture infections and hypovirulence of methicillin-resistant Staphylococcus aureus, Enterococcus faecalis, and Listeria monocytogenes in a Caenorhabditis elegans infection model. In general, a number of LSMMG-exposed bacteria (but not all) seemed better equipped to handle subsequent stressors such as osmotic shock, acid shock, heat shock, and exposure to chemotherapeutics. This mini-review primarily discusses both LSMMG-induced as well as bona fide spaceflight-specific alterations in bacterial virulence potential, demonstrating that pathogens' responses to low-shear forces vary dramatically. Ultimately, a careful characterization of numerous bacterial pathogens' responses to low-shear forces is necessary to evaluate a more complete picture of how this physical stress impacts bacterial virulence since a "one-size-fits-all" response is clearly not the case.
Collapse
Affiliation(s)
- Jason A Rosenzweig
- Department of Biology and Center for Bionanotechnology and Environmental Research, Texas Southern University, 3100 Cleburne Street, Houston, TX, 77004, USA,
| | | | | | | |
Collapse
|
87
|
Yamaguchi N, Roberts M, Castro S, Oubre C, Makimura K, Leys N, Grohmann E, Sugita T, Ichijo T, Nasu M. Microbial monitoring of crewed habitats in space-current status and future perspectives. Microbes Environ 2014; 29:250-60. [PMID: 25130885 PMCID: PMC4159036 DOI: 10.1264/jsme2.me14031] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Previous space research conducted during short-term flight experiments and long-term environmental monitoring on board orbiting space stations suggests that the relationship between humans and microbes is altered in the crewed habitat in space. Both human physiology and microbial communities adapt to spaceflight. Microbial monitoring is critical to crew safety in long-duration space habitation and the sustained operation of life support systems on space transit vehicles, space stations, and surface habitats. To address this critical need, space agencies including NASA (National Aeronautics and Space Administration), ESA (European Space Agency), and JAXA (Japan Aerospace Exploration Agency) are working together to develop and implement specific measures to monitor, control, and counteract biological contamination in closed-environment systems. In this review, the current status of microbial monitoring conducted in the International Space Station (ISS) as well as the results of recent microbial spaceflight experiments have been summarized and future perspectives are discussed.
Collapse
Affiliation(s)
- Nobuyasu Yamaguchi
- Environmental Science and Microbiology, Graduate School of Pharmaceutical Sciences, Osaka University
| | | | | | | | | | | | | | | | | | | |
Collapse
|
88
|
Soni A, O'Sullivan L, Quick LN, Ott CM, Nickerson CA, Wilson JW. Conservation of the Low-shear Modeled Microgravity Response in Enterobacteriaceae and Analysis of the trp Genes in this Response. Open Microbiol J 2014; 8:51-8. [PMID: 25006354 PMCID: PMC4085587 DOI: 10.2174/1874285801408010051] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2014] [Revised: 03/19/2014] [Accepted: 04/03/2014] [Indexed: 11/22/2022] Open
Abstract
Low fluid shear force, including that encountered in microgravity models, induces bacterial responses, but the range of bacteria capable of responding to this signal remains poorly characterized. We systematically analyzed a range of Gram negative Enterobacteriaceae for conservation of the low-shear modeled microgravity (LSMMG) response using phenotypic assays, qPCR, and targeted mutations. Our results indicate LSMMG response conservation across Enterobacteriacae with potential variance in up- or down-regulation of a given response depending on genus. Based on the data, we analyzed the role of the trp operon genes and the TrpR regulator in the LSMMG response using targeted mutations in these genes in S. Typhimurium and E. coli. We found no alteration of the LSMMG response compared to WT in these mutant strains under the conditions tested here. To our knowledge, this study is first-of-kind for Citrobacter, Enterobacter, and Serratia, presents novel data for Escherichia, and provides the first analysis of trp genes in LSMMG responses. This impacts our understanding of how LSMMG affects bacteria and our ability to modify bacteria with this condition in the future.
Collapse
Affiliation(s)
- Anjali Soni
- Villanova University, Biology Department, 800 Lancaster Avenue, Villanova, PA 19085 ; Virginia Commonwealth University, School of Dentistry, Richmond, VA23298
| | - Laura O'Sullivan
- Villanova University, Biology Department, 800 Lancaster Avenue, Villanova, PA 19085 ; University of Pennsylvania,School of Veterinary Medicine, Philadelphia, PA 19104
| | - Laura N Quick
- Villanova University, Biology Department, 800 Lancaster Avenue, Villanova, PA 19085 ; Children's Hospital of Philadelphia, Philadelphia, PA 19104
| | - C Mark Ott
- NASA/Johnson Space Center, Habitability and Environmental Factors Division, Houston, TX77058
| | - Cheryl A Nickerson
- Arizona State University, Biodesign Institute, Center for Infectious Diseases and Vaccinology, Tempe, AZ85281
| | - James W Wilson
- Villanova University, Biology Department, 800 Lancaster Avenue, Villanova, PA 19085
| |
Collapse
|
89
|
Sathishkumar Y, Velmurugan N, Lee HM, Rajagopal K, Im CK, Lee YS. Effect of low shear modeled microgravity on phenotypic and central chitin metabolism in the filamentous fungi Aspergillus niger and Penicillium chrysogenum. Antonie van Leeuwenhoek 2014; 106:197-209. [DOI: 10.1007/s10482-014-0181-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2013] [Accepted: 04/18/2014] [Indexed: 01/03/2023]
|
90
|
Kim HW, Matin A, Rhee MS. Microgravity alters the physiological characteristics of Escherichia coli O157:H7 ATCC 35150, ATCC 43889, and ATCC 43895 under different nutrient conditions. Appl Environ Microbiol 2014; 80:2270-8. [PMID: 24487539 PMCID: PMC3993155 DOI: 10.1128/aem.04037-13] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2013] [Accepted: 01/24/2014] [Indexed: 01/17/2023] Open
Abstract
The aim of this study is to provide understanding of microgravity effects on important food-borne bacteria, Escherichia coli O157:H7 ATCC 35150, ATCC 43889, and ATCC 43895, cultured in nutrient-rich or minimal medium. Physiological characteristics, such as growth (measured by optical density and plating), cell morphology, and pH, were monitored under low-shear modeled microgravity (LSMMG; space conditions) and normal gravity (NG; Earth conditions). In nutrient-rich medium, all strains except ATCC 35150 showed significantly higher optical density after 6 h of culture under LSMMG conditions than under NG conditions (P < 0.05). LSMMG-cultured cells were approximately 1.8 times larger than NG-cultured cells at 24 h; therefore, it was assumed that the increase in optical density was due to the size of individual cells rather than an increase in the cell population. The higher pH of the NG cultures relative to that of the LSMMG cultures suggests that nitrogen metabolism was slower in the latter. After 24 h of culturing in minimal media, LSMMG-cultured cells had an optical density 1.3 times higher than that of NG-cultured cells; thus, the higher optical density in the LSMMG cultures may be due to an increase in both cell size and number. Since bacteria actively grew under LSMMG conditions in minimal medium despite the lower pH, it is of some concern that LSMMG-cultured E. coli O157:H7 may be able to adapt well to acidic environments. These changes may be caused by changes in nutrient metabolism under LSMMG conditions, although this needs to be demonstrated in future studies.
Collapse
Affiliation(s)
- H. W. Kim
- Department of Food Bioscience and Technology, College of Life Sciences and Biotechnology, Korea University, Seoul, Republic of Korea
| | - A. Matin
- Department of Microbiology and Immunology, Sherman Fairchild Science Building, Stanford University School of Medicine, Stanford, California, USA
| | - M. S. Rhee
- Department of Food Bioscience and Technology, College of Life Sciences and Biotechnology, Korea University, Seoul, Republic of Korea
| |
Collapse
|
91
|
Crabbé A, Nielsen-Preiss SM, Woolley CM, Barrila J, Buchanan K, McCracken J, Inglis DO, Searles SC, Nelman-Gonzalez MA, Ott CM, Wilson JW, Pierson DL, Stefanyshyn-Piper HM, Hyman LE, Nickerson CA. Spaceflight enhances cell aggregation and random budding in Candida albicans. PLoS One 2013; 8:e80677. [PMID: 24324620 PMCID: PMC3851762 DOI: 10.1371/journal.pone.0080677] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2013] [Accepted: 10/07/2013] [Indexed: 12/24/2022] Open
Abstract
This study presents the first global transcriptional profiling and phenotypic characterization of the major human opportunistic fungal pathogen, Candida albicans, grown in spaceflight conditions. Microarray analysis revealed that C. albicans subjected to short-term spaceflight culture differentially regulated 452 genes compared to synchronous ground controls, which represented 8.3% of the analyzed ORFs. Spaceflight-cultured C. albicans–induced genes involved in cell aggregation (similar to flocculation), which was validated by microscopic and flow cytometry analysis. We also observed enhanced random budding of spaceflight-cultured cells as opposed to bipolar budding patterns for ground samples, in accordance with the gene expression data. Furthermore, genes involved in antifungal agent and stress resistance were differentially regulated in spaceflight, including induction of ABC transporters and members of the major facilitator family, downregulation of ergosterol-encoding genes, and upregulation of genes involved in oxidative stress resistance. Finally, downregulation of genes involved in actin cytoskeleton was observed. Interestingly, the transcriptional regulator Cap1 and over 30% of the Cap1 regulon was differentially expressed in spaceflight-cultured C. albicans. A potential role for Cap1 in the spaceflight response of C. albicans is suggested, as this regulator is involved in random budding, cell aggregation, and oxidative stress resistance; all related to observed spaceflight-associated changes of C. albicans. While culture of C. albicans in microgravity potentiates a global change in gene expression that could induce a virulence-related phenotype, no increased virulence in a murine intraperitoneal (i.p.) infection model was observed under the conditions of this study. Collectively, our data represent an important basis for the assessment of the risk that commensal flora could play during human spaceflight missions. Furthermore, since the low fluid-shear environment of microgravity is relevant to physical forces encountered by pathogens during the infection process, insights gained from this study could identify novel infectious disease mechanisms, with downstream benefits for the general public.
Collapse
Affiliation(s)
- Aurélie Crabbé
- Center for Infectious Diseases and Vaccinology, The Biodesign Institute, Arizona State University, Tempe, Arizona, United States of America
| | - Sheila M. Nielsen-Preiss
- Department of Immunology and Infectious Disease, Montana State University, Bozeman, Montanta, United States of America
| | - Christine M. Woolley
- Department of Immunology and Infectious Disease, Montana State University, Bozeman, Montanta, United States of America
| | - Jennifer Barrila
- Center for Infectious Diseases and Vaccinology, The Biodesign Institute, Arizona State University, Tempe, Arizona, United States of America
| | - Kent Buchanan
- Department of Biology, Oklahoma City University, Oklahoma City, Oklahoma, United States of America
- Department of Microbiology and Immunology, Program in Molecular Pathogenesis and Immunity, Tulane University Health Sciences Center, New Orleans, Louisiana, United States of America
| | - James McCracken
- Department of Microbiology and Immunology, Program in Molecular Pathogenesis and Immunity, Tulane University Health Sciences Center, New Orleans, Louisiana, United States of America
- Diabetes and Obesity Center, University of Louisville, Louisville, Kentucky, United States of America
| | - Diane O. Inglis
- Department of Genetics, Stanford University Medical School, Stanford, California, United States of America
| | - Stephen C. Searles
- Department of Immunology and Infectious Disease, Montana State University, Bozeman, Montanta, United States of America
| | | | - C. Mark Ott
- Biomedical Research and Environmental Sciences Division, NASA Johnson Space Center, Houston, Texas, United States of America
| | - James W. Wilson
- Center for Infectious Diseases and Vaccinology, The Biodesign Institute, Arizona State University, Tempe, Arizona, United States of America
- Department of Microbiology and Immunology, Program in Molecular Pathogenesis and Immunity, Tulane University Health Sciences Center, New Orleans, Louisiana, United States of America
- Department of Biology, Villanova University, Villanova, Pennsylvania, United States of America
| | - Duane L. Pierson
- Biomedical Research and Environmental Sciences Division, NASA Johnson Space Center, Houston, Texas, United States of America
| | | | - Linda E. Hyman
- Department of Immunology and Infectious Disease, Montana State University, Bozeman, Montanta, United States of America
- Boston University School of Medicine, Boston, Massachusetts, United States of America
| | - Cheryl A. Nickerson
- School of Life Sciences, Arizona State University, Tempe, Arizona, United States of America
- Center for Infectious Diseases and Vaccinology, The Biodesign Institute, Arizona State University, Tempe, Arizona, United States of America
- Department of Microbiology and Immunology, Program in Molecular Pathogenesis and Immunity, Tulane University Health Sciences Center, New Orleans, Louisiana, United States of America
- * E-mail:
| |
Collapse
|
92
|
Mastroleo F, Van Houdt R, Atkinson S, Mergeay M, Hendrickx L, Wattiez R, Leys N. Modelled microgravity cultivation modulates N-acylhomoserine lactone production in Rhodospirillum rubrum S1H independently of cell density. Microbiology (Reading) 2013; 159:2456-2466. [DOI: 10.1099/mic.0.066415-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Affiliation(s)
- Felice Mastroleo
- Unit for Microbiology, Belgian Nuclear Research Centre (SCK•CEN), Mol, Belgium
| | - Rob Van Houdt
- Unit for Microbiology, Belgian Nuclear Research Centre (SCK•CEN), Mol, Belgium
| | - Steve Atkinson
- School of Molecular Medical Sciences, University of Nottingham, Nottingham, UK
| | - Max Mergeay
- Unit for Microbiology, Belgian Nuclear Research Centre (SCK•CEN), Mol, Belgium
| | - Larissa Hendrickx
- Unit for Microbiology, Belgian Nuclear Research Centre (SCK•CEN), Mol, Belgium
| | - Ruddy Wattiez
- Research Institute of Biosciences, Proteomic and Microbiology Laboratory, Université de Mons, Mons, Belgium
| | - Natalie Leys
- Unit for Microbiology, Belgian Nuclear Research Centre (SCK•CEN), Mol, Belgium
| |
Collapse
|
93
|
Contribution of the urodele amphibian Pleurodeles waltl to the analysis of spaceflight-associated immune system deregulation. Mol Immunol 2013; 56:434-41. [DOI: 10.1016/j.molimm.2013.06.011] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2013] [Accepted: 06/18/2013] [Indexed: 11/19/2022]
|
94
|
Hammond TG, Stodieck L, Birdsall HH, Becker JL, Koenig P, Hammond JS, Gunter MA, Allen PL. Effects of microgravity on the virulence of Listeria monocytogenes, Enterococcus faecalis, Candida albicans, and methicillin-resistant Staphylococcus aureus. ASTROBIOLOGY 2013; 13:1081-90. [PMID: 24283929 DOI: 10.1089/ast.2013.0986] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
To evaluate effects of microgravity on virulence, we studied the ability of four common clinical pathogens--Listeria monocytogenes, methicillin-resistant Staphylococcus aureus (MRSA), Enterococcus faecalis, and Candida albicans--to kill wild type Caenorhabditis elegans (C. elegans) nematodes at the larval and adult stages. Simultaneous studies were performed utilizing spaceflight, clinorotation in a 2-D clinorotation device, and static ground controls. The feeding rate of worms for killed E. coli was unaffected by spaceflight or clinorotation. Nematodes, microbes, and growth media were separated until exposed to true or modeled microgravity, then mixed and grown for 48 h. Experiments were terminated by paraformaldehyde fixation, and optical density measurements were used to assay residual microorganisms. Spaceflight was associated with reduced virulence for Listeria, Enterococcus, MRSA, and Candida for both larval and adult C. elegans. These are the first data acquired with a direct in vivo assay system in space to demonstrate virulence. Clinorotation reproduced the effects of spaceflight in some, but not all, virulence assays: Candida and Enterococcus were less virulent for larval worms but not adult worms, whereas virulence of MRSA and Listeria were unaffected by clinorotation in tests with both adult and larval worms. We conclude that four common clinical microorganisms are all less virulent in space.
Collapse
Affiliation(s)
- Timothy G Hammond
- 1 Durham VA Medical Center, Research and Development Service, Duke University School of Medicine , Durham, North Carolina
| | | | | | | | | | | | | | | |
Collapse
|
95
|
Lawal A, Kirtley ML, van Lier CJ, Erova TE, Kozlova EV, Sha J, Chopra AK, Rosenzweig JA. The effects of modeled microgravity on growth kinetics, antibiotic susceptibility, cold growth, and the virulence potential of a Yersinia pestis ymoA-deficient mutant and its isogenic parental strain. ASTROBIOLOGY 2013; 13:821-32. [PMID: 23988036 PMCID: PMC3779001 DOI: 10.1089/ast.2013.0968] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2013] [Accepted: 06/09/2013] [Indexed: 06/02/2023]
Abstract
Previously, we reported that there was no enhancement in the virulence potential (as measured by cell culture infections) of the bacterial pathogen Yersinia pestis (YP) following modeled microgravity/clinorotation growth. We have now further characterized the effects of clinorotation (CR) on YP growth kinetics, antibiotic sensitivity, cold growth, and YP's virulence potential in a murine model of infection. Surprisingly, none of the aforementioned phenotypes were altered. To better understand why CR did not enhance YP's virulence potential as it did for other bacterial pathogens, a YP ΔymoA isogenic mutant in the KIM/D27 background strain that is unable to produce the histone-like YmoA protein and influences DNA topography was used in both cell culture and murine models of infection. YmoA represses type three secretion system (T3SS) virulence gene expression in the yersiniae. Similar to our CR-grown parental YP strain data, the CR-grown ΔymoA mutant induced reduced HeLa cell cytotoxicity with concomitantly decreased Yersinia outer protein E (YopE) and low calcium response V (LcrV) antigen production and secretion. Important, however, were our findings that, although no significant differences were observed in survival of mice infected intraperitoneally with either normal gravity (NG)- or CR-grown parental YP, the ΔymoA mutant induced significantly more mortality in infected mice than did the parental strain following CR growth. Taken together, our data demonstrate that CR did enhance the virulence potential of the YP ΔymoA mutant in a murine infection model (relative to the CR-grown parental strain), despite inducing less HeLa cell rounding in our cell culture infection assay due to reduced T3SS activity. Therefore, CR, which induces a unique type of bacterial stress, might be enhancing YP's virulence potential in vivo through a T3SS-independent mechanism when the histone-like YmoA protein is absent.
Collapse
Affiliation(s)
- Abidat Lawal
- Department of Biology, Department of Environmental and Interdisciplinary Sciences, Center for Bionanotechnology and Environmental Research (CBER), Texas Southern University, Houston, Texas
| | - Michelle L. Kirtley
- Department of Microbiology and Immunology, Sealy Center for Vaccine Development, Institute of Human Infections and Immunity, and the Galveston National Laboratory, University of Texas Medical Branch, Galveston, Texas
| | - Christina J. van Lier
- Department of Microbiology and Immunology, Sealy Center for Vaccine Development, Institute of Human Infections and Immunity, and the Galveston National Laboratory, University of Texas Medical Branch, Galveston, Texas
| | - Tatiana E. Erova
- Department of Microbiology and Immunology, Sealy Center for Vaccine Development, Institute of Human Infections and Immunity, and the Galveston National Laboratory, University of Texas Medical Branch, Galveston, Texas
| | - Elena V. Kozlova
- Department of Microbiology and Immunology, Sealy Center for Vaccine Development, Institute of Human Infections and Immunity, and the Galveston National Laboratory, University of Texas Medical Branch, Galveston, Texas
| | - Jian Sha
- Department of Microbiology and Immunology, Sealy Center for Vaccine Development, Institute of Human Infections and Immunity, and the Galveston National Laboratory, University of Texas Medical Branch, Galveston, Texas
| | - Ashok K. Chopra
- Department of Microbiology and Immunology, Sealy Center for Vaccine Development, Institute of Human Infections and Immunity, and the Galveston National Laboratory, University of Texas Medical Branch, Galveston, Texas
| | - Jason A. Rosenzweig
- Department of Biology, Department of Environmental and Interdisciplinary Sciences, Center for Bionanotechnology and Environmental Research (CBER), Texas Southern University, Houston, Texas
| |
Collapse
|
96
|
Hammond TG, Stodieck L, Birdsall HH, Becker J, Koenig P, Hammond JS, Gunter MA, Allen PL. Effects of Microgravity on the Virulence ofSalmonellaTowardCaenorhabditis elegans. ACTA ACUST UNITED AC 2013. [DOI: 10.1089/space.2013.0011] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Affiliation(s)
- Timothy G. Hammond
- Durham VA Medical Center, Research & Development Service, Duke University School of Medicine, Durham, North Carolina
- Nephrology Division, Department of Internal Medicine, Duke University School of Medicine, Durham, North Carolina
- Department of Veterans Affairs Office of Research and Development, Washington, District of Columbia
- Nephrology Section, Department of Internal Medicine, George Washington School of Medicine, Washington, District of Columbia
- Washington DC VA Medical Center, Washington, District of Columbia
| | - Louis Stodieck
- Bioserve Space Technologies, University of Colorado, Boulder, Colorado
| | - Holly H. Birdsall
- Department of Veterans Affairs Office of Research and Development, Washington, District of Columbia
- Departments of Otorhinolaryngology, Immunology, and Psychiatry, Baylor College of Medicine, Houston, Texas
| | | | - Paul Koenig
- Bioserve Space Technologies, University of Colorado, Boulder, Colorado
| | | | | | - Patricia L. Allen
- Durham VA Medical Center, Research & Development Service, Duke University School of Medicine, Durham, North Carolina
| |
Collapse
|
97
|
Impact of simulated microgravity on the normal developmental time line of an animal-bacteria symbiosis. Sci Rep 2013; 3:1340. [PMID: 23439280 PMCID: PMC3581829 DOI: 10.1038/srep01340] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2012] [Accepted: 02/08/2013] [Indexed: 11/09/2022] Open
Abstract
The microgravity environment during space flight imposes numerous adverse effects on animal and microbial physiology. It is unclear, however, how microgravity impacts those cellular interactions between mutualistic microbes and their hosts. Here, we used the symbiosis between the host squid Euprymna scolopes and its luminescent bacterium Vibrio fischeri as a model system. We examined the impact of simulated microgravity on the timeline of bacteria-induced development in the host light organ, the site of the symbiosis. To simulate the microgravity environment, host squid and symbiosis-competent bacteria were incubated together in high-aspect ratio rotating wall vessel bioreactors and examined throughout the early stages of the bacteria-induced morphogenesis. The host innate immune response was suppressed under simulated microgravity; however, there was an acceleration of bacteria-induced apoptosis and regression in the host tissues. These results suggest that the space flight environment may alter the cellular interactions between animal hosts and their natural healthy microbiome.
Collapse
|
98
|
Schuck EL, Grant M, Derendorf H. Effect of Simulated Microgravity on the Disposition and Tissue Penetration of Ciprofloxacin in Healthy Volunteers. J Clin Pharmacol 2013; 45:822-31. [PMID: 15951472 DOI: 10.1177/0091270005276620] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
This study evaluated the effects of simulated microgravity (smuG) on the pharmacokinetics of ciprofloxacin. Six healthy volunteers participated in a crossover study to compare the pharmacokinetics of ciprofloxacin after a single 250-mg oral dose in normal gravity (1G) and smuG. Plasma and urine samples were collected, and in vivo microdialysis was employed to obtain the free interstitial concentrations in the thigh muscle. Tissue penetration (f) was determined as the ratio of the free tissue area under the concentration versus time curve (AUC(tiss,free))/AUC(plasma,free). Plasma and free interstitial ciprofloxacin concentrations were simultaneously fit to a 1-compartment body model after correction for protein binding and tissue penetration. Total and free plasma concentrations were very similar in smuG and 1G. Tissue penetration in smuG (f =0.61 +/- 0.36) was slightly lower than in 1G (f =0.92 +/- 0.63); however, the difference was not significant. The authors conclude that the disposition of ciprofloxacin was not affected by simulated microgravity.
Collapse
Affiliation(s)
- Edgar L Schuck
- Department of Pharmaceutics, College of Pharmacy, University of Florida, Gainesville, FL 32610, USA
| | | | | |
Collapse
|
99
|
Arunasri K, Adil M, Venu Charan K, Suvro C, Himabindu Reddy S, Shivaji S. Effect of simulated microgravity on E. coli K12 MG1655 growth and gene expression. PLoS One 2013; 8:e57860. [PMID: 23472115 PMCID: PMC3589462 DOI: 10.1371/journal.pone.0057860] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2012] [Accepted: 01/26/2013] [Indexed: 12/23/2022] Open
Abstract
This study demonstrates the effects of simulated microgravity on E. coli K 12 MG1655 grown on LB medium supplemented with glycerol. Global gene expression analysis indicated that the expressions of hundred genes were significantly altered in simulated microgravity conditions compared to that of normal gravity conditions. Under these conditions genes coding for adaptation to stress are up regulated (sufE and ssrA) and simultaneously genes coding for membrane transporters (ompC, exbB, actP, mgtA, cysW and nikB) and carbohydrate catabolic processes (ldcC, ptsA, rhaD and rhaS) are down regulated. The enhanced growth in simulated gravity conditions may be because of the adequate supply of energy/reducing equivalents and up regulation of genes involved in DNA replication (srmB) and repression of the genes encoding for nucleoside metabolism (dfp, pyrD and spoT). In addition, E. coli cultured in LB medium supplemented with glycerol (so as to protect the cells from freezing temperatures) do not exhibit multiple stress responses that are normally observed when cells are exposed to microgravity in LB medium without glycerol.
Collapse
Affiliation(s)
| | - Mohammed Adil
- Centre for Cellular and Molecular Biology, Hyderabad, India
| | | | | | | | | |
Collapse
|
100
|
Özçivici E. Effects of spaceflight on cells of bone marrow origin. Turk J Haematol 2013; 30:1-7. [PMID: 24385745 PMCID: PMC3781669 DOI: 10.4274/tjh.2012.0127] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2012] [Accepted: 11/27/2012] [Indexed: 12/23/2022] Open
Abstract
UNLABELLED Once only a subject for science fiction novels, plans for establishing habitation on space stations, the Moon, and distant planets now appear among the short-term goals of space agencies. This article reviews studies that present biomedical issues that appear to challenge humankind for long-term spaceflights. With particularly focus on cells of bone marrow origin, studies involving changes in bone, immune, and red blood cell populations and their functions due to extended weightlessness were reviewed. Furthermore, effects of mechanical disuse on primitive stem cells that reside in the bone marrow were also included in this review. Novel biomedical solutions using space biotechnology will be required in order to achieve the goal of space exploration without compromising the functions of bone marrow, as spaceflight appears to disrupt homeostasis for all given cell types. CONFLICT OF INTEREST None declared.
Collapse
Affiliation(s)
- Engin Özçivici
- İzmir Institute of Technology, Department of Mechanical Engineering, İzmir, Turkey
| |
Collapse
|