51
|
Spontaneous transposition of IS1096 or ISMsm3 leads to glycopeptidolipid overproduction and affects surface properties in Mycobacterium smegmatis. Tuberculosis (Edinb) 2008; 88:390-8. [PMID: 18439873 DOI: 10.1016/j.tube.2008.02.005] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2007] [Revised: 01/18/2008] [Accepted: 02/16/2008] [Indexed: 11/20/2022]
Abstract
Natural modification of the colony appearance is a phenomenon that has not been fully understood in mycobacteria. Here, we show that Mycobacterium smegmatis ATCC607 displays a low-frequency spontaneous morphological variation that correlates with the acquisition of a panel of new phenotypes, such as aggregation, biofilm formation and sliding motility. These variants produce larger amounts of glycopeptidolipid (GPL), a cell-surface component, than did the wild-type strain. This conversion results from the transposition of two types of insertion sequences, IS1096 and ISMsm3, into two loci. One locus is the promoter region of the mps operon, the GPL biosynthesis gene cluster, leading to the overexpression of these genes. The other locus is the lsr2 gene, which encodes a small basic histone-like protein that likely plays a regulatory role at the mps promoter and also controls pigment production. This study demonstrates that insertion sequence mobility play a crucial role in the acquisition of new phenotypes.
Collapse
|
52
|
Stinear TP, Seemann T, Harrison PF, Jenkin GA, Davies JK, Johnson PDR, Abdellah Z, Arrowsmith C, Chillingworth T, Churcher C, Clarke K, Cronin A, Davis P, Goodhead I, Holroyd N, Jagels K, Lord A, Moule S, Mungall K, Norbertczak H, Quail MA, Rabbinowitsch E, Walker D, White B, Whitehead S, Small PLC, Brosch R, Ramakrishnan L, Fischbach MA, Parkhill J, Cole ST. Insights from the complete genome sequence of Mycobacterium marinum on the evolution of Mycobacterium tuberculosis. Genome Res 2008; 18:729-41. [PMID: 18403782 PMCID: PMC2336800 DOI: 10.1101/gr.075069.107] [Citation(s) in RCA: 410] [Impact Index Per Article: 24.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Mycobacterium marinum, a ubiquitous pathogen of fish and amphibia, is a near relative of Mycobacterium tuberculosis, the etiologic agent of tuberculosis in humans. The genome of the M strain of M. marinum comprises a 6,636,827-bp circular chromosome with 5424 CDS, 10 prophages, and a 23-kb mercury-resistance plasmid. Prominent features are the very large number of genes (57) encoding polyketide synthases (PKSs) and nonribosomal peptide synthases (NRPSs) and the most extensive repertoire yet reported of the mycobacteria-restricted PE and PPE proteins, and related-ESX secretion systems. Some of the NRPS genes comprise a novel family and seem to have been acquired horizontally. M. marinum is used widely as a model organism to study M. tuberculosis pathogenesis, and genome comparisons confirmed the close genetic relationship between these two species, as they share 3000 orthologs with an average amino acid identity of 85%. Comparisons with the more distantly related Mycobacterium avium subspecies paratuberculosis and Mycobacterium smegmatis reveal how an ancestral generalist mycobacterium evolved into M. tuberculosis and M. marinum. M. tuberculosis has undergone genome downsizing and extensive lateral gene transfer to become a specialized pathogen of humans and other primates without retaining an environmental niche. M. marinum has maintained a large genome so as to retain the capacity for environmental survival while becoming a broad host range pathogen that produces disease strikingly similar to M. tuberculosis. The work described herein provides a foundation for using M. marinum to better understand the determinants of pathogenesis of tuberculosis.
Collapse
Affiliation(s)
- Timothy P Stinear
- Department of Microbiology, Monash University, Clayton 3800, Australia.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
53
|
Appelmelk BJ, den Dunnen J, Driessen NN, Ummels R, Pak M, Nigou J, Larrouy-Maumus G, Gurcha SS, Movahedzadeh F, Geurtsen J, Brown EJ, Eysink Smeets MM, Besra GS, Willemsen PTJ, Lowary TL, van Kooyk Y, Maaskant JJ, Stoker NG, van der Ley P, Puzo G, Vandenbroucke-Grauls CMJE, Wieland CW, van der Poll T, Geijtenbeek TBH, van der Sar AM, Bitter W. The mannose cap of mycobacterial lipoarabinomannan does not dominate the Mycobacterium-host interaction. Cell Microbiol 2008; 10:930-44. [PMID: 18070119 DOI: 10.1111/j.1462-5822.2007.01097.x] [Citation(s) in RCA: 105] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Pathogenic mycobacteria have the ability to persist in phagocytic cells and to suppress the immune system. The glycolipid lipoarabinomannan (LAM), in particular its mannose cap, has been shown to inhibit phagolysosome fusion and to induce immunosuppressive IL-10 production via interaction with the mannose receptor or DC-SIGN. Hence, the current paradigm is that the mannose cap of LAM is a crucial factor in mycobacterial virulence. However, the above studies were performed with purified LAM, never with live bacteria. Here we evaluate the biological properties of capless mutants of Mycobacterium marinum and M. bovis BCG, made by inactivating homologues of Rv1635c. We show that its gene product is an undecaprenyl phosphomannose-dependent mannosyltransferase. Compared with parent strain, capless M. marinum induced slightly less uptake by and slightly more phagolysosome fusion in infected macrophages but this did not lead to decreased survival of the bacteria in vitro, nor in vivo in zebra fish. Loss of caps in M. bovis BCG resulted in a sometimes decreased binding to human dendritic cells or DC-SIGN-transfected Raji cells, but no differences in IL-10 induction were observed. In mice, capless M. bovis BCG did not survive less well in lung, spleen or liver and induced a similar cytokine profile. Our data contradict the current paradigm and demonstrate that mannose-capped LAM does not dominate the Mycobacterium-host interaction.
Collapse
Affiliation(s)
- B J Appelmelk
- Department of Medical Microbiology and Infection Control, VU University Medical Center, 1081 BT Amsterdam, The Netherlands.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
54
|
Tobin DM, Ramakrishnan L. Comparative pathogenesis of Mycobacterium marinum and Mycobacterium tuberculosis. Cell Microbiol 2008; 10:1027-39. [PMID: 18298637 DOI: 10.1111/j.1462-5822.2008.01133.x] [Citation(s) in RCA: 239] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A thorough understanding of Mycobacterium tuberculosis pathogenesis in humans has been elusive in part because of imperfect surrogate laboratory hosts, each with its own idiosyncrasies. Mycobacterium marinum is the closest genetic relative of the M. tuberculosis complex and is a natural pathogen of ectotherms. In this review, we present evidence that the similar genetic programmes of M. marinum and M. tuberculosis and the corresponding host immune responses reveal a conserved skeleton of Mycobacterium host-pathogen interactions. While both species have made niche-specific refinements, an essential framework has persisted. We highlight genetic comparisons of the two organisms and studies of M. marinum in the developing zebrafish. By pairing M. marinum with the simplified immune system of zebrafish embryos, many of the defining mechanisms of mycobacterial pathogenesis can be distilled and investigated in a tractable host/pathogen pair.
Collapse
Affiliation(s)
- David M Tobin
- Department of Microbiology, University of Washington, Seattle, WA, USA.
| | | |
Collapse
|
55
|
Hagedorn M, Soldati T. Flotillin and RacH modulate the intracellular immunity of Dictyostelium to Mycobacterium marinum infection. Cell Microbiol 2007; 9:2716-33. [PMID: 17587329 DOI: 10.1111/j.1462-5822.2007.00993.x] [Citation(s) in RCA: 96] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Mycobacterium marinum, a close relative of Mycobacterium tuberculosis, provides a useful model to study the pathogenesis of tuberculosis in genetically tractable model organisms. Using the amoeba Dictyostelium discoideum as a host, we show that expression of the M. marinum protein MAG24-1 is crucial to interfere with phagosome maturation. We find that two host proteins - the flotillin homologue vacuolin and p80, a predicted copper transporter - accumulate at the vacuole during pathogen replication until it finally ruptures and the bacteria are released into the host cytosol. Flotillin-1 accumulation at the replication niche and its rupture were also observed in human peripheral blood monocytes. By infecting various Dictyostelium mutants, we show that the absence of one of the two Dictyostelium vacuolin isoforms renders the host more immune to M. marinum. Conversely, the absence of the small GTPase RacH renders the host more susceptible to M. marinum proliferation but inhibits its cell-to-cell spreading.
Collapse
Affiliation(s)
- Monica Hagedorn
- Départment de Biochimie, Faculté des Sciences, Université de Genève, Sciences II, 30 quai Ernest Ansermet, CH-1211-Genève-4, Switzerland
| | | |
Collapse
|
56
|
Xu J, Laine O, Masciocchi M, Manoranjan J, Smith J, Du SJ, Edwards N, Zhu X, Fenselau C, Gao LY. A unique Mycobacterium ESX-1 protein co-secretes with CFP-10/ESAT-6 and is necessary for inhibiting phagosome maturation. Mol Microbiol 2007; 66:787-800. [PMID: 17908204 DOI: 10.1111/j.1365-2958.2007.05959.x] [Citation(s) in RCA: 94] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The ESX-1 secretion system plays a critical role in the virulence of Mycobacterium tuberculosis and M. marinum. To date, three proteins are known to be secreted by ESX-1 and necessary for virulence, two of which are CFP-10 and ESAT-6. The ESX-1 secretion and the virulence mechanisms are not well understood. In this study, we have examined the M. marinum secretomes and identified four proteins specific to ESX-1. Two of those are CFP-10 and ESAT-6, and the other two are novel: MM1553 (homologous to Rv3483c) and Mh3881c (homologous to Rv3881c). We have shown that Mh3881c, CFP-10 and ESAT-6 are co-dependent for secretion. Mh3881c is being cleaved at close to the C-terminus during secretion, and the C-terminal portion is critical to the co-dependent secretion, the ESAT-6 cellular levels, and interaction with ESAT-6. The co-dependent secretion is required for M. marinum intracellular growth in macrophages, where the Mh3881c C-terminal portion plays a critical role. The role of the co-dependent secretion in intracellular growth correlates with its role in inhibiting phagosome maturation. Both the secretion and the virulence defects of the Mh3881c mutant are complemented by Mh3881c or its M. tuberculosis homologue Rv3881c, suggesting that in M. tuberculosis, Rv3881c has similar functions.
Collapse
Affiliation(s)
- Junjie Xu
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD 20742, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
57
|
McLaughlin B, Chon JS, MacGurn JA, Carlsson F, Cheng TL, Cox JS, Brown EJ. A mycobacterium ESX-1-secreted virulence factor with unique requirements for export. PLoS Pathog 2007; 3:e105. [PMID: 17676952 PMCID: PMC1937011 DOI: 10.1371/journal.ppat.0030105] [Citation(s) in RCA: 156] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2007] [Accepted: 06/11/2007] [Indexed: 11/30/2022] Open
Abstract
Specialized secretion systems of pathogenic bacteria commonly transport multiple effectors that act in concert to control and exploit the host cell as a replication-permissive niche. Both the Mycobacterium marinum and the Mycobacterium tuberculosis genomes contain an extended region of difference 1 (extRD1) locus that encodes one such pathway, the early secretory antigenic target 6 (ESAT-6) system 1 (ESX-1) secretion apparatus. ESX-1 is required for virulence and for secretion of the proteins ESAT-6, culture filtrate protein 10 (CFP-10), and EspA. Here, we show that both Rv3881c and its M. marinum homolog, Mh3881c, are secreted proteins, and disruption of RD1 in either organism blocks secretion. We have renamed the Rv3881c/Mh3881c gene espB for ESX-1 substrate protein B. Secretion of M. marinum EspB (EspBM) requires both the Mh3879c and Mh3871 genes within RD1, while CFP-10 secretion is not affected by disruption of Mh3879c. In contrast, disruption of Mh3866 or Mh3867 within the extRD1 locus prevents CFP-10 secretion without effect on EspBM. Mutants that fail to secrete only EspBM or only CFP-10 are less attenuated in macrophages than mutants failing to secrete both substrates. EspBM physically interacts with Mh3879c; the M. tuberculosis homolog, EspBT, physically interacts with Rv3879c; and mutants of EspBM that fail to bind Mh3879c fail to be secreted. We also found interaction between Rv3879c and Rv3871, a component of the ESX-1 machine, suggesting a mechanism for the secretion of EspB. The results establish EspB as a substrate of ESX-1 that is required for virulence and growth in macrophages and suggests that the contribution of ESX-1 to virulence may arise from the secretion of multiple independent substrates. A major mechanism used by pathogenic bacteria for disabling host defenses is secretion of virulence proteins. These effectors are often transported by specialized secretion machines. One such pathway, present in Mycobacterium and other Gram-positive genera, is ESX-1 (early secretory antigenic target 6 system 1). Although ESX-1 is required for multiple phenotypes related to the pathogenesis of infection, only three substrates of the secretion machine have been identified to date, and the mechanism by which these substrates are exported is not understood. In our efforts to understand this virulence-related secretion mechanism, we identified a novel substrate and found that its delivery to the ESX-1 machine requires different protein interactions than previously identified substrates. Finally, we present data that the various ESX-1 substrates contribute additively to virulence. These data are incorporated into a model of ESX-1 function.
Collapse
Affiliation(s)
- Bryant McLaughlin
- Program in Microbial Pathogenesis and Host Defense, University of California San Francisco, San Francisco, California, United States of America
| | | | | | | | | | | | | |
Collapse
|
58
|
Petrini B. Mycobacterium marinum: ubiquitous agent of waterborne granulomatous skin infections. Eur J Clin Microbiol Infect Dis 2007; 25:609-13. [PMID: 17047903 DOI: 10.1007/s10096-006-0201-4] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Mycobacterium marinum is a waterborne mycobacterium that commonly infects fish and amphibians worldwide. Infection in humans occurs occasionally, in most cases as a granulomatous infection localized in the skin, typically following minor trauma on the hands. For this reason, infection is especially common among aquarium keepers. Such local infection may-though infrequently-spread to tendon sheaths or joints. Disseminated disease, which is rare, can occur in immunosuppressed patients. In order to obtain a definitive diagnosis, culture and histopathological examination of biopsies from skin or other tissues are recommended. Infections sometimes heal spontaneously, but drug treatment is usually necessary for several months in order to cure the infection. Doxycycline or clarithromycin is used most commonly, although in severe cases, a combination of rifampicin and ethambutol is recommended.
Collapse
Affiliation(s)
- B Petrini
- Department of Clinical Microbiology, Karolinska University Hospital (Solna) and Karolinska Institutet, 17176, Stockholm, Sweden.
| |
Collapse
|
59
|
Robinson N, Wolke M, Ernestus K, Plum G. A mycobacterial gene involved in synthesis of an outer cell envelope lipid is a key factor in prevention of phagosome maturation. Infect Immun 2006; 75:581-91. [PMID: 17088345 PMCID: PMC1828500 DOI: 10.1128/iai.00997-06] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Virulent mycobacteria cause arrest of phagosome maturation as a part of their survival strategy in hosts. This process is mediated through multiple virulence factors, whose molecular nature remains elusive. Using Mycobacterium marinum as a model, we performed a genome-wide screen to identify mutants whose ability to inhibit phagosome maturation was impaired, and we succeeded in isolating a comprehensive set of mutants that were not able to occupy an early endosome-like phagosomal compartment in mammalian macrophages. Categorizing and ordering the multiple mutations according to their gene families demonstrated that the genes modulating the cell envelope are the principal factors in arresting phagosome maturation. In particular, we identified a novel gene, pmiA, which is capable of influencing the constitution of the cell envelope lipids, thereby leading to the phagosome maturation block. The pmiA mutant was not able to resist phagosome maturation and was severely attenuated in mice. Complementing the mutant with the wild-type gene restored the attenuated virulence to wild-type levels in mice.
Collapse
MESH Headings
- Animals
- Bacterial Proteins/genetics
- Bacterial Proteins/physiology
- Chromatography, Thin Layer
- DNA, Bacterial/chemistry
- DNA, Bacterial/genetics
- Disease Models, Animal
- Gene Deletion
- Genes, Bacterial
- Genetic Complementation Test
- Histocytochemistry
- Immunohistochemistry
- Liver/microbiology
- Liver/pathology
- Macrophages/microbiology
- Membrane Lipids/analysis
- Membrane Lipids/isolation & purification
- Mice
- Mice, Inbred C57BL
- Microscopy, Fluorescence
- Molecular Sequence Data
- Mutagenesis, Insertional
- Mycobacterium Infections, Nontuberculous/microbiology
- Mycobacterium marinum/genetics
- Mycobacterium marinum/immunology
- Mycobacterium marinum/pathogenicity
- Phagosomes/chemistry
- Phagosomes/microbiology
- Phagosomes/physiology
- Sequence Analysis, DNA
- Spleen/microbiology
- Spleen/pathology
- Virulence Factors/genetics
- Virulence Factors/physiology
Collapse
Affiliation(s)
- Nirmal Robinson
- Institute for Medical Microbiology, University of Cologne, 50935 Cologne, Germany
| | | | | | | |
Collapse
|
60
|
Gao LY, Pak M, Kish R, Kajihara K, Brown EJ. A mycobacterial operon essential for virulence in vivo and invasion and intracellular persistence in macrophages. Infect Immun 2006; 74:1757-67. [PMID: 16495549 PMCID: PMC1418628 DOI: 10.1128/iai.74.3.1757-1767.2006] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The ability to invade and grow in macrophages is necessary for Mycobacterium tuberculosis to cause disease. We have found a Mycobacterium marinum locus of two genes that is required for both invasion and intracellular survival in macrophages. The genes were designated iipA (mycobacterial invasion and intracellular persistence) and iipB. The iip mutant, which was created by insertion of a kanamycin resistance gene cassette at the 5' region of iipA, was completely avirulent to zebra fish. Expression of the M. tuberculosis orthologue of iipA, Rv1477, fully complemented the iip mutant for infectivity in vivo, as well as for invasion and intracellular persistence in macrophages. In contrast, the iipB orthologue, Rv1478, only partially complemented the iip mutant in vivo and restored invasion but not intracellular growth in macrophages. While IipA and IipB differ at their N termini, they are highly similar throughout their C-terminal NLPC_p60 domains. The p60 domain of Rv1478 is fully functional to replace that of Rv1477, suggesting that the N-terminal sequence of Rv1477 is required for full virulence in vivo and in macrophages. Further mutations demonstrated that both Arg-Gly-Asp (RGD) and Asp-Cys-Ser-Gly (DCSG) sequences in the p60 domain are required for function. The iip mutant exhibited increased susceptibility to antibiotics and lysozyme and failed to fully separate daughter cells in liquid culture, suggesting a role for iip genes in cell wall structure and function. Altogether, these studies demonstrate an essential role for a p60-containing protein, IipA, in the pathogenesis of M. marinum infection.
Collapse
Affiliation(s)
- Lian-Yong Gao
- Program in Microbial Pathogenesis and Host Defense, University of California, San Francisco, 600 16th St., Campus Box 2140, San Francisco, CA 94143-2140, USA
| | | | | | | | | |
Collapse
|
61
|
Pagán-Ramos E, Master SS, Pritchett CL, Reimschuessel R, Trucksis M, Timmins GS, Deretic V. Molecular and physiological effects of mycobacterial oxyR inactivation. J Bacteriol 2006; 188:2674-80. [PMID: 16547055 PMCID: PMC1428386 DOI: 10.1128/jb.188.7.2674-2680.2006] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2005] [Accepted: 01/13/2006] [Indexed: 11/20/2022] Open
Abstract
The majority of slow-growing mycobacteria have a functional oxyR, the central regulator of the bacterial oxidative stress response. In contrast, this gene has been inactivated during the evolution of Mycobacterium tuberculosis. Here we inactivated the oxyR gene in Mycobacterium marinum, an organism used to model M. tuberculosis pathogenesis. Inactivation of oxyR abrogated induction of ahpC, a gene encoding alkylhydroperoxide reductase, normally activated upon peroxide challenge. The absence of oxyR also resulted in increased sensitivity to the front-line antituberculosis drug isoniazid. Inactivation of oxyR in M. marinum did not affect either virulence in a fish infection model or survival in human macrophages. Our findings demonstrate, at the genetic and molecular levels, a direct role for OxyR in ahpC regulation in response to oxidative stress. Our study also indicates that oxyR is not critical for virulence in M. marinum. However, oxyR inactivation confers increased sensitivity to isonicotinic acid hydrazide, suggesting that the natural loss of oxyR in the tubercle bacillus contributes to the unusually high sensitivity of M. tuberculosis to isoniazid.
Collapse
Affiliation(s)
- Eileen Pagán-Ramos
- Department of Microbiology, University of Michigan Medical School, Ann Arbor, Michigan 48105, USA
| | | | | | | | | | | | | |
Collapse
|
62
|
Mehta PK, Pandey AK, Subbian S, El-Etr SH, Cirillo SLG, Samrakandi MM, Cirillo JD. Identification of Mycobacterium marinum macrophage infection mutants. Microb Pathog 2006; 40:139-51. [PMID: 16451826 DOI: 10.1016/j.micpath.2005.12.002] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2005] [Revised: 12/10/2005] [Accepted: 12/12/2005] [Indexed: 11/18/2022]
Abstract
Mycobacterium marinum is an important pathogen of humans, amphibians and fish. Most pathogenic mycobacteria, including M. marinum, infect, survive and replicate primarily intracellularly within macrophages. We constructed a transposon mutant library in M. marinum using Tn5367 delivered by phage transduction in the shuttle phasmid phAE94. We screened 529 clones from the transposon library directly in macrophage infection assays. All clones were screened for their ability to initially infect macrophages as well as survive and replicate intracellularly. We identified 19 mutants that fit within three classes: class I) defective for growth in association with macrophages (42%), class II) defective for macrophage infection (21%) and class III) defective for infection of and growth in association with macrophages (37%). Although 14 of the macrophage infection mutants (Mim) carry insertions in genes that have not been previously identified, five are associated with virulence of mycobacteria in animal models. These observations confirm the utility of mutant screens directly in association with macrophages to identify new virulence determinants in mycobacteria. We complemented four of the Mim mutants with their M. tuberculosis homologue, demonstrating that secondary mutations are not responsible for the observed defect in macrophage infection. The genes we identified provide insight into the molecular mechanisms of macrophage infection by M. marinum.
Collapse
Affiliation(s)
- Parmod K Mehta
- Department of Microbial and Molecular Pathogenesis, Texas A&M University Health Sciences Center, 471 Reynolds Medical Building, College Station, TX 77843, USA
| | | | | | | | | | | | | |
Collapse
|
63
|
Arkhipova IR. Mobile genetic elements and sexual reproduction. Cytogenet Genome Res 2005; 110:372-82. [PMID: 16093689 DOI: 10.1159/000084969] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2003] [Accepted: 01/02/2004] [Indexed: 12/27/2022] Open
Abstract
Transposable elements (TE) are prominent components of most eukaryotic genomes. In addition to their possible participation in the origin of sexual reproduction in eukaryotes, they may be also involved in its maintenance as important contributors to the deleterious mutation load. Comparative analyses of transposon content in the genomes of sexually reproducing and anciently asexual species may help to understand the contribution of different TE classes to the deleterious load. The apparent absence of deleterious retrotransposons from the genomes of ancient asexuals is in agreement with the hypothesis that they may play a special role in the maintenance of sexual reproduction and in early extinction for which most species are destined upon the abandonment of sex.
Collapse
Affiliation(s)
- I R Arkhipova
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA.
| |
Collapse
|
64
|
Stamm LM, Pak MA, Morisaki JH, Snapper SB, Rottner K, Lommel S, Brown EJ. Role of the WASP family proteins for Mycobacterium marinum actin tail formation. Proc Natl Acad Sci U S A 2005; 102:14837-42. [PMID: 16199520 PMCID: PMC1239894 DOI: 10.1073/pnas.0504663102] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Mycobacterium marinum, a natural pathogen of fish and frogs and an occasional pathogen of humans, is capable of inducing actin tail formation within the cytoplasm of macrophages, leading to actin-based motility and intercellular spread. Actin tail formation by M. marinum is markedly reduced in macrophages deficient in the Wiskott-Aldrich syndrome protein (WASP), which still contain the closely related and ubiquitously expressed protein N-WASP (neuronal WASP). In fibroblasts lacking both WASP and N-WASP, M. marinum is incapable of efficient actin polymerization and of intercellular spread. By reconstituting these cells, we find that M. marinum is able to use either WASP or N-WASP to induce actin polymerization. Inhibition or genetic deletion of tyrosine phosphorylation, Nck, WASP-interacting protein, and Cdc42 does not affect M. marinum actin tail formation, excluding the participation of these molecules as upstream activators of N-WASP in the initiation of actin-based motility. In contrast, deletion of the phosphatidylinositol 4,5-bisphosphate-binding basic motif in N-WASP eliminates M. marinum actin tail formation. Together, these data demonstrate that M. marinum subversion of host actin polymerization is most similar to distantly related Gram-negative organisms but that its mechanism for activating WASP family proteins is unique.
Collapse
Affiliation(s)
- Luisa M Stamm
- Program in Microbial Pathogenesis and Host Defense, University of California, San Francisco, CA 94143, USA
| | | | | | | | | | | | | |
Collapse
|
65
|
Gao LY, Manoranjan J. Laboratory maintenance of Mycobacterium marinum. CURRENT PROTOCOLS IN MICROBIOLOGY 2005; Chapter 10:Unit 10B.1. [PMID: 18770549 DOI: 10.1002/9780471729259.mc10b01s00] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
M. marinum naturally infects fish and amphibians and causes diseases in these animals with pathological features similar to the human disease caused by M. tuberculosis. At the genetic and biochemical levels, M. marinum is closely related to M. tuberculosis. Because of these and other properties of M. marinum (such as its fast growth rate and convenient laboratory handing on the benchtop), M. marinum has been increasingly used as a model for studying M. tuberculosis pathogenesis. The protocols in this unit describe the methods for laboratory culturing (in liquid and solid media) and maintenance (subculturing, short- and long-term storage) of M. marinum and the methods for processing M. marinum for infection assays. Important parameters for culturing and maintaining M. marinum and its processing for infection assays are discussed in detail.
Collapse
|
66
|
Pozos TC, Ramakrishnan L, Ramakrishan L. New models for the study of Mycobacterium-host interactions. Curr Opin Immunol 2005; 16:499-505. [PMID: 15245746 DOI: 10.1016/j.coi.2004.05.011] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The outcome of Mycobacterium infection is determined by a series of complex interactions between the bacteria and host immunity. Traditionally, mammalian models and cultured cells have been used to study these interactions. Recently, ameba (Dictyostelium), fruit flies (Drosophila) and zebrafish, amenable to forward genetic screens, have been developed as models for mycobacterial pathogenesis. Infection of these hosts with mycobacteria has allowed the dissection of intracellular trafficking pathways (Dictyostelium) and the roles of phagocytic versus antimicrobial peptide responses (Drosophila). Real-time visualization of the optically transparent zebrafish embryo/larva has elucidated mechanisms by which Mycobacterium-infected leukocytes migrate and subsequently aggregate into granulomas, the hallmark pathological structures of tuberculosis.
Collapse
Affiliation(s)
- Tamara C Pozos
- Department of Microbiology, Box 357242, 1959 Pacific Street, University of Washington Medical School, Seattle, Washington 98195, USA
| | | | | |
Collapse
|
67
|
Stamm LM, Brown EJ. Mycobacterium marinum: the generalization and specialization of a pathogenic mycobacterium. Microbes Infect 2005; 6:1418-28. [PMID: 15596129 DOI: 10.1016/j.micinf.2004.10.003] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Mycobacterium marinum is being used increasingly as a model for understanding pathogenic mycobacteria. However, recently discovered differences between M. marinum and M. tuberculosis suggest that adaptation to specialized niches is reflected in unique strategies of pathogenesis. This review emphasizes the areas in which studying M. marinum has made contributions to the understanding of tuberculosis, as well as the potential for using characteristics unique to M. marinum for understanding general issues of host-pathogen interactions.
Collapse
Affiliation(s)
- Luisa M Stamm
- Program in Host-Pathogen Interactions, 600 16th Street, Genentech Hall N212, University of California, San Francisco, CA 94158, USA
| | | |
Collapse
|
68
|
Gao LY, Guo S, McLaughlin B, Morisaki H, Engel JN, Brown EJ. A mycobacterial virulence gene cluster extending RD1 is required for cytolysis, bacterial spreading and ESAT-6 secretion. Mol Microbiol 2004; 53:1677-93. [PMID: 15341647 DOI: 10.1111/j.1365-2958.2004.04261.x] [Citation(s) in RCA: 308] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Initiation and maintenance of infection by mycobacteria in susceptible hosts are not well understood. A screen of Mycobacterium marinum transposon mutant library led to isolation of eight mutants that failed to cause haemolysis, all of which had transposon insertions in genes homologous to a region between Rv3866 and Rv3881c in Mycobacterium tuberculosis, which encompasses RD1 (Rv3871-Rv3879c), a known virulence gene cluster. The M. marinum mutants showed decreased virulence in vivo and failed to secrete ESAT-6, like M. tuberculosis RD1 mutants. M. marinum mutants in genes homologous to Rv3866-Rv3868 also failed to accumulate intracellular ESAT-6, suggesting a possible role for those genes in synthesis or stability of the protein. These transposon mutants and an ESAT-6/CFP-10 deletion mutant all showed reduced cytolysis and cytotoxicity to macrophages and significantly decreased intracellular growth at late stages of the infection only when the cells were infected at low multiplicity of infection, suggesting a defect in spreading. Direct evidence for cell-to-cell spread by wild-type M. marinum was obtained by microscopic detection in macrophage and epithelial monolayers, but the mutants all were defective in this assay. Expression of M. tuberculosis homologues complemented the corresponding M. marinum mutants, emphasizing the functional similarities between M. tuberculosis and M. marinum genes in this region that we designate extRD1 (extended RD1). We suggest that diminished membranolytic activity and defective spreading is a mechanism for the attenuation of the extRD1 mutants. These results extend recent findings on the genomic boundaries and functions of M. tuberculosis RD1 and establish a molecular cellular basis for the role that extRD1 plays in mycobacterial virulence. Disruption of the M. marinum homologue of Rv3881c, not previously implicated in virulence, led to a much more attenuated phenotype in macrophages and in vivo, suggesting that this gene plays additional roles in M. marinum survival in the host.
Collapse
Affiliation(s)
- Lian-Yong Gao
- Program in Microbial Pathogenesis and Host Defense, University of California, San Francisco, CA 94143, USA
| | | | | | | | | | | |
Collapse
|
69
|
Functional clues for hypothetical proteins based on genomic context analysis in prokaryotes. Nucleic Acids Res 2004; 32:6321-6. [PMID: 15576358 DOI: 10.1093/nar/gkh973] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Three integrated genomic context methods were used to annotate uncharacterized proteins in 102 bacterial genomes. Of 7853 orthologous groups with unknown function containing 45,110 proteins, 1738 groups could be linked to functionally associated partners. In many cases, those partners are uncharacterized themselves (hinting at newly identified modules) or have been described in general terms only. However, we were able to assign pathways, cellular processes or physical complexes for 273 groups (encompassing 3624 previously functionally uncharacterized proteins).
Collapse
|
70
|
Vodovar N, Acosta C, Lemaitre B, Boccard F. Drosophila: a polyvalent model to decipher host-pathogen interactions. Trends Microbiol 2004; 12:235-42. [PMID: 15120143 DOI: 10.1016/j.tim.2004.03.007] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
- Nicolas Vodovar
- Centre de Génétique Moléculaire (CNRS UPR2167), F-91198 Gif sur Yvette, France
| | | | | | | |
Collapse
|
71
|
Decostere A, Hermans K, Haesebrouck F. Piscine mycobacteriosis: a literature review covering the agent and the disease it causes in fish and humans. Vet Microbiol 2004; 99:159-66. [PMID: 15066718 DOI: 10.1016/j.vetmic.2003.07.011] [Citation(s) in RCA: 107] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2003] [Revised: 07/23/2003] [Accepted: 07/23/2003] [Indexed: 10/26/2022]
Abstract
Mycobacterium marinum, M. fortuitum and M. chelonae are the etiological agents of fish mycobacteriosis. Fish mycobacteriosis is a disseminated infection reported in more than 150 fish species and is usually accompanied by emaciation and death over a period of months to years. Granulomas are formed both externally and scattered throughout the internal organs. Treatment is in most cases unsatisfactory and the overall recommendation is to destroy the diseased stock, particularly since these pathogens are capable of affecting man as well as fish. Especially fish handlers and aquarium hobbyists are infected and the disease is mostly confined to the superficial, cooler body tissues, most often the extremities. Dissemination is apparently rare but has been reported.
Collapse
Affiliation(s)
- A Decostere
- Department of Pathology, Bacteriology and Poultry Diseases, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, B-9820 Merelbeke, Belgium.
| | | | | |
Collapse
|
72
|
Cunningham AF, Ashton PR, Spreadbury CL, Lammas DA, Craddock R, Wharton CW, Wheeler PR. Tubercle bacilli generate a novel cell wall-associated pigment after long-term anaerobic culture. FEMS Microbiol Lett 2004. [DOI: 10.1111/j.1574-6968.2004.tb09586.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
73
|
Abstract
Pathogenic mycobacteria, including the causative agents of tuberculosis and leprosy, are responsible for considerable morbidity and mortality worldwide. A hallmark of these pathogens is their tendency to establish chronic infections that produce similar pathologies in a variety of hosts. During infection, mycobacteria reside in macrophages and induce the formation of granulomas, organized immune complexes of differentiated macrophages, lymphocytes, and other cells. This review summarizes our understanding of Mycobacterium-host cell interactions, the bacterial-granuloma interface, and mechanisms of bacterial virulence and persistence. In addition, we highlight current controversies and unanswered questions in these areas.
Collapse
Affiliation(s)
- Christine L Cosma
- Department of Microbiology, University of Washington, Seattle, Washington 98195, USA.
| | | | | |
Collapse
|
74
|
Stamm LM, Morisaki JH, Gao LY, Jeng RL, McDonald KL, Roth R, Takeshita S, Heuser J, Welch MD, Brown EJ. Mycobacterium marinum escapes from phagosomes and is propelled by actin-based motility. ACTA ACUST UNITED AC 2003; 198:1361-8. [PMID: 14597736 PMCID: PMC2194249 DOI: 10.1084/jem.20031072] [Citation(s) in RCA: 209] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Mycobacteria are responsible for a number of human and animal diseases and are classical intracellular pathogens, living inside macrophages rather than as free-living organisms during infection. Numerous intracellular pathogens, including Listeria monocytogenes, Shigella flexneri, and Rickettsia rickettsii, exploit the host cytoskeleton by using actin-based motility for cell to cell spread during infection. Here we show that Mycobacterium marinum, a natural pathogen of fish and frogs and an occasional pathogen of humans, is capable of actively inducing actin polymerization within macrophages. M. marinum that polymerized actin were free in the cytoplasm and propelled by actin-based motility into adjacent cells. Immunofluorescence demonstrated the presence of host cytoskeletal proteins, including the Arp2/3 complex and vasodilator-stimulated phosphoprotein, throughout the actin tails. In contrast, Wiskott-Aldrich syndrome protein localized exclusively at the actin-polymerizing pole of M. marinum. These findings show that M. marinum can escape into the cytoplasm of infected macrophages, where it can recruit host cell cytoskeletal factors to induce actin polymerization leading to direct cell to cell spread.
Collapse
Affiliation(s)
- Luisa M Stamm
- Program in Host-Pathogen Interactions, University of California San Francisco, San Francisco, CA 94158, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
75
|
Gao LY, Laval F, Lawson EH, Groger RK, Woodruff A, Morisaki JH, Cox JS, Daffe M, Brown EJ. Requirement for kasB in Mycobacterium mycolic acid biosynthesis, cell wall impermeability and intracellular survival: implications for therapy. Mol Microbiol 2003; 49:1547-63. [PMID: 12950920 DOI: 10.1046/j.1365-2958.2003.03667.x] [Citation(s) in RCA: 136] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Mycobacterium tuberculosis infects one-third of the world's population and causes two million deaths annually. The unusually low permeability of its cell wall contributes to the ability of M. tuberculosis to grow within host macrophages, a property required for pathogenesis of infection. Mycobacterium marinum is an established model for discovering genes involved in mycobacterial infection. Mycobacterium marinum mutants with transposon insertions in the beta-ketoacyl-acyl carrier protein synthase B gene (kasB) grew poorly in macrophages, although growth in vitro was unaffected. Detailed analyses by thin-layer chromatography, nuclear magnetic resonance (NMR), matrix-assisted laser desorption/ionization time-of-flight mass spectrometry, infrared spectroscopy, and chemical degradations showed that the kasB mutants synthesize mycolic acids that are 2-4 carbons shorter than wild type; the defect was localized to the proximal portion of the meromycolate chain. In addition, these mutants showed a significant (approximately 30%) reduction in the abundance of keto-mycolates, with a slight compensatory increase of both alpha- and methoxy-mycolates. Despite these small changes in mycolate length and composition, the kasB mutants exhibited strikingly altered cell wall permeability, leading to a marked increase in susceptibility to lipophilic antibiotics and the host antimicrobial molecules defensin and lysozyme. The abnormalities of the kasB mutants were fully complemented by expressing M. tuberculosis kasB, but not by the closely related gene kasA. These studies identify kasB as a novel target for therapeutic intervention in mycobacterial diseases.
Collapse
Affiliation(s)
- Lian-Yong Gao
- Program in Host-Pathogen Interactions, UCSF Campus Box 2140, 600 16th St, San Francisco, CA 94143-2140, USA
| | | | | | | | | | | | | | | | | |
Collapse
|