51
|
Muraca F, Alahmari A, Giannone VA, Adumeau L, Yan Y, McCafferty MM, Dawson KA. A Three-Dimensional Cell Culture Platform for Long Time-Scale Observations of Bio-Nano Interactions. ACS NANO 2019; 13:13524-13536. [PMID: 31682422 DOI: 10.1021/acsnano.9b07453] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
We know surprisingly little about the long-term outcomes for nanomaterials interacting with organisms. To date, most of what we know is derived from in vivo studies that limit the range of materials studied and the scope of advanced molecular biology tools applied. Long-term in vitro nanoparticle studies are hampered by a lack of suitable models, as standard cell culture techniques present several drawbacks, while technical limitations render current three-dimensional (3D) cellular spheroid models less suited. Now, by controlling the kinetic processes of cell assembly and division in a non-Newtonian culture medium, we engineer reproducible cell clusters of controlled size and phenotype, leading to a convenient and flexible long-term 3D culture that allows nanoparticle studies over many weeks in an in vitro setting. We present applications of this model for the assessment of intracellular polymeric and silica nanoparticle persistence and found that hydrocarbon-based polymeric nanoparticles undergo no apparent degradation over long time periods with no obvious biological impact, while amorphous silica nanoparticles degrade at different rates over several weeks, depending on their synthesis method.
Collapse
Affiliation(s)
- Francesco Muraca
- Centre for BioNano Interactions , University College Dublin , Belfield, Dublin 4, D04 V1W8 , Ireland
| | - Amirah Alahmari
- Centre for BioNano Interactions , University College Dublin , Belfield, Dublin 4, D04 V1W8 , Ireland
| | - Valeria A Giannone
- Centre for BioNano Interactions , University College Dublin , Belfield, Dublin 4, D04 V1W8 , Ireland
- School of Biomolecular and Biomedical Science , University College Dublin , Belfield, Dublin 4, D04 V1W8 , Ireland
| | - Laurent Adumeau
- Centre for BioNano Interactions , University College Dublin , Belfield, Dublin 4, D04 V1W8 , Ireland
| | - Yan Yan
- Centre for BioNano Interactions , University College Dublin , Belfield, Dublin 4, D04 V1W8 , Ireland
- School of Biomolecular and Biomedical Science , University College Dublin , Belfield, Dublin 4, D04 V1W8 , Ireland
| | - Mura M McCafferty
- Centre for BioNano Interactions , University College Dublin , Belfield, Dublin 4, D04 V1W8 , Ireland
| | - Kenneth A Dawson
- Centre for BioNano Interactions , University College Dublin , Belfield, Dublin 4, D04 V1W8 , Ireland
| |
Collapse
|
52
|
Xenobiotica-metabolizing enzymes in the lung of experimental animals, man and in human lung models. Arch Toxicol 2019; 93:3419-3489. [PMID: 31673725 DOI: 10.1007/s00204-019-02602-7] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Accepted: 10/15/2019] [Indexed: 12/15/2022]
Abstract
The xenobiotic metabolism in the lung, an organ of first entry of xenobiotics into the organism, is crucial for inhaled compounds entering this organ intentionally (e.g. drugs) and unintentionally (e.g. work place and environmental compounds). Additionally, local metabolism by enzymes preferentially or exclusively occurring in the lung is important for favorable or toxic effects of xenobiotics entering the organism also by routes other than by inhalation. The data collected in this review show that generally activities of cytochromes P450 are low in the lung of all investigated species and in vitro models. Other oxidoreductases may turn out to be more important, but are largely not investigated. Phase II enzymes are generally much higher with the exception of UGT glucuronosyltransferases which are generally very low. Insofar as data are available the xenobiotic metabolism in the lung of monkeys comes closed to that in the human lung; however, very few data are available for this comparison. Second best rate the mouse and rat lung, followed by the rabbit. Of the human in vitro model primary cells in culture, such as alveolar macrophages and alveolar type II cells as well as the A549 cell line appear quite acceptable. However, (1) this generalization represents a temporary oversimplification born from the lack of more comparable data; (2) the relative suitability of individual species/models is different for different enzymes; (3) when more data become available, the conclusions derived from these comparisons quite possibly may change.
Collapse
|
53
|
Wallstabe L, Göttlich C, Nelke LC, Kühnemundt J, Schwarz T, Nerreter T, Einsele H, Walles H, Dandekar G, Nietzer SL, Hudecek M. ROR1-CAR T cells are effective against lung and breast cancer in advanced microphysiologic 3D tumor models. JCI Insight 2019; 4:126345. [PMID: 31415244 DOI: 10.1172/jci.insight.126345] [Citation(s) in RCA: 146] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Accepted: 08/08/2019] [Indexed: 02/02/2023] Open
Abstract
Solid tumors impose immunologic and physical barriers to the efficacy of chimeric antigen receptor (CAR) T cell therapy that are not reflected in conventional preclinical testing against singularized tumor cells in 2-dimensional culture. Here, we established microphysiologic three-dimensional (3D) lung and breast cancer models that resemble architectural and phenotypical features of primary tumors and evaluated the antitumor function of receptor tyrosine kinase-like orphan receptor 1-specific (ROR1-specific) CAR T cells. 3D tumors were established from A549 (non-small cell lung cancer) and MDA-MB-231 (triple-negative breast cancer) cell lines on a biological scaffold with intact basement membrane (BM) under static and dynamic culture conditions, which resulted in progressively increasing cell mass and invasive growth phenotype (dynamic > static; MDA-MB-231 > A549). Treatment with ROR1-CAR T cells conferred potent antitumor effects. In dynamic culture, CAR T cells actively entered arterial medium flow and adhered to and infiltrated the tumor mass. ROR1-CAR T cells penetrated deep into tumor tissue and eliminated multiple layers of tumor cells located above and below the BM. The microphysiologic 3D tumor models developed in this study are standardized, scalable test systems that can be used either in conjunction with or in lieu of animal testing to interrogate the antitumor function of CAR T cells and to obtain proof of concept for their safety and efficacy before clinical application.
Collapse
Affiliation(s)
| | - Claudia Göttlich
- Tissue Engineering and Regenerative Medicine, Universitätsklinikum Würzburg, Würzburg, Germany.,Fraunhofer Institute for Silicate Research, Translational Center Regenerative Therapies, Würzburg, Germany
| | - Lena C Nelke
- Tissue Engineering and Regenerative Medicine, Universitätsklinikum Würzburg, Würzburg, Germany
| | - Johanna Kühnemundt
- Tissue Engineering and Regenerative Medicine, Universitätsklinikum Würzburg, Würzburg, Germany
| | - Thomas Schwarz
- Tissue Engineering and Regenerative Medicine, Universitätsklinikum Würzburg, Würzburg, Germany.,Fraunhofer Institute for Silicate Research, Translational Center Regenerative Therapies, Würzburg, Germany
| | | | | | - Heike Walles
- Tissue Engineering and Regenerative Medicine, Universitätsklinikum Würzburg, Würzburg, Germany.,Fraunhofer Institute for Silicate Research, Translational Center Regenerative Therapies, Würzburg, Germany
| | - Gudrun Dandekar
- Tissue Engineering and Regenerative Medicine, Universitätsklinikum Würzburg, Würzburg, Germany.,Fraunhofer Institute for Silicate Research, Translational Center Regenerative Therapies, Würzburg, Germany
| | - Sarah L Nietzer
- Tissue Engineering and Regenerative Medicine, Universitätsklinikum Würzburg, Würzburg, Germany
| | | |
Collapse
|
54
|
Vandeplassche E, Sass A, Lemarcq A, Dandekar AA, Coenye T, Crabbé A. In vitro evolution of Pseudomonas aeruginosa AA2 biofilms in the presence of cystic fibrosis lung microbiome members. Sci Rep 2019; 9:12859. [PMID: 31492943 PMCID: PMC6731285 DOI: 10.1038/s41598-019-49371-y] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Accepted: 08/20/2019] [Indexed: 01/16/2023] Open
Abstract
In cystic fibrosis (CF) airways, the opportunistic pathogen Pseudomonas aeruginosa evolves from an acute to a chronic infection phenotype. Yet, the in vivo factors influencing the evolutionary trajectory of P. aeruginosa are poorly understood. This study aimed at understanding the role of the CF lung microbiome in P. aeruginosa evolution. Therefore, we investigated the in vitro biofilm evolution of an early CF P. aeruginosa isolate, AA2, in the presence or absence of a synthetic CF lung microbiome. Whole genome sequencing of evolved populations revealed mutations in quorum sensing (QS) genes (lasR, pqsR) with and without the microbiome. Phenotypic assays confirmed decreased production of the QS molecule 3-O-C12-homoserine lactone, and QS-regulated virulence factors pyocyanin and protease. Furthermore, a mixture of lasR and lasR pqsR mutants was found, in which double mutants showed less pyocyanin and protease production than lasR mutants. While the microbial community did not influence the production of the tested P. aeruginosa virulence factors, we observed a trend towards more mutations in the transcriptional regulators gntR and mexL when P. aeruginosa was grown alone. P. aeruginosa developed resistance to β-lactam antibiotics during evolution, when grown with and without the microbiome. In conclusion, in an experimental biofilm environment, the early P. aeruginosa CF isolate AA2 evolves towards a CF-like genotype and phenotype, and most studied evolutionary adaptations are not impacted by CF microbiome members.
Collapse
Affiliation(s)
- Eva Vandeplassche
- Laboratory of Pharmaceutical Microbiology, Ghent University, Ghent, Belgium
| | - Andrea Sass
- Laboratory of Pharmaceutical Microbiology, Ghent University, Ghent, Belgium
| | - Astrid Lemarcq
- Laboratory of Pharmaceutical Microbiology, Ghent University, Ghent, Belgium
| | - Ajai A Dandekar
- Department of Medicine/Department of Microbiology, University of Washington, Washington, USA
| | - Tom Coenye
- Laboratory of Pharmaceutical Microbiology, Ghent University, Ghent, Belgium
| | - Aurélie Crabbé
- Laboratory of Pharmaceutical Microbiology, Ghent University, Ghent, Belgium.
| |
Collapse
|
55
|
Costa A, de Souza Carvalho-Wodarz C, Seabra V, Sarmento B, Lehr CM. Triple co-culture of human alveolar epithelium, endothelium and macrophages for studying the interaction of nanocarriers with the air-blood barrier. Acta Biomater 2019; 91:235-247. [PMID: 31004840 DOI: 10.1016/j.actbio.2019.04.037] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Revised: 04/03/2019] [Accepted: 04/12/2019] [Indexed: 12/20/2022]
Abstract
Predictive in vitro models are valuable alternatives to animal experiments for evaluating the transport of molecules and (nano)particles across biological barriers. In this work, an improved triple co-culture of air-blood barrier was set-up, being exclusively constituted by human cell lines that allowed to perform experiments at air-liquid interface. Epithelial NCI-H441 cells and endothelial HPMEC-ST1.6R cells were seeded at the apical and basolateral sides of a Transwell® membrane, respectively. Differentiated THP-1 cells were also added on the top of the epithelial layer to mimetize alveolar macrophages. Translocation and permeability studies were also performed. It was observed that around 14-18% of 50-nm Fluorospheres®, but less than 1% of 1.0 µm-Fluorospheres® could pass through the triple co-culture as well as the epithelial monoculture and bi-cultures, leading to the conclusion that both in vitro models represented a significant biological barrier and could differentiate the translocation of different sized systems. The permeability of isoniazid was similar between the epithelial monoculture and bi-cultures when compared with the triple co-culture. However, when in vitro models were challenged with lipopolysaccharide, the release of interleukin-8 increased in the bi-cultures and triple co-culture, whereas the NCI-H441 monoculture did not show any proinflammatory response. Overall, this new in vitro model is a potential tool to assess the translocation of nanoparticles across the air-blood barrier both in healthy state and proinflammatory state. STATEMENT OF SIGNIFICANCE: The use of in vitro models for drug screening as an alternative to animal experiments is increasing over the last years, in particular, models to assess the permeation through biological membranes. Cell culture models are mainly constituted by one type of cells forming a confluent monolayer, but due to its oversimplicity they are being replaced by three-dimensional (3D) in vitro models, that present a higher complexity and reflect more the in vivo-like conditions. Being the pulmonary route one of the most studied approaches for drug administration, several in vitro models of alveolar epithelium have been used to assess the drug permeability and translocation and toxicity of nanocarriers. Nevertheless, there is still a lack of 3D in vitro models that mimic the morphology and the physiological behavior of the alveolar-capillary membrane. In this study, a 3D in vitro model of the air-blood barrier constituted by three different relevant cell lines was established and morphologically characterized. Different permeability/translocation studies were performed to achieve differences/similarities comparatively to each monoculture (epithelium, endothelium, and macrophages) and bi-cultures (epithelial cells either cultured with endothelial cells or macrophages). The release of pro-inflammatory cytokines (namely interleukin-8) after incubation of lipopolysaccharide, a pro-inflammatory inductor, was also evaluated in this work.
Collapse
|
56
|
Crabbé A, Ostyn L, Staelens S, Rigauts C, Risseeuw M, Dhaenens M, Daled S, Van Acker H, Deforce D, Van Calenbergh S, Coenye T. Host metabolites stimulate the bacterial proton motive force to enhance the activity of aminoglycoside antibiotics. PLoS Pathog 2019; 15:e1007697. [PMID: 31034512 PMCID: PMC6508747 DOI: 10.1371/journal.ppat.1007697] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Revised: 05/09/2019] [Accepted: 03/11/2019] [Indexed: 11/27/2022] Open
Abstract
Antibiotic susceptibility of bacterial pathogens is typically evaluated using in vitro assays that do not consider the complex host microenvironment. This may help explaining a significant discrepancy between antibiotic efficacy in vitro and in vivo, with some antibiotics being effective in vitro but not in vivo or vice versa. Nevertheless, it is well-known that antibiotic susceptibility of bacteria is driven by environmental factors. Lung epithelial cells enhance the activity of aminoglycoside antibiotics against the opportunistic pathogen Pseudomonas aeruginosa, yet the mechanism behind is unknown. The present study addresses this gap and provides mechanistic understanding on how lung epithelial cells stimulate aminoglycoside activity. To investigate the influence of the local host microenvironment on antibiotic activity, an in vivo-like three-dimensional (3-D) lung epithelial cell model was used. We report that conditioned medium of 3-D lung cells, containing secreted but not cellular components, potentiated the bactericidal activity of aminoglycosides against P. aeruginosa, including resistant clinical isolates, and several other pathogens. In contrast, conditioned medium obtained from the same cell type, but grown as conventional (2-D) monolayers did not influence antibiotic efficacy. We found that 3-D lung cells secreted endogenous metabolites (including succinate and glutamate) that enhanced aminoglycoside activity, and provide evidence that bacterial pyruvate metabolism is linked to the observed potentiation of antimicrobial activity. Biochemical and phenotypic assays indicated that 3-D cell conditioned medium stimulated the proton motive force (PMF), resulting in increased bacterial intracellular pH. The latter stimulated antibiotic uptake, as determined using fluorescently labelled tobramycin in combination with flow cytometry analysis. Our findings reveal a cross-talk between host and bacterial metabolic pathways, that influence downstream activity of antibiotics. Understanding the underlying basis of the discrepancy between the activity of antibiotics in vitro and in vivo may lead to improved diagnostic approaches and pave the way towards novel means to stimulate antibiotic activity. There is a poor correlation between the activity of antibiotics in the laboratory and in patients, including in several infectious diseases of the respiratory tract. What may help explaining differences between antibiotic activity in vitro and in vivo is that current antibiotic susceptibility tests do not consider the in vivo lung environment. The lung environment contains many factors that may influence bacterial susceptibility to antibiotics. This includes lung epithelial cells, which have been shown to improve the activity of aminoglycoside antibiotics. Yet, how lung epithelial cells increase aminoglycoside activity is currently unknown. Here, we cultured lung epithelial cells in an in vivo-like model and found that they secrete metabolites that enhance the activity of aminoglycoside antibiotics. We found that host cell secretions increased antibiotic uptake through stimulation of bacterial metabolism, which in turn resulted in enhanced activity. Our findings highlight that cross-talk between host and bacterial metabolisms contributes to the efficacy of antibiotic treatment. Understanding how the host metabolism influences antibiotic activity may open up therapeutic avenues to exploit host metabolism for improving antibiotic activity and help explaining discrepancies between antibiotic efficacy in vitro and in vivo.
Collapse
Affiliation(s)
- Aurélie Crabbé
- Laboratory of Pharmaceutical Microbiology, Ghent University, Ghent, Belgium
- * E-mail:
| | - Lisa Ostyn
- Laboratory of Pharmaceutical Microbiology, Ghent University, Ghent, Belgium
| | - Sorien Staelens
- Laboratory of Pharmaceutical Microbiology, Ghent University, Ghent, Belgium
| | - Charlotte Rigauts
- Laboratory of Pharmaceutical Microbiology, Ghent University, Ghent, Belgium
| | - Martijn Risseeuw
- Laboratory for Medicinal Chemistry, Ghent University, Ghent, Belgium
| | - Maarten Dhaenens
- ProGenTomics, Laboratory of Pharmaceutical Biotechnology, Ghent University, Ghent, Belgium
| | - Simon Daled
- ProGenTomics, Laboratory of Pharmaceutical Biotechnology, Ghent University, Ghent, Belgium
| | - Heleen Van Acker
- Laboratory of Pharmaceutical Microbiology, Ghent University, Ghent, Belgium
| | - Dieter Deforce
- ProGenTomics, Laboratory of Pharmaceutical Biotechnology, Ghent University, Ghent, Belgium
| | | | - Tom Coenye
- Laboratory of Pharmaceutical Microbiology, Ghent University, Ghent, Belgium
| |
Collapse
|
57
|
Grassi L, Batoni G, Ostyn L, Rigole P, Van den Bossche S, Rinaldi AC, Maisetta G, Esin S, Coenye T, Crabbé A. The Antimicrobial Peptide lin-SB056-1 and Its Dendrimeric Derivative Prevent Pseudomonas aeruginosa Biofilm Formation in Physiologically Relevant Models of Chronic Infections. Front Microbiol 2019; 10:198. [PMID: 30800115 PMCID: PMC6376900 DOI: 10.3389/fmicb.2019.00198] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Accepted: 01/24/2019] [Indexed: 12/11/2022] Open
Abstract
Antimicrobial peptides (AMPs) are promising templates for the development of novel antibiofilm drugs. Despite the large number of studies on screening and optimization of AMPs, only a few of these evaluated the antibiofilm activity in physiologically relevant model systems. Potent in vitro activity of AMPs often does not translate into in vivo effectiveness due to the interference of the host microenvironment with peptide stability/availability. Hence, mimicking the complex environment found in biofilm-associated infections is essential to predict the clinical potential of novel AMP-based antimicrobials. In the present study, we examined the antibiofilm activity of the semi-synthetic peptide lin-SB056-1 and its dendrimeric derivative (lin-SB056-1)2-K against Pseudomonas aeruginosa in an in vivo-like three-dimensional (3-D) lung epithelial cell model and an in vitro wound model (consisting of an artificial dermis and blood components at physiological levels). Although moderately active when tested alone, lin-SB056-1 was effective in reducing P. aeruginosa biofilm formation in association with 3-D lung epithelial cells in combination with the chelating agent EDTA. The dimeric derivative (lin-SB056-1)2-K demonstrated an enhanced biofilm-inhibitory activity as compared to both lin-SB056-1 and the lin-SB056-1/EDTA combination, reducing the number of biofilm-associated bacteria up to 3-Log units at concentrations causing less than 20% cell death. Biofilm inhibition by (lin-SB056-1)2-K was reported both for the reference strain PAO1 and cystic fibrosis lung isolates of P. aeruginosa. In addition, using fluorescence microscopy, a significant decrease in biofilm-like structures associated with 3-D cells was observed after peptide exposure. Interestingly, effectiveness of (lin-SB056-1)2-K was also demonstrated in the wound model with a reduction of up to 1-Log unit in biofilm formation by P. aeruginosa PAO1 and wound isolates. Overall, combination treatment and peptide dendrimerization emerged as promising strategies to improve the efficacy of AMPs, especially under challenging host-mimicking conditions. Furthermore, the results of the present study underlined the importance of evaluating the biological properties of novel AMPs in in vivo-like model systems representative of specific infectious sites in order to make a more realistic prediction of their therapeutic success, and avoid the inclusion of unpromising peptides in animal studies and clinical trials.
Collapse
Affiliation(s)
- Lucia Grassi
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Giovanna Batoni
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Lisa Ostyn
- Laboratory of Pharmaceutical Microbiology, Ghent University, Ghent, Belgium
| | - Petra Rigole
- Laboratory of Pharmaceutical Microbiology, Ghent University, Ghent, Belgium
| | | | - Andrea C Rinaldi
- Department of Biomedical Sciences, University of Cagliari, Cagliari, Italy
| | - Giuseppantonio Maisetta
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Semih Esin
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Tom Coenye
- Laboratory of Pharmaceutical Microbiology, Ghent University, Ghent, Belgium
| | - Aurélie Crabbé
- Laboratory of Pharmaceutical Microbiology, Ghent University, Ghent, Belgium
| |
Collapse
|
58
|
Castellani S, Di Gioia S, di Toma L, Conese M. Human Cellular Models for the Investigation of Lung Inflammation and Mucus Production in Cystic Fibrosis. Anal Cell Pathol (Amst) 2018; 2018:3839803. [PMID: 30581723 PMCID: PMC6276497 DOI: 10.1155/2018/3839803] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Revised: 09/04/2018] [Accepted: 09/23/2018] [Indexed: 12/12/2022] Open
Abstract
Chronic inflammation, oxidative stress, mucus plugging, airway remodeling, and respiratory infections are the hallmarks of the cystic fibrosis (CF) lung disease. The airway epithelium is central in the innate immune responses to pathogens colonizing the airways, since it is involved in mucociliary clearance, senses the presence of pathogens, elicits an inflammatory response, orchestrates adaptive immunity, and activates mesenchymal cells. In this review, we focus on cellular models of the human CF airway epithelium that have been used for studying mucus production, inflammatory response, and airway remodeling, with particular reference to two- and three-dimensional cultures that better recapitulate the native airway epithelium. Cocultures of airway epithelial cells, macrophages, dendritic cells, and fibroblasts are instrumental in disease modeling, drug discovery, and identification of novel therapeutic targets. Nevertheless, they have to be implemented in the CF field yet. Finally, novel systems hijacking on tissue engineering, including three-dimensional cocultures, decellularized lungs, microfluidic devices, and lung organoids formed in bioreactors, will lead the generation of relevant human preclinical respiratory models a step forward.
Collapse
Affiliation(s)
- Stefano Castellani
- Laboratory of Regenerative and Experimental Medicine, Department of Medical and Surgical Sciences, University of Foggia, Foggia, Italy
| | - Sante Di Gioia
- Laboratory of Regenerative and Experimental Medicine, Department of Medical and Surgical Sciences, University of Foggia, Foggia, Italy
| | - Lorena di Toma
- Laboratory of Regenerative and Experimental Medicine, Department of Medical and Surgical Sciences, University of Foggia, Foggia, Italy
| | - Massimo Conese
- Laboratory of Regenerative and Experimental Medicine, Department of Medical and Surgical Sciences, University of Foggia, Foggia, Italy
| |
Collapse
|
59
|
Studies on effectiveness of PTT on 3D tumor model under microfluidic conditions using aptamer-modified nanoshells. Biosens Bioelectron 2018; 126:214-221. [PMID: 30423478 DOI: 10.1016/j.bios.2018.10.069] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Revised: 10/19/2018] [Accepted: 10/31/2018] [Indexed: 01/14/2023]
Abstract
Herein, we present the research focused on the synthesis and application of aptamer-modified gold nanoshells for photothermal therapy (PTT). NIR-absorbing hollow gold nanoshells were synthetized and conjugated with anti-MUC1 aptamer (HGNs@anti-MUC1). MUC1 (Mucin 1) is a transmembrane glycoprotein, which is overexpressed in a variety of epithelial cancers (eg. breast, lung, pancreatic). In order to evaluate the efficiency of PTT with HGNs@anti-MUC1 we used 3D cell culture model - multicellular spheroids. The selected cell culture model is considered as the best in vitro model for cancer research (similar morphology, metabolite and oxygen gradients, cellular interactions and cell growth kinetics in the spheroids are similar to the early stage of a nonvascular tumor). We conducted our research on human normal (MRC-5, MCF-10A) and tumor (A549, MCF-7) cell lines using a microfluidic system. Aptamer-modified nanoparticles were accumulated selectively in tumor cells (A549, MCF-7) and this fact contributed to the reduction of tumor spheroids viability and size. It should be underlined, that it is the first example of photothermal therapy carried out in a microsystem on multicellular spheroids.
Collapse
|
60
|
Modeling Host-Pathogen Interactions in the Context of the Microenvironment: Three-Dimensional Cell Culture Comes of Age. Infect Immun 2018; 86:IAI.00282-18. [PMID: 30181350 DOI: 10.1128/iai.00282-18] [Citation(s) in RCA: 104] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Tissues and organs provide the structural and biochemical landscapes upon which microbial pathogens and commensals function to regulate health and disease. While flat two-dimensional (2-D) monolayers composed of a single cell type have provided important insight into understanding host-pathogen interactions and infectious disease mechanisms, these reductionist models lack many essential features present in the native host microenvironment that are known to regulate infection, including three-dimensional (3-D) architecture, multicellular complexity, commensal microbiota, gas exchange and nutrient gradients, and physiologically relevant biomechanical forces (e.g., fluid shear, stretch, compression). A major challenge in tissue engineering for infectious disease research is recreating this dynamic 3-D microenvironment (biological, chemical, and physical/mechanical) to more accurately model the initiation and progression of host-pathogen interactions in the laboratory. Here we review selected 3-D models of human intestinal mucosa, which represent a major portal of entry for infectious pathogens and an important niche for commensal microbiota. We highlight seminal studies that have used these models to interrogate host-pathogen interactions and infectious disease mechanisms, and we present this literature in the appropriate historical context. Models discussed include 3-D organotypic cultures engineered in the rotating wall vessel (RWV) bioreactor, extracellular matrix (ECM)-embedded/organoid models, and organ-on-a-chip (OAC) models. Collectively, these technologies provide a more physiologically relevant and predictive framework for investigating infectious disease mechanisms and antimicrobial therapies at the intersection of the host, microbe, and their local microenvironments.
Collapse
|
61
|
Rodríguez-Sevilla G, Rigauts C, Vandeplassche E, Ostyn L, Mahíllo-Fernández I, Esteban J, Peremarch CPJ, Coenye T, Crabbé A. Influence of three-dimensional lung epithelial cells and interspecies interactions on antibiotic efficacy against Mycobacterium abscessus and Pseudomonas aeruginosa. Pathog Dis 2018; 76:4966983. [PMID: 29648588 DOI: 10.1093/femspd/fty034] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2017] [Accepted: 04/09/2018] [Indexed: 12/26/2022] Open
Abstract
Mycobacterium abscessus lung infection is a major health problem for cystic fibrosis (CF) patients. Understanding the in vivo factors that influence the outcome of therapy may help addressing the poor correlation between in vitro and in vivo antibiotic efficacy. We evaluated the influence of interspecies interactions and lung epithelial cells on antibiotic efficacy. Therefore, single and dual-species biofilms of M. abscessus and a major CF pathogen (Pseudomonas aeruginosa) were cultured on a plastic surface or on in vivo-like three-dimensional (3-D) lung epithelial cells, and the activity of antibiotics (colistin, amikacin, clarithromycin, ceftazidime) in inhibiting biofilm formation was evaluated. Using the most physiologically relevant model (dual-species biofilms on 3-D cells), we observed that treatment with antibiotics during biofilm development inhibited P. aeruginosa but not M. abscessus biofilms, resulting in a competitive advantage for the latter. Clarithromycin efficacy against P. aeruginosa was inhibited by 3-D lung cells. In addition, biofilm induction of M. abscessus was observed by certain antibiotics on plastic but not on 3-D cells. Pseudomonas aeruginosa influenced the efficacy of certain antibiotics against M. abscessus, but not vice versa. In conclusion, these results suggest a role of host cells and interspecies interactions in bacterial responses to antimicrobials.
Collapse
Affiliation(s)
| | - Charlotte Rigauts
- Laboratory of Pharmaceutical Microbiology, Ghent University, B-9000 Ghent, Belgium
| | - Eva Vandeplassche
- Laboratory of Pharmaceutical Microbiology, Ghent University, B-9000 Ghent, Belgium
| | - Lisa Ostyn
- Laboratory of Pharmaceutical Microbiology, Ghent University, B-9000 Ghent, Belgium
| | | | - Jaime Esteban
- Department of Clinical Microbiology, IIS- Fundación Jiménez Díaz, UAM, Madrid, 28040 Madrid, Spain
| | | | - Tom Coenye
- Laboratory of Pharmaceutical Microbiology, Ghent University, B-9000 Ghent, Belgium
| | - Aurélie Crabbé
- Laboratory of Pharmaceutical Microbiology, Ghent University, B-9000 Ghent, Belgium
| |
Collapse
|
62
|
Poon JCH, Liao Z, Suzuki T, Carleton MM, Soleas JP, Aitchison JS, Karoubi G, McGuigan AP, Waddell TK. Design of biomimetic substrates for long-term maintenance of alveolar epithelial cells. Biomater Sci 2018; 6:292-303. [PMID: 29327014 DOI: 10.1039/c7bm00647k] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
There is a need to establish in vitro lung alveolar epithelial culture models to better understand the fundamental biological mechanisms that drive lung diseases. While primary alveolar epithelial cells (AEC) are a useful option to study mature lung biology, they have limited utility in vitro. Cells that survive demonstrate limited proliferative capacity and loss of phenotype over the first 3-5 days in traditional culture conditions. To address this limitation, we generated a novel physiologically relevant cell culture system for enhanced viability and maintenance of phenotype. Here we describe a method utilizing e-beam lithography, reactive ion etching, and replica molding to generate poly-dimethylsiloxane (PDMS) substrates containing hemispherical cavities that mimic the architecture and size of mouse and human alveoli. Primary AECs grown on these cavity-containing substrates form a monolayer that conforms to the substrate enabling precise control over cell sheet architecture. AECs grown in cavity culture conditions remain viable and maintain their phenotype over one week. Specifically, cells grown on substrates consisting of 50 μm diameter cavities remained 96 ± 4% viable and maintained expression of surfactant protein C (SPC), a marker of type 2 AEC over 7 days. While this report focuses on primary lung alveolar epithelial cells, our culture platform is potentially relevant and useful for growing primary cells from other tissues with similar cavity-like architecture and could be further adapted to other biomimetic shapes or contours.
Collapse
Affiliation(s)
- James C H Poon
- Institute of Biomaterials & Biomedical Engineering, University of Toronto, 200 College St., Toronto, ON M5S 3E5, Canada.
| | | | | | | | | | | | | | | | | |
Collapse
|
63
|
Bhowmick R, Derakhshan T, Liang Y, Ritchey J, Liu L, Gappa-Fahlenkamp H. A Three-Dimensional Human Tissue-Engineered Lung Model to Study Influenza A Infection. Tissue Eng Part A 2018; 24:1468-1480. [PMID: 29732955 DOI: 10.1089/ten.tea.2017.0449] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Influenza A virus (IAV) claims ∼250,000-500,000 lives annually worldwide. Currently, there are a few in vitro models available to study IAV immunopathology. Monolayer cultures of cell lines and primary lung cells (two-dimensional [2D] cell culture) is the most commonly used tool, however, this system does not have the in vivo-like structure of the lung and immune responses to IAV as it lacks the three-dimensional (3D) tissue structure. To recapitulate the lung physiology in vitro, a system that contains multiple cell types within a 3D environment that allows cell movement and interaction would provide a critical tool. In this study, as a first step in designing a 3D-Human Tissue-Engineered Lung Model (3D-HTLM), we describe the 3D culture of primary human small airway epithelial cells (HSAEpCs) and determined the immunophenotype of this system in response to IAV infections. We constructed a 3D chitosan-collagen scaffold and cultured HSAEpCs on these scaffolds at air-liquid interface (ALI). These 3D cultures were compared with 2D-cultured HSAEpCs for viability, morphology, marker protein expression, and cell differentiation. Results showed that the 3D-cultured HSAEpCs at ALI yielded maximum viable cells and morphologically resembled the in vivo lower airway epithelium. There were also significant increases in aquaporin-5 and cytokeratin-14 expression for HSAEpCs cultured in 3D compared to 2D. The 3D culture system was used to study the infection of HSAEpCs with two major IAV strains, H1N1 and H3N2. The HSAEpCs showed distinct changes in marker protein expression, both at mRNA and protein levels, and the release of proinflammatory cytokines. This study is the first step in the development of the 3D-HTLM, which will have wide applicability in studying pulmonary pathophysiology and therapeutics development.
Collapse
Affiliation(s)
- Rudra Bhowmick
- 1 School of Chemical Engineering, Oklahoma State University , Stillwater, Oklahoma
| | - Tahereh Derakhshan
- 1 School of Chemical Engineering, Oklahoma State University , Stillwater, Oklahoma
| | - Yurong Liang
- 2 Department of Physiological Sciences, Center for Veterinary Health Sciences, Oklahoma State University , Stillwater, Oklahoma
| | - Jerry Ritchey
- 3 Department of Veterinary Pathobiology, Center for Veterinary Health Sciences, Oklahoma State University , Stillwater, Oklahoma
| | - Lin Liu
- 2 Department of Physiological Sciences, Center for Veterinary Health Sciences, Oklahoma State University , Stillwater, Oklahoma
| | | |
Collapse
|
64
|
Svensson M, Chen P. Human Organotypic Respiratory Models. Curr Top Microbiol Immunol 2018:29-54. [PMID: 29808337 DOI: 10.1007/82_2018_91] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
Biomedical research aiming to understand the molecular basis of human lung tissue development, homeostasis and disease, or to develop new therapies for human respiratory diseases, requires models that faithfully recapitulate the human condition. This has stimulated biologists and engineers to develop in vitro organotypic models mimicking human respiratory tissues. In this chapter, we provide examples of different types of model systems ranging from simple unicellular cultures to more complex multicellular systems. The models contain, in varying degree, cell types present in real tissue in combination with different extracellular matrix components that can critically affect cell phenotype and function. We also describe how organotypic respiratory models can be combined with human innate immune cells, to better recapitulate tissue inflammation, a key component in, for example, infectious diseases. These models have the potential to provide new insights into lung physiology, tissue infection and inflammation, disease mechanisms, as well as provide a platform for identification of novel targets and screening of candidate drugs in human lung disorders.
Collapse
Affiliation(s)
- Mattias Svensson
- F59, Department of Medicine, Center for Infectious Medicine, Karolinska Institutet, Karolinska University Hospital, Huddinge, 141 86, Stockholm, Sweden.
| | - Puran Chen
- F59, Department of Medicine, Center for Infectious Medicine, Karolinska Institutet, Karolinska University Hospital, Huddinge, 141 86, Stockholm, Sweden
| |
Collapse
|
65
|
Beitelshees M, Hill A, Rostami P, Jones CH, Pfeifer BA. A Transition to Targeted or ‘Smart’ Vaccines: How Understanding Commensal Colonization Can Lead to Selective Vaccination. Pharmaceut Med 2018. [DOI: 10.1007/s40290-018-0225-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
66
|
Ohneck EJ, Arivett BA, Fiester SE, Wood CR, Metz ML, Simeone GM, Actis LA. Mucin acts as a nutrient source and a signal for the differential expression of genes coding for cellular processes and virulence factors in Acinetobacter baumannii. PLoS One 2018; 13:e0190599. [PMID: 29309434 PMCID: PMC5757984 DOI: 10.1371/journal.pone.0190599] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Accepted: 12/18/2017] [Indexed: 12/27/2022] Open
Abstract
The capacity of Acinetobacter baumannii to persist and cause infections depends on its interaction with abiotic and biotic surfaces, including those found on medical devices and host mucosal surfaces. However, the extracellular stimuli affecting these interactions are poorly understood. Based on our previous observations, we hypothesized that mucin, a glycoprotein secreted by lung epithelial cells, particularly during respiratory infections, significantly alters A. baumannii's physiology and its interaction with the surrounding environment. Biofilm, virulence and growth assays showed that mucin enhances the interaction of A. baumannii ATCC 19606T with abiotic and biotic surfaces and its cytolytic activity against epithelial cells while serving as a nutrient source. The global effect of mucin on the physiology and virulence of this pathogen is supported by RNA-Seq data showing that its presence in a low nutrient medium results in the differential transcription of 427 predicted protein-coding genes. The reduced expression of ion acquisition genes and the increased transcription of genes coding for energy production together with the detection of mucin degradation indicate that this host glycoprotein is a nutrient source. The increased expression of genes coding for adherence and biofilm biogenesis on abiotic and biotic surfaces, the degradation of phenylacetic acid and the production of an active type VI secretion system further supports the role mucin plays in virulence. Taken together, our observations indicate that A. baumannii recognizes mucin as an environmental signal, which triggers a response cascade that allows this pathogen to acquire critical nutrients and promotes host-pathogen interactions that play a role in the pathogenesis of bacterial infections.
Collapse
Affiliation(s)
- Emily J. Ohneck
- Department of Microbiology, Miami University, Oxford, OH, United States of America
| | - Brock A. Arivett
- Department of Microbiology, Miami University, Oxford, OH, United States of America
| | - Steven E. Fiester
- Department of Microbiology, Miami University, Oxford, OH, United States of America
| | - Cecily R. Wood
- Department of Microbiology, Miami University, Oxford, OH, United States of America
| | - Maeva L. Metz
- Department of Microbiology, Miami University, Oxford, OH, United States of America
| | - Gabriella M. Simeone
- Department of Microbiology, Miami University, Oxford, OH, United States of America
| | - Luis A. Actis
- Department of Microbiology, Miami University, Oxford, OH, United States of America
| |
Collapse
|
67
|
Mazzocchi A, Soker S, Skardal A. Biofabrication Technologies for Developing In Vitro Tumor Models. CANCER DRUG DISCOVERY AND DEVELOPMENT 2018. [DOI: 10.1007/978-3-319-60511-1_4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
68
|
Yamanishi C, Jen K, Takayama S. Techniques to Produce and Culture Lung Tumor Organoids. CANCER DRUG DISCOVERY AND DEVELOPMENT 2018. [DOI: 10.1007/978-3-319-60511-1_1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
69
|
Chandorkar P, Posch W, Zaderer V, Blatzer M, Steger M, Ammann CG, Binder U, Hermann M, Hörtnagl P, Lass-Flörl C, Wilflingseder D. Fast-track development of an in vitro 3D lung/immune cell model to study Aspergillus infections. Sci Rep 2017; 7:11644. [PMID: 28912507 PMCID: PMC5599647 DOI: 10.1038/s41598-017-11271-4] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Accepted: 08/22/2017] [Indexed: 12/14/2022] Open
Abstract
To study interactions of airborne pathogens, e.g. Aspergillus (A.) fumigatus with upper and lower respiratory tract epithelial and immune cells, we set up a perfused 3D human bronchial and small airway epithelial cell system. Culturing of normal human bronchial or small airway epithelial (NHBE, SAE) cells under air liquid interphase (ALI) and perfusion resulted in a significantly accelerated development of the lung epithelia associated with higher ciliogenesis, cilia movement, mucus-production and improved barrier function compared to growth under static conditions. Following the accelerated differentiation under perfusion, epithelial cells were transferred into static conditions and antigen-presenting cells (APCs) added to study their functionality upon infection with A. fumigatus. Fungi were efficiently sensed by apically applied macrophages or basolaterally adhered dendritic cells (DCs), as illustrated by phagocytosis, maturation and migration characteristics. We illustrate here that perfusion greatly improves differentiation of primary epithelial cells in vitro, which enables fast-track addition of primary immune cells and significant shortening of experimental procedures. Additionally, co-cultured primary DCs and macrophages were fully functional and fulfilled their tasks of sensing and sampling fungal pathogens present at the apical surface of epithelial cells, thereby promoting novel possibilities to study airborne infections under conditions mimicking the in vivo situation.
Collapse
Affiliation(s)
- P Chandorkar
- Division of Hygiene and Medical Microbiology, Medical University of Innsbruck, Innsbruck, Austria
| | - W Posch
- Division of Hygiene and Medical Microbiology, Medical University of Innsbruck, Innsbruck, Austria
| | - V Zaderer
- Division of Hygiene and Medical Microbiology, Medical University of Innsbruck, Innsbruck, Austria
| | - M Blatzer
- Division of Hygiene and Medical Microbiology, Medical University of Innsbruck, Innsbruck, Austria
| | - M Steger
- Division of Hygiene and Medical Microbiology, Medical University of Innsbruck, Innsbruck, Austria
| | - C G Ammann
- Experimental Orthopedics, Medical University of Innsbruck, Innsbruck, Austria
| | - U Binder
- Division of Hygiene and Medical Microbiology, Medical University of Innsbruck, Innsbruck, Austria
| | - M Hermann
- Department of Anesthesiology and Critical Care Medicine, Medical University Innsbruck, Innsbruck, Austria
| | - P Hörtnagl
- Central Institute for Blood Transfusion & Immunological Department, Medical University of Innsbruck, Innsbruck, Austria
| | - C Lass-Flörl
- Division of Hygiene and Medical Microbiology, Medical University of Innsbruck, Innsbruck, Austria
| | - D Wilflingseder
- Division of Hygiene and Medical Microbiology, Medical University of Innsbruck, Innsbruck, Austria.
| |
Collapse
|
70
|
Zuchowska A, Jastrzebska E, Chudy M, Dybko A, Brzozka Z. 3D lung spheroid cultures for evaluation of photodynamic therapy (PDT) procedures in microfluidic Lab-on-a-Chip system. Anal Chim Acta 2017; 990:110-120. [PMID: 29029734 DOI: 10.1016/j.aca.2017.07.009] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Revised: 06/28/2017] [Accepted: 07/06/2017] [Indexed: 01/09/2023]
Abstract
The purpose of this paper is to present a fully integrated microchip for the evaluation of PDT procedures efficiency on 3D lung spheroid cultures. Human lung carcinoma A549 and non-malignant MRC-5 spheroids were utilized as culture models. Spheroid viability was evaluated 24 h after PDT treatment, in which 5-aminolevulinic acid (ALA) had been used as a precursor of a photosensitizer (protoporphyrin IX - PpIX). Moreover, spheroid viability over a long-term (10-day) culture was also examined. We showed that the proposed PDT treatment was toxic only for cancer spheroids. This could be because of a much-favoured enzymatic conversion of ALA to PpIX in cancer as opposed normal cells. Moreover, we showed that to obtain high effectiveness of ALA-PDT on lung cancer spheroids additional time of spheroid after light exposure was required. It was found that PDT had been effective 5 days after PDT treatment with 3 mM ALA. To the best of our knowledge this has been the first presentation of such research performed on a 3D lung spheroids culture in a microfluidic system.
Collapse
Affiliation(s)
- Agnieszka Zuchowska
- Department of Microbioanalytics, Institute of Biotechnology, Warsaw University of Technology, Poland
| | - Elzbieta Jastrzebska
- Department of Microbioanalytics, Institute of Biotechnology, Warsaw University of Technology, Poland.
| | - Michal Chudy
- Department of Microbioanalytics, Institute of Biotechnology, Warsaw University of Technology, Poland
| | - Artur Dybko
- Department of Microbioanalytics, Institute of Biotechnology, Warsaw University of Technology, Poland
| | - Zbigniew Brzozka
- Department of Microbioanalytics, Institute of Biotechnology, Warsaw University of Technology, Poland
| |
Collapse
|
71
|
Kedaria D, Vasita R. Bi-functional oxidized dextran–based hydrogel inducing microtumors: An in vitro three-dimensional lung tumor model for drug toxicity assays. J Tissue Eng 2017; 8:2041731417718391. [PMID: 35003617 PMCID: PMC8738854 DOI: 10.1177/2041731417718391] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Accepted: 06/09/2017] [Indexed: 11/15/2022] Open
Abstract
Cancer is a serious death causing disease having 8.2 million deaths in 2012. In
the last decade, only about 10% of chemotherapeutic compounds showed
productivity in drug screening. Two-dimensional culture assays are the most
common in vitro drug screening models, which do not precisely model the in vivo
condition for reliable preclinical drug screening. Three-dimensional
scaffold–based cell cultures perhaps mimic tumor microenvironment and
recapitulate physiologically more relevant tumor. This study was carried out to
develop bi-functional oxidized dextran–based cell instructive hydrogel that
provides three-dimensional environment to cancer cells for inducing microtumor.
Oxidized dextran was blended with thiolated chitosan to fabricate an in situ
self-gelable hydrogel (modified dextran–chitosan) in a one-step process. The
hydrogels characterization revealed cross-linked network structure with highly
porous structure and water absorption. The modified dextran–chitosan hydrogel
showed reduced hydrophobicity and has reduced protein absorption, which resulted
in changing the A549 cell adhesiveness, and encouraged them to form microtumor.
The cells were proliferated in clusters having spherical morphology with
randomly oriented stress fiber and large nucleus. Further microtumors were
studied for hypoxia where reactive oxygen species generation demonstrated
15-fold increase as compared to monolayer culture. Drug-sensitivity results
showed that microtumors generated on modified dextran–chitosan hydrogel showed
resistance to doxorubicin with having 33%–58% increased growth than
two-dimensional monolayer model at concentrations of 25–100 µM. In summary, the
modified dextran–chitosan scaffold can provide surface chemistry that induces
three-dimensional microtumors with physiologically relevant properties to in
vivo tumor including growth, morphology, extracellular matrix production,
hypoxic phenotype, and drug response. This model can be potentially utilized for
drug toxicity studies and cancer disease modeling to understand tumor phenotype
and progression.
Collapse
Affiliation(s)
- Dhaval Kedaria
- School of Life Sciences, Central University of Gujarat, Gandhinagar, India
| | - Rajesh Vasita
- School of Life Sciences, Central University of Gujarat, Gandhinagar, India
| |
Collapse
|
72
|
Devarasetty M, Wang E, Soker S, Skardal A. Mesenchymal stem cells support growth and organization of host-liver colorectal-tumor organoids and possibly resistance to chemotherapy. Biofabrication 2017; 9:021002. [PMID: 28589925 DOI: 10.1088/1758-5090/aa7484] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Despite having yielded extensive breakthroughs in cancer research, traditional 2D cell cultures have limitations in studying cancer progression and metastasis and screening therapeutic candidates. 3D systems can allow cells to grow, migrate, and interact with each other and the surrounding matrix, resulting in more realistic constructs. Furthermore, interactions between host tissue and developing tumors influence the susceptibility of tumors to drug treatments. Host-liver colorectal-tumor spheroids composed of primary human hepatocytes, mesenchymal stem cells (MSC) and colon carcinoma HCT116 cells were created in simulated microgravity rotating wall vessel (RWV) bioreactors. The cells were seeded on hyaluronic acid-based microcarriers, loaded with liver-specific growth factors and ECM components. Only in the presence of MSC, large tumor foci rapidly formed inside the spheroids and increased in size steadily over time, while not greatly impacting albumin secretion from hepatocytes. The presence of MSC appeared to drive self-organization and formation of a stroma-like tissue surrounding the tumor foci and hepatocytes. Exposure to a commonly used chemotherapeutic 5-FU showed a dose-dependent cytotoxicity. However, if tumor organoids were allowed to mature in the RWV, they were less sensitive to the drug treatment. These data demonstrate the potential utility of liver tumor organoids for cancer progression and drug response modeling.
Collapse
Affiliation(s)
- Mahesh Devarasetty
- Wake Forest Institute for Regenerative Medicine, Winston-Salem, NC, United States of America. Virginia Tech-Wake Forest University School of Biomedical Engineering and Sciences, Winston-Salem, NC, United States of America
| | | | | | | |
Collapse
|
73
|
Crabbé A, Liu Y, Matthijs N, Rigole P, De La Fuente-Nùñez C, Davis R, Ledesma MA, Sarker S, Van Houdt R, Hancock REW, Coenye T, Nickerson CA. Antimicrobial efficacy against Pseudomonas aeruginosa biofilm formation in a three-dimensional lung epithelial model and the influence of fetal bovine serum. Sci Rep 2017; 7:43321. [PMID: 28256611 PMCID: PMC5335707 DOI: 10.1038/srep43321] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Accepted: 01/25/2017] [Indexed: 12/14/2022] Open
Abstract
In vitro models that mimic in vivo host-pathogen interactions are needed to evaluate candidate drugs that inhibit bacterial virulence traits. We established a new approach to study Pseudomonas aeruginosa biofilm susceptibility on biotic surfaces, using a three-dimensional (3-D) lung epithelial cell model. P. aeruginosa formed antibiotic resistant biofilms on 3-D cells without affecting cell viability. The biofilm-inhibitory activity of antibiotics and/or the anti-biofilm peptide DJK-5 were evaluated on 3-D cells compared to a plastic surface, in medium with and without fetal bovine serum (FBS). In both media, aminoglycosides were more efficacious in the 3-D cell model. In serum-free medium, most antibiotics (except polymyxins) showed enhanced efficacy when 3-D cells were present. In medium with FBS, colistin was less efficacious in the 3-D cell model. DJK-5 exerted potent inhibition of P. aeruginosa association with both substrates, only in serum-free medium. DJK-5 showed stronger inhibitory activity against P. aeruginosa associated with plastic compared to 3-D cells. The combined addition of tobramycin and DJK-5 exhibited more potent ability to inhibit P. aeruginosa association with both substrates. In conclusion, lung epithelial cells influence the efficacy of most antimicrobials against P. aeruginosa biofilm formation, which in turn depends on the presence or absence of FBS.
Collapse
Affiliation(s)
- Aurélie Crabbé
- Laboratory of Pharmaceutical Microbiology (LPM), Ghent University, Ghent, Belgium.,The Biodesign Institute, Center for Infectious Diseases and Vaccinology, Arizona State University, Tempe, Arizona, United States of America
| | - Yulong Liu
- The Biodesign Institute, Center for Infectious Diseases and Vaccinology, Arizona State University, Tempe, Arizona, United States of America
| | - Nele Matthijs
- Laboratory of Pharmaceutical Microbiology (LPM), Ghent University, Ghent, Belgium
| | - Petra Rigole
- Laboratory of Pharmaceutical Microbiology (LPM), Ghent University, Ghent, Belgium
| | - César De La Fuente-Nùñez
- University of British Columbia, Centre for Microbial Diseases and Immunity Research, Vancouver, British Columbia, Canada
| | - Richard Davis
- The Biodesign Institute, Center for Infectious Diseases and Vaccinology, Arizona State University, Tempe, Arizona, United States of America
| | - Maria A Ledesma
- The Biodesign Institute, Center for Infectious Diseases and Vaccinology, Arizona State University, Tempe, Arizona, United States of America
| | - Shameema Sarker
- The Biodesign Institute, Center for Infectious Diseases and Vaccinology, Arizona State University, Tempe, Arizona, United States of America
| | - Rob Van Houdt
- Unit of Microbiology, Belgian Nuclear Research Centre (SCK·CEN), Mol, Belgium
| | - Robert E W Hancock
- University of British Columbia, Centre for Microbial Diseases and Immunity Research, Vancouver, British Columbia, Canada
| | - Tom Coenye
- Laboratory of Pharmaceutical Microbiology (LPM), Ghent University, Ghent, Belgium
| | - Cheryl A Nickerson
- The Biodesign Institute, Center for Infectious Diseases and Vaccinology, Arizona State University, Tempe, Arizona, United States of America.,School of Life Sciences, Arizona State University, Tempe, Arizona 85287, United States of America
| |
Collapse
|
74
|
Adnan M, Khan S, Al-Shammari E, Patel M, Saeed M, Hadi S. In pursuit of cancer metastasis therapy by bacteria and its biofilms: History or future. Med Hypotheses 2017; 100:78-81. [DOI: 10.1016/j.mehy.2017.01.018] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Accepted: 01/26/2017] [Indexed: 02/01/2023]
|
75
|
Evaluation of combination therapy for Burkholderia cenocepacia lung infection in different in vitro and in vivo models. PLoS One 2017; 12:e0172723. [PMID: 28248999 PMCID: PMC5332113 DOI: 10.1371/journal.pone.0172723] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Accepted: 02/08/2017] [Indexed: 02/06/2023] Open
Abstract
Burkholderia cenocepacia is an opportunistic pathogen responsible for life-threatening infections in cystic fibrosis patients. B. cenocepacia is extremely resistant towards antibiotics and therapy is complicated by its ability to form biofilms. We investigated the efficacy of an alternative antimicrobial strategy for B. cenocepacia lung infections using in vitro and in vivo models. A screening of the NIH Clinical Collection 1&2 was performed against B. cenocepacia biofilms formed in 96-well microtiter plates in the presence of tobramycin to identify repurposing candidates with potentiator activity. The efficacy of selected hits was evaluated in a three-dimensional (3D) organotypic human lung epithelial cell culture model. The in vivo effect was evaluated in the invertebrate Galleria mellonella and in a murine B. cenocepacia lung infection model. The screening resulted in 60 hits that potentiated the activity of tobramycin against B. cenocepacia biofilms, including four imidazoles of which econazole and miconazole were selected for further investigation. However, a potentiator effect was not observed in the 3D organotypic human lung epithelial cell culture model. Combination treatment was also not able to increase survival of infected G. mellonella. Also in mice, there was no added value for the combination treatment. Although potentiators of tobramycin with activity against biofilms of B. cenocepacia were identified in a repurposing screen, the in vitro activity could not be confirmed nor in a more sophisticated in vitro model, neither in vivo. This stresses the importance of validating hits resulting from in vitro studies in physiologically relevant model systems.
Collapse
|
76
|
He J, Chen W, Deng S, Xie L, Feng J, Geng J, Jiang D, Dai H, Wang C. Modeling alveolar injury using microfluidic co-cultures for monitoring bleomycin-induced epithelial/fibroblastic cross-talk disorder. RSC Adv 2017. [DOI: 10.1039/c7ra06752f] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Epithelial/fibroblastic cross-talk is consider to lead to pulmonary fibrosis, but its pathogenesis remains unclear because no appropriate models allow to visualize the complex disease processes at the human lung epithelial–interstitial interface.
Collapse
Affiliation(s)
- Jiarui He
- Beijing Key Laboratory of Respiratory and Pulmonary Circulation Disorders
- Beijing Chao-Yang Hospital-Beijing Institute of Respiratory Medicine
- Capital Medical University
- Beijing
- P. R. China
| | - Weixing Chen
- Medical Systems Biology Research Center
- School of Medicine
- Tsinghua University
- Beijing
- P. R. China
| | - Shijie Deng
- State Key Laboratory of Precision Measurement Technology and Instruments
- Tsinghua University
- Beijing
- P. R. China
| | - Lan Xie
- Medical Systems Biology Research Center
- School of Medicine
- Tsinghua University
- Beijing
- P. R. China
| | - Juan Feng
- Medical Systems Biology Research Center
- School of Medicine
- Tsinghua University
- Beijing
- P. R. China
| | - Jing Geng
- Department of Pulmonary and Critical Care Medicine
- Center for Respiratory Diseases
- China-Japan Friendship Hospital
- National Clinical Research Center for Respiratory Diseases
- Beijing
| | - Dingyuan Jiang
- Department of Pulmonary and Critical Care Medicine
- Center for Respiratory Diseases
- China-Japan Friendship Hospital
- National Clinical Research Center for Respiratory Diseases
- Beijing
| | - Huaping Dai
- Department of Pulmonary and Critical Care Medicine
- Center for Respiratory Diseases
- China-Japan Friendship Hospital
- National Clinical Research Center for Respiratory Diseases
- Beijing
| | - Chen Wang
- Beijing Key Laboratory of Respiratory and Pulmonary Circulation Disorders
- Beijing Chao-Yang Hospital-Beijing Institute of Respiratory Medicine
- Capital Medical University
- Beijing
- P. R. China
| |
Collapse
|
77
|
Flood P, Alvarez L, Reynaud EG. Free-floating epithelial micro-tissue arrays: a low cost and versatile technique. Biofabrication 2016; 8:045006. [DOI: 10.1088/1758-5090/8/4/045006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
78
|
Higginson EE, Galen JE, Levine MM, Tennant SM. Microgravity as a biological tool to examine host-pathogen interactions and to guide development of therapeutics and preventatives that target pathogenic bacteria. Pathog Dis 2016; 74:ftw095. [PMID: 27630185 DOI: 10.1093/femspd/ftw095] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/31/2016] [Indexed: 12/16/2022] Open
Abstract
Space exploration programs have long been interested in the effects of spaceflight on biology. This research is important not only in its relevance to future deep space exploration, but also because it has allowed investigators to ask questions about how gravity impacts cell behavior here on Earth. In the 1980s, scientists designed and built the first rotating wall vessel, capable of mimicking the low shear environment found in space. This vessel has since been used to investigate growth of both microorganisms and human tissue cells in low shear modeled microgravity conditions. Bacterial behavior has been shown to be altered both in space and under simulated microgravity conditions. In some cases, bacteria appear attenuated, whereas in others virulence is enhanced. This has consequences not only for manned spaceflight, but poses larger questions about the ability of bacteria to sense the world around them. By using the microgravity environment as a tool, we can exploit this phenomenon in the search for new therapeutics and preventatives against pathogenic bacteria for use both in space and on Earth.
Collapse
Affiliation(s)
- Ellen E Higginson
- Center for Vaccine Development and Institute for Global Health, University of Maryland School of Medicine, Baltimore, MD 21201, USA Department of Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - James E Galen
- Center for Vaccine Development and Institute for Global Health, University of Maryland School of Medicine, Baltimore, MD 21201, USA Department of Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Myron M Levine
- Center for Vaccine Development and Institute for Global Health, University of Maryland School of Medicine, Baltimore, MD 21201, USA Department of Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, USA Department of Pediatrics, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Sharon M Tennant
- Center for Vaccine Development and Institute for Global Health, University of Maryland School of Medicine, Baltimore, MD 21201, USA Department of Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| |
Collapse
|
79
|
Papazian D, Würtzen PA, Hansen SWK. Polarized Airway Epithelial Models for Immunological Co-Culture Studies. Int Arch Allergy Immunol 2016; 170:1-21. [PMID: 27240620 DOI: 10.1159/000445833] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Epithelial cells line all cavities and surfaces throughout the body and play a substantial role in maintaining tissue homeostasis. Asthma and other atopic diseases are increasing worldwide and allergic disorders are hypothesized to be a consequence of a combination of dysregulation of the epithelial response towards environmental antigens and genetic susceptibility, resulting in inflammation and T cell-derived immune responses. In vivo animal models have long been used to study immune homeostasis of the airways but are limited by species restriction and lack of exposure to a natural environment of both potential allergens and microflora. Limitations of these models prompt a need to develop new human cell-based in vitro models. A variety of co-culture systems for modelling the respiratory epithelium exist and are available to the scientific community. The models have become increasingly sophisticated and specific care needs to be taken with regard to cell types, culture medium and culture models, depending on the aim of the study. Although great strides have been made, there is still a need for further optimization, and optimally also for standardization, in order for in vitro co-culture models to become powerful tools in the discovery of key molecules dictating immunity and/or tolerance, and for understanding the complex interplay that takes place between mucosa, airway epithelium and resident or infiltrating immune cells. This review focuses on current knowledge and the advantages and limitations of the different cell types and culture methods used in co-culture models of the human airways.
Collapse
Affiliation(s)
- Dick Papazian
- Department of Cancer and Inflammation Research, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | | | | |
Collapse
|
80
|
Expert consensus on an in vitro approach to assess pulmonary fibrogenic potential of aerosolized nanomaterials. Arch Toxicol 2016; 90:1769-83. [PMID: 27121469 PMCID: PMC4894935 DOI: 10.1007/s00204-016-1717-8] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Accepted: 04/18/2016] [Indexed: 12/11/2022]
Abstract
The increasing use of multi-walled carbon nanotubes (MWCNTs) in consumer products and their potential to induce adverse lung effects following inhalation has lead to much interest in better understanding the hazard associated with these nanomaterials (NMs). While the current regulatory requirement for substances of concern, such as MWCNTs, in many jurisdictions is a 90-day rodent inhalation test, the monetary, ethical, and scientific concerns associated with this test led an international expert group to convene in Washington, DC, USA, to discuss alternative approaches to evaluate the inhalation toxicity of MWCNTs. Pulmonary fibrosis was identified as a key adverse outcome linked to MWCNT exposure, and recommendations were made on the design of an in vitro assay that is predictive of the fibrotic potential of MWCNTs. While fibrosis takes weeks or months to develop in vivo, an in vitro test system may more rapidly predict fibrogenic potential by monitoring pro-fibrotic mediators (e.g., cytokines and growth factors). Therefore, the workshop discussions focused on the necessary specifications related to the development and evaluation of such an in vitro system. Recommendations were made for designing a system using lung-relevant cells co-cultured at the air–liquid interface to assess the pro-fibrogenic potential of aerosolized MWCNTs, while considering human-relevant dosimetry and NM life cycle transformations. The workshop discussions provided the fundamental design components of an air–liquid interface in vitro test system that will be subsequently expanded to the development of an alternative testing strategy to predict pulmonary toxicity and to generate data that will enable effective risk assessment of NMs.
Collapse
|
81
|
Bhowmick R, Gappa-Fahlenkamp H. Cells and Culture Systems Used to Model the Small Airway Epithelium. Lung 2016; 194:419-28. [PMID: 27071933 DOI: 10.1007/s00408-016-9875-2] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Accepted: 04/01/2016] [Indexed: 01/28/2023]
Abstract
The pulmonary epithelium is divided into upper, lower, and alveolar (or small) airway epithelia and acts as the mechanical and immunological barrier between the external environment and the underlying submucosa. Of these, the small airway epithelium is the principal area of gas exchange and has high immunological activity, making it a major area of cell biology, immunology, and pharmaceutical research. As animal models do not faithfully represent the human pulmonary system and ex vivo human lung samples have reliability and availability issues, cell lines, and primary cells are widely used as small airway epithelial models. In vitro, these cells are mostly cultured as monolayers (2-dimensional cultures), either media submerged or at air-liquid interface. However, these 2-dimensional cultures lack a three dimension-a scaffolding extracellular matrix, which establishes the intercellular network in the in vivo airway epithelium. Therefore, 3-dimensional cell culture is currently a major area of development, where cells are cultured in a matrix or are cultured in a manner that they develop ECM-like scaffolds between them, thus mimicking the in vivo phenotype more faithfully. This review focuses on the commonly used small airway epithelial cells, their 2-dimensional and 3-dimensional culture techniques, and their comparative phenotype when cultured under these systems.
Collapse
Affiliation(s)
- Rudra Bhowmick
- Department of Chemical Engineering, Oklahoma State University, 420 Engineering North, Stillwater, OK, 74078, USA
| | - Heather Gappa-Fahlenkamp
- Department of Chemical Engineering, Oklahoma State University, 420 Engineering North, Stillwater, OK, 74078, USA.
| |
Collapse
|
82
|
A 3-D cell culture system to study epithelia functions using microcarriers. Cytotechnology 2016; 68:1813-25. [PMID: 26847791 DOI: 10.1007/s10616-015-9935-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2014] [Accepted: 11/28/2015] [Indexed: 01/05/2023] Open
Abstract
In vitro cell culture models used to study epithelia and epithelial diseases would benefit from the recognition that organs and tissues function in a three-dimensional (3D) environment. This context is necessary for the development of cultures that more realistically resemble in vivo tissues/organs. Our aim was to establish and characterize biologically meaningful 3D models of epithelium. We engineered 3D epithelia cultures using a kidney epithelia cell line (MDCK) and spherical polymer scaffolds. These kidney epithelia were characterized by live microscopy, immunohistochemistry and transmission electron microscopy. Strikingly, the epithelial cells displayed increased physiological relevance; they were extensively polarized and developed a more differentiated phenotype. Using such a growth system allows for direct transmission and fluorescence imaging with few restrictions using wide-field, confocal and Light Sheet Fluorescence Microscopy. We also assessed the wider relevance of this 3D culturing technique with several epithelial cell lines. Finally, we established that these 3D micro-tissues can be used for infection as well as biochemical assays and to study important cellular processes such as epithelial mesenchymal transmission. This new biomimetic model could provide a broadly applicable 3D culture system to study epithelia and epithelia related disorders.
Collapse
|
83
|
Infection models of human norovirus: challenges and recent progress. Arch Virol 2016; 161:779-88. [PMID: 26780772 DOI: 10.1007/s00705-016-2748-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Accepted: 12/30/2015] [Indexed: 10/22/2022]
Abstract
Human norovirus (hNoV) infections cause acute gastroenteritis, accounting for millions of disease cases and more than 200,000 deaths annually. However, the lack of in vitro infection models and robust small-animal models has posed barriers to the development of virus-specific therapies and preventive vaccines. Promising recent progress in the development of a norovirus infection model is reviewed in this article, as well as attempts and efforts made since the discovery of hNoV more than 40 years ago. Because suitable experimental animal models for human norovirus are lacking, attractive alternatives are also discussed.
Collapse
|
84
|
Abstract
This report aims to facilitate the implementation of the Three Rs (replacement, reduction, and refinement) in the use of animal models or procedures involving sepsis and septic shock, an area where there is the potential of high levels of suffering for animals. The emphasis is on refinement because this has the greatest potential for immediate implementation. Specific welfare issues are identified and discussed, and practical measures are proposed to reduce animal use and suffering as well as reducing experimental variability and increasing translatability. The report is based on discussions and submissions from a nonregulatory expert working group consisting of veterinarians, animal technologists, and scientists with expert knowledge relevant to the field.
Collapse
|
85
|
Wang DD, Liu W, Chang JJ, Cheng X, Zhang XZ, Xu H, Feng D, Yu LJ, Wang XL. Bioengineering three-dimensional culture model of human lung cancer cells: an improved tool for screening EGFR targeted inhibitors. RSC Adv 2016. [DOI: 10.1039/c6ra00229c] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Bioengineering a three-dimensional culture model of human lung cancer cells for screening EGFR targeted inhibitors.
Collapse
Affiliation(s)
- Dan-Dan Wang
- Dalian Institute of Chemical Physics
- Chinese Academy of Sciences
- Dalian 116023
- China
| | - Wei Liu
- College of Basic Medical Science
- Dalian Medical University
- Dalian 116044
- China
| | - Jing-Jie Chang
- College of Basic Medical Science
- Dalian Medical University
- Dalian 116044
- China
| | - Xu Cheng
- College of Basic Medical Science
- Dalian Medical University
- Dalian 116044
- China
| | - Xiu-Zhen Zhang
- College of Basic Medical Science
- Dalian Medical University
- Dalian 116044
- China
| | - Hong Xu
- College of Basic Medical Science
- Dalian Medical University
- Dalian 116044
- China
| | - Di Feng
- College of Basic Medical Science
- Dalian Medical University
- Dalian 116044
- China
| | - Li-Jun Yu
- College of Basic Medical Science
- Dalian Medical University
- Dalian 116044
- China
| | - Xiu-Li Wang
- College of Basic Medical Science
- Dalian Medical University
- Dalian 116044
- China
| |
Collapse
|
86
|
A Three-Dimensional Cell Culture Model To Study Enterovirus Infection of Polarized Intestinal Epithelial Cells. mSphere 2015; 1:mSphere00030-15. [PMID: 27303677 PMCID: PMC4863623 DOI: 10.1128/msphere.00030-15] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Accepted: 10/26/2015] [Indexed: 11/20/2022] Open
Abstract
Despite serving as the primary entry portal for coxsackievirus B (CVB), little is known about CVB infection of the intestinal epithelium, owing at least in part to the lack of suitable in vivo models and the inability of cultured cells to recapitulate the complexity and structure associated with the gastrointestinal (GI) tract. Here, we report on the development of a three-dimensional (3-D) organotypic cell culture model of Caco-2 cells to model CVB infection of the gastrointestinal epithelium. We show that Caco-2 cells grown in 3-D using the rotating wall vessel (RWV) bioreactor recapitulate many of the properties of the intestinal epithelium, including the formation of well-developed tight junctions, apical-basolateral polarity, brush borders, and multicellular complexity. In addition, transcriptome analyses using transcriptome sequencing (RNA-Seq) revealed the induction of a number of genes associated with intestinal epithelial differentiation and/or intestinal processes in vivo when Caco-2 cells were cultured in 3-D. Applying this model to CVB infection, we found that although the levels of intracellular virus production were similar in two-dimensional (2-D) and 3-D Caco-2 cell cultures, the release of infectious CVB was enhanced in 3-D cultures at early stages of infection. Unlike CVB, the replication of poliovirus (PV) was significantly reduced in 3-D Caco-2 cell cultures. Collectively, our studies show that Caco-2 cells grown in 3-D using the RWV bioreactor provide a cell culture model that structurally and transcriptionally represents key aspects of cells in the human GI tract and can thus be used to expand our understanding of enterovirus-host interactions in intestinal epithelial cells. IMPORTANCE Coxsackievirus B (CVB), a member of the enterovirus family of RNA viruses, is associated with meningitis, pericarditis, diabetes, dilated cardiomyopathy, and myocarditis, among other pathologies. CVB is transmitted via the fecal-oral route and encounters the epithelium lining the gastrointestinal tract early in infection. The lack of suitable in vivo and in vitro models to study CVB infection of the gastrointestinal epithelium has limited our understanding of the events that surround infection of these specialized cells. Here, we report on the development of a three-dimensional (3-D) organotypic cell culture model of human intestinal epithelial cells that better models the gastrointestinal epithelium in vivo. By applying this 3-D model, which recapitulates many aspects of the gastrointestinal epithelium in vivo, to the study of CVB infection, our work provides a new cell system to model the mechanisms by which CVB infects the intestinal epithelium, which may have a profound impact on CVB pathogenesis. Podcast: A podcast concerning this article is available.
Collapse
|
87
|
Roberts AE, Kragh KN, Bjarnsholt T, Diggle SP. The Limitations of In Vitro Experimentation in Understanding Biofilms and Chronic Infection. J Mol Biol 2015; 427:3646-61. [DOI: 10.1016/j.jmb.2015.09.002] [Citation(s) in RCA: 129] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Revised: 08/12/2015] [Accepted: 09/01/2015] [Indexed: 11/28/2022]
|
88
|
Athinarayanan J, Periasamy VS, Alhazmi M, Alshatwi AA. Synthesis and biocompatibility assessment of sugarcane bagasse-derived biogenic silica nanoparticles for biomedical applications. J Biomed Mater Res B Appl Biomater 2015; 105:340-349. [DOI: 10.1002/jbm.b.33511] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2015] [Revised: 08/04/2015] [Accepted: 08/14/2015] [Indexed: 02/06/2023]
Affiliation(s)
- Jegan Athinarayanan
- Nanobiotechnology and Molecular Biology Research Laboratory, Department of Food Science and Nutrition, College of Food Science and Agriculture; King Saud University; Riyadh Saudi Arabia
| | - Vaiyapuri Subbarayan Periasamy
- Nanobiotechnology and Molecular Biology Research Laboratory, Department of Food Science and Nutrition, College of Food Science and Agriculture; King Saud University; Riyadh Saudi Arabia
| | - Mohammad Alhazmi
- Nanobiotechnology and Molecular Biology Research Laboratory, Department of Food Science and Nutrition, College of Food Science and Agriculture; King Saud University; Riyadh Saudi Arabia
| | - Ali A. Alshatwi
- Nanobiotechnology and Molecular Biology Research Laboratory, Department of Food Science and Nutrition, College of Food Science and Agriculture; King Saud University; Riyadh Saudi Arabia
| |
Collapse
|
89
|
Skardal A, Devarasetty M, Soker S, Hall AR. In situ patterned micro 3D liver constructs for parallel toxicology testing in a fluidic device. Biofabrication 2015; 7:031001. [PMID: 26355538 DOI: 10.1088/1758-5090/7/3/031001] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
3D tissue models are increasingly being implemented for drug and toxicology testing. However, the creation of tissue-engineered constructs for this purpose often relies on complex biofabrication techniques that are time consuming, expensive, and difficult to scale up. Here, we describe a strategy for realizing multiple tissue constructs in a parallel microfluidic platform using an approach that is simple and can be easily scaled for high-throughput formats. Liver cells mixed with a UV-crosslinkable hydrogel solution are introduced into parallel channels of a sealed microfluidic device and photopatterned to produce stable tissue constructs in situ. The remaining uncrosslinked material is washed away, leaving the structures in place. By using a hydrogel that specifically mimics the properties of the natural extracellular matrix, we closely emulate native tissue, resulting in constructs that remain stable and functional in the device during a 7-day culture time course under recirculating media flow. As proof of principle for toxicology analysis, we expose the constructs to ethyl alcohol (0-500 mM) and show that the cell viability and the secretion of urea and albumin decrease with increasing alcohol exposure, while markers for cell damage increase.
Collapse
Affiliation(s)
- Aleksander Skardal
- Wake Forest Institute for Regenerative Medicine, Wake Forest Baptist Health, Medical Center Boulevard, Winston-Salem, NC 27157, USA. Virginia Tech-Wake Forest University School of Biomedical Engineering and Sciences, Wake Forest Baptist Health, Medical Center Boulevard, Winston-Salem, NC 27157, USA. Comprehensive Cancer Center, Wake Forest Baptist Health, Medical Center Boulevard, Winston-Salem, NC 27157, USA
| | | | | | | |
Collapse
|
90
|
Sakamoto A, Matsumaru T, Yamamura N, Suzuki S, Uchida Y, Tachikawa M, Terasaki T. Drug Transporter Protein Quantification of Immortalized Human Lung Cell Lines Derived from Tracheobronchial Epithelial Cells (Calu-3 and BEAS2-B), Bronchiolar–Alveolar Cells (NCI-H292 and NCI-H441), and Alveolar Type II-like Cells (A549) by Liquid Chromatography–Tandem Mass Spectrometry. J Pharm Sci 2015; 104:3029-38. [DOI: 10.1002/jps.24381] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2014] [Revised: 01/18/2015] [Accepted: 01/20/2015] [Indexed: 01/08/2023]
|
91
|
Bergmann S, Steinert M. From Single Cells to Engineered and Explanted Tissues: New Perspectives in Bacterial Infection Biology. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2015; 319:1-44. [PMID: 26404465 DOI: 10.1016/bs.ircmb.2015.06.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Cell culture techniques are essential for studying host-pathogen interactions. In addition to the broad range of single cell type-based two-dimensional cell culture models, an enormous amount of coculture systems, combining two or more different cell types, has been developed. These systems enable microscopic visualization and molecular analyses of bacterial adherence and internalization mechanisms and also provide a suitable setup for various biochemical, immunological, and pharmacological applications. The implementation of natural or synthetical scaffolds elevated the model complexity to the level of three-dimensional cell culture. Additionally, several transwell-based cell culture techniques are applied to study bacterial interaction with physiological tissue barriers. For keeping highly differentiated phenotype of eukaryotic cells in ex vivo culture conditions, different kinds of microgravity-simulating rotary-wall vessel systems are employed. Furthermore, the implementation of microfluidic pumps enables constant nutrient and gas exchange during cell cultivation and allows the investigation of long-term infection processes. The highest level of cell culture complexity is reached by engineered and explanted tissues which currently pave the way for a more comprehensive view on microbial pathogenicity mechanisms.
Collapse
Affiliation(s)
- Simone Bergmann
- Institute of Microbiology, Technische Universität Braunschweig, Braunschweig, Lower Saxony, Germany
| | - Michael Steinert
- Institute of Microbiology, Technische Universität Braunschweig, Braunschweig, Lower Saxony, Germany
| |
Collapse
|
92
|
Sangsuwon C, Jiratchariyakul W. Antiproliferative Effect of Lung Cancer Cell Lines and Antioxidant of Macluraxanthone from Garcinia Speciosa Wall. ACTA ACUST UNITED AC 2015. [DOI: 10.1016/j.sbspro.2015.07.089] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
93
|
Benam KH, Dauth S, Hassell B, Herland A, Jain A, Jang KJ, Karalis K, Kim HJ, MacQueen L, Mahmoodian R, Musah S, Torisawa YS, van der Meer AD, Villenave R, Yadid M, Parker KK, Ingber DE. Engineered in vitro disease models. ANNUAL REVIEW OF PATHOLOGY-MECHANISMS OF DISEASE 2015; 10:195-262. [PMID: 25621660 DOI: 10.1146/annurev-pathol-012414-040418] [Citation(s) in RCA: 374] [Impact Index Per Article: 37.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The ultimate goal of most biomedical research is to gain greater insight into mechanisms of human disease or to develop new and improved therapies or diagnostics. Although great advances have been made in terms of developing disease models in animals, such as transgenic mice, many of these models fail to faithfully recapitulate the human condition. In addition, it is difficult to identify critical cellular and molecular contributors to disease or to vary them independently in whole-animal models. This challenge has attracted the interest of engineers, who have begun to collaborate with biologists to leverage recent advances in tissue engineering and microfabrication to develop novel in vitro models of disease. As these models are synthetic systems, specific molecular factors and individual cell types, including parenchymal cells, vascular cells, and immune cells, can be varied independently while simultaneously measuring system-level responses in real time. In this article, we provide some examples of these efforts, including engineered models of diseases of the heart, lung, intestine, liver, kidney, cartilage, skin and vascular, endocrine, musculoskeletal, and nervous systems, as well as models of infectious diseases and cancer. We also describe how engineered in vitro models can be combined with human inducible pluripotent stem cells to enable new insights into a broad variety of disease mechanisms, as well as provide a test bed for screening new therapies.
Collapse
Affiliation(s)
- Kambez H Benam
- Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, Massachusetts 02115;
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
94
|
Lewis KJR, Tibbitt MW, Zhao Y, Branchfield K, Sun X, Balasubramaniam V, Anseth KS. In vitro model alveoli from photodegradable microsphere templates. Biomater Sci 2015; 3:821-32. [PMID: 26221842 PMCID: PMC4871129 DOI: 10.1039/c5bm00034c] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Recreating the 3D cyst-like architecture of the alveolar epithelium in vitro has been challenging to achieve in a controlled fashion with primary lung epithelial cells. Here, we demonstrate model alveoli formed within a tunable synthetic biomaterial platform using photodegradable microspheres as templates to create physiologically relevant, cyst structures. Poly(ethylene glycol) (PEG)-based hydrogels were polymerized in suspension to form microspheres on the order of 120 μm in diameter. The gel chemistry was designed to allow erosion of the microspheres with cytocompatible light doses (≤15 min exposure to 10 mW cm(-2) of 365 nm light) via cleavage of a photolabile nitrobenzyl ether crosslinker. Epithelial cells were incubated with intact microspheres, modified with adhesive peptide sequences to facilitate cellular attachment to and proliferation on the surface. A tumor-derived alveolar epithelial cell line, A549, completely covered the microspheres after only 24 hours, whereas primary mouse alveolar epithelial type II (ATII) cells took ∼3 days. The cell-laden microsphere structures were embedded within a second hydrogel formulation at user defined densities; the microsphere templates were subsequently removed with light to render hollow epithelial cysts that were cultured for an additional 6 days. The resulting primary cysts stained positive for cell-cell junction proteins (β-catenin and ZO-1), indicating the formation of a functional epithelial layer. Typically, primary ATII cells differentiated in culture to the alveolar epithelial type I (ATI) phenotype; however, each cyst contained ∼1-5 cells that stained positive for an ATII marker (surfactant protein C), which is consistent with ATII cell numbers in native mouse alveoli. This biomaterial-templated alveoli culture system should be useful for future experiments to study lung development and disease progression, and is ideally suited for co-culture experiments where pulmonary fibroblasts or endothelial cells could be presented in the hydrogel surrounding the epithelial cysts.
Collapse
Affiliation(s)
- Katherine J R Lewis
- Department of Chemical and Biological Engineering, the BioFrontiers Institute, and the Howard Hughes Medical Institute, University of Colorado at Boulder, 3415 Colorado Ave, 596 UCB, Boulder, CO 80303, USA.
| | | | | | | | | | | | | |
Collapse
|
95
|
Drug-induced cellular death dynamics monitored by a highly sensitive organic electrochemical system. Biosens Bioelectron 2015; 68:791-797. [DOI: 10.1016/j.bios.2015.01.073] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2014] [Revised: 01/22/2015] [Accepted: 01/31/2015] [Indexed: 01/12/2023]
|
96
|
Crabbé A, Liu Y, Sarker SF, Bonenfant NR, Barrila J, Borg ZD, Lee JJ, Weiss DJ, Nickerson CA. Recellularization of decellularized lung scaffolds is enhanced by dynamic suspension culture. PLoS One 2015; 10:e0126846. [PMID: 25962111 PMCID: PMC4427280 DOI: 10.1371/journal.pone.0126846] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2014] [Accepted: 04/08/2015] [Indexed: 12/20/2022] Open
Abstract
Strategies are needed to improve repopulation of decellularized lung scaffolds with stromal and functional epithelial cells. We demonstrate that decellularized mouse lungs recellularized in a dynamic low fluid shear suspension bioreactor, termed the rotating wall vessel (RWV), contained more cells with decreased apoptosis, increased proliferation and enhanced levels of total RNA compared to static recellularization conditions. These results were observed with two relevant mouse cell types: bone marrow-derived mesenchymal stromal (stem) cells (MSCs) and alveolar type II cells (C10). In addition, MSCs cultured in decellularized lungs under static but not bioreactor conditions formed multilayered aggregates. Gene expression and immunohistochemical analyses suggested differentiation of MSCs into collagen I-producing fibroblast-like cells in the bioreactor, indicating enhanced potential for remodeling of the decellularized scaffold matrix. In conclusion, dynamic suspension culture is promising for enhancing repopulation of decellularized lungs, and could contribute to remodeling the extracellular matrix of the scaffolds with subsequent effects on differentiation and functionality of inoculated cells.
Collapse
Affiliation(s)
- Aurélie Crabbé
- The Biodesign Institute, Center for Infectious Diseases and Vaccinology, Arizona State University, Tempe, Arizona, United States of America
| | - Yulong Liu
- The Biodesign Institute, Center for Infectious Diseases and Vaccinology, Arizona State University, Tempe, Arizona, United States of America
| | - Shameema F. Sarker
- The Biodesign Institute, Center for Infectious Diseases and Vaccinology, Arizona State University, Tempe, Arizona, United States of America
| | - Nicholas R. Bonenfant
- Department of Medicine, University of Vermont College of Medicine, Burlington, Vermont, United States of America
| | - Jennifer Barrila
- The Biodesign Institute, Center for Infectious Diseases and Vaccinology, Arizona State University, Tempe, Arizona, United States of America
| | - Zachary D. Borg
- Department of Medicine, University of Vermont College of Medicine, Burlington, Vermont, United States of America
| | - James J. Lee
- Division of Pulmonary Medicine, Department of Biochemistry and Molecular Biology, Mayo Clinic Arizona, Scottsdale, Arizona, United States of America
| | - Daniel J. Weiss
- Department of Medicine, University of Vermont College of Medicine, Burlington, Vermont, United States of America
| | - Cheryl A. Nickerson
- The Biodesign Institute, Center for Infectious Diseases and Vaccinology, Arizona State University, Tempe, Arizona, United States of America
- School of Life Sciences, Arizona State University, Tempe, Arizona, United States of America
- * E-mail:
| |
Collapse
|
97
|
Skardal A, Devarasetty M, Rodman C, Atala A, Soker S. Liver-Tumor Hybrid Organoids for Modeling Tumor Growth and Drug Response In Vitro. Ann Biomed Eng 2015; 43:2361-73. [PMID: 25777294 DOI: 10.1007/s10439-015-1298-3] [Citation(s) in RCA: 91] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2014] [Accepted: 03/10/2015] [Indexed: 12/27/2022]
Abstract
Current in vitro models for tumor growth and metastasis are poor facsimiles of in vivo cancer physiology and thus, are not optimal for anti-cancer drug development. Three dimensional (3D) tissue organoid systems, which utilize human cells in a tailored microenvironment, have the potential to recapitulate in vivo conditions and address the drawbacks of current tissue culture dish 2D models. In this study, we created liver-based cell organoids in a rotating wall vessel bioreactor. The organoids were further inoculated with colon carcinoma cells in order to create liver-tumor organoids for in vitro modeling of liver metastasis. Immunofluorescent staining revealed notable phenotypic differences between tumor cells in 2D and inside the organoids. In 2D they displayed an epithelial phenotype, and only after transition to the organoids did the cells present with a mesenchymal phenotype. The cell surface marker expression results suggested that WNT pathway might be involved in the phenotypic changes observed between cells in 2D and organoid conditions, and may lead to changes in cell proliferation. Manipulating the WNT pathway with an agonist and antagonist showed significant changes in sensitivity to the anti-proliferative drug 5-fluoruracil. Collectively, the results show the potential of in vitro 3D liver-tumor organoids to serve as a model for metastasis growth and for testing the response of tumor cells to current and newly discovered drugs.
Collapse
Affiliation(s)
- Aleksander Skardal
- Wake Forest Institute for Regenerative Medicine, Wake Forest University Baptist Medical Center, Medical Center Boulevard, Winston-Salem, NC, 27157-1094, USA
| | - Mahesh Devarasetty
- Wake Forest Institute for Regenerative Medicine, Wake Forest University Baptist Medical Center, Medical Center Boulevard, Winston-Salem, NC, 27157-1094, USA
| | - Christopher Rodman
- Wake Forest Institute for Regenerative Medicine, Wake Forest University Baptist Medical Center, Medical Center Boulevard, Winston-Salem, NC, 27157-1094, USA
| | - Anthony Atala
- Wake Forest Institute for Regenerative Medicine, Wake Forest University Baptist Medical Center, Medical Center Boulevard, Winston-Salem, NC, 27157-1094, USA
| | - Shay Soker
- Wake Forest Institute for Regenerative Medicine, Wake Forest University Baptist Medical Center, Medical Center Boulevard, Winston-Salem, NC, 27157-1094, USA.
| |
Collapse
|
98
|
Mas C, Boda B, CaulFuty M, Huang S, Wiszniewski L, Constant S. Antitumour efficacy of the selumetinib and trametinib MEK inhibitors in a combined human airway-tumour-stroma lung cancer model. J Biotechnol 2015; 205:111-9. [PMID: 25615947 DOI: 10.1016/j.jbiotec.2015.01.012] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2014] [Revised: 12/25/2014] [Accepted: 01/12/2015] [Indexed: 01/29/2023]
Abstract
With more than 1 million deaths worldwide every year, lung cancer remains an area of unmet need. Accessible human in vitro 3D tissue models are required to improve preclinical predictivity. OncoCilAir™ is a new in vitro model of Non Small Cell Lung Cancer which combines a reconstituted human airway epithelium, human lung fibroblasts and lung adenocarcinoma cell lines. Remarkably, we found that in this 3D microenvironment tumour cells expand by forming nodules, mimicking a human lung cancer feature. OncoCilAir™ mutated for KRAS and expressing the green fluorescent protein were used to test the antitumour potential of the investigational MEK inhibitors selumetinib and trametinib. As primary endpoint, changes in tumour size were assessed by fluorescence measurements. Tumours showed a reduced growth in response to the MEK inhibitors, but halting the selumetinib dosing resulted in tumour relapse. Importantly, toxicity study on the normal part of the cultures revealed that the airway epithelium integrity was also affected by anticancer drug treatments. These results highlight the possibility to assess simultaneously drug efficacy, drug side-effect and tumour recurrence within a single culture model. OncoCilAir™ heralds a new generation of integrated in vitro tumour models that should be valuable tools for drug development, while reducing animal testing.
Collapse
Affiliation(s)
- Christophe Mas
- OncoTheis Sàrl, 14 chemin des aulx, CH-1228 Plan-les-Ouates, Geneva, Switzerland.
| | - Bernadett Boda
- OncoTheis Sàrl, 14 chemin des aulx, CH-1228 Plan-les-Ouates, Geneva, Switzerland
| | | | - Song Huang
- Epithelix Sàrl, Plan-les-Ouates, Switzerland
| | | | - Samuel Constant
- OncoTheis Sàrl, 14 chemin des aulx, CH-1228 Plan-les-Ouates, Geneva, Switzerland; Epithelix Sàrl, Plan-les-Ouates, Switzerland
| |
Collapse
|
99
|
Bao K, Papadimitropoulos A, Akgül B, Belibasakis GN, Bostanci N. Establishment of an oral infection model resembling the periodontal pocket in a perfusion bioreactor system. Virulence 2015; 6:265-73. [PMID: 25587671 PMCID: PMC4601317 DOI: 10.4161/21505594.2014.978721] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Periodontal infection involves a complex interplay between oral biofilms, gingival tissues and cells of the immune system in a dynamic microenvironment. A humanized in vitro model that reduces the need for experimental animal models, while recapitulating key biological events in a periodontal pocket, would constitute a technical advancement in the study of periodontal disease. The aim of this study was to use a dynamic perfusion bioreactor in order to develop a gingival epithelial-fibroblast-monocyte organotypic co-culture on collagen sponges. An 11 species subgingival biofilm was used to challenge the generated tissue in the bioreactor for a period of 24 h. The histological and scanning electron microscopy analysis displayed an epithelial-like layer on the surface of the collagen sponge, supported by the underlying ingrowth of gingival fibroblasts, while monocytic cells were also found within the sponge mass. Bacterial quantification of the biofilm showed that in the presence of the organotypic tissue, the growth of selected biofilm species, especially Campylobacter rectus, Actinomyces oris, Streptococcus anginosus, Veillonella dispar, and Porphyromonas gingivalis, was suppressed, indicating a potential antimicrobial effect by the tissue. Multiplex immunoassay analysis of cytokine secretion showed that interleukin (IL)-1 β, IL-2, IL-4, and tumor necrosis factor (TNF)-α levels in cell culture supernatants were significantly up-regulated in presence of the biofilm, indicating a positive inflammatory response of the organotypic tissue to the biofilm challenge. In conclusion, this novel host-biofilm interaction organotypic model might resemble the periodontal pocket and have an important impact on the study of periodontal infections, by minimizing the need for the use of experimental animal models.
Collapse
Affiliation(s)
- Kai Bao
- a Oral Translational Research; Institute of Oral Biology; Center of Dental Medicine; University of Zürich ; Zürich , Switzerland
| | | | | | | | | |
Collapse
|
100
|
Alshatwi AA, Athinarayanan J, Periasamy VS. Biocompatibility assessment of rice husk-derived biogenic silica nanoparticles for biomedical applications. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2014; 47:8-16. [PMID: 25492167 DOI: 10.1016/j.msec.2014.11.005] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2014] [Revised: 09/27/2014] [Accepted: 11/05/2014] [Indexed: 11/15/2022]
Abstract
Synthetic forms of silica have low biocompatibility, whereas biogenic forms have myriad beneficial effects in current toxicological applications. Among the various sources of biogenic silica, rice husk is considered a valuable agricultural biomass material and a cost-effective resource that can provide biogenic silica for biomedical applications. In the present study, highly pure biogenic silica nanoparticles (bSNPs) were successfully harvested from rice husks using acid digestion under pressurized conditions at 120°C followed by a calcination process. The obtained bSNPs were subjected to phase identification analysis using X-ray diffraction, which revealed the amorphous nature of the bSNPs. The morphologies of the bSNPs were observed using transmission electron microscopy (TEM), which revealed spherical particles 10 to 30 nm in diameter. Furthermore, the biocompatibility of the bSNPs with human lung fibroblast cells (hLFCs) was investigated using a viability assay and assessing cellular morphological changes, intracellular ROS generation, mitochondrial transmembrane potential and oxidative stress-related gene expression. Our results revealed that the bSNPs did not have any significant incompatibility in these in vitro cell-based approaches. These preliminary findings suggest that bSNPs are biocompatible, could be the best alternative to synthetic forms of silica and are applicable to food additive and biomedical applications.
Collapse
Affiliation(s)
- Ali A Alshatwi
- Nanobiotechnology and Molecular Biology Research Lab, Department of Food Science and Nutrition, College of Food Science and Agriculture, Riyadh, Saudi Arabia.
| | - Jegan Athinarayanan
- Nanobiotechnology and Molecular Biology Research Lab, Department of Food Science and Nutrition, College of Food Science and Agriculture, Riyadh, Saudi Arabia
| | - Vaiyapuri Subbarayan Periasamy
- Nanobiotechnology and Molecular Biology Research Lab, Department of Food Science and Nutrition, College of Food Science and Agriculture, Riyadh, Saudi Arabia
| |
Collapse
|