51
|
Jiang C, An T, Wang S, Wang G, Si W, Tu Y, Liu Y, Wu J, Liu S, Cai X. Role of the ehxA gene from Escherichia coli serotype O82 in hemolysis, biofilm formation, and in vivo virulence. Can J Microbiol 2015; 61:335-41. [PMID: 25803149 DOI: 10.1139/cjm-2014-0824] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Enterohemorrhagic Escherichia coli (EHEC) strains cause serious gastrointestinal disease, which can lead to potentially life-threatening systemic complications such as hemolytic uremic syndrome. Although the ehx gene is established as a major virulence factor of EHEC, the role of this gene in colonization and biofilm formation remains to be elucidated. We constructed recombinant isogenic mutants of the ehxA locus of E. coli HLJ1122 (serotype O82) using the λ Red homologous recombination system. Significantly higher levels of adherence to human epithelial cells (HEp-2) cells were observed for strain HLJ1122 compared with the mutant strain HLJ1122-ΔehxA (P < 0.05). Strain HLJ1122 also exhibited significantly higher levels of biofilm formation than strain HLJ1122-ΔehxA (P < 0.05). Mice infected with strain HLJ1122 showed severe destruction of the intestinal and gastric mucosa; in contrast, mice infected with HLJ1122-ΔehxA showed limited intestinal pathology, displaying minimal inflammatory infiltrates compared with mock-infected mice. These results showed the multifunctional role of Ehx in E. coli virulence.
Collapse
Affiliation(s)
- Chenggang Jiang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, No. 427 Maduan Street, Harbin 150001, People's Republic of China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
52
|
Varela AR, Macedo GN, Nunes OC, Manaia CM. Genetic characterization of fluoroquinolone resistant Escherichia coli from urban streams and municipal and hospital effluents. FEMS Microbiol Ecol 2015; 91:fiv015. [PMID: 25764463 DOI: 10.1093/femsec/fiv015] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/03/2015] [Indexed: 01/01/2023] Open
Abstract
Escherichia coli with reduced susceptibility to ciprofloxacin, isolated from urban streams, wastewater treatment plants and hospital effluent between 2004 and 2012, were compared based on multilocus sequence typing (MLST), quinolone and beta-lactam resistance determinants and plasmid replicon type. Isolates from the different types of water and isolation dates clustered together, suggesting the persistence and capacity to propagate across distinct aquatic environments. The most prevalent MLST groups were ST10 complex and ST131. Almost all isolates (98%) carried mutations in the chromosomal genes gyrA and/or parC, and 10% possessed the genes qepA, aac(6('))-Ib-cr and/or qnrS1. Over 80% of the isolates were resistant to three or more classes of antibiotics (MDR ≥ 3). The most prevalent beta-lactamase encoding gene was blaTEM, followed by blaCTX-M-15, co-existing with plasmid mediated quinolone resistance. The plasmid replicon types of the group IncF were the most prevalent and distributed by different MLST groups. The genes aac(6('))-Ib-cr and/or qnrS1 could be transferred by conjugation in combination with the genes blaTEM,blaSHV-12 or blaOXA-1 and the plasmid replicon types I1-Iγ, K, HI2 and/or B/O. The potential of multidrug resistant E. coli with reduced susceptibility to ciprofloxacin, harboring mobile genetic elements and with ability to conjugate and transfer resistance genes, to spread and persist across different aquatic environments was demonstrated.
Collapse
Affiliation(s)
- Ana Rita Varela
- CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa/Porto, Rua Arquiteto Lobão Vital, Apartado 2511, 4202-401 Porto, Portugal LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr Roberto Frias, 4200-465 Porto, Portugal
| | - Gonçalo N Macedo
- CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa/Porto, Rua Arquiteto Lobão Vital, Apartado 2511, 4202-401 Porto, Portugal
| | - Olga C Nunes
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr Roberto Frias, 4200-465 Porto, Portugal
| | - Célia M Manaia
- CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa/Porto, Rua Arquiteto Lobão Vital, Apartado 2511, 4202-401 Porto, Portugal
| |
Collapse
|
53
|
Allele variants of enterotoxigenic Escherichia coli heat-labile toxin are globally transmitted and associated with colonization factors. J Bacteriol 2014; 197:392-403. [PMID: 25404692 DOI: 10.1128/jb.02050-14] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Enterotoxigenic Escherichia coli (ETEC) is a significant cause of morbidity and mortality in the developing world. ETEC-mediated diarrhea is orchestrated by heat-labile toxin (LT) and heat-stable toxins (STp and STh), acting in concert with a repertoire of more than 25 colonization factors (CFs). LT, the major virulence factor, induces fluid secretion after delivery of a monomeric ADP-ribosylase (LTA) and its pentameric carrier B subunit (LTB). A study of ETEC isolates from humans in Brazil reported the existence of natural LT variants. In the present study, analysis of predicted amino acid sequences showed that the LT amino acid polymorphisms are associated with a geographically and temporally diverse set of 192 clinical ETEC strains and identified 12 novel LT variants. Twenty distinct LT amino acid variants were observed in the globally distributed strains, and phylogenetic analysis showed these to be associated with different CF profiles. Notably, the most prevalent LT1 allele variants were correlated with major ETEC lineages expressing CS1 + CS3 or CS2 + CS3, and the most prevalent LT2 allele variants were correlated with major ETEC lineages expressing CS5 + CS6 or CFA/I. LTB allele variants generally exhibited more-stringent amino acid sequence conservation (2 substitutions identified) than LTA allele variants (22 substitutions identified). The functional impact of LT1 and LT2 polymorphisms on virulence was investigated by measuring total-toxin production, secretion, and stability using GM1-enzyme-linked immunosorbent assays (GM1-ELISA) and in silico protein modeling. Our data show that LT2 strains produce 5-fold more toxin than LT1 strains (P < 0.001), which may suggest greater virulence potential for this genetic variant. Our data suggest that functionally distinct LT-CF variants with increased fitness have persisted during the evolution of ETEC and have spread globally.
Collapse
|
54
|
Plasmid-mediated resistance to cephalosporins and fluoroquinolones in various Escherichia coli sequence types isolated from rooks wintering in Europe. Appl Environ Microbiol 2014; 81:648-57. [PMID: 25381245 DOI: 10.1128/aem.02459-14] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Extended-spectrum-beta-lactamase (ESBL)-producing, AmpC beta-lactamase-producing, and plasmid-mediated quinolone resistance (PMQR) gene-positive strains of Escherichia coli were investigated in wintering rooks (Corvus frugilegus) from eight European countries. Fecal samples (n = 1,073) from rooks wintering in the Czech Republic, France, Germany, Italy, Poland, Serbia, Spain, and Switzerland were examined. Resistant isolates obtained from selective cultivation were screened for ESBL, AmpC, and PMQR genes by PCR and sequencing. Pulsed-field gel electrophoresis and multilocus sequence typing were performed to reveal their clonal relatedness. In total, from the 1,073 samples, 152 (14%) cefotaxime-resistant E. coli isolates and 355 (33%) E. coli isolates with reduced susceptibility to ciprofloxacin were found. Eighty-two (54%) of these cefotaxime-resistant E. coli isolates carried the following ESBL genes: blaCTX-M-1 (n = 39 isolates), blaCTX-M-15 (n = 25), blaCTX-M-24 (n = 4), blaTEM-52 (n = 4), blaCTX-M-14 (n = 2), blaCTX-M-55 (n = 2), blaSHV-12 (n = 2), blaCTX-M-8 (n = 1), blaCTX-M-25 (n = 1), blaCTX-M-28 (n = 1), and an unspecified gene (n = 1). Forty-seven (31%) cefotaxime-resistant E. coli isolates carried the blaCMY-2 AmpC beta-lactamase gene. Sixty-two (17%) of the E. coli isolates with reduced susceptibility to ciprofloxacin were positive for the PMQR genes qnrS1 (n = 54), qnrB19 (n = 4), qnrS1 and qnrB19 (n = 2), qnrS2 (n = 1), and aac(6')-Ib-cr (n = 1). Eleven isolates from the Czech Republic (n = 8) and Serbia (n = 3) were identified to be CTX-M-15-producing E. coli clone B2-O25b-ST131 isolates. Ninety-one different sequence types (STs) among 191 ESBL-producing, AmpC-producing, and PMQR gene-positive E. coli isolates were determined, with ST58 (n = 15), ST10 (n = 14), and ST131 (n = 12) predominating. The widespread occurrence of highly diverse ESBL- and AmpC-producing and PMQR gene-positive E. coli isolates, including the clinically important multiresistant ST69, ST95, ST117, ST131, and ST405 clones, was demonstrated in rooks wintering in various European countries.
Collapse
|
55
|
Hynönen U, Kant R, Lähteinen T, Pietilä TE, Beganović J, Smidt H, Uroić K, Avall-Jääskeläinen S, Palva A. Functional characterization of probiotic surface layer protein-carrying Lactobacillus amylovorus strains. BMC Microbiol 2014; 14:199. [PMID: 25070625 PMCID: PMC4236617 DOI: 10.1186/1471-2180-14-199] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2014] [Accepted: 07/12/2014] [Indexed: 02/02/2023] Open
Abstract
BACKGROUND Adhesiveness to intestinal epithelium, beneficial immunomodulating effects and the production of pathogen-inhibitory compounds are generally considered as beneficial characteristics of probiotic organisms. We showed the potential health-promoting properties and the mechanisms of probiotic action of seven swine intestinal Lactobacillus amylovorus isolates plus the type strain (DSM 20531T) by investigating their adherence to porcine intestinal epithelial cells (IPEC-1) and mucus as well as the capacities of the strains to i) inhibit the adherence of Escherichia coli to IPEC-1 cells, ii) to produce soluble inhibitors against intestinal pathogens and iii) to induce immune signaling in dendritic cells (DCs). Moreover, the role of the L. amylovorus surface (S) -layers - symmetric, porous arrays of identical protein subunits present as the outermost layer of the cell envelope - in adherence to IPEC-1 cells was assessed using a novel approach which utilized purified cell wall fragments of the strains as carriers for the recombinantly produced S-layer proteins. RESULTS Three of the L. amylovorus strains studied adhered to IPEC-1 cells, while four strains inhibited the adherence of E. coli, indicating additional mechanisms other than competition for binding sites being involved in the inhibition. None of the strains bound to porcine mucus. The culture supernatants of all of the strains exerted inhibitory effects on the growth of E. coli, Salmonella, Listeria and Yersinia, and a variable, strain-dependent induction was observed of both pro- and anti-inflammatory cytokines in human DCs. L. amylovorus DSM 16698 was shown to carry two S-layer-like proteins on its surface in addition to the major S-layer protein SlpA. In contrast to expectations, none of the major S-layer proteins of the IPEC-1 -adhering strains mediated bacterial adherence. CONCLUSIONS We demonstrated adhesive and significant pathogen inhibitory efficacies among the swine intestinal L. amylovorus strains studied, pointing to their potential use as probiotic feed supplements, but no independent role could be demonstrated for the major S-layer proteins in adherence to epithelial cells. The results indicate that many intestinal bacteria may coexist with and confer benefits to the host by mechanisms not attributable to adhesion to epithelial cells or mucus.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Airi Palva
- Department of Veterinary Biosciences, Division of Microbiology and Epidemiology, University of Helsinki, P,O, Box 66, Helsinki 00014, Finland.
| |
Collapse
|
56
|
Abraham S, Trott DJ, Jordan D, Gordon DM, Groves MD, Fairbrother JM, Smith MG, Zhang R, Chapman TA. Phylogenetic and molecular insights into the evolution of multidrug-resistant porcine enterotoxigenic Escherichia coli in Australia. Int J Antimicrob Agents 2014; 44:105-11. [PMID: 24948578 DOI: 10.1016/j.ijantimicag.2014.04.011] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2014] [Revised: 03/25/2014] [Accepted: 04/08/2014] [Indexed: 11/18/2022]
Abstract
This study investigated the phylogeny and molecular epidemiology of Australian porcine enterotoxigenic Escherichia coli (ETEC) isolates (n=70) by performing multilocus sequence typing (MLST), random amplified polymorphic DNA (RAPD) analysis, virulence gene analysis, plasmid, bacteriocin, integron and antimicrobial resistance gene typing, and antimicrobial susceptibility phenotyping. Isolates of the most commonly observed O serogroup (O149) were highly clonal with a lower frequency of antimicrobial resistance compared with the less common O141 serogroup isolates, which were more genetically diverse and resistant to a greater array of antimicrobials. The O149 and O141 isolates belonged to sequence types (STs) ST100 and ST1260, respectively. A small number of new STs were identified for the least common serogroups, including O157 (ST4245), O138 (ST4244), O139 (ST4246) and O8 (ST4247). A high frequency of plasmid replicons was observed among all ETEC isolates. However, O149 isolates predominantly carried IncFIB, I1, HI1 and FIC, whereas O141 isolates carried a more varied array, including IncI1, FIB, FIC, HI1, I1, Y and, most significantly, A/C. O141 isolates also possessed a greater diversity of bacteriocins, with almost one-half of the isolates carrying colicin E3 (44.4%; 12/27) and E7 (48.1%; 13/27). This study shows that Australian porcine ETEC are distinct from isolates obtained in other parts of the world with respect to the MLST profile and the absence of resistance to critically important antimicrobials, including third-generation cephalosporins and fluoroquinolones.
Collapse
Affiliation(s)
- Sam Abraham
- School of Animal and Veterinary Sciences, The University of Adelaide, Roseworthy, South Australia, Australia; New South Wales Department of Primary Industries, Menangle, New South Wales, Australia; School of Biological Sciences, University of Wollongong, Wollongong, New South Wales, Australia.
| | - Darren J Trott
- School of Animal and Veterinary Sciences, The University of Adelaide, Roseworthy, South Australia, Australia
| | - David Jordan
- New South Wales Department of Primary Industries, Wollongbar, New South Wales, Australia
| | - David M Gordon
- Research School of Biology, The Australian National University, Canberra, ACT, Australia
| | | | - John M Fairbrother
- OIE Reference Laboratory for Escherichia coli (EcL), Faculté de médecine vétérinaire, University of Montréal, Saint-Hyacinthe, Canada
| | | | - Ren Zhang
- School of Biological Sciences, University of Wollongong, Wollongong, New South Wales, Australia
| | - Toni A Chapman
- New South Wales Department of Primary Industries, Menangle, New South Wales, Australia
| |
Collapse
|
57
|
Lineage-specific distribution of insertion sequence excision enhancer in enterotoxigenic Escherichia coli isolated from swine. Appl Environ Microbiol 2013; 80:1394-402. [PMID: 24334665 DOI: 10.1128/aem.03696-13] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Insertion sequences (ISs) are the simplest transposable elements and are widely distributed in bacteria; however, they also play important roles in genome evolution. We recently identified a protein called IS excision enhancer (IEE) in enterohemorrhagic Escherichia coli (EHEC) O157. IEE promotes the excision of IS elements belonging to the IS3 family, such as IS629, as well as several other families. IEE-mediated IS excision generates various genomic deletions that lead to the diversification of the bacterial genome. IEE has been found in a broad range of bacterial species; however, among sequenced E. coli strains, IEE is primarily found in EHEC isolates. In this study, we investigated non-EHEC pathogenic E. coli strains isolated from domestic animals and found that IEE is distributed in specific lineages of enterotoxigenic E. coli (ETEC) strains of serotypes O139 or O149 isolated from swine. The iee gene is located within integrative elements that are similar to SpLE1 of EHEC O157. All iee-positive ETEC lineages also contained multiple copies of IS629, a preferred substrate of IEE, and their genomic locations varied significantly between strains, as observed in O157. These data suggest that IEE may have been transferred among EHEC and ETEC in swine via SpLE1 or SpLE1-like integrative elements. In addition, IS629 is actively moving in the ETEC O139 and O149 genomes and, as in EHEC O157, is promoting the diversification of these genomes in combination with IEE.
Collapse
|
58
|
Gyles C, Boerlin P. Horizontally Transferred Genetic Elements and Their Role in Pathogenesis of Bacterial Disease. Vet Pathol 2013; 51:328-40. [DOI: 10.1177/0300985813511131] [Citation(s) in RCA: 128] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
This article reviews the roles that laterally transferred genes (LTG) play in the virulence of bacterial pathogens. The features of LTG that allow them to be recognized in bacterial genomes are described, and the mechanisms by which LTG are transferred between and within bacteria are reviewed. Genes on plasmids, integrative and conjugative elements, prophages, and pathogenicity islands are highlighted. Virulence genes that are frequently laterally transferred include genes for bacterial adherence to host cells, type 3 secretion systems, toxins, iron acquisition, and antimicrobial resistance. The specific roles of LTG in pathogenesis are illustrated by specific reference to Escherichia coli, Salmonella, pyogenic streptococci, and Clostridium perfringens.
Collapse
Affiliation(s)
- C. Gyles
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, Ontario, Canada
| | - P. Boerlin
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, Ontario, Canada
| |
Collapse
|
59
|
Hawkey J, Edwards DJ, Dimovski K, Hiley L, Billman-Jacobe H, Hogg G, Holt KE. Evidence of microevolution of Salmonella Typhimurium during a series of egg-associated outbreaks linked to a single chicken farm. BMC Genomics 2013; 14:800. [PMID: 24245509 PMCID: PMC3870983 DOI: 10.1186/1471-2164-14-800] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2013] [Accepted: 11/14/2013] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The bacterium Salmonella enterica serovar Typhimurium (S. Typhimurium) is one of the most frequent causes of foodborne outbreaks of gastroenteritis. Between 2005-2008 a series of S. Typhimurium outbreaks occurred in Tasmania, Australia, that were all traced to eggs originating from a single chicken farm. We sequenced the genomes of 12 isolates linked to these outbreaks, in order to investigate the microevolution of a pathogenic S. Typhimurium clone in a natural, spatiotemporally restricted population. RESULTS The isolates, which shared a phage type similar to DT135 known locally as 135@ or 135a, formed a clade within the S. Typhimurium population with close similarity to the reference genome SL1334 (160 single nucleotide polymorphisms, or SNPs). Ten of the isolates belonged to a single clone (<23 SNPs between isolate pairs) which likely represents the population of S. Typhimurium circulating at the chicken farm; the other two were from sporadic cases and were genetically distinct from this clone. Divergence dating indicated that all 12 isolates diverged from a common ancestor in the mid 1990 s, and the clone began to diversify in 2003-2004. This clone spilled out into the human population several times between 2005-2008, during which time it continued to accumulate SNPs at a constant rate of 3-5 SNPs per year or 1x10-6 substitutions site-1 year-1, faster than the longer-term (~50 year) rates estimated previously for S. Typhimurium. Our data suggest that roughly half of non-synonymous substitutions are rapidly removed from the S. Typhimurium population, after which purifying selection is no longer important and the remaining substitutions become fixed in the population. The S. Typhimurium 135@ isolates were nearly identical to SL1344 in terms of gene content and virulence plasmids. Their phage contents were close to SL1344, except that they carried a different variant of Gifsy-1, lacked the P2 remnant found in SL1344 and carried a novel P2 phage, P2-Hawk, in place SL1344's P2 phage SopEϕ. DT135 lacks P2 prophage. Two additional plasmids were identified in the S. Typhimurium 135@ isolates, pSTM2 and pSTM7. Both plasmids were IncI1, but phylogenetic analysis of the plasmids and their bacterial hosts shows these plasmids are genetically distinct and result from independent plasmid acquisition events. CONCLUSIONS This study provides a high-resolution insight into short-term microevolution of the important human pathogen S. Typhimurium. It indicates that purifying selection occurs rapidly in this population (≤ 6 years) and then declines, and provides an estimate for the short-term substitution rate. The latter is likely to be more relevant for foodborne outbreak investigation than previous estimates based on longer time scales.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Kathryn E Holt
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, Victoria 3010, Australia.
| |
Collapse
|
60
|
Leimbach A, Hacker J, Dobrindt U. E. coli as an All-Rounder: The Thin Line Between Commensalism and Pathogenicity. Curr Top Microbiol Immunol 2013; 358:3-32. [PMID: 23340801 DOI: 10.1007/82_2012_303] [Citation(s) in RCA: 153] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
61
|
Laing CR, Zhang Y, Gilmour MW, Allen V, Johnson R, Thomas JE, Gannon VPJ. A comparison of Shiga-toxin 2 bacteriophage from classical enterohemorrhagic Escherichia coli serotypes and the German E. coli O104:H4 outbreak strain. PLoS One 2012; 7:e37362. [PMID: 22649523 PMCID: PMC3359367 DOI: 10.1371/journal.pone.0037362] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2012] [Accepted: 04/20/2012] [Indexed: 11/18/2022] Open
Abstract
Escherichia coli O104:H4 was associated with a severe foodborne disease outbreak originating in Germany in May 2011. More than 4000 illnesses and 50 deaths were reported. The outbreak strain was a typical enteroaggregative E. coli (EAEC) that acquired an antibiotic resistance plasmid and a Shiga-toxin 2 (Stx2)-encoding bacteriophage. Based on whole-genome phylogenies, the O104:H4 strain was most closely related to other EAEC strains; however, Stx2-bacteriophage are mobile, and do not necessarily share an evolutionary history with their bacterial host. In this study, we analyzed Stx2-bacteriophage from the E. coli O104:H4 outbreak isolates and compared them to all available Stx2-bacteriophage sequences. We also compared Stx2 production by an E. coli O104:H4 outbreak-associated isolate (ON-2011) to that of E. coli O157:H7 strains EDL933 and Sakai. Among the E. coli Stx2-phage sequences studied, that from O111:H- strain JB1-95 was most closely related phylogenetically to the Stx2-phage from the O104:H4 outbreak isolates. The phylogeny of most other Stx2-phage was largely concordant with their bacterial host genomes. Finally, O104:H4 strain ON-2011 produced less Stx2 than E. coli O157:H7 strains EDL933 and Sakai in culture; however, when mitomycin C was added, ON-2011 produced significantly more toxin than the E. coli O157:H7 strains. The Stx2-phage from the E. coli O104:H4 outbreak strain and the Stx2-phage from O111:H- strain JB1-95 likely share a common ancestor. Incongruence between the phylogenies of the Stx2-phage and their host genomes suggest the recent Stx2-phage acquisition by E. coli O104:H4. The increase in Stx2-production by ON-2011 following mitomycin C treatment may or may not be related to the high rates of hemolytic uremic syndrome associated with the German outbreak strain. Further studies are required to determine whether the elevated Stx2-production levels are due to bacteriophage or E. coli O104:H4 host related factors.
Collapse
Affiliation(s)
- Chad R. Laing
- Laboratory for Foodborne Zoonoses, Public Health Agency of Canada, Lethbridge, Alberta, Canada
- Ontario Agency for Health Protection and Promotion, Ontario, Canada
| | - Yongxiang Zhang
- Laboratory for Foodborne Zoonoses, Public Health Agency of Canada, Lethbridge, Alberta, Canada
| | - Matthew W. Gilmour
- National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, Manitoba, Canada
| | - Vanessa Allen
- Ontario Agency for Health Protection and Promotion, Ontario, Canada
| | - Roger Johnson
- Laboratory for Foodborne Zoonoses, Public Health Agency of Canada, Guelph, Ontario, Canada
| | - James E. Thomas
- Department of Biological Sciences, University of Lethbridge, Lethbridge, Alberta, Canada
| | - Victor P. J. Gannon
- Laboratory for Foodborne Zoonoses, Public Health Agency of Canada, Lethbridge, Alberta, Canada
- * E-mail:
| |
Collapse
|
62
|
Johnson TJ, Bielak EM, Fortini D, Hansen LH, Hasman H, Debroy C, Nolan LK, Carattoli A. Expansion of the IncX plasmid family for improved identification and typing of novel plasmids in drug-resistant Enterobacteriaceae. Plasmid 2012; 68:43-50. [PMID: 22470007 DOI: 10.1016/j.plasmid.2012.03.001] [Citation(s) in RCA: 225] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2012] [Revised: 03/09/2012] [Accepted: 03/18/2012] [Indexed: 11/24/2022]
Abstract
IncX plasmids are narrow host range plasmids of Enterobactericeae that have been isolated for over 50years. They are known to encode type IV fimbriae enabling their own conjugative transfer, and to provide accessory functions to their host bacteria such as resistance towards antimicrobial agents and biofilm formation. Previous plasmid-based replicon typing procedures have indicated that the prevalence of IncX plasmids is low among members of the Enterobacteriaceae. However, examination of a number of IncX-like plasmid sequences and their occurrence in various organisms suggests that IncX plasmid diversity and prevalence is underappreciated. To address these possible shortcomings, we generated additional plasmid sequences of IncX plasmids of interest and compared them to the genomes of all sequenced IncX-like plasmids. These comparisons revealed that IncX plasmids possess a highly syntenic plasmid backbone, but that they are quite divergent with respect to nucleotide and amino acid similarity. Based on phylogenetic comparisons of the sequenced IncX plasmids, the IncX plasmid group has been expanded to include at least four subtypes, IncX1-IncX4. A revised IncX plasmid replicon typing procedure, based upon these sequences and subtypes, was then developed. Use of this revised typing procedure revealed that IncX plasmid occurrence among bacterial populations is much more common than had previously been acknowledged. Thus, this revised procedure can be used to better discern the occurrence of IncX type plasmids among enterobacterial populations.
Collapse
Affiliation(s)
- Timothy J Johnson
- Department of Veterinary and Biomedical Sciences, University of Minnesota, 1971 Commonwealth Avenue, 205 Veterinary Science, St. Paul, MN 55108, USA.
| | | | | | | | | | | | | | | |
Collapse
|