51
|
Zhang C, Cantara W, Jeon Y, Musier-Forsyth K, Grigorieff N, Lyumkis D. Analysis of discrete local variability and structural covariance in macromolecular assemblies using Cryo-EM and focused classification. Ultramicroscopy 2019; 203:170-180. [PMID: 30528101 PMCID: PMC6476647 DOI: 10.1016/j.ultramic.2018.11.016] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Revised: 11/07/2018] [Accepted: 11/26/2018] [Indexed: 01/30/2023]
Abstract
Single-particle electron cryo-microscopy and computational image classification can be used to analyze structural variability in macromolecules and their assemblies. In some cases, a particle may contain different regions that each display a range of distinct conformations. We have developed strategies, implemented within the Frealign and cisTEM image processing packages, to focus-classify on specific regions of a particle and detect potential covariance. The strategies are based on masking the region of interest using either a 2-D mask applied to reference projections and particle images, or a 3-D mask applied to the 3-D volume. We show that focused classification approaches can be used to study structural covariance, a concept that is likely to gain more importance as datasets grow in size, allowing the distinction of more structural states and smaller differences between states. Finally, we apply the approaches to an experimental dataset containing the HIV-1 Transactivation Response (TAR) element RNA fused into the large bacterial ribosomal subunit to deconvolve structural mobility within localized regions of interest, and to a dataset containing assembly intermediates of the large subunit to measure structural covariance.
Collapse
Affiliation(s)
- Cheng Zhang
- Salk Institute for Biological Studies, 10010 N Torrey Pines Rd, La Jolla, CA 92037, USA
| | - William Cantara
- Department of Chemistry and Biochemistry, Ohio State University, Columbus, OH 43210, USA
| | - Youngmin Jeon
- Salk Institute for Biological Studies, 10010 N Torrey Pines Rd, La Jolla, CA 92037, USA
| | - Karin Musier-Forsyth
- Department of Chemistry and Biochemistry, Ohio State University, Columbus, OH 43210, USA
| | - Nikolaus Grigorieff
- Janelia Research Campus, Howard Hughes Medical Institute, 19700 Helix Drive, Ashburn, VA, USA.
| | - Dmitry Lyumkis
- Salk Institute for Biological Studies, 10010 N Torrey Pines Rd, La Jolla, CA 92037, USA.
| |
Collapse
|
52
|
Orozco-Mosqueda MDC, Duan J, DiBernardo M, Zetter E, Campos-García J, Glick BR, Santoyo G. The Production of ACC Deaminase and Trehalose by the Plant Growth Promoting Bacterium Pseudomonas sp. UW4 Synergistically Protect Tomato Plants Against Salt Stress. Front Microbiol 2019; 10:1392. [PMID: 31275294 PMCID: PMC6594411 DOI: 10.3389/fmicb.2019.01392] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Accepted: 06/03/2019] [Indexed: 11/21/2022] Open
Abstract
Soil salinity is a major problem in agriculture. However, crop growth and productivity can be improved by the inoculation of plants with beneficial bacteria that promote plant growth under stress conditions such as high salinity. Here, we evaluated 1-aminocyclopropane-1-carboxylate (ACC) deaminase activity and trehalose accumulation of the plant growth promoting bacterium Pseudomonas sp. UW4. Mutant strains (mutated at acdS, treS, or both) and a trehalose over-expressing strain (OxtreS) were constructed. The acdS mutant was ACC deaminase minus; the treS- strain significantly decreased its accumulation of trehalose, and the double mutant was affected in both characteristics. The OxtreS strain accumulated more trehalose than the wild-type strain UW4. Inoculating tomato plants subjected to salt stress with these strains significantly impacted root and shoot length, total dry weight, and chlorophyll content. The evaluated parameters in the single acdS and treS mutants were impaired. The double acdS/treS mutant was negatively affected to a greater extent than the single-gene mutants, suggesting a synergistic action of these activities in the protection of plants against salt stress. Finally, the OxtreS overproducing strain protected tomato plants to a greater extent under stress conditions than the wild-type strain. Taken together, these results are consistent with the synergistic action of ACC deaminase and trehalose in Pseudomonas sp. UW4 in the protection of tomato plants against salt stress.
Collapse
Affiliation(s)
- Ma Del Carmen Orozco-Mosqueda
- Department of Biology, University of Waterloo, Waterloo, ON, Canada.,Facultad de Agrobiología "Presidente Juárez," Universidad Michoacana de San Nicolás de Hidalgo, Uruapan, Mexico
| | - Jin Duan
- Department of Biology, University of Waterloo, Waterloo, ON, Canada
| | | | - Elizabeth Zetter
- Instituto de Investigaciones Químico Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Morelia, Mexico
| | - Jesús Campos-García
- Instituto de Investigaciones Químico Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Morelia, Mexico
| | - Bernard R Glick
- Department of Biology, University of Waterloo, Waterloo, ON, Canada
| | - Gustavo Santoyo
- Instituto de Investigaciones Químico Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Morelia, Mexico
| |
Collapse
|
53
|
A Counterselectable Sucrose Sensitivity Marker Permits Efficient and Flexible Mutagenesis in Streptococcus agalactiae. Appl Environ Microbiol 2019; 85:AEM.03009-18. [PMID: 30658970 DOI: 10.1128/aem.03009-18] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Accepted: 01/13/2019] [Indexed: 12/25/2022] Open
Abstract
Streptococcus agalactiae (group B Streptococcus [GBS]) is a cause of severe infections, particularly during the newborn period. While methods exist for generating chromosomal mutations in GBS, they are cumbersome and inefficient and present significant challenges if the goal is to study subtle mutations, such as single-base-pair polymorphisms. To address this problem, we have developed an efficient and flexible GBS mutagenesis protocol based on sucrose counterselection against levansucrase (SacB) expressed from a temperature-selective shuttle vector. GBS containing the SacB expression cassette demonstrates lethal sensitivity to supplemental sucrose whether the plasmid DNA is replicating outside of the chromosome or has been integrated during a crossover event. Transmission electron microscopy shows that SacB-mediated lethal sucrose sensitivity results from the accumulation of inclusion bodies that eventually lead to complete degradation of normal cellular architecture and subsequent lysis. We used this new mutagenesis technique to generate an in-frame, allelic exchange knockout of the GBS sortase gene srtA, demonstrating that >99% of colonies that emerge from our protocol had the expected knockout phenotype and that among a subset tested by sequencing, 100% had the correct genotype. We also generated barcoded nonsense mutations in the cylE gene in two GBS strains, showing that the approach can be used to make small, precise chromosomal mutations.IMPORTANCE The ability to generate chromosomal mutations is fundamental to microbiology. Historically, however, GBS pathogenesis research has been made challenging by the relative genetic intractability of the organism. Generating a single knockout in GBS using traditional techniques can take many months, with highly variable success rates. Furthermore, traditional methods do not offer a straightforward way to generate single-base-pair polymorphisms or other subtle changes, especially to noncoding regions of the chromosome. We have developed a new sucrose counterselection-based method that permits rapid, efficient, and flexible GBS mutagenesis. Our technique requires no additional equipment beyond what is needed for traditional approaches. We believe that it will catalyze rapid advances in GBS genetics research by significantly easing the path to generating mutants.
Collapse
|
54
|
Connolly JA, Wilson A, Macioszek M, Song Z, Wang L, Mohammad HH, Yadav M, di Martino M, Miller CE, Hothersall J, Haines AS, Stephens ER, Crump MP, Willis CL, Simpson TJ, Winn PJ, Thomas CM. Defining the genes for the final steps in biosynthesis of the complex polyketide antibiotic mupirocin by Pseudomonas fluorescens NCIMB10586. Sci Rep 2019; 9:1542. [PMID: 30733464 PMCID: PMC6367315 DOI: 10.1038/s41598-018-38038-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Accepted: 12/17/2018] [Indexed: 11/09/2022] Open
Abstract
The mupirocin trans-AT polyketide synthase pathway, provides a model system for manipulation of antibiotic biosynthesis. Its final phase involves removal of the tertiary hydroxyl group from pseudomonic acid B, PA-B, producing the fully active PA-A in a complex series of steps. To further clarify requirements for this conversion, we fed extracts containing PA-B to mutants of the producer strain singly deficient in each mup gene. This additionally identified mupM and mupN as required plus the sequence but not enzymic activity of mupL and ruled out need for other mup genes. A plasmid expressing mupLMNOPVCFU + macpE together with a derivative of the producer P. fluorescens strain NCIMB10586 lacking the mup cluster allowed conversion of PA-B to PA-A. MupN converts apo-mAcpE to holo-form while MupM is a mupirocin-resistant isoleucyl tRNA synthase, preventing self-poisoning. Surprisingly, the expression plasmid failed to allow the closely related P. fluorescens strain SBW25 to convert PA-B to PA-A.
Collapse
Affiliation(s)
- Jack A Connolly
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK.,School of Chemistry, University of St Andrews, BMS Building, North Haugh, St Andrews, KY16 9ST, UK
| | - Amber Wilson
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Malgorzata Macioszek
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK.,Dr M. Macioszek, DOCS International Poland, ul. Grojecka 5, 02-019, Warszawa, Poland
| | - Zhongshu Song
- School of Chemistry, University of Bristol, Cantock's Close, Bristol, BS8 1TS, UK
| | - Luoyi Wang
- School of Chemistry, University of Bristol, Cantock's Close, Bristol, BS8 1TS, UK
| | - Hadi H Mohammad
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK.,College of Medicine, Kirkuk University, Kirkuk, Iraq
| | - Mukul Yadav
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Maura di Martino
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK.,Ms M. di Martino, Dept Biology, University of York, Wentworth Way, York, YO10 5DD, UK
| | - Claire E Miller
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK.,Dr C. E. Miller, The BioHub Birmingham, Birmingham Research Park, 97 Vincent Drive, Edgbaston, Birmingham, B15 2SQ, UK
| | - Joanne Hothersall
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Anthony S Haines
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Elton R Stephens
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Matthew P Crump
- School of Chemistry, University of Bristol, Cantock's Close, Bristol, BS8 1TS, UK
| | - Christine L Willis
- School of Chemistry, University of Bristol, Cantock's Close, Bristol, BS8 1TS, UK
| | - Thomas J Simpson
- School of Chemistry, University of Bristol, Cantock's Close, Bristol, BS8 1TS, UK
| | - Peter J Winn
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Christopher M Thomas
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK.
| |
Collapse
|
55
|
Brandis G, Cao S, Hughes D. Measuring Homologous Recombination Rates between Chromosomal Locations in Salmonella. Bio Protoc 2019; 9:e3159. [PMID: 33654967 DOI: 10.21769/bioprotoc.3159] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Revised: 01/14/2019] [Accepted: 01/16/2019] [Indexed: 11/02/2022] Open
Abstract
Homologous recombination between two similar DNA molecules, plays an important role in the repair of double-stranded DNA breaks. Recombination can occur between two sister chromosomes, or between two locations of similar sequence identity within the same chromosome. The assay described here is designed to measure the rate of homologous recombination between two locations with sequence similarity within the same bacterial chromosome. For this purpose, a selectable/counter-selectable genetic cassette is inserted into one of the locations and homologous recombination repair rates are measured as a function of recombinational removal of the inserted cassette. This recombinational repair process is called gene conversion, non-reciprocal recombination. We used this method to measure the recombination rates between genes within gene families and to study the stability of mobile genetic elements inserted into members of gene families.
Collapse
Affiliation(s)
- Gerrit Brandis
- Department of Medical Biochemistry and Microbiology, Box 582 Biomedical Center, Uppsala University, Uppsala, Sweden
| | - Sha Cao
- Department of Medical Biochemistry and Microbiology, Box 582 Biomedical Center, Uppsala University, Uppsala, Sweden
| | - Diarmaid Hughes
- Department of Medical Biochemistry and Microbiology, Box 582 Biomedical Center, Uppsala University, Uppsala, Sweden
| |
Collapse
|
56
|
Kumar A, Plückthun A. In vivo assembly and large-scale purification of a GPCR - Gα fusion with Gβγ, and characterization of the active complex. PLoS One 2019; 14:e0210131. [PMID: 30620756 PMCID: PMC6324789 DOI: 10.1371/journal.pone.0210131] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Accepted: 12/04/2018] [Indexed: 12/13/2022] Open
Abstract
G protein coupled receptors (GPCRs) are central players in recognizing a variety of stimuli to mediate diverse cellular responses. This myriad of functions is accomplished by their modular interactions with downstream intracellular transducers, such as heterotrimeric G proteins and arrestins. Assembling a specific GPCR-G protein pair as a purified complex for their structural and functional investigations remains a challenging task, however, because of the low affinity of the interaction. Here, we optimized fusion constructs of the Gα subunit of the heterotrimeric G protein and engineered versions of rat Neurotensin receptor 1 (NTR1), coexpressed and assembled in vivo with Gβ and Gγ. This was achieved by using the baculovirus-based MultiBac system. We thus generated a functional receptor-G protein fusion complex, which can be efficiently purified using ligand-based affinity chromatography on large scales. Additionally, we utilized a purification method based on a designed ankyrin repeat protein tightly binding to Green Fluorescent Protein (GFP-DARPin) that may be used as a generic approach for a large-scale purification of GPCR-G protein fusion complexes for which no ligands column can be generated. The purification methods described herein will support future studies that aim to understand the structural and functional framework of GPCR activation and signaling.
Collapse
Affiliation(s)
- Abhinav Kumar
- Department of Biochemistry, University of Zürich, Zürich, Switzerland
| | - Andreas Plückthun
- Department of Biochemistry, University of Zürich, Zürich, Switzerland
- * E-mail:
| |
Collapse
|
57
|
Huang CN, Liebl W, Ehrenreich A. Restriction-deficient mutants and marker-less genomic modification for metabolic engineering of the solvent producer Clostridium saccharobutylicum. BIOTECHNOLOGY FOR BIOFUELS 2018; 11:264. [PMID: 30275904 PMCID: PMC6158908 DOI: 10.1186/s13068-018-1260-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Accepted: 09/11/2018] [Indexed: 06/08/2023]
Abstract
BACKGROUND Clostridium saccharobutylicum NCP 262 is a solventogenic bacterium that has been used for the industrial production of acetone, butanol, and ethanol. The lack of a genetic manipulation system for C. saccharobutylicum currently limits (i) the use of metabolic pathway engineering to improve the yield, titer, and productivity of n-butanol production by this microorganism, and (ii) functional genomics studies to better understand its physiology. RESULTS In this study, a marker-less deletion system was developed for C. saccharobutylicum using the codBA operon genes from Clostridium ljungdahlii as a counterselection marker. The codB gene encodes a cytosine permease, while codA encodes a cytosine deaminase that converts 5-fluorocytosine to 5-fluorouracil, which is toxic to the cell. To introduce a marker-less genomic modification, we constructed a suicide vector containing: the catP gene for thiamphenicol resistance; the codBA operon genes for counterselection; fused DNA segments both upstream and downstream of the chromosomal deletion target. This vector was introduced into C. saccharobutylicum by tri-parental conjugation. Single crossover integrants are selected on plates supplemented with thiamphenicol and colistin, and, subsequently, double-crossover mutants whose targeted chromosomal sequence has been deleted were identified by counterselection on plates containing 5-fluorocytosine. Using this marker-less deletion system, we constructed the restriction-deficient mutant C. saccharobutylicum ΔhsdR1ΔhsdR2ΔhsdR3, which we named C. saccharobutylicum Ch2. This triple mutant exhibits high transformation efficiency with unmethylated DNA. To demonstrate its applicability to metabolic engineering, the method was first used to delete the xylB gene to study its role in xylose and arabinose metabolism. Furthermore, we also deleted the ptb and buk genes to create a butyrate metabolism-negative mutant of C. saccharobutylicum that produces n-butanol at high yield. CONCLUSIONS The plasmid vectors and the method introduced here, together with the restriction-deficient strains described in this work, for the first time, allow for efficient marker-less genomic modification of C. saccharobutylicum and, therefore, represent valuable tools for the genetic and metabolic engineering of this industrially important solvent-producing organism.
Collapse
Affiliation(s)
- Ching-Ning Huang
- Chair of Microbiology, Technical University of Munich, Freising, 85350 Germany
| | - Wolfgang Liebl
- Chair of Microbiology, Technical University of Munich, Freising, 85350 Germany
| | - Armin Ehrenreich
- Chair of Microbiology, Technical University of Munich, Freising, 85350 Germany
| |
Collapse
|
58
|
Jiang BL, Jiang GF, Liu W, Yang LC, Yang LY, Wang L, Hang XH, Tang JL. RpfC regulates the expression of the key regulator hrpX of the hrp/T3SS system in Xanthomonas campestris pv. campestris. BMC Microbiol 2018; 18:103. [PMID: 30176800 PMCID: PMC6122198 DOI: 10.1186/s12866-018-1233-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Accepted: 08/15/2018] [Indexed: 12/02/2022] Open
Abstract
Background The Gram-negative phytopathogenic bacterium Xanthomonas campestris pv. campestris recruits the hrp/T3SS system to inject pathogenicity effector proteins into host cells and uses the rpf/DSF cell-cell signaling system to regulate the expression of virulence factors such as extracellular enzymes and polysaccharide. Whether these two systems have any connection is unknown. Methods Positive regulator candidates affecting hrpX expression were identified by sacB strategy. The transcriptional expression was determined by qRT-PCR and GUS activity analysis. Transcriptome analysis was performed by RNA deep-sequencing. The hypersensitive response (HR) was determined in the nonhost plant pepper ECW-10R and electrolyte leakage assay. Results Mutation of the gene encoding the sensor RpfC of the rpf/DSF system significantly reduced the expression of hrpX, the key regulator of the hrp/T3SS system, all of the genes in the hrp cluster and most reported type III effector genes. Mutation of rpfG did not affect the expression of hrpX. The rpfC mutant showed a delayed and weakened HR induction. Conclusions RpfC positively regulates the expression of hrpX independent of RpfG, showing a complex regulatory network linking the rpf/DSF and hrp/T3SS systems. Electronic supplementary material The online version of this article (10.1186/s12866-018-1233-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Bo-Le Jiang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, 100 Daxue Road, Nanning, 530004, Guangxi, China
| | - Guo-Feng Jiang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, 100 Daxue Road, Nanning, 530004, Guangxi, China
| | - Wei Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, 100 Daxue Road, Nanning, 530004, Guangxi, China
| | - Li-Chao Yang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, 100 Daxue Road, Nanning, 530004, Guangxi, China
| | - Li-Yan Yang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, 100 Daxue Road, Nanning, 530004, Guangxi, China
| | - Lin Wang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, 100 Daxue Road, Nanning, 530004, Guangxi, China
| | - Xiao-Hong Hang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, 100 Daxue Road, Nanning, 530004, Guangxi, China
| | - Ji-Liang Tang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, 100 Daxue Road, Nanning, 530004, Guangxi, China.
| |
Collapse
|
59
|
Aye SL, Fujiwara K, Doi N. A dual system using compartmentalized partnered replication for selection of arsenic-responsive transcriptional regulator. J Biochem 2018; 164:341-348. [DOI: 10.1093/jb/mvy055] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Accepted: 06/06/2018] [Indexed: 01/29/2023] Open
Affiliation(s)
- Seaim Lwin Aye
- Department of Biosciences and Informatics, Keio University, 3-14-1 Hiyoshi, Yokohama, Japan
| | - Kei Fujiwara
- Department of Biosciences and Informatics, Keio University, 3-14-1 Hiyoshi, Yokohama, Japan
| | - Nobuhide Doi
- Department of Biosciences and Informatics, Keio University, 3-14-1 Hiyoshi, Yokohama, Japan
| |
Collapse
|
60
|
Brandis G, Cao S, Hughes D. Co-evolution with recombination affects the stability of mobile genetic element insertions within gene families of Salmonella. Mol Microbiol 2018; 108:697-710. [PMID: 29603442 DOI: 10.1111/mmi.13959] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/26/2018] [Indexed: 12/14/2022]
Abstract
Bacteria can have multiple copies of a gene at separate locations on the same chromosome. Some of these gene families, including tuf (translation elongation factor EF-Tu) and rrl (ribosomal RNA), encode functions critically important for bacterial fitness. Genes within these families are known to evolve in concert using homologous recombination to transfer genetic information from one gene to another. This mechanism can counteract the detrimental effects of nucleotide sequence divergence over time. Whether such mechanisms can also protect against the potentially lethal effects of mobile genetic element insertion is not well understood. To address this we constructed two different length insertion cassettes to mimic mobile genetic elements and inserted these into various positions of the tuf and rrl genes. We measured rates of recombinational repair that removed the inserted cassette and studied the underlying mechanism. Our results indicate that homologous recombination can protect the tuf and rrl genes from inactivation by mobile genetic elements, but for insertions within shorter gene sequences the efficiency of repair is very low. Intriguingly, we found that physical distance separating genes on the chromosome directly affects the rate of recombinational repair suggesting that relative location will influence the ability of homologous recombination to maintain homogeneity.
Collapse
Affiliation(s)
- Gerrit Brandis
- Department of Medical Biochemistry and Microbiology, Box 582 Biomedical Center, Uppsala University, Uppsala, Sweden
| | - Sha Cao
- Department of Medical Biochemistry and Microbiology, Box 582 Biomedical Center, Uppsala University, Uppsala, Sweden
| | - Diarmaid Hughes
- Department of Medical Biochemistry and Microbiology, Box 582 Biomedical Center, Uppsala University, Uppsala, Sweden
| |
Collapse
|
61
|
Balikó G, Vernyik V, Karcagi I, Györfy Z, Draskovits G, Fehér T, Pósfai G. Rational Efforts to Streamline the Escherichia coliGenome. Synth Biol (Oxf) 2018. [DOI: 10.1002/9783527688104.ch4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Affiliation(s)
- Gabriella Balikó
- Biological Research Centre of the Hungarian Academy of Sciences; Institute of Biochemistry, Synthetic and Systems Biology Unit; Temesvari krt. 62 Szeged 6726 Hungary
| | - Viktor Vernyik
- Biological Research Centre of the Hungarian Academy of Sciences; Institute of Biochemistry, Synthetic and Systems Biology Unit; Temesvari krt. 62 Szeged 6726 Hungary
| | - Ildikó Karcagi
- Biological Research Centre of the Hungarian Academy of Sciences; Institute of Biochemistry, Synthetic and Systems Biology Unit; Temesvari krt. 62 Szeged 6726 Hungary
| | - Zsuzsanna Györfy
- Biological Research Centre of the Hungarian Academy of Sciences; Institute of Biochemistry, Synthetic and Systems Biology Unit; Temesvari krt. 62 Szeged 6726 Hungary
| | - Gábor Draskovits
- Biological Research Centre of the Hungarian Academy of Sciences; Institute of Biochemistry, Synthetic and Systems Biology Unit; Temesvari krt. 62 Szeged 6726 Hungary
| | - Tamás Fehér
- Biological Research Centre of the Hungarian Academy of Sciences; Institute of Biochemistry, Synthetic and Systems Biology Unit; Temesvari krt. 62 Szeged 6726 Hungary
| | - György Pósfai
- Biological Research Centre of the Hungarian Academy of Sciences; Institute of Biochemistry, Synthetic and Systems Biology Unit; Temesvari krt. 62 Szeged 6726 Hungary
| |
Collapse
|
62
|
König E, Zerbini F, Zanella I, Fraccascia D, Grandi G. Multiple Stepwise Gene Knockout Using CRISPR/Cas9 in Escherichia coli. Bio Protoc 2018; 8:e2688. [PMID: 34179238 PMCID: PMC8203979 DOI: 10.21769/bioprotoc.2688] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Revised: 12/24/2017] [Accepted: 12/25/2017] [Indexed: 11/02/2022] Open
Abstract
With the recent implementation of the CRISPR/Cas9 technology as a standard tool for genome editing, laboratories all over the world are undergoing one of the biggest advancements in molecular biology since PCR. The key advantage of this method is its simplicity and universal applicability for species of any phylum. Of particular interest is the extensively studied Gram-negative bacterium Escherichia coli, as it is considered as the workhorse for both research and industrial purposes. Here, we present a simple, robust and effective protocol using the CRISPR/Cas9 system in combination with the λ Red machinery for gene knockout in E. coli. Crucial in our procedure is the use of a double-stranded donor DNA and a curing strategy for removal of the guide RNA encoding plasmid that allows starting a new mutation after only two working days. Our protocol allows multiple, stepwise gene knockout strains with high mutagenesis efficiencies applicable for high-throughput approaches.
Collapse
Affiliation(s)
- Enrico König
- Synthetic and Structural Vaccinology Unit, CIBIO, University of Trento, Via Sommarive, 9, Trento, Italy
| | - Francesca Zerbini
- Synthetic and Structural Vaccinology Unit, CIBIO, University of Trento, Via Sommarive, 9, Trento, Italy
| | - Ilaria Zanella
- Synthetic and Structural Vaccinology Unit, CIBIO, University of Trento, Via Sommarive, 9, Trento, Italy
| | - Davide Fraccascia
- Synthetic and Structural Vaccinology Unit, CIBIO, University of Trento, Via Sommarive, 9, Trento, Italy
| | - Guido Grandi
- Synthetic and Structural Vaccinology Unit, CIBIO, University of Trento, Via Sommarive, 9, Trento, Italy
| |
Collapse
|
63
|
Lenz O, Lauterbach L, Frielingsdorf S. O2-tolerant [NiFe]-hydrogenases of Ralstonia eutropha H16: Physiology, molecular biology, purification, and biochemical analysis. Methods Enzymol 2018; 613:117-151. [DOI: 10.1016/bs.mie.2018.10.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/08/2022]
|
64
|
Praski Alzrigat L, Huseby DL, Brandis G, Hughes D. Fitness cost constrains the spectrum of marR mutations in ciprofloxacin-resistant Escherichia coli. J Antimicrob Chemother 2017; 72:3016-3024. [PMID: 28962020 PMCID: PMC5890708 DOI: 10.1093/jac/dkx270] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Revised: 06/12/2017] [Accepted: 07/07/2017] [Indexed: 12/26/2022] Open
Abstract
OBJECTIVES To determine whether the spectrum of mutations in marR in ciprofloxacin-resistant clinical isolates of Escherichia coli shows evidence of selection bias, either to reduce fitness costs, or to increase drug resistance. MarR is a repressor protein that regulates, via MarA, expression of the Mar regulon, including the multidrug efflux pump AcrAB-TolC. METHODS Isogenic strains carrying 36 different marR alleles identified in resistant clinical isolates, or selected for resistance in vitro, were constructed. Drug susceptibility and relative fitness in growth competition assays were measured for all strains. The expression level of marA, and of various efflux pump components, as a function of specific mutations in marR, was measured by qPCR. RESULTS The spectrum of genetic alterations in marR in clinical isolates is strongly biased against inactivating mutations. In general, the alleles found in clinical isolates conferred a lower level of resistance and imposed a lower growth fitness cost than mutations selected in vitro. The level of expression of MarA correlated well with the MIC of ciprofloxacin. This supports the functional connection between mutations in marR and reduced susceptibility to ciprofloxacin. CONCLUSIONS Mutations in marR selected in ciprofloxacin-resistant clinical isolates are strongly biased against inactivating mutations. Selection favours mutant alleles that have the lowest fitness costs, even though these cause only modest reductions in drug susceptibility. This suggests that selection for high relative fitness is more important than selection for increased resistance in determining which alleles of marR will be selected in resistant clinical isolates.
Collapse
Affiliation(s)
- Lisa Praski Alzrigat
- Department of Medical Biochemistry and Microbiology, Uppsala University, Biomedical Center Box 582, Husargatan 3, S-75123 Uppsala, Sweden
| | - Douglas L Huseby
- Department of Medical Biochemistry and Microbiology, Uppsala University, Biomedical Center Box 582, Husargatan 3, S-75123 Uppsala, Sweden
| | - Gerrit Brandis
- Department of Medical Biochemistry and Microbiology, Uppsala University, Biomedical Center Box 582, Husargatan 3, S-75123 Uppsala, Sweden
| | - Diarmaid Hughes
- Department of Medical Biochemistry and Microbiology, Uppsala University, Biomedical Center Box 582, Husargatan 3, S-75123 Uppsala, Sweden
| |
Collapse
|
65
|
Kostner D, Rachinger M, Liebl W, Ehrenreich A. Markerless deletion of putative alanine dehydrogenase genes in Bacillus licheniformis using a codBA-based counterselection technique. Microbiology (Reading) 2017; 163:1532-1539. [DOI: 10.1099/mic.0.000544] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- David Kostner
- Department of Microbiology, Technical University of Munich, Freising, Germany
| | - Michael Rachinger
- Department of Microbiology, Technical University of Munich, Freising, Germany
- Present address: AB Enzymes GmbH, Darmstadt, Germany
| | - Wolfgang Liebl
- Department of Microbiology, Technical University of Munich, Freising, Germany
| | - Armin Ehrenreich
- Department of Microbiology, Technical University of Munich, Freising, Germany
| |
Collapse
|
66
|
Choe Y, Park J, Yu JE, Oh JI, Kim S, Kang HY. Edwardsiella piscicida lacking the cyclic AMP receptor protein (Crp) is avirulent and immunogenic in fish. FISH & SHELLFISH IMMUNOLOGY 2017; 68:243-250. [PMID: 28668485 DOI: 10.1016/j.fsi.2017.06.060] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Revised: 06/20/2017] [Accepted: 06/26/2017] [Indexed: 06/07/2023]
Abstract
Edwardsiella piscicida is a Gram-negative pathogen that generally causes lethal septicemia in marine and freshwater fish. We generated a E. piscicida CK216 Δcrp mutant to investigate various biological roles related to this organism, including pathogenesis. Lack of Crp in CK216 was demonstrated by immunoblotting using a Crp-specific antibody. Compared to the parental strain, the mutant exhibited changes in three biochemical phenotypes, including ornithine decarboxylation, citrate utilization, and H2S production. Complementation of crp deletion in trans rescued the phenotype of the parental strain. This study proved that hemolytic activity in E. piscicida is controlled by Crp. In addition, significantly reduced motility of E. piscicida CK216 was observed, which resulted from a lack of flagella synthesis. To examine the virulence in fish, E. piscicida cells were injected into the goldfish (Carassius auratus) via intraperitoneal route. The LD50 of CK216 was 9.25 × 108 CFU, while that of the CK108 parental strain was 9.24 × 105 CFU, attenuated 1000 fold in goldfish. Fish immunized with CK216 elicited IgM responses. Moreover, 80% of goldfish immunized with 1 × 106 CFU survived after administration of a lethal dose (1 × 107 CFU) of virulent E. piscicida CK41, suggesting the potential for E. piscicida CK216 to serve as a live attenuated vaccine in aquaculture.
Collapse
Affiliation(s)
- Yunjeong Choe
- Department of Microbiology, College of Natural Sciences, Pusan National University, Busan 46241, South Korea
| | - Junmo Park
- Department of Microbiology, College of Natural Sciences, Pusan National University, Busan 46241, South Korea
| | - Jong Earn Yu
- Department of Microbiology, College of Natural Sciences, Pusan National University, Busan 46241, South Korea
| | - Jeong-Il Oh
- Department of Microbiology, College of Natural Sciences, Pusan National University, Busan 46241, South Korea
| | - Suhkmann Kim
- Department of Chemistry, College of Natural Sciences, Pusan National University, Busan 46241, South Korea
| | - Ho Young Kang
- Department of Microbiology, College of Natural Sciences, Pusan National University, Busan 46241, South Korea.
| |
Collapse
|
67
|
The unusual cellulose utilization system of the aerobic soil bacterium Cytophaga hutchinsonii. Appl Microbiol Biotechnol 2017; 101:7113-7127. [PMID: 28849247 DOI: 10.1007/s00253-017-8467-2] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Accepted: 08/05/2017] [Indexed: 10/19/2022]
Abstract
Cellulolytic microorganisms play important roles in global carbon cycling and have evolved diverse strategies to digest cellulose. Some are 'generous,' releasing soluble sugars from cellulose extracellularly to feed both themselves and their neighbors. The gliding soil bacterium Cytophaga hutchinsonii exhibits a more 'selfish' strategy. It digests crystalline cellulose using cell-associated cellulases and releases little soluble sugar outside of the cell. The mechanism of C. hutchinsonii cellulose utilization is still poorly understood. In this review, we discuss novel aspects of the C. hutchinsonii cellulolytic system. Recently developed genetic manipulation tools allowed the identification of proteins involved in C. hutchinsonii cellulose utilization. These include periplasmic and cell-surface endoglucanases and novel cellulose-binding proteins. The recently discovered type IX secretion system is needed for cellulose utilization and appears to deliver some of the cellulolytic enzymes and other proteins to the cell surface. The requirement for periplasmic endoglucanases for cellulose utilization is unusual and suggests that cello-oligomers must be imported across the outer membrane before being further digested. Cellobiohydrolases or other predicted processive cellulases that play important roles in many other cellulolytic bacteria appear to be absent in C. hutchinsonii. Cells of C. hutchinsonii attach to and glide along cellulose fibers, which may allow them to find sites most amenable to attack. A model of C. hutchinsonii cellulose utilization summarizing recent progress is proposed.
Collapse
|
68
|
Establishment of a markerless gene deletion system in Chromohalobacter salexigens DSM 3043. Extremophiles 2017; 21:839-850. [DOI: 10.1007/s00792-017-0946-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Accepted: 06/17/2017] [Indexed: 01/18/2023]
|
69
|
Scott TA, Heine D, Qin Z, Wilkinson B. An L-threonine transaldolase is required for L-threo-β-hydroxy-α-amino acid assembly during obafluorin biosynthesis. Nat Commun 2017; 8:15935. [PMID: 28649989 PMCID: PMC5490192 DOI: 10.1038/ncomms15935] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Accepted: 05/15/2017] [Indexed: 12/15/2022] Open
Abstract
β-Lactone natural products occur infrequently in nature but possess a variety of potent and valuable biological activities. They are commonly derived from β-hydroxy-α-amino acids, which are themselves valuable chiral building blocks for chemical synthesis and precursors to numerous important medicines. However, despite a number of excellent synthetic methods for their asymmetric synthesis, few effective enzymatic tools exist for their preparation. Here we report cloning of the biosynthetic gene cluster for the β-lactone antibiotic obafluorin and delineate its biosynthetic pathway. We identify a nonribosomal peptide synthetase with an unusual domain architecture and an L-threonine:4-nitrophenylacetaldehyde transaldolase responsible for (2S,3R)-2-amino-3-hydroxy-4-(4-nitrophenyl)butanoate biosynthesis. Phylogenetic analysis sheds light on the evolutionary origin of this rare enzyme family and identifies further gene clusters encoding L-threonine transaldolases. We also present preliminary data suggesting that L-threonine transaldolases might be useful for the preparation of L-threo-β-hydroxy-α-amino acids.
Collapse
Affiliation(s)
- Thomas A. Scott
- Department of Molecular Microbiology, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK
| | - Daniel Heine
- Department of Molecular Microbiology, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK
| | - Zhiwei Qin
- Department of Molecular Microbiology, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK
| | - Barrie Wilkinson
- Department of Molecular Microbiology, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK
| |
Collapse
|
70
|
Signal peptide-dependent protein translocation pathway is crucial for the sucrose sensitivity of SacB-expressing Escherichia coli. Biochem Eng J 2017. [DOI: 10.1016/j.bej.2017.03.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
71
|
Zerbini F, Zanella I, Fraccascia D, König E, Irene C, Frattini LF, Tomasi M, Fantappiè L, Ganfini L, Caproni E, Parri M, Grandi A, Grandi G. Large scale validation of an efficient CRISPR/Cas-based multi gene editing protocol in Escherichia coli. Microb Cell Fact 2017; 16:68. [PMID: 28438207 PMCID: PMC5404680 DOI: 10.1186/s12934-017-0681-1] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Accepted: 04/12/2017] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND The exploitation of the CRISPR/Cas9 machinery coupled to lambda (λ) recombinase-mediated homologous recombination (recombineering) is becoming the method of choice for genome editing in E. coli. First proposed by Jiang and co-workers, the strategy has been subsequently fine-tuned by several authors who demonstrated, by using few selected loci, that the efficiency of mutagenesis (number of mutant colonies over total number of colonies analyzed) can be extremely high (up to 100%). However, from published data it is difficult to appreciate the robustness of the technology, defined as the number of successfully mutated loci over the total number of targeted loci. This information is particularly relevant in high-throughput genome editing, where repetition of experiments to rescue missing mutants would be impractical. This work describes a "brute force" validation activity, which culminated in the definition of a robust, simple and rapid protocol for single or multiple gene deletions. RESULTS We first set up our own version of the CRISPR/Cas9 protocol and then we evaluated the mutagenesis efficiency by changing different parameters including sequence of guide RNAs, length and concentration of donor DNAs, and use of single stranded and double stranded donor DNAs. We then validated the optimized conditions targeting 78 "dispensable" genes. This work led to the definition of a protocol, featuring the use of double stranded synthetic donor DNAs, which guarantees mutagenesis efficiencies consistently higher than 10% and a robustness of 100%. The procedure can be applied also for simultaneous gene deletions. CONCLUSIONS This work defines for the first time the robustness of a CRISPR/Cas9-based protocol based on a large sample size. Since the technical solutions here proposed can be applied to other similar procedures, the data could be of general interest for the scientific community working on bacterial genome editing and, in particular, for those involved in synthetic biology projects requiring high throughput procedures.
Collapse
Affiliation(s)
- Francesca Zerbini
- Synthetic and Structural Vaccinology Unit, CIBIO, University of Trento, Via Sommarive, 9, Povo, 38123 Trento, Italy
| | - Ilaria Zanella
- Synthetic and Structural Vaccinology Unit, CIBIO, University of Trento, Via Sommarive, 9, Povo, 38123 Trento, Italy
| | - Davide Fraccascia
- Synthetic and Structural Vaccinology Unit, CIBIO, University of Trento, Via Sommarive, 9, Povo, 38123 Trento, Italy
| | - Enrico König
- Synthetic and Structural Vaccinology Unit, CIBIO, University of Trento, Via Sommarive, 9, Povo, 38123 Trento, Italy
| | - Carmela Irene
- Synthetic and Structural Vaccinology Unit, CIBIO, University of Trento, Via Sommarive, 9, Povo, 38123 Trento, Italy
| | - Luca F. Frattini
- Synthetic and Structural Vaccinology Unit, CIBIO, University of Trento, Via Sommarive, 9, Povo, 38123 Trento, Italy
| | - Michele Tomasi
- Synthetic and Structural Vaccinology Unit, CIBIO, University of Trento, Via Sommarive, 9, Povo, 38123 Trento, Italy
| | - Laura Fantappiè
- Synthetic and Structural Vaccinology Unit, CIBIO, University of Trento, Via Sommarive, 9, Povo, 38123 Trento, Italy
| | - Luisa Ganfini
- Synthetic and Structural Vaccinology Unit, CIBIO, University of Trento, Via Sommarive, 9, Povo, 38123 Trento, Italy
| | - Elena Caproni
- Synthetic and Structural Vaccinology Unit, CIBIO, University of Trento, Via Sommarive, 9, Povo, 38123 Trento, Italy
| | - Matteo Parri
- Toscana Life Sciences Scientific Park, Via Fiorentina, 1, 53100 Siena, Italy
| | - Alberto Grandi
- Toscana Life Sciences Scientific Park, Via Fiorentina, 1, 53100 Siena, Italy
| | - Guido Grandi
- Synthetic and Structural Vaccinology Unit, CIBIO, University of Trento, Via Sommarive, 9, Povo, 38123 Trento, Italy
| |
Collapse
|
72
|
Abstract
This introductory chapter provides a brief historical survey of the key elements incorporated into commonly used E. coli-based expression systems. The highest impact in expression technology is associated with innovations that were based on extensively studied biological systems, and where the tools were widely distributed in the academic community.
Collapse
Affiliation(s)
- Opher Gileadi
- Structural Genomics Consortium, University of Oxford, Old Road Campus Research Building, Roosevelt Drive, Headington, Oxford, OX3 7DQ, UK.
| |
Collapse
|
73
|
Sato T, Inoue K, Sakurai H, Nagashima KVP. Effects of the deletion of hup genes encoding the uptake hydrogenase on the activity of hydrogen production in the purple photosynthetic bacterium Rubrivivax gelatinosus IL144. J GEN APPL MICROBIOL 2017; 63:274-279. [DOI: 10.2323/jgam.2017.01.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- Takeshi Sato
- Department of Biological Sciences, Kanagawa University
| | - Kazuhito Inoue
- Department of Biological Sciences, Kanagawa University
- Research Institute for Photobiological Hydrogen Production, Kanagawa University
| | - Hidehiro Sakurai
- Research Institute for Photobiological Hydrogen Production, Kanagawa University
| | | |
Collapse
|
74
|
Sheng L, Kovács K, Winzer K, Zhang Y, Minton NP. Development and implementation of rapid metabolic engineering tools for chemical and fuel production in Geobacillus thermoglucosidasius NCIMB 11955. BIOTECHNOLOGY FOR BIOFUELS 2017; 10:5. [PMID: 28066509 PMCID: PMC5210280 DOI: 10.1186/s13068-016-0692-x] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Accepted: 12/17/2016] [Indexed: 05/20/2023]
Abstract
BACKGROUND The thermophile Geobacillus thermoglucosidasius has considerable attraction as a chassis for the production of chemicals and fuels. It utilises a wide range of sugars and oligosaccharides typical of those derived from lignocellulose and grows at elevated temperatures. The latter improves the rate of feed conversion, reduces fermentation cooling costs and minimises the risks of contamination. Full exploitation of its potential has been hindered by a dearth of effective gene tools. RESULTS Here we designed and tested a collection of vectors (pMTL60000 series) in G. thermoglucosidasius NCIMB 11955 equivalent to the widely used clostridial pMTL80000 modular plasmid series. By combining a temperature-sensitive replicon and a heterologous pyrE gene from Geobacillus kaustophilus as a counter-selection marker, a highly effective and rapid gene knock-out/knock-in system was established. Its use required the initial creation of uracil auxotroph through deletion of pyrE using allele-coupled exchange (ACE) and selection for resistance to 5-fluoroorotic acid. The turnaround time for the construction of further mutants in this pyrE minus strain was typically 5 days. Following the creation of the desired mutant, the pyrE allele was restored to wild type, within 3 days, using ACE and selection for uracil prototrophy. Concomitant with this process, cargo DNA (pheB) could be readily integrated at the pyrE locus. The system's utility was demonstrated through the generation in just 30 days of three independently engineered strains equivalent to a previously constructed ethanol production strain, TM242. This involved the creation of two in-frame deletions (ldh and pfl) and the replacement of a promoter region of a third gene (pdh) with an up-regulated variant. In no case did the production of ethanol match that of TM242. Genome sequencing of the parental strain, TM242, and constructed mutant derivatives suggested that NCIMB 11955 is prone to the emergence of random mutations which can dramatically affect phenotype. CONCLUSIONS The procedures and principles developed for clostridia, based on the use of pyrE alleles and ACE, may be readily deployed in G. thermoglucosidasius. Marker-less, in-frame deletion mutants can be rapidly generated in 5 days. However, ancillary mutations frequently arise, which can influence phenotype. This observation emphasises the need for improved screening and selection procedures at each step of the engineering processes, based on the generation of multiple, independent strains and whole-genome sequencing.
Collapse
Affiliation(s)
- Lili Sheng
- Clostridia Research Group, BBSRC/EPSRC Synthetic Biology Research Centre (SBRC), School of Life Sciences, University of Nottingham, University Park, Nottingham, NG7 2RD UK
| | - Katalin Kovács
- Clostridia Research Group, BBSRC/EPSRC Synthetic Biology Research Centre (SBRC), School of Life Sciences, University of Nottingham, University Park, Nottingham, NG7 2RD UK
| | - Klaus Winzer
- Clostridia Research Group, BBSRC/EPSRC Synthetic Biology Research Centre (SBRC), School of Life Sciences, University of Nottingham, University Park, Nottingham, NG7 2RD UK
| | - Ying Zhang
- Clostridia Research Group, BBSRC/EPSRC Synthetic Biology Research Centre (SBRC), School of Life Sciences, University of Nottingham, University Park, Nottingham, NG7 2RD UK
| | - Nigel Peter Minton
- Clostridia Research Group, BBSRC/EPSRC Synthetic Biology Research Centre (SBRC), School of Life Sciences, University of Nottingham, University Park, Nottingham, NG7 2RD UK
| |
Collapse
|
75
|
Liu J, Lu SY, Orfe LH, Ren CH, Hu CQ, Call DR, Avillan JJ, Zhao Z. ExsE Is a Negative Regulator for T3SS Gene Expression in Vibrio alginolyticus. Front Cell Infect Microbiol 2016; 6:177. [PMID: 27999769 PMCID: PMC5138213 DOI: 10.3389/fcimb.2016.00177] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Accepted: 11/22/2016] [Indexed: 12/13/2022] Open
Abstract
Type III secretion systems (T3SSs) contribute to microbial pathogenesis of Vibrio species, but the regulatory mechanisms are complex. We determined if the classic ExsACDE protein-protein regulatory model from Pseudomonas aeruginosa applies to Vibrio alginolyticus. Deletion mutants in V. alginolyticus demonstrated that, as expected, the T3SS is positively regulated by ExsA and ExsC and negatively regulated by ExsD and ExsE. Interestingly, deletion of exsE enhanced the ability of V. alginolyticus to induce host-cell death while cytotoxicity was inhibited by in trans complementation of this gene in a wild-type strain, a result that differs from a similar experiment with Vibrio parahaemolyticus ExsE. We further showed that ExsE is a secreted protein that does not contribute to adhesion to Fathead minnow epithelial cells. An in vitro co-immunoprecipitation assay confirmed that ExsE binds to ExsC to exert negative regulatory effect on T3SS genes. T3SS in V. alginolyticus can be activated in the absence of physical contact with host cells and a separate regulatory pathway appears to contribute to the regulation of ExsA. Consequently, like ExsE from P. aeruginosa, ExsE is a negative regulator for T3SS gene expression in V. alginolyticus. Unlike the V. parahaemolyticus orthologue, however, deletion of exsE from V. alginolyticus enhanced in vitro cytotoxicity.
Collapse
Affiliation(s)
- Jinxin Liu
- Institute of Marine Biology, College of Oceanography, Hohai UniversityNanjing, China; Paul G. Allen School for Global Animal Health, Washington State UniversityPullman, WA, USA
| | - Shao-Yeh Lu
- Paul G. Allen School for Global Animal Health, Washington State University Pullman, WA, USA
| | - Lisa H Orfe
- Paul G. Allen School for Global Animal Health, Washington State University Pullman, WA, USA
| | - Chun-Hua Ren
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences Guangzhou, China
| | - Chao-Qun Hu
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences Guangzhou, China
| | - Douglas R Call
- Paul G. Allen School for Global Animal Health, Washington State University Pullman, WA, USA
| | - Johannetsy J Avillan
- Paul G. Allen School for Global Animal Health, Washington State University Pullman, WA, USA
| | - Zhe Zhao
- Institute of Marine Biology, College of Oceanography, Hohai UniversityNanjing, China; Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of SciencesGuangzhou, China
| |
Collapse
|
76
|
Liu Y, Miao J, Traore S, Kong D, Liu Y, Zhang X, Nimchuk ZL, Liu Z, Zhao B. SacB-SacR Gene Cassette As the Negative Selection Marker to Suppress Agrobacterium Overgrowth in Agrobacterium-Mediated Plant Transformation. Front Mol Biosci 2016; 3:70. [PMID: 27833912 PMCID: PMC5080373 DOI: 10.3389/fmolb.2016.00070] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Accepted: 10/07/2016] [Indexed: 11/13/2022] Open
Abstract
Agrobacterium overgrowth is a common problem in Agrobacterium-mediated plant transformation. To suppress the Agrobacterium overgrowth, various antibiotics have been used during plant tissue culture steps. The antibiotics are expensive and may adversely affect plant cell differentiation and reduce plant transformation efficiency. The SacB-SacR proteins are toxic to most Agrobacterium tumefaciens strains when they are grown on culture medium supplemented with sucrose. Therefore, SacB-SacR genes can be used as negative selection markers to suppress the overgrowth of A. tumefaciens in the plant tissue culture process. We generated a mutant A. tumefaciens strain GV2260 (recA-SacB/R) that has the SacB-SacR cassette inserted into the bacterial genome at the recA gene locus. The mutant Agrobacterium strain is sensitive to sucrose but maintains its ability to transform plant cells in both transient and stable transformation assays. We demonstrated that the mutant strain GV2260 (recA-SacB/R) can be inhibited by sucrose that reduces the overgrowth of Agrobacterium and therefore improves the plant transformation efficiency. We employed GV2260 (recA-SacB/R) to generate stable transgenic N. benthamiana plants expressing a CRISPR-Cas9 for knocking out a WRKY transcription factor.
Collapse
Affiliation(s)
- Yiming Liu
- Department of Crop and Soil Environmental Science, Virginia TechBlacksburg, VA, USA; Chinese Academy of Tropical Agricultural Sciences/Key Laboratory of Crop Gene Resources and Germplasm Enhancement in Southern China, Tropical Crops Genetic Resources Institute, Ministry of AgricultureDanzhou, China
| | - Jiamin Miao
- Department of Horticulture, Virginia Tech Blacksburg, VA, USA
| | - Sy Traore
- Department of Horticulture, Virginia Tech Blacksburg, VA, USA
| | - Danyu Kong
- Department of Horticulture, Virginia Tech Blacksburg, VA, USA
| | - Yi Liu
- Department of Horticulture, Virginia Tech Blacksburg, VA, USA
| | - Xunzhong Zhang
- Department of Crop and Soil Environmental Science, Virginia Tech Blacksburg, VA, USA
| | - Zachary L Nimchuk
- Department of Biology, University of North Carolina at Chapel Hill Chapel Hill, NC, USA
| | - Zongrang Liu
- USDA-ARS-Appalachian Fruit Research Station Kearneysville, WV, USA
| | - Bingyu Zhao
- Department of Horticulture, Virginia Tech Blacksburg, VA, USA
| |
Collapse
|
77
|
Tagel M, Tavita K, Hõrak R, Kivisaar M, Ilves H. A novel papillation assay for the identification of genes affecting mutation rate in Pseudomonas putida and other pseudomonads. Mutat Res 2016; 790:41-55. [PMID: 27447898 DOI: 10.1016/j.mrfmmm.2016.06.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Revised: 06/20/2016] [Accepted: 06/22/2016] [Indexed: 06/06/2023]
Abstract
Formation of microcolonies (papillae) permits easy visual screening of mutational events occurring in single colonies of bacteria. In this study, we have established a novel papillation assay employable in a wide range of pseudomonads including Pseudomonas aeruginosa and Pseudomonas putida for monitoring mutation frequency in distinct colonies. With the aid of this assay, we conducted a genome-wide search for the factors affecting mutation frequency in P. putida. Screening ∼27,000 transposon mutants for increased mutation frequency allowed us to identify 34 repeatedly targeted genes. In addition to genes involved in DNA replication and repair, we identified genes participating in metabolism and transport of secondary metabolites, cell motility, and cell wall synthesis. The highest effect on mutant frequency was observed when truA (tRNA pseudouridine synthase), mpl (UDP-N-acetylmuramate-alanine ligase) or gacS (multi-sensor hybrid histidine kinase) were inactivated. Inactivation of truA elevated the mutant frequency only in growing cells, while the deficiency of gacS affected mainly stationary-phase mutagenesis. Thus, our results demonstrate the feasibility of the assay for isolating mutants with elevated mutagenesis in growing as well as stationary-phase bacteria.
Collapse
Affiliation(s)
- Mari Tagel
- Institute of Molecular and Cell Biology, University of Tartu, Tartu, Estonia
| | - Kairi Tavita
- Institute of Molecular and Cell Biology, University of Tartu, Tartu, Estonia
| | - Rita Hõrak
- Institute of Molecular and Cell Biology, University of Tartu, Tartu, Estonia
| | - Maia Kivisaar
- Institute of Molecular and Cell Biology, University of Tartu, Tartu, Estonia
| | - Heili Ilves
- Institute of Molecular and Cell Biology, University of Tartu, Tartu, Estonia.
| |
Collapse
|
78
|
Mori Y, Inoue K, Ikeda K, Nakayashiki H, Higashimoto C, Ohnishi K, Kiba A, Hikichi Y. The vascular plant-pathogenic bacterium Ralstonia solanacearum produces biofilms required for its virulence on the surfaces of tomato cells adjacent to intercellular spaces. MOLECULAR PLANT PATHOLOGY 2016; 17:890-902. [PMID: 26609568 PMCID: PMC6638453 DOI: 10.1111/mpp.12335] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Revised: 10/08/2015] [Accepted: 10/13/2015] [Indexed: 05/18/2023]
Abstract
The mechanism of colonization of intercellular spaces by the soil-borne and vascular plant-pathogenic bacterium Ralstonia solanacearum strain OE1-1 after invasion into host plants remains unclear. To analyse the behaviour of OE1-1 cells in intercellular spaces, tomato leaves with the lower epidermis layers excised after infiltration with OE1-1 were observed under a scanning electron microscope. OE1-1 cells formed microcolonies on the surfaces of tomato cells adjacent to intercellular spaces, and then aggregated surrounded by an extracellular matrix, forming mature biofilm structures. Furthermore, OE1-1 cells produced mushroom-type biofilms when incubated in fluids of apoplasts including intercellular spaces, but not xylem fluids from tomato plants. This is the first report of biofilm formation by R. solanacearum on host plant cells after invasion into intercellular spaces and mushroom-type biofilms produced by R. solanacearum in vitro. Sugar application led to enhanced biofilm formation by OE1-1. Mutation of lecM encoding a lectin, RS-IIL, which reportedly exhibits affinity for these sugars, led to a significant decrease in biofilm formation. Colonization in intercellular spaces was significantly decreased in the lecM mutant, leading to a loss of virulence on tomato plants. Complementation of the lecM mutant with native lecM resulted in the recovery of mushroom-type biofilms and virulence on tomato plants. Together, our findings indicate that OE1-1 produces mature biofilms on the surfaces of tomato cells after invasion into intercellular spaces. RS-IIL may contribute to biofilm formation by OE1-1, which is required for OE1-1 virulence.
Collapse
Affiliation(s)
- Yuka Mori
- Laboratory of Plant Pathology and Biotechnology, Kochi University, Nankoku, Kochi 783-8502, Japan
| | - Kanako Inoue
- Research Center for Ultra-High Voltage Electron Microscopy, Osaka University, Mihogaoka, Ibaraki, Osaka 567-0047, Japan
| | - Kenichi Ikeda
- Graduate School of Agricultural Science, Kobe University, 1-1 Rokkodai, Nada-ku, Kobe, Hyogo 657-8501, Japan
| | - Hitoshi Nakayashiki
- Graduate School of Agricultural Science, Kobe University, 1-1 Rokkodai, Nada-ku, Kobe, Hyogo 657-8501, Japan
| | - Chikaki Higashimoto
- Laboratory of Plant Pathology and Biotechnology, Kochi University, Nankoku, Kochi 783-8502, Japan
| | - Kouhei Ohnishi
- Research Institute of Molecular Genetics, Kochi University, Nankoku, Kochi 783-8502, Japan
| | - Akinori Kiba
- Laboratory of Plant Pathology and Biotechnology, Kochi University, Nankoku, Kochi 783-8502, Japan
| | - Yasufumi Hikichi
- Laboratory of Plant Pathology and Biotechnology, Kochi University, Nankoku, Kochi 783-8502, Japan
| |
Collapse
|
79
|
Abstract
Systems metabolic engineering, which recently emerged as metabolic engineering integrated with systems biology, synthetic biology, and evolutionary engineering, allows engineering of microorganisms on a systemic level for the production of valuable chemicals far beyond its native capabilities. Here, we review the strategies for systems metabolic engineering and particularly its applications in Escherichia coli. First, we cover the various tools developed for genetic manipulation in E. coli to increase the production titers of desired chemicals. Next, we detail the strategies for systems metabolic engineering in E. coli, covering the engineering of the native metabolism, the expansion of metabolism with synthetic pathways, and the process engineering aspects undertaken to achieve higher production titers of desired chemicals. Finally, we examine a couple of notable products as case studies produced in E. coli strains developed by systems metabolic engineering. The large portfolio of chemical products successfully produced by engineered E. coli listed here demonstrates the sheer capacity of what can be envisioned and achieved with respect to microbial production of chemicals. Systems metabolic engineering is no longer in its infancy; it is now widely employed and is also positioned to further embrace next-generation interdisciplinary principles and innovation for its upgrade. Systems metabolic engineering will play increasingly important roles in developing industrial strains including E. coli that are capable of efficiently producing natural and nonnatural chemicals and materials from renewable nonfood biomass.
Collapse
Affiliation(s)
- Kyeong Rok Choi
- Metabolic and Biomolecular Engineering National Research Laboratory, Department of Chemical and Biomolecular Engineering (BK21 Plus Program), Center for Systems and Synthetic Biotechnology, Institute for the BioCentury, KAIST, Daejeon 34141, Republic of Korea
| | - Jae Ho Shin
- Metabolic and Biomolecular Engineering National Research Laboratory, Department of Chemical and Biomolecular Engineering (BK21 Plus Program), Center for Systems and Synthetic Biotechnology, Institute for the BioCentury, KAIST, Daejeon 34141, Republic of Korea
| | - Jae Sung Cho
- Metabolic and Biomolecular Engineering National Research Laboratory, Department of Chemical and Biomolecular Engineering (BK21 Plus Program), Center for Systems and Synthetic Biotechnology, Institute for the BioCentury, KAIST, Daejeon 34141, Republic of Korea
| | - Dongsoo Yang
- Metabolic and Biomolecular Engineering National Research Laboratory, Department of Chemical and Biomolecular Engineering (BK21 Plus Program), Center for Systems and Synthetic Biotechnology, Institute for the BioCentury, KAIST, Daejeon 34141, Republic of Korea
| | - Sang Yup Lee
- BioInformatics Research Center, KAIST, Daejeon 34141, Republic of Korea
- BioProcess Engineering Research Center, KAIST, Daejeon 34141, Republic of Korea
- Metabolic and Biomolecular Engineering National Research Laboratory, Department of Chemical and Biomolecular Engineering (BK21 Plus Program), Center for Systems and Synthetic Biotechnology, Institute for the BioCentury, KAIST, Daejeon 34141, Republic of Korea
| |
Collapse
|
80
|
Versatile Vectors for Efficient Mutagenesis of Bradyrhizobium diazoefficiens and Other Alphaproteobacteria. Appl Environ Microbiol 2016; 82:2791-2799. [PMID: 26921431 DOI: 10.1128/aem.04085-15] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Accepted: 02/23/2016] [Indexed: 01/24/2023] Open
Abstract
UNLABELLED Analysis of bacterial gene function commonly relies on gene disruption or replacement followed by phenotypic characterization of the resulting mutant strains. Deletion or replacement of targeted regions is commonly achieved via two homologous recombination (HR) events between the bacterial genome and a nonreplicating plasmid carrying DNA fragments flanking the region to be deleted. The counterselection of clones that have integrated the entire plasmid in their genome via a single HR event is crucial in this procedure. Various genetic tools and well-established protocols are available for this type of mutagenesis in model bacteria; however, these methods are not always efficiently applicable in less established systems. Here we describe the construction and application of versatile plasmid vectors pREDSIX and pTETSIX for marker replacement and markerless mutagenesis, respectively. Apart from an array of restriction sites optimized for cloning of GC-rich DNA fragments, the vector backbone contains a constitutively expressed gene for mCherry, enabling the rapid identification of clones originating from single or double HR events by fluorescence-assisted cell sorting (FACS). In parallel, we constructed a series of plasmids from which gene cassettes providing resistance against gentamicin, kanamycin, hygromycin B, streptomycin and spectinomycin, or tetracycline were excised for use with pREDSIX-based marker replacement mutagenesis. In proof-of-concept mutagenesis experiments, we demonstrated the potential for the use of the developed tools for gene deletion mutagenesis in the nitrogen-fixing soybean symbiont Bradyrhizobium diazoefficiens(formerly Bradyrhizobium japonicum) and three additional members of the alphaproteobacteria. IMPORTANCE Mutation and phenotypic analysis are essential to the study of gene function. Efficient mutagenesis protocols and tools are available for many bacterial species, including various model organisms; however, genetic analysis of less-well-characterized organisms is often impaired by the lack of efficient methods. Here we describe a set of novel genetic tools for facilitated mutagenesis of the nitrogen-fixing soybean symbiont Bradyrhizobium diazoefficiens and related alphaproteobacteria. We demonstrated their usefulness by generating several mutant strains lacking defined genes. Isolation of both antibiotic resistance gene-containing and markerless deletion mutants is greatly facilitated because undesired clones which contain the entire mutagenic plasmid integrated in the genome can be identified on the basis of their fluorescent phenotype derived from them Cherrygene carried by the vector backbone. The possibility to generate markerless mutants assists with the isolation of strains carrying multiple deletions, which can be crucial while studying functionally redundant genes.
Collapse
|
81
|
Brandis G, Bergman JM, Hughes D. Autoregulation of the tufB operon in Salmonella. Mol Microbiol 2016; 100:1004-16. [PMID: 26934594 DOI: 10.1111/mmi.13364] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/26/2016] [Indexed: 11/27/2022]
Abstract
In Salmonella enterica and related species, translation elongation factor EF-Tu is encoded by two widely separated but near-identical genes, tufA and tufB. Two thirds of EF-Tu is expressed from tufA with the remaining one third coming from tufB. Inactivation of tufA is partly compensated by a doubling in the amount of EF-TuB but the mechanism of this up-regulation is unknown. By experimental evolution selecting for improved growth rate in a strain with an inactive tufA we selected six different noncoding or synonymous point mutations close to the tufB start codon. Based on these results we constructed a total of 161 different point mutations around the tufB start codon, as well as tufB 3'-truncations, and measured tufB expression using tufB-yfp transcriptional and translational fusions. The expression data support the presence of two competing stem-loop structures that can form in the 5'-end of the tufB mRNA. Formation of the 'closed' structure leads to Rho-dependent transcriptional termination of the tufB mRNA. We propose a model in which translational speed is used as a sensor for EF-Tu concentration and where the expression of tufB is post-transcriptionally regulated. This model describes for the first time how expression of the most abundant Salmonella protein is autoregulated.
Collapse
Affiliation(s)
- Gerrit Brandis
- Department of Medical Biochemistry and Microbiology, Uppsala University, Biomedical Center, Box 582, SE, 75123, Uppsala, Sweden
| | - Jessica M Bergman
- Department of Medical Biochemistry and Microbiology, Uppsala University, Biomedical Center, Box 582, SE, 75123, Uppsala, Sweden
| | - Diarmaid Hughes
- Department of Medical Biochemistry and Microbiology, Uppsala University, Biomedical Center, Box 582, SE, 75123, Uppsala, Sweden
| |
Collapse
|
82
|
Vandecraen J, Monsieurs P, Mergeay M, Leys N, Aertsen A, Van Houdt R. Zinc-Induced Transposition of Insertion Sequence Elements Contributes to Increased Adaptability of Cupriavidus metallidurans. Front Microbiol 2016; 7:359. [PMID: 27047473 PMCID: PMC4803752 DOI: 10.3389/fmicb.2016.00359] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2015] [Accepted: 03/07/2016] [Indexed: 12/15/2022] Open
Abstract
Bacteria can respond to adverse environments by increasing their genomic variability and subsequently facilitating adaptive evolution. To demonstrate this, the contribution of Insertion Sequence (IS) elements to the genetic adaptation of Cupriavidus metallidurans AE126 to toxic zinc concentrations was determined. This derivative of type strain CH34, devoid of its main zinc resistance determinant, is still able to increase its zinc resistance level. Specifically, upon plating on medium supplemented with a toxic zinc concentration, resistant variants arose in which a compromised cnrYX regulatory locus caused derepression of CnrH sigma factor activity and concomitant induction of the corresponding RND-driven cnrCBA efflux system. Late-occurring zinc resistant variants likely arose in response to the selective conditions, as they were enriched in cnrYX disruptions caused by specific IS elements whose transposase expression was found to be zinc-responsive. Interestingly, deletion of cnrH, and consequently the CnrH-dependent adaptation potential, still enabled adaptation by transposition of IS elements (ISRme5 and IS1086) that provided outward-directed promoters driving cnrCBAT transcription. Finally, adaptation to zinc by IS reshuffling can also enhance the adaptation to subsequent environmental challenges. Thus, transposition of IS elements can be induced by stress conditions and play a multifaceted, pivotal role in the adaptation to these and subsequent stress conditions.
Collapse
Affiliation(s)
- Joachim Vandecraen
- Unit of Microbiology, Belgian Nuclear Research Centre (SCK•CEN)Mol, Belgium; Laboratory of Food Microbiology and Leuven Food Science and Nutrition Research Centre, Department of Microbial and Molecular Systems, Faculty of Bioscience Engineering, Katholieke Universiteit LeuvenLeuven, Belgium
| | - Pieter Monsieurs
- Unit of Microbiology, Belgian Nuclear Research Centre (SCK•CEN) Mol, Belgium
| | - Max Mergeay
- Unit of Microbiology, Belgian Nuclear Research Centre (SCK•CEN) Mol, Belgium
| | - Natalie Leys
- Unit of Microbiology, Belgian Nuclear Research Centre (SCK•CEN) Mol, Belgium
| | - Abram Aertsen
- Laboratory of Food Microbiology and Leuven Food Science and Nutrition Research Centre, Department of Microbial and Molecular Systems, Faculty of Bioscience Engineering, Katholieke Universiteit Leuven Leuven, Belgium
| | - Rob Van Houdt
- Unit of Microbiology, Belgian Nuclear Research Centre (SCK•CEN) Mol, Belgium
| |
Collapse
|
83
|
Brandis G, Hughes D. The Selective Advantage of Synonymous Codon Usage Bias in Salmonella. PLoS Genet 2016; 12:e1005926. [PMID: 26963725 PMCID: PMC4786093 DOI: 10.1371/journal.pgen.1005926] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Accepted: 02/18/2016] [Indexed: 11/18/2022] Open
Abstract
The genetic code in mRNA is redundant, with 61 sense codons translated into 20 different amino acids. Individual amino acids are encoded by up to six different codons but within codon families some are used more frequently than others. This phenomenon is referred to as synonymous codon usage bias. The genomes of free-living unicellular organisms such as bacteria have an extreme codon usage bias and the degree of bias differs between genes within the same genome. The strong positive correlation between codon usage bias and gene expression levels in many microorganisms is attributed to selection for translational efficiency. However, this putative selective advantage has never been measured in bacteria and theoretical estimates vary widely. By systematically exchanging optimal codons for synonymous codons in the tuf genes we quantified the selective advantage of biased codon usage in highly expressed genes to be in the range 0.2-4.2 x 10-4 per codon per generation. These data quantify for the first time the potential for selection on synonymous codon choice to drive genome-wide sequence evolution in bacteria, and in particular to optimize the sequences of highly expressed genes. This quantification may have predictive applications in the design of synthetic genes and for heterologous gene expression in biotechnology.
Collapse
Affiliation(s)
- Gerrit Brandis
- Department of Medical Biochemistry and Microbiology, Uppsala University, Biomedical Center, Uppsala, Sweden
| | - Diarmaid Hughes
- Department of Medical Biochemistry and Microbiology, Uppsala University, Biomedical Center, Uppsala, Sweden
- * E-mail:
| |
Collapse
|
84
|
Abstract
This chapter revisits the historical development and outcome of studies focused on the transmissible, extrachromosomal genetic elements called plasmids. Early work on plasmids involved structural and genetic mapping of these molecules, followed by the development of an understanding of how plasmids replicate and segregate during cell division. The intriguing property of plasmid transmission between bacteria and between bacteria and higher cells has received considerable attention. The utilitarian aspects of plasmids are described, including examples of various plasmid vector systems. This chapter also discusses the functional attributes of plasmids needed for their persistence and survival in nature and in man-made environments. The term plasmid biology was first conceived at the Fallen Leaf Lake Conference on Promiscuous Plasmids, 1990, Lake Tahoe, California. The International Society for Plasmid Biology was established in 2004 (www.ISPB.org).
Collapse
|
85
|
Improvements to a Markerless Allelic Exchange System for Bacillus anthracis. PLoS One 2015; 10:e0142758. [PMID: 26624016 PMCID: PMC4666636 DOI: 10.1371/journal.pone.0142758] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Accepted: 10/20/2015] [Indexed: 11/25/2022] Open
Abstract
A system was previously developed for conducting I-SceI-mediated allelic exchange in Bacillus anthracis. In this system, recombinational loss of a chromosomally-integrated allelic exchange vector is stimulated by creation of a double-stranded break within the vector by the homing endonuclease I-SceI. Although this system is reasonably efficient and represents an improvement in the tools available for allelic exchange in B. anthracis, researchers are nonetheless required to “pick and patch” colonies in order to identify candidate "exchangeants." In the present study, a number of improvements have been made to this system: 1) an improved I-SceI-producing plasmid includes oriT so that both plasmids can now be introduced by conjugation, thus avoiding the need for preparing electro-competent cells of each integration intermediate; 2) antibiotic markers have been changed to allow the use of the system in select agent strains; and 3) both plasmids have been marked with fluorescent proteins, allowing the visualization of plasmid segregation on a plate and obviating the need for “picking and patching.” These modifications have made the process easier, faster, and more efficient, allowing for parallel construction of larger numbers of mutant strains. Using this improved system, the genes encoding the tripartite anthrax toxin were deleted singly and in combination from plasmid pXO1 of Sterne strain 34F2. In the course of this study, we determined that DNA transfer to B. anthracis could be accomplished by conjugation directly from a methylation-competent E. coli strain.
Collapse
|
86
|
Abstract
Allelic exchange is an efficient method of bacterial genome engineering. This protocol describes the use of this technique to make gene knockouts and knock-ins, as well as single-nucleotide insertions, deletions and substitutions, in Pseudomonas aeruginosa. Unlike other approaches to allelic exchange, this protocol does not require heterologous recombinases to insert or excise selective markers from the target chromosome. Rather, positive and negative selections are enabled solely by suicide vector-encoded functions and host cell proteins. Here, mutant alleles, which are flanked by regions of homology to the recipient chromosome, are synthesized in vitro and then cloned into allelic exchange vectors using standard procedures. These suicide vectors are then introduced into recipient cells by conjugation. Homologous recombination then results in antibiotic-resistant single-crossover mutants in which the plasmid has integrated site-specifically into the chromosome. Subsequently, unmarked double-crossover mutants are isolated directly using sucrose-mediated counter-selection. This two-step process yields seamless mutations that are precise to a single base pair of DNA. The entire procedure requires ∼2 weeks.
Collapse
|
87
|
Morra R, Shankar J, Robinson CJ, Halliwell S, Butler L, Upton M, Hay S, Micklefield J, Dixon N. Dual transcriptional-translational cascade permits cellular level tuneable expression control. Nucleic Acids Res 2015; 44:e21. [PMID: 26405200 PMCID: PMC4756846 DOI: 10.1093/nar/gkv912] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2015] [Accepted: 08/28/2015] [Indexed: 12/03/2022] Open
Abstract
The ability to induce gene expression in a small molecule dependent manner has led to many applications in target discovery, functional elucidation and bio-production. To date these applications have relied on a limited set of protein-based control mechanisms operating at the level of transcription initiation. The discovery, design and reengineering of riboswitches offer an alternative means by which to control gene expression. Here we report the development and characterization of a novel tunable recombinant expression system, termed RiboTite, which operates at both the transcriptional and translational level. Using standard inducible promoters and orthogonal riboswitches, a multi-layered modular genetic control circuit was developed to control the expression of both bacteriophage T7 RNA polymerase and recombinant gene(s) of interest. The system was benchmarked against a number of commonly used E. coli expression systems, and shows tight basal control, precise analogue tunability of gene expression at the cellular level, dose-dependent regulation of protein production rates over extended growth periods and enhanced cell viability. This novel system expands the number of E. coli expression systems for use in recombinant protein production and represents a major performance enhancement over and above the most widely used expression systems.
Collapse
Affiliation(s)
- Rosa Morra
- Manchester Institute of Biotechnology, University of Manchester, Manchester, M13 9PL, UK Faculty of Life Sciences, University of Manchester, Manchester, M13 9PL, UK
| | - Jayendra Shankar
- Manchester Institute of Biotechnology, University of Manchester, Manchester, M13 9PL, UK Faculty of Life Sciences, University of Manchester, Manchester, M13 9PL, UK School of Chemistry, University of Manchester, Manchester, M13 9PL, UK
| | - Christopher J Robinson
- Manchester Institute of Biotechnology, University of Manchester, Manchester, M13 9PL, UK School of Chemistry, University of Manchester, Manchester, M13 9PL, UK
| | - Samantha Halliwell
- Manchester Institute of Biotechnology, University of Manchester, Manchester, M13 9PL, UK Faculty of Life Sciences, University of Manchester, Manchester, M13 9PL, UK
| | - Lisa Butler
- Manchester Institute of Biotechnology, University of Manchester, Manchester, M13 9PL, UK Faculty of Life Sciences, University of Manchester, Manchester, M13 9PL, UK
| | - Mathew Upton
- School of Biomedical & Healthcare Sciences, Plymouth University Peninsula Schools of Medicine and Dentistry, Plymouth, PL4 8AA, UK
| | - Sam Hay
- Manchester Institute of Biotechnology, University of Manchester, Manchester, M13 9PL, UK Faculty of Life Sciences, University of Manchester, Manchester, M13 9PL, UK
| | - Jason Micklefield
- Manchester Institute of Biotechnology, University of Manchester, Manchester, M13 9PL, UK School of Chemistry, University of Manchester, Manchester, M13 9PL, UK SYNBIOCHEM, University of Manchester, Manchester, M13 9PL, UK
| | - Neil Dixon
- Manchester Institute of Biotechnology, University of Manchester, Manchester, M13 9PL, UK Faculty of Life Sciences, University of Manchester, Manchester, M13 9PL, UK School of Chemistry, University of Manchester, Manchester, M13 9PL, UK SYNBIOCHEM, University of Manchester, Manchester, M13 9PL, UK
| |
Collapse
|
88
|
Scarless Genome Editing and Stable Inducible Expression Vectors for Geobacter sulfurreducens. Appl Environ Microbiol 2015; 81:7178-86. [PMID: 26253675 PMCID: PMC4579418 DOI: 10.1128/aem.01967-15] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2015] [Accepted: 07/29/2015] [Indexed: 11/20/2022] Open
Abstract
Metal reduction by members of the Geobacteraceae is encoded by multiple gene clusters, and the study of extracellular electron transfer often requires biofilm development on surfaces. Genetic tools that utilize polar antibiotic cassette insertions limit mutant construction and complementation. In addition, unstable plasmids create metabolic burdens that slow growth, and the presence of antibiotics such as kanamycin can interfere with the rate and extent of Geobacter biofilm growth. We report here genetic system improvements for the model anaerobic metal-reducing bacterium Geobacter sulfurreducens. A motile strain of G. sulfurreducens was constructed by precise removal of a transposon interrupting the fgrM flagellar regulator gene using SacB/sucrose counterselection, and Fe(III) citrate reduction was eliminated by deletion of the gene encoding the inner membrane cytochrome imcH. We also show that RK2-based plasmids were maintained in G. sulfurreducens for over 15 generations in the absence of antibiotic selection in contrast to unstable pBBR1 plasmids. Therefore, we engineered a series of new RK2 vectors containing native constitutive Geobacter promoters, and modified one of these promoters for VanR-dependent induction by the small aromatic carboxylic acid vanillate. Inducible plasmids fully complemented ΔimcH mutants for Fe(III) reduction, Mn(IV) oxide reduction, and growth on poised electrodes. A real-time, high-throughput Fe(III) citrate reduction assay is described that can screen numerous G. sulfurreducens strain constructs simultaneously and shows the sensitivity of imcH expression by the vanillate system. These tools will enable more sophisticated genetic studies in G. sulfurreducens without polar insertion effects or need for multiple antibiotics.
Collapse
|
89
|
Ji Z, Shang J, Li Y, Wang S, Shi H. Live attenuated Salmonella enterica serovar Choleraesuis vaccine vector displaying regulated delayed attenuation and regulated delayed antigen synthesis to confer protection against Streptococcus suis in mice. Vaccine 2015; 33:4858-67. [PMID: 26238722 DOI: 10.1016/j.vaccine.2015.07.063] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2015] [Revised: 07/18/2015] [Accepted: 07/21/2015] [Indexed: 01/29/2023]
Abstract
Salmonella enterica serotype Choleraesuis (S. Choleraesuis) and Streptococcus suis (S. suis) are important swine pathogens. Development of a safe and effective attenuated S. Choleraesuis vaccine vector would open a new window to prevent and control pig diseases. To achieve this goal, the mannose and arabinose regulated delayed attenuated systems (RDAS), Δpmi and ΔPcrp::TT araC PBADcrp, were introduced into the wild type S. Choleraesuis strain C78-3. We also introduced ΔrelA::araC PBADlacI TT to achieve regulated delayed antigen synthesis and ΔasdA to constitute a balanced-lethal plasmid system. The safety and immunogenicity of the resulted RDAS S. Choleraesuis strain rSC0011 carrying 6-phosphogluconate dehydrogenase (6-PGD) of S. suis serotype 2 (SS2) were evaluated in vitro and in vivo. Compared with the wild type parent strain C78-3 and vaccine strain C500, a live attenuated S. Choleraesuis vaccine licensed for piglet in China, the results showed that the survival curves of the vaccine strain rSC0011 were similar to those of strains C78-3 and C500 at the early stage of infection, but lower than those of C78-3 and higher than those of C500 at the later stage in both porcine alveolar macrophages and peripheral porcine monocytes. The LD50 of the RDAS strains rSC0011 by oral route in mice was close to that of C500 and 10,000-fold higher than that of C78-3. Similar results were achieved by intraperitoneal (i.p.) route, suggesting that the RDAS strains rSC0011 achieved similar attenuation as C500. However, the RDAS strain rSC0011 was superior to C500 in colonization of Peyer's patches. Adult mice orally immunized with strain rSC0011 carrying a plasmid expression 6-phosphogluconate dehydrogenase (6-PGD) gene from SS2 developed strong immune responses against 6-PGD and Salmonella antigens, and conferred high protection against i.p. challenge with SS2.
Collapse
Affiliation(s)
- Zhenying Ji
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, China; Co-Innovation Center of Jiangsu for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu 225009, China
| | - Jing Shang
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, China; Co-Innovation Center of Jiangsu for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu 225009, China
| | - Yuan Li
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, China; Co-Innovation Center of Jiangsu for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu 225009, China
| | - Shifeng Wang
- Center for Infectious Diseases and Vaccinology, The Biodesign Institute and School of Life Sciences, Arizona State University, Tempe, AZ 85287-5401, USA; Department of Infectious Diseases and Pathology, College of Veterinary Medicine, University of Florida, Gainesville, FL 32611-0880, USA
| | - Huoying Shi
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, China; Co-Innovation Center of Jiangsu for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu 225009, China.
| |
Collapse
|
90
|
Gerber E, Bernard R, Castang S, Chabot N, Coze F, Dreux-Zigha A, Hauser E, Hivin P, Joseph P, Lazarelli C, Letellier G, Olive J, Leonetti JP. Deinococcus as new chassis for industrial biotechnology: biology, physiology and tools. J Appl Microbiol 2015; 119:1-10. [PMID: 25809882 PMCID: PMC4682472 DOI: 10.1111/jam.12808] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2014] [Revised: 01/20/2015] [Accepted: 03/03/2015] [Indexed: 11/28/2022]
Abstract
Deinococcus spp are among the most radiation-resistant micro-organisms that have been discovered. They show remarkable resistance to a range of damage caused by ionizing radiation, desiccation, UV radiation and oxidizing agents. Traditionally, Escherichia coli and Saccharomyces cerevisiae have been the two platforms of choice for engineering micro-organisms for biotechnological applications, because they are well understood and easy to work with. However, in recent years, researchers have begun using Deinococcus spp in biotechnologies and bioremediation due to their specific ability to grow and express novel engineered functions. More recently, the sequencing of several Deinococcus spp and comparative genomic analysis have provided new insight into the potential of this genus. Features such as the accumulation of genes encoding cell cleaning systems that eliminate organic and inorganic cell toxic components are widespread among Deinococcus spp. Other features such as the ability to degrade and metabolize sugars and polymeric sugars make Deinococcus spp. an attractive alternative for use in industrial biotechnology.
Collapse
Affiliation(s)
- E Gerber
- Deinove, Cap Sigma/ZAC Euromédecine IIGrabels, France
| | - R Bernard
- Deinove, Cap Sigma/ZAC Euromédecine IIGrabels, France
| | - S Castang
- Deinove, Cap Sigma/ZAC Euromédecine IIGrabels, France
| | - N Chabot
- Deinove, Cap Sigma/ZAC Euromédecine IIGrabels, France
| | - F Coze
- Deinove, Cap Sigma/ZAC Euromédecine IIGrabels, France
| | - A Dreux-Zigha
- Deinove, Cap Sigma/ZAC Euromédecine IIGrabels, France
| | - E Hauser
- Deinove, Cap Sigma/ZAC Euromédecine IIGrabels, France
| | - P Hivin
- Deinove, Cap Sigma/ZAC Euromédecine IIGrabels, France
| | - P Joseph
- Deinove, Cap Sigma/ZAC Euromédecine IIGrabels, France
| | - C Lazarelli
- Deinove, Cap Sigma/ZAC Euromédecine IIGrabels, France
| | - G Letellier
- Deinove, Cap Sigma/ZAC Euromédecine IIGrabels, France
| | - J Olive
- Deinove, Cap Sigma/ZAC Euromédecine IIGrabels, France
| | - J-P Leonetti
- Deinove, Cap Sigma/ZAC Euromédecine IIGrabels, France
| |
Collapse
|
91
|
Tsukatani Y, Harada J, Nomata J, Yamamoto H, Fujita Y, Mizoguchi T, Tamiaki H. Rhodobacter sphaeroides mutants overexpressing chlorophyllide a oxidoreductase of Blastochloris viridis elucidate functions of enzymes in late bacteriochlorophyll biosynthetic pathways. Sci Rep 2015; 5:9741. [PMID: 25978726 PMCID: PMC4432870 DOI: 10.1038/srep09741] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2014] [Accepted: 03/12/2015] [Indexed: 01/27/2023] Open
Abstract
In previous studies we have demonstrated that chlorophyllide a oxidoreductases (CORs) from bacteriochlorophyll (BChl) a-producing Rhodobacter species and BChl b-producing Blastochloris viridis show distinct substrate recognition and different catalytic hydrogenation reactions, and that these two types of CORs therefore cause committed steps for BChls a and b biosynthesis. In this study, COR genes from B. viridis were incorporated and overexpressed in a series of Rhodobacter sphaeroides mutants. We found that the following two factors are essential in making R. sphaeroides produce BChl b: the loss of functions of both intrinsic COR and 8-vinyl reductase (BciA) in the host R. sphaeroides strain; and expression of the BchYZ catalytic components of COR from B. viridis, not the complete set of COR (BchXYZ), in the host strain. In addition, we incorporated bchYZ of B. viridis into the R. sphaeroides mutant lacking BchJ and BciA, resulting in the strain accumulating both BChl a and BChl b. This is the first example of an anoxygenic photosynthetic bacterium producing BChls a and b together. The results suggest that BchJ enhances activity of the intrinsic COR. The physiological significance of BchJ in pigment biosynthetic pathways will be discussed.
Collapse
Affiliation(s)
- Yusuke Tsukatani
- 1] Graduate School of Life Sciences, Ritsumeikan University, Shiga 525-8577, Japan [2] PRESTO, Japan Science and Technology Agency, Saitama 332-0012, Japan [3] Earth-Life Science Institute, Tokyo Institute of Technology, Tokyo 152-8550, Japan
| | - Jiro Harada
- Department of Medical Biochemistry, Kurume University School of Medicine, Fukuoka 830-0011, Japan
| | - Jiro Nomata
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya 464-8601, Japan
| | - Haruki Yamamoto
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya 464-8601, Japan
| | - Yuichi Fujita
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya 464-8601, Japan
| | - Tadashi Mizoguchi
- Graduate School of Life Sciences, Ritsumeikan University, Shiga 525-8577, Japan
| | - Hitoshi Tamiaki
- Graduate School of Life Sciences, Ritsumeikan University, Shiga 525-8577, Japan
| |
Collapse
|
92
|
Markerless Deletion System for Escherichia coli Using Short Homologous Sequences and Positive-Negative Selectable Cassette. Appl Biochem Biotechnol 2015; 176:1472-81. [PMID: 25957274 DOI: 10.1007/s12010-015-1658-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2014] [Accepted: 04/29/2015] [Indexed: 10/23/2022]
Abstract
Red homologous recombination has been extensively used in recombineering. Because foreign sequences, such as antibiotic resistance genes, FRT-sites, or loxP-sites, are often unwanted in mutant Escherichia coli, we established a markerless deletion system containing short homologous sequences, a positive-selectable marker (kan), and a negative-selectable marker (sacB) for E. coli. For markerless deletion of a specific region of the E. coli genome, a two-step recombination procedure using two different PCR fragments, which were amplified from pUC57-kan-sacB and pUC57-298, was performed. The generation of a pheA-tyrA deficient mutant demonstrated that this markerless deletion system was a simple and efficient method to generate markerless chromosomal deletions in E. coli.
Collapse
|
93
|
Comprehensive analysis of heterotrimeric G-protein complex diversity and their interactions with GPCRs in solution. Proc Natl Acad Sci U S A 2015; 112:E1181-90. [PMID: 25733868 DOI: 10.1073/pnas.1417573112] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Agonist binding to G-protein-coupled receptors (GPCRs) triggers signal transduction cascades involving heterotrimeric G proteins as key players. A major obstacle for drug design is the limited knowledge of conformational changes upon agonist binding, the details of interaction with the different G proteins, and the transmission to movements within the G protein. Although a variety of different GPCR/G protein complex structures would be needed, the transient nature of this complex and the intrinsic instability against dissociation make this endeavor very challenging. We have previously evolved GPCR mutants that display higher stability and retain their interaction with G proteins. We aimed at finding all G-protein combinations that preferentially interact with neurotensin receptor 1 (NTR1) and our stabilized mutants. We first systematically analyzed by coimmunoprecipitation the capability of 120 different G-protein combinations consisting of αi1 or αsL and all possible βγ-dimers to form a heterotrimeric complex. This analysis revealed a surprisingly unrestricted ability of the G-protein subunits to form heterotrimeric complexes, including βγ-dimers previously thought to be nonexistent, except for combinations containing β5. A second screen on coupling preference of all G-protein heterotrimers to NTR1 wild type and a stabilized mutant indicated a preference for those Gαi1βγ combinations containing γ1 and γ11. Heterotrimeric G proteins, including combinations believed to be nonexistent, were purified, and complexes with the GPCR were prepared. Our results shed new light on the combinatorial diversity of G proteins and their coupling to GPCRs and open new approaches to improve the stability of GPCR/G-protein complexes.
Collapse
|
94
|
Sakanaka M, Fukiya S, Kobayashi R, Abe A, Hirayama Y, Kano Y, Yokota A. Isolation and transposition properties of ISBlo11, an active insertion sequence belonging to the IS3 family, from Bifidobacterium longum 105-A. FEMS Microbiol Lett 2015; 362:fnv032. [PMID: 25724534 DOI: 10.1093/femsle/fnv032] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Transposon mutagenesis systems are still under development in bifidobacteria, partly because intrinsic active insertion sequences are not well characterized in bifidobacteria. Here, we isolated an active insertion sequence, ISBlo11, from Bifidobacterium longum 105-A using a sacB-based counterselection system, which is generally used to screen for active insertion sequences from bacterial genomes. ISBlo11 is 1432 bp long and belongs to the IS3 family. It has a single ORF encoding a transposase and 25-bp inverted repeats at its termini. Full-length copies of ISBlo11 are specifically conserved among certain B. longum genomes and exist in different sites. Transposition analysis of an artificial ISBlo11 transposon using an Escherichia coli conjugation system revealed that ISBlo11 has adequate transposition activity, comparable to the reported activity of IS629, another IS3 family element initially isolated from Shigella sonnei. ISBlo11 also showed low transposition selectivity for non-conserved 3- or 4-bp target sequences. These characteristics of ISBlo11 seem suitable for the development of a new transposon mutagenesis system in bifidobacteria.
Collapse
Affiliation(s)
- Mikiyasu Sakanaka
- Laboratory of Microbial Physiology, Research Faculty of Agriculture, Hokkaido University, Kita 9 Nishi 9, Kita-ku, Sapporo, Hokkaido 060-8589, Japan
| | - Satoru Fukiya
- Laboratory of Microbial Physiology, Research Faculty of Agriculture, Hokkaido University, Kita 9 Nishi 9, Kita-ku, Sapporo, Hokkaido 060-8589, Japan
| | - Ryoko Kobayashi
- Laboratory of Microbial Physiology, Research Faculty of Agriculture, Hokkaido University, Kita 9 Nishi 9, Kita-ku, Sapporo, Hokkaido 060-8589, Japan
| | - Arisa Abe
- Laboratory of Microbial Physiology, Research Faculty of Agriculture, Hokkaido University, Kita 9 Nishi 9, Kita-ku, Sapporo, Hokkaido 060-8589, Japan
| | - Yosuke Hirayama
- Laboratory of Microbial Physiology, Research Faculty of Agriculture, Hokkaido University, Kita 9 Nishi 9, Kita-ku, Sapporo, Hokkaido 060-8589, Japan
| | - Yasunobu Kano
- Department of Molecular Genetics, Kyoto Pharmaceutical University, 5, Nakauchi-cho, Misasagi, Yamashina-ku, Kyoto 607-8414, Japan
| | - Atsushi Yokota
- Laboratory of Microbial Physiology, Research Faculty of Agriculture, Hokkaido University, Kita 9 Nishi 9, Kita-ku, Sapporo, Hokkaido 060-8589, Japan
| |
Collapse
|
95
|
Liu P, Zhu X, Tan Z, Zhang X, Ma Y. Construction of Escherichia Coli Cell Factories for Production of Organic Acids and Alcohols. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2015; 155:107-40. [PMID: 25577396 DOI: 10.1007/10_2014_294] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
Production of bulk chemicals from renewable biomass has been proved to be sustainable and environmentally friendly. Escherichia coli is the most commonly used host strain for constructing cell factories for production of bulk chemicals since it has clear physiological and genetic characteristics, grows fast in minimal salts medium, uses a wide range of substrates, and can be genetically modified easily. With the development of metabolic engineering, systems biology, and synthetic biology, a technology platform has been established to construct E. coli cell factories for bulk chemicals production. In this chapter, we will introduce this technology platform, as well as E. coli cell factories successfully constructed for production of organic acids and alcohols.
Collapse
Affiliation(s)
- Pingping Liu
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China.,Key Laboratory of Systems Microbial Biotechnology, Chinese Academy of Sciences, 32 West 7th Ave, Tianjin Airport Economic Area, Tianjin, 300308, China
| | - Xinna Zhu
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China.,Key Laboratory of Systems Microbial Biotechnology, Chinese Academy of Sciences, 32 West 7th Ave, Tianjin Airport Economic Area, Tianjin, 300308, China
| | - Zaigao Tan
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China.,Key Laboratory of Systems Microbial Biotechnology, Chinese Academy of Sciences, 32 West 7th Ave, Tianjin Airport Economic Area, Tianjin, 300308, China.,University of Chinese Academy of Sciences, Tianjin, China
| | - Xueli Zhang
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China. .,Key Laboratory of Systems Microbial Biotechnology, Chinese Academy of Sciences, 32 West 7th Ave, Tianjin Airport Economic Area, Tianjin, 300308, China.
| | - Yanhe Ma
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
| |
Collapse
|
96
|
Abstract
Bacterial ribosomes frequently translate to the 3′ end of an mRNA without terminating at a stop codon. Almost all bacteria use the transfer-messenger RNA (tmRNA)-based trans-translation pathway to release these “nonstop” ribosomes and maintain protein synthesis capacity. trans-translation is essential in some species, but in others, such as Caulobacter crescentus, trans-translation can be inactivated. To determine why trans-translation is dispensable in C. crescentus, a Tn-seq screen was used to identify genes that specifically alter growth in cells lacking ssrA, the gene encoding tmRNA. One of these genes, CC1214, was essential in ΔssrA cells. Purified CC1214 protein could release nonstop ribosomes in vitro. CC1214 is a homolog of the Escherichia coli ArfB protein, and using the CC1214 sequence, ArfB homologs were identified in the majority of bacterial phyla. Most species in which ssrA has been deleted contain an ArfB homolog, suggesting that release of nonstop ribosomes may be essential in most or all bacteria. Genes that are conserved across large phylogenetic distances are expected to confer a selective advantage. The genes required for trans-translation, ssrA and smpB, have been found in >99% of sequenced bacterial genomes, suggesting that they are broadly important. However, these genes can be deleted in some species without loss of viability. The identification and characterization of C. crescentus ArfB reveals why trans-translation is not essential in C. crescentus and suggests that many other bacteria are likely to use ArfB to survive when trans-translation is compromised.
Collapse
|
97
|
Takasuka TE, Walker JA, Bergeman LF, Vander Meulen KA, Makino SI, Elsen NL, Fox BG. Cell-free translation of biofuel enzymes. Methods Mol Biol 2014; 1118:71-95. [PMID: 24395410 DOI: 10.1007/978-1-62703-782-2_5] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
In nature, bacteria and fungi are able to utilize recalcitrant plant materials by secreting a diverse set of enzymes. While genomic sequencing efforts offer exhaustive lists of genes annotated as potential polysaccharide-degrading enzymes, biochemical and functional characterizations of the encoded proteins are still needed to realize the full potential of this natural genomic diversity. This chapter outlines an application of wheat germ cell-free translation to the study of biofuel enzymes using genes from Clostridium thermocellum, a model cellulolytic organism. Since wheat germ extract lacks enzymatic activities that can hydrolyze insoluble polysaccharide substrates and is likewise devoid of enzymes that consume the soluble sugar products, the cell-free translation reactions provide a clean background for production and study of the reactions of biofuel enzymes. Examples of assays performed with individual enzymes or with small sets of enzymes obtained directly from cell-free translation are provided.
Collapse
Affiliation(s)
- Taichi E Takasuka
- Department of Biochemistry, University of Wisconsin, Madison, WI, USA
| | | | | | | | | | | | | |
Collapse
|
98
|
Song CW, Lee J, Lee SY. Genome engineering and gene expression control for bacterial strain development. Biotechnol J 2014; 10:56-68. [PMID: 25155412 DOI: 10.1002/biot.201400057] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2014] [Revised: 07/26/2014] [Accepted: 07/30/2014] [Indexed: 12/21/2022]
Abstract
In recent years, a number of techniques and tools have been developed for genome engineering and gene expression control to achieve desired phenotypes of various bacteria. Here we review and discuss the recent advances in bacterial genome manipulation and gene expression control techniques, and their actual uses with accompanying examples. Genome engineering has been commonly performed based on homologous recombination. During such genome manipulation, the counterselection systems employing SacB or nucleases have mainly been used for the efficient selection of desired engineered strains. The recombineering technology enables simple and more rapid manipulation of the bacterial genome. The group II intron-mediated genome engineering technology is another option for some bacteria that are difficult to be engineered by homologous recombination. Due to the increasing demands on high-throughput screening of bacterial strains having the desired phenotypes, several multiplex genome engineering techniques have recently been developed and validated in some bacteria. Another approach to achieve desired bacterial phenotypes is the repression of target gene expression without the modification of genome sequences. This can be performed by expressing antisense RNA, small regulatory RNA, or CRISPR RNA to repress target gene expression at the transcriptional or translational level. All of these techniques allow efficient and rapid development and screening of bacterial strains having desired phenotypes, and more advanced techniques are expected to be seen.
Collapse
Affiliation(s)
- Chan Woo Song
- Metabolic and Biomolecular Engineering National Research Laboratory, Department of Chemical and Biomolecular Engineering (BK21 plus program), Center for Systems and Synthetic Biotechnology, Institute for the BioCentury, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea; BioProcess Engineering Research Center, KAIST, Daejeon, Republic of Korea
| | | | | |
Collapse
|
99
|
Szuplewska M, Ludwiczak M, Lyzwa K, Czarnecki J, Bartosik D. Mobility and generation of mosaic non-autonomous transposons by Tn3-derived inverted-repeat miniature elements (TIMEs). PLoS One 2014; 9:e105010. [PMID: 25121765 PMCID: PMC4133298 DOI: 10.1371/journal.pone.0105010] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2014] [Accepted: 07/14/2014] [Indexed: 01/04/2023] Open
Abstract
Functional transposable elements (TEs) of several Pseudomonas spp. strains isolated from black shale ore of Lubin mine and from post-flotation tailings of Zelazny Most in Poland, were identified using a positive selection trap plasmid strategy. This approach led to the capture and characterization of (i) 13 insertion sequences from 5 IS families (IS3, IS5, ISL3, IS30 and IS1380), (ii) isoforms of two Tn3-family transposons – Tn5563a and Tn4662a (the latter contains a toxin-antitoxin system), as well as (iii) non-autonomous TEs of diverse structure, ranging in size from 262 to 3892 bp. The non-autonomous elements transposed into AT-rich DNA regions and generated 5- or 6-bp sequence duplications at the target site of transposition. Although these TEs lack a transposase gene, they contain homologous 38-bp-long terminal inverted repeat sequences (IRs), highly conserved in Tn5563a and many other Tn3-family transposons. The simplest elements of this type, designated TIMEs (Tn3 family-derived Inverted-repeat Miniature Elements) (262 bp), were identified within two natural plasmids (pZM1P1 and pLM8P2) of Pseudomonas spp. It was demonstrated that TIMEs are able to mobilize segments of plasmid DNA for transposition, which results in the generation of more complex non-autonomous elements, resembling IS-driven composite transposons in structure. Such transposon-like elements may contain different functional genetic modules in their core regions, including plasmid replication systems. Another non-autonomous element “captured” with a trap plasmid was a TIME derivative containing a predicted resolvase gene and a res site typical for many Tn3-family transposons. The identification of a portable site-specific recombination system is another intriguing example confirming the important role of non-autonomous TEs of the TIME family in shuffling genetic information in bacterial genomes. Transposition of such mosaic elements may have a significant impact on diversity and evolution, not only of transposons and plasmids, but also of other types of mobile genetic elements.
Collapse
Affiliation(s)
- Magdalena Szuplewska
- Department of Bacterial Genetics, Institute of Microbiology, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Marta Ludwiczak
- Department of Bacterial Genetics, Institute of Microbiology, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Katarzyna Lyzwa
- Department of Bacterial Genetics, Institute of Microbiology, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Jakub Czarnecki
- Department of Bacterial Genetics, Institute of Microbiology, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Dariusz Bartosik
- Department of Bacterial Genetics, Institute of Microbiology, Faculty of Biology, University of Warsaw, Warsaw, Poland
- * E-mail:
| |
Collapse
|
100
|
A tailored galK counterselection system for efficient markerless gene deletion and chromosomal tagging in Magnetospirillum gryphiswaldense. Appl Environ Microbiol 2014; 80:4323-30. [PMID: 24814778 DOI: 10.1128/aem.00588-14] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Magnetotactic bacteria have emerged as excellent model systems to study bacterial cell biology, biomineralization, vesicle formation, and protein targeting because of their ability to synthesize single-domain magnetite crystals within unique organelles (magnetosomes). However, only few species are amenable to genetic manipulation, and the limited methods for site-specific mutagenesis are tedious and time-consuming. Here, we report the adaptation and application of a fast and convenient technique for markerless chromosomal manipulation of Magnetospirillum gryphiswaldense using a single antibiotic resistance cassette and galK-based counterselection for marker recycling. We demonstrate the potential of this technique by genomic excision of the phbCAB operon, encoding enzymes for polyhydroxyalkanoate (PHA) synthesis, followed by chromosomal fusion of magnetosome-associated proteins to fluorescent proteins. Because of the absence of interfering PHA particles, these engineered strains are particularly suitable for microscopic analyses of cell biology and magnetosome biosynthesis.
Collapse
|