51
|
Lee KS, Song SB, Kim KE, Kim YH, Kim SK, Kho BH, Ko DK, Choi YK, Lee YK, Kim CK, Kim YC, Lim JY, Kim Y, Min KH, Wanner BL. Cloning and characterization of the UDP-sugar hydrolase gene (ushA) of Enterobacter aerogenes IFO 12010. Biochem Biophys Res Commun 2000; 269:526-31. [PMID: 10708587 DOI: 10.1006/bbrc.2000.2328] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
A bacterial alkaline phosphatase (BAP, the phoA gene product) is primarily responsible for the hydrolysis of the substrates 5-bromo-4-chloro-3-indolylphosphate-p-toluidine (XP) and p-nitrophenyl phosphate (pNPP). Using these substrates and an E. coli phoA mutant, we have cloned Enterobacter aerogenes genes conferring an XP(+) phenotype. Two types of clones were identified based on phenotypic tests and DNA sequences. One of them is a E. aerogenes phoA gene (XP(+), pNPP(+)) as expected; surprisingly the other one was found to be a ushA gene (XP(+), pNPP(-)), which encodes an UDP (uridine 5'-diphosphate)-sugar hydrolase. The E. aerogenes ushA gene shares high sequence identity with ushA of E. coli and the mutationally silent ushA0 gene of Salmonella typhimurium at both the nucleotide (over 79%) and amino acid (over 93%) levels. Expression of the E. aerogenes ushA gene in E. coli produced high level of UDP-sugar hydrolase, as confirmed by TLC (thin layer chromatography) analysis together with a presence of a strong band due to a XP hydrolysis on a polyacrylamide gel.
Collapse
Affiliation(s)
- K S Lee
- Research Center for Biomedicinal Resources (Bio-Med RRC), Pai-Chai University, Taejon, 302-735, Korea.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
52
|
Abstract
PAS domains are newly recognized signaling domains that are widely distributed in proteins from members of the Archaea and Bacteria and from fungi, plants, insects, and vertebrates. They function as input modules in proteins that sense oxygen, redox potential, light, and some other stimuli. Specificity in sensing arises, in part, from different cofactors that may be associated with the PAS fold. Transduction of redox signals may be a common mechanistic theme in many different PAS domains. PAS proteins are always located intracellularly but may monitor the external as well as the internal environment. One way in which prokaryotic PAS proteins sense the environment is by detecting changes in the electron transport system. This serves as an early warning system for any reduction in cellular energy levels. Human PAS proteins include hypoxia-inducible factors and voltage-sensitive ion channels; other PAS proteins are integral components of circadian clocks. Although PAS domains were only recently identified, the signaling functions with which they are associated have long been recognized as fundamental properties of living cells.
Collapse
Affiliation(s)
- B L Taylor
- Department of Microbiology and Molecular Genetics, School of Medicine, Loma Linda University, Loma Linda, California 92350, USA.
| | | |
Collapse
|
53
|
Suziedeliené E, Suziedélis K, Garbenciūté V, Normark S. The acid-inducible asr gene in Escherichia coli: transcriptional control by the phoBR operon. J Bacteriol 1999; 181:2084-93. [PMID: 10094685 PMCID: PMC93620 DOI: 10.1128/jb.181.7.2084-2093.1999] [Citation(s) in RCA: 67] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/1998] [Accepted: 01/28/1999] [Indexed: 11/20/2022] Open
Abstract
Escherichia coli responds to external acidification (pH 4.0 to 5.0) by synthesizing a newly identified, approximately 450-nucleotide RNA component. At maximal levels of induction it is one of the most abundant small RNAs in the cell and is relatively stable bacterial RNA. The acid-inducible RNA was purified, and the gene encoding it, designated asr (for acid shock RNA), mapped at 35.98 min on the E. coli chromosome. Analysis of the asr DNA sequence revealed an open reading frame coding for a 111-amino-acid polypeptide with a deduced molecular mass of approximately 11.6 kDa. According to computer-assisted analysis, the predicted polypeptide contains a typical signal sequence of 30 amino acids and might represent either a periplasmic or an outer membrane protein. The asr gene cloned downstream from a T7 promoter was translated in vivo after transcription using a T7 RNA polymerase transcription system. Expression of a plasmid-encoded asr::lacZ fusion under a native asr promoter was reduced approximately 15-fold in a complex medium, such as Luria-Bertani medium, versus the minimal medium. Transcription of the chromosomal asr was abolished in the presence of a phoB-phoR (a two-component regulatory system, controlling the pho regulon inducible by phosphate starvation) deletion mutant. Acid-mediated induction of the asr gene in the Delta(phoB-phoR) mutant strain was restored by introduction of the plasmid with cloned phoB-phoR genes. Primer extension analysis of the asr transcript revealed a region similar to the Pho box (the consensus sequence found in promoters transcriptionally activated by the PhoB protein) upstream from the determined transcription start. The asr promoter DNA region was demonstrated to bind PhoB protein in vitro. We discuss our results in terms of how bacteria might employ the phoB-phoR regulatory system to sense an external acidity and regulate transcription of the asr gene.
Collapse
Affiliation(s)
- E Suziedeliené
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri 63110, USA.
| | | | | | | |
Collapse
|
54
|
Silva JC, Haldimann A, Prahalad MK, Walsh CT, Wanner BL. In vivo characterization of the type A and B vancomycin-resistant enterococci (VRE) VanRS two-component systems in Escherichia coli: a nonpathogenic model for studying the VRE signal transduction pathways. Proc Natl Acad Sci U S A 1998; 95:11951-6. [PMID: 9751771 PMCID: PMC21746 DOI: 10.1073/pnas.95.20.11951] [Citation(s) in RCA: 51] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Escherichia coli reporter strains modeling the high-level type A and B vancomycin resistances of Enterococcus faecium BM4147 and Ent. faecalis have been developed to study the respective VanR-VanS two-component regulatory systems. PvanH-, PvanRa-, PvanY-, and PvanRb-lacZ fusions report on expression from the vancomycin-resistant enterococci promoters of the type A vanRSHAXYZ and type B vanRSYWHBX gene clusters. These strains also express from single-copy chromosomal genes vanRa, vanRb, or vanRSb behind their respective promoter (PvanRa or PvanRb) or vanSa or vanSb behind the rhamnose-inducible PrhaB. Results show that activation (phosphorylation) of the response regulator VanRa by its sensor kinase VanSa leads to transcriptional activation of both PvanH and PvanRa. Additionally, VanRb activates its cognate promoters PvanY and PvanRb, although this occurs only in the absence of VanSb and presumably is caused by VanRb phosphorylation by an unidentified endogenous E. coli kinase. Thus, VanSb interferes with activation of VanRb, probably by acting as a phospho-VanRb phosphatase. Although both VanRa and VanRb activate their cognate promoters, neither activates the heterologous PvanR, PvanH, or PvanY, arguing against the interchangeability of type A and B two-component regulatory switches in vancomycin-resistant enterococci. VanRa also is activated by the nonpartner kinase PhoR. Because this occurs in the absence of its inducing signal (Pi limitation), PhoR autophosphorylation apparently is regulated in vivo. Furthermore, the activation of VanRa caused by cross talk from PhoR in the absence of a signal allows distinction of cross talk from crossregulation as the latter, but not the former, responds to environmental cues.
Collapse
Affiliation(s)
- J C Silva
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | | | | | | | | |
Collapse
|
55
|
Abstract
This map is an update of the edition 9 map by Berlyn et al. (M. K. B. Berlyn, K. B. Low, and K. E. Rudd, p. 1715-1902, in F. C. Neidhardt et al., ed., Escherichia coli and Salmonella: cellular and molecular biology, 2nd ed., vol. 2, 1996). It uses coordinates established by the completed sequence, expressed as 100 minutes for the entire circular map, and adds new genes discovered and established since 1996 and eliminates those shown to correspond to other known genes. The latter are included as synonyms. An alphabetical list of genes showing map location, synonyms, the protein or RNA product of the gene, phenotypes of mutants, and reference citations is provided. In addition to genes known to correspond to gene sequences, other genes, often older, that are described by phenotype and older mapping techniques and that have not been correlated with sequences are included.
Collapse
Affiliation(s)
- M K Berlyn
- Department of Biology and School of Forestry and Environmental Studies, Yale University, New Haven, Connecticut 06520-8104, USA.
| |
Collapse
|
56
|
Boos W. Binding protein-dependent ABC transport system for glycerol 3-phosphate of Escherichia coli. Methods Enzymol 1998; 292:40-51. [PMID: 9711545 DOI: 10.1016/s0076-6879(98)92006-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- W Boos
- Faculty of Biology, University of Konstanz, Germany
| |
Collapse
|
57
|
Haldimann A, Daniels LL, Wanner BL. Use of new methods for construction of tightly regulated arabinose and rhamnose promoter fusions in studies of the Escherichia coli phosphate regulon. J Bacteriol 1998; 180:1277-86. [PMID: 9495769 PMCID: PMC107018 DOI: 10.1128/jb.180.5.1277-1286.1998] [Citation(s) in RCA: 111] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Escherichia coli genes regulated by environmental inorganic phosphate (Pi) levels form the phosphate (Pho) regulon. This regulation requires seven proteins, whose synthesis is under autogenous control, including response regulator PhoB, its partner, histidine sensor kinase PhoR, all four components of the Pi-specific transport (Pst) system (PstA, PstB, PstC, and PstS), and a protein of unknown function called PhoU. Here we examined the effects of uncoupling PhoB synthesis and PhoR synthesis from their normal controls by placing each under the tight control of the arabinose-regulated P(araB) promoter or the rhamnose-regulated P(rhaB) promoter. To do this, we made allele replacement plasmids that may be generally useful for construction of P(araB) or P(rhaB) fusions and for recombination of them onto the E. coli chromosome at the araCBAD or rhaRSBAD locus, respectively. Using strains carrying such single-copy fusions, we showed that a P(rhaB) fusion is more tightly regulated than a P(araB) fusion in that a P(rhaB)-phoR+ fusion but not a P(araB)-phoR+ fusion shows a null phenotype in the absence of its specific inducer. Yet in the absence of induction, both P(araB)-phoB+ and P(rhaB)-phoB+ fusions exhibit a null phenotype. These data indicate that less PhoR than PhoB is required for transcriptional activation of the Pho regulon, which is consistent with their respective modes of action. We also used these fusions to study PhoU. Previously, we had constructed strains with precise delta phoU mutations. However, we unexpectedly found that such delta phoU mutants have a severe growth defect (P. M. Steed and B. L. Wanner, J. Bacteriol. 175:6797-6809, 1993). They also readily give rise to compensatory mutants with lesions in phoB, phoR, or a pst gene, making their study particularly difficult. Here we found that, by using P(araB)-phoB+, P(rhaB)-phoB+, or P(rhaB)-phoR+ fusions, we were able to overcome the extremely deleterious growth defect of a Pst+ delta phoU mutant. The growth defect is apparently a consequence of high-level Pst synthesis resulting from autogenous control of PhoB and PhoR synthesis in the absence of PhoU.
Collapse
Affiliation(s)
- A Haldimann
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana 47907, USA
| | | | | |
Collapse
|
58
|
Haldimann A, Fisher SL, Daniels LL, Walsh CT, Wanner BL. Transcriptional regulation of the Enterococcus faecium BM4147 vancomycin resistance gene cluster by the VanS-VanR two-component regulatory system in Escherichia coli K-12. J Bacteriol 1997; 179:5903-13. [PMID: 9294451 PMCID: PMC179483 DOI: 10.1128/jb.179.18.5903-5913.1997] [Citation(s) in RCA: 52] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
An Escherichia coli K-12 model system was developed for studying the VanS-VanR two-component regulatory system required for high-level inducible vancomycin resistance in Enterococcus faecium BM4147. Our model system is based on the use of reporter strains with lacZ transcriptional and translational fusions to the PvanR or PvanH promoter of the vanRSHAX gene cluster. These strains also express vanR and vanS behind the native PvanR promoter, the arabinose-inducible ParaB promoter, or the rhamnose-inducible PrhaB promoter. Our reporter strains have the respective fusions stably recombined onto the chromosome in single copy, thereby avoiding aberrant regulatory effects that may occur with plasmid-bearing strains. They were constructed by using allele replacement methods or a conditionally replicative attP plasmid. Using these reporter strains, we demonstrated that (i) the response regulator VanR activates PvanH, but not PvanR, expression upon activation (phosphorylation) by the partner kinase VanS, the noncognate kinase PhoR, or acetyl phosphate, indicating that phospho-VanR (P-VanR) is a transcriptional activator; (ii) VanS interferes with activation of VanR by PhoR or acetyl phosphate, indicating that VanS also acts as a P-VanR phosphatase; and (iii) the conserved, phosphate-accepting histidine (H164) of VanS is required for activation (phosphorylation) of VanR but not for deactivation (dephosphorylation) of P-VanR. Similar reporter strains may be useful in new studies on these and other interactions of the VanS-VanR system (and other systems), screening for inhibitors of these interactions, and deciphering the molecular logic of the signal(s) responsible for activation of the VanS-VanR system in vivo. Advantages of using an E. coli model system for in vivo studies on VanS and VanR are also discussed.
Collapse
Affiliation(s)
- A Haldimann
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana 47907, USA
| | | | | | | | | |
Collapse
|
59
|
Jiang W, Metcalf WW, Lee KS, Wanner BL. Molecular cloning, mapping, and regulation of Pho regulon genes for phosphonate breakdown by the phosphonatase pathway of Salmonella typhimurium LT2. J Bacteriol 1995; 177:6411-21. [PMID: 7592415 PMCID: PMC177490 DOI: 10.1128/jb.177.22.6411-6421.1995] [Citation(s) in RCA: 80] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Two pathways exist for cleavage of the carbon-phosphorus (C-P) bond of phosphonates, the C-P lyase and the phosphonatase pathways. It was previously demonstrated that Escherichia coli carries genes (named phn) only for the C-P lyase pathway and that Enterobacter aerogenes carries genes for both pathways (K.-S. Lee, W. W. Metcalf, and B. L. Wanner, J. Bacteriol. 174:2501-2510, 1992). In contrast, here it is shown that Salmonella typhimurium LT2 carries genes only for the phosphonatase pathway. Genes for the S. typhimurium phosphonatase pathway were cloned by complementation of E. coli delta phn mutants. Genes for these pathways were proven not to be homologous and to lie in different chromosomal regions. The S. typhimurium phn locus lies near 10 min; the E. coli phn locus lies near 93 min. The S. typhimurium phn gene cluster is about 7.2 kb in length and, on the basis of gene fusion analysis, appears to consist of two (or more) genes or operons that are divergently transcribed. Like that of the E. coli phn locus, the expression of the S. typhimurium phn locus is activated under conditions of Pi limitation and is subject to Pho regulon control. This was shown both by complementation of the appropriate E. coli mutants and by the construction of S. typhimurium mutants with lesions in the phoB and pst loci, which are required for activation and inhibition of Pho regulon gene expression, respectively. Complementation studies indicate that the S. typhimurium phn locus probably includes genes both for phosphonate transport and for catalysis of C-P bond cleavage.
Collapse
Affiliation(s)
- W Jiang
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana 47907, USA
| | | | | | | |
Collapse
|
60
|
Mantis NJ, Winans SC. The chromosomal response regulatory gene chvI of Agrobacterium tumefaciens complements an Escherichia coli phoB mutation and is required for virulence. J Bacteriol 1993; 175:6626-36. [PMID: 8407840 PMCID: PMC206774 DOI: 10.1128/jb.175.20.6626-6636.1993] [Citation(s) in RCA: 71] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
In an effort to identify the Agrobacterium tumefaciens phosphate regulatory gene(s), we isolated a clone from an A. tumefaciens cosmid library that restored regulated alkaline phosphatase activity to an Escherichia coli phoB mutant. The gene that complemented phoB was localized by subcloning and deletion analysis, and the DNA sequence was determined. An open reading frame, denoted chvI, was identified that encoded a predicted protein with amino acid similarity to the family of bacterial response regulators and 35% identify to PhoB. Surprisingly, an A. tumefaciens chvI mutant showed normal induction of phosphatase activity and normal virG expression when grown in phosphate-limiting media. However, this mutant was unable to grow in media containing tryptone, peptone, or Casamino Acids and was also more sensitive than the wild type to acidic extracellular pH. This mutant was avirulent on Kalanchoeë diagremontiana and was severely attenuated in vir gene expression. The pH-inducible expression of virG was also abolished. Growth of the chvI mutant was inhibited by K. diagremontiana wound sap, suggesting that avirulence may be due, in part, to the inability of this mutant to survive the plant wound environment.
Collapse
Affiliation(s)
- N J Mantis
- Section of Microbiology, Cornell University, Ithaca, New York 14853-8101
| | | |
Collapse
|
61
|
Hartmann A, Boos W. Mutations in phoB, the positive gene activator of the pho regulon in Escherichia coli, affect the carbohydrate phenotype on MacConkey indicator plates. Res Microbiol 1993; 144:285-93. [PMID: 8248623 DOI: 10.1016/0923-2508(93)90013-r] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Mutants defective in phoB, the positive gene activator of the Escherichia coli pho regulon, exhibit aberrant behaviour on MacConkey indicator plates. They appear pale in the presence of a fermentable carbon source such as trehalose, maltose or glucose. The addition of at least 5 mM phosphate corrects this defect. Colonies of phoB+ strains turn red on MacConkey indicator plates and derepress the pho regulon when the cells are able to ferment the carbon source. In contrast, the inability to ferment the carbon source maintains the pho regulon in the repressed state.
Collapse
Affiliation(s)
- A Hartmann
- Department of Biology, University of Konstanz, Germany
| | | |
Collapse
|
62
|
Scholten M, Tommassen J. Topology of the PhoR protein of Escherichia coli and functional analysis of internal deletion mutants. Mol Microbiol 1993; 8:269-75. [PMID: 8391104 DOI: 10.1111/j.1365-2958.1993.tb01571.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
The PhoR protein of Escherichia coli K-12 belongs to a family of structurally related sensor-kinases that regulate responses to environmental stimuli. These proteins are often located in the inner membrane with two membrane-spanning segments that are separated by a periplasmic domain, which is supposed to sense the environmental stimuli. However, the hydrophobicity plot of PhoR suggests a somewhat different topology in which a large periplasmic domain is lacking and an extended cytoplasmic domain is present besides the kinase domain. In protease-accessibility experiments and by using phoR-phoA gene fusions, the topology of PhoR was investigated and the absence of a large periplasmic domain was confirmed. Furthermore, the function of the extended cytoplasmic domain was studied by creating internal deletions. The mutations in this domain resulted in a constitutive expression of the pho regulon, indicating that the mutant PhoR proteins are locked in their kinase function. We propose that this extended cytoplasmic domain functions by sensing an internal signal that represses the kinase function of the PhoR protein.
Collapse
Affiliation(s)
- M Scholten
- Department of Molecular Cell Biology, University of Utrecht, The Netherlands
| | | |
Collapse
|
63
|
Abstract
The Escherichia coli phosphate (PHO) regulon includes 31 (or more) genes arranged in eight separate operons. All are coregulated by environmental (extra-cellular) phosphate and are probably involved in phosphorus assimilation. Pi control of these genes requires the sensor PhoR, the response regulator PhoB, the binding protein-dependent Pi-specific transporter Pst, and the accessory protein PhoU. During Pi limitation, PhoR turns on genes of the PHO regulon by phosphorylating PhoB that in turn activates transcription by binding to promoters that share an 18-base consensus PHO Box. When Pi is in excess, PhoR, Pst, and PhoU together turn off the PHO regulon, presumably by dephosphorylating PhoB. In addition, two Pi-independent controls that may be forms of cross regulation turn on the PHO regulon in the absence of PhoR. The sensor CreC, formerly called PhoM, phosphorylates PhoB in response to some (unknown) catabolite, while acetyl phosphate may directly phosphorylate PhoB. Cross regulation of the PHO regulon by CreC and acetyl phosphate may be examples of underlying control mechanisms important for the general (global) control of cell growth and metabolism.
Collapse
Affiliation(s)
- B L Wanner
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana 47907
| |
Collapse
|
64
|
Schneider-Poetsch HA. Signal transduction by phytochrome: phytochromes have a module related to the transmitter modules of bacterial sensor proteins. Photochem Photobiol 1992; 56:839-46. [PMID: 1475327 DOI: 10.1111/j.1751-1097.1992.tb02241.x] [Citation(s) in RCA: 54] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
A C-terminal section of phytochromes turned out to share sequence homologies with the full length of the transmitter modules (about 250 amino acids) of bacterial sensor proteins. Coinciding hydrophobic clusters within the homologous domains imply that the overall folding of the two different types of peptides is similar. Hence, phytochromes appear to possess the structural prerequisites to transmit signals in a way bacterial sensor proteins do. The bacterial sensor proteins are known to be environmental stimuli-regulated kinases belonging to two-component systems. After sensing a stimulus by the N-terminal part of the sensor protein, conformational alterations confer the signal to its (mostly) C-terminal transmitter module which in turn is transitionally autophosphorylated at a conserved histidine. From the histidine the phosphate is transferred to the receiver module of a system-specific regulator protein which eventually acts on transcription or enzyme activity. The histidine is not conserved in phytochromes. Instead, a conserved tyrosine is found spatially very close to the histidine position. This tyrosine might play the role of histidine, and kinase function might be associated with this part of phytochrome. In spite of this divergence, the structural similarities point to a common evolutionary origin of the phytochrome and bacterial modules.
Collapse
|
65
|
Wilmes-Riesenberg MR, Wanner BL. TnphoA and TnphoA' elements for making and switching fusions for study of transcription, translation, and cell surface localization. J Bacteriol 1992; 174:4558-75. [PMID: 1378054 PMCID: PMC206251 DOI: 10.1128/jb.174.14.4558-4575.1992] [Citation(s) in RCA: 79] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
We describe a set of elements based on the transposon TnphoA for making transcriptional fusions to the lacZ gene and for making translational fusions to the phoA or lacZ structural gene. Each element can be switched, one for another, by homologous recombination, thereby allowing testing for transcription, translation, or cell surface localization determinants at the same site within a gene. We describe three kinds of elements for making each fusion type. Two kinds are transposition proficient (Tnp+): one encodes kanamycin resistance, and the other encodes tetracycline resistance. The third kind is transposition defective (Tnp-) and encodes kanamycin resistance. In addition, we describe one Tnp- element that has no reporter gene and encodes chloramphenicol resistance; this element is used primarily as a tool to aid in switching fusions. Switching is efficient because each element has in common 254 bp of DNA at the phoA end and 187 bp (or more) of DNA at the IS50R end of TnphoA, and switching is straightforward because individual elements encode different drug resistances. Thus, switched recombinants can be selected as drug-resistant transductants, and they can be recognized as ones that have lost the parental drug resistance and fusion phenotype. Further, switching Tnp+ elements to Tnp- elements reduces problems due to transposition that can arise in P1 crosses or cloning experiments. Some TnphoA and TnphoA' elements cause polar mutations, while others provide an outward promoter for downstream transcription. This feature is especially useful in the determination of operon structures. Strategies for the use of TnphoA and TnphoA' elements in gene analysis are also described.
Collapse
|
66
|
Lee KS, Metcalf WW, Wanner BL. Evidence for two phosphonate degradative pathways in Enterobacter aerogenes. J Bacteriol 1992; 174:2501-10. [PMID: 1556070 PMCID: PMC205888 DOI: 10.1128/jb.174.8.2501-2510.1992] [Citation(s) in RCA: 65] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
We screened mini-Mu plasmid libraries from Enterobacter aerogenes IFO 12010 for plasmids that complement Escherichia coli phn mutants that cannot use phosphonates (Pn) as the sole source of phosphorus (P). We isolated two kinds of plasmids that, unexpectedly, encode genes for different metabolic pathways. One kind complements E. coli mutants with both Pn transport and Pn catalysis genes deleted; these plasmids allow degradation of the 2-carbon-substituted Pn alpha-aminoethylphosphonate but not of unsubstituted alkyl Pn. This substrate specificity is characteristic of a phosphonatase pathway, which is absent in E. coli. The other kind complements E. coli mutants with Pn catalysis genes deleted but not those with both transport and catalysis genes deleted; these plasmids allow degradation of both substituted and unsubstituted Pn. Such a broad substrate specificity is characteristic of a carbon-phosphorus (C-P) lyase pathway, which is common in gram-negative bacteria, including E. coli. Further proof that the two kinds of plasmids encode genes for different pathways was demonstrated by the lack of DNA homology between the plasmids. In particular, the phosphonatase clone from E. aerogenes failed to hybridize to the E. coli phnCDEFGHIJKLMNOP gene cluster for Pn uptake and degradation, while the E. aerogenes C-P lyase clone hybridized strongly to the E. coli phnGHIJKLM genes encoding C-P lyase but not to the E. coli phnCDE genes encoding Pn transport. Specific hybridization by the E. aerogenes C-P lyase plasmid to the E. coli phnF, phnN, phnO, and phnP genes was not determined. Furthermore, we showed that one or more genes encoding the apparent E. aerogenes phosphonatase pathway, like the E. coli phnC-to-phnP gene cluster, is under phosphate regulon control in E. coli. This highlights the importance of Pn in bacterial P assimilation in nature.
Collapse
Affiliation(s)
- K S Lee
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana 47907
| | | | | |
Collapse
|
67
|
Rowbury RJ, Goodson M, Wallace AD. The PhoE porin and transmission of the chemical stimulus for induction of acid resistance (acid habituation) in Escherichia coli. THE JOURNAL OF APPLIED BACTERIOLOGY 1992; 72:233-43. [PMID: 1314797 DOI: 10.1111/j.1365-2672.1992.tb01829.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Escherichia coli K12 becomes resistant to killing by acid (habituates to acid) in a few minutes at pH 5.0. Habituation involves protein synthesis-dependent and -independent stages; both must occur at an habituating pH. The habituation sensor does not detect increased delta pH (or decreased delta psi) nor an increased difference between pHo and periplasmic pH but probably detects a fall in either external or periplasmic pH. Phosphate ions inhibit habituation, at any stage, probably by interfering with outer membrane passage of hydrogen ions. Most outer membrane components tested are not required for habituation but phoE deletion mutants habituated poorly and are acid-resistant. Strains derepressed for phoE, in contrast, showed increased acid sensitivity. These and other results suggest that habituation involves hydrogen ions or protonated carriers crossing the outer membrane preferentially via the PhoE pore, a process inhibited by phosphate and other anions. Stimulation by phosphate of the poor growth of E. coli at pH 5.0 is in accord with the above. Acetate did not enhance acid killing of pH 5.0 cells, suggesting that their resistance does not depend on maintaining pHi near to neutrality at an acidic pHo level.
Collapse
Affiliation(s)
- R J Rowbury
- Department of Biology, University College London, UK
| | | | | |
Collapse
|
68
|
Skinner JS, Ribot E, Laddaga RA. Transcriptional analysis of the Staphylococcus aureus plasmid pI258 mercury resistance determinant. J Bacteriol 1991; 173:5234-8. [PMID: 1860831 PMCID: PMC208219 DOI: 10.1128/jb.173.16.5234-5238.1991] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Northern blot DNA-RNA hybridization analysis of Staphylococcus aureus cells bearing pI258 showed that upon induction the amount of mer operon transcript present increased 49-fold over that observed in uninduced cells. Maximum induction occurred after 45 min in the presence of 5 microM HgCl2. Two transcripts, 5.0 and 5.8 kb long, were observed. Both transcripts encoded merR through merB (inclusive). Primer extension analysis determined that the 5' end of at least one transcript (and presumably of both) started at a T or G, 7 or 8 nucleotides downstream from the putative -10 site.
Collapse
Affiliation(s)
- J S Skinner
- Department of Biological Sciences, Bowling Green State University, Ohio 43403
| | | | | |
Collapse
|
69
|
Schneider-Poetsch HA, Braun B, Marx S, Schaumburg A. Phytochromes and bacterial sensor proteins are related by structural and functional homologies. Hypothesis on phytochrome-mediated signal-transduction. FEBS Lett 1991; 281:245-9. [PMID: 2015902 DOI: 10.1016/0014-5793(91)80403-p] [Citation(s) in RCA: 71] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Phytochrome and bacterial sensor proteins are related by functional and structural homologies. They are both sensors of environmental stimuli and share structural homologies which comprise a domain of about 250 amino acids (about 28 kg.mol-1). This domain is C-terminal in phytochromes and in several bacterial sensor proteins. In both groups of sensors this domain undergoes conformational changes which are caused by the N-terminal part sensing the stimulus. In the case of bacterial sensors, the conformational alteration is, regulated by additional proteins, conferred to a corresponding regulator protein which then acts on transcription. The coincidences between the two groups of sensors are striking enough to assume phytochrome to transduce signals in a way comparable to the bacterial two-component systems.
Collapse
|
70
|
Abstract
Three cosmids previously shown to contain information necessary for the expression of uptake of hydrogenase in Rhodobacter capsulatus were found to be present in a cluster on the chromosome. Earlier genetic experiments suggested the presence of at least six genes essential for hydrogenase activity that are now shown to be in a region of approximately 18 kb that includes the structural genes for the enzyme. A potential response regulator gene was sequenced as a part of the hup gene region.
Collapse
Affiliation(s)
- H W Xu
- Biochemistry Department, University of Missouri-Columbia 65211
| | | |
Collapse
|
71
|
Groisman EA, Pagratis N, Casadaban MJ. Genome mapping and protein coding region identification using bacteriophage Mu. Gene 1991; 99:1-7. [PMID: 1827084 DOI: 10.1016/0378-1119(91)90026-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Transposons such as bacteriophage Mu provide a means to clone bacterial genes as alternatives to using standard recombinant DNA technologies. A DNA-cloning and gene-expressing system has been developed with a bacteriophage Mu (DNA capacity of 38 kb) vector that combines the Mu transposition capabilities and a specialized promoter from bacteriophage T7. Genes cloned with this vector can be identified by transcription in vivo with T7 RNA polymerase and subsequent host translation. This system, illustrated with the characterization of a 35-kb region of the Escherichia coli K-12 chromosome, is applicable to other Enterobacteriaceae, which are hosts for Mu phage, and is potentially applicable to other bacteria, including Pseudomonas aeruginosa, which have Mu-like phage, and to other organisms for which high-frequency transposons are available.
Collapse
Affiliation(s)
- E A Groisman
- Department of Molecular Genetics and Cell Biology, University of Chicago, IL 60637
| | | | | |
Collapse
|
72
|
Anba J, Bidaud M, Vasil ML, Lazdunski A. Nucleotide sequence of the Pseudomonas aeruginosa phoB gene, the regulatory gene for the phosphate regulon. J Bacteriol 1990; 172:4685-9. [PMID: 2115874 PMCID: PMC213304 DOI: 10.1128/jb.172.8.4685-4689.1990] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The nucleotide sequence of Pseudomonas aeruginosa phoB was determined. The sequence data suggest that the PhoB polypeptide consists of 229 amino acid residues and has a predicted molecular weight of 25,708. In the regulatory region of the gene, a very well conserved phosphate box was found. The sequence data also predicted the presence of an open reading frame downstream of phoB, which could be phoR. The deduced amino acid sequence of phoB was significantly homologous to that of the Escherichia coli phoB gene product and to those of several known procaryotic transcriptional regulators such as PhoP, OmpR, VirG, Dye, NtrC, and AlgR.
Collapse
Affiliation(s)
- J Anba
- Laboratoire de Chimie Bactérienne, C.N.R.S. Marseille, France
| | | | | | | |
Collapse
|
73
|
Agrawal DK, Wanner BL. A phoA structural gene mutation that conditionally affects formation of the enzyme bacterial alkaline phosphatase. J Bacteriol 1990; 172:3180-90. [PMID: 2345142 PMCID: PMC209123 DOI: 10.1128/jb.172.6.3180-3190.1990] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The phoA503 mutant was identified as a mutant that shows a novel phoA regulatory phenotype. The phoA503 allele dramatically reduces the synthesis of bacterial alkaline phosphatase activity during Pi starvation in an otherwise wild-type host and during the logarithmic growth phase in a phoR or phoU background. Near-normal amounts of enzyme activity are found in phoR phoA503 or phoU phoA503 mutants when starved for carbon, nitrogen, or sulfur or during the stationary phase, however. Marker rescue and DNA sequence analysis located the phoA503 mutation to the phoA coding region. It is a C-to-T transition that would cause a substitution of Val for Ala-22 in the mature protein. Transcriptional and translational lacZ fusions to both wild-type and mutant alleles demonstrated that phoA gene expression is unaltered. Also, the mutant protein was secreted and processed as efficiently as the wild type. Furthermore, the subunits appeared to dimerize and to be stable in the periplasm. But, greater than 98% of the dimers were inactive and found exclusively as isozyme 1. An activation of preformed phoA503 dimers occurred during the stationary phase with the concomitant conversion into isozymes 2 and 3. We propose that the phoA503 mutation affects a late stage in the formation of active enzyme. An unknown change when Pi is present during stationary-phase growth leads to formation of active dimers, which is responsible for this new conditional phenotype.
Collapse
Affiliation(s)
- D K Agrawal
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana 47907
| | | |
Collapse
|
74
|
Wanner BL, Boline JA. Mapping and molecular cloning of the phn (psiD) locus for phosphonate utilization in Escherichia coli. J Bacteriol 1990; 172:1186-96. [PMID: 2155195 PMCID: PMC208583 DOI: 10.1128/jb.172.3.1186-1196.1990] [Citation(s) in RCA: 60] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The Escherichia coli phn (psiD) locus encodes genes for phosphonate (Pn) utilization, for phn (psiD) mutations abolish the ability to use as a sole P source a Pn with a substituted C-2 or unsubstituted hydrocarbon group such as 2-aminoethylphosphonate (AEPn) or methylphosphonate (MPn), respectively. Even though the E. coli K-12 phosphate starvation-inducible (psi) phn (psiD) gene(s) shows normal phosphate (Pi) control, Pn utilization is cryptic in E. coli K-12, as well as in several members of the E. coli reference (ECOR) collection which are closely related to K-12. For these bacteria, an activating mutation near the phn (psiD) gene is necessary for growth on a Pn as the sole P source. Most E. coli strains, including E. coli B, are naturally Phn+; a few E. coli strains are Phn- and are deleted for phn DNA sequences. The Phn+ phn(EcoB) DNA was molecularly cloned by using the mini-Mu in vivo cloning procedure and complementation of an E. coli K-12 delta phn mutant. The phn(EcoB) DNA hybridized to overlapping lambda clones in the E. coli K-12 gene library (Y. Kohara, K. Akiyama, and K. Isono, Cell 50:495-508, 1987) which contain the 93-min region, thus showing that the phn (psiD) locus was itself cloned and verifying our genetic data on its map location. The cryptic phn(EcoK) DNA has an additional 100 base pairs that is absent in the naturally Phn+ phn(EcoB) sequence. However, no gross structural change was detected in independent Phn+ phn(EcoK) mutants that have activating mutations near the phn locus.
Collapse
Affiliation(s)
- B L Wanner
- Department of Biological Sciences, Purdue University, West Layfayette, Indiana 47907
| | | |
Collapse
|
75
|
Properties of the phosphate and phosphite transport systems of Phytophthora palmivora. Arch Microbiol 1989. [DOI: 10.1007/bf00446924] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
76
|
|
77
|
Abstract
The nucleotide sequence of phoR, the positive and negative regulatory gene for alkaline phosphatase and phosphodiesterase formation in Bacillus subtilis, was determined. The sequence data predicted an open reading frame of 1,740 base pairs (579 amino acids) which overlaps the 5 base pairs of the preceding phoP coding sequence. The deduced amino acid sequence was significantly homologous with that of the Escherichia coli phoR gene product, which is the sensory element for the pho regulon.
Collapse
Affiliation(s)
- T Seki
- Institute of Applied Microbiology, University of Tokyo, Japan
| | | | | | | |
Collapse
|
78
|
Hulett FM, Jensen K. Critical roles of spo0A and spo0H in vegetative alkaline phosphatase production in Bacillus subtilis. J Bacteriol 1988; 170:3765-8. [PMID: 3136148 PMCID: PMC211360 DOI: 10.1128/jb.170.8.3765-3768.1988] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Growth conditions established to optimize vegetative alkaline phosphatase production and stability in Bacillus subtilis were used to compare alkaline phosphatase synthesis and secretion in isogenic strains JH646 (spo0A12) and JH646MS (spo0A12 abrB15). A mutation in spo0A blocked vegetative alkaline phosphatase production, and a second mutation at the abrB locus resulted in hyperinduction of vegetative alkaline phosphatase. Phosphate regulation of vegetative alkaline phosphatase synthesis was unaffected in the double mutant. spo0H, on a multicopy plasmid, partially overcame the spo0A effect.
Collapse
Affiliation(s)
- F M Hulett
- Laboratory for Cell, Molecular and Developmental Biology, University of Illinois, Chicago 60680
| | | |
Collapse
|
79
|
Wanner BL, Wilmes MR, Young DC. Control of bacterial alkaline phosphatase synthesis and variation in an Escherichia coli K-12 phoR mutant by adenyl cyclase, the cyclic AMP receptor protein, and the phoM operon. J Bacteriol 1988; 170:1092-102. [PMID: 3277944 PMCID: PMC210878 DOI: 10.1128/jb.170.3.1092-1102.1988] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Mutant phoR cells show a clonal variation phenotype with respect to bacterial alkaline phosphatase (BAP) synthesis. BAP clonal variation is characterized by an alternation between a Bap+ and Bap- phenotype. The switching is regulated by the phoM operon and the presence of glucose; the pho-510 mutant form of the phoM operon abolishes both BAP clonal variation and the effect of glucose (B.L. Wanner, J. Bacteriol. 169:900-903, 1987). In this paper we show that a mutation of the adenyl cyclase (cya) and the cyclic AMP receptor protein (crp) gene also abolish BAP clonal variation; either simultaneously reduces the amount of BAP made in phoR mutants. Also, the pho-510 mutation is epistatic; it increases BAP synthesis in delta cya phoR and delta crp phoR mutants. These data are consistent with the wild-type phoM operon having a negative, as well as a positive, regulatory role in gene expression. Furthermore, the data suggest that adenyl cyclase and Crp indirectly regulate BAP synthesis in a phoR mutant via an interaction with the phoM operon or its gene products. However, phoM operon expression was unaffected when tested with phoM operon lacZ transcriptional fusions. In addition, the switching Bap phenotype was not associated with an alternation in phoM operon expression.
Collapse
Affiliation(s)
- B L Wanner
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana 47907
| | | | | |
Collapse
|
80
|
Wanner BL, Wilmes MR, Hunter E. Molecular cloning of the wild-type phoM operon in Escherichia coli K-12. J Bacteriol 1988; 170:279-88. [PMID: 3275616 PMCID: PMC210639 DOI: 10.1128/jb.170.1.279-288.1988] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
A metastable bacterial alkaline phosphatase (Bap) phenotype is seen in phoR mutants, which alternately express a Bap-constitutive or -negative phenotype. The alteration is affected by mutations in the phoM region near 0 min. By molecular cloning of the wild-type phoM operon onto a multicopy plasmid and recombining onto the plasmid the pho-510 mutation that abolishes variation, the phoM operon, rather than some nearby gene, was shown to control variation. Complementation tests indicated that the wild-type phoM allele is dominant to the pho-510 mutation when both are in single copy, but whichever allele is present in higher copy appears as dominant when multicopy plasmids are examined. The alternating phenotypic variation of BAP synthesis was not seen in phoR+ cells with multicopy wild-type phoM plasmids, thus showing that the variation is associated with phoM-dependent Bap expression. The alternation acted at the level of phoA transcription; it was also recA independent. BAP clonal variation is phenotypically similar to Salmonella phase variation, which is controlled by a DNA rearrangement. No evidence was found for a DNA change near the phoM operon that might be responsible for the variable Bap phenotype.
Collapse
Affiliation(s)
- B L Wanner
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana 47907
| | | | | |
Collapse
|