51
|
Wan FYM, Enciso GA. Optimal Proliferation and Differentiation of Chlamydia Trachomatis. STUDIES IN APPLIED MATHEMATICS (CAMBRIDGE, MASS.) 2017; 139:129-178. [PMID: 28989185 PMCID: PMC5627525 DOI: 10.1111/sapm.12175] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Chlamydia trachomatis is a bacterium that causes eye infection and blindness in humans. It has an unusual life cycle involving two developmental forms. Within a cytoplasmic inclusion, the reticulate body (RB) repeatedly divides by binary fission and asynchronously differentiates into the infectious elementary body (EB). Upon the death of the mammalian cell that host many such inclusions, only the EB form of the bacteria survive and proceed to infect other cells. Given the bacteria's fast spreading infection, conventional wisdom would have the few initial EB turn into RB, divide and proliferate first, and then eventually start converting in order to maximize the terminal EB population upon host cell lysis. Several biological processes are seen as possible mechanisms for implementing such a conversion strategy. However, the optimality of an instinctual strategy with a period of proliferate without conversion prior to the onset of differentiation has never been substantiated theoretically or justified mathematically. This paper formulates three relatively simple models that capture the essential features of the Chlamydia life cycle. When the initial infection is caused by the endocytosis of a small EB population well below the carrying capacity of the host cell, the Maximum Principle requires for these models an optimal conversion strategy that confirms and rigorously justifies the prevailing view of no conversion at the early stage of the host cell infection. However, the conventional supposition is found to be inappropriate for an initial EB (-to-RB) population near or above the carrying capacity. Previously suggested and new biological mechanisms are examined for their role in implementing the different optimal conversion strategies associated with models investigated herein.
Collapse
Affiliation(s)
- Frederic Y M Wan
- Department of Mathematics, University of California, Irvine, CA 92697
| | - Germán A Enciso
- Department of Mathematics, University of California, Irvine, CA 92697
| |
Collapse
|
52
|
Mechanism of antagonistic effects of Andrographis paniculata methanolic extract against Staphylococcus aureus. ASIAN PAC J TROP MED 2017; 10:685-695. [DOI: 10.1016/j.apjtm.2017.07.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Revised: 05/17/2017] [Accepted: 06/23/2017] [Indexed: 11/19/2022] Open
|
53
|
Borrero-de Acuña JM, Hidalgo-Dumont C, Pacheco N, Cabrera A, Poblete-Castro I. A novel programmable lysozyme-based lysis system in Pseudomonas putida for biopolymer production. Sci Rep 2017; 7:4373. [PMID: 28663596 PMCID: PMC5491512 DOI: 10.1038/s41598-017-04741-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Accepted: 05/25/2017] [Indexed: 11/09/2022] Open
Abstract
Cell lysis is crucial for the microbial production of industrial fatty acids, proteins, biofuels, and biopolymers. In this work, we developed a novel programmable lysis system based on the heterologous expression of lysozyme. The inducible lytic system was tested in two Gram-negative bacterial strains, namely Escherichia coli and Pseudomonas putida KT2440. Before induction, the lytic system did not significantly arrest essential physiological parameters in the recombinant E. coli (ECPi) and P. putida (JBOi) strain such as specific growth rate and biomass yield under standard growth conditions. A different scenario was observed in the recombinant JBOi strain when subjected to PHA-producing conditions, where biomass production was reduced by 25% but the mcl-PHA content was maintained at about 30% of the cell dry weight. Importantly, the genetic construct worked well under PHA-producing conditions (nitrogen-limiting phase), where more than 95% of the cell population presented membrane disruption 16 h post induction, with 75% of the total synthesized biopolymer recovered at the end of the fermentation period. In conclusion, this new lysis system circumvents traditional, costly mechanical and enzymatic cell-disrupting procedures.
Collapse
Affiliation(s)
- José Manuel Borrero-de Acuña
- Biosystems Engineering Laboratory, Center for Bioinformatics and Integrative Biology (CBIB), Faculty of Biological Sciences, Universidad Andres Bello, Santiago, Chile.
| | - Cristian Hidalgo-Dumont
- Biosystems Engineering Laboratory, Center for Bioinformatics and Integrative Biology (CBIB), Faculty of Biological Sciences, Universidad Andres Bello, Santiago, Chile
| | - Nicolás Pacheco
- Biosystems Engineering Laboratory, Center for Bioinformatics and Integrative Biology (CBIB), Faculty of Biological Sciences, Universidad Andres Bello, Santiago, Chile
| | - Alex Cabrera
- Biosystems Engineering Laboratory, Center for Bioinformatics and Integrative Biology (CBIB), Faculty of Biological Sciences, Universidad Andres Bello, Santiago, Chile
| | - Ignacio Poblete-Castro
- Biosystems Engineering Laboratory, Center for Bioinformatics and Integrative Biology (CBIB), Faculty of Biological Sciences, Universidad Andres Bello, Santiago, Chile.
| |
Collapse
|
54
|
Enhanced Detoxification of Arsenic Under Carbon Starvation: A New Insight into Microbial Arsenic Physiology. Curr Microbiol 2017; 74:614-622. [DOI: 10.1007/s00284-017-1203-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Accepted: 01/20/2017] [Indexed: 11/26/2022]
|
55
|
Dinh Thanh M, Frentzel H, Fetsch A, Appel B, Mader A. Impact of spiking techniques on the survival of Staphylococcus aureus in artificially contaminated condiments. Food Control 2017. [DOI: 10.1016/j.foodcont.2016.10.021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
56
|
Hoffmann K, Hassenrück C, Salman-Carvalho V, Holtappels M, Bienhold C. Response of Bacterial Communities to Different Detritus Compositions in Arctic Deep-Sea Sediments. Front Microbiol 2017; 8:266. [PMID: 28286496 PMCID: PMC5323390 DOI: 10.3389/fmicb.2017.00266] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Accepted: 02/07/2017] [Indexed: 12/14/2022] Open
Abstract
Benthic deep-sea communities are largely dependent on particle flux from surface waters. In the Arctic Ocean, environmental changes occur more rapidly than in other ocean regions, and have major effects on the export of organic matter to the deep sea. Because bacteria constitute the majority of deep-sea benthic biomass and influence global element cycles, it is important to better understand how changes in organic matter input will affect bacterial communities at the Arctic seafloor. In a multidisciplinary ex situ experiment, benthic bacterial deep-sea communities from the Long-Term Ecological Research Observatory HAUSGARTEN were supplemented with different types of habitat-related detritus (chitin, Arctic algae) and incubated for 23 days under in situ conditions. Chitin addition caused strong changes in community activity, while community structure remained similar to unfed control incubations. In contrast, the addition of phytodetritus resulted in strong changes in community composition, accompanied by increased community activity, indicating the need for adaptation in these treatments. High-throughput sequencing of the 16S rRNA gene and 16S rRNA revealed distinct taxonomic groups of potentially fast-growing, opportunistic bacteria in the different detritus treatments. Compared to the unfed control, Colwelliaceae, Psychromonadaceae, and Oceanospirillaceae increased in relative abundance in the chitin treatment, whereas Flavobacteriaceae, Marinilabiaceae, and Pseudoalteromonadaceae increased in the phytodetritus treatments. Hence, these groups may constitute indicator taxa for the different organic matter sources at this study site. In summary, differences in community structure and in the uptake and remineralization of carbon in the different treatments suggest an effect of organic matter quality on bacterial diversity as well as on carbon turnover at the seafloor, an important feedback mechanism to be considered in future climate change scenarios.
Collapse
Affiliation(s)
- Katy Hoffmann
- HGF-MPG Joint Research Group for Deep Sea Ecology and Technology, Max Planck Institute for Marine MicrobiologyBremen, Germany; Biosciences, HGF-MPG Joint Research Group for Deep Sea Ecology and Technology, Alfred-Wegener-Institut Helmholtz-Zentrum für Polar- und MeeresforschungBremerhaven, Germany
| | - Christiane Hassenrück
- HGF-MPG Joint Research Group for Deep Sea Ecology and Technology, Max Planck Institute for Marine Microbiology Bremen, Germany
| | - Verena Salman-Carvalho
- HGF-MPG Joint Research Group for Deep Sea Ecology and Technology, Max Planck Institute for Marine MicrobiologyBremen, Germany; Biosciences, HGF-MPG Joint Research Group for Deep Sea Ecology and Technology, Alfred-Wegener-Institut Helmholtz-Zentrum für Polar- und MeeresforschungBremerhaven, Germany
| | - Moritz Holtappels
- Biosciences, Bentho-Pelagic Processes, Alfred-Wegener-Institut Helmholtz-Zentrum für Polar- und Meeresforschung Bremerhaven, Germany
| | - Christina Bienhold
- HGF-MPG Joint Research Group for Deep Sea Ecology and Technology, Max Planck Institute for Marine MicrobiologyBremen, Germany; Biosciences, HGF-MPG Joint Research Group for Deep Sea Ecology and Technology, Alfred-Wegener-Institut Helmholtz-Zentrum für Polar- und MeeresforschungBremerhaven, Germany
| |
Collapse
|
57
|
Jorge AM, Schneider J, Unsleber S, Göhring N, Mayer C, Peschel A. Utilization of glycerophosphodiesters by Staphylococcus aureus. Mol Microbiol 2016; 103:229-241. [PMID: 27726204 DOI: 10.1111/mmi.13552] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/06/2016] [Indexed: 01/02/2023]
Abstract
The facultative pathogen Staphylococcus aureus colonizes the human anterior nares and causes infections of various organ systems. Which carbon, energy, and phosphate sources can be utilized by S. aureus in nutrient-poor habitats has remained largely unknown. We describe that S. aureus secretes a glycerophosphodiesterase (glycerophosphodiester phosphodiesterase, EC 3.1.4.46), GlpQ, degrading the glycerophosphodiester (GPD) head groups of phospholipids such as human phosphatidylcholine (GroPC). Deletion of glpQ completely abolished the GroPC-degrading activity in S. aureus culture supernatants. GroPC has been detected in human tissues and body fluids probably as a result of phospholipid remodelling and degradation. Notably, GroPC promoted S. aureus growth under carbon- and phosphate-limiting conditions in a GlpQ-dependent manner indicating that GlpQ permits S. aureus to utilize GPD-derived glycerol-3-phosphate as a carbon and phosphate sources. Thus, S. aureus can use a broader spectrum of nutrients than previously thought which underscores its capacity to adapt to the highly variable and nutrient-poor surroundings.
Collapse
Affiliation(s)
- Ana Maria Jorge
- Interfaculty Institute of Microbiology and Infection Medicine, Infection Biology Department, University of Tübingen, Germany
| | - Jonathan Schneider
- Interfaculty Institute of Microbiology and Infection Medicine, Infection Biology Department, University of Tübingen, Germany
| | - Sandra Unsleber
- Interfaculty Institute of Microbiology and Infection Medicine, Microbiology/Biotechnology Department, University of Tübingen, Germany
| | - Nadine Göhring
- Interfaculty Institute of Microbiology and Infection Medicine, Infection Biology Department, University of Tübingen, Germany
| | - Christoph Mayer
- Interfaculty Institute of Microbiology and Infection Medicine, Microbiology/Biotechnology Department, University of Tübingen, Germany
| | - Andreas Peschel
- Interfaculty Institute of Microbiology and Infection Medicine, Infection Biology Department, University of Tübingen, Germany
| |
Collapse
|
58
|
Premasiri WR, Lee JC, Sauer-Budge A, Théberge R, Costello CE, Ziegler LD. The biochemical origins of the surface-enhanced Raman spectra of bacteria: a metabolomics profiling by SERS. Anal Bioanal Chem 2016; 408:4631-47. [PMID: 27100230 PMCID: PMC4911336 DOI: 10.1007/s00216-016-9540-x] [Citation(s) in RCA: 163] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2016] [Revised: 03/22/2016] [Accepted: 04/01/2016] [Indexed: 10/21/2022]
Abstract
The dominant molecular species contributing to the surface-enhanced Raman spectroscopy (SERS) spectra of bacteria excited at 785 nm are the metabolites of purine degradation: adenine, hypoxanthine, xanthine, guanine, uric acid, and adenosine monophosphate. These molecules result from the starvation response of the bacterial cells in pure water washes following enrichment from nutrient-rich environments. Vibrational shifts due to isotopic labeling, bacterial SERS spectral fitting, SERS and mass spectrometry analysis of bacterial supernatant, SERS spectra of defined bacterial mutants, and the enzymatic substrate dependence of SERS spectra are used to identify these molecular components. The absence or presence of different degradation/salvage enzymes in the known purine metabolism pathways of these organisms plays a central role in determining the bacterial specificity of these purine-base SERS signatures. These results provide the biochemical basis for the development of SERS as a rapid bacterial diagnostic and illustrate how SERS can be applied more generally for metabolic profiling as a probe of cellular activity. Graphical Abstract Bacterial typing by metabolites released under stress.
Collapse
Affiliation(s)
- W Ranjith Premasiri
- Department of Chemistry, Boston University, 590 Commonwealth Ave., Boston, MA, 02215, USA.
- The Photonics Center, Boston University, 8 Saint Mary's St., Boston, MA, 02215, USA.
| | - Jean C Lee
- Division of Infectious Diseases, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, 181 Longwood Ave., Boston, MA, 02115, USA
| | - Alexis Sauer-Budge
- The Photonics Center, Boston University, 8 Saint Mary's St., Boston, MA, 02215, USA
- Fraunhofer Center for Manufacturing Innovation, 15 Saint Mary's St., Brookline, MA, 02446, USA
- Department of Biomedical Engineering, Boston University, 44 Cummington St., Boston, MA, 02215, USA
| | - Roger Théberge
- Center for Biomedical Mass Spectrometry, Boston University School of Medicine, Boston, MA, 02118, USA
| | - Catherine E Costello
- Center for Biomedical Mass Spectrometry, Boston University School of Medicine, Boston, MA, 02118, USA
| | - Lawrence D Ziegler
- Department of Chemistry, Boston University, 590 Commonwealth Ave., Boston, MA, 02215, USA.
- The Photonics Center, Boston University, 8 Saint Mary's St., Boston, MA, 02215, USA.
| |
Collapse
|
59
|
Crits-Christoph A, Robinson CK, Ma B, Ravel J, Wierzchos J, Ascaso C, Artieda O, Souza-Egipsy V, Casero MC, DiRuggiero J. Phylogenetic and Functional Substrate Specificity for Endolithic Microbial Communities in Hyper-Arid Environments. Front Microbiol 2016; 7:301. [PMID: 27014224 PMCID: PMC4784552 DOI: 10.3389/fmicb.2016.00301] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Accepted: 02/23/2016] [Indexed: 11/13/2022] Open
Abstract
Under extreme water deficit, endolithic (inside rock) microbial ecosystems are considered environmental refuges for life in cold and hot deserts, yet their diversity and functional adaptations remain vastly unexplored. The metagenomic analyses of the communities from two rock substrates, calcite and ignimbrite, revealed that they were dominated by Cyanobacteria, Actinobacteria, and Chloroflexi. The relative distribution of major phyla was significantly different between the two substrates and biodiversity estimates, from 16S rRNA gene sequences and from the metagenomic data, all pointed to a higher taxonomic diversity in the calcite community. While both endolithic communities showed adaptations to extreme aridity and to the rock habitat, their functional capabilities revealed significant differences. ABC transporters and pathways for osmoregulation were more diverse in the calcite chasmoendolithic community. In contrast, the ignimbrite cryptoendolithic community was enriched in pathways for secondary metabolites, such as non-ribosomal peptides (NRP) and polyketides (PK). Assemblies of the metagenome data produced population genomes for the major phyla found in both communities and revealed a greater diversity of Cyanobacteria population genomes for the calcite substrate. Draft genomes of the dominant Cyanobacteria in each community were constructed with more than 93% estimated completeness. The two annotated proteomes shared 64% amino acid identity and a significantly higher number of genes involved in iron update, and NRPS gene clusters, were found in the draft genomes from the ignimbrite. Both the community-wide and genome-specific differences may be related to higher water availability and the colonization of large fissures and cracks in the calcite in contrast to a harsh competition for colonization space and nutrient resources in the narrow pores of the ignimbrite. Together, these results indicated that the habitable architecture of both lithic substrates- chasmoendolithic versus cryptoendolithic - might be an essential element in determining the colonization and the diversity of the microbial communities in endolithic substrates at the dry limit for life.
Collapse
Affiliation(s)
| | | | - Bing Ma
- Institute for Genome Sciences, University of Maryland School of Medicine Baltimore, MD, USA
| | - Jacques Ravel
- Institute for Genome Sciences, University of Maryland School of Medicine Baltimore, MD, USA
| | - Jacek Wierzchos
- Department of Biochemistry and Microbial Ecology, Museo Nacional de Ciencias Naturales - Consejo Superior de Investigaciones Científicas Madrid, Spain
| | - Carmen Ascaso
- Department of Biochemistry and Microbial Ecology, Museo Nacional de Ciencias Naturales - Consejo Superior de Investigaciones Científicas Madrid, Spain
| | | | - Virginia Souza-Egipsy
- Instituto de Ciencias Agrarias - Consejo Superior de Investigaciones Científicas Madrid, Spain
| | - M Cristina Casero
- Department of Biochemistry and Microbial Ecology, Museo Nacional de Ciencias Naturales - Consejo Superior de Investigaciones Científicas Madrid, Spain
| | | |
Collapse
|
60
|
Ying BW, Honda T, Tsuru S, Seno S, Matsuda H, Kazuta Y, Yomo T. Evolutionary Consequence of a Trade-Off between Growth and Maintenance along with Ribosomal Damages. PLoS One 2015; 10:e0135639. [PMID: 26292224 PMCID: PMC4546238 DOI: 10.1371/journal.pone.0135639] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2015] [Accepted: 07/24/2015] [Indexed: 12/15/2022] Open
Abstract
Microorganisms in nature are constantly subjected to a limited availability of resources and experience repeated starvation and nutrition. Therefore, microbial life may evolve for both growth fitness and sustainability. By contrast, experimental evolution, as a powerful approach to investigate microbial evolutionary strategies, often targets the increased growth fitness in controlled, steady-state conditions. Here, we address evolutionary changes balanced between growth and maintenance while taking nutritional fluctuations into account. We performed a 290-day-long evolution experiment with a histidine-requiring Escherichia coli strain that encountered repeated histidine-rich and histidine-starved conditions. The cells that experienced seven rounds of starvation and re-feed grew more sustainably under prolonged starvation but dramatically lost growth fitness under rich conditions. The improved sustainability arose from the evolved capability to use a trace amount of histidine for cell propagation. The reduced growth rate was attributed to mutations genetically disturbing the translation machinery, that is, the ribosome, ultimately slowing protein translation. This study provides the experimental demonstration of slow growth accompanied by an enhanced affinity to resources as an evolutionary adaptation to oscillated environments and verifies that it is possible to evolve for reduced growth fitness. Growth economics favored for population increase under extreme resource limitations is most likely a common survival strategy adopted by natural microbes.
Collapse
Affiliation(s)
- Bei-Wen Ying
- Faculty of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305–8572, Japan
| | - Tomoya Honda
- Section of Molecular Biology, Division of Biological Sciences, University of California San Diego, La Jolla, California, 92093, United States of America
| | - Saburo Tsuru
- Graduate School of Information Science and Technology, Osaka University, 1–5 Yamadaoka, Suita, Osaka, 565–0871, Japan
| | - Shigeto Seno
- Graduate School of Information Science and Technology, Osaka University, 1–5 Yamadaoka, Suita, Osaka, 565–0871, Japan
| | - Hideo Matsuda
- Graduate School of Information Science and Technology, Osaka University, 1–5 Yamadaoka, Suita, Osaka, 565–0871, Japan
| | - Yasuaki Kazuta
- ERATO, JST, 1–5 Yamadaoka, Suita, Osaka, 565–0871, Japan
| | - Tetsuya Yomo
- Graduate School of Information Science and Technology, Osaka University, 1–5 Yamadaoka, Suita, Osaka, 565–0871, Japan
- ERATO, JST, 1–5 Yamadaoka, Suita, Osaka, 565–0871, Japan
- Graduate School of Frontier Biosciences, Osaka University, 1–5 Yamadaoka, Suita, Osaka, 565–0871, Japan
- * E-mail:
| |
Collapse
|
61
|
Aggarwal S, Somani VK, Bhatnagar R. Phosphate starvation enhances the pathogenesis of Bacillus anthracis. Int J Med Microbiol 2015; 305:523-31. [PMID: 26143397 DOI: 10.1016/j.ijmm.2015.06.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Revised: 06/10/2015] [Accepted: 06/14/2015] [Indexed: 01/06/2023] Open
Abstract
Identifying the factors responsible for survival and virulence of Bacillus anthracis within the host is prerequisite for the development of therapeutics against anthrax. Host provides several stresses as well as many advantages to the invading pathogen. Inorganic phosphate (Pi) starvation within the host has been considered as one of the major contributing factors in the establishment of infection by pathogenic microorganisms. Here, we report for the first time that Pi fluctuation encountered by B. anthracis at different stages of its life cycle within the host, contributes significantly in its pathogenesis. In this study, Pi starvation was found to hasten the onset of infection cycle by promoting spore germination. After germination, it was found to impede cell growth. In addition, phosphate starved bacilli showed more antibiotic tolerance. Interestingly, phosphate starvation enhanced the pathogenicity of B. anthracis by augmenting its invasiveness in macrophages in vitro. B. anthracis grown under phosphate starvation were also found to be more efficient in establishing lethal infections in mouse model as well. Phosphate starvation increased B. anthracis virulence by promoting the secretion of primary virulence factors like protective antigen (PA), lethal factor (LF) and edema factor (EF). Thus, this study affirms that besides other host mediated factors, phosphate limitation may also contribute B. anthracis for successfully establishing itself within the host. This study is a step forward in delineating its pathophysiology that might help in understanding the pathogenesis of anthrax.
Collapse
Affiliation(s)
- Somya Aggarwal
- Molecular Biology and Genetic Engineering Laboratory, School of Biotechnology, Jawaharlal Nehru University, New Delhi 110067, India.
| | - Vikas Kumar Somani
- Molecular Biology and Genetic Engineering Laboratory, School of Biotechnology, Jawaharlal Nehru University, New Delhi 110067, India.
| | - Rakesh Bhatnagar
- Molecular Biology and Genetic Engineering Laboratory, School of Biotechnology, Jawaharlal Nehru University, New Delhi 110067, India.
| |
Collapse
|
62
|
Retamal P, Fresno M, Dougnac C, Gutierrez S, Gornall V, Vidal R, Vernal R, Pujol M, Barreto M, González-Acuña D, Abalos P. Genetic and phenotypic evidence of the Salmonella enterica serotype Enteritidis human-animal interface in Chile. Front Microbiol 2015; 6:464. [PMID: 26029196 PMCID: PMC4432690 DOI: 10.3389/fmicb.2015.00464] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2015] [Accepted: 04/28/2015] [Indexed: 12/26/2022] Open
Abstract
Salmonella enterica serotype Enteritidis is a worldwide zoonotic agent that has been recognized as a very important food-borne bacterial pathogen, mainly associated with consumption of poultry products. The aim of this work was to determine genotypic and phenotypic evidence of S. Enteritidis transmission among seabirds, poultry and humans in Chile. Genotyping was performed using PCR-based virulotyping, pulse-field gel electrophoresis (PFGE) and multi-locus sequence typing (MLST). Pathogenicity-associated phenotypes were determined with survival to free radicals, acidic pH, starvation, antimicrobial resistance, and survival within human dendritic cells. As result of PCR and PFGE assays, some isolates from the three hosts showed identical genotypic patterns, and through MLST it was determined that all of them belong to sequence type 11. Phenotypic assays show diversity of bacterial responses among isolates. When results were analyzed according to bacterial host, statistical differences were identified in starvation and dendritic cells survival assays. In addition, isolates from seabirds showed the highest rates of resistance to gentamycin, tetracycline, and ampicillin. Overall, the very close genetic and phenotypic traits shown by isolates from humans, poultry, and seabirds suggest the inter-species transmission of S. Enteritidis bacteria between hosts, likely through anthropogenic environmental contamination that determines infection of seabirds with bacteria that are potentially pathogenic for other susceptible organism, including humans.
Collapse
Affiliation(s)
- Patricio Retamal
- Programa de Doctorado en Ciencias Silvoagropecuarias y Veterinarias, Universidad de Chile Santiago, Chile ; Programa de Doctorado en Ciencias Silvoagropecuarias y Veterinarias, Universidad de Chile Santiago, Chile
| | - Marcela Fresno
- Programa de Doctorado en Ciencias Silvoagropecuarias y Veterinarias, Universidad de Chile Santiago, Chile
| | - Catherine Dougnac
- Programa de Doctorado en Ciencias Silvoagropecuarias y Veterinarias, Universidad de Chile Santiago, Chile
| | - Sindy Gutierrez
- Departamento de Medicina Preventiva, Facultad de Ciencias Veterinarias y Pecuarias, Universidad de Chile Santiago, Chile
| | - Vanessa Gornall
- Departamento de Medicina Preventiva, Facultad de Ciencias Veterinarias y Pecuarias, Universidad de Chile Santiago, Chile
| | - Roberto Vidal
- Emerging and Remerging Zoonosis Research Network Santiago, Chile ; Programa de Microbiología, Facultad de Medicina, Universidad de Chile Santiago, Chile
| | - Rolando Vernal
- Departamento de Odontología Conservadora, Facultad de Odontología, Universidad de Chile Santiago, Chile
| | - Myriam Pujol
- Programa de Doctorado en Ciencias Silvoagropecuarias y Veterinarias, Universidad de Chile Santiago, Chile
| | - Marlen Barreto
- Facultad de Ciencias de la Salud, Universidad Autónoma Santiago, Chile
| | - Daniel González-Acuña
- Emerging and Remerging Zoonosis Research Network Santiago, Chile ; Facultad de Ciencias Veterinarias, Universidad de Concepción Chillán, Chile
| | - Pedro Abalos
- Departamento de Medicina Preventiva, Facultad de Ciencias Veterinarias y Pecuarias, Universidad de Chile Santiago, Chile ; Emerging and Remerging Zoonosis Research Network Santiago, Chile
| |
Collapse
|
63
|
Yu ZC, Chen XL, Shen QT, Zhao DL, Tang BL, Su HN, Wu ZY, Qin QL, Xie BB, Zhang XY, Yu Y, Zhou BC, Chen B, Zhang YZ. Filamentous phages prevalent in Pseudoalteromonas spp. confer properties advantageous to host survival in Arctic sea ice. ISME JOURNAL 2015; 9:871-81. [PMID: 25303713 PMCID: PMC4817708 DOI: 10.1038/ismej.2014.185] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/12/2014] [Revised: 08/14/2014] [Accepted: 08/18/2014] [Indexed: 12/30/2022]
Abstract
Sea ice is one of the most frigid environments for marine microbes. In contrast to other ocean ecosystems, microbes in permanent sea ice are space confined and subject to many extreme conditions, which change on a seasonal basis. How these microbial communities are regulated to survive the extreme sea ice environment is largely unknown. Here, we show that filamentous phages regulate the host bacterial community to improve survival of the host in permanent Arctic sea ice. We isolated a filamentous phage, f327, from an Arctic sea ice Pseudoalteromonas strain, and we demonstrated that this type of phage is widely distributed in Arctic sea ice. Growth experiments and transcriptome analysis indicated that this phage decreases the host growth rate, cell density and tolerance to NaCl and H2O2, but enhances its motility and chemotaxis. Our results suggest that the presence of the filamentous phage may be beneficial for survival of the host community in sea ice in winter, which is characterized by polar night, nutrient deficiency and high salinity, and that the filamentous phage may help avoid over blooming of the host in sea ice in summer, which is characterized by polar day, rich nutrient availability, intense radiation and high concentration of H2O2. Thus, while they cannot kill the host cells by lysing them, filamentous phages confer properties advantageous to host survival in the Arctic sea ice environment. Our study provides a foremost insight into the ecological role of filamentous phages in the Arctic sea ice ecosystem.
Collapse
Affiliation(s)
- Zi-Chao Yu
- 1] State Key Laboratory of Microbial Technology, Shandong University, Jinan, China [2] Marine Biotechnology Research Center, Shandong University, Jinan, China
| | - Xiu-Lan Chen
- 1] State Key Laboratory of Microbial Technology, Shandong University, Jinan, China [2] Marine Biotechnology Research Center, Shandong University, Jinan, China [3] Collaborative Innovation Center of Deep Sea Biology, Shandong University, Jinan, China
| | - Qing-Tao Shen
- Marine Biotechnology Research Center, Shandong University, Jinan, China
| | - Dian-Li Zhao
- 1] State Key Laboratory of Microbial Technology, Shandong University, Jinan, China [2] Marine Biotechnology Research Center, Shandong University, Jinan, China
| | - Bai-Lu Tang
- 1] State Key Laboratory of Microbial Technology, Shandong University, Jinan, China [2] Marine Biotechnology Research Center, Shandong University, Jinan, China
| | - Hai-Nan Su
- 1] State Key Laboratory of Microbial Technology, Shandong University, Jinan, China [2] Marine Biotechnology Research Center, Shandong University, Jinan, China [3] Collaborative Innovation Center of Deep Sea Biology, Shandong University, Jinan, China
| | - Zhao-Yu Wu
- 1] State Key Laboratory of Microbial Technology, Shandong University, Jinan, China [2] Marine Biotechnology Research Center, Shandong University, Jinan, China
| | - Qi-Long Qin
- 1] State Key Laboratory of Microbial Technology, Shandong University, Jinan, China [2] Marine Biotechnology Research Center, Shandong University, Jinan, China [3] Collaborative Innovation Center of Deep Sea Biology, Shandong University, Jinan, China
| | - Bin-Bin Xie
- 1] State Key Laboratory of Microbial Technology, Shandong University, Jinan, China [2] Marine Biotechnology Research Center, Shandong University, Jinan, China [3] Collaborative Innovation Center of Deep Sea Biology, Shandong University, Jinan, China
| | - Xi-Ying Zhang
- 1] State Key Laboratory of Microbial Technology, Shandong University, Jinan, China [2] Marine Biotechnology Research Center, Shandong University, Jinan, China [3] Collaborative Innovation Center of Deep Sea Biology, Shandong University, Jinan, China
| | - Yong Yu
- SOA Key Laboratory for Polar Science, Polar Research Institute of China, Shanghai, China
| | - Bai-Cheng Zhou
- Marine Biotechnology Research Center, Shandong University, Jinan, China
| | - Bo Chen
- SOA Key Laboratory for Polar Science, Polar Research Institute of China, Shanghai, China
| | - Yu-Zhong Zhang
- 1] State Key Laboratory of Microbial Technology, Shandong University, Jinan, China [2] Marine Biotechnology Research Center, Shandong University, Jinan, China [3] Collaborative Innovation Center of Deep Sea Biology, Shandong University, Jinan, China
| |
Collapse
|
64
|
Cartron ML, England SR, Chiriac AI, Josten M, Turner R, Rauter Y, Hurd A, Sahl HG, Jones S, Foster SJ. Bactericidal activity of the human skin fatty acid cis-6-hexadecanoic acid on Staphylococcus aureus. Antimicrob Agents Chemother 2014; 58:3599-609. [PMID: 24709265 PMCID: PMC4068517 DOI: 10.1128/aac.01043-13] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2013] [Accepted: 04/02/2014] [Indexed: 01/08/2023] Open
Abstract
Human skin fatty acids are a potent aspect of our innate defenses, giving surface protection against potentially invasive organisms. They provide an important parameter in determining the ecology of the skin microflora, and alterations can lead to increased colonization by pathogens such as Staphylococcus aureus. Harnessing skin fatty acids may also give a new avenue of exploration in the generation of control measures against drug-resistant organisms. Despite their importance, the mechanism(s) whereby skin fatty acids kill bacteria has remained largely elusive. Here, we describe an analysis of the bactericidal effects of the major human skin fatty acid cis-6-hexadecenoic acid (C6H) on the human commensal and pathogen S. aureus. Several C6H concentration-dependent mechanisms were found. At high concentrations, C6H swiftly kills cells associated with a general loss of membrane integrity. However, C6H still kills at lower concentrations, acting through disruption of the proton motive force, an increase in membrane fluidity, and its effects on electron transfer. The design of analogues with altered bactericidal effects has begun to determine the structural constraints on activity and paves the way for the rational design of new antistaphylococcal agents.
Collapse
Affiliation(s)
- Michaël L Cartron
- The Krebs Institute, Department of Molecular Biology and Biotechnology, University of Sheffield, Western Bank, Sheffield, United Kingdom
| | - Simon R England
- Department of Chemistry, University of Sheffield, Brook Hill, Sheffield, United Kingdom
| | - Alina Iulia Chiriac
- Institute of Microbiology, Immunology and Parasitology, Medical Faculty, University of Bonn, Bonn, Germany
| | - Michaele Josten
- Institute of Microbiology, Immunology and Parasitology, Medical Faculty, University of Bonn, Bonn, Germany
| | - Robert Turner
- The Krebs Institute, Department of Molecular Biology and Biotechnology, University of Sheffield, Western Bank, Sheffield, United Kingdom
| | - Yvonne Rauter
- The Krebs Institute, Department of Molecular Biology and Biotechnology, University of Sheffield, Western Bank, Sheffield, United Kingdom
| | - Alexander Hurd
- The Krebs Institute, Department of Molecular Biology and Biotechnology, University of Sheffield, Western Bank, Sheffield, United Kingdom
| | - Hans-Georg Sahl
- Institute of Microbiology, Immunology and Parasitology, Medical Faculty, University of Bonn, Bonn, Germany
| | - Simon Jones
- Department of Chemistry, University of Sheffield, Brook Hill, Sheffield, United Kingdom
| | - Simon J Foster
- The Krebs Institute, Department of Molecular Biology and Biotechnology, University of Sheffield, Western Bank, Sheffield, United Kingdom
| |
Collapse
|
65
|
Bekir K, Noumi E, Abid NBS, Bakhrouf A. Adhesive properties to materials used in unit care by Staphylococcus aureus strains incubated in seawater microcosms. J IND ENG CHEM 2014. [DOI: 10.1016/j.jiec.2013.10.025] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
66
|
Mulyukin AL, Suzina NE, Mel’nikov VG, Gal’chenko VF, El’-Registan GI. Dormant state and phenotypic variability of Staphylococcus aureus and Corynebacterium pseudodiphtheriticum. Microbiology (Reading) 2014. [DOI: 10.1134/s0026261713060088] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
67
|
Parker JK, Wisotsky SR, Johnson EG, Hijaz FM, Killiny N, Hilf ME, De La Fuente L. Viability of 'Candidatus Liberibacter asiaticus' prolonged by addition of citrus juice to culture medium. PHYTOPATHOLOGY 2014; 104:15-26. [PMID: 23883155 DOI: 10.1094/phyto-05-13-0119-r] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Huanglongbing, or citrus greening disease, is associated with infection by the phloem-limited bacterium 'Candidatus Liberibacter asiaticus'. Infection with 'Ca. L. asiaticus' is incurable; therefore, knowledge regarding 'Ca. L. asiaticus' biology and pathogenesis is essential to develop a treatment. However, 'Ca. L. asiaticus' cannot currently be successfully cultured, limiting its study. To gain insight into the conditions conducive for growth of 'Ca. L. asiaticus' in vitro, 'Ca. L. asiaticus' inoculum obtained from seed of fruit from infected pomelo trees (Citrus maxima 'Mato Buntan') was added to different media, and cell viability was monitored for up to 2 months using quantitative polymerase chain reaction in conjunction with ethidium monoazide. Media tested included one-third King's B (K), K with 50% juice from the infected fruit, K with 50% commercially available grapefruit juice, and 100% commercially available grapefruit juice. Results show that juice-containing media dramatically prolong viability compared with K in experiments reproduced during 2 years using different juice sources. Furthermore, biofilm formed at the air-liquid interface of juice cultures contained 'Ca. L. asiaticus' cells, though next-generation sequencing indicated that other bacterial genera were predominant. Chemical characterization of the media was conducted to discuss possible factors sustaining 'Ca. L. asiaticus' viability in vitro, which will contribute to future development of a culture medium for 'Ca. L. asiaticus'.
Collapse
|
68
|
Wen J, Karthikeyan S, Hawkins J, Anantheswaran RC, Knabel SJ. Listeria monocytogenes responds to cell density as it transitions to the long-term-survival phase. Int J Food Microbiol 2013; 165:326-31. [PMID: 23810956 DOI: 10.1016/j.ijfoodmicro.2013.05.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2012] [Revised: 05/06/2013] [Accepted: 05/11/2013] [Indexed: 11/15/2022]
Abstract
Listeria monocytogenes was recently found to enter a long-term-survival (LTS) phase, which may help explain its persistence in natural environments and within food processing plants. The purpose of this study was to investigate the effects of initial cell density, initial pH and type of broth (fresh vs. spent) on the transition of L. monocytogenes to the LTS phase and model the change in viable population density with time. Initial cell density (~10(6)-~10(10)CFU/ml) and initial pH (5.36-6.85) both significantly affected the transition of L. monocytogenes to the LTS phase (P<0.001) with initial cell density being the main determining factor. In contrast, type of broth did not significantly affect cell density change during the transition of stationary-phase cells at high initial density to the LTS phase (P>0.05). After 30-d incubation no significant differences in cell densities were observed between either type of broth or between any of the initial cell density/pH treatment combinations (P>0.05), where the mean viable cell density was 4.3±1.1×10(8)CFU/ml. L. monocytogenes responded to viable cell density in accordance with the logistic equation during transition to the LTS phase. The Agr quorum-sensing system does not appear to play a role in the transition to the LTS phase. Further research is needed to better understand the control mechanisms utilized by L. monocytogenes as it transitions to a coccoid, resistant and stable density state in the LTS phase.
Collapse
Affiliation(s)
- Jia Wen
- Department of Food Science, The Pennsylvania State University, University Park, PA 16802, USA.
| | | | | | | | | |
Collapse
|
69
|
Kenny JG, Moran J, Kolar SL, Ulanov A, Li Z, Shaw LN, Josefsson E, Horsburgh MJ. Mannitol utilisation is required for protection of Staphylococcus aureus from human skin antimicrobial fatty acids. PLoS One 2013; 8:e67698. [PMID: 23861785 PMCID: PMC3701532 DOI: 10.1371/journal.pone.0067698] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2012] [Accepted: 05/21/2013] [Indexed: 11/30/2022] Open
Abstract
Mannitol (Mtl) fermentation, with the subsequent production of acid, is a species signature of Staphylococcus aureus, and discriminates it from most other members of the genus. Inactivation of the gene mtlD, encoding Mtl-1-P dehydrogenase was found to markedly reduce survival in the presence of the antimicrobial fatty acid, linoleic acid. We demonstrate that the sugar alcohol has a potentiating action for this membrane-acting antimicrobial. Analysis of cellular metabolites revealed that, during exponential growth, the mtlD mutant accumulated high levels of Mtl and Mtl-P. The latter metabolite was not detected in its isogenic parent strain or a deletion mutant of the entire mtlABFD operon. In addition, the mtlD mutant strain exhibited a decreased MIC for H2O2, however virulence was unaffected in a model of septic arthritis.
Collapse
Affiliation(s)
- John G. Kenny
- Institute of Integrative Biology, University of Liverpool, Liverpool, Merseyside, United Kingdom
| | - Josephine Moran
- Institute of Integrative Biology, University of Liverpool, Liverpool, Merseyside, United Kingdom
| | - Stacey L. Kolar
- Department of Cell Biology, Microbiology & Molecular Biology, University of South Florida, Tampa, Florida, United States of America
| | - Alexander Ulanov
- Roy J. Carver Biotechnology Center, University of Illinois, Urbana-Champaign, Illinois, United States of America
| | - Zhong Li
- Roy J. Carver Biotechnology Center, University of Illinois, Urbana-Champaign, Illinois, United States of America
| | - Lindsey N. Shaw
- Department of Cell Biology, Microbiology & Molecular Biology, University of South Florida, Tampa, Florida, United States of America
| | - Elisabet Josefsson
- Department of Rheumatology and Inflammation Research, University of Gothenburg, Göteborg, Sweden
| | - Malcolm J. Horsburgh
- Institute of Integrative Biology, University of Liverpool, Liverpool, Merseyside, United Kingdom
- * E-mail:
| |
Collapse
|
70
|
Ercan O, Smid EJ, Kleerebezem M. Quantitative physiology ofLactococcus lactisat extreme low-growth rates. Environ Microbiol 2013; 15:2319-32. [DOI: 10.1111/1462-2920.12104] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2012] [Revised: 01/24/2013] [Accepted: 01/25/2013] [Indexed: 11/26/2022]
|
71
|
Evolution in fast forward: a potential role for mutators in accelerating Staphylococcus aureus pathoadaptation. J Bacteriol 2012. [PMID: 23204459 DOI: 10.1128/jb.00733-12] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Pathogen evolution and subsequent phenotypic heterogeneity during chronic infection are proposed to enhance Staphylococcus aureus survival during human infection. We tested this theory by genetically and phenotypically characterizing strains with mutations constructed in the mismatch repair (MMR) and oxidized guanine (GO) system, termed mutators, which exhibit increased spontaneous-mutation frequencies. Analysis of these mutators revealed not only strain-dependent increases in the spontaneous-mutation frequency but also shifts in mutational type and hot spots consistent with loss of GO or MMR functions. Although the GO and MMR systems are relied upon in some bacterial species to prevent reactive oxygen species-induced DNA damage, no deficit in hydrogen peroxide sensitivity was found when either of these DNA repair pathways was lost in S. aureus. To gain insight into the contribution of increased mutation supply to S. aureus pathoadaptation, we measured the rate of α-hemolysin and staphyloxanthin inactivation during serial passage. Detection of increased rates of α-hemolysin and staphyloxanthin inactivation in GO and MMR mutants suggests that these strains are capable of modifying virulence phenotypes implicated in mediating infection. Accelerated derivation of altered virulence phenotypes, combined with the absence of increased ROS sensitivity, highlights the potential of mutators to drive pathoadaptation in the host and serve as catalysts for persistent infections.
Collapse
|
72
|
Dosselli R, Millioni R, Puricelli L, Tessari P, Arrigoni G, Franchin C, Segalla A, Teardo E, Reddi E. Molecular targets of antimicrobial photodynamic therapy identified by a proteomic approach. J Proteomics 2012; 77:329-43. [PMID: 23000218 DOI: 10.1016/j.jprot.2012.09.007] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2012] [Revised: 06/19/2012] [Accepted: 09/08/2012] [Indexed: 12/24/2022]
Abstract
Antimicrobial photodynamic therapy (PDT) is a promising tool to combat antibiotic-resistant bacterial infections. During PDT, bacteria are killed by reactive oxygen species generated by a visible light absorbing photosensitizer (PS). We used a classical proteomic approach that included two-dimensional gel electrophoresis and mass spectrometry analysis, to identify some proteins of Staphylococcus aureus that are damaged during PDT with the cationic PS meso-tetra-4-N-methyl pyridyl porphine (T4). Suspensions of S. aureus cells were incubated with selected T4 concentrations and irradiated with doses of blue light that reduced the survival to about 60% or 1%. Proteomics analyses of a membrane proteins enriched fraction revealed that these sub-lethal PDT treatments affected the expression of several functional classes of proteins, and that this damage is selective. Most of these proteins were found to be involved in metabolic activities, in oxidative stress response, in cell division and in the uptake of sugar. Subsequent analyses revealed that PDT treatments delayed the growth and considerably reduced the glucose consumption capacity of S. aureus cells. This investigation provides new insights towards the characterization of PDT induced damage and mechanism of bacterial killing using, for the first time, a proteomic approach.
Collapse
Affiliation(s)
- Ryan Dosselli
- Department of Biology, University of Padova, Via U. Bassi 58/B, 35128 Padova, Italy.
| | | | | | | | | | | | | | | | | |
Collapse
|
73
|
The extracytoplasmic function sigma factor σS protects against both intracellular and extracytoplasmic stresses in Staphylococcus aureus. J Bacteriol 2012; 194:4342-54. [PMID: 22685284 DOI: 10.1128/jb.00484-12] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Previously we identified a novel component of the Staphylococcus aureus regulatory network, an extracytoplasmic function σ-factor, σ(S), involved in stress response and disease causation. Here we present additional characterization of σ(S), demonstrating a role for it in protection against DNA damage, cell wall disruption, and interaction with components of the innate immune system. Promoter mapping reveals the existence of three unique sigS start sites, one of which appears to be subject to autoregulation. Transcriptional profiling revealed that sigS expression remains low in a number of S. aureus wild types but is upregulated in the highly mutated strain RN4220. Further analysis demonstrates that sigS expression is inducible upon exposure to a variety of chemical stressors that elicit DNA damage, including methyl methanesulfonate and ciprofloxacin, as well as those that disrupt cell wall stability, such as ampicillin and oxacillin. Significantly, expression of sigS is highly induced during growth in serum and upon phagocytosis by RAW 264.7 murine macrophage-like cells. Phenotypically, σ(S) mutants display sensitivity to a broad range of DNA-damaging agents and cell wall-targeting antibiotics. Furthermore, the survivability of σ(S) mutants is strongly impacted during challenge by components of the innate immune system. Collectively, our data suggest that σ(S) likely serves dual functions within the S. aureus cell, protecting against both cytoplasmic and extracytoplasmic stresses. This further argues for its important, and perhaps novel, role in the S. aureus stress and virulence responses.
Collapse
|
74
|
Abstract
Like eukaryotes, bacteria must coordinate division with growth to ensure cells are the appropriate size for a given environmental condition or developmental fate. As single-celled organisms, nutrient availability is one of the strongest influences on bacterial cell size. Classic physiological experiments conducted over four decades ago first demonstrated that cell size is directly correlated with nutrient source and growth rate in the Gram-negative bacterium Salmonella typhimurium. This observation subsequently served as the basis for studies revealing a role for cell size in cell cycle progression in a closely related organism, Escherichia coli. More recently, the development of powerful genetic, molecular, and imaging tools has allowed us to identify and characterize the nutrient-dependent pathway responsible for coordinating cell division and cell size with growth rate in the Gram-positive model organism Bacillus subtilis. Here, we discuss the role of cell size in bacterial growth and development and propose a broadly applicable model for cell size control in this important and highly divergent domain of life.
Collapse
Affiliation(s)
- An-Chun Chien
- Department of Biology, Box 1137, Washington University, 1 Brookings Dr., Saint Louis, MO, USA
| | | | | |
Collapse
|
75
|
Helmus RA, Liermann LJ, Brantley SL, Tien M. Growth advantage in stationary-phase (GASP) phenotype in long-term survival strains of Geobacter sulfurreducens. FEMS Microbiol Ecol 2012; 79:218-28. [PMID: 22029575 DOI: 10.1111/j.1574-6941.2011.01211.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022] Open
Abstract
Geobacter sulfurreducens exists in the subsurface and has been identified in sites contaminated with radioactive metals, consistent with its ability to reduce metals under anaerobic conditions. The natural state of organisms in the environment is one that lacks access to high concentrations of nutrients, namely electron donors and terminal electron acceptors (TEAs). Most studies have investigated G. sulfurreducens under high-nutrient conditions or have enriched for it in environmental systems via acetate amendments. We replicated the starvation state through long-term batch culture of G. sulfurreducens, where both electron donor and TEA were scarce. The growth curve revealed lag, log, stationary, death, and survival phases using acetate as electron donor and either fumarate or iron(III) citrate as TEA. In survival phase, G. sulfurreducens persisted at a constant cell count for as long as 23 months without replenishment of growth medium. Geobacter sulfurreducens demonstrated an ability to acquire a growth advantage in stationary-phase phenotype (GASP), with strains derived from subpopulations from death- or survival phase being able to out-compete mid-log-phase populations when co-cultured. The molecular basis for GASP was not because of any detectable mutation in the rpoS gene (GSU1525) nor because of a mutation in a putative homolog to Escherichia coli lrp, GSU3370.
Collapse
Affiliation(s)
- Ruth A Helmus
- Center for Environmental Kinetics Analysis, Pennsylvania State University, University Park, PA 16802, USA
| | | | | | | |
Collapse
|
76
|
Hota S, Crooke P, Hotchkiss J. A Monte Carlo analysis of peritoneal antimicrobial pharmacokinetics. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2011; 696:401-10. [PMID: 21431580 DOI: 10.1007/978-1-4419-7046-6_40] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
Abstract
Peritoneal dialysis-associated peritonitis (PDAP) can be treated using very different regimens of antimicrobial administration, regimens that result in different pharmacokinetic outcomes and systemic exposure levels. Currently, there is no population-level pharmacokinetic framework germane to the treatment of PDAP. We coupled a differential-equation-based model of antimicrobial kinetics to a Monte Carlo simulation framework, and conducted "in silico" clinical trials to explore the anticipated effects of different antimicrobial dosing regimens on relevant pharmacokinetic parameters (AUC/MIC and time greater than 5 ×MIC) and the level of systemic exposure.
Collapse
Affiliation(s)
- Sanjukta Hota
- Department of Mathematics, Fisk University, Nashville, TN 37208, USA.
| | | | | |
Collapse
|
77
|
Abstract
Streptococcus pneumoniae (pneumococcus) is a frequent colonizer of the nasopharynx and one of the leading causative agents of otitis media, pneumonia, and meningitis. The current literature asserts that S. pneumoniae is transmitted person to person via respiratory droplets; however, environmental surfaces (fomites) have been linked to the spread of other respiratory pathogens. Desiccation tolerance has been to shown to be essential for long-term survival on dry surfaces. This study investigated the survival and infectivity of S. pneumoniae following desiccation under ambient conditions. We recovered viable bacteria after all desiccation periods tested, ranging from 1 h to 4 weeks. Experiments conducted under nutrient limitation indicate that desiccation is a condition separate from starvation. Desiccation of an acapsular mutant and 15 different clinical isolates shows that S. pneumoniae desiccation tolerance is independent of the polysaccharide capsule and is a species-wide phenomenon, respectively. Experiments demonstrating that nondesiccated and desiccated S. pneumoniae strains colonize the nasopharynx at comparable levels, combined with their ability to survive long-term desiccation, suggest that fomites may serve as alternate sources of pneumococcal infection. Even with the advent of multivalent capsular polysaccharide conjugate vaccines, S. pneumoniae continues to be a major cause of morbidity and mortality worldwide. Every year, there are approximately 7 million cases of pneumococcus-based otitis media in the United States alone, while pneumococcal invasive diseases are responsible for more than 1 million deaths globally. It is believed that the human upper respiratory tract is the sole niche of S. pneumoniae and, thus, that spread occurs via close contact with an infected individual. In this study, we characterized the desiccation tolerance of S. pneumoniae and found that it can survive for many weeks postdehydration and retain infectivity. Our results suggest that desiccation tolerance is an inherent trait of this genetically variable species and that fomites may be a source of transmission.
Collapse
|
78
|
Liebeke M, Dörries K, Zühlke D, Bernhardt J, Fuchs S, Pané-Farré J, Engelmann S, Völker U, Bode R, Dandekar T, Lindequist U, Hecker M, Lalk M. A metabolomics and proteomics study of the adaptation of Staphylococcus aureus to glucose starvation. MOLECULAR BIOSYSTEMS 2011; 7:1241-53. [DOI: 10.1039/c0mb00315h] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
79
|
Masmoudi S, Denis M, Maalej S. Inactivation of the gene katA or sodA affects the transient entry into the viable but non-culturable response of Staphylococcus aureus in natural seawater at low temperature. MARINE POLLUTION BULLETIN 2010; 60:2209-2214. [PMID: 20833402 DOI: 10.1016/j.marpolbul.2010.08.017] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2010] [Revised: 08/06/2010] [Accepted: 08/19/2010] [Indexed: 05/29/2023]
Abstract
We have investigated the fate of Staphylococcus aureus by starving the cells and maintaining them in natural seawater at 22 and 4 °C. At 22 °C, cells developed a long-term survival state where about 0.037% of the initial population remained culturable over more than 7 months, whereas at 4 °C, bacteria lost culturability and transiently entered into the viable but non-culturable state (VBNC). However, after 22 days of entry into the VBNC state, the number of viable cells detected via the direct viable count method decreased significantly. We show here that mutational inactivation of catalase (KatA) or superoxide dismutase (SodA) rendered strains hypersensitive to seawater stress at 4 °C and consequently, part of the seawater lethality on S. aureus at low temperature is mediated by reactive oxygen species (ROS) during microcosm-survival process. Shifting the temperature from 4 to 22 °C of totally non-culturable wild-type cells induced a partial recovery of the population. However, deficiencies in catalase or superoxide dismutase prevent resuscitation ability.
Collapse
Affiliation(s)
- Salma Masmoudi
- Laboratoire de Microbiologie, Faculté des Sciences de Sfax, B.P. 1171, 3000 Sfax, Tunisia
| | | | | |
Collapse
|
80
|
Sagripanti JL, Carrera M, Robertson J, Levy A, Inglis TJJ. Size distribution and buoyant density of Burkholderia pseudomallei. Arch Microbiol 2010; 193:69-75. [PMID: 21080156 DOI: 10.1007/s00203-010-0649-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2010] [Revised: 08/25/2010] [Accepted: 10/22/2010] [Indexed: 11/28/2022]
Abstract
The size and density of microbial cells determine the time that pathogens can remain airborne and thus, their potential to infect by the respiratory route. We determined the density and size distribution of Burkholderia pseudomallei cells in comparison with other Burkholderia species, including B. mallei and B. thailandensis, all prepared and analyzed under similar conditions. The observed size distribution and densities of several bacterial strains indicates that aerosolized particles consisting of one or of a few B. pseudomallei cells should be efficiently retained in the lungs, highlighting the risk of transmission of melioidosis by the respiratory route when the pathogen is present in fluids from infected patients or aerosolized from the environment.
Collapse
Affiliation(s)
- Jose-Luis Sagripanti
- Research and Technology Directorate, Edgewood Chemical Biological Center, US Army, 5183 Blackhawk Rd, Aberdeen Proving Ground, MD 21010-5424, USA.
| | | | | | | | | |
Collapse
|
81
|
Fanget NVJ, Foley S. Starvation/stationary-phase survival of Rhodococcus erythropolis SQ1: a physiological and genetic analysis. Arch Microbiol 2010; 193:1-13. [DOI: 10.1007/s00203-010-0638-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2010] [Revised: 09/12/2010] [Accepted: 09/30/2010] [Indexed: 11/24/2022]
|
82
|
Lungu B, Saldivar JC, Story R, Ricke SC, Johnson MG. The combination of energy-dependent internal adaptation mechanisms and external factors enables Listeria monocytogenes to express a strong starvation survival response during multiple-nutrient starvation. Foodborne Pathog Dis 2010; 7:499-505. [PMID: 20001327 DOI: 10.1089/fpd.2009.0408] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The goal of this study was to characterize the starvation survival response (SSR) of a wild-type Listeria monocytogenes 10403S and an isogenic DeltasigB mutant strain during multiple-nutrient starvation conditions over 28 days. This study examined the effects of inhibitors of protein synthesis, the proton motive force, substrate level phosphorylation, and oxidative phosphorylation on the SSR of L. monocytogenes 10403S and a DeltasigB mutant during multiple-nutrient starvation. The effects of starvation buffer changes on viability were also examined. During multiple-nutrient starvation, both strains expressed a strong SSR, suggesting that L. monocytogenes possesses SigB-independent mechanism(s) for survival during multiple-nutrient starvation. Neither strain was able to express an SSR following starvation buffer changes, indicating that the nutrients/factors present in the starvation buffer could be a source of energy for cell maintenance and survival. Neither the wild-type nor the DeltasigB mutant strain was able to elicit an SSR when exposed to the protein synthesis inhibitor chloramphenicol within the first 4 h of starvation. However, both strains expressed an SSR when exposed to chloramphenicol after 6 h or more of starvation, suggesting that the majority of proteins required to elicit an effective SSR in L. monocytogenes are likely produced somewhere between 4 and 6 h of starvation. The varying SSRs of both strains to the different metabolic inhibitors under aerobic or anaerobic conditions suggested that (1) energy derived from the proton motive force is important for an effective SSR, (2) L. monocytogenes utilizes an anaerobic electron transport during multiple-nutrient starvation conditions, and (3) the glycolytic pathway is an important energy source during multiple-nutrient starvation when oxygen is available, and less important under anaerobic conditions. Collectively, the data suggest that the combination of energy-dependent internal adaptation mechanisms of cells and external nutrients/factors enables L. monocytogenes to express a strong SSR.
Collapse
Affiliation(s)
- Bwalya Lungu
- Department of Food Science, Institute for Food Science and Engineering, University of Arkansas, Fayetteville, Arkansas 72704, USA
| | | | | | | | | |
Collapse
|
83
|
Staphylococcus aureus NrdH redoxin is a reductant of the class Ib ribonucleotide reductase. J Bacteriol 2010; 192:4963-72. [PMID: 20675493 DOI: 10.1128/jb.00539-10] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Staphylococci contain a class Ib NrdEF ribonucleotide reductase (RNR) that is responsible, under aerobic conditions, for the synthesis of deoxyribonucleotide precursors for DNA synthesis and repair. The genes encoding that RNR are contained in an operon consisting of three genes, nrdIEF, whereas many other class Ib RNR operons contain a fourth gene, nrdH, that determines a thiol redoxin protein, NrdH. We identified a 77-amino-acid open reading frame in Staphylococcus aureus that resembles NrdH proteins. However, S. aureus NrdH differs significantly from the canonical NrdH both in its redox-active site, C-P-P-C instead of C-M/V-Q-C, and in the absence of the C-terminal [WF]SGFRP[DE] structural motif. We show that S. aureus NrdH is a thiol redox protein. It is not essential for aerobic or anaerobic growth and appears to have a marginal role in protection against oxidative stress. In vitro, S. aureus NrdH was found to be an efficient reductant of disulfide bonds in low-molecular-weight substrates and proteins using dithiothreitol as the source of reducing power and an effective reductant for the homologous class Ib RNR employing thioredoxin reductase and NADPH as the source of the reducing power. Its ability to reduce NrdEF is comparable to that of thioredoxin-thioredoxin reductase. Hence, S. aureus contains two alternative thiol redox proteins, NrdH and thioredoxin, with both proteins being able to function in vitro with thioredoxin reductase as the immediate hydrogen donors for the class Ib RNR. It remains to be clarified under which in vivo physiological conditions the two systems are used.
Collapse
|
84
|
Zhou Y, Taylor B, Smith TJ, Liu ZP, Clench M, Davies NW, Rainsford KD. A novel compound from celery seed with a bactericidal effect against Helicobacter pylori. J Pharm Pharmacol 2010. [DOI: 10.1211/jpp.61.08.0011] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Abstract
Objectives
The aim was to purify and characterise an antimicrobial component from celery (Apium graveolens) seeds, which have been used for centuries as a herbal medicine with reported antibacterial effects.
Methods
A crude alcoholic extract of celery seeds was fractionated by organic solvent extractions, column chromatography and HPLC. Fractions were assayed for antimicrobial activity against the gastric pathogen Helicobacter pylori and other bacteria. The purified antibacterial component was characterised via MS and NMR. Preliminary investigation of its mechanism of action included morphological studies, incorporation of macromolecular precursors, membrane integrity and two-dimensional protein electrophoresis.
Key findings
The purified component, termed ‘compound with anti-Helicobacter activity’ (CAH), had potent bactericidal effects against H. pylori; the minimum inhibitory concentration and minimum bactericidal concentration were 3.15 μg/ml and 6.25–12.5 μg/ml, respectively. CAH (Mr = 384.23; empirical formula C24H32O4) had specific inhibitory effects on H. pylori and was not active against Campylobacter jejuni or Escherichia coli. MS and NMR data were consistent with a dimeric phthalide structure. The results appeared to rule out mechanisms that operated solely by loss of membrane integrity or inhibition of protein or nucleic acid synthesis.
Conclusions
CAH may be suitable for further investigation as a potent agent for treating H. pylori infections.
Collapse
Affiliation(s)
- Yong Zhou
- Biomedical Research Centre, Sheffield Hallam University, Sheffield, UK
| | - Brian Taylor
- Department of Chemistry, University of Sheffield, Sheffield, UK
| | - Thomas J Smith
- Biomedical Research Centre, Sheffield Hallam University, Sheffield, UK
| | - Zhong-ping Liu
- Biomedical Research Centre, Sheffield Hallam University, Sheffield, UK
| | - Malcolm Clench
- Biomedical Research Centre, Sheffield Hallam University, Sheffield, UK
| | - Noel W Davies
- Central Science Laboratory, University of Tasmania, Hobart, Tasmania, Australia
| | - K D Rainsford
- Biomedical Research Centre, Sheffield Hallam University, Sheffield, UK
| |
Collapse
|
85
|
O'Bryan CA, Sostrin ML, Nannapaneni R, Ricke SC, Crandall PG, Johnson MG. Sensitivity of Listeria monocytogenes Scott A to Nisin and Diacetyl after Starvation in Sodium Phosphate Buffered Saline. J Food Sci 2009; 74:M493-8. [DOI: 10.1111/j.1750-3841.2009.01340.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
86
|
Brundin M, Figdor D, Sundqvist G, Sjögren U. Starvation response and growth in serum of Fusobacterium nucleatum, Peptostreptococcus anaerobius, Prevotella intermedia, and Pseudoramibacter alactolyticus. ACTA ACUST UNITED AC 2009; 108:129-34. [DOI: 10.1016/j.tripleo.2009.03.018] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2009] [Accepted: 03/06/2009] [Indexed: 11/26/2022]
|
87
|
Wen J, Anantheswaran RC, Knabel SJ. Changes in barotolerance, thermotolerance, and cellular morphology throughout the life cycle of Listeria monocytogenes. Appl Environ Microbiol 2009; 75:1581-8. [PMID: 19168646 PMCID: PMC2655472 DOI: 10.1128/aem.01942-08] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2008] [Accepted: 01/12/2009] [Indexed: 11/20/2022] Open
Abstract
Changes in barotolerance, thermotolerance, and cellular morphology throughout the life cycle of Listeria monocytogenes were investigated. For part 1 of this analysis, L. monocytogenes ATCC 19115 was grown to log, stationary, death, and long-term-survival phases at 35 degrees C in tryptic soy broth with yeast extract (TSBYE). Cells were diluted in whole milk that had been subjected to ultrahigh temperatures (UHT whole milk) and then high-pressure processed (HPP) at 400 MPa for 180 s or thermally processed at 62.8 degrees C for 30 s. As cells transitioned from the log to the long-term-survival phase, the D(400 MPa) and D(62.8 degrees C) values increased 10- and 19-fold, respectively. Cells decreased in size as they transitioned from the log to the long-term-survival phase. Rod-shaped cells transitioned to cocci as they entered the late-death and long-term-survival phases. L. monocytogenes strains F5069 and Scott A showed similar results. For part 2 of the analysis, cells in long-term-survival phase were centrifuged, suspended in fresh TSBYE, and incubated at 35 degrees C. As cells transitioned from the long-term-survival phase to log and the stationary phase, they increased in size and log reductions increased following HPP or heat treatment. In part 3 of this analysis, cells in long-term-survival phase were centrifuged, suspended in UHT whole milk, and incubated at 4 degrees C. After HPP or heat treatment, similar results were observed as for part 2. We hypothesize that cells of L. monocytogenes enter a dormant, long-term-survival phase and become more barotolerant and thermotolerant due to cytoplasmic condensation when they transition from rods to cocci. Further research is needed to test this hypothesis and to determine the practical significance of these findings.
Collapse
Affiliation(s)
- Jia Wen
- Department of Food Science, The Pennsylvania State University, University Park, PA 16802, USA
| | | | | |
Collapse
|
88
|
Lungu B, Ricke SC, Johnson MG. Resistance of nutrient-deprived Listeria monocytogenes 10403S and a DeltasigB mutant to chemical stresses in the presence or absence of oxygen. J Food Sci 2008; 73:M339-45. [PMID: 18803717 DOI: 10.1111/j.1750-3841.2008.00877.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Nutrient-deprived Listeria monocytogenes have increased resistance to processing control measures. Heat-stressed L. monocytogenes cells produce higher counts under anaerobic conditions and SigB reportedly contributes to the survival of environmentally stressed Gram-positive bacteria. In this study, a wild type (wt) strain, L. monocytogenes 10403S, and a DeltasigB mutant, FSLA1-254, were stressed by starvation in phosphate buffered saline coupled with exposure to chemicals with/without oxygen. In the absence of chemicals, the mutant survived starvation almost as well as the wt, suggesting that the starvation survival response (SSR) in L. monocytogenes was SigB-independent. Conversely, in the presence of chemical stresses the SSR results differed depending on the chemical used. In the presence of sodium chloride (SC), both strains were able to express an SSR under aerobic conditions but not under anaerobic conditions. However, in the presence of sodium propionate (SP), the mutant yielded counts that were 2 log CFU/mL lower than the controls and their aerobic counterparts. In the presence of sodium lactate (SL), the mutant yielded counts that were approximately 3 log CFU/mL lower than the wt under anaerobic conditions. Thus, for the chemical stress produced by SC, the SSR appeared to be SigB-independent. The SSR of L. monocytogenes appeared to be SigB-dependent following exposure to SP or SL under anaerobic conditions. Following exposure to sodium diacetate or lauric acid, both strains were unable to express an SSR. No detectable CFUs were observed after 14 to 21 d under either aerobic or anaerobic incubation. Therefore, these 2 chemicals could be used in biocidal formulations against L. monocytogenes cells under aerobic or anaerobic conditions.
Collapse
Affiliation(s)
- B Lungu
- Dept of Food Science and Technology, Univ of Georgia, Athens, GA 30602, USA
| | | | | |
Collapse
|
89
|
Chávez de Paz LE, Hamilton IR, Svensäter G. Oral bacteria in biofilms exhibit slow reactivation from nutrient deprivation. Microbiology (Reading) 2008; 154:1927-1938. [DOI: 10.1099/mic.0.2008/016576-0] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- Luis E. Chávez de Paz
- Department of Oral Biology, Faculty of Odontology, Malmö University, Malmö 20506, Sweden
| | - Ian R. Hamilton
- Department of Oral Biology, Faculty of Dentistry, University of Manitoba, Winnipeg, MB, Canada
| | - Gunnel Svensäter
- Department of Oral Biology, Faculty of Odontology, Malmö University, Malmö 20506, Sweden
| |
Collapse
|
90
|
Cappello S, Denaro R, Giuliano L, Yakimov MM. Persistence ofAlteromonas genus during a long-term starvation in a marine microcosm. ANN MICROBIOL 2008. [DOI: 10.1007/bf03179439] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
|
91
|
Siciliano RA, Cacace G, Mazzeo MF, Morelli L, Elli M, Rossi M, Malorni A. Proteomic investigation of the aggregation phenomenon in Lactobacillus crispatus. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2007; 1784:335-42. [PMID: 18078834 DOI: 10.1016/j.bbapap.2007.11.007] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2007] [Revised: 10/29/2007] [Accepted: 11/05/2007] [Indexed: 11/18/2022]
Abstract
Aggregation process affects the ability of Lactobacillus crispatus, a probiotic, to survive into the gastro-intestinal environment and to adhere to the intestinal mucosa. To elucidate mechanisms underlying this process, a comparative proteomic study was carried out on a wild type strain M247 and its spontaneous isogenic mutant Mu5, which had lost the aggregative phenotype. Results highlighted an overall lower amount of enzymes involved in carbohydrate transport and metabolism in strain M247 compared to strain Mu5, suggesting a reduction in the general growth rate, probably caused by nutrient limitation in cell aggregates, coherently with the phenotypic traits of the strains. Moreover, the up-regulation of a putative elongation factor Tu in the wild type M247 strain could suggest a role of this particular protein in the adhesion mechanism of L. crispatus.
Collapse
Affiliation(s)
- Rosa A Siciliano
- Centro di Spettrometria di Massa Proteomica e Biomolecolare, Istituto di Scienze dell'Alimentazione del CNR, Avellino, Italy.
| | | | | | | | | | | | | |
Collapse
|
92
|
Myszka K, Czaczyk K, Schmidt MT, Olejnik AM. Cell surface properties as factors involved in Proteus vulgaris adhesion to stainless steel under starvation conditions. World J Microbiol Biotechnol 2007. [DOI: 10.1007/s11274-007-9406-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
93
|
Ganesan B, Stuart MR, Weimer BC. Carbohydrate starvation causes a metabolically active but nonculturable state in Lactococcus lactis. Appl Environ Microbiol 2007; 73:2498-512. [PMID: 17293521 PMCID: PMC1855592 DOI: 10.1128/aem.01832-06] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
This study characterized the ability of lactococci to become nonculturable under carbohydrate starvation while maintaining metabolic activity. We determined the changes in physiological parameters and extracellular substrate levels of multiple lactococcal strains under a number of environmental conditions along with whole-genome expression profiles. Three distinct phases were observed, logarithmic growth, sugar exhaustion, and nonculturability. Shortly after carbohydrate starvation, each lactococcal strain lost the ability to form colonies on solid media but maintained an intact cell membrane and metabolic activity for over 3.5 years. ML3, a strain that metabolized lactose rapidly, reached nonculturability within 1 week. Strains that metabolized lactose slowly (SK11) or not at all (IL1403) required 1 to 3 months to become nonculturable. In all cases, the cells contained at least 100 pM of intracellular ATP after 6 months of starvation and remained at that level for the remainder of the study. Aminopeptidase and lipase/esterase activities decreased below detection limits during the nonculturable phase. During sugar exhaustion and entry into nonculturability, serine and methionine were produced, while glutamine and arginine were depleted from the medium. The cells retained the ability to transport amino acids via proton motive force and peptides via ATP-driven translocation. The addition of branched-chain amino acids to the culture medium resulted in increased intracellular ATP levels and new metabolic products, indicating that branched-chain amino acid catabolism resulted in energy and metabolic products to support survival during starvation. Gene expression analysis showed that the genes responsible for sugar metabolism were repressed as the cells entered nonculturability. The genes responsible for cell division were repressed, while autolysis and cell wall metabolism genes were induced neither at starvation nor during nonculturability. Taken together, these observations verify that carbohydrate-starved lactococci attain a nonculturable state wherein sugar metabolism, cell division, and autolysis are repressed, allowing the cells to maintain transcription, metabolic activity, and energy production during a state that produces new metabolites not associated with logarithmic growth.
Collapse
|
94
|
Dubin G, Wladyka B, Stec-Niemczyk J, Chmiel D, Zdzalik M, Dubin A, Potempa J. The staphostatin family of cysteine protease inhibitors in the genus Staphylococcus as an example of parallel evolution of protease and inhibitor specificity. Biol Chem 2007; 388:227-35. [PMID: 17261086 DOI: 10.1515/bc.2007.025] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
AbstractStaphostatins constitute a family of staphylococcal cysteine protease inhibitors sharing a lipocalin-like fold and a unique mechanism of action. Each of these cytoplasmic proteins is co-expressed from one operon, together with a corresponding target extracellular cysteine protease (staphopain). To cast more light on staphostatin/staphopain interaction and the evolution of the encoding operons, we have cloned and characterized a staphopain (StpA2aurCH-91) and its inhibitor (StpinA2aurCH-91) from a novel staphylococcal thiol protease operon (stpAB2CH-91) identified inS.aureusstrain CH-91. Furthermore, we have expressed a staphostatin fromStaphylococcus warneri(StpinBwar) and characterized its target protease (StpBwar). Analysis of the reciprocal interactions among novel and previously described members of the staphostatin and staphopain families demonstrates that the co-transcribed protease is the primary target for each staphostatin. Nevertheless, the inhibitor derived from one species ofStaphylococcuscan inhibit the staphopain from another species, although theKivalues are generally higher and inhibition only occurs if both proteins belong to the same subgroup of eitherS. aureusstaphopain A/staphostatin A (α group) or staphopain B/staphostatin B (β group) orthologs. This indicates that both subgroups arose in a single event of ancestral allelic duplication, followed by parallel evolution of the protease/inhibitor pairs. The tight coevolution is likely the result of the known deleterious effects of uncontrolled staphopain action.
Collapse
Affiliation(s)
- Grzegorz Dubin
- Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 30-387 Krakow, Poland.
| | | | | | | | | | | | | |
Collapse
|
95
|
Klancnik A, Botteldoorn N, Herman L, Mozina SS. Survival and stress induced expression of groEL and rpoD of Campylobacter jejuni from different growth phases. Int J Food Microbiol 2006; 112:200-7. [PMID: 16782221 DOI: 10.1016/j.ijfoodmicro.2006.03.015] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/01/2006] [Indexed: 11/22/2022]
Abstract
Although Campylobacter jejuni is the leading cause of bacterial diarrhoeal disease in humans worldwide, its potential to adapt to the stressful conditions and survive in extra-intestinal environment is still poorly understood. We tested the effect of heat shock (55 degrees C, 3 min) and oxidative stress (3 mM H2O2 for 10 min or prolonged incubation at atmosphere oxygen concentration) on non-starved and starved cells of Campylobacter jejuni from different growth phases. Viability as assessed with the Bacterial Viability Kit LIVE/DEAD BacLighttrade mark dying before fluorescent microscopy and culturability of the cells (CFU ml(-1)) from both growth phases showed that starvation increased heat but not oxidative resistance. High temperature and oxidative stress invoked quick transformation from culturable spiral shaped to nonculturable spiral and coccoid cells. Despite physiological changes of the cells we were not able to document clear differences in the expression of heat shock and starvation genes (dnaK, htpG, groEL), oxidative (ahpC, sodB), virulence (flaA) and housekeeping genes (16S rRNA, rpoD) after heat treatment (55 degrees C, 3 min) or oxidative stresses applied. When starving, no induction of expression of any of these genes was noticed, chloramphenicol had no influence on their gene expression. Quantitative real-time PCR analyses showed that at least 10-20 min of heat shock was necessary to evidently increase the amount of groEL and rpoD transcripts.
Collapse
Affiliation(s)
- Anja Klancnik
- University of Ljubljana, Biotechnical Faculty, Department of Food Science and Technology, Jamnikarjeva 101, SI-1111 Ljubljana, Slovenia
| | | | | | | |
Collapse
|
96
|
Seletzky JM, Noack U, Fricke J, Hahn S, Büchs J. Metabolic activity of Corynebacterium glutamicum grown on L: -lactic acid under stress. Appl Microbiol Biotechnol 2006; 72:1297-307. [PMID: 16642330 DOI: 10.1007/s00253-006-0436-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2006] [Revised: 03/19/2006] [Accepted: 03/23/2006] [Indexed: 10/24/2022]
Abstract
Respiration measurement in shake flasks is introduced as a new method to characterize the metabolic activity of microorganisms during and after stress exposure. The major advantage of the new method is the possibility to determine the metabolic activity independent of manual sampling without the necessity to change the culture vessel or the cultivation medium. This excludes stress factors, which may be induced by transferring the microorganisms to plates or respirometers. The negative influence, which interruptions of the shaker during sampling times may have on the growth of microorganisms was demonstrated. The applicability of the method was verified by characterizing the behavior of Corynebacterium glutamicum grown on the carbon source L: -lactic acid under stress factors such as carbon starvation, anaerobic conditions, lactic acid, osmolarity, and pH. The following conditions had no effect on the metabolic activity of C. glutamicum: a carbon starvation of up to 19 h, anaerobic conditions, lactic acid concentrations up to 10 g/l, 3-(N-morpholino) propanesulfonic acid buffer concentrations up to 42 g/l, or pH from 6.4 to 7.4. Lactic-acid concentrations from 10 to 30 g/l lead to a decrease of the growth rate and the biomass substrate yield without effecting the oxygen substrate conversion. Without adaptation, the organism did not grow at pH< or =5 or > or =9.
Collapse
Affiliation(s)
- Juri M Seletzky
- Biochemical Engineering, RWTH Aachen University, Sammelbau Biologie, Worringerweg 1, 52056 Aachen, Germany
| | | | | | | | | |
Collapse
|
97
|
Maalej S, Dammak I, Dukan S. The impairment of superoxide dismutase coordinates the derepression of the PerR regulon in the response of Staphylococcus aureus to HOCl stress. Microbiology (Reading) 2006; 152:855-861. [PMID: 16514164 DOI: 10.1099/mic.0.28385-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The response ofStaphylococcus aureusto hypochlorous acid (HOCl) exposure was investigated. HOCl challenges were performed on cultures interrupted in the exponential phase. Pretreatment with HOCl conferred resistance to hydrogen peroxide in a PerR-dependent manner. Derepression of the PerR regulon was observed at low HOCl concentration (survival >50 %), using several fusions of different stress promoters tolacZreporter genes. At least four members of the PerR regulon (katA,mrgA,bcpandtrxA) encoding proteins with antioxidant properties were strongly induced following exposure to various HOCl concentrations. A striking result was the link between the derepression of the PerR regulon and the decreased superoxide dismutase (SOD) activity following exposure to increased HOCl concentrations. ThesodAmutant was more resistant than the wild-type and also had a higher level of 3-phosphoglycerate dehydrogenase (a measure of PerR regulon activity) without exposure to HOCl. Together, these results imply that derepression of PerR by HOCl is dependent on the level of SOD and protects exponentially arrested cells against HOCl stress.
Collapse
Affiliation(s)
- Sami Maalej
- Laboratoire de chimie bactérienne IBSM, CNRS UPR 9043, 31, chemin Joseph Aiguier, 13402 Marseille Cedex 20, France
- Laboratoire de Microbiologie, Faculté des Sciences de Sfax, 3018 Sfax, Tunisia
| | - Ines Dammak
- Laboratoire de Microbiologie, Faculté des Sciences de Sfax, 3018 Sfax, Tunisia
| | - Sam Dukan
- Laboratoire de chimie bactérienne IBSM, CNRS UPR 9043, 31, chemin Joseph Aiguier, 13402 Marseille Cedex 20, France
| |
Collapse
|
98
|
Chen H, Gao K, Kondorosi E, Kondorosi A, Rolfe BG. Functional genomic analysis of global regulator NolR in Sinorhizobium meliloti. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2005; 18:1340-52. [PMID: 16478054 DOI: 10.1094/mpmi-18-1340] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
NolR is a regulator of nodulation genes present in species belonging to the genera Rhizobium and Sinorhizobium. The expression of the nolR gene in Sinorhizobium meliloti AK631 was investigated in relation to stage of growth, availability of nutrients, and different environmental stimuli using the nolR::lacZ fusion report system. It has been shown that the nolR gene is regulated in a population-density-dependent fashion and influenced by a number of environmental stimuli, including nutrients, pH, and oxygen. Exploration of the physiological functions of NolR under various laboratory conditions has shown that NolR is required for the optimal growth of the bacteria on solid media, optimal survival of the bacteria in carbon-starved minimal medium, and after heat shock challenge. NolR also is involved in recipient-induced conjugative transfer of a plasmid. Proteome analysis of strain AK631 and its Tn5-induced nolR-deficient mutant EK698 revealed that a functional NolR induced significant differences in the accumulation of 20 polypeptides in peptide mass fingerprinting early-log-phase cultures and 48 polypeptides in stationary-phase cultures. NolR acted mainly as a repressor in the early-log-phase cultures, whereas it acted as both repressor and activator in the stationary-phase cultures. The NolR protein and 59 NolR-associated proteins have been identified by peptide mass fingerprinting. The NolR protein was differentially expressed only in the NolR+ wild-type strain AK631 but not in its NolR- derivative EK698, confirming that no functional NolR was produced in the mutant. The NolR-associated proteins have diverse functions in amino acid metabolism, carbohydrate metabolism, lipid metabolism, nucleotide metabolism, energy metabolism, metabolism of Co-factors, and cellular adaptation and transportation. These results further support our previous proposal that the NolR is a global regulatory protein which is required for the optimization of nodulation, bacterial growth and survival, and conjugative transfer of a plasmid.
Collapse
Affiliation(s)
- Hancai Chen
- Australian Research Council Centre of Excellence for Integrative Legume Research, Genomic Interactions Group, Research School of Biological Sciences, Australian National University, Canberra ACT 0200, Australia
| | | | | | | | | |
Collapse
|
99
|
Denich TJ, Beaudette LA, Lee H, Trevors JT. Fluorescent methods to study DNA, RNA, proteins and cytoplasmic membrane polarization in the pentachlorophenol-mineralizing bacterium Sphingomonas sp. UG30 during nutrient starvation in water. J Fluoresc 2005; 15:143-51. [PMID: 15883769 DOI: 10.1007/s10895-005-2522-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2004] [Accepted: 11/01/2004] [Indexed: 11/26/2022]
Abstract
The effect of sodium pentachlorophenolate (NaPCP) exposure on the nutrient-starved pentachlorophenol (PCP)-mineralizing bacterium Sphingomonas sp. UG30 was assessed using fluorescent methods to measure DNA, RNA, total cellular protein, and cytoplasmic membrane proteins. UG30 cells were inoculated into sterilized Speed River (Guelph, ON, Canada) water samples in the presence of 50, 100, and 250 ppm NaPCP. No marked changes were observed in the total cellular DNA, RNA or protein levels over 90 d, indicating the macromolecular composition of UG30 was not affected by both nutrient limitation and NaPCP. Total cell counts as determined by DAPI staining also did not change over 90 d. Over the same period, viable counts decreased with increasing concentrations of NaPCP. At 250 ppm NaPCP, viable cell counts decreased over 6 orders of magnitude after 1 hr exposure. Cell numbers partially recovered once NaPCP was degraded. The UG30 cytoplasmic membrane polarization ratio also decreased after NaPCP was depleted. The decreased polarization value at the end of the study period suggested the UG30 membrane was more fluid and that this increase in fluidity was due to nutrient starvation effects rather than exposure to NaPCP. These results indicated that UG30 is a robust organism that is able to degrade NaPCP even under adverse conditions and fluorescent methods are useful for determining macromolecular concentrations and cytoplasmic membrane polarization values.
Collapse
Affiliation(s)
- T J Denich
- Department of Environmental Biology, University of Guelph, Guelph, Ontario, Canada, N1G 2W1
| | | | | | | |
Collapse
|
100
|
Jenkins RO, Sherburn RE. Growth and survival of bacteria implicated in sudden infant death syndrome on cot mattress materials. J Appl Microbiol 2005; 99:573-9. [PMID: 16108799 DOI: 10.1111/j.1365-2672.2005.02620.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
AIMS To compare growth and survival of selected bacteria implicated in sudden infant death syndrome (SIDS) on cot mattress polyurethane (PU) inner-foams and on different types of cot mattress cover materials. METHODS AND RESULTS Escherichia coli, Staphylococcus aureus or Streptococcus pyogenes were inoculated onto swatches of new-unused cot mattress PU inner-foam and onto three types of cot mattress covers (polyvinyl chloride, cotton and polyester). The influence of inoculation cell density, relative humidity (RH) and temperature of incubation on survival was assessed by recovery of cells in 0.85% NaCl, with viable cell enumeration by plate counting on selective and differential media. Utilization of carbon and nitrogen sources within cot mattress PU was assessed by following growth on aqueous leachate from PU, and by colorimetric determination of aromatic amines. Good survival capability (>206 d) was shown by all three test species on PU inner-foam and on polyester mattress cover at high RH (75%), but only by Staph. aureus on PU at low RH (25%). Aqueous soluble material from PU foam supports bacterial growth; removal of aromatic amines from aqueous leachate from PU accompanies growth of Staph. aureus. CONCLUSIONS Staphylococcus aureus has good survival capability on cot mattress PU foam, even at low RH. Soluble material within PU can serve as carbon and nitrogen sources for bacterial growth. SIGNIFICANCE AND IMPACT OF THE STUDY Prolonged survival of Staph. aureus on PU at low RH could explain, in the context of the common bacterial toxins hypothesis, an increased risk of SIDS associated with used infant mattresses.
Collapse
Affiliation(s)
- R O Jenkins
- School of Allied Health Sciences, De Montfort University, Leicester LE1 9BH, UK.
| | | |
Collapse
|