51
|
Identification of components of the sigma B regulon in Listeria monocytogenes that contribute to acid and salt tolerance. Appl Environ Microbiol 2008; 74:6848-58. [PMID: 18806006 DOI: 10.1128/aem.00442-08] [Citation(s) in RCA: 91] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Sigma B (sigma(B)) is an alternative sigma factor that controls the transcriptional response to stress in Listeria monocytogenes and is also known to play a role in the virulence of this human pathogen. In the present study we investigated the impact of a sigB deletion on the proteome of L. monocytogenes grown in a chemically defined medium both in the presence and in the absence of osmotic stress (0.5 M NaCl). Two new phenotypes associated with the sigB deletion were identified using this medium. (i) Unexpectedly, the strain with the DeltasigB deletion was found to grow faster than the parent strain in the growth medium, but only when 0.5 M NaCl was present. This phenomenon was independent of the carbon source provided in the medium. (ii) The DeltasigB mutant was found to have unusual Gram staining properties compared to the parent, suggesting that sigma(B) contributes to the maintenance of an intact cell wall. A proteomic analysis was performed by two-dimensional gel electrophoresis, using cells growing in the exponential and stationary phases. Overall, 11 proteins were found to be differentially expressed in the wild type and the DeltasigB mutant; 10 of these proteins were expressed at lower levels in the mutant, and 1 was overexpressed in the mutant. All 11 proteins were identified by tandem mass spectrometry, and putative functions were assigned based on homology to proteins from other bacteria. Five proteins had putative functions related to carbon utilization (Lmo0539, Lmo0783, Lmo0913, Lmo1830, and Lmo2696), while three proteins were similar to proteins whose functions are unknown but that are known to be stress inducible (Lmo0796, Lmo2391, and Lmo2748). To gain further insight into the role of sigma(B) in L. monocytogenes, we deleted the genes encoding four of the proteins, lmo0796, lmo0913, lmo2391, and lmo2748. Phenotypic characterization of the mutants revealed that Lmo2748 plays a role in osmotolerance, while Lmo0796, Lmo0913, and Lmo2391 were all implicated in acid stress tolerance to various degrees. Invasion assays performed with Caco-2 cells indicated that none of the four genes was required for mammalian cell invasion. Microscopic analysis suggested that loss of Lmo2748 might contribute to the cell wall defect observed in the DeltasigB mutant. Overall, this study highlighted two new phenotypes associated with the loss of sigma(B). It also demonstrated clear roles for sigma(B) in both osmotic and low-pH stress tolerance and identified specific components of the sigma(B) regulon that contribute to the responses observed.
Collapse
|
52
|
Raza W, Wu H, Shah MAA, Shen Q. Retracted: A catechol type siderophore, bacillibactin: biosynthesis, regulation and transport in Bacillus subtilis. J Basic Microbiol 2008; 48. [PMID: 18785660 DOI: 10.1002/jobm.200800097] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Retraction: The following article from the Journal of Basic Microbiology, "A catechol type siderophore, bacillibactin: biosynthesis, regulation and transport in Bacillus subtilis" by Waseem Raza, Hongsheng Wu, Muhammad Ali Abdullah Shah and Qirong Shen, published online on 11 September 2008 in Wiley InterScience (www.interscience.wiley.com), has been retracted by agreement between the authors, the journal Editor-in-Chief, Erika Kothe, and the publisher Wiley-VCH. The retraction has been agreed due to substantial overlap of the content of this article with previously published articles in other journals.The Journal of Basic Microbiology apologises to our readership.
Collapse
Affiliation(s)
- Waseem Raza
- College of Resource and Environmental Sciences, Nanjing Agriculture University, Nanjing, China
| | | | | | | |
Collapse
|
53
|
Bender KS, Yen HCB, Hemme CL, Yang Z, He Z, He Q, Zhou J, Huang KH, Alm EJ, Hazen TC, Arkin AP, Wall JD. Analysis of a ferric uptake regulator (Fur) mutant of Desulfovibrio vulgaris Hildenborough. Appl Environ Microbiol 2007; 73:5389-400. [PMID: 17630305 PMCID: PMC2042090 DOI: 10.1128/aem.00276-07] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Previous experiments examining the transcriptional profile of the anaerobe Desulfovibrio vulgaris demonstrated up-regulation of the Fur regulon in response to various environmental stressors. To test the involvement of Fur in the growth response and transcriptional regulation of D. vulgaris, a targeted mutagenesis procedure was used for deleting the fur gene. Growth of the resulting Deltafur mutant (JW707) was not affected by iron availability, but the mutant did exhibit increased sensitivity to nitrite and osmotic stresses compared to the wild type. Transcriptional profiling of JW707 indicated that iron-bound Fur acts as a traditional repressor for ferrous iron uptake genes (feoAB) and other genes containing a predicted Fur binding site within their promoter. Despite the apparent lack of siderophore biosynthesis genes within the D. vulgaris genome, a large 12-gene operon encoding orthologs to TonB and TolQR also appeared to be repressed by iron-bound Fur. While other genes predicted to be involved in iron homeostasis were unaffected by the presence or absence of Fur, alternative expression patterns that could be interpreted as repression or activation by iron-free Fur were observed. Both the physiological and transcriptional data implicate a global regulatory role for Fur in the sulfate-reducing bacterium D. vulgaris.
Collapse
Affiliation(s)
- Kelly S Bender
- Department of Biochemistry, 117 Schweitzer Hall, Columbia, MO 65211, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
54
|
Li W, Li HX, Ji SY, Li S, Gong YS, Yang MM, Chen YL. Characterization of two temperature-inducible promoters newly isolated from B. subtilis. Biochem Biophys Res Commun 2007; 358:1148-53. [PMID: 17521615 DOI: 10.1016/j.bbrc.2007.05.064] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2007] [Accepted: 05/10/2007] [Indexed: 11/30/2022]
Abstract
Here, two temperature sensitive promoters, P2 and P7, isolated from Bacillus subtilis, were characterized. The production of beta-galactosidase driven by these promoters was much higher at 45 degrees C than that at 37 degrees C both in Escherichia coli and B. subtilis and that the P2 promoter showed higher expression strength in B. subtilis at 45 degrees C. Thereby, an efficient temperature-inducible expression system was constructed by using P2 promoter in B. subtilis. Thus, we isolated and characterized a newly temperature inducible promoter and exploited it as a potential expression element in B. subtilis.
Collapse
Affiliation(s)
- Wang Li
- College of Animal Sciences, Northwest A&F University, Yangling 712100, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|
55
|
Zheng S, Ponder MA, Shih JYJ, Tiedje JM, Thomashow MF, Lubman DM. A proteomic analysis of Psychrobacter articus 273-4 adaptation to low temperature and salinity using a 2-D liquid mapping approach. Electrophoresis 2007; 28:467-88. [PMID: 17177241 DOI: 10.1002/elps.200600173] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Psychrobacter 273-4 was isolated from a 20,000-40,000-year-old Siberian permafrost core, which is characterized by low temperature, low water activity, and high salinity. To explore how 273-4 survives in the permafrost environment, proteins in four 273-4 samples cultured at 4 and 22 degrees C in media with and without 5% sodium chloride were profiled and comparatively studied using 2-D HPLC and MS. The method used herein involved fractionation via a pH gradient using chromatofocusing followed by nonporous silica (NPS) RP-HPLC and on-line electrospray mass mapping. It was observed that 33 proteins were involved in the adaptation to low temperature in the cells grown in the nonsaline media while there were only 14 proteins involved in the saline media. There were 45 proteins observed differentially expressed in response to salt at 22 degrees C while there were 22 proteins at 4 degrees C. In addition, 5% NaCl and 4 degrees C showed a combination effect on protein expression. A total of 56 proteins involved in the adaptation to low temperature and salt were identified using MS and database searching. The differentially expressed proteins were classified into different functional categories where the response of the regulation system to stress appears to be very elaborate. The evidence shows that the adaptation of 273-4 is based primarily on the control of translation and transcription, the synthesis of proteins (chaperones) to facilitate RNA and protein folding, and the regulation of metabolic pathways.
Collapse
Affiliation(s)
- Suping Zheng
- Department of Chemistry, University of Michigan, Ann Arbor, MI 48109, USA
| | | | | | | | | | | |
Collapse
|
56
|
Webb MD, Pin C, Peck MW, Stringer SC. Historical and contemporary NaCl concentrations affect the duration and distribution of lag times from individual spores of nonproteolytic clostridium botulinum. Appl Environ Microbiol 2007; 73:2118-27. [PMID: 17277206 PMCID: PMC1855668 DOI: 10.1128/aem.01744-06] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2006] [Accepted: 01/21/2007] [Indexed: 11/20/2022] Open
Abstract
In this study we determined the effect of NaCl concentration during sporulation (0 or 3.0% [wt/vol] added NaCl) and subsequent growth (0 or 2.0% [wt/vol] added NaCl) on the distributions of times associated with various stages of the lag phase of individual spores of nonproteolytic Clostridium botulinum strain Eklund 17B. The effects of NaCl on the probability of germination and the probability of subsequent growth were also determined. Spore populations exhibited considerable heterogeneity at all stages of lag phase for each condition tested. Germination time did not correlate strongly with the times for later stages in the lag phase, such as outgrowth and doubling time. Addition of NaCl to either the sporulation or growth media increased the mean times for, and variability of, all the measured stages of the lag phase (germination, emergence, time to one mature cell, and time to first doubling). There was a synergistic interaction between the inhibitory effects of NaCl in the sporulation medium and the inhibitory effects of NaCl in the subsequent growth medium on the total lag time and each of its stages. Addition of NaCl to either the sporulation medium or the growth medium reduced both the probability of germination and the probability of a germinated spore developing into a mature cell, but the interaction was not synergistic. Spores formed in medium with added NaCl were not better adapted to subsequent growth in suboptimal osmotic conditions than spores formed in medium with no added NaCl were. Knowledge of the distribution of lag times for individual spores and quantification of the biovariability within lag time distributions may provide insight into the underlying mechanisms and can be used to improve predictions of growth in food and to refine risk assessments.
Collapse
Affiliation(s)
- Martin D Webb
- Institute of Food Research, Norwich Research Park, Colney, Norwich NR4 7UA, United Kingdom
| | | | | | | |
Collapse
|
57
|
Hubmacher D, Matzanke BF, Anemüller S. Iron-uptake in the Euryarchaeon Halobacterium salinarum. Biometals 2007; 20:539-47. [PMID: 17242866 DOI: 10.1007/s10534-006-9064-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2006] [Accepted: 11/28/2006] [Indexed: 10/23/2022]
Abstract
Iron-uptake is well studied in a plethora of pro- and eukaryotic organisms with the exception of Archaea, which thrive mainly in extreme environments. In this study, the mechanism of iron transport in the extremely halophilic Euryarchaeon Halobacterium salinarum strain JW 5 was analyzed. Under low-iron growth conditions no siderophores were detectable in culture supernatants. However, various xenosiderophores support growth of H. salinarum. In [55Fe]-[14C] double-label experiments, H. salinarum displays uptake of iron but not of the chelator citrate. Uptake of iron was inhibited by cyanide and at higher concentrations by Ga. Furthermore, a K(M) for iron uptake in cells of 2.36 microM and a Vmax of approximately 67 pmol Fe/min/mg protein was determined. [55Fe]-uptake kinetics were measured in the absence and presence of Ga. Uptake of iron was inhibited merely at very high Ga concentrations. The results indicate an energy dependent iron uptake process in H. salinarum and suggest reduction of the metal at the membrane level.
Collapse
Affiliation(s)
- Dirk Hubmacher
- Department of Anatomy and Cell Biology, McGill University of Montreal, 3640 University Street, Montreal, QC, Canada H3A 2B2
| | | | | |
Collapse
|
58
|
Lee JW, Helmann JD. Functional specialization within the Fur family of metalloregulators. Biometals 2007; 20:485-99. [PMID: 17216355 DOI: 10.1007/s10534-006-9070-7] [Citation(s) in RCA: 328] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2006] [Accepted: 11/28/2006] [Indexed: 01/01/2023]
Abstract
The ferric uptake regulator (Fur) protein, as originally described in Escherichia coli, is an iron-sensing repressor that controls the expression of genes for siderophore biosynthesis and iron transport. Although Fur is commonly thought of as a metal-dependent repressor, Fur also activates the expression of many genes by either indirect or direct mechanisms. In the best studied model systems, Fur functions as a global regulator of iron homeostasis controlling both the induction of iron uptake functions (under iron limitation) and the expression of iron storage proteins and iron-utilizing enzymes (under iron sufficiency). We now appreciate that there is a tremendous diversity in metal selectivity and biological function within the Fur family which includes sensors of iron (Fur), zinc (Zur), manganese (Mur), and nickel (Nur). Despite numerous studies, the mechanism of metal ion sensing by Fur family proteins is still controversial. Other family members use metal catalyzed oxidation reactions to sense peroxide-stress (PerR) or the availability of heme (Irr).
Collapse
Affiliation(s)
- Jin-Won Lee
- Department of Microbiology, Cornell University, Wing Hall, Ithaca, NY 14853-8101, USA
| | | |
Collapse
|
59
|
Stirnberg M, Fulda S, Huckauf J, Hagemann M, Krämer R, Marin K. A membrane-bound FtsH protease is involved in osmoregulation in Synechocystis sp. PCC 6803: the compatible solute synthesizing enzyme GgpS is one of the targets for proteolysis. Mol Microbiol 2007; 63:86-102. [PMID: 17116240 DOI: 10.1111/j.1365-2958.2006.05495.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Protein quality control and proteolysis are involved in cell maintenance and environmental acclimatization in bacteria and eukaryotes. The AAA protease FtsH2 of the cyanobacterium Synechocystis sp. PCC 6803 was identified during a screening for mutants impaired in osmoregulation. The ftsH2(-) mutant was salt sensitive because of a decreased level of the osmoprotectant glucosylglycerol (GG). In spite of wild type-like transcription of the ggpS gene in ftsH2(-) cells the GgpS protein content increased but only low levels of GgpS activity were observed. Consequently, salt tolerance of the ftsH2(-) mutant decreased while addition of external osmolyte complemented the salt sensitivity. The proteolytic degradation of the GgpS protein by FtsH2 was demonstrated by an in vitro assay using inverted membrane vesicles. The GgpS is part of a GG synthesizing complex, because yeast two-hybrid screens identified a close interaction with the GG-phosphate phosphatase. Besides GgpS as the first soluble substrate of a cyanobacterial FtsH protease, several other putative targets were identified by a proteomic approach. We present a novel molecular explanation for the salt-sensitive phenotype of bacterial ftsH(-) mutants as the result of accumulation of inactive enzymes for compatible solute synthesis, in this case GgpS the key enzyme of GG synthesis.
Collapse
Affiliation(s)
- Marit Stirnberg
- Universität zu Köln, Institut für Biochemie, Zülpicher Str. 47, 50674 Köln, Germany
| | | | | | | | | | | |
Collapse
|
60
|
Mukhopadhyay A, He Z, Alm EJ, Arkin AP, Baidoo EE, Borglin SC, Chen W, Hazen TC, He Q, Holman HY, Huang K, Huang R, Joyner DC, Katz N, Keller M, Oeller P, Redding A, Sun J, Wall J, Wei J, Yang Z, Yen HC, Zhou J, Keasling JD. Salt stress in Desulfovibrio vulgaris Hildenborough: an integrated genomics approach. J Bacteriol 2006; 188:4068-78. [PMID: 16707698 PMCID: PMC1482918 DOI: 10.1128/jb.01921-05] [Citation(s) in RCA: 122] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
The ability of Desulfovibrio vulgaris Hildenborough to reduce, and therefore contain, toxic and radioactive metal waste has made all factors that affect the physiology of this organism of great interest. Increased salinity is an important and frequent fluctuation faced by D. vulgaris in its natural habitat. In liquid culture, exposure to excess salt resulted in striking elongation of D. vulgaris cells. Using data from transcriptomics, proteomics, metabolite assays, phospholipid fatty acid profiling, and electron microscopy, we used a systems approach to explore the effects of excess NaCl on D. vulgaris. In this study we demonstrated that import of osmoprotectants, such as glycine betaine and ectoine, is the primary mechanism used by D. vulgaris to counter hyperionic stress. Several efflux systems were also highly up-regulated, as was the ATP synthesis pathway. Increases in the levels of both RNA and DNA helicases suggested that salt stress affected the stability of nucleic acid base pairing. An overall increase in the level of branched fatty acids indicated that there were changes in cell wall fluidity. The immediate response to salt stress included up-regulation of chemotaxis genes, although flagellar biosynthesis was down-regulated. Other down-regulated systems included lactate uptake permeases and ABC transport systems. The results of an extensive NaCl stress analysis were compared with microarray data from a KCl stress analysis, and unlike many other bacteria, D. vulgaris responded similarly to the two stresses. Integration of data from multiple methods allowed us to develop a conceptual model for the salt stress response in D. vulgaris that can be compared to those in other microorganisms.
Collapse
Affiliation(s)
- Aindrila Mukhopadhyay
- Virtual Institute of Microbial Stress and Survival, Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
61
|
Ollinger J, Song KB, Antelmann H, Hecker M, Helmann JD. Role of the Fur regulon in iron transport in Bacillus subtilis. J Bacteriol 2006; 188:3664-73. [PMID: 16672620 PMCID: PMC1482855 DOI: 10.1128/jb.188.10.3664-3673.2006] [Citation(s) in RCA: 155] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The Bacillus subtilis ferric uptake regulator (Fur) protein mediates the iron-dependent repression of at least 20 operons encoding approximately 40 genes. We investigated the physiological roles of Fur-regulated genes by the construction of null mutations in 14 transcription units known or predicted to function in siderophore biosynthesis or iron uptake. We demonstrate that ywbLMN, encoding an elemental iron uptake system orthologous to the copper oxidase-dependent Fe(III) uptake system of Saccharomyces cerevisiae, is essential for growth in low iron minimal medium lacking citric acid. 2,3-Dihydroxybenzoyl-glycine (Itoic acid), the siderophore precursor produced by laboratory strains of B. subtilis, is of secondary importance. In the presence of citrate, the YfmCDEF ABC transporter is required for optimal growth. B. subtilis is unable to grow in minimal medium containing the iron chelator EDDHA unless the ability to synthesize the intact bacillibactin siderophore is restored (by the introduction of a functional sfp gene) or exogenous siderophores are provided. Utilization of the catecholate siderophores bacillibactin and enterobactin requires the FeuABC importer and the YusV ATPase. Utilization of hydroxamate siderophores requires the FhuBGC ABC transporter together with the FhuD (ferrichrome) or YxeB (ferrioxamine) substrate-binding proteins. Growth with schizokinen or arthrobactin is at least partially dependent on the YfhA YfiYZ importer and the YusV ATPase. We have also investigated the effects of a fur mutation on the proteome and documented the derepression of 11 Fur-regulated proteins, including a newly identified thioredoxin reductase homolog, YcgT.
Collapse
Affiliation(s)
- Juliane Ollinger
- Department of Microbiology, Cornell University, Ithaca, NY 14853-8101, USA
| | | | | | | | | |
Collapse
|
62
|
Fulda S, Mikkat S, Huang F, Huckauf J, Marin K, Norling B, Hagemann M. Proteome analysis of salt stress response in the cyanobacteriumSynechocystis sp. strain PCC 6803. Proteomics 2006; 6:2733-45. [PMID: 16572470 DOI: 10.1002/pmic.200500538] [Citation(s) in RCA: 147] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
In the present study, changes in protein synthesis patterns after salt shock visualized by 35S-methionine labeling and the changed protein composition in salt-acclimated cells of the cyanobacterium Synechocystis sp. strain PCC 6803 were analyzed by a combination of 2-DE for protein separation and PMF for protein identification. As a basis for the differential analysis, a proteome map with 500 identified protein spots comprising 337 different protein species was established. Fifty-five proteins were found, which are induced by salt shock or accumulated after long-term salt acclimation. Some of the proteins are salt stress-specific, such as enzymes involved in the synthesis of the compatible solute glucosylglycerol, while most of them are involved in general stress acclimation. Particularly, heat-shock proteins and proteins acting against lesions by reactive oxygen species were found. Moreover, changes in enzymes involved in basic carbohydrate metabolism were detected. The dynamic of the proteome of salt-stressed Synechocystis cells was compared to previous data concerning transcriptome analysis revealing that 89% of the proteins induced shortly after salt shock were also found to be induced at the RNA level. However, 42% of the stably up-regulated proteins in salt-acclimated cells were not detected previously using DNA microarrays. The comparison of transcriptomic and proteomic analyses shows the significance of post-transcriptional regulatory mechanisms in acclimation of Synechocystis to high salt concentrations.
Collapse
Affiliation(s)
- Sabine Fulda
- Universität Rostock, Institut Biowissenschaften, Pflanzengenetik, Rostock, Germany
| | | | | | | | | | | | | |
Collapse
|
63
|
Brown SD, Martin M, Deshpande S, Seal S, Huang K, Alm E, Yang Y, Wu L, Yan T, Liu X, Arkin A, Chourey K, Zhou J, Thompson DK. Cellular response of Shewanella oneidensis to strontium stress. Appl Environ Microbiol 2006; 72:890-900. [PMID: 16391131 PMCID: PMC1352239 DOI: 10.1128/aem.72.1.890-900.2006] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The physiology and transcriptome dynamics of the metal ion-reducing bacterium Shewanella oneidensis strain MR-1 in response to nonradioactive strontium (Sr) exposure were investigated. Studies indicated that MR-1 was able to grow aerobically in complex medium in the presence of 180 mM SrCl2 but showed severe growth inhibition at levels above that concentration. Temporal gene expression profiles were generated from aerobically grown, mid-exponential-phase MR-1 cells shocked with 180 mM SrCl2 and analyzed for significant differences in mRNA abundance with reference to data for nonstressed MR-1 cells. Genes with annotated functions in siderophore biosynthesis and iron transport were among the most highly induced (>100-fold [P < 0.05]) open reading frames in response to acute Sr stress, and a mutant (SO3032::pKNOCK) defective in siderophore production was found to be hypersensitive to SrCl2 exposure, compared to parental and wild-type strains. Transcripts encoding multidrug and heavy metal efflux pumps, proteins involved in osmotic adaptation, sulfate ABC transporters, and assimilative sulfur metabolism enzymes also were differentially expressed following Sr exposure but at levels that were several orders of magnitude lower than those for iron transport genes. Precipitate formation was observed during aerobic growth of MR-1 in broth cultures amended with 50, 100, or 150 mM SrCl2 but not in cultures of the SO3032::pKNOCK mutant or in the abiotic control. Chemical analysis of this precipitate using laser-induced breakdown spectroscopy and static secondary ion mass spectrometry indicated extracellular solid-phase sequestration of Sr, with at least a portion of the heavy metal associated with carbonate phases.
Collapse
Affiliation(s)
- Steven D Brown
- Environmental Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
64
|
Höper D, Bernhardt J, Hecker M. Salt stress adaptation ofBacillus subtilis: A physiological proteomics approach. Proteomics 2006; 6:1550-62. [PMID: 16440371 DOI: 10.1002/pmic.200500197] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The adaptation to osmotic stress is crucial for growth and survival of Bacillus subtilis in its natural ecosystem. Dual channel imaging and warping of 2-D protein gels were used to visualize global changes in the protein synthesis pattern of cells in response to osmotic stress (6% NaCl). Many vegetative enzymes were repressed in response to salt stress and derepressed after resumption of growth. The enzymes catalyzing the metabolic steps from glucose to 2-oxoglutarate, however, were almost constantly synthesized during salt stress despite the growth arrest. This indicates an enhanced need for the proline precursor glutamate. The synthesis of enzymes involved in sulfate assimilation and in the formation of Fe-S clusters was also induced, suggesting an enhanced need for the formation or repair of Fe-S clusters in response to salt stress. One of the most obvious changes in the protein synthesis profile can be followed by the very strong induction of the SigB regulon. Furthermore, members of the SigW regulon and of the PerR regulon, indicating oxidative stress after salt challenge, were also induced. This proteomic approach provides an overview of cell adaptation to an osmotic upshift in B. subtilis visualizing the most dramatic changes in the protein synthesis pattern.
Collapse
Affiliation(s)
- Dirk Höper
- Institute for Microbiology, Ernst-Moritz-Arndt-University, Greifswald, Germany
| | | | | |
Collapse
|
65
|
Zheng Y, Anton BP, Roberts RJ, Kasif S. Phylogenetic detection of conserved gene clusters in microbial genomes. BMC Bioinformatics 2005; 6:243. [PMID: 16202130 PMCID: PMC1266350 DOI: 10.1186/1471-2105-6-243] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2005] [Accepted: 10/03/2005] [Indexed: 11/15/2022] Open
Abstract
Background Microbial genomes contain an abundance of genes with conserved proximity forming clusters on the chromosome. However, the conservation can be a result of many factors such as vertical inheritance, or functional selection. Thus, identification of conserved gene clusters that are under functional selection provides an effective channel for gene annotation, microarray screening, and pathway reconstruction. The problem of devising a robust method to identify these conserved gene clusters and to evaluate the significance of the conservation in multiple genomes has a number of implications for comparative, evolutionary and functional genomics as well as synthetic biology. Results In this paper we describe a new method for detecting conserved gene clusters that incorporates the information captured by a genome phylogenetic tree. We show that our method can overcome the common problem of overestimation of significance due to the bias in the genome database and thereby achieve better accuracy when detecting functionally connected gene clusters. Our results can be accessed at database GeneChords . Conclusion The methodology described in this paper gives a scalable framework for discovering conserved gene clusters in microbial genomes. It serves as a platform for many other functional genomic analyses in microorganisms, such as operon prediction, regulatory site prediction, functional annotation of genes, evolutionary origin and development of gene clusters.
Collapse
Affiliation(s)
- Yu Zheng
- Bioinformatics Graduate Program, Boston University, Boston, MA, USA
| | - Brian P Anton
- Bioinformatics Graduate Program, Boston University, Boston, MA, USA
- New England Biolabs, Beverly, MA, USA
| | | | - Simon Kasif
- Bioinformatics Graduate Program, Boston University, Boston, MA, USA
- Department of Biomedical Engineering, Boston University, Boston, MA, USA
- Center for Advanced Genomic Technology, Boston University, Boston, MA, USA
| |
Collapse
|
66
|
Pepi M, Agnorelli C, Bargagli R. Iron Demand by Thermophilic and Mesophilic Bacteria Isolated from an Antarctic Geothermal Soil. Biometals 2005; 18:529-36. [PMID: 16333753 DOI: 10.1007/s10534-005-0837-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2005] [Accepted: 07/13/2005] [Indexed: 10/25/2022]
Abstract
The thermophilic bacterial strain MP 4 assigned to a new species, likely of the genus Alicyclobacillus, was isolated from geothermal soils on the NW slope of Mount Melbourne, Antarctica. These soils have high iron concentrations and the strain MP 4 requires iron additions for growth. Four mesophilic bacterial strains Paenibacillus validus MP 5, MP 8, and MP 10, and P. apiarius MP 7, isolated from the same site, need iron supply for growth depending on the medium. Growth temperature of thermophilic strain ranges from 42 to 70 degrees C, and that one of mesophiles from 25 to 44 degrees C. Thermophilic and mesophilic strains shared microenvironments with temperature of 42-44 degrees C and showed optima of pH values ranging from 5.5 to 6.0. The thermophilic strain MP 4 reached values of 10(6) CFU ml(-1) in aqueous soil extract from the NW slope of Mt. Melbourne, and 10(5) CFU ml(-1) in water extracts from other geothermal Antarctic areas (Mt. Rittmann and Cryptogam Ridge). Growth of thermophilic bacteria in aqueous extracts of the NW slope of Mount Melbourne soils caused a reduction of 50% of soluble iron content, which was recovered in bacterial biomass. These results suggest a possible involvement of the thermophilic strain MP 4 in iron bioavailability in these geothermal soils.
Collapse
Affiliation(s)
- Milva Pepi
- Environmental Sciences, University of Siena, Via P.A. Mattioli, 4, Siena 53100, Italy.
| | | | | |
Collapse
|
67
|
Abstract
Bacillus subtilis, a Gram-positive soil bacterium, provides a model system for the study of metal ion homeostasis. Metalloregulatory proteins serve as the arbiters of metal ion sufficiency and regulate the expression of metal homeostasis pathways. In B. subtilis, uptake systems are regulated by the highly selective metal-sensing repressors Fur (iron), Zur (zinc), and MntR (manganese). Metal efflux systems are regulated by MerR and ArsR family homologs which, by contrast, can be rather non-specific with regard to metal selectivity. A Fur homolog, PerR, functions as an Fe(II)-dependent peroxide stress sensor and regulates putative metal transport and storage functions.
Collapse
Affiliation(s)
- Charles M Moore
- Department of Microbiology, Cornell University, Ithaca, New York 14853-8101, USA
| | | |
Collapse
|
68
|
Holtmann G, Brigulla M, Steil L, Schütz A, Barnekow K, Völker U, Bremer E. RsbV-independent induction of the SigB-dependent general stress regulon of Bacillus subtilis during growth at high temperature. J Bacteriol 2004; 186:6150-8. [PMID: 15342585 PMCID: PMC515142 DOI: 10.1128/jb.186.18.6150-6158.2004] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
General stress proteins protect Bacillus subtilis cells against a variety of environmental insults. This adaptive response is particularly important for nongrowing cells, to which it confers a multiple, nonspecific, and preemptive stress resistance. Induction of the general stress response relies on the alternative transcription factor, SigB, whose activity is controlled by a partner switching mechanism that also involves the anti-sigma factor, RsbW, and the antagonist protein, RsbV. Recently, the SigB regulon has been shown to be continuously induced and functionally important in cells actively growing at low temperature. With the exception of this chill induction, all SigB-activating stimuli identified so far trigger a transient expression of the SigB regulon that depends on RsbV. Through a proteome analysis and Northern blot and gene fusion experiments, we now show that the SigB regulon is continuously induced in cells growing actively at 51 degrees C, close to the upper growth limit of B. subtilis. This heat induction of SigB-dependent genes requires the environmental stress-responsive phosphatase RsbU, but not the metabolic stress-responsive phosphatase RsbP. RsbU dependence of SigB activation by heat is overcome in mutants that lack RsbV. In addition, loss of RsbV alone or in combination with RsbU triggers a hyperactivation of the general stress regulon exclusively at high temperatures detrimental for cell growth. These new facets of heat induction of the SigB regulon indicate that the current view of the complex genetic and biochemical regulation of SigB activity is still incomplete and that SigB perceives signals independent of the RsbV-mediated signal transduction pathways under heat stress conditions.
Collapse
Affiliation(s)
- Gudrun Holtmann
- Laboratory for Microbiology, Department of Biology, Philipps-University Marburg, Karl-von-Frisch-Str., D-35032 Marburg, Federal Republic of Germany
| | | | | | | | | | | | | |
Collapse
|
69
|
Hubmacher D, Matzanke BF, Anemüller S. Effects of iron limitation on the respiratory chain and the membrane cytochrome pattern of the Euryarchaeon Halobacterium salinarum. Biol Chem 2004; 384:1565-73. [PMID: 14719798 DOI: 10.1515/bc.2003.173] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The effects of iron limitation on the electron transport chain of the extremely halophilic Euryarchaeon Halobacterium salinarum were analyzed. When iron was growth-limiting, the respiratory rates as well as the inhibition pattern of the membranes were significantly different from membranes of iron replete cells. Changes in the availability of iron cause the formation of different respiratory pathways including different entry sites for electrons, different terminal oxidases of the respiratory chain, and drastic changes of the cytochrome composition and of the relative amounts of cytochromes. Under iron-limiting conditions, mainly low-potential cytochromes were measured. EPR spectroscopic studies revealed that the amount of proteins containing iron-sulfur clusters is reduced in membranes under iron-limiting growth conditions. Taken together, our results strongly suggest for the first time an important role of iron supply for the bioenergetics of an Archaeon.
Collapse
Affiliation(s)
- Dirk Hubmacher
- Institut für Biochemie, Universität zu Lübeck, Ratzeburger Allee 160, D-23538 Lübeck, Germany
| | | | | |
Collapse
|
70
|
Steil L, Hoffmann T, Budde I, Völker U, Bremer E. Genome-wide transcriptional profiling analysis of adaptation of Bacillus subtilis to high salinity. J Bacteriol 2003; 185:6358-70. [PMID: 14563871 PMCID: PMC219388 DOI: 10.1128/jb.185.21.6358-6370.2003] [Citation(s) in RCA: 130] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The gram-positive soil bacterium Bacillus subtilis often faces increases in the salinity in its natural habitats. A transcriptional profiling approach was utilized to investigate both the initial reaction to a sudden increase in salinity elicited by the addition of 0.4 M NaCl and the cellular adaptation reactions to prolonged growth at high salinity (1.2 M NaCl). Following salt shock, a sigB mutant displayed immediate and transient induction and repression of 75 and 51 genes, respectively. Continuous propagation of this strain in the presence of 1.2 M NaCl triggered the induction of 123 genes and led to the repression of 101 genes. In summary, our studies revealed (i) an immediate and transient induction of the SigW regulon following salt shock, (ii) a role of the DegS/DegU two-component system in sensing high salinity, (iii) a high-salinity-mediated iron limitation, and (iv) a repression of chemotaxis and motility genes by high salinity, causing severe impairment of the swarming capability of B. subtilis cells. Initial adaptation to salt shock and continuous growth at high salinity share only a limited set of induced and repressed genes. This finding strongly suggests that these two phases of adaptation require distinctively different physiological adaptation reactions by the B. subtilis cell. The large portion of genes with unassigned functions among the high-salinity-induced or -repressed genes demonstrates that major aspects of the cellular adaptation of B. subtilis to high salinity are unexplored so far.
Collapse
Affiliation(s)
- Leif Steil
- Department of Biology, Laboratory for Microbiology, Philipps-University Marburg, D-35032 Marburg, Germany
| | | | | | | | | |
Collapse
|
71
|
Tovar-Rojo F, Cabrera-Martinez RM, Setlow B, Setlow P. Studies on the mechanism of the osmoresistance of spores of Bacillus subtilis. J Appl Microbiol 2003; 95:167-79. [PMID: 12807468 DOI: 10.1046/j.1365-2672.2003.01958.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
AIMS To determine the reason that spores of Bacillus species, in particular Bacillus subtilis, are able to form colonies with high efficiency on media with very high salt concentrations. METHODS AND RESULTS Spores of various Bacillus species have a significantly higher plating efficiency on media with high salt concentration (termed osmoresistance) than do log or stationary phase cells. This spore osmoresistance is higher on richer media. Bacillus subtilis spores lacking various small, acid-soluble spore proteins (SASP) were generally significantly less osmoresistant than were wild-type spores, as shown previously (Ruzal et al. 1994). Other results included: (a) spore osmoresistance varied significantly between species; (b) the osmoresistance of spores lacking SASP was not restored well by amino acid osmolytes added to plating media, but was completely restored by glucose; (c) the osmoresistance of spores lacking SASP was restored upon brief germination in the absence of salt in a process that did not require protein synthesis; (d) significant amounts of amino acids generated by SASP degradation were retained within spores upon germination in a medium with high but not low salt; (e) slowing but not abolishing SASP degradation by loss of the SASP-specific germination protease (GPR) did not affect spore osmoresistance; (f) sporulation at higher temperatures produced less osmoresistant spores; and (g) spore osmoresistance was not decreased markedly by the absence of the stress sigma factor for RNA polymerase, sigmaB. CONCLUSIONS Spore osmoresistance appears as a result of three major factors: (1) specific characteristics of spores and cells of individual species; (2) the precise sporulation conditions that produce the spores; and (3) sufficient energy generation by the germinating and outgrowing spore to allow the spore to adapt to conditions of high osmotic strength; the substrates for this energy generation can come from either the endogenous generation of amino acids by SASP degradation or from the spore's environment, in the form of a readily taken up and metabolized energy source such as glucose. SIGNFICANCE AND IMPACT OF STUDY: These results provide information on the mechanisms of spore osmoresistance, a spore property that can be of major applied significance given the use of high osmotic strength with or without high salt as a means of food preservation.
Collapse
Affiliation(s)
- F Tovar-Rojo
- Department of Biochemistry, University of Connecticut Health Center, Farmington, CT 06032, USA
| | | | | | | |
Collapse
|
72
|
Brigulla M, Hoffmann T, Krisp A, Völker A, Bremer E, Völker U. Chill induction of the SigB-dependent general stress response in Bacillus subtilis and its contribution to low-temperature adaptation. J Bacteriol 2003; 185:4305-14. [PMID: 12867438 PMCID: PMC165770 DOI: 10.1128/jb.185.15.4305-4314.2003] [Citation(s) in RCA: 98] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A variety of environmental and metabolic cues trigger the transient activation of the alternative transcription factor SigB of Bacillus subtilis, which subsequently leads to the induction of more than 150 general stress genes. This general stress regulon provides nongrowing and nonsporulated cells with a multiple, nonspecific, and preemptive stress resistance. By a proteome approach we have detected the expression of the SigB regulon during continuous growth at low temperature (15 degrees C). Using a combination of Western blot analysis and SigB-dependent reporter gene fusions, we provide evidence for high-level and persistent induction of the sigB operon and the SigB regulon, respectively, in cells continuously exposed to low temperatures. In contrast to all SigB-activating stimuli described thus far, induction by low temperatures does not depend on the positive regulatory protein RsbV or its regulatory phosphatases RsbU and RsbP, indicating the presence of an entirely new pathway for the activation of SigB by chill stress in B. subtilis. The physiological importance of the induction of the general stress response for the adaptation of B. subtilis to low temperatures is emphasized by the observation that growth of a sigB mutant is drastically impaired at 15 degrees C. Inclusion of the compatible solute glycine betaine in the growth medium not only improved the growth of the wild-type strain but rescued the growth defect of the sigB mutant, indicating that the induction of the general stress regulon and the accumulation of glycine betaine are independent means by which B. subtilis cells cope with chill stress.
Collapse
Affiliation(s)
- Matthias Brigulla
- Philipps-University Marburg, Department of Biology, Laboratory for Microbiology, D-35032 Marburg, Germany
| | | | | | | | | | | |
Collapse
|
73
|
Thackray PD, Moir A. SigM, an extracytoplasmic function sigma factor of Bacillus subtilis, is activated in response to cell wall antibiotics, ethanol, heat, acid, and superoxide stress. J Bacteriol 2003; 185:3491-8. [PMID: 12775685 PMCID: PMC156226 DOI: 10.1128/jb.185.12.3491-3498.2003] [Citation(s) in RCA: 94] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The extracytoplasmic function sigma M of Bacillus subtilis is required for normal cell growth under salt stress. It is expressed maximally during exponential growth and is further induced by the addition of 0.7 M NaCl. The promoter region of the sigM operon contains two promoters; one (P(A)) is sigma A dependent, and the other (P(M)) is sigma M dependent. These have been placed separately at the amy locus, directing expression of a lacZ reporter gene. Only the P(M) fusion responded to salt induction. This promoter, which was responsive to the level of active sigma M in the cell, was also induced by 5% ethanol, by vancomycin, bacitracin, or phosphomycin (inhibitors of cell wall biosynthesis; 2 micro g per ml), and by heat shock of 50 degrees C for 10 min. It was very strongly induced by acid (pH 4.3) and 80 micro M paraquat, but after a 15- to 30-min delay. There was no induction by alkali (pH 9), 5 mM H(2)O(2), the detergents 0.1% Triton X-100 and 0.1% Tween 20, or 50 micro M monensin. In addition to their reduced tolerance to salt, null mutants of sigM were unable to grow at pH 4.3 and lysed after exposure to 5% ethanol. Genes regulated by SigM were also tested for their response to pH 4.3, 5% ethanol, and 2 micro g of vancomycin per ml. Expression of the genes may have been activated by increased levels of sigma M, but at least some were also subject to additional controls, as they responded to one type of stress but not another. Expression of yrhJ, which encodes a cytochrome P450/NADPH reductase, was induced in response to acid and vancomycin. yraA expression was acid, ethanol, and vancomycin induced, whereas yjbD showed only ethanol induction. YraA protein was extremely important to acid survival-a mutation in yraA, like a sigM mutation, resulted in the failure of B. subtilis to grow at pH 4.3. Sigma M is therefore involved in maintaining membrane and cell wall integrity in response to several different stresses in exponential growth phase and is activated by such stresses.
Collapse
Affiliation(s)
- Penny D Thackray
- Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield S10 2TN, United Kingdom
| | | |
Collapse
|
74
|
Baichoo N, Helmann JD. Recognition of DNA by Fur: a reinterpretation of the Fur box consensus sequence. J Bacteriol 2002; 184:5826-32. [PMID: 12374814 PMCID: PMC135393 DOI: 10.1128/jb.184.21.5826-5832.2002] [Citation(s) in RCA: 217] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Ferric uptake repressor (Fur) proteins regulate the expression of iron homeostasis genes in response to intracellular iron levels. In general, Fur proteins bind with high affinity to a 19-bp inverted repeat sequence known as the Fur box. An alignment of 19 operator sites recognized by Bacillus subtilis Fur revealed a different conserved 15-bp (7-1-7) inverted repeat present twice within this 19-bp consensus sequence. We demonstrated using electrophoretic mobility shift assays that this 7-1-7 inverted repeat comprises a minimal recognition site for high-affinity binding by Fur. The resulting revised consensus sequence is remarkably similar to a related 7-1-7 inverted repeat sequence recognized by PerR, a Fur paralog. Our analysis of the affinity and stoichiometry of DNA binding by B. subtilis Fur, together with a reinterpretation of previously described studies of Escherichia coli Fur, supports a model in which the 19-bp Fur box represents overlapping recognition sites for two Fur dimers bound to opposite faces of the DNA helix. The resulting recognition complex is reminiscent of that observed for the functionally related protein DtxR. Like Fur, DtxR contains a helix-turn-helix DNA-binding motif, recognizes a 19-bp inverted repeat sequence, and has a typical DNase I footprint of approximately 30 bp. By envisioning a similar mode of DNA recognition for Fur, we can account for the internal symmetries noted previously within the Fur box, the tendency of Fur to extend into adjacent regions of DNA in a sequence-selective manner, and the observed patterns of DNA protection against enzymatic and chemical probes.
Collapse
Affiliation(s)
- Noel Baichoo
- Department of Microbiology, Cornell University, Ithaca, NY 14853-8101, USA
| | | |
Collapse
|
75
|
Baichoo N, Wang T, Ye R, Helmann JD. Global analysis of the Bacillus subtilis Fur regulon and the iron starvation stimulon. Mol Microbiol 2002; 45:1613-29. [PMID: 12354229 DOI: 10.1046/j.1365-2958.2002.03113.x] [Citation(s) in RCA: 203] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The Bacillus subtilis ferric uptake repressor (Fur) protein coordinates a global transcriptional response to iron starvation. We have used DNA microarrays to define the Fur regulon and the iron starvation stimulon. We identify 20 operons (containing 39 genes) that are derepressed both by mutation of fur and by treatment of cells with the iron chelator 2,2'-dipyridyl. These operons are direct targets of Fur regulation as judged by DNase I footprinting. Analyses of lacZ reporter fusions to six Fur-regulated promoter regions reveal that repression is highly selective for iron. In addition to the Fur regulon, iron starvation induces members of the PerR regulon and leads to reduced expression of cytochromes. However, we did not find any evidence for genes that are directly activated by Fur or repressed by Fur under iron-limiting conditions. Although genome searches using the 19 bp Fur box consensus are useful in identifying candidate Fur-regulated genes, some genes associated with Fur boxes are not demonstrably regulated by Fur, whereas other genes are regulated from sites with little apparent similarity to the conventional Fur consensus.
Collapse
Affiliation(s)
- Noel Baichoo
- Department of Mirobiology, Cornell University, Ithica, NY 14853-8101, USA
| | | | | | | |
Collapse
|