51
|
Lazaro JB, Boretto J, Selmi B, Capony JP, Canard B. Phosphorylation of AZT-resistant human immunodeficiency virus type 1 reverse transcriptase by casein kinase II in vitro: effects on inhibitor sensitivity. Biochem Biophys Res Commun 2000; 275:26-32. [PMID: 10944435 DOI: 10.1006/bbrc.2000.3251] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Casein kinase II (CKII) phosphorylates wild-type (WT) recombinant reverse transcriptase (RT) mainly in the p66 subunit in vitro. Phosphorylation of T215F RT and D67N/K70R/T215F/K219Q RT (AZT-resistant RT) in vitro increases discrimination against AZTTP 2. 5- and 3.6-fold, respectively. This in vitro resistance can be reversed by treatment of phosphorylated AZT-resistant RT with phosphatase. Phosphorylation has no effect on WT RT. Terminal transferase activity of RT is selectively suppressed on phosphorylated AZT-resistant RT. Resistance to phosphonoformic acid (PFA, foscarnet) increases 3-fold upon phosphorylation of AZT-resistant RT. Although T215, the most important residue for AZT-resistance, is part of a CKII consensus target site, serines are primarily phosphorylated relative to threonines. Mutational analysis shows that phosphorylation can be reduced to 10% that of WT when amino-acid changes are introduced both in the "fingers" subdomain and motif D. These results suggest that phosphorylation of RT might be one factor involved in drug resistance in vivo.
Collapse
Affiliation(s)
- J B Lazaro
- Department BCMP, Harvard Medical School, Boston, Massachusetts, USA
| | | | | | | | | |
Collapse
|
52
|
Meyer P, Schneider B, Sarfati S, Deville-Bonne D, Guerreiro C, Boretto J, Janin J, Véron M, Canard B. Structural basis for activation of alpha-boranophosphate nucleotide analogues targeting drug-resistant reverse transcriptase. EMBO J 2000; 19:3520-9. [PMID: 10899107 PMCID: PMC313966 DOI: 10.1093/emboj/19.14.3520] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
AIDS chemotherapy is limited by inadequate intracellular concentrations of the active triphosphate form of nucleoside analogues, leading to incomplete inhibition of viral replication and the appearance of drug-resistant virus. Drug activation by nucleoside diphosphate kinase and inhibition of HIV-1 reverse transcriptase were studied comparatively. We synthesized analogues with a borano (BH(3)(-)) group on the alpha-phosphate, and found that they are substrates for both enzymes. X-ray structures of complexes with nucleotide diphosphate kinase provided a structural basis for their activation. The complex with d4T triphosphate displayed an intramolecular CH.O bond contributing to catalysis, and the R(p) diastereoisomer of thymidine alpha-boranotriphosphate bound like a normal substrate. Using alpha-(R(p))-boranophosphate derivatives of the clinically relevant compounds AZT and d4T, the presence of the alpha-borano group improved both phosphorylation by nucleotide diphosphate kinase and inhibition of reverse transcription. Moreover, repair of blocked DNA chains by pyrophosphorolysis was reduced significantly in variant reverse transcriptases bearing substitutions found in drug-resistant viruses. Thus, the alpha-borano modification of analogues targeting reverse transcriptase may be of generic value in fighting viral drug resistance.
Collapse
Affiliation(s)
- P Meyer
- Laboratoire d'Enzymologie et Biochimie Structurales, UPR-9063 CNRS, 91198 Gif-sur-Yvette, France
| | | | | | | | | | | | | | | | | |
Collapse
|
53
|
Sato H, Tomita Y, Shibamura K, Shiino T, Miyakuni T, Takebe Y. Convergent evolution of reverse transcriptase (RT) genes of human immunodeficiency virus type 1 subtypes E and B following nucleoside analogue RT inhibitor therapies. J Virol 2000; 74:5357-62. [PMID: 10799614 PMCID: PMC110892 DOI: 10.1128/jvi.74.11.5357-5362.2000] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Changes in the drug susceptibility, gene lineage, and deduced amino acid sequences of the reverse transcriptase (RT) of human immunodeficiency virus type 1 (HIV-1) subtype E following 3'-azido-3'-deoxythymidine (AZT) monotherapy or AZT-2', 3'-dideoxyinosine combination therapy were examined with sequential virus isolates from a single family. The changes were compared to those reported for HIV-1 subtype B, revealing striking similarities in selected phenotype and amino acids independent of differences in the RT backbone sequences that constantly distinguish the two subtypes. Particularly, identical amino acid substitutions were present simultaneously at four different positions (D67N, K70R, T215F, and K219Q) for high-level AZT resistance. These data suggest that HIV-1 subtypes E and B evolve convergently at the phenotypic and amino acid levels when the nucleoside analogue RT inhibitors act as selective forces.
Collapse
Affiliation(s)
- H Sato
- Laboratory of Molecular Virology and Epidemiology, AIDS Research Center, National Institute of Infectious Diseases, Shinjuku, Tokyo 162-8640, Japan.
| | | | | | | | | | | |
Collapse
|
54
|
Richard N, Salomon H, Rando R, Mansour T, Bowlin TL, Wainberg MA. Selection and characterization of human immunodeficiency virus type 1 variants resistant to the (+) and (-) enantiomers of 2'-deoxy-3'-oxa-4'-thio-5-fluorocytidine. Antimicrob Agents Chemother 2000; 44:1127-31. [PMID: 10770740 PMCID: PMC89833 DOI: 10.1128/aac.44.5.1127-1131.2000] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Human immunodeficiency virus (HIV) type 1 (HIV-1) variants were selected for resistance to the (+) and (-) enantiomers of a novel nucleoside analogue, 2'-deoxy-3'-oxa-4'-thio-5-fluorocytidine (dOTFC), by use of the infectious molecular clone HIV HXB2D and the human T-cell line MT-4. The dOTFC-resistant variants that were selected were 10-fold less sensitive than wild-type virus, and cloning and sequencing of the complete reverse transcriptase (RT)-coding region identified the mutation M184V. Studies with mutated recombinant HXB2D virus confirmed the importance of the M184V mutation in conferring resistance to (-)dOTFC in MT-4 cells, although no difference in sensitivity was observed in primary cells. The M184V substitution also displayed decreased susceptibility to (+)dOTFC. Selection with (+)dOTFC also produced variants which were 10-fold more resistant than the wild type, and a novel mutation, D67G, was identified following cloning and sequencing of the RT genes. The D67G mutation was introduced into HXB2D by site-directed mutagenesis, and the data obtained confirmed the importance of this mutation in conferring resistance to both (+)dOTFC and (-)dOTFC. Mutated recombinant molecular clone HXB2D-D67G was further selected with (+)dOTFC, and three of six clones sequenced contained both the D67G and M184V mutations, while the other three of the six clones contained only the D67G mutation. Clinical isolates of HIV-1 which are (-) 2'-deoxy-3'-thiacytidine-resistant also displayed resistance to both (+)dOTFC and (-)dOTFC.
Collapse
Affiliation(s)
- N Richard
- McGill University AIDS Centre, Lady Davis Institute-Jewish General Hospital, Montréal, Québec, Canada H3T 1E2
| | | | | | | | | | | |
Collapse
|
55
|
Götte M, Wainberg MA. Biochemical mechanisms involved in overcoming HIV resistance to nucleoside inhibitors of reverse transcriptase. Drug Resist Updat 2000; 3:30-38. [PMID: 11498363 DOI: 10.1054/drup.2000.0126] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
The development of drug combinations that act effectively against both wild-type and mutated resistant forms of HIV-1 reverse transcriptase (RT) is a major goal in management of HIV disease. Recent studies have shown that resistance to different nucleoside analog RT inhibitors (NRTIs), an important class of anti-viral drugs, can result in different amino acid substitutions in close proximity to the dNTP binding pocket of the enzyme. Some of these mutations have been shown to cause cross- or multiple resistance among various members of this family of inhibitors. In contrast, certain combinations of amino acid substitutions can sometimes lead to increased drug susceptibility and may also result in resensitization of formerly resistant viruses. A biochemical understanding of these complex viral phenotypes may be of major importance in regard to development of novel chemotherapeutic strategies that can act at the level of drug-resistant mutated enzymes. In this review, we discuss several principles that help to explain the increased susceptibility and resensitization to some antiviral agents used in the context of combination treatment. The conclusions are largely based on our current understanding of mechanisms involved in drug-resistance to 3TC and AZT. Copyright 2000 Harcourt Publishers Ltd.
Collapse
Affiliation(s)
- Matthias Götte
- McGill University AIDS Centre, Lady Davis Institute - Jewish General Hospital, Montréal, Québec, CA
| | | |
Collapse
|
56
|
Shafer RW, Kantor R, Gonzales MJ. The Genetic Basis of HIV-1 Resistance to Reverse Transcriptase and Protease Inhibitors. AIDS Rev 2000; 2:211-228. [PMID: 19096725 PMCID: PMC2604813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
HIV-1 drug resistance is caused by mutations in the reverse transcriptase (RT) and protease enzymes, the molecular targets of antiretroviral therapy. At the beginning of the year 2000, two expert panels recommended that HIV-1 RT and protease susceptibility testing be used to help select antiretroviral drugs for HIV-1-infected patients. Genotypic assays have been developed to detect HIV-1 mutations known to confer antiretroviral drug resistance. Genotypic assays using dideoxynucleoside sequencing provide extensive insight into the presence of drug-resistant variants in the population of viruses within an individual. However, the interpretation of these assays in clinical settings is formidable because of the large numbers of drug resistance mutations and because these mutations interact with one another and emerge in complex patterns. In addition, cross-resistance between antiretroviral drugs is greater than that anticipated from initial in vitro studies. This review summarises the published data linking HIV-1 RT and protease mutations to in vitro and clinical resistance to the currently available nucleoside RT inhibitors, non-nucleoside RT inhibitors, and protease inhibitors.
Collapse
Affiliation(s)
- Robert W Shafer
- Division of Infectious Diseases and Geographic Medicine, Stanford University, Stanford, CA, USA
| | | | | |
Collapse
|
57
|
Sharma PL, Crumpacker CS. Decreased processivity of human immunodeficiency virus type 1 reverse transcriptase (RT) containing didanosine-selected mutation Leu74Val: a comparative analysis of RT variants Leu74Val and lamivudine-selected Met184Val. J Virol 1999; 73:8448-56. [PMID: 10482597 PMCID: PMC112864 DOI: 10.1128/jvi.73.10.8448-8456.1999] [Citation(s) in RCA: 87] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We previously showed that a didanosine-selected mutation in pNL4-3 background conferred a replication disadvantage on human immunodeficiency virus type 1, resulting in a loss of replication fitness. This work has been extended by showing that a recombinant virus with the HXBc2 backbone and reverse transcriptase (RT) fragments from pNL4-3 containing the Leu74Val mutation produce decreasing amounts of p24 antigen over a 3-week period. The HXBc2 recombinant containing the wild-type RT from pNL4-3 replicated efficiently. When the virion-associated RT containing the Leu74Val mutation was used in an RT processivity assay with homopolymer RNA template-primer, poly(A), and oligo(dT), the RT with altered Leu74Val mutation was less processive, generating fewer cDNA products in comparison to wild-type pNL4-3 RT. The replication kinetics and RT processivity of the mutant with the Leu74Val mutation were compared to those of a lamivudine-selected mutant Met184Val. In replication kinetics assays, mutant Leu74Val replicated slower than the mutant Met184Val. In a processivity assay, the mutant RTs from both viruses show comparable decreases in processivity. These observations provide biochemical evidence of decreased processivity to support the decrease in replication fitness observed with the Leu74Val or Met184Val mutations.
Collapse
Affiliation(s)
- P L Sharma
- Division of Infectious Disease, Beth Israel Deaconess Medical Center, Boston, Massachusetts 02215, USA.
| | | |
Collapse
|
58
|
Martinez-Picado J, Sutton L, De Pasquale MP, Savara AV, D'Aquila RT. Human immunodeficiency virus type 1 cloning vectors for antiretroviral resistance testing. J Clin Microbiol 1999; 37:2943-51. [PMID: 10449480 PMCID: PMC85420 DOI: 10.1128/jcm.37.9.2943-2951.1999] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Better detection of minority human immunodeficiency virus type 1 (HIV-1) populations containing gene mutations may improve the usefulness of antiretroviral resistance testing for clinical management. Molecular cloning of HIV-1 PCR products which might improve minority detection can be slow and difficult, and commercially available recombinant virus assays test drug susceptibility of virus pools. We describe novel plasmids and simple methods for rapid cloning of HIV-1 PCR products from patient specimens and their application to generate infectious recombinant virus clones for virus phenotyping and genotyping. Eight plasmids with differing deletions of sequences encoding HIV-1 protease, reverse transcriptase, or Gag p7/p1 and Gag p1/p6 cleavage sites were constructed for cloning HIV-1 PCR products. A simple HIV-1 sequence-specific uracil deglycosylase-mediated cloning method with the vectors and primers designed here was more rapid than standard ligase-mediated cloning. Pooled and molecularly cloned infectious recombinant viruses were generated with these vectors. Replicative viral fitness and drug susceptibility phenotypes of cloned infectious viruses containing patient specimen-derived sequences were measured. Clonal resistance genotyping analyses were also performed from virus isolates, plasma HIV-1 RNA, and infected cell DNA. Sequencing of a limited number of molecular clones detected minorities of resistant virus not identified in the pooled population PCR product sequence and linkage of minority mutations.
Collapse
|
59
|
Abstract
Progress in understanding antiretroviral resistance has evolved rapidly in recent years. Specific resistance mutations have been associated with virologic failure of different nucleoside reverse transcriptase inhibitors (NRTIs). These mutations vary in the extent of cross resistance they confer to other drugs in the same class. In addition, two novel mutational patterns conferring resistance to multiple NRTIs have been recognized. Considerable class-specific cross resistance also exists among viruses with reduced susceptibility to nonnucleoside reverse transcriptase inhibitors (NNRTIs). Among protease inhibitors, low level resistance that arises early during virologic failure may be drug specific in some situations, but high level resistance seen later during suboptimal therapy is likely to confer cross resistance to the entire class. Prevalence of drug resistance in infected patients appears to be considerable, and transmission of multidrug-resistant virus has been documented. Current methods of testing for resistance are promising, but they have significant limitations and require further clinical validation. The best approach to prevent resistance is to start treatment early during infection with a regimen that engenders good compliance and is potent enough to decrease viral load to below detection limits of the most sensitive assay available. Once resistance arises, salvage regimens in general have compromised efficacy and should be planned with attention to the patient's prior drug treatment history and the viruses' suspected or demonstrated resistance patterns.
Collapse
|
60
|
Gerondelis P, Archer RH, Palaniappan C, Reichman RC, Fay PJ, Bambara RA, Demeter LM. The P236L delavirdine-resistant human immunodeficiency virus type 1 mutant is replication defective and demonstrates alterations in both RNA 5'-end- and DNA 3'-end-directed RNase H activities. J Virol 1999; 73:5803-13. [PMID: 10364332 PMCID: PMC112641 DOI: 10.1128/jvi.73.7.5803-5813.1999] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The nonnucleoside reverse transcriptase (RT) inhibitor (NNRTI) delavirdine (DLV) selects in vitro for the human immunodeficiency virus type 1 (HIV-1) RT mutation P236L, which confers high-level resistance to DLV but not other NNRTIs. Unexpectedly, P236L has developed infrequently in HIV-1 isolates obtained from patients receiving DLV; K103N is the predominant resistance mutation observed in that setting. We characterized the replication fitness of viruses derived from pNL4-3 containing P236L or K103N in both H9 and primary human peripheral blood mononuclear cell cultures infected in parallel with the two mutants. In the absence of DLV, p24 production by wild-type virus occurred more rapidly and to higher levels than with either mutant; P236L consistently demonstrated a two- to threefold decrease in p24 relative to K103N. At low levels of DLV, growth of wild-type virus was severely inhibited, and K103N replicated two- to threefold more efficiently than P236L. At high concentrations of DLV, P236L replication and K103N replication were both inhibited. Recombinant RTs containing K103N or P236L were analyzed for DNA polymerization on heteropolymeric RNA templates and RNase H degradation of RNA-DNA hybrids. Neither mutant demonstrated defects in polymerization. K103N demonstrated normal RNA 5'-end-directed RNase H cleavage and slowed DNA 3'-end-directed RNase H cleavage compared to wild-type RT. P236L demonstrated slowing of both DNA 3'-end- and RNA 5'-end-directed RNase H cleavage, consistent with its reduced replication efficiency relative to K103N. These data suggest that NNRTI resistance mutations can lead to reductions in the efficiency of RNase H cleavage, which may contribute to a reduction in the replication fitness of HIV-1.
Collapse
Affiliation(s)
- P Gerondelis
- Department of Medicine, University of Rochester School of Medicine and Dentistry, Rochester, New York 14642, USA
| | | | | | | | | | | | | |
Collapse
|
61
|
Kosalaraksa P, Kavlick MF, Maroun V, Le R, Mitsuya H. Comparative fitness of multi-dideoxynucleoside-resistant human immunodeficiency virus type 1 (HIV-1) in an In vitro competitive HIV-1 replication assay. J Virol 1999; 73:5356-63. [PMID: 10364282 PMCID: PMC112591 DOI: 10.1128/jvi.73.7.5356-5363.1999] [Citation(s) in RCA: 97] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We examined whether human immunodeficiency virus type 1 (HIV-1) fitness was altered upon the acquisition of a set or subset of five mutations (A62V, V75I, F77L, F116Y, and Q151M) in the pol gene, which confers resistance to multiple dideoxynucleosides (MDR), as well as the zidovudine resistance-associated mutation T215Y, using a competitive HIV-1 replication assay in a setting of an HXB2D genetic background. Target H9 cells were exposed to a 50:50 mixture of paired infectious molecular clones, and HIV-1 in the culture supernatant was transmitted to new cultures every 7 to 10 days. The polymerase-encoding region of the virus was sequenced at various time points, and the relative proportion of the two viral populations was determined. In the absence of drugs, the comparative order for replicative fitness was HIV-162/75/77/116/151 > HIV-177/116/151 > HIV-1151 > wild-type HIV-1 (HIV-1wt) > HIV-175/77/116/151 > HIV-1151/215 > HIV-1215. In the presence of zidovudine or didanosine, the order was HIV-162/75/77/116/151 > HIV-177/116/151 > HIV-175/77/116/151 > HIV-1151 > HIV-1215. HIV-1215S(TCC), a putative intermediate infectious clone for HIV-1215, replicated comparably to HIV-1wt, while two putative intermediates for HIV-1151 [HIV-1151L(CTG) and HIV-1151K(AAG)] replicated much less efficiently than HIV-1wt and HIV-1151, suggesting that for HIV-1151 to develop, two base substitutions are likely to occur concurrently or within a short interval. These data may illustrate the molecular basis by which HIV-1151 emerges much less frequently than HIV-1215. The present data also demonstrate that several MDR HIV-1 variants are more fit than HIV-1wt in the absence of drugs and that resistance-associated mutations and drug pressure are critical variates for HIV-1 fitness.
Collapse
Affiliation(s)
- P Kosalaraksa
- Experimental Retrovirology Section, Department of Developmental Therapeutics, Medicine Branch, Division of Clinical Sciences, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | | | | | |
Collapse
|
62
|
Martinez-Picado J, Savara AV, Sutton L, D'Aquila RT. Replicative fitness of protease inhibitor-resistant mutants of human immunodeficiency virus type 1. J Virol 1999; 73:3744-52. [PMID: 10196268 PMCID: PMC104151 DOI: 10.1128/jvi.73.5.3744-3752.1999] [Citation(s) in RCA: 309] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The relative replicative fitness of human immunodeficiency virus type 1 (HIV-1) mutants selected by different protease inhibitors (PIs) in vivo was determined. Each mutant was compared to wild type (WT), NL4-3, in the absence of drugs by several methods, including clonal genotyping of cultures infected with two competing viral variants, kinetics of viral antigen production, and viral infectivity/virion particle ratios. A nelfinavir-selected protease D30N substitution substantially decreased replicative capacity relative to WT, while a saquinavir-selected L90M substitution moderately decreased fitness. The D30N mutant virus was also outcompeted by the L90M mutant in the absence of drugs. A major natural polymorphism of the HIV-1 protease, L63P, compensated well for the impairment of fitness caused by L90M but only slightly improved the fitness of D30N. Multiply substituted indinavir-selected mutants M46I/L63P/V82T/I84V and L10R/M46I/L63P/V82T/I84V were just as fit as WT. These results indicate that the mutations which are usually initially selected by nelfinavir and saquinavir, D30N and L90M, respectively, impair fitness. However, additional mutations may improve the replicative capacity of these and other drug-resistant mutants. Hypotheses based on the greater fitness impairment of the nelfinavir-selected D30N mutant are suggested to explain observations that prolonged responses to delayed salvage regimens, including alternate PIs, may be relatively common after nelfinavir failure.
Collapse
Affiliation(s)
- J Martinez-Picado
- Infectious Disease Unit and AIDS Research Center, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | | | | | | |
Collapse
|
63
|
Arion D, Parniak MA. HIV resistance to zidovudine: the role of pyrophosphorolysis. Drug Resist Updat 1999; 2:91-95. [PMID: 11504476 DOI: 10.1054/drup.1999.0076] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Zidovudine-resistant strains of HIV became apparent in many patients soon after advent of zidovudine (AZT) monotherapy. While this resistance could be unequivocally correlated with multiple mutations in HIV reverse transcriptase (D67N, K70R, T215F/Y, K219Q), the mechanism or phenotype for this resistance has remained obscure for more than a decade, despite active investigation. Recent studies indicate that AZT resistance may be related to removal of chain-terminating AZT from the 3'-terminus of the primer, by a process known as pyrophosphorolysis. This process is catalyzed by HIV-1 reverse transcriptase (RT), and is the reverse reaction of DNA polymerization. The D67N/K70R mutations result in a significantly increased rate of RT-catalyzed pyrophosphorolysis at physiological levels of pyrophosphate, which leads to a decrease in the extent of AZT chain termination of nascent viral DNA. The potential replication deficit of an increased reverse reaction during DNA synthesis is compensated by increased DNA synthesis processivity, a phenotype that results from the T215F/Y/K219Q mutations in RT. The net result of these multiple phenotypes imparted by the multiple mutations in RT is the facile synthesis of full-length viral DNA in the presence of AZT. Copyright 1999 Harcourt Publishers Ltd.
Collapse
|
64
|
de la Carrière LC, Paulous S, Clavel F, Mammano F. Effects of human immunodeficiency virus type 1 resistance to protease inhibitors on reverse transcriptase processing, activity, and drug sensitivity. J Virol 1999; 73:3455-9. [PMID: 10074202 PMCID: PMC104112 DOI: 10.1128/jvi.73.4.3455-3459.1999] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Human immunodeficiency virus type 1 (HIV-1) variants resistant to protease inhibitors often display a reduced replicative capacity as a result of an impairment of protease function. Such fitness-impaired viruses display Gag precursor maturation defects. Here, we report that some protease inhibitor-resistant viruses also display abnormalities in the processing of reverse transcriptase (RT) by the protease. In three recombinant viruses carrying resistant protease sequences from patient plasma, we observed a marked decrease in the amount of mature RT subunits and of particle-associated RT activity compared to their parental pretherapy counterparts. We investigated the possibility that a decrease in the amount of particle-associated mature RT could affect the sensitivity of the corresponding virus to RT inhibitors. We observed a twofold increase of sensitivity to zidovudine (AZT) when a virus which carried AZT mutations was processed by a resistant protease. Interestingly, the presence of AZT-resistance mutations partially rescued the replication defect associated with the mutated protease. The interplay between resistance to protease inhibitors and to RT inhibitors described here may be relevant to the therapeutic control of HIV-1 infection.
Collapse
Affiliation(s)
- L C de la Carrière
- Unité d'Oncologie Virale, Institut Pasteur and Laboratoire de Recherche Antivirale, Hôpital Bichat-Claude Bernard, Paris, France
| | | | | | | |
Collapse
|
65
|
Vandamme AM, Van Laethem K, De Clercq E. Managing resistance to anti-HIV drugs: an important consideration for effective disease management. Drugs 1999; 57:337-61. [PMID: 10193687 DOI: 10.2165/00003495-199957030-00006] [Citation(s) in RCA: 76] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Current recommendations for the treatment of HIV-infected patients advise highly active antiretroviral therapy (HAART) consisting of combinations of 3 or more drugs to provide long-term clinical benefit. This is because only a complete suppression of virus replication will be able to prevent virus drug resistance, the main cause of drug failure. Virus drug resistance may remain a cause of concern in patients who have already received suboptimal mono- or bitherapy, or for patients who do not experience complete shut-down of virus replication under HAART. For these patients, replacement of one combination therapy regimen by another at drug failure, taking into account the existing resistance profile, will be needed. The development of new drugs will remain necessary for those patients who have failed to respond to all currently available drugs, as will be the institution of more effective and less toxic HAART regimens.
Collapse
Affiliation(s)
- A M Vandamme
- Rega Institute for Medical Research and University Hospitals, Katholieke Universiteit Leuven, Belgium.
| | | | | |
Collapse
|
66
|
Arion D, Kaushik N, McCormick S, Borkow G, Parniak MA. Phenotypic mechanism of HIV-1 resistance to 3'-azido-3'-deoxythymidine (AZT): increased polymerization processivity and enhanced sensitivity to pyrophosphate of the mutant viral reverse transcriptase. Biochemistry 1998; 37:15908-17. [PMID: 9843396 DOI: 10.1021/bi981200e] [Citation(s) in RCA: 273] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The multiple mutations associated with high-level AZT resistance (D67N, K70R, T215F, K219Q) arise in two separate subdomains of the viral reverse transcriptase (RT), suggesting that these mutations may contribute differently to overall resistance. We compared wild-type RT with the D67N/K70R/T215F/K219Q, D67N/K70R, and T215F/K219Q mutant enzymes. The D67N/K70R/T215F/K219Q mutant showed increased DNA polymerase processivity; this resulted from decreased template/primer dissociation from RT, and was due to the T215F/K219Q mutations. The D67N/K70R/T215F/K219Q mutant was less sensitive to AZTTP (IC50 approximately 300 nM) than wt RT (IC50 approximately 100 nM) in the presence of 0.5 mM pyrophosphate. This change in pyrophosphate-mediated sensitivity of the mutant enzyme was selective for AZTTP, since similar Km values for TTP and inhibition by ddCTP and ddGTP were noted with wt and mutant RT in the absence or in the presence of pyrophosphate. The D67N/K70R/T215F/K219Q mutant showed an increased rate of pyrophosphorolysis (the reverse reaction of DNA synthesis) of chain-terminated DNA; this enhanced pyrophosphorolysis was due to the D67N/K70R mutations. However, the processivity of pyrophosphorolysis was similar for the wild-type and mutant enzymes. We propose that HIV-1 resistance to AZT results from the selectively decreased binding of AZTTP and the increased pyrophosphorolytic cleavage of chain-terminated viral DNA by the mutant RT at physiological pyrophosphate levels, resulting in a net decrease in chain termination. The increased processivity of viral DNA synthesis may be important to enable facile HIV replication in the presence of AZT, by compensating for the increased reverse reaction rate.
Collapse
Affiliation(s)
- D Arion
- Lady Davis Institute for Medical Research, McGill University AIDS Centre, Sir Mortimer B. Davis-Jewish General Hospital, Montreal, Quebec, Canada
| | | | | | | | | |
Collapse
|
67
|
Vaccaro JA, Anderson KS. Implication of the tRNA initiation step for human immunodeficiency virus type 1 reverse transcriptase in the mechanism of 3'-azido-3'-deoxythymidine (AZT) resistance. Biochemistry 1998; 37:14189-94. [PMID: 9760256 DOI: 10.1021/bi9810353] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
There is a lack of correlation between biochemical studies and the observed clinical resistance of AIDS patients on long-term AZT therapy. Mutant HIV-1 reverse transcriptase in the viral isolates from these patients shows a 100-fold decrease in sensitivity to AZT whereas little or no difference is observed in kinetic parameters in vitro using steady-state kinetic analysis. A pre-steady-state kinetic analysis was used to examine the binding and incorporation of 2'-deoxythymidine 5'-triphosphate (dTTP) and 3'-azido-3'-deoxythymidine 5'-triphosphate (AZTTP) by wild-type HIV-1 reverse transcriptase and a clinically important AZT-resistant mutant form of the enzyme (D67N, K70R, T215Y, K219Q) utilizing a physiologically relevant RNA 18-mer/RNA 36-mer primer-template substrate. It was determined that with this RNA/RNA substrate there is a 2.6-fold increase in the selection for incorporation of the natural nucleotide dTTP over the unnatural nucleoside analogue AZTTP by AZT-resistant reverse transcriptase as compared to its wild-type form. This observation indicates that the tRNALys initiation step plays an important role in the development of drug resistance. Furthermore, this result implies that the structural basis of AZT resistance in HIV-1 reverse transcriptase involves the conformation of the RNA-DNA junction (formed upon attachment of a deoxynucleotide to the RNA primer). Taken together, these observations suggest a new pharmacological basis for the development of more effective and novel AIDS drugs.
Collapse
Affiliation(s)
- J A Vaccaro
- Department of Pharmacology, Yale University School of Medicine, New Haven, Connecticut 06520-8066, USA
| | | |
Collapse
|
68
|
Tamalet C, Izopet J, Koch N, Fantini J, Yahi N. Stable rearrangements of the beta3-beta4 hairpin loop of HIV-1 reverse transcriptase in plasma viruses from patients receiving combination therapy. AIDS 1998; 12:F161-6. [PMID: 9792372 DOI: 10.1097/00002030-199814000-00003] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
OBJECTIVES To study the genetic rearrangements of HIV-1 reverse transcriptase (RT) in circulating viruses from patients under combination therapy, and to determine the impact of these changes on the virological response to treatment. METHODS Blood samples were extracted from total RNA and amplified by RT-PCR. The HIV-1 RT and protease genes were sequenced by fluorescent dye terminator cycle sequencing. RESULTS Specific rearrangements in the RT coding region (between amino acids 66 and 71) were documented in nine patients. This region, which corresponds to a loop between the beta3 and beta4 strands of the fingers subdomain of RT, is involved in the interaction between the enzyme and the template primer. In vitro data with recombinant enzymes have shown the importance of this domain in the processive polymerization of HIV-1 RT. The rearrangements (eight deletions/insertions and one deletion with conservation of the reading frame) did not affect the overall secondary structure of the fingers subdomain, as assessed by the Garnier Osguthorpe Robson prediction method. The changes were generally stable over a follow-up of 10-12 months. With the exception of two cases, most of the patients of this study did not respond efficiently to antiretroviral therapy as assessed by measurements of plasma viraemia. Correspondingly, the RT and protease genes sequenced from these patients displayed numerous resistance-associated mutations. CONCLUSION Functional and stable rearrangements in the beta3-beta4 hairpin of HIV-1 RT can be found in circulating viruses from patients under combination therapy. These rearrangements may affect the virological response to antiretroviral therapy by increasing the processivity of RT, an enzymatic parameter that reflects the fidelity of the polymerization process.
Collapse
Affiliation(s)
- C Tamalet
- Laboratoire de Virologie, CHRU La Timone, Marseille, France
| | | | | | | | | |
Collapse
|
69
|
Quan Y, Inouye P, Liang C, Rong L, Götte M, Wainberg MA. Dominance of the E89G substitution in HIV-1 reverse transcriptase in regard to increased polymerase processivity and patterns of pausing. J Biol Chem 1998; 273:21918-25. [PMID: 9705331 DOI: 10.1074/jbc.273.34.21918] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The substitution of a glycine for glutamic acid at position 89 in human immunodeficiency virus-1 (HIV-1) reverse transcriptase (RT) (E89G) confers resistance to several nucleoside and non-nucleoside inhibitors of RT. As residue 89 contacts the template strand, it has been suggested that this mutation may modulate the conformation of the RT.template/primer complex. In addition, certain mutations in RT that confer resistance to nucleoside analogs, such as M184V, are located near the polymerase active site. To characterize further these substitutions, we performed processivity assays alongside an analysis of pausing profiles with wild-type (wt) RT and recombinant RTs containing substitutions at E89G, M184V, or both. We now show that E89G RT has higher processivity than wt enzyme as well as a different pattern of pausing sites. Similar findings were obtained with the doubly mutated RT, although enzyme containing only the M184V mutation had lower processivity than wt. Consistent with these observations, and from a mechanistic standpoint, both E89G-containing as well as doubly mutated RT had decreased dissociation constants from a complex consisting of RT and template-primer, in comparison with either wt RT or M184V-containing RT. No significant differences were observed among the various enzymes in regard to Km values for the heteropolymeric RNA template used in these studies. Viruses containing the E89G mutation synthesized longer strand DNA products than either wt viruses or viruses containing only the M184V mutation in endogenous RT assays. Thus, the E89G substitution is a dominant determinant in regard to each of the koff values from an RT.template/primer complex, RT processivity, and specific patterns of pausing during DNA polymerization.
Collapse
Affiliation(s)
- Y Quan
- McGill University AIDS Centre, Lady Davis Institute-Jewish General Hospital, Montréal, Québec, H3T 1E2, Canada
| | | | | | | | | | | |
Collapse
|
70
|
Canard B, Sarfati SR, Richardson CC. Enhanced binding of azidothymidine-resistant human immunodeficiency virus 1 reverse transcriptase to the 3'-azido-3'-deoxythymidine 5'-monophosphate-terminated primer. J Biol Chem 1998; 273:14596-604. [PMID: 9603976 DOI: 10.1074/jbc.273.23.14596] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Human immunodeficiency virus type 1 is resistant to 3'-azido-3'-deoxythymidine (AZT) when four amino acid substitutions (D67N, K70R, T215F, and K219Q) are present simultaneously in its reverse transcriptase. Wild-type and AZT-resistant reverse transcriptases show identical binding to a 3'-azido-3'-deoxythymidine 5'-monophosphate (AZTMP)-terminated primer/RNA template. On DNA templates, the equilibrium dissociation constant (KD) for primer/template and AZT-resistant reverse transcriptase (RT) (KD = 4.1 nM) is similar to that of the wild-type enzyme (KD = 6.2 nM). However, koff is 4-25-fold lower for the AZT-resistant enzyme than for the wild-type enzyme, depending on the nucleotide and the template. The kinetic decay of a wild-type RT/primer/AZTMP-terminated DNA template complex is biphasic. Seventy percent of the initial complex decays with a rate constant greater than 0.05 s-1, and 30% with a rate constant of 0.0017 s-1. Decay of an AZT-resistant RT/AZTMP-terminated primer/DNA template complex is monophasic, with a rate constant of 0.0018 s-1. The last two nucleotides at the 3' end of the AZTMP-terminated DNA primer in complex with AZT-resistant RT, but not wild-type RT, and a DNA template are protected from exonuclease digestion, suggesting that enhanced binding of the 3' end of the AZTMP-terminated DNA primer to reverse transcriptase is involved in the mechanism of AZT resistance by human immunodeficiency virus type 1.
Collapse
Affiliation(s)
- B Canard
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | |
Collapse
|
71
|
Arts EJ, Quiñones-Mateu ME, Albright JL, Marois JP, Hough C, Gu Z, Wainberg MA. 3'-Azido-3'-deoxythymidine (AZT) mediates cross-resistance to nucleoside analogs in the case of AZT-resistant human immunodeficiency virus type 1 variants. J Virol 1998; 72:4858-65. [PMID: 9573252 PMCID: PMC110035 DOI: 10.1128/jvi.72.6.4858-4865.1998] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Difficulties in deciphering the mechanisms of 3'-azido-3'-deoxythymidine (AZT)-resistance by human immunodeficiency virus type 1 (HIV-1) variants are due in part to an inability to reconstitute resistance in vitro using AZT-resistant reverse transcriptases. We decided to characterize mechanisms of AZT resistance in tissue culture infections by studying the ability of drug-resistant viruses to synthesize viral DNA in the presence or absence of drug. Through use of PCR amplifications, we discovered an AZT-mediated stimulation of reverse transcription by AZT-resistant viruses carrying the M41L and T215Y mutations that can apparently override the inhibitory effects of AZT-5'-triphosphate. In addition, the presence of AZT also causes viruses containing the M41L and T215Y substitutions to have diminished sensitivity to other nucleoside analogs (i.e., ddC, ddI, and d4T). This AZT-mediated cross-resistance may help to explain the virological failure of treatment regimens that included ddI plus AZT or ddC plus AZT in situations in which the T215Y and/or M41L mutations were present (F. Brun-Vézinet, C. Boucher, C. Loveday, D. Descamps, V. Fauveau, J. Izopet, D. Jeffries, S. Kaye, C. Krzyanowski, A. Nunn, R. Schuurman, J. M. Seigneurin, C. Tamalet, R. Tedder, J. Weber, and G. J. Weverling, Lancet 350:983-990, 1997). Our results suggest that the use of AZT may be contraindicated in those patients for whom resistance to this compound (M41L and/or T215Y) has been demonstrated.
Collapse
Affiliation(s)
- E J Arts
- Division of Infectious Diseases, Department of Medicine, Case Western Reserve University, Cleveland, Ohio 44106, USA.
| | | | | | | | | | | | | |
Collapse
|
72
|
D'Amato RM, D'Aquila RT, Wein LM. Management of Antiretroviral Therapy for HIV Infection: Modelling when to Change Therapy. Antivir Ther 1998. [DOI: 10.1177/135965359800300302] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Objective To evaluate four strategies for monitoring plasma HIV RNA levels and/or resistance genotypes to decide when to change antiretroviral therapy. The strategies include: (i) 1997 guidelines recommending a therapy switch when plasma RNA exceeds a threshold level; (ii) a viral load policy, using a fixed increase in viral load as the trigger; (iii) a genotype policy, requiring a smaller viral rebound than (ii) and detection of genotypic resistance before switching; and (iv) a proactive policy, switching drug regimens at a predetermined time if viral load has not rebounded. Design and setting A Monte Carlo simulation tracks patients’ viral loads and presence of opportunistic infection during therapy. The model uses clinical and virological data and statistical variation in patient parameters for the evaluation of therapeutic strategies. Main outcome measures: To determine which strategies minimize viral rebound detection delay while maintaining a low (prespecified) probability of switching therapy before rebound. Results 1997 Guidelines and the viral load policy create lengthy delays in detection of rebound, particularly when patients are drug-naive and the detection limit of the viral load assay is 500 copies/ml. A detection limit of 20 copies/ml decreases this delay substantially. Genotyping achieves only minor additional delay reductions. Of the strategies tested, the proactive policy leads to the shortest delays. Conclusions This model indicates that prolonged periods may be required for viral load to rebound to detectable levels following prolonged suppression. Proactive switching produces the best outcome in our model because it may reduce the duration of viral replication under pressure of a failing regimen before detection of viral rebound. This strategy should be evaluated in clinical trials.
Collapse
Affiliation(s)
- Rebecca M D'Amato
- Operations Research Center, Massachusetts Institute of Technology, Cambridge, MA 02139
| | - Richard T D'Aquila
- Infectious Disease Unit and AIDS Research Center, Massachusetts General Hospital, 149 13th Street, Charlestown, MA 02129
| | - Lawrence M Wein
- Sloan School of Management, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| |
Collapse
|
73
|
Kew Y, Olsen LR, Japour AJ, Prasad VR. Insertions into the beta3-beta4 hairpin loop of HIV-1 reverse transcriptase reveal a role for fingers subdomain in processive polymerization. J Biol Chem 1998; 273:7529-37. [PMID: 9516454 DOI: 10.1074/jbc.273.13.7529] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Human immunodeficiency virus type 1 (HIV-1) reverse transcriptase (RT) displays a characteristic poor processivity during DNA polymerization. Structural elements of RT that determine processivity are poorly understood. The three-dimensional structure of HIV-1 RT, which assumes a hand-like structure, shows that the fingers, palm, and thumb subdomains form the template-binding cleft and may be involved in determining the degree of processivity. To assess the influence of fingers subdomain of HIV-1 RT in polymerase processivity, two insertions were engineered in the beta3-beta4 hairpin of HIV-1NL4-3 RT. The recombinant mutant RTs, named FE20 and FE103, displayed wild type or near wild type levels of RNA-dependent DNA polymerase activity on all templates tested and wild type or near wild type-like sensitivities to dideoxy-NTPs. When polymerase activities were measured under conditions that allow a single cycle of DNA polymerization, both of the mutants displayed 25-30% greater processivity than wild type enzyme. Homology modeling the three-dimensional structures of wild type HIV-1NL4-3 RT and its finger insertion mutants revealed that the extended loop between the beta3 and beta4 strands protrudes into the cleft, reducing the distance between the fingers and thumb subdomains to approximately 12 A. Analysis of the models for the mutants suggests an extensive interaction between the protein and template-primer, which may reduce the degree of superstructure in the template-primer. Our data suggest that the beta3-beta4 hairpin of fingers subdomain is an important determinant of processive polymerization by HIV-1 RT.
Collapse
Affiliation(s)
- Y Kew
- Department of Microbiology & Immunology, Albert Einstein College of Medicine, Bronx, New York 10461, USA
| | | | | | | |
Collapse
|
74
|
Arts EJ, Quiñones-Mateu ME, Albright JL. Mechanisms of clinical resistance by HIV-I variants to zidovudine and the paradox of reverse transcriptase sensitivity. Drug Resist Updat 1998; 1:21-8. [PMID: 17092793 DOI: 10.1016/s1368-7646(98)80211-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Even with the development of novel nucleoside analog inhibitors, zidovudine (AZT or 3'-azido-3'-deoxythymidine) remains a potent and frequently prescribed antiretroviral therapy for HIV-positive individuals. Failure of AZT in monotherapy due to the emergence of drug-resistant virus has not excluded it from use in most combination therapies with other nucleoside analogs, non-nucleoside reverse transcriptase inhibitors and protease inhibitors. Thus, an understanding of the mechanism of AZT resistance could be the key in predicting the failure of many treatment strategies. In this review, the occurrence, characterization and ramification of AZT resistance in HIV-positive individuals will be discussed in the context of genotypic and phenotypic analyses of AZT-resistant viruses and reverse transcriptases. The mechanisms of resistance to AZT may be distinct from the mechanisms of resistance to other nucleoside analogs.
Collapse
Affiliation(s)
- E J Arts
- Division of Infectious Diseases, Department of Medicine, Case Western Reserve University, Ohio 44106, USA.
| | | | | |
Collapse
|
75
|
Kerr SG, Anderson KS. Pre-steady-state kinetic characterization of wild type and 3'-azido-3'-deoxythymidine (AZT) resistant human immunodeficiency virus type 1 reverse transcriptase: implication of RNA directed DNA polymerization in the mechanism of AZT resistance. Biochemistry 1997; 36:14064-70. [PMID: 9369478 DOI: 10.1021/bi9713862] [Citation(s) in RCA: 80] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
There is lack of a correlation between biochemical studies and the observed clinical resistance of AIDS patients on long term AZT therapy. Mutant HIV-1 reverse transcriptase in the viral isolates from these patients shows a 100-fold decrease in sensitivity whereas little or no difference is observed in kinetic parameters in vitro using steady-state kinetic analysis. A detailed pre-steady-state kinetic analysis of wild type and the clinically important AZT resistant mutant (D67N, K70R, T215Y, K219Q) HIV-1 reverse transcriptase was conducted to understand the mechanistic basis of drug resistance. In contrast to steady-state techniques, a pre-steady-state kinetic analysis allows for the direct observation of catalytic events occurring at the active site of the enzyme, including subtle conformational changes enabling a greater degree of mechanistic detail. In this investigation the rate of incorporation of dTMP and AZTMP by wild type and mutant HIV-1 RT was determined using an RNA and the corresponding DNA template. The present study has shown a 1.5-fold decrease in the rate constant for polymerization (kpol) and a 2.5-fold decrease in the equilibrium dissociation constant (Kd) for AZTTP for the mutant reverse transcriptase as compared to the wild type, for RNA dependent DNA replication. These values translate into a 4-fold decrease in selectivity (kpol/Kd) for AZTMP incorporation by mutant reverse transcriptase as compared to wild type for RNA dependent DNA replication. No such decrease in selectivity was detected for DNA dependent replication. These results suggest that the basis of AZT resistance is related to RNA dependent replication rather than DNA dependent replication.
Collapse
Affiliation(s)
- S G Kerr
- Department of Pharmacology, 333 Cedar Street, Yale University School of Medicine, New Haven, Connecticut 06520-8066, USA
| | | |
Collapse
|
76
|
Pazzani MJ, See D, Schroeder E, Tilles J. Application of an expert system in the management of HIV-infected patients. JOURNAL OF ACQUIRED IMMUNE DEFICIENCY SYNDROMES AND HUMAN RETROVIROLOGY : OFFICIAL PUBLICATION OF THE INTERNATIONAL RETROVIROLOGY ASSOCIATION 1997; 15:356-62. [PMID: 9342255 DOI: 10.1097/00042560-199708150-00005] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
A rule-based expert system, Customized Treatment Strategies for HIV (CTSHIV), which encodes information from the literature on known drug-resistant mutations was developed. Additional rules include ranking and weighting based on antiviral activities, redundant mechanisms of action, overlapping toxicities, relative levels of drug-resistance, and proportion of drug-resistant clones in the HIV quasispecies. Plasma was obtained from HIV-infected patients and the RNA was extracted. Segments of the HIV pol gene encoding the entire protease, reverse transcriptase, and integrase proteins were amplified by reverse transcriptase-polymerase chain reaction (using a total of three primer pairs) and cloned. Sequencing was performed on five clones from each of two patients. When the patient's RNA sequencing data were entered into the expert program, and the information was downloaded directly into the CTSHIV program, the five most effective two, three, and four drug regimens coupled with an explanation for their choice were displayed for each patient. Thus, the CTSHIV system couples efficient genetic sequencing with an expert program that recommends regimens based on information in the current medical literature. It may serve as a useful tool in the design of clinical trials and in the management of HIV-infected patients.
Collapse
Affiliation(s)
- M J Pazzani
- Department of Information and Computer Sciences, University of California, Irvine, Orange 92868, U.S.A
| | | | | | | |
Collapse
|
77
|
Abstract
Human immunodeficiency virus (HIV) is a diploid virus: each virion carries two complete RNA genomic strands. Homologous recombination can occur when a cell is coinfected with two different but related strains. Naturally occurring recombinant HIV strains have been found in infected patients in regions of the world where multiple genotypic variants cocirculate. One recombinant HIV strain has spread rapidly to millions of persons in Southeast Asia. Recombination is a mechanism whereby high level and multidrug-resistant strains may be generated in individual treated patients. Recombination also poses theoretical problems for the development of a safe HIV vaccine. Certain features of HIV replication, such as syncytium formation and transactivation, may be best understood as components of a sexual reproductive cycle. Recombination may be an important HIV evolutionary strategy.
Collapse
Affiliation(s)
- D S Burke
- Walter Reed Army Institute of Research, Rockville, MD 20850, USA.
| |
Collapse
|
78
|
Arion D, Borkow G, Gu Z, Wainberg MA, Parniak MA. The K65R mutation confers increased DNA polymerase processivity to HIV-1 reverse transcriptase. J Biol Chem 1996; 271:19860-4. [PMID: 8702696 DOI: 10.1074/jbc.271.33.19860] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
The K65R mutation in HIV-1 reverse transcriptase (RT) is associated with viral cross-resistance to 2',3'-dideoxyinosine, 2',3'-dideoxycytidine, and 2',3'-dideoxy-3'-thiacytidine. We have found that in vitro DNA synthesis by K65R RT is significantly more processive than that of wild type (wt) RT. Depending on the template/primer (T/P) used, the total incorporation of nucleotides under single processive cycle conditions was 20-50% higher with K65R RT than with wt RT. With heteropolymeric T/P, the total incorporation of dNMP by K65R and wt RT was similar under continuous DNA synthesis reaction conditions. However, under single processive cycle conditions, the rate of full-length polymerization product synthesis by K65R RT was about 2-fold higher than that by wt RT. We also found a decreased rate of T/P dissociation during K65R RT DNA synthesis, which is consistent with the increased processivity of the enzyme. We postulate that the increased processivity of the K65R RT may be a compensatory response to the decreased affinity of this mutant for certain dNTP substrates, allowing normal viral replication kinetics.
Collapse
Affiliation(s)
- D Arion
- Lady Davis Institute for Medical Research, Jewish General Hospital, 3755 Cote Ste-Catherine Road, Montreal, Quebec, H3T 1E2 Canada
| | | | | | | | | |
Collapse
|