51
|
Thompson CC. Thyroid hormone-responsive genes in developing cerebellum include a novel synaptotagmin and a hairless homolog. J Neurosci 1996; 16:7832-40. [PMID: 8987811 PMCID: PMC6579223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/1996] [Revised: 09/24/1996] [Accepted: 09/26/1996] [Indexed: 02/03/2023] Open
Abstract
Proper development of the mammalian CNS requires sufficient thyroid hormone; thyroid hormone deficiency during a brief perinatal period produces severe neurological defects in humans and experimental animals. Thyroid hormone exerts its effects through nuclear receptors, which modulate the transcription of downstream genes in response to hormone binding. Surprisingly, few genes that are regulated by thyroid hormone receptors in the CNS have been described. Here, I report the isolation and characterization of genes that are expressed in response to thyroid hormone in developing rat brain. One such gene (Srg1) encodes a novel protein related to synaptotagmin, a protein involved in regulating neurotransmitter release; another (hr) encodes a putative zinc finger protein related to the product of a recently identified mouse gene, hairless. Both Srg1 and hr are induced rapidly (<4 hr), suggesting that they are regulated directly by thyroid hormone. The temporal and spatial expression of both Srg1 and hr is characteristic of genes important to nervous system development. Srg1 and hr are likely part of a cascade of gene activation induced by thyroid hormone that is critical for CNS organization and development.
Collapse
Affiliation(s)
- C C Thompson
- Department of Embryology, Carnegie Institution of Washington, Baltimore, Maryland 21210, USA
| |
Collapse
|
52
|
Rehorn KP, Thelen H, Michelson AM, Reuter R. A molecular aspect of hematopoiesis and endoderm development common to vertebrates and Drosophila. Development 1996; 122:4023-31. [PMID: 9012522 DOI: 10.1242/dev.122.12.4023] [Citation(s) in RCA: 216] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
In vertebrates, transcriptional regulators of the GATA family appear to have a conserved function in differentiation and organ development. GATA-1, −2 and −3 are required for different aspects of hematopoiesis, while GATA-4, −5 and −6 are expressed in various organs of endodermal origin, such as intestine and liver, and are implicated in endodermal differentiation. Here we report that the Drosophila gene serpent (srp) encodes the previously described GATA factor ABF. The multiple functions of srp in Drosophila suggest that it is an ortholog of the entire vertebrate Gata family. srp is required for the differentiation and morphogenesis of the endodermal gut. Here we show that it is also essential for Drosophila hematopoiesis and for the formation of the fat body, the insect organ analogous to the liver. These findings imply that some aspects of the molecular mechanisms underlying blood cell development as well as endodermal differentiation are early acquisitions of metazoan evolution and may be common to most higher animals.
Collapse
Affiliation(s)
- K P Rehorn
- Institut für Genetik, Universität zu Köln, Germany
| | | | | | | |
Collapse
|
53
|
Froeliger EH, Carpenter BE. NUT1, a major nitrogen regulatory gene in Magnaporthe grisea, is dispensable for pathogenicity. MOLECULAR & GENERAL GENETICS : MGG 1996; 251:647-56. [PMID: 8757395 DOI: 10.1007/bf02174113] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
NUT1, a gene homologous to the major nitrogen regulatory genes nit-2 of Neurospora crassa and areA of Aspergillus nidulans, was isolated from the rice blast fungus, Magnaporthe grisea. NUT1 encodes a protein of 956 amino acid residues and, like nit-2 and areA, has a single putative zinc finger DNA-binding domain. Functional equivalence of NUT1 to areA was demonstrated by introducing the NUT1 gene by DNA-mediated transformation into an areA loss-of-function mutant of A. nidulans. The introduced NUT1 gene fully complemented the areA null mutation, restoring to the mutant the ability to utilize a variety of nitrogen sources. In addition, the sensitivity of Aspergillus NUT1 transformants to ammonium repression of extracellular protease activity was comparable to that of wild-type A. nidulans. Thus, NUT1 and areA encode functionally equivalent gene products that activate expression of nitrogen-regulated genes. A one-step disruption strategy was used to generate nut1- mutants of M. grisea by transforming a rice-infecting strain with a disruption vector in which a gene for hygromycin B phosphotransferase (Hyg) replaced the zinc-finger DNA-binding motif of NUT1. Of 31 hygromycin B (hyg-B)-resistant transformants shown by Southern hybridization to contain a disrupted NUT1 gene (nut1 : : Hyg), 26 resulted from single-copy replacement events at the NUT1 locus. Although nut1- transformants of M. grisea failed to grown on a variety of nitrogen sources, glutamate, proline and alanine could still be utilized. This contrasts with A. nidulans where disruption of the zinc-finger region of areA prevents utilization of nitrogen sources other than ammonium and glutamine. The role of NUT1 and regulation of nitrogen metabolism in the disease process was evaluated by pathogenicity assays. The infection efficiency of nut1- transformants on susceptible rice plants was similar to that of the parental strain, although lesions were reduced in size. These studies demonstrate that the M. grisea NUT1 gene activates expression of nitrogen-regulated genes but is dispensable for pathogenicity.
Collapse
Affiliation(s)
- E H Froeliger
- Agricultural Research Division, American Cyanamid Company, Princeton, NJ 08543, USA
| | | |
Collapse
|
54
|
Polley SD, Caddick MX. Molecular characterisation of meaB, a novel gene affecting nitrogen metabolite repression in Aspergillus nidulans. FEBS Lett 1996; 388:200-5. [PMID: 8690087 DOI: 10.1016/0014-5793(96)00541-8] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Mutations within the meaB gene elicit the inappropriate expression of several activities subject to nitrogen metabolite repression in Aspergillus nidulans and also have some unrelated phenotypic effects. We have cloned meaB and isolated a full length cDNA clone. Northern analysis has shown that meaB expression is not subject to nitrogen metabolite repression. meaB encodes a novel protein of 418 amino acids and contains a significantly high number of S/TPXX motifs, a motif common in transcriptional regulatory proteins. We have sequenced three mutations within meaB, two of which have an identical phenotype to that produced by gene disruption.
Collapse
Affiliation(s)
- S D Polley
- Department of Genetics and Microbiology, University of Liverpool, UK
| | | |
Collapse
|
55
|
Platt A, Langdon T, Arst HN, Kirk D, Tollervey D, Sanchez JM, Caddick MX. Nitrogen metabolite signalling involves the C-terminus and the GATA domain of the Aspergillus transcription factor AREA and the 3' untranslated region of its mRNA. EMBO J 1996; 15:2791-801. [PMID: 8654376 PMCID: PMC450215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
AREA is a GATA transcription factor which mediates nitrogen metabolite repression in Aspergillus nidulans in response to intracellular glutamine levels. We have identified and localized three elements important to modulation of AREA function: a region of 13 residues within the DNA-binding GATA domain which forms a putative extended loop structure, the 12 C-terminal residues, and sequences within a 218 nucleotide region of the 3' UTR. The 12 C-terminal residues are also required for transcriptional activation at a subset of loci under areA control. Specific deletions within the 3' UTR and the C-terminus cause similar levels of derepression and the mutations are additive, implicating two principal signal transduction pathways. The contribution of the 3' UTR to AREA modulation is effected at the level of transcript stability such that the areA mRNA is at least five times more stable under nitrogen-derepressing conditions than it is under repressing growth conditions.
Collapse
Affiliation(s)
- A Platt
- Department of Genetics and Microbiology, Donnan Laboratories, University of Liverpool, Liverpool, UK
| | | | | | | | | | | | | |
Collapse
|
56
|
Cunningham TS, Svetlov VV, Rai R, Smart W, Cooper TG. G1n3p is capable of binding to UAS(NTR) elements and activating transcription in Saccharomyces cerevisiae. J Bacteriol 1996; 178:3470-9. [PMID: 8655543 PMCID: PMC178115 DOI: 10.1128/jb.178.12.3470-3479.1996] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
When readily used nitrogen sources are available, the expression of genes encoding proteins needed to transport and metabolize poorly used nitrogen sources is repressed to low levels; this physiological response has been designated nitrogen catabolite repression (NCR). The cis-acting upstream activation sequence (UAS) element UAS(NTR) mediates Gln3p-dependent, NCR-sensitive transcription and consists of two separated dodecanucleotides, each containing the core sequence GATAA. Gln3p, produced in Escherichia coli and hence free of all other yeast proteins, specifically binds to wild-type UAS(NTR) sequences and DNA fragments derived from a variety of NCR-sensitive promoters (GDH2, CAR11 DAL3, PUT1, UGA4, and GLN1). A LexA-Gln3 fusion protein supported transcriptional activation when bound to one or more LexAp binding sites upstream of a minimal CYC1-derived promoter devoid of UAS elements. LexAp-Gln3p activation of transcription was largely independent of the nitrogen source used for growth. These data argue that Gln3p is capable of direct UAS(NTR) binding and participates in transcriptional activation of NCR-sensitive genes.
Collapse
Affiliation(s)
- T S Cunningham
- Department of Microbiology and Immunology, University of Tennessee, Memphis 38163, USA
| | | | | | | | | |
Collapse
|
57
|
Xiao X, Marzluf GA. Identification of the native NIT2 major nitrogen regulatory protein in nuclear extracts of Neurospora crassa. Genetica 1996; 97:153-63. [PMID: 8901135 DOI: 10.1007/bf00054622] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The nit-2 gene of Neurospora crassa encodes the major nitrogen regulatory protein which acts in a positive fashion to activate the expression of many different structural genes during conditions of nitrogen limitation. An E. coli-expressed NIT2/beta-Gal fusion protein binds specifically to DNA in vitro by recognizing GATA core elements. Nuclear extracts prepared from a wild-type N. crassa strain contain a protein factor which displays all of the properties expected for the native NIT2 protein. The native NIT2 protein in nuclear extracts binds with high affinity to DNA fragments which contain two GATA elements, weakly to fragments with a single GATA element, and fails to bind to DNAs which lack these sequences. The DNA binding ability of the protein factor in nuclear extracts is efficiently blocked by a polyclonal antibody developed against the zinc-finger region of NIT2 protein. Western blot analysis with the anti-NIT2 antiserum revealed a specific protein with a size of approximately 110,000 daltons, in excellent agreement with the predicted size of NIT2. Both the specific NIT2 DNA binding activity and the protein detected by Western blot are totally lacking in nuclear extracts of a nit-2 rip mutant strain. These results all support the conclusion that the native NIT2 protein in Neurospora cells has been identified. The NIT2 protein is localised in nuclei and could not be detected in the cytoplasmic fraction of cells subjected to nitrogen derepression or nitrogen repression, indicating that the nuclear import of NIT2 is not regulated.
Collapse
Affiliation(s)
- X Xiao
- Department of Biochemistry, Ohio State University, Columbus 43210, USA
| | | |
Collapse
|
58
|
Metabolite Sensing and Regulatory Points of Carbon and Nitrogen Metabolic Pathways and Partitioning in Plants. ACTA ACUST UNITED AC 1996. [DOI: 10.1007/978-3-7091-7474-6_3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/08/2023]
|
59
|
Teakle GR, Kay SA. The GATA-binding protein CGF-1 is closely related to GT-1. PLANT MOLECULAR BIOLOGY 1995; 29:1253-66. [PMID: 8616222 DOI: 10.1007/bf00020466] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Many light-regulated genes contain a conserved GATA motif in their 5'-upstream region. We have characterized in detail the GATA-binding factor, CGF-1, which bonds within a 73 bp TATA-proximal light/circadian regulatory element in the Arabidopsis cab2 promoter and to two more sites farther upstream. CGF-1 was found to be distinct from other metal-dependent GATA-binding factors, but to have the same sequence requirements for binding and similar physical and chemical properties as GT-1, a factor required for light regulation of the tobacco rbcS-3A gene. CGF-1 was found to be constitutively present in extracts and was shown to be immunologically related to GT-1. The close similarity between CGF-1 and GT-1 suggests that a GT-1-like factor is involved in the phytochrome/circadian regulation of the cab2 gene. CGF-1 and GT-1 were also found to have similar sequence specificities to another constitutively-regulated GATA factor, IBF-2b, which binds the I box region of the tomato nitrate reductase gene. Of three complexes detected using an IBF-2b-specific probe, only one was identical to CGF-1/GT-1. The other two were similar to IBF-2b, demonstrating that CGF-1/GT-1, although very similar, are actually distinct from IBF-2b. These data indicate that more than one factor can bind to the same short sequence and may indicate how constitutively present factors like GT-1 can play a role in light regulation.
Collapse
Affiliation(s)
- G R Teakle
- Department of Biology, University of Virginia, Charlottesville 22903, USA
| | | |
Collapse
|
60
|
Lin WH, Huang LH, Yeh JY, Hoheisel J, Lehrach H, Sun YH, Tsai SF. Expression of a Drosophila GATA transcription factor in multiple tissues in the developing embryos. Identification of homozygous lethal mutants with P-element insertion at the promoter region. J Biol Chem 1995; 270:25150-8. [PMID: 7559649 DOI: 10.1074/jbc.270.42.25150] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
GATA transcription factors are DNA-binding proteins that recognize the core consensus sequence, WGATAR. Previous studies indicated that GATA factors play ann important role in the development of tissue-specific functions in vertebrates. Here we report the identification of a new Drosophila melanogaster GATA factor, dGATAc, which displays a distinct expression pattern in embryos. The local concentration of dGATAc transcripts varies at different stages, being most prominent in the procephalic region at stages 6-10 and in the posterior spiracles, the gut, and the central nervous system at stages 11-13. On the basis of its predicted sequence, DNA-binding assays were performed to confirm that the dGATAc gene encodes a zinc finger protein that can bind the GATA consensus motif with predicted specificity. Two independent mutants carrying a P-element insertion at the dGATAc gene promoter region were identified that are homozygous lethal at the embryonic stage. Using a genetic scheme, it was demonstrated that the lack of dGATAc function can block normal embryonic development. Our results suggest that the dGATAc protein is a tissue-specific transcription factor that is vital to the development of multiple organ systems in D. melanogaster.
Collapse
Affiliation(s)
- W H Lin
- Institute of Genetics, National Yang-Ming University, Taipei, Taiwan, Republic of China
| | | | | | | | | | | | | |
Collapse
|
61
|
Wismar J, Löffler T, Habtemichael N, Vef O, Geissen M, Zirwes R, Altmeyer W, Sass H, Gateff E. The Drosophila melanogaster tumor suppressor gene lethal(3)malignant brain tumor encodes a proline-rich protein with a novel zinc finger. Mech Dev 1995; 53:141-54. [PMID: 8555106 DOI: 10.1016/0925-4773(95)00431-9] [Citation(s) in RCA: 84] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The lethal(3)malignant brain tumor [t(3)mbt] gene causes, when mutated, malignant growth of the adult optic neuroblasts and ganglion mother cells in the larval brain and imaginal disc overgrowth. Via overlapping deficiencies a genomic region of approximately 6.0 kb was identified, containing l(3)mbt+ gene sequences. The l(3)mbt+ gene encodes seven transcripts of 5.8 kb, 5.65 kb, 5.35 kb, 5.25 kb, 5.0 kb, 4.4 kb and 1.8 kb. The putative MBT163 protein, encompassing 1477 amino acids, is proline-rich and contains a novel zinc finger. In situ hybridizations of whole mount embryos and larval tissues revealed l(3)mbt+ RNA ubiquitously present in stage 1 embryos and throughout embryonic development in most tissues. In third instar larvae l(3)mbt+ RNA is detected in the adult optic anlagen and the imaginal discs, the tissues directly affected by l(3)mbt mutations, but also in tissues, showing normal development in the mutant, such as the gut, the goblet cells and the hematopoietic organs.
Collapse
Affiliation(s)
- J Wismar
- Institut für Genetik, Johannes Gutenberg-Universität, Mainz, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
62
|
Hawkins AR, Lamb HK. The molecular biology of multidomain proteins. Selected examples. EUROPEAN JOURNAL OF BIOCHEMISTRY 1995; 232:7-18. [PMID: 7556173 DOI: 10.1111/j.1432-1033.1995.tb20775.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The aim of this review is to give an overview of the contribution molecular biology can make to an understanding of the functions and interactions within multidomain proteins. The contemporary advantages ascribed to multidomain proteins include (a) the potential for metabolite channelling and the protection of unstable intermediates; (b) the potential for interactions between domains catalysing sequential steps in a metabolic pathway, thereby giving the potential for allosteric interactions; and (c) the facility to produce enzymic activities in a fixed stoichiometric ratio. The alleged advantages in (a) and (b) however apply equally well to multi-enzyme complexes; therefore, specific examples of these phenomena are examined in multidomain proteins to determine whether the proposed advantages are apparent. Some transcription-regulating proteins active in the control of metabolic pathways are composed of multiple domains and their control is exerted and modulated at the molecular level by protein-DNA, protein-protein and protein-metabolite interactions. These complex recognition events place strong constraints upon the proteins involved, requiring the recognition of and interaction with different classes of cellular metabolites and macromolecules. Specific examples of transcription-regulating proteins are examined to probe how their multidomain nature facilitates a general solution to the problem of multiple recognition events. A general unifying theme that emerges from these case studies is that a basic unitary design of modules provided by enzymes is exploited to produce multidomain proteins by a complex series of gene duplication and fusion events. Successful modules provided by enzymes are co-opted to new function by selection apparently acting upon duplicated copies of the genes encoding the enzymes. In multidomain transcription-regulating proteins, former enzyme modules can be recruited as molecular sensors that facilitate presumed allosteric interactions necessary for the molecular control of transcription.
Collapse
Affiliation(s)
- A R Hawkins
- Department of Biochemistry and Genetics, Medical School, University of Newcastle upon Tyne, England
| | | |
Collapse
|
63
|
Affiliation(s)
- N M Crawford
- Department of Biology, University of California at San Diego, La Jolla 92093-0116, USA
| |
Collapse
|
64
|
Affiliation(s)
- N M Crawford
- Department of Biology, University of California at San Diego, La Jolla 92093-0116, USA
| |
Collapse
|
65
|
Haas H, Marzluf GA. NRE, the major nitrogen regulatory protein of Penicillium chrysogenum, binds specifically to elements in the intergenic promoter regions of nitrate assimilation and penicillin biosynthetic gene clusters. Curr Genet 1995; 28:177-83. [PMID: 8590470 DOI: 10.1007/bf00315785] [Citation(s) in RCA: 67] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
NRE, the nitrogen regulatory protein of Penicillium chrysogenum, contains a single Cys2/Cys2-type zinc-finger motif followed immediately by a highly basic region. The zinc-finger domain was expressed to Escherichia coli as a fusion protein with beta-galactosidase. In order to test the putative DNA-binding ability of NRE, the intergenic promoter region of the nitrate reductase/nitrite reductase gene cluster (niiA-niaD) of Penicillium was sequenced. Our results show that NRE is a DNA-binding protein and binds to the intergenic promoter regions of the P. chrysogenum niiA-niaD and acvA-pcbC gene cluster, encoding the first two enzymes in penicillin biosynthesis. Three of the four high-affinity NRE-binding sites contained two GATA core elements. In one of the recognition sites for NRE, one GATA motif was replaced by GATT. The two GATA elements showed all possible orientations, head-to-head, head-to-tail and tail-to-tail, and were separated by between 4 and 27 bp. Missing-contact analysis showed that all three purines in both of the GATA core sequences and the single adenine residue in each of the complementary TATC sequences were involved in the binding of NRE. Moreover, loss of purines in the flanking regions of the GATA elements also affect binding of NRE, as their loss causes reduced affinity.
Collapse
Affiliation(s)
- H Haas
- Department of Biochemistry, Ohio State University, Columbus 43210, USA
| | | |
Collapse
|
66
|
Rasmussen SW. A 37.5 kb region of yeast chromosome X includes the SME1, MEF2, GSH1 and CSD3 genes, a TCP-1-related gene, an open reading frame similar to the DAL80 gene, and a tRNA(Arg). Yeast 1995; 11:873-83. [PMID: 7483851 DOI: 10.1002/yea.320110909] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
The complete DNA sequence of cosmid clone p59 comprising 37,549 bp derived from chromosome X was determined from an ordered set of subclones. The sequence contains 14 open reading frames (ORFs) containing at least 100 consecutive sense codons. Four of the ORFs represent already known and sequenced yeast genes: B645 is identical to the SME1 gene encoding a protein kinase, required for induction of meiosis in yeast, D819 represents the MEF2 gene probably encoding a second mitochondrial elongation factor-like protein, D678 is identical to the yeast GSH1 gene encoding gamma-glutamylcysteine synthetase and B746 is identical to the CSD3 gene, which plays an as yet unidentified role in chitin biosynthesis and/or its regulation. The deduced amino acid sequence of A550 is 63% identical to the Cc eta subunit of a murine TCP-1-containing chaperonin and more than 35% identical to thermophilic factor 55 from Sulfolobus shibatae, as well as to a number of proteins belonging to the chaperonin TCP-1 family. Open reading frame F551 exhibits homology to two regions of the DAL80 gene located on yeast chromosome XI encoding a pleiotropic negative regulatory protein. In addition, extensive homology was detected in three regions including parts of ORFs A560, B746/CSD3 and the incomplete ORF C852 to three consecutive ORFs of unknown function in the middle of the right arm of chromosome XI. Finally, the sequence contained a tRNA(Arg3) (AGC) gene.
Collapse
Affiliation(s)
- S W Rasmussen
- Department of Physiology, Carlsberg Laboratory, Copenhagen, Denmark
| |
Collapse
|
67
|
Hawkins MG, McGhee JD. elt-2, a second GATA factor from the nematode Caenorhabditis elegans. J Biol Chem 1995; 270:14666-71. [PMID: 7782329 DOI: 10.1074/jbc.270.24.14666] [Citation(s) in RCA: 68] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
We have previously shown that a tandem pair of (A/T)GATA(A/G) sequences in the promoter region of the Caenorhabditis elegans gut esterase gene (ges-1) controls the tissue specificity of ges-1 expression in vivo. The ges-1 GATA region was used as a probe to screen a C. elegans cDNA expression library, and a gene for a new C. elegans GATA-factor (named elt-2) was isolated. The longest open reading frame in the elt-2 cDNA codes for a protein of M(r) 47,000 with a single zinc finger domain, similar (approximately 75% amino acid identity) to the C-terminal fingers of all other two-fingered GATA factors isolated to date. A similar degree of relatedness is found with the single-finger DNA binding domains of GATA factors identified in invertebrates. An upstream region in the ELT-2 protein with the sequence C-X2-C-X16-C-X2-C has some of the characteristics of a zinc finger domain but is highly diverged from the zinc finger domains of other GATA factors. The elt-2 gene is expressed as an SL1 trans-spliced message, which can be detected at all stages of development except oocytes; however, elt-2 message levels are 5-10-fold higher in embryos than in other stages. The genomic clone for elt-2 has been characterized and mapped near the center of the C. elegans X chromosome, ELT-2 protein, produced by in vitro transcription-translation, binds to ges-1 GATA-containing oligonucleotides similar to a factor previously identified in C. elegans embryo extracts, both as assayed by electrophoretic migration and by competition with wild type and mutant oligonucleotides. However, there is as yet no direct evidence that elt-2 does or does not control ges-1.
Collapse
Affiliation(s)
- M G Hawkins
- Department of Medical Biochemistry, University of Calgary, Alberta, Canada
| | | |
Collapse
|
68
|
Avila J, Pérez MD, Brito N, González C, Siverio JM. Cloning and disruption of the YNR1 gene encoding the nitrate reductase apoenzyme of the yeast Hansenula polymorpha. FEBS Lett 1995; 366:137-42. [PMID: 7789531 DOI: 10.1016/0014-5793(95)00511-7] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The nitrate reductase gene (YNR1) from the yeast H. polymorpha was isolated from a lambda EMBL3 genomic DNA library. As probe a 350 bp DNA fragment synthesized by PCR from H. polymorpha cDNA was used. By DNA sequencing an ORF of 2,577 bp was found. The predicted protein has 859 amino acids and presents high identity with nitrate reductases from other organisms. Chromosomal disruption of YNR1 causes inability to grow in nitrate. Northern blot analysis showed that YNR1 expression is induced by nitrate and repressed by ammonium.
Collapse
Affiliation(s)
- J Avila
- Departamento de Bioquímica y Biología Molecular, Universidad de La Laguna, Tenerife, Canarias, Spain
| | | | | | | | | |
Collapse
|
69
|
Li D, Kolattukudy PE. Cloning and expression of cDNA encoding a protein that binds a palindromic promoter element essential for induction of fungal cutinase by plant cutin. J Biol Chem 1995; 270:11753-6. [PMID: 7744822 DOI: 10.1074/jbc.270.20.11753] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Previous studies showed that a palindromic sequence located at -159 base pairs is essential for induction of cutinase gene in Fusarium solani f. sp. pisi (Nectria haematococca mating type VI) by the hydroxy fatty acids from plant cutin and that a 50-kDa nuclear protein binds to a promoter that contains this element. Screening of a phage lambda gt11 expression library with the concatenated palindromic sequence as the probe identified a cDNA encoding a palindrome-binding protein (PBP). Nucleotide sequence of this cDNA revealed an open reading frame that would code for PBP with a calculated molecular weight of 49,847. This PBP contains a putative nuclear localization signal and a zinc finger motif sharing homology with the zinc finger DNA binding domains of transcription factors from mammals, Saccharomyces cerevisiae, Neurospora crassa, and Ustilago maydis. A highly basic region immediately adjacent to the carboxyl side of the zinc finger was also observed. PBP expressed in Escherichia coli showed specific binding to the palindromic DNA fragment.
Collapse
Affiliation(s)
- D Li
- Department of Neurobiotechnology, Ohio State University, Columbus 43210, USA
| | | |
Collapse
|
70
|
van den Broek P, Goosen T, Wennekes B, van den Broek H. Isolation and characterization of the glucose-6-phosphate dehydrogenase encoding gene (gsdA) from Aspergillus niger. MOLECULAR & GENERAL GENETICS : MGG 1995; 247:229-39. [PMID: 7753033 DOI: 10.1007/bf00705654] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Genomic and cDNA clones encoding glucose-6-phosphate dehydrogenase (G6PD) were isolated from the fungus Aspergillus niger. Sequence analysis of the glucose-6-phosphate dehydrogenase gene (gsdA) revealed an open reading frame of 1530 bp, encoding a protein of 58,951 kDa. The gsdA gene is interrupted by nine introns the most proximal of which is exceptionally large (348 bp). The region upstream of the ATG contains several C+T-rich stretches. The two major and one minor transcription start points are all located within these regions. In the upstream region several direct and inverted repeats, but no clear TATA or CCAAT boxes can be found. A. niger strains overproducing G6PD were constructed by cotransformation of gsdA subclones. Overexpression of G6PD was shown to be deleterious for the fungus, especially when cotransformants were grown on media containing ammonia. Attempts to construct a gsdA null mutant by gene disruption were unsuccessful.
Collapse
Affiliation(s)
- P van den Broek
- Department of Genetics, Agricultural University Wageningen, The Netherlands
| | | | | | | |
Collapse
|
71
|
Diallinas G, Gorfinkiel L, Arst HN, Cecchetto G, Scazzocchio C. Genetic and molecular characterization of a gene encoding a wide specificity purine permease of Aspergillus nidulans reveals a novel family of transporters conserved in prokaryotes and eukaryotes. J Biol Chem 1995; 270:8610-22. [PMID: 7721763 DOI: 10.1074/jbc.270.15.8610] [Citation(s) in RCA: 79] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
In Aspergillus nidulans, loss-of-function mutations in the uapA and azgA genes, encoding the major uric acid-xanthine and hypoxanthine-adenine-guanine permeases, respectively, result in impaired utilization of these purines as sole nitrogen sources. The residual growth of the mutant strains is due to the activity of a broad specificity purine permease. We have identified uapC, the gene coding for this third permease through the isolation of both gain-of-function and loss-of-function mutations. Uptake studies with wild-type and mutant strains confirmed the genetic analysis and showed that the UapC protein contributes 30% and 8-10% to uric acid and hypoxanthine transport rates, respectively. The uapC gene was cloned, its expression studied, its sequence and transcript map established, and the sequence of its putative product analyzed. uapC message accumulation is: (i) weakly induced by 2-thiouric acid; (ii) repressed by ammonium; (iii) dependent on functional uaY and areA regulatory gene products (mediating uric acid induction and nitrogen metabolite repression, respectively); (iv) increased by uapC gain-of-function mutations which specifically, but partially, suppress a leucine to valine mutation in the zinc finger of the protein coded by the areA gene. The putative uapC gene product is a highly hydrophobic protein of 580 amino acids (M(r) = 61,251) including 12-14 putative transmembrane segments. The UapC protein is highly similar (58% identity) to the UapA permease and significantly similar (23-34% identity) to a number of bacterial transporters. Comparisons of the sequences and hydropathy profiles of members of this novel family of transporters yield insights into their structure, functionally important residues, and possible evolutionary relationships.
Collapse
Affiliation(s)
- G Diallinas
- Institut de Génétique et Microbiologie, Unité Associé au Centre National de la Recherche Scientifique 1354, Université de Paris-Sud, Centre d'Orsay, France
| | | | | | | | | |
Collapse
|
72
|
Fu YH, Feng B, Evans S, Marzluf GA. Sequence-specific DNA binding by NIT4, the pathway-specific regulatory protein that mediates nitrate induction in Neurospora. Mol Microbiol 1995; 15:935-42. [PMID: 7596294 DOI: 10.1111/j.1365-2958.1995.tb02362.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The expression of the structural genes nit-3 and nit-6, which encode the nitrate assimilatory enzymes nitrate reductase and nitrite reductase, respectively, is highly regulated by the global-acting NIT2 regulatory protein. These structural genes are also controlled by nitrogen catabolite repression and by specific induction via nitrate. A pathway-specific regulatory protein, NIT4, appears to mediate nitrate induction of nit-3 and of nit-6. The NIT4 protein, composed of 1090 amino acids, contains a putative GAL4-like Cys-6 zinc cluster DNA-binding motif, which is joined by a short segment to a stretch of amino acids that appear to constitute a coiled-coil dimerization domain. Chemical crosslinking studies demonstrated that a truncated form of NIT4 forms homodimers. Mobility-shift and DNA-footprinting experiments have identified two NIT4-binding sites of significantly different strengths in the promoter region of the nit-3 gene. The stronger binding site contains a symmetrical octameric sequence, TCCGCGGA, whereas the weaker site has a related sequence. Sequences related to this palindromic element can be found upstream of the nit-6 gene.
Collapse
Affiliation(s)
- Y H Fu
- Department of Biochemistry, Ohio State University, Columbus 43210, USA
| | | | | | | |
Collapse
|
73
|
Haas H, Bauer B, Redl B, Stöffler G, Marzluf GA. Molecular cloning and analysis of nre, the major nitrogen regulatory gene of Penicillium chrysogenum. Curr Genet 1995; 27:150-8. [PMID: 7788718 DOI: 10.1007/bf00313429] [Citation(s) in RCA: 66] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
We have isolated the Penicillium chrysogenum nre gene which is homologous to the major nitrogen regulatory genes areA from Aspergillus nidulans and nit-2 from Neurospora crassa. Overall, nre shows 60% identity to areA and 30% identity to nit-2 at the amino-acid level. The gene encodes a protein of 835 amino-acid residues and contains a single Cys2/Cys2-type zinc finger with an adjacent basic region and a putative acidic activation region. In the DNA-binding domain, 98% of the amino-acid residues are identical in nre, areA and nit-2. The nre gene has been shown to be functional in N. crassa by heterologous complementation of a nit-2 mutant. Growth tests indicated that transformants could utilize nitrate, amino-acids, purines and amides as sole nitrogen sources. Nitrate reductase activity assays performed with transformants demonstrated that nitrogen control was completely normal. Complementation of N. crassa nit-2 mutants with 5'-deletion clones of nre suggests the possible presence of an internal promoter within the coding region. Northern analysis and ribonuclease protection assays of total cellular RNA indicated that nre encodes a 3.2-kb transcript which is reduced in content under conditions of nitrogen repression.
Collapse
Affiliation(s)
- H Haas
- Department of Biochemistry, Ohio State University, Columbus 43210, USA
| | | | | | | | | |
Collapse
|
74
|
Chiang TY, Rai R, Cooper TG, Marzluf GA. DNA binding site specificity of the Neurospora global nitrogen regulatory protein NIT2: analysis with mutated binding sites. MOLECULAR & GENERAL GENETICS : MGG 1994; 245:512-6. [PMID: 7808401 DOI: 10.1007/bf00302264] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
NIT2, a positive-acting regulatory protein in Neurospora crassa, activates the expression of a series of unlinked structural genes that encode nitrogen catabolic enzymes. NIT2 binding sites in the promoter regions of nit3, alc and lao have at least two GATA sequence elements. We have examined the binding affinity of the NIT2 protein for the yeast DAL5 wild-type upstream activation sequence UASNTR, which contains two GATA elements, and for a series of mutated binding sites, each differing from the wild-type site by a single base. Substitution for individual nucleotides within 5' or 3' sequences that flank the GATA elements had only modest effects upon NIT2 binding. In contrast, nearly all substitutions within the GATA elements almost completely eliminated NIT2 binding, demonstrating the importance of the GATA sequence for NIT2 binding. Four high-affinity binding sites for the NIT2 protein were found within a central region of the nit-2 gene itself.
Collapse
Affiliation(s)
- T Y Chiang
- Department of Biochemistry, Ohio State University, Columbus 43210
| | | | | | | |
Collapse
|
75
|
Hawkins AR, Lamb HK, Radford A, Moore JD. Evolution of transcription-regulating proteins by enzyme recruitment: molecular models for nitrogen metabolite repression and ethanol utilisation in eukaryotes. Gene X 1994; 146:145-58. [PMID: 8076813 DOI: 10.1016/0378-1119(94)90287-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Studies on the quinic acid utilisation gene (qut) cluster in Aspergillus nidulans showed that the genes encoding transcriptional activator and repressor proteins evolved by co-opting duplicated copies of genes encoding metabolic enzymes. In order to test the hypothesis that this was a general route for the genesis of regulatory proteins, the origins of the major control protein mediating nitrogen metabolite repression (an example of inter-pathway regulation) and ethanol utilisation (an example of intra-pathway regulation) in filamentous fungi were sought. The regulatory proteins mediating nitrogen metabolite repression were deduced to have originated in a duplication of genes encoding the anthranilate synthase complex which is active in the shikimate pathway. The major protein regulating ethanol utilisation was deduced to have its origin in the fusion of duplicated genes encoding the aldehyde and alcohol dehydrogenases (ALDA and ALCA). These data strongly support the view that transcriptional regulatory proteins evolve by the recruitment of functional domains provided by metabolic enzymes.
Collapse
Affiliation(s)
- A R Hawkins
- Department of Biochemistry and Genetics, Medical School, University of Newcastle upon Tyne, UK
| | | | | | | |
Collapse
|
76
|
Nomura M, Takihara Y, Shimada K. Isolation and characterization of retinoic acid-inducible cDNA clones in F9 cells: one of the early inducible clones encodes a novel protein sharing several highly homologous regions with a Drosophila polyhomeotic protein. Differentiation 1994; 57:39-50. [PMID: 8070621 DOI: 10.1046/j.1432-0436.1994.5710039.x] [Citation(s) in RCA: 85] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
To elucidate regulatory mechanisms triggering early mammalian differentiation, 17 retinoic acid (RA)-inducible clones were isolated from 1.4 x 10(5) plaques of cDNA libraries prepared from mouse embryonal carcinoma F9 cells, using the differential plaque hybridization method. Partial nucleotide sequences of these clones demonstrated that ten clones correspond to known genes. Interestingly, only 2 of the 17 clones are among the previously documented up-regulated genes. Therefore, there are many more unidentified genes up-regulated in the course of RA-induced differentiation of F9 cells. As RNAs hybridizable with one of the seven unidentified clones were induced in F9 cells after 3 h of RA treatment, we chose this 'Rae-28' clone as being representative of developmentally up-regulated unidentified clones and its properties were characterized. We determined the Rae-28 cDNA sequence and deduced the RAE-28 protein structure. The deduced RAE-28 protein shared several motifs and highly homologous regions with a Drosophila polyhomeotic protein. As the Drosophila polyhomeotic gene is involved in regulating morphogenesis, the rae-28 gene may participate in regulating early mammalian development.
Collapse
Affiliation(s)
- M Nomura
- Department of Medical Genetics, Osaka University, Japan
| | | | | |
Collapse
|
77
|
Abstract
Nitrogen regulation has been extensively studied in fungi revealing a complex array of interacting regulatory genes. The general characterisation of the systems in Aspergillus nidulans and Neurospora crassa shall be briefly described, but much of this paper will concentrate specifically on the recent molecular characterisation of areA, the principle regulatory gene from A. nidulans which mediates nitrogen metabolite repression. Three areas shall be explored in detail, firstly the DNA binding domain, which has been characterised extensively by both molecular and genetic analysis. Secondly we shall report recent analysis which has revealed the presence of related DNA binding activities in A. nidulans. Finally we shall discuss the mechanism by which the nitrogen state of the cell is monitored by the areA product, in particular localisation of the domain within the areA product which mediates the regulatory response within the protein.
Collapse
Affiliation(s)
- M X Caddick
- Department of Genetics and Microbiology, Donnan Laboratories, University of Liverpool, UK
| | | | | |
Collapse
|
78
|
Li Q, Jarai G, Yaghmai B, Marzluf GA. The leu-1 gene of Neurospora crassa: nucleotide and deduced amino acid sequence comparisons. Gene 1993; 136:301-5. [PMID: 8294021 DOI: 10.1016/0378-1119(93)90484-k] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The Neurospora crassa leu-1 gene encodes beta-isopropylmalate dehydrogenase (IPMDH; EC 1.1.1.85), an enzyme in the leucine biosynthetic pathway. We determined the nucleotide sequence of the entire leu-1 gene and of four independent cDNA clones. By comparing the genomic and cDNA sequences, four introns were identified in the 5' portion of the gene and a single open reading frame was established. One of the introns is located within the 5'-noncoding region of the transcript. The deduced amino acid sequence encoded by leu-1 was aligned with that of the homologous yeast enzyme and extensive sequence identity was uncovered. The lesion present in a conventional leu-1 mutant was identified as the insertion of a single base pair.
Collapse
Affiliation(s)
- Q Li
- Department of Biochemistry, Ohio State University, Columbus 43210
| | | | | | | |
Collapse
|
79
|
Ramain P, Heitzler P, Haenlin M, Simpson P. pannier, a negative regulator of achaete and scute in Drosophila, encodes a zinc finger protein with homology to the vertebrate transcription factor GATA-1. Development 1993; 119:1277-91. [PMID: 7916679 DOI: 10.1242/dev.119.4.1277] [Citation(s) in RCA: 159] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The gene pannier acts as a repressor of achaete and scute, two transcription factors expressed in discrete subsets of cells at the sites where neural precursors develop. Molecular analysis of mutant alleles revealed the presence of two functional domains within the pannier protein: a zinc finger domain showing homology to the GATA-1 family of vertebrate transcription factors and a domain comprising two putative amphipathic helices. Mutants associated with lesions in the zinc finger domain display an overexpression of achaete and scute and the development of extra neural precursors. Mutant proteins in which the domain including the putative helices is deleted act as hyperactive repressor molecules causing a loss of achaete/scute expression and a loss of neural precursors. Other results suggest that the activity of pannier may be modulated by association with position-specific factors.
Collapse
Affiliation(s)
- P Ramain
- Laboratoire de Génétique moléculaire des Eucaryotes du CNRS, Unité 184 de Biologie Moléculaire, Strasbourg, France
| | | | | | | |
Collapse
|
80
|
Winick J, Abel T, Leonard MW, Michelson AM, Chardon-Loriaux I, Holmgren RA, Maniatis T, Engel JD. A GATA family transcription factor is expressed along the embryonic dorsoventral axis in Drosophila melanogaster. Development 1993; 119:1055-65. [PMID: 7916677 DOI: 10.1242/dev.119.4.1055] [Citation(s) in RCA: 61] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The GATA transcription factors are a family of C4 zinc finger-motif DNA-binding proteins that play defined roles in hematopoiesis as well as presumptive roles in other tissues where they are expressed (e.g., testis, neuronal and placental trophoblast cells) during vertebrate development. To investigate the possibility that GATA proteins may also be involved in Drosophila development, we have isolated and characterized a gene (dGATAa) encoding a factor that is quite similar to mammalian GATA factors. The dGATAa protein sequence contains the two zinc finger DNA-binding domain of the GATA class but bears no additional sequence similarity to any of the vertebrate GATA factors. Analysis of dGATAa gene transcription during Drosophila development revealed that its mRNA is expressed at high levels during early embryogenesis, with transcripts first appearing in the dorsal portion of the embryo just after cellularization. As development progresses, dGATAa mRNA is present at high levels in the dorsal epidermis, suggesting that dGATAa may be involved in determining dorsal cell fate. The pattern of expression in a variety of dorsoventral polarity mutants indicates that dGATAa lies downstream of the zygotic patterning genes decapentaplegic and zerknullt.
Collapse
Affiliation(s)
- J Winick
- Department of Biochemistry, Molecular Biology and Cell Biology, Northwestern University, Evanston, IL
| | | | | | | | | | | | | | | |
Collapse
|
81
|
Abel T, Michelson AM, Maniatis T. A Drosophila GATA family member that binds to Adh regulatory sequences is expressed in the developing fat body. Development 1993; 119:623-33. [PMID: 8187633 DOI: 10.1242/dev.119.3.623] [Citation(s) in RCA: 90] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
We have identified a Drosophila transcription factor that binds a sequence element found in the larval promoters of all known alcohol dehydrogenase (Adh) genes. DNA sequence analysis of cDNA clones encoding this protein, box A-binding factor (ABF), reveals that it is a member of the GATA family of transcriptional regulatory factors. ABF-binding sites within the D. mulleri and D. melanogaster larval Adh promoters function as positive regulatory elements and in cotransfection experiments, ABF functions as a transcriptional activator. In further support of a role for ABF in the regulation of Adh expression, ABF mRNA is expressed in the embryonic fat body, a tissue that contains high levels of Adh mRNA. Our studies demonstrate that the fat body develops from segmentally repeated clusters of mesodermal cells, which later expand and coalesce to form the mature fat body. These observations establish ABF as the earliest known fat body precursor marker in the Drosophila embryo. Together with the established role of GATA factors during mammalian development, these results suggest that ABF may play a key role in the organogenesis of the fat body.
Collapse
Affiliation(s)
- T Abel
- Department of Biochemistry and Molecular Biology, Harvard University, Cambridge, Massachusetts 02138
| | | | | |
Collapse
|
82
|
Gorfinkiel L, Diallinas G, Scazzocchio C. Sequence and regulation of the uapA gene encoding a uric acid-xanthine permease in the fungus Aspergillus nidulans. J Biol Chem 1993. [DOI: 10.1016/s0021-9258(19)49473-8] [Citation(s) in RCA: 75] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
83
|
Calderón J, Martínez LM. Regulation of ammonium ion assimilation enzymes in Neurospora crassa nit-2 and ms-5 mutant strains. Biochem Genet 1993; 31:425-39. [PMID: 7907211 DOI: 10.1007/bf02396227] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
In Neurospora crassa the nit-2 and nmr-1 (ms-5) loci represent the major control genes encoding regulatory proteins that allow the coordinated expression of various systems involved with the utilization of a secondary nitrogen source. In this paper we examined the effect of the nit-2 and ms-5 (nmr-1 locus) mutations on the regulation of the ammonium assimilation enzymes, glutamine synthetase and glutamate dehydrogenase, which are regulated by the products of these genes; however, glutamate synthase is not so regulated. Glutamine synthetase and glutamate dehydrogenase levels are also regulated by the amino nitrogen content. We present evidence that the ms-5 and glnr strains, which behave very similarly in their resistance to glutamine repression, are different and map in different loci.
Collapse
Affiliation(s)
- J Calderón
- Departamento de Ecología Molecular, Centro de Investigación sobre Fijación de Nitrógeno, UNAM Cuernavaca, Mor., México
| | | |
Collapse
|
84
|
Daniel-Vedele F, Caboche M. A tobacco cDNA clone encoding a GATA-1 zinc finger protein homologous to regulators of nitrogen metabolism in fungi. MOLECULAR & GENERAL GENETICS : MGG 1993; 240:365-73. [PMID: 8413186 DOI: 10.1007/bf00280388] [Citation(s) in RCA: 72] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
In higher plants, the expression of the nitrate assimilation pathway is highly regulated. Although the molecular mechanisms involved in this regulation are currently being elucidated, very little is known about the trans-acting factors that allow expression of the nitrate and nitrite reductase genes which code for the first enzymes in the pathway. In the fungus Neurospora crassa, nit-2, the major nitrogen regulatory gene, activates the expression of unlinked structural genes that specify nitrogen-catabolic enzymes during conditions of nitrogen limitation. The nit-2 gene encodes a regulatory protein containing a single zinc finger motif defined by the C-X2-C-X17-C-X2-C sequence. This DNA-binding domain recognizes the promoter region of N. crassa nitrogen-related genes and fragments derived from the tomato nia gene promoter. The observed specificity of the binding suggests the existence of a NIT2-like homolog in higher plants. PCR and cross-hybridization techniques were used to isolate, respectively, a partial cDNA from Nicotiana plumbaginifolia and a full-length cDNA from Nicotiana tabacum. These clones encode a NIT2-like protein (named NTL1 for nit-2-like), characterized by a single zinc finger domain, defined by the C-X2-C-X18-C-X2-C amino acids, and associated with a basic region. The amino acid sequence of NTL1 is 60% homologous to the NIT2 sequence in the zinc finger domain. The Ntl1 gene is present as a unique copy in the diploid N. plumbaginifolia species. The characteristics of Ntl1 gene expression are compatible with those of a regulator of the nitrate assimilation pathway, namely weak nitrate inducibility and regulation by light.
Collapse
Affiliation(s)
- F Daniel-Vedele
- Laboratoire de Biologie Cellulaire, INRA, Versailles, France
| | | |
Collapse
|
85
|
Davis MA, Kelly JM, Hynes MJ. Fungal catabolic gene regulation: molecular genetic analysis of the amdS gene of Aspergillus nidulans. Genetica 1993; 90:133-45. [PMID: 8119589 DOI: 10.1007/bf01435035] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Aspergillus nidulans is an excellent experimental organism for the study of gene regulation. Genetic and molecular analyses of trans-acting and cis-acting mutations have revealed a complex pattern of regulation involving multiple independent controls. Expression of the amdS gene is regulated by the facB and amdA genes which encode positively acting regulatory proteins mediating a major and a minor form of acetate induction respectively. The product of the amdR gene mediates omega amino acid induction of amdS. The binding sites for each of these proteins have been localised through amdS cis-acting mutations which specifically affect the interaction with the regulatory protein. The global controls of nitrogen metabolite repression and carbon catabolite repression regulate the expression of many catabolic genes, including amdS. Nitrogen control is exerted through the positively acting areA gene product and carbon control is dependent on the creA gene product. Each of the characterized regulatory genes encodes a DNA-binding protein which recognises particular sequences in the amdS promoter to activate or repress gene expression. In addition, there is evidence for other genetically uncharacterized proteins, including a CCAAT-binding complex, which interact with the 5' region of the amdS gene.
Collapse
Affiliation(s)
- M A Davis
- Department of Genetics, University of Melbourne, Parkville, Australia
| | | | | |
Collapse
|
86
|
Okamoto PM, Garrett RH, Marzluf GA. Molecular characterization of conventional and new repeat-induced mutants of nit-3, the structural gene that encodes nitrate reductase in Neurospora crassa. MOLECULAR & GENERAL GENETICS : MGG 1993; 238:81-90. [PMID: 8479443 DOI: 10.1007/bf00279534] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Nitrate reductase of Neurospora crassa is a dimeric protein composed of two identical subunits, each possessing three separate domains, with flavin, heme, and molybdenum-containing cofactors. A number of mutants of nit-3, the structural gene that encodes Neurospora nitrate reductase, have been characterized at the molecular level. Amber nonsense mutants of nit-3 were found to possess a truncated protein detected by a specific antibody, whereas Ssu-1-suppressed nonsense mutants showed restoration of the wild-type, full-length nitrate reductase monomer. The mutants show constitutive expression of the truncated nitrate reductase protein; however normal control, which requires nitrate induction, was restored in the suppressed mutant strains. Three conventional nit-3 mutants were isolated by the polymerase chain reaction and sequenced; two of these mutants were due to the deletion of a single base in the coding region for the flavin domain, the third mutant was a nonsense mutation within the amino-terminal molybdenum-containing domain. Homologous recombination was shown to occur when a deleted nit-3 gene was introduced by transformation into a host strain with a single point mutation in the resident nit-3 gene. New, severely damaged, null nit-3 mutants were created by repeat-induced point mutation and demonstrated to be useful as host strains for transformation experiments.
Collapse
Affiliation(s)
- P M Okamoto
- Department of Biochemistry, Ohio State University, Columbus 43210
| | | | | |
Collapse
|
87
|
Gene regulation in microbial eukaryotes in the early 1990s. World J Microbiol Biotechnol 1992; 8 Suppl 1:22-3. [PMID: 24425634 DOI: 10.1007/bf02421481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
88
|
Garrad RC, Bhattacharjee JK. Lysine biosynthesis in selected pathogenic fungi: characterization of lysine auxotrophs and the cloned LYS1 gene of Candida albicans. J Bacteriol 1992; 174:7379-84. [PMID: 1429460 PMCID: PMC207434 DOI: 10.1128/jb.174.22.7379-7384.1992] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
The alpha-aminoadipate pathway for the biosynthesis of lysine is present only in fungi and euglena. Until now, this unique metabolic pathway has never been investigated in the opportunistic fungal pathogens Candida albicans, Cryptococcus neoformans, and Aspergillus fumigatus. Five of the eight enzymes (homocitrate synthase, homoisocitrate dehydrogenase, alpha-aminoadipate reductase, saccharopine reductase, and saccharopine dehydrogenase) of the alpha-aminoadipate pathway and glucose-6-phosphate dehydrogenase, a glycolytic enzyme used as a control, were demonstrated in wild-type cells of these organisms. All enzymes were present in Saccharomyces cerevisiae and the pathogenic organisms except C. neoformans 32608 serotype C, which exhibited no saccharopine reductase activity. The levels of enzyme activity varied considerably from strain to strain. Variation among organisms was also observed for the control enzyme. Among the pathogens, C. albicans exhibited much higher homocitrate synthase, homoisocitrate dehydrogenase, and alpha-aminoadipate reductase activities. Seven lysine auxotrophs of C. albicans and one of Candida tropicalis were characterized biochemically to determine the biochemical blocks and gene-enzyme relationships. Growth responses to alpha-aminoadipate- and lysine-supplemented media, accumulation of alpha-aminoadipate semialdehyde, and the lack of enzyme activity revealed that five of the mutants (WA104, WA153, WC7-1-3, WD1-31-2, and A5155) were blocked at the alpha-aminoadipate reductase step, two (STN57 and WD1-3-6) were blocked at the saccharopine dehydrogenase step, and the C. tropicalis mutant (X-16) was blocked at the saccharopine reductase step. The cloned LYS1 gene of C. albicans in the recombinant plasmid YpB1078 complemented saccharopine dehydrogenase (lys1) mutants of S. cerevisiae and C. albicans. The Lys1+ transformed strains exhibited significant saccharopine dehydrogenase activity in comparison with untransformed mutants. The cloned LYS1 gene has been localized on a 1.8-kb HindIII DNA insert of the recombinant plasmid YpB1041RG1. These results established the gene-enzyme relationship in the second half of the alpha-aminoadipate pathway. The presence of this unique pathway in the pathogenic fungi could be useful for their rapid detection and control.
Collapse
Affiliation(s)
- R C Garrad
- Department of Microbiology, Miami University, Oxford, Ohio 45056
| | | |
Collapse
|
89
|
Dickman MB, Leslie JF. The regulatory gene nit-2 of Neurospora crassa complements a nnu mutant of Gibberella zeae (Fusarium graminearum). MOLECULAR & GENERAL GENETICS : MGG 1992; 235:458-62. [PMID: 1465117 DOI: 10.1007/bf00279394] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The nnu mutant of Gibberella zeae (=Fusarium graminearum) is unable to catabolize many of the nitrogen sources utilized by its wild-type parent, and may have suffered a mutation in the major nitrogen regulatory locus. Transformation of this mutant with the major nitrogen regulatory gene from Neurospora crassa, nit-2, restored the wild-type phenotype, thus confirming that the nnu mutation is in the major nitrogen regulatory locus of G. zeae. Our results are consistent with the premise of conservation of the structure of regulatory factors and suggest the possibility that functional DNA homologues of this regulatory element occur across a broad range of ascomycetous fungi.
Collapse
Affiliation(s)
- M B Dickman
- Department of Plant Pathology, University of Nebraska, Lincoln 68583-0722
| | | |
Collapse
|
90
|
Yuan GF, Marzluf GA. Transformants of Neurospora crassa with the nit-4 nitrogen regulatory gene: copy number, growth rate and enzyme activity. Curr Genet 1992; 22:205-11. [PMID: 1388109 DOI: 10.1007/bf00351727] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
nit-4 is a pathway-specific regulatory gene which controls nitrate assimilation in Neurospora crassa, and appears to mediate nitrate induction of nitrate and nitrite reductase. The NIT4 protein consists of 1090 amino-acid residues and possesses a single GAL4-like putative DNA-binding domain plus acidic, glutamine-rich, and polyglutamine regions. Several mutants with amino-acid substitutions in the putative DNA-binding domain and a nit-4 deletion mutant, which encodes a truncated NIT4 protein lacking the polyglutamine region, are functional, i.e., they are capable of transforming a nit-4 mutant strain. However, transformants obtained with most of these nit-4 mutant genes possess a markedly reduced level of nitrate reductase and grow only slowly on nitrate, emphasizing the need to examine quantitatively the affects of in vitro-manipulated genes. The possibility that some mutant genes could yield transformants only if multiple copies were integrated was examined. The presence of multiple copies of wild-type or mutant nit-4 genes did not generally lead to increased enzyme activity or growth rate, but instead frequently appeared to be detrimental to nit-4 function. A hybrid nit-4-nirA gene transforms nit-4 mutants but only allows slow growth on nitrate and has a very low level of nitrate reductase.
Collapse
Affiliation(s)
- G F Yuan
- Department of Biochemistry, Ohio State University, Columbus 43210
| | | |
Collapse
|
91
|
Coornaert D, Vissers S, André B, Grenson M. The UGA43 negative regulatory gene of Saccharomyces cerevisiae contains both a GATA-1 type zinc finger and a putative leucine zipper. Curr Genet 1992; 21:301-7. [PMID: 1525858 DOI: 10.1007/bf00351687] [Citation(s) in RCA: 52] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The UGA43 gene of Saccharomyces cerevisiae is required for repression of inducible genes involved in the utilization of 4-aminobutyric acid (GABA) or urea as nitrogen sources. The UGA43 gene has been cloned by complementation of a uga43 mutation. The N-terminal region of the UGA43 protein is very similar to the DNA-binding zinc-finger region typical of the GATA regulatory factor family in vertebrates. UGA43 is the first reported instance of a GATA protein with a negative regulatory function. The C-terminal region of the predicted UGA43 protein contains a putative leucine zipper. Sequencing of three uga43 mutant alleles suggests that the GATA and putative leucine-zipper regions are both required for the repressive activity of UGA43. UGA43 appears to be a highly regulated gene. On "poor" nitrogen sources, UGA43 transcripts are measured at high levels whereas they are nearly undetectable in conditions of nitrogen catabolite repression. The levels measured on "poor" nitrogen sources are further increased in uga43 mutant cells, suggesting that UGA43 exerts negative autoregulation.
Collapse
Affiliation(s)
- D Coornaert
- Laboratoire de Physiologie Cellulaire et de Génétique des Levures, Faculté des Sciences, Université Libre de Bruxelles, Belgium
| | | | | | | |
Collapse
|
92
|
Chapter 7 Amino acid transporters in yeast: structure, function and regulation. ACTA ACUST UNITED AC 1992. [DOI: 10.1016/s0167-7306(08)60069-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
|
93
|
Yuan GF, Marzluf GA. Molecular characterization of mutations of nit-4, the pathway-specific regulatory gene which controls nitrate assimilation in Neurospora crassa. Mol Microbiol 1992; 6:67-73. [PMID: 1531376 DOI: 10.1111/j.1365-2958.1992.tb00838.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The nit-4 genes of three conventional Neurospora crassa mutations and of the closely related species, Neurospora intermedia, have been isolated by amplifying the genomic DNA with the polymerase chain reaction. Nucleotide sequencing has revealed that the three nit-4 mutants, alleles 15, 1214, and 2994, are the result of a missense mutation, a nonsense mutation and a frameshift mutation, respectively. The nucleotide sequence of the NIT4 protein coding region of a nit-4 mutant (allele 2994) and of N. intermedia have been determined and compared with that of wild-type N. crassa. The molecular characteristics confirm that the mutated gene of 2994 originated from N. intermedia and was introgressed into N. crassa. The polyglutamine domains of the N. crassa wild type, the 2994 mutant, or N. intermedia cannot replace an upstream glutamine-rich domain which is essential for nit-4 function.
Collapse
Affiliation(s)
- G F Yuan
- Department of Biochemistry, Ohio State University, Columbus 43210
| | | |
Collapse
|
94
|
Richter D, Niegemann E, Brendel M. Molecular structure of the DNA cross-link repair gene SNM1 (PSO2) of the yeast Saccharomyces cerevisiae. MOLECULAR & GENERAL GENETICS : MGG 1992; 231:194-200. [PMID: 1736091 DOI: 10.1007/bf00279791] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
A 3.2 kb yeast DNA fragment containing the DNA interstrand cross-link-specific repair gene SNM1 has been sequenced. Two genes were identified. SNM1 has an open reading frame of 1983 bp and codes for a 661 amino acid protein. Hydrophobic analysis shows that the protein is most probably not directly membrane bound. The second gene, UGX1, has an open reading frame of 573 bp coding for a polypeptide of 191 amino acid residues. The two genes are arranged head to head and share a 192 bp divergent promoter region that contains three TATAAA motives, two for the SNM1 and one for the UGX1 locus. Gene UGX1 has no apparent influence on the sensitivity of the cell to cross-linking nitrogen mustard, as its disruption in wild type does not increase sensitivity to nitrogen mustard and the presence of multiple copies of the gene fails to complement the nitrogen mustard sensitivity phenotype of snm1 disruption mutants. Northern analysis revealed that the expression of SNM1 yields an average of 0.3 copies/cell of a 2.4 kb transcript, while expression of UGX1 yields higher levels of a 0.8 kb poly(A)+ RNA.
Collapse
Affiliation(s)
- D Richter
- Institut für Mikrobiologie der J.W. Goethe-Universität, Frankfurt/Main, FRG
| | | | | |
Collapse
|
95
|
Jarai G, Truong HN, Daniel-Vedele F, Marzluf GA. NIT2, the nitrogen regulatory protein of Neurospora crassa, binds upstream of nia, the tomato nitrate reductase gene, in vitro. Curr Genet 1992; 21:37-41. [PMID: 1531184 DOI: 10.1007/bf00318652] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The nit-2 gene of Neurospora crassa encodes a trans-acting regulatory protein that activates the expression of a number of structural genes which code for nitrogen catabolic enzymes, including nitrate reductase. The NIT2 protein contains a Cys2/Cys2-type zinc-finger DNA-binding domain that recognizes promoter regions of the Neurospora nitrogen-related genes. The NIT2 zinc-finger domain/beta-Gal fusion protein was shown to recognize and bind in a specific manner to two upstream fragments of the nia gene of Lycopersicon esculentum (tomato) in vitro, whereas two mutant NIT2 proteins failed to bind to the same fragments. The dissociation kinetics of the complexes formed between the NIT2 protein and the Neurospora nit-3 and the tomato nia gene promoters were examined; NIT2 binds more strongly to the nit-3 promoter DNA fragment than it does to fragments derived from the plant nitrate reductase gene itself. The observed specificity of the binding suggests the existence of a NIT2-like homolog which regulates the expression of the nitrate assimilation pathway of higher plants.
Collapse
Affiliation(s)
- G Jarai
- Department of Biochemistry, Ohio State University, Columbus 43210
| | | | | | | |
Collapse
|
96
|
Human transcription factor GATA-2. Evidence for regulation of preproendothelin-1 gene expression in endothelial cells. J Biol Chem 1992. [DOI: 10.1016/s0021-9258(18)48426-8] [Citation(s) in RCA: 197] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
97
|
Dorbe MF, Caboche M, Daniel-Vedele F. The tomato nia gene complements a Nicotiana plumbaginifolia nitrate reductase-deficient mutant and is properly regulated. PLANT MOLECULAR BIOLOGY 1992; 18:363-75. [PMID: 1731994 DOI: 10.1007/bf00034963] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2023]
Abstract
A nitrate reductase (NR) deficient mutant of Nicotiana plumbaginifolia totally impaired in the production of functional nia transcript and protein was restored for NR activity by transformation with a cloned tomato nia gene. The transgenic plants expressed from undetectable to 17% of the control NR activity in their leaves. Restoration of growth rates comparable to the wild type was obtained for transgenic plants expressing as little as 10% of the wild-type activity showing that nitrate reduction is not a growth-limiting factor in the wild-type plant. The analysis of the transgene expression showed that the tomato nia gene transcription was regulated by light, nitrate and a circadian rhythm as in tomato plants. These results suggest that all the cis-acting sequences involved in these regulations are contained in the 3 kb upstream region of the tomato nia gene and are still functional in transgenic N. plumbaginifolia plants. The amount of NR transcript synthesized from the tomato nia gene was reduced when a functional N. plumbaginifolia nia locus was introduced by sexual crosses. These data support the hypothesis that nitrate reduction is regulated by nitrate-derived metabolites as demonstrated in fungi.
Collapse
Affiliation(s)
- M F Dorbe
- Laboratoire de Biologie Cellulaire, INRA, Versailles, France
| | | | | |
Collapse
|
98
|
Sachs MS, Yanofsky C. Developmental expression of genes involved in conidiation and amino acid biosynthesis in Neurospora crassa. Dev Biol 1991; 148:117-28. [PMID: 1834495 DOI: 10.1016/0012-1606(91)90322-t] [Citation(s) in RCA: 85] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The levels of transcripts for Neurospora crassa genes concerned with cellular and metabolic functions changed dramatically at different stages of asexual development. Transcripts for some conidiation-related (con) genes were present at high levels in conidiating cultures and in dormant conidia, but were absent or reduced during mycelial growth. Levels of some con transcripts increased transiently during conidial germination, while others disappeared. Transcripts for amino acid biosynthetic enzymes, ribosomal proteins, cytochrome oxidase subunits, histones, and other polypeptides important for cell growth were detected in newly formed conidia and were present at reduced levels in dormant conidia. Levels of these transcripts increased upon germination of wild-type conidia in minimal medium, reaching their highest levels during this stage or during the early phase of exponential growth. The increased transcription of amino acid biosynthetic genes observed during germination in minimal medium was not dependent on a functional cpc-1 gene. However, cpc-1, which encodes a DNA binding protein presumed to function as a transcriptional activator, was essential for increased expression of amino acid biosynthetic genes when amino acid starvation was imposed during germination or at any subsequent stage of mycelial growth.
Collapse
Affiliation(s)
- M S Sachs
- Department of Biological Sciences, Stanford University, California 94305
| | | |
Collapse
|
99
|
Young JL, Marzluf GA. Molecular comparison of the negative-acting nitrogen control gene, nmr, in Neurospora crassa and other Neurospora and fungal species. Biochem Genet 1991; 29:447-59. [PMID: 1663340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
In Neurospora crassa, the expression of unlinked structural genes which encode nitrogen catabolic enzymes is subject to genetic and metabolic regulation. The negative-acting nmr regulatory gene appears to play a role in nitrogen catabolite repression. Using the N. crassa nmr gene as a probe, homologous sequences were identified in a variety of other filamentous fungi. The polymerase chain reaction was used to isolate the nmr-like gene from the exotic Mauriceville strain of N. crassa and from the two related species, N. intermedia and N. sitophila. Sequence comparisons were carried out with a 1.7-kb DNA segment which includes the entire coding region of nmr plus 5' and 3' noncoding sequences. The size of the nmr coding region was identical in all three Neurospora species. Approximately 30 nucleotide base substitutions were found in the coding region of the nmr gene of each of the sister species when compared to the standard N. crassa sequence. However, most of the base changes occurred in third codon positions and were silent. The NMR proteins of N. sitophila and of N. intermedia display only three and four amino acid substitutions, respectively, from the N. crassa protein. Two regions of high variability, which include deletions and insertions of bases, were found in the 5' and 3' noncoding regions of the gene.
Collapse
Affiliation(s)
- J L Young
- Department of Molecular Genetics, Ohio State University, Columbus 43210
| | | |
Collapse
|
100
|
Young JL, Marzluf GA. Molecular comparison of the negative-acting nitrogen control gene,nmr, inNeurospora crassa and otherNeurospora and fungal species. Biochem Genet 1991. [DOI: 10.1007/bf02399687] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|