51
|
Beaulieu ME, McDuff FO, Frappier V, Montagne M, Naud JF, Lavigne P. New structural determinants for c-Myc specific heterodimerization with Max and development of a novel homodimeric c-Myc b-HLH-LZ. J Mol Recognit 2012; 25:414-26. [PMID: 22733550 DOI: 10.1002/jmr.2203] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
c-Myc must heterodimerize with Max to accomplish its functions as a transcription factor. This specific heterodimerization occurs through the b-HLH-LZ (basic region, helix 1-loop-helix 2-leucine zipper) domains. In fact, many studies have shown that the c-Myc b-HLH-LZ (c-Myc'SH) preferentially forms a heterodimer with the Max b-HLH-LZ (Max'SH). The primary mechanism underlying the specific heterodimerization lies on the destabilization of both homodimers and the formation of a more stable heterodimer. In this regard, it has been widely reported that c-Myc'SH has low solubility and homodimerizes poorly and that repulsions within the LZ domain account for the homodimer instability. Here, we show that replacing one residue in the basic region and one residue in Helix 1 (H(1)) of c-Myc'SH with corresponding residues conserved in b-HLH proteins confers to c-Myc'SH a higher propensity to form a stable homodimer in solution. In stark contrast to the wild-type protein, this double mutant (L362R, R367L) of the c-Myc b-HLH-LZ (c-Myc'RL) shows limited heterodimerization with Max'SH in vitro. In addition, c-Myc'RL forms highly stable and soluble complexes with canonical as well as non-canonical E-box probes. Altogether, our results demonstrate for the first time that structural determinants driving the specific heterodimerization of c-Myc and Max are embedded in the basic region and H(1) of c-Myc and that these can be exploited to engineer a novel homodimeric c-Myc b-HLH-LZ with the ability of binding the E-box sequence autonomously and with high affinity.
Collapse
Affiliation(s)
- Marie-Eve Beaulieu
- Département de Pharmacologie, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, 3001, 12e Avenue Nord, Sherbrooke, Québec, J1H 5N4, Canada
| | | | | | | | | | | |
Collapse
|
52
|
Daneshvar K, Nath S, Khan A, Shover W, Richardson C, Goodliffe JM. MicroRNA miR-308 regulates dMyc through a negative feedback loop in Drosophila. Biol Open 2012; 2:1-9. [PMID: 23336071 PMCID: PMC3545263 DOI: 10.1242/bio.20122725] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2012] [Accepted: 09/19/2012] [Indexed: 12/29/2022] Open
Abstract
The abundance of Myc protein must be exquisitely controlled to avoid growth abnormalities caused by too much or too little Myc. An intriguing mode of regulation exists in which Myc protein itself leads to reduction in its abundance. We show here that dMyc binds to the miR-308 locus and increases its expression. Using our gain-of-function approach, we show that an increase in miR-308 causes a destabilization of dMyc mRNA and reduced dMyc protein levels. In vivo knockdown of miR-308 confirmed the regulation of dMyc levels in embryos. This regulatory loop is crucial for maintaining appropriate dMyc levels and normal development. Perturbation of the loop, either by elevated miR-308 or elevated dMyc, caused lethality. Combining elevated levels of both, therefore restoring balance between miR-308 and dMyc levels, resulted in lower apoptotic activity and suppression of lethality. These results reveal a sensitive feedback mechanism that is crucial to prevent the pathologies caused by abnormal levels of dMyc.
Collapse
Affiliation(s)
- Kaveh Daneshvar
- Department of Biology, University of North Carolina at Charlotte , Charlotte, NC 28223 , USA ; Gastrointestinal Unit, Massachusetts General Hospital , Harvard Medical School, 55 Fruit Street, Boston, MA 02114 , USA
| | | | | | | | | | | |
Collapse
|
53
|
Kopecky B, Fritzsch B. The myc road to hearing restoration. Cells 2012; 1:667-98. [PMID: 24710525 PMCID: PMC3901154 DOI: 10.3390/cells1040667] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2012] [Revised: 08/12/2012] [Accepted: 09/14/2012] [Indexed: 01/01/2023] Open
Abstract
Current treatments for hearing loss, the most common neurosensory disorder, do not restore perfect hearing. Regeneration of lost organ of Corti hair cells through forced cell cycle re-entry of supporting cells or through manipulation of stem cells, both avenues towards a permanent cure, require a more complete understanding of normal inner ear development, specifically the balance of proliferation and differentiation required to form and to maintain hair cells. Direct successful alterations to the cell cycle result in cell death whereas regulation of upstream genes is insufficient to permanently alter cell cycle dynamics. The Myc gene family is uniquely situated to synergize upstream pathways into downstream cell cycle control. There are three Mycs that are embedded within the Myc/Max/Mad network to regulate proliferation. The function of the two ear expressed Mycs, N-Myc and L-Myc were unknown less than two years ago and their therapeutic potentials remain speculative. In this review, we discuss the roles the Mycs play in the body and what led us to choose them to be our candidate gene for inner ear therapies. We will summarize the recently published work describing the early and late effects of N-Myc and L-Myc on hair cell formation and maintenance. Lastly, we detail the translational significance of our findings and what future work must be performed to make the ultimate hearing aid: the regeneration of the organ of Corti.
Collapse
Affiliation(s)
- Benjamin Kopecky
- Department of Biology, 143 Biology Building, University of Iowa, Iowa City, IA 52242, USA.
| | - Bernd Fritzsch
- Department of Biology, 143 Biology Building, University of Iowa, Iowa City, IA 52242, USA.
| |
Collapse
|
54
|
Song SA, Yoo KH, Ko JY, Kim BH, Yook YJ, Park JH. Over-expression of Mxi1 represses renal epithelial tubulogenesis through the reduction of matrix metalloproteinase 9. Biochem Biophys Res Commun 2012; 419:459-65. [DOI: 10.1016/j.bbrc.2012.02.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2012] [Accepted: 02/01/2012] [Indexed: 10/14/2022]
|
55
|
Stone JL, McMillan RE, Skaar DA, Bradshaw JM, Jirtle RL, Sikes ML. DNA double-strand breaks relieve USF-mediated repression of Dβ2 germline transcription in developing thymocytes. THE JOURNAL OF IMMUNOLOGY 2012; 188:2266-75. [PMID: 22287717 DOI: 10.4049/jimmunol.1002931] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Activation of germline promoters is central to V(D)J recombinational accessibility, driving chromatin remodeling, nucleosome repositioning, and transcriptional read-through of associated DNA. We have previously shown that of the two TCRβ locus (Tcrb) D segments, Dβ1 is flanked by an upstream promoter that directs its transcription and recombinational accessibility. In contrast, transcription within the DJβ2 segment cluster is initially restricted to the J segments and only redirected upstream of Dβ2 after D-to-J joining. The repression of upstream promoter activity prior to Tcrb assembly correlates with evidence that suggests DJβ2 recombination is less efficient than that of DJβ1. Because inefficient DJβ2 assembly offers the potential for V-to-DJβ2 recombination to rescue frameshifted V-to-DJβ1 joints, we wished to determine how Dβ2 promoter activity is modulated upon Tcrb recombination. In this study, we show that repression of the otherwise transcriptionally primed 5'Dβ2 promoter requires binding of upstream stimulatory factor (USF)-1 to a noncanonical E-box within the Dβ2 12-recombination signal sequence spacer prior to Tcrb recombination. USF binding is lost from both rearranged and germline Dβ2 sites in DNA-dependent protein kinase, catalytic subunit-competent thymocytes. Finally, genotoxic dsDNA breaks lead to rapid loss of USF binding and gain of transcriptionally primed 5'Dβ2 promoter activity in a DNA-dependent protein kinase, catalytic subunit-dependent manner. Together, these data suggest a mechanism by which V(D)J recombination may feed back to regulate local Dβ2 recombinational accessibility during thymocyte development.
Collapse
Affiliation(s)
- Jennifer L Stone
- Department of Microbiology, North Carolina State University, Raleigh, NC 27695, USA
| | | | | | | | | | | |
Collapse
|
56
|
Kharazmi J, Moshfegh C, Brody T. Identification of cis-Regulatory Elements in the dmyc Gene of Drosophila Melanogaster. GENE REGULATION AND SYSTEMS BIOLOGY 2012; 6:15-42. [PMID: 22267917 PMCID: PMC3256997 DOI: 10.4137/grsb.s8044] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Myc is a crucial regulator of growth and proliferation during animal development. Many signals and transcription factors lead to changes in the expression levels of Drosophila myc, yet no clear model exists to explain the complexity of its regulation at the level of transcription. In this study we used Drosophila genetic tools to track the dmyc cis-regulatory elements. Bioinformatics analyses identified conserved sequence blocks in the noncoding regions of the dmyc gene. Investigation of lacZ reporter activity driven by upstream, downstream, and intronic sequences of the dmyc gene in embryonic, larval imaginal discs, larval brain, and adult ovaries, revealed that it is likely to be transcribed from multiple transcription initiation units including a far upstream regulatory region, a TATA box containing proximal complex and a TATA-less downstream promoter element in conjunction with an initiator within the intron 2 region. Our data provide evidence for a modular organization of dmyc regulatory sequences; these modules will most likely be required to generate the tissue-specific patterns of dmyc transcripts. The far upstream region is active in late embryogenesis, while activity of other cis elements is evident during embryogenesis, in specific larval imaginal tissues and during oogenesis. These data provide a framework for further investigation of the transcriptional regulatory mechanisms of dmyc.
Collapse
Affiliation(s)
- Jasmine Kharazmi
- Biotechnopark Zurich, Molecular Biology Laboratory, University of Zurich-Irchel, Zurich, Switzerland
| | | | | |
Collapse
|
57
|
Lee BK, Bhinge AA, Battenhouse A, McDaniell RM, Liu Z, Song L, Ni Y, Birney E, Lieb JD, Furey TS, Crawford GE, Iyer VR. Cell-type specific and combinatorial usage of diverse transcription factors revealed by genome-wide binding studies in multiple human cells. Genome Res 2011; 22:9-24. [PMID: 22090374 DOI: 10.1101/gr.127597.111] [Citation(s) in RCA: 100] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Cell-type diversity is governed in part by differential gene expression programs mediated by transcription factor (TF) binding. However, there are few systematic studies of the genomic binding of different types of TFs across a wide range of human cell types, especially in relation to gene expression. In the ENCODE Project, we have identified the genomic binding locations across 11 different human cell types of CTCF, RNA Pol II (RNAPII), and MYC, three TFs with diverse roles. Our data and analysis revealed how these factors bind in relation to genomic features and shape gene expression and cell-type specificity. CTCF bound predominantly in intergenic regions while RNAPII and MYC preferentially bound to core promoter regions. CTCF sites were relatively invariant across diverse cell types, while MYC showed the greatest cell-type specificity. MYC and RNAPII co-localized at many of their binding sites and putative target genes. Cell-type specific binding sites, in particular for MYC and RNAPII, were associated with cell-type specific functions. Patterns of binding in relation to gene features were generally conserved across different cell types. RNAPII occupancy was higher over exons than adjacent introns, likely reflecting a link between transcriptional elongation and splicing. TF binding was positively correlated with the expression levels of their putative target genes, but combinatorial binding, in particular of MYC and RNAPII, was even more strongly associated with higher gene expression. These data illuminate how combinatorial binding of transcription factors in diverse cell types is associated with gene expression and cell-type specific biology.
Collapse
Affiliation(s)
- Bum-Kyu Lee
- Center for Systems and Synthetic Biology, Institute for Cellular and Molecular Biology, Section of Molecular Genetics and Microbiology, University of Texas at Austin, Austin, Texas 78712, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
58
|
Forshell LP, Li Y, Forshell TZP, Rudelius M, Nilsson L, Keller U, Nilsson J. The direct Myc target Pim3 cooperates with other Pim kinases in supporting viability of Myc-induced B-cell lymphomas. Oncotarget 2011; 2:448-60. [PMID: 21646687 PMCID: PMC3248204 DOI: 10.18632/oncotarget.283] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The Pim kinases are weak oncogenes. However, when co-expressed with a strong oncogene, such as c-Myc, Pim kinases potentiate the oncogenic effect resulting in an acceleration of tumorigenesis. In this study we show that the least studied Pim kinase, Pim-3, is encoded by a gene directly regulated by c-Myc via binding to one of the conserved E-boxes within the Pim3 gene. Accordingly, lymphomas arising in Myc-transgenic mice and Burkitt lymphoma cell lines exhibit elevated levels of Pim-3. Interestingly, inhibition of Pim kinases by a novel pan-Pim kinase inhibitor, Pimi, in Myc-induced lymphoma results in cell death that appears independent of caspases. The data indicate that Pim kinase inhibition could be a viable treatment strategy in certain human lymphomas that rely on Pim-3 kinase expression.
Collapse
|
59
|
Fu S, Guo Y, Chen H, Xu ZM, Qiu GB, Zhong M, Sun KL, Fu WN. MYCT1-TV, a novel MYCT1 transcript, is regulated by c-Myc and may participate in laryngeal carcinogenesis. PLoS One 2011; 6:e25648. [PMID: 21998677 PMCID: PMC3187795 DOI: 10.1371/journal.pone.0025648] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2011] [Accepted: 09/07/2011] [Indexed: 01/14/2023] Open
Abstract
BACKGROUND MYCT1, a putative target of c-Myc, is a novel candidate tumor suppressor gene cloned from laryngeal squamous cell carcinoma (LSCC). Its transcriptional regulation and biological effects on LSCC have not been clarified. METHODOLOGY/PRINCIPAL FINDINGS Using RACE assay, we cloned a 1106 bp transcript named Myc target 1 transcript variant 1 (MYCT1-TV) and confirmed its transcriptional start site was located at 140 bp upstream of the ATG start codon of MYCT1-TV. Luciferase, electrophoretic mobility shift and chromatin immunoprecipitation assays confirmed c-Myc could regulate the promoter activity of MYCT1-TV by specifically binding to the E-box elements within -886 to -655 bp region. These results were further verified by site-directed mutagenesis and RNA interference (RNAi) assays. MYCT1-TV and MYCT1 expressed lower in LSCC than those in paired adjacent normal laryngeal tissues, and overexpression of MYCT1-TV and MYCT1 could inhibit cell proliferation and invasion and promote apoptosis in LSCC cells. CONCLUSIONS/SIGNIFICANCE Our data indicate that MYCT1-TV, a novel MYCT1 transcript, is regulated by c-Myc and down-regulation of MYCT1-TV/MYCT1 could contribute to LSCC development and function.
Collapse
Affiliation(s)
- Shuang Fu
- Department of Medical Genetics, China Medical University, Shenyang, People's Republic of China
| | - Yan Guo
- Department of Central Laboratory, School of Stomatology, China Medical University, Shenyang, People's Republic of China
| | - Hong Chen
- Department of Medical Genetics, China Medical University, Shenyang, People's Republic of China
| | - Zhen-Ming Xu
- Department of Otolaryngology, The 463 Hospital of PLA, Shenyang, People's Republic of China
| | - Guang-Bin Qiu
- Department of Clinical Laboratory, No. 202 Hospital of PLA, Shenyang, People's Republic of China
| | - Ming Zhong
- Department of Central Laboratory, School of Stomatology, China Medical University, Shenyang, People's Republic of China
| | - Kai-Lai Sun
- Department of Medical Genetics, China Medical University, Shenyang, People's Republic of China
| | - Wei-Neng Fu
- Department of Medical Genetics, China Medical University, Shenyang, People's Republic of China
| |
Collapse
|
60
|
Perna D, Fagà G, Verrecchia A, Gorski MM, Barozzi I, Narang V, Khng J, Lim KC, Sung WK, Sanges R, Stupka E, Oskarsson T, Trumpp A, Wei CL, Müller H, Amati B. Genome-wide mapping of Myc binding and gene regulation in serum-stimulated fibroblasts. Oncogene 2011; 31:1695-709. [PMID: 21860422 PMCID: PMC3324106 DOI: 10.1038/onc.2011.359] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The transition from quiescence to proliferation is a key regulatory step that can be induced by serum stimulation in cultured fibroblasts. The transcription factor Myc is directly induced by serum mitogens and drives a secondary gene expression program that remains largely unknown. Using mRNA profiling, we identify close to 300 Myc-dependent serum response (MDSR) genes, which are induced by serum in a Myc-dependent manner in mouse fibroblasts. Mapping of genomic Myc-binding sites by ChIP-seq technology revealed that most MDSR genes were directly targeted by Myc, but represented a minor fraction (5.5%) of all Myc-bound promoters (which were 22.4% of all promoters). Other target loci were either induced by serum in a Myc-independent manner, were not significantly regulated or were negatively regulated. MDSR gene products were involved in a variety of processes, including nucleotide biosynthesis, ribosome biogenesis, DNA replication and RNA control. Of the 29 MDSR genes targeted by RNA interference, three showed a requirement for cell-cycle entry upon serum stimulation and 11 for long-term proliferation and/or survival. Hence, proper coordination of key regulatory and biosynthetic pathways following mitogenic stimulation relies upon the concerted regulation of multiple Myc-dependent genes.
Collapse
Affiliation(s)
- D Perna
- Department of Experimental Oncology, European Institute of Oncology, IFOM-IEO Campus, Milan, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
61
|
Yap CS, Peterson AL, Castellani G, Sedivy JM, Neretti N. Kinetic profiling of the c-Myc transcriptome and bioinformatic analysis of repressed gene promoters. Cell Cycle 2011; 10:2184-96. [PMID: 21623162 DOI: 10.4161/cc.10.13.16249] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Mammalian c-Myc is a member of a small family of three related proto-oncogenic transcription factors. c-Myc has an unusually broad array of regulatory functions, which include roles in cell cycle and apoptosis, a variety of metabolic functions, cell differentiation, senescence, and stem cell maintenance. c-Myc modulates the expression of a very large number of genes, but the magnitude of the majority of the regulatory effects is only 2-fold or less. c-Myc can both activate and repress the promoters of its target genes. Identification of genes directly regulated by c-Myc has been an enduring question in the field. We report here microarray expression profiling of a high resolution time course of c-Myc induction, using fibroblast cells in which c-Myc activity can be modulated from null to physiological. The c-Myc transcriptome dataset presented is the largest reported to date with 4,186 differentially regulated genes (1,826 upregulated, 2,360 downregulated, 1% FDR). The gene expression patterns fit well with the known biological functions of c-Myc. We describe several novel findings and present tools for further data mining. Although the mechanisms of transcriptional activation by c-Myc are well understood, how c-Myc represses an even greater number of genes remains incompletely described. One mechanism involves the binding of c-Myc to other, positively acting transcription factors, and interfering with their activities. We identified rapid-response genes likely to be direct c-Myc targets, and analyzed the promoters of the repressed genes to identify transcription factors that could be targets of c-Myc repression.
Collapse
Affiliation(s)
- Chui-Sun Yap
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, RI, USA
| | | | | | | | | |
Collapse
|
62
|
Young SL, Diolaiti D, Conacci-Sorrell M, Ruiz-Trillo I, Eisenman RN, King N. Premetazoan ancestry of the Myc-Max network. Mol Biol Evol 2011; 28:2961-71. [PMID: 21571926 DOI: 10.1093/molbev/msr132] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
The origin of metazoans required the evolution of mechanisms for maintaining differentiated cell types within a multicellular individual, in part through spatially differentiated patterns of gene transcription. The unicellular ancestor of metazoans was presumably capable of regulating gene expression temporally in response to changing environmental conditions, and spatial cell differentiation in metazoans may represent a co-option of preexisting regulatory mechanisms. Myc is a critical regulator of cell growth, proliferation, and death that is found in all metazoans but absent in other multicellular lineages, including fungi and plants. Homologs of Myc and its binding partner, Max, exist in two of the closest living relatives of animals, the choanoflagellate Monosiga brevicollis (Mb) and Capsaspora owczarzaki, a unicellular opisthokont that is closely related to metazoans and choanoflagellates. We find that Myc and Max from M. brevicollis heterodimerize and bind to both canonical and noncanonical E-boxes, the DNA-binding sites through which metazoan Myc proteins act. Moreover, in M. brevicollis, MbMyc protein can be detected in nuclear and flagellar regions. Like metazoan Max proteins, MbMax can form homodimers that bind to E-boxes. However, cross-species dimerization between Mb and human Myc and Max proteins was not observed, suggesting that the binding interface has diverged. Our results reveal that the Myc/Max network arose before the divergence of the choanoflagellate and metazoan lineages. Furthermore, core features of metazoan Myc function, including heterodimerization with Max, binding to E-box sequences in DNA, and localization to the nucleus, predate the origin of metazoans.
Collapse
Affiliation(s)
- Susan L Young
- Department of Molecular and Cell Biology, Division of Genetics, Genomics and Development, University of California, Berkeley, CA, USA
| | | | | | | | | | | |
Collapse
|
63
|
Smith K, Dalton S. Myc transcription factors: key regulators behind establishment and maintenance of pluripotency. Regen Med 2011; 5:947-59. [PMID: 21082893 DOI: 10.2217/rme.10.79] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The interplay between transcription factors, epigenetic modifiers, chromatin remodelers and miRNAs form the foundation of a complex regulatory network required for establishment and maintenance of the pluripotent state. Recent work indicates that Myc transcription factors are essential elements of this regulatory system. However, despite numerous studies, aspects of how Myc controls self-renewal and pluripotency remain obscure. This article reviews evidence supporting the placement of Myc as a central regulator of the pluripotent state and discusses possible mechanisms of action.
Collapse
Affiliation(s)
- Keriayn Smith
- Paul D Coverdell Center for Biomedical & Health Sciences, Department of Biochemistry & Molecular Biology, University of Georgia, 500 DW Brooks Drive, Athens, GA 30602, USA
| | | |
Collapse
|
64
|
Kulkarni MV, Franklin DS. N-Myc is a downstream target of RET signaling and is required for transcriptional regulation of p18(Ink4c) by the transforming mutant RET(C634R). Mol Oncol 2011; 5:24-35. [PMID: 21112821 PMCID: PMC5528269 DOI: 10.1016/j.molonc.2010.10.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2010] [Revised: 10/11/2010] [Accepted: 10/12/2010] [Indexed: 12/17/2022] Open
Abstract
Inherited activating mutations in RET predispose humans to Multiple Endocrine Neoplasia type-2 (MEN2). The MEN2A-specific mutation RET(C634R), RET2A, has been shown to simultaneously downregulate the CDKIs p18 and p27, and upregulate cyclin D1. Importantly, the loss of p18 is necessary and sufficient for RET2A-mediated hyperproliferation. The loss of N-Myc in mice results in embryonic lethality due to a lack of neuronal progenitor cells that fail to proliferate, correlate with accumulation of p18 and p27. Therefore, N-Myc may regulate expression of both CDKIs. Also, N-Myc is expressed predominantly in neuroendocrine cells that give rise to the primary cell types affected in MEN2A. Together these studies suggest that N-Myc is a downstream target of RET2A signaling that prevents accumulation of p18 and/or p27. We report that MAPK activation by RET2A leads to a transient induction of N-Myc mRNA and protein levels, and that N-Myc induction is required to maintain low p18 and p27 levels. Induced N-Myc levels correlate with increased binding of N-Myc to an initiator consensus binding site in the p18 promoter, and this binding is essential for RET2A-mediated transcriptional regulation of p18. Finally, loss of N-Myc induction prevents RET2A-mediated hyperproliferation. Our results demonstrate for the first time that N-Myc is a downstream target of RET2A signaling, and propose that induction of N-Myc by RET2A is a key step leading to lower p18 levels during MEN2A tumorigenesis.
Collapse
Affiliation(s)
- Mandar V. Kulkarni
- Department of Biological Sciences, Purdue University, 915 W. State Street West Lafayette, IN 47907, USA
| | - David S. Franklin
- Department of Biological Sciences, Purdue University, 915 W. State Street West Lafayette, IN 47907, USA
| |
Collapse
|
65
|
Zhang P, Metukuri MR, Bindom SM, Prochownik EV, O'Doherty RM, Scott DK. c-Myc is required for the CHREBP-dependent activation of glucose-responsive genes. Mol Endocrinol 2010; 24:1274-86. [PMID: 20382893 DOI: 10.1210/me.2009-0437] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Glucose regulates programs of gene expression that orchestrate changes in cellular phenotype in several metabolically active tissues. Carbohydrate response element-binding protein (ChREBP) and its binding partner, Mlx, mediate glucose-regulated gene expression by binding to carbohydrate response elements on target genes, such as the prototypical glucose-responsive gene, liver-type pyruvate kinase (Pklr). c-Myc is also required for the glucose response of the Pklr gene, although the relationship between c-Myc and ChREBP has not been defined. Here we describe the molecular events of the glucose-mediated activation of Pklr and determine the effects of decreasing the activity or abundance of c-Myc on this process. Time-course chromatin immunoprecipitation revealed a set of transcription factors [hepatocyte nuclear factor (HNF)1alpha, HNF4alpha, and RNA polymerase II (Pol II)] constitutively resident on the Pklr promoter, with a relative enrichment of acetylated histones 3 and 4 in the same region of the gene. Glucose did not affect HNF1alpha binding or the acetylation of histones H3 or H4. By contrast, glucose promoted the recruitment of ChREBP and c-Myc and increased the occupancy of HNF4alpha and RNA Pol II, which were coincident with the glucose-mediated increase in transcription as determined by a nuclear run-on assay. Depletion of c-Myc activity using a small molecule inhibitor (10058-F4/1RH) abolished the glucose-mediated recruitment of HNF4alpha, ChREBP, and RNA Pol II, without affecting basal gene expression, histone acetylation, and HNF1alpha or basal HNF4alpha occupancy. The activation and recruitment of ChREBP to several glucose-responsive genes were blocked by 1RH, indicating a general necessity for c-Myc in this process.
Collapse
Affiliation(s)
- Pili Zhang
- Department of Medicine, Division of Endocrinology and Metabolism, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15261, USA
| | | | | | | | | | | |
Collapse
|
66
|
Levy S, Forman HJ. C-Myc is a Nrf2-interacting protein that negatively regulates phase II genes through their electrophile responsive elements. IUBMB Life 2010; 62:237-46. [PMID: 20232342 PMCID: PMC2852429 DOI: 10.1002/iub.314] [Citation(s) in RCA: 118] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
c-Myc is a transcription factor that is implicated in many cellular processes including proliferation, apoptosis and cancers. Recently, c-Myc was shown to be involved in regulation of glutamate cysteine ligase through E-box sequences. This investigation examined whether c-Myc also regulates phase II genes through interaction with the electrophile response element (EpRE). Experiments were conducted in human bronchial epithelial cells using si-RNA to knock down c-Myc. RT-PCR and reporter assays were used to measure transcription and promoter activity. c-Myc downregulated transcription and promoter activity of phase II genes. Chromatin immunoprecipitation verified binding of c-Myc to EpRE while coimmunoprecipitation demonstrated interaction of c-Myc with Nrf2. c-Myc also forms a ternary complex with Nrf2 and p-c-Jun. Finally, c-Myc decreased Nrf2 stability. Thus, our results suggest regulation of the EpRE/Nrf2 signaling pathway by c-Myc through both interaction with the EpRE binding complex and increased degradation of Nrf2.
Collapse
Affiliation(s)
- Smadar Levy
- Department of Natural Sciences, University of California, Merced, USA
| | | |
Collapse
|
67
|
Li W, Miao X, Qi Z, Zeng W, Liang J, Liang Z. Hepatitis B virus X protein upregulates HSP90alpha expression via activation of c-Myc in human hepatocarcinoma cell line, HepG2. Virol J 2010; 7:45. [PMID: 20170530 PMCID: PMC2841080 DOI: 10.1186/1743-422x-7-45] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2009] [Accepted: 02/20/2010] [Indexed: 02/06/2023] Open
Abstract
Background The Hepatitis B Virus X protein (HBx) plays a major role in hepatocellular carcinoma (HCC) development, however, its contribution to tumor invasion and metastasis has not been established so far. Heat shock protein 90 alpha (HSP90alpha) isoform is an ATP-dependent molecular chaperone that maintains the active conformation of client oncoproteins in cancer cells, which is abundantly expressed in HCC, especially in hepatitis B virus (HBV)-related tumors, might be involved in tumor progression. Methods The levels of HSP90alpha, extracellular signal-regulated kinase 1/2 (ERK1/2), phosphorylated ERK1/2 (p-ERK1/2) and c-Myc in HBx-transfected HepG2 cells were determined by western blots analysis. The endogenous ERKs activity was demonstrated by ELISA assay. The regulation of c-Myc-mediated HSP90 alpha promoter transactivation by HBx was evaluated through electrophoretic mobility shift analysis (EMSA). The c-Myc-mediated HSP90alpha transcription was analysed by promoter assay. The HBx-expressing cells were transfected with specific small interference RNA (siRNA) against c-Myc. The in vitro invasion potentials of cells were evaluated by Transwell cell invasion assay. Results HBx induces HSP90alpha expression at the transcription level. The induction effect of HBx was inhibited after treatment with c-Myc inhibitor, 10058-F4. In addition, the luciferase activity of the HSP90alpha promoter analysis revealed that the HBx is directly involved in the c-Myc-mediated transcriptional activation of HSP90alpha. Furthermore, HBx induces c-Myc expression by activation of Ras/Raf/ERK1/2 cascades, which in turn results in activation of the c-Myc-mediated HSP90alpha promoter and subsequently up-regulation of the HSP90alpha expression. Overexpression of HSP90alpha in HBx-transfected cells enhances tumor cells invasion. siRNA-mediated c-Myc knockdown in HBx-transfected cells significantly suppressed HSP90alpha expression and cells invasion in vitro. Conclusion These results demonstrate the ability of HBx to promote tumor cells invasion by a mechanism involving the up-regulation of HSP90alpha and provide new insights into the mechanism of action of HBx and its involvement in tumor metastasis and recurrence of HCC.
Collapse
Affiliation(s)
- Weihua Li
- Department of Infectious disease, the First affiliated Hospital of Guangzhou Medical College, Guangzhou 510102, Guangdong province, PR China.
| | | | | | | | | | | |
Collapse
|
68
|
Xu J, De Jong AT, Chen G, Chow HK, Damaso CO, Schwartz Mittelman A, Shin JA. Reengineering natural design by rational design and in vivo library selection: the HLH subdomain in bHLHZ proteins is a unique requirement for DNA-binding function. Protein Eng Des Sel 2010; 23:337-46. [PMID: 20086039 DOI: 10.1093/protein/gzp082] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
To explore the role of the HLH subdomain in bHLHZ proteins, we designed sets of minimalist proteins based on bHLHZ protein Max, bHLH/PAS protein Arnt and bZIP protein C/EBP. In the first, the Max bHLH and C/EBP leucine zipper were fused such that the leucine heptad repeats were not in register; therefore, the protein dimerization interface was disrupted. Max1bHLH-C/EBP showed little ability to activate transcription from the E-box (5'-CACGTG) in the yeast one-hybrid assay, and no E-box binding by quantitative fluorescence anisotropy. Max1bHLH-C/EBP's activity was significantly improved after library selection (three amino acids randomized between HLH and leucine zipper), despite the Max bHLH and C/EBP zipper still being out of register: a representative mutant gave a high nanomolar K(d) value for E-box binding. Thus, selection proved to be a powerful tool for salvaging the flawed Max1bHLH-C/EBP, although the out-of-register mutants still did not achieve the strong DNA-binding affinities displayed by their in-register counterparts. ArntbHLH-C/EBP hybrids further demonstrated the importance of maintaining register, as out-of-register mutants showed no E-box-responsive activity, whereas the in-register hybrid showed moderate activity. In another design, we eliminated the HLH altogether and fused the Max basic region to the C/EBP zipper to generate bZIP-like hybrids. Despite numerous designs and selections, these hybrids possessed no E-box-responsive activity. Finally, we tested the importance of the loop sequence in MaxbHLHZ by fluorescence and circular dichroism. In one mutant, the loop was shortened by two residues; in the other, the Lys57:DNA-backbone interaction was abolished by mutation to Gly57. Both showed markedly decreased E-box-binding relative to MaxbHLHZ. Our results suggest that, in contrast to the more rigid bZIP, the HLH is capable of significant conformational adaptation to enable gene-regulatory function and is required for protein dimerization and positioning the basic region for DNA recognition.
Collapse
Affiliation(s)
- Jing Xu
- Department of Chemistry, University of Toronto, Mississauga, ON L5L1C6, Canada
| | | | | | | | | | | | | |
Collapse
|
69
|
Identification of specific protein/E-box-containing DNA complexes: lessons from the ubiquitously expressed USF transcription factors of the b-HLH-LZ super family. Methods Mol Biol 2010; 647:391-406. [PMID: 20694681 DOI: 10.1007/978-1-60761-738-9_24] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
In order to determine how gene expression is regulated in response to environmental cues, it is necessary to identify the specific interaction between transcription factors and their cognate cis-regulatory DNA elements. Here we have out-lined electrophoretic mobility shift assay (EMSA) and chromatin immunoprecipitation (ChIP) protocols to define in vitro and in vivo USFs specific interacting sequences. The proposed procedures have been optimized for the USFs transcription factor family, allowing the identification of USF-specific targets.
Collapse
|
70
|
Lin CJ, Malina A, Pelletier J. c-Myc and eIF4F constitute a feedforward loop that regulates cell growth: implications for anticancer therapy. Cancer Res 2009; 69:7491-4. [PMID: 19773439 DOI: 10.1158/0008-5472.can-09-0813] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The Myc/Max/Mad family of transcription factors and the eukaryotic initiation factor 4F (4F) complex play fundamental roles in regulating cell growth, proliferation, differentiation, and oncogenic transformation. Recent findings indicate that the role of Myc during cell growth and proliferation is linked to an increase in eIF4F activity in a feedforward relationship, providing a possible molecular mechanism of cell transformation by Myc. Developing therapeutics to inhibit eIF4F and/or Myc could be a potential treatment for a wide range of human cancers.
Collapse
Affiliation(s)
- Chen-Ju Lin
- Department of Biochemistry and McGill Cancer Center, McIntyre Medical Sciences Building, McGill University, Montreal, Quebec, Canada
| | | | | |
Collapse
|
71
|
Chang L, Liu Y, Zhu B, Li Y, Hua H, Wang Y, Zhang J, Jiang Z, Wang Z. High expression of the circadian gene mPer2 diminishes the radiosensitivity of NIH 3T3 cells. Braz J Med Biol Res 2009; 42:882-91. [DOI: 10.1590/s0100-879x2009005000022] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2009] [Accepted: 07/22/2009] [Indexed: 01/17/2023] Open
Affiliation(s)
| | | | - B. Zhu
- Sichuan University, China
| | - Y. Li
- Sichuan University, China
| | - H. Hua
- Sichuan University, China
| | | | | | | | | |
Collapse
|
72
|
Badis G, Chan ET, van Bakel H, Pena-Castillo L, Tillo D, Tsui K, Carlson CD, Gossett AJ, Hasinoff MJ, Warren CL, Gebbia M, Talukder S, Yang A, Mnaimneh S, Terterov D, Coburn D, Yeo AL, Yeo ZX, Clarke ND, Lieb JD, Ansari AZ, Nislow C, Hughes TR. A library of yeast transcription factor motifs reveals a widespread function for Rsc3 in targeting nucleosome exclusion at promoters. Mol Cell 2008; 32:878-87. [PMID: 19111667 PMCID: PMC2743730 DOI: 10.1016/j.molcel.2008.11.020] [Citation(s) in RCA: 362] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2008] [Revised: 11/05/2008] [Accepted: 11/26/2008] [Indexed: 01/17/2023]
Abstract
The sequence specificity of DNA-binding proteins is the primary mechanism by which the cell recognizes genomic features. Here, we describe systematic determination of yeast transcription factor DNA-binding specificities. We obtained binding specificities for 112 DNA-binding proteins representing 19 distinct structural classes. One-third of the binding specificities have not been previously reported. Several binding sequences have striking genomic distributions relative to transcription start sites, supporting their biological relevance and suggesting a role in promoter architecture. Among these are Rsc3 binding sequences, containing the core CGCG, which are found preferentially approximately 100 bp upstream of transcription start sites. Mutation of RSC3 results in a dramatic increase in nucleosome occupancy in hundreds of proximal promoters containing a Rsc3 binding element, but has little impact on promoters lacking Rsc3 binding sequences, indicating that Rsc3 plays a broad role in targeting nucleosome exclusion at yeast promoters.
Collapse
Affiliation(s)
- Gwenael Badis
- Banting and Best Department of Medical Research, University of Toronto, Toronto, ON M5S 3E1
| | - Esther T. Chan
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 3E1
| | - Harm van Bakel
- Banting and Best Department of Medical Research, University of Toronto, Toronto, ON M5S 3E1
| | - Lourdes Pena-Castillo
- Banting and Best Department of Medical Research, University of Toronto, Toronto, ON M5S 3E1
| | - Desiree Tillo
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 3E1
| | - Kyle Tsui
- Department of Pharmaceutical Sciences, University of Toronto, Toronto, ON M5S 3E1
| | - Clayton D. Carlson
- Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706
| | - Andrea J. Gossett
- Department of Biology and Carolina Center for Genome Sciences, CB# 3280, 408 Fordham Hall, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-3280
| | - Michael J. Hasinoff
- Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706
| | - Christopher L. Warren
- Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706
| | - Marinella Gebbia
- Banting and Best Department of Medical Research, University of Toronto, Toronto, ON M5S 3E1
| | - Shaheynoor Talukder
- Banting and Best Department of Medical Research, University of Toronto, Toronto, ON M5S 3E1
| | - Ally Yang
- Banting and Best Department of Medical Research, University of Toronto, Toronto, ON M5S 3E1
| | - Sanie Mnaimneh
- Banting and Best Department of Medical Research, University of Toronto, Toronto, ON M5S 3E1
| | - Dimitri Terterov
- Banting and Best Department of Medical Research, University of Toronto, Toronto, ON M5S 3E1
| | - David Coburn
- Banting and Best Department of Medical Research, University of Toronto, Toronto, ON M5S 3E1
| | - Ai Li Yeo
- Computational and Systems Biology, Genome Institute of Singapore, 60 Biopolis St, Singapore, 138672
| | - Zhen Xuan Yeo
- Computational and Systems Biology, Genome Institute of Singapore, 60 Biopolis St, Singapore, 138672
| | - Neil D. Clarke
- Computational and Systems Biology, Genome Institute of Singapore, 60 Biopolis St, Singapore, 138672
| | - Jason D. Lieb
- Department of Biology and Carolina Center for Genome Sciences, CB# 3280, 408 Fordham Hall, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-3280
| | - Aseem Z. Ansari
- Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706
- The Genome Center, University of Wisconsin-Madison, Madison, Wisconsin 53706
| | - Corey Nislow
- Banting and Best Department of Medical Research, University of Toronto, Toronto, ON M5S 3E1
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 3E1
| | - Timothy R. Hughes
- Banting and Best Department of Medical Research, University of Toronto, Toronto, ON M5S 3E1
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 3E1
| |
Collapse
|
73
|
Abstract
The role of the myc gene family in the biology of normal and cancer cells has been intensively studied since the early 1980s. myc genes, responding to diverse external and internal signals, express transcription factors (c-, N-, and L-Myc) that heterodimerize with Max, bind DNA, and modulate expression of a specific set of target genes. Over the last few years, expression profiling, genomic binding studies, and genetic analyses in mammals and Drosophila have led to an expanded view of Myc function. This review is focused on two major aspects of Myc: the nature of the genes and pathways that are targeted by Myc, and the role of Myc in stem cell and cancer biology.
Collapse
Affiliation(s)
- Martin Eilers
- Institute of Molecular Biology and Tumor Research, 35033 Marburg, Germany
| | | |
Collapse
|
74
|
Zhan L, Rosenberg A, Bergami KC, Yu M, Xuan Z, Jaffe AB, Allred C, Muthuswamy SK. Deregulation of scribble promotes mammary tumorigenesis and reveals a role for cell polarity in carcinoma. Cell 2008; 135:865-78. [PMID: 19041750 PMCID: PMC3015046 DOI: 10.1016/j.cell.2008.09.045] [Citation(s) in RCA: 333] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2007] [Revised: 06/23/2008] [Accepted: 09/23/2008] [Indexed: 12/23/2022]
Abstract
Loss of cell polarity proteins such as Scribble induces neoplasia in Drosophila by promoting uncontrolled proliferation. In mammals, the role that polarity proteins play during tumorigenesis is not well understood. Here, we demonstrate that depletion of Scribble in mammary epithelia disrupts cell polarity, blocks three-dimensional morphogenesis, inhibits apoptosis, and induces dysplasia in vivo that progress to tumors after long latency. Loss of Scribble cooperates with oncogenes such as c-myc to transform epithelial cells and induce tumors in vivo by blocking activation of an apoptosis pathway. Like depletion, mislocalization of Scribble from cell-cell junction was sufficient to promote cell transformation. Interestingly, spontaneous mammary tumors in mice and humans possess both downregulated and mislocalized Scribble. Thus, we demonstrate that scribble inhibits breast cancer formation and that deregulation of polarity pathways promotes dysplastic and neoplastic growth in mammals by disrupting morphogenesis and inhibiting cell death.
Collapse
Affiliation(s)
- Lixing Zhan
- One Bungtown Road, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724
| | - Avi Rosenberg
- One Bungtown Road, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724
| | - Kenneth C. Bergami
- One Bungtown Road, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724
| | - Min Yu
- One Bungtown Road, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724
| | - Zhenyu Xuan
- One Bungtown Road, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724
| | - Aron B. Jaffe
- Cell Biology Program, Memorial Sloan-Kettering Institute, New York, NY 10021
| | - Craig Allred
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110
| | | |
Collapse
|
75
|
Martinato F, Cesaroni M, Amati B, Guccione E. Analysis of Myc-induced histone modifications on target chromatin. PLoS One 2008; 3:e3650. [PMID: 18985155 PMCID: PMC2574517 DOI: 10.1371/journal.pone.0003650] [Citation(s) in RCA: 107] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2008] [Accepted: 10/14/2008] [Indexed: 11/24/2022] Open
Abstract
The c-myc proto-oncogene is induced by mitogens and is a central regulator of cell growth and differentiation. The c-myc product, Myc, is a transcription factor that binds a multitude of genomic sites, estimated to be over 10–15% of all promoter regions. Target promoters generally pre-exist in an active or poised chromatin state that is further modified by Myc, contributing to fine transcriptional regulation (activation or repression) of the afferent gene. Among other mechanisms, Myc recruits histone acetyl-transferases to target chromatin and locally promotes hyper-acetylation of multiple lysines on histones H3 and H4, although the identity and combination of the modified lysines is unknown. Whether Myc dynamically regulates other histone modifications (or marks) at its binding sites also remains to be addressed. Here, we used quantitative chromatin immunoprecipitation (qChIP) to profile a total of 24 lysine-acetylation and -methylation marks modulated by Myc at target promoters in a human B-cell line with a regulatable c-myc transgene. Myc binding promoted acetylation of multiple lysines, primarily of H3K9, H3K14, H3K18, H4K5 and H4K12, but significantly also of H4K8, H4K91 and H2AK5. Dimethylation of H3K79 was also selectively induced at target promoters. A majority of target promoters showed co-induction of multiple marks - in various combinations - correlating with recruitment of the two HATs tested (Tip60 and HBO1), incorporation of the histone variant H2A.Z and transcriptional activation. Based on this and previous findings, we surmise that Myc recruits the Tip60/p400 complex to achieve a coordinated histone acetylation/exchange reaction at activated promoters. Our data are also consistent with the additive and redundant role of multiple acetylation events in transcriptional activation.
Collapse
Affiliation(s)
- Francesca Martinato
- Department of Experimental Oncology, European Institute of Oncology (IEO), IFOM-IEO Campus, Milan, Italy
| | - Matteo Cesaroni
- Department of Experimental Oncology, European Institute of Oncology (IEO), IFOM-IEO Campus, Milan, Italy
| | - Bruno Amati
- Department of Experimental Oncology, European Institute of Oncology (IEO), IFOM-IEO Campus, Milan, Italy
- * E-mail: (BA); (EG)
| | - Ernesto Guccione
- Department of Experimental Oncology, European Institute of Oncology (IEO), IFOM-IEO Campus, Milan, Italy
- * E-mail: (BA); (EG)
| |
Collapse
|
76
|
Wei JS, Song YK, Durinck S, Chen QR, Cheuk ATC, Tsang P, Zhang Q, Thiele CJ, Slack A, Shohet J, Khan J. The MYCN oncogene is a direct target of miR-34a. Oncogene 2008; 27:5204-13. [PMID: 18504438 PMCID: PMC2562938 DOI: 10.1038/onc.2008.154] [Citation(s) in RCA: 226] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2007] [Revised: 03/18/2008] [Accepted: 04/04/2008] [Indexed: 01/07/2023]
Abstract
Loss of 1p36 heterozygosity commonly occurs with MYCN amplification in neuroblastoma tumors, and both are associated with an aggressive phenotype. Database searches identified five microRNAs that map to the commonly deleted region of 1p36 and we hypothesized that the loss of one or more of these microRNAs contributes to the malignant phenotype of MYCN-amplified tumors. By bioinformatic analysis, we identified that three out of the five microRNAs target MYCN and of these miR-34a caused the most significant suppression of cell growth through increased apoptosis and decreased DNA synthesis in neuroblastoma cell lines with MYCN amplification. Quantitative RT-PCR showed that neuroblastoma tumors with 1p36 loss expressed lower level of miR-34a than those with normal copies of 1p36. Furthermore, we demonstrated that MYCN is a direct target of miR-34a. Finally, using a series of mRNA expression profiling experiments, we identified other potential direct targets of miR-34a, and pathway analysis demonstrated that miR-34a suppresses cell-cycle genes and induces several neural-related genes. This study demonstrates one important regulatory role of miR-34a in cell growth and MYCN suppression in neuroblastoma.
Collapse
Affiliation(s)
- Jun Stephen Wei
- Oncogenomics Section, Pediatric Oncology Branch, Advanced Technology Center, National Cancer Institute, Gaithersburg, MD 20892, USA
| | - Young Kook Song
- Oncogenomics Section, Pediatric Oncology Branch, Advanced Technology Center, National Cancer Institute, Gaithersburg, MD 20892, USA
| | - Steffen Durinck
- Oncogenomics Section, Pediatric Oncology Branch, Advanced Technology Center, National Cancer Institute, Gaithersburg, MD 20892, USA
| | - Qing-Rong Chen
- Oncogenomics Section, Pediatric Oncology Branch, Advanced Technology Center, National Cancer Institute, Gaithersburg, MD 20892, USA
- The Advanced Biomedical Computing Center, SAIC-Frederick, Inc., National Cancer Institute-Frederick, Frederick, MD 21702, USA
| | - Adam Tai Chi Cheuk
- Oncogenomics Section, Pediatric Oncology Branch, Advanced Technology Center, National Cancer Institute, Gaithersburg, MD 20892, USA
| | - Patricia Tsang
- Oncogenomics Section, Pediatric Oncology Branch, Advanced Technology Center, National Cancer Institute, Gaithersburg, MD 20892, USA
| | - Quangeng Zhang
- Oncogenomics Section, Pediatric Oncology Branch, Advanced Technology Center, National Cancer Institute, Gaithersburg, MD 20892, USA
| | - Carol Jean Thiele
- Cell and Molecular Biology Section, Pediatric Oncology Branch, National Cancer Institute, Bethesda, MD 20892, USA
| | - Andrew Slack
- Department of Pediatrics, Section of Hematology/Oncology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Jason Shohet
- Department of Pediatrics, Section of Hematology/Oncology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Javed Khan
- Oncogenomics Section, Pediatric Oncology Branch, Advanced Technology Center, National Cancer Institute, Gaithersburg, MD 20892, USA
| |
Collapse
|
77
|
Berger MF, Badis G, Gehrke AR, Talukder S, Philippakis AA, Peña-Castillo L, Alleyne TM, Mnaimneh S, Botvinnik OB, Chan ET, Khalid F, Zhang W, Newburger D, Jaeger S, Morris QD, Bulyk ML, Hughes TR. Variation in homeodomain DNA binding revealed by high-resolution analysis of sequence preferences. Cell 2008; 133:1266-76. [PMID: 18585359 PMCID: PMC2531161 DOI: 10.1016/j.cell.2008.05.024] [Citation(s) in RCA: 504] [Impact Index Per Article: 29.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2007] [Revised: 03/10/2008] [Accepted: 05/12/2008] [Indexed: 12/29/2022]
Abstract
Most homeodomains are unique within a genome, yet many are highly conserved across vast evolutionary distances, implying strong selection on their precise DNA-binding specificities. We determined the binding preferences of the majority (168) of mouse homeodomains to all possible 8-base sequences, revealing rich and complex patterns of sequence specificity and showing that there are at least 65 distinct homeodomain DNA-binding activities. We developed a computational system that successfully predicts binding sites for homeodomain proteins as distant from mouse as Drosophila and C. elegans, and we infer full 8-mer binding profiles for the majority of known animal homeodomains. Our results provide an unprecedented level of resolution in the analysis of this simple domain structure and suggest that variation in sequence recognition may be a factor in its functional diversity and evolutionary success.
Collapse
Affiliation(s)
- Michael F. Berger
- Division of Genetics, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115
- Committee on Higher Degrees in Biophysics, Harvard University, Cambridge, MA 02138
| | - Gwenael Badis
- Department of Molecular Genetics, University of Toronto, Toronto, ON M4T 2J4
| | - Andrew R. Gehrke
- Division of Genetics, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115
| | - Shaheynoor Talukder
- Department of Molecular Genetics, University of Toronto, Toronto, ON M4T 2J4
| | - Anthony A. Philippakis
- Division of Genetics, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115
- Committee on Higher Degrees in Biophysics, Harvard University, Cambridge, MA 02138
- Harvard/MIT Division of Health Sciences and Technology (HST), Harvard Medical School, Boston, MA 02115
| | - Lourdes Peña-Castillo
- Banting and Best Department of Medical Research, University of Toronto, Toronto, ON M4T 2J4
| | - Trevis M. Alleyne
- Department of Molecular Genetics, University of Toronto, Toronto, ON M4T 2J4
| | - Sanie Mnaimneh
- Banting and Best Department of Medical Research, University of Toronto, Toronto, ON M4T 2J4
| | - Olga B. Botvinnik
- Division of Genetics, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115
- Department of Mathematics, Massachusetts Institute of Technology, Cambridge, MA 02139
| | - Esther T. Chan
- Department of Molecular Genetics, University of Toronto, Toronto, ON M4T 2J4
| | - Faiqua Khalid
- Banting and Best Department of Medical Research, University of Toronto, Toronto, ON M4T 2J4
| | - Wen Zhang
- Department of Molecular Genetics, University of Toronto, Toronto, ON M4T 2J4
| | - Daniel Newburger
- Division of Genetics, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115
| | - Savina Jaeger
- Division of Genetics, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115
| | - Quaid D. Morris
- Banting and Best Department of Medical Research, University of Toronto, Toronto, ON M4T 2J4
- Department of Molecular Genetics, University of Toronto, Toronto, ON M4T 2J4
| | - Martha L. Bulyk
- Division of Genetics, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115
- Department of Pathology, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115
- Committee on Higher Degrees in Biophysics, Harvard University, Cambridge, MA 02138
- Harvard/MIT Division of Health Sciences and Technology (HST), Harvard Medical School, Boston, MA 02115
| | - Timothy R. Hughes
- Banting and Best Department of Medical Research, University of Toronto, Toronto, ON M4T 2J4
- Department of Molecular Genetics, University of Toronto, Toronto, ON M4T 2J4
| |
Collapse
|
78
|
Sherman H, Froy O. Expression of human beta-defensin 1 is regulated via c-Myc and the biological clock. Mol Immunol 2008; 45:3163-7. [PMID: 18433872 DOI: 10.1016/j.molimm.2008.03.004] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2008] [Revised: 03/03/2008] [Accepted: 03/06/2008] [Indexed: 11/16/2022]
Abstract
Human beta-defensin 1 (hBD-1) is an important antibacterial polypeptide whose expression is not induced by infection or inflammation. Our objective was to study the regulation of hBD-1 expression. Recently, we found that albumin up-regulated hBD-1 as well as c-Myc expression, suggesting that c-Myc may regulate hBD-1 expression via a non-inflammatory pathway. Direct evidence for the involvement of c-Myc was achieved by the inhibition of hBD-1 expression in the presence of a specific c-Myc inhibitor. Since both c-Myc and CLOCK:BMAL1 heterodimer, the complex of the core clock mechanism, bind to E-box (5'-CACGTG-3') and E-box-like sequences to activate transcription, we studied whether hBD-1 expression was also regulated by the biological clock. Synchronization of HCT-116 cells by dexamethasone showed oscillation of hBD-1 and c-myc mRNA indicating that both are clock-controlled output genes. Using transfections and luciferase reporter assays in human embryonic kidney (HEK-293) cells, we found that hBD-1 promoter was induced by CLOCK:BMAL1 co-expression. hBD-1 promoter truncation and mutagenesis analyses revealed that the distal E-box-like binding sequence was the target of both CLOCK:BMAL1 and c-Myc for hBD-1 expression. This activation was abolished when CRY1 was co-expressed in these cells. Thus, hBD-1 expression is mediated by c-Myc and the CLOCK:BMAL1 heterodimer, whereas CRY1 expression represses this complex. These changes in hBD-1 levels lead to its circadian oscillation.
Collapse
Affiliation(s)
- Hadas Sherman
- Institute of Biochemistry, Food Science and Nutrition, Faculty of Agricultural, Food and Environmental Quality, The Hebrew University of Jerusalem, P.O. Box 12, Rehovot 76100, Israel
| | | |
Collapse
|
79
|
Ramírez-Zavala B, Domínguez Á. Evolution and phylogenetic relationships of APSES proteins from Hemiascomycetes. FEMS Yeast Res 2008; 8:511-9. [DOI: 10.1111/j.1567-1364.2008.00370.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
|
80
|
Kim J, Lee JH, Iyer VR. Global identification of Myc target genes reveals its direct role in mitochondrial biogenesis and its E-box usage in vivo. PLoS One 2008; 3:e1798. [PMID: 18335064 PMCID: PMC2258436 DOI: 10.1371/journal.pone.0001798] [Citation(s) in RCA: 184] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2007] [Accepted: 02/12/2008] [Indexed: 01/16/2023] Open
Abstract
The Myc oncoprotein is a transcription factor involved in a variety of human cancers. Overexpression of Myc is associated with malignant transformation. In normal cells, Myc is induced by mitotic signals, and in turn, it regulates the expression of downstream target genes. Although diverse roles of Myc have been predicted from many previous studies, detailed functions of Myc targets are still unclear. By combining chromatin immunoprecipitation (ChIP) and promoter microarrays, we identified a total of 1469 Myc direct target genes, the majority of which are novel, in HeLa cells and human primary fibroblasts. We observed dramatic changes of Myc occupancy at its target promoters in foreskin fibroblasts in response to serum stimulation. Among the targets of Myc, 107 were nuclear encoded genes involved in mitochondrial biogenesis. Genes with important roles in mitochondrial replication and biogenesis, such as POLG, POLG2, and NRF1 were identified as direct targets of Myc, confirming a direct role for Myc in regulating mitochondrial biogenesis. Analysis of target promoter sequences revealed a strong preference for Myc occupancy at promoters containing one of several described consensus sequences, CACGTG, in vivo. This study thus sheds light on the transcriptional regulatory networks mediated by Myc in vivo.
Collapse
Affiliation(s)
- Jonghwan Kim
- Section of Molecular Genetics and Microbiology, Center for Systems and Synthetic Biology, Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, Texas, United States of America
| | - Ji-hoon Lee
- Section of Molecular Genetics and Microbiology, Center for Systems and Synthetic Biology, Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, Texas, United States of America
| | - Vishwanath R. Iyer
- Section of Molecular Genetics and Microbiology, Center for Systems and Synthetic Biology, Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, Texas, United States of America
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
81
|
Woo CW, Tan F, Cassano H, Lee J, Lee KC, Thiele CJ. Use of RNA interference to elucidate the effect of MYCN on cell cycle in neuroblastoma. Pediatr Blood Cancer 2008; 50:208-12. [PMID: 17420990 DOI: 10.1002/pbc.21195] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
BACKGROUND MYCN amplification marks poor prognosis in neuroblastoma (NB) tumors. In evaluating the mechanisms by which retinoic acid (RA) or nerve growth factor (NGF) decrease cell number in MYCN amplified NB cells, we have identified a number of proteins whose expression either decreases (E2F, CDC2, CDK6, cyclin dependent kinase activity) or increases (p27) in association with a decrease in MYCN expression. However, it was still unclear which were MYCN dependent effects or not. PROCEDURE This study aimed to determine which changes in cell cycle gene expression are modulated as a consequence of the decrease in MYCN. We silenced MYCN expression using siRNA targeted to the coding region of MYCN. Then, by using siRNA transient transfections, we analyzed the change of cell cycle related genes and cell cycle in MYCN amplified NB cell lines. RESULTS We demonstrate that expression of MYCN can be suppressed by almost 60% in MYCN amplified NB cell using siRNAs targeted to MYCN. Functionally, the decrease in MYCN leads to a decrease in cells in the S-phase of the cell cycle. Decreases in MYCN are associated with decreases in E2F1-2 and ID2 along with increases in p27 protein levels by post-transcriptional modification. Moreover, we find that a decrease in MYCN is accompanied by a decrease in cdk6 mRNA and protein expression. CONCLUSIONS These results show that E2F and ID2 expression is associated with MYCN regulation and that cdk6 is a possible new transcriptional target of MYCN.
Collapse
Affiliation(s)
- Chan-Wook Woo
- Department of Pediatrics, College of Medicine, Korea University, Seoul 152-703, South Korea.
| | | | | | | | | | | |
Collapse
|
82
|
|
83
|
Dang CV. The interplay between MYC and HIF in the Warburg effect. ERNST SCHERING FOUNDATION SYMPOSIUM PROCEEDINGS 2008:35-53. [PMID: 18811052 DOI: 10.1007/2789_2008_088] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
c-MYC and the hypoxia-inducible factors (HIFs) are critical factors for tumorigenesis in a large number of human cancers. While the normal function of MYC involves the induction of cell proliferation and enhancement of cellular metabolism, the function of HIF, particularly HIF-1, involves adaptation to the hypoxic microenvironment, including activation of anaerobic glycolysis. When MYC-dependent tumors grow, the hypoxic tumor microenvironment elevates the levels of HIF, such that oncogenic MYC and HIF collaborate to enhance the cancer cell's metabolic needs through increased uptake of glucose and its conversion to lactate. HIF is also able to attenuate mitochondrial respiration through the induction of pyruvate dehydrogenase kinase 1 (PDK1), which in part accounts for the Warburg effect that describes the propensity for cancers to avidly take up glucose and convert it to lactate with the concurrent decrease in mitochondrial respiration. Target genes that are common to both HIF and MYC, such as PDK1, LDHA, HK2, and TFRC, are therefore attractive therapeutic targets, because their coordinate induction by HIF and MYC widens the therapeutic window between cancer and normal tissues.
Collapse
Affiliation(s)
- C V Dang
- Department of Medicine, Cell Biology, Molecular Biology and Genetics, Oncology and Pathology, Johns Hopkins University School of Medicine, Ross Research Building, Room 1032, 720 Rutland Avenue, Baltimore, MD 21205, USA.
| |
Collapse
|
84
|
Paquette J, Bessette B, Ledru E, Deal C. Identification of upstream stimulatory factor binding sites in the human IGFBP3 promoter and potential implication of adjacent single-nucleotide polymorphisms and responsiveness to insulin. Endocrinology 2007; 148:6007-18. [PMID: 17823260 DOI: 10.1210/en.2006-1729] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The actions of IGFs are regulated at various levels. One mechanism involves binding to IGF-binding protein-3 (IGFBP-3) for transport, thus governing bioavailability. IGFBP3 transcription is modulated by many hormones and agents that stimulate or inhibit growth. We have previously shown in pediatric and adult cohorts a correlation between IGFBP-3 serum levels and two single-nucleotide polymorphisms (SNPs) located within the minimal promoter (-202 A/C and -185 C/T). Functionality of these SNPs was further explored in hepatic adenocarcinoma-derived SK-HEP-1 cells using transient transfections of luciferase constructs driven by different haplotypes of the IGFBP3 promoter. Basal luciferase activity revealed a significant haplotype-dependent transcriptional activity (at nucleotides -202 and -185, AC > CC, P < 0.001; AC > CT, P < 0.001; AC > AT, P < 0.001). Insulin treatment produced a similar haplotype dependence of luciferase activity (AC > CC, P = 0.002; AC > CT, P < 0.001; AC > AT, P = 0.011). However, induction ratios (insulin/control) for CC and AT were significantly higher compared with AC and CT (CC > AC, P = 0.03; CC > CT, P = 0.03; AT > AC, P = 0.03; AT > CT, P = 0.04). Gel retardation assays were used to identify upstream stimulatory factor (USF-1 and USF-2) methylation-dependent binding to E-box motifs located between the SNPs. Mutation of the USF binding site resulted in a significant loss of insulin stimulation of luciferase activity in the transfection assay. Chromatin immunoprecipitation with anti-USF-1/-2 showed an enrichment of IGFBP3 promoter in insulin-treated cells compared with unstimulated cells. Bisulfite sequencing of genomic DNA revealed that CpG methylation in the region of USF binding was haplotype dependent. In summary, we report a methylation-dependent USF binding site influencing the basal and insulin-stimulated transcriptional activity of the IGFBP3 promoter.
Collapse
Affiliation(s)
- Jean Paquette
- Endocrine Service, Department of Pediatrics, Ste-Justine Hospital, 3175 Côte Ste-Catherine, Montreal, Quebec, Canada
| | | | | | | |
Collapse
|
85
|
Grskovic M, Chaivorapol C, Gaspar-Maia A, Li H, Ramalho-Santos M. Systematic identification of cis-regulatory sequences active in mouse and human embryonic stem cells. PLoS Genet 2007; 3:e145. [PMID: 17784790 PMCID: PMC1959362 DOI: 10.1371/journal.pgen.0030145] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2007] [Accepted: 07/10/2007] [Indexed: 01/06/2023] Open
Abstract
Understanding the transcriptional regulation of pluripotent cells is of fundamental interest and will greatly inform efforts aimed at directing differentiation of embryonic stem (ES) cells or reprogramming somatic cells. We first analyzed the transcriptional profiles of mouse ES cells and primordial germ cells and identified genes upregulated in pluripotent cells both in vitro and in vivo. These genes are enriched for roles in transcription, chromatin remodeling, cell cycle, and DNA repair. We developed a novel computational algorithm, CompMoby, which combines analyses of sequences both aligned and non-aligned between different genomes with a probabilistic segmentation model to systematically predict short DNA motifs that regulate gene expression. CompMoby was used to identify conserved overrepresented motifs in genes upregulated in pluripotent cells. We show that the motifs are preferentially active in undifferentiated mouse ES and embryonic germ cells in a sequence-specific manner, and that they can act as enhancers in the context of an endogenous promoter. Importantly, the activity of the motifs is conserved in human ES cells. We further show that the transcription factor NF-Y specifically binds to one of the motifs, is differentially expressed during ES cell differentiation, and is required for ES cell proliferation. This study provides novel insights into the transcriptional regulatory networks of pluripotent cells. Our results suggest that this systematic approach can be broadly applied to understanding transcriptional networks in mammalian species. Embryonic stem cells have two remarkable properties: they can proliferate very rapidly, and they can give rise to all of the body's cell types. Understanding how gene activity is regulated in embryonic stem cells will be an important step towards therapeutic applications. The activity of genes is regulated by proteins called transcription factors, which bind to stretches of DNA sequences that act as on or off switches. We identified genes that are active in mouse embryonic stem cells but not in differentiated cells. We reasoned that if these genes have similar patterns of activity, they may be regulated by the same transcription factors. We therefore developed a computational approach that takes information on gene activity and predicts DNA sequences that may act as switches. Using this approach, we discovered new DNA switches that regulate gene activity in mouse and human embryonic stem cells. Furthermore, we identified a transcription factor that binds to one of these DNA switches and is important for the rapid proliferation of embryonic stem cells. Our approach sheds light on the genetic regulation of embryonic stem cells and will be broadly applicable to questions of how gene activity is regulated in other cell types of interest.
Collapse
Affiliation(s)
- Marica Grskovic
- Institute for Regeneration Medicine, University of California San Francisco, San Francisco, California, United States of America
- Diabetes Center, University of California San Francisco, San Francisco, California, United States of America
| | - Christina Chaivorapol
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, California, United States of America
- California Institute for Quantitative Biomedical Research, University of California San Francisco, San Francisco, California, United States of America
- Graduate Program in Biological and Medical Informatics; University of California San Francisco, San Francisco, California, United States of America
| | - Alexandre Gaspar-Maia
- Institute for Regeneration Medicine, University of California San Francisco, San Francisco, California, United States of America
- Diabetes Center, University of California San Francisco, San Francisco, California, United States of America
- Doctoral Program in Biomedicine and Experimental Biology, Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
| | - Hao Li
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, California, United States of America
- California Institute for Quantitative Biomedical Research, University of California San Francisco, San Francisco, California, United States of America
- Graduate Program in Biological and Medical Informatics; University of California San Francisco, San Francisco, California, United States of America
- * To whom correspondence should be addressed. E-mail: (HL); (MRS)
| | - Miguel Ramalho-Santos
- Institute for Regeneration Medicine, University of California San Francisco, San Francisco, California, United States of America
- Diabetes Center, University of California San Francisco, San Francisco, California, United States of America
- * To whom correspondence should be addressed. E-mail: (HL); (MRS)
| |
Collapse
|
86
|
Koppen A, Ait-Aissa R, Koster J, van Sluis PG, Ora I, Caron HN, Volckmann R, Versteeg R, Valentijn LJ. Direct regulation of the minichromosome maintenance complex by MYCN in neuroblastoma. Eur J Cancer 2007; 43:2413-22. [PMID: 17826980 DOI: 10.1016/j.ejca.2007.07.024] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2007] [Accepted: 07/18/2007] [Indexed: 12/23/2022]
Abstract
The c-Myc and MYCN oncogenes strongly induce cell proliferation. Although a limited series of cell cycle genes were found to be induced by the myc transcription factors, it is still unclear how they mediate the proliferative phenotype. We therefore analysed a neuroblastoma cell line with inducible MYCN expression. We found that all members of the minichromosome maintenance complex (MCM2-7) and MCM8 and MCM10 were up-regulated by MYCN. Expression profiling of 110 neuroblastoma tumours revealed that these genes strongly correlated with MYCN expression in vivo. Extensive chromatin immunoprecipitation experiments were performed to investigate whether the MCM genes were primary MYCN targets. MYCN was bound to the proximal promoters of the MCM2 to -8 genes. These data suggest that MYCN stimulates the expression of not only MCM7, which is a well defined MYCN target gene, but also of the complete minichromosome maintenance complex.
Collapse
Affiliation(s)
- Arjen Koppen
- Department of Human Genetics, Academic Medical Center, University of Amsterdam, P.O. Box 22700, 1100 DE Amsterdam, The Netherlands
| | | | | | | | | | | | | | | | | |
Collapse
|
87
|
Mahony S, Auron PE, Benos PV. Inferring protein-DNA dependencies using motif alignments and mutual information. ACTA ACUST UNITED AC 2007; 23:i297-304. [PMID: 17646310 DOI: 10.1093/bioinformatics/btm215] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
MOTIVATION Mutual information can be used to explore covarying positions in biological sequences. In the past, it has been successfully used to infer RNA secondary structure conformations from multiple sequence alignments. In this study, we show that the same principles allow the discovery of transcription factor amino acids that are coevolving with nucleotides in their DNA-binding targets. RESULTS Given an alignment of transcription factor binding domains, and a separate alignment of their DNA target motifs, we demonstrate that mutually covarying base-amino acid positions may indicate possible protein-DNA contacts. Examples explored in this study include C2H2 zinc finger, homeodomain and bHLH DNA-binding motif families, where a number of known base-amino acid contacting positions are identified. Mutual information analyses may aid the prediction of base-amino acid contacting pairs for particular transcription factor families, thereby yielding structural insights from sequence information alone. Such inference of protein-DNA contacting positions may guide future experimental studies of DNA recognition.
Collapse
Affiliation(s)
- Shaun Mahony
- Department of Computational Biology, School of Medicine, University of Pittsburgh, Pittsburgh, USA.
| | | | | |
Collapse
|
88
|
Alawi F, Lee MN. DKC1 is a direct and conserved transcriptional target of c-MYC. Biochem Biophys Res Commun 2007; 362:893-8. [PMID: 17822678 DOI: 10.1016/j.bbrc.2007.08.071] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2007] [Accepted: 08/13/2007] [Indexed: 10/22/2022]
Abstract
Recent studies have identified upregulation of the dyskeratosis congenita 1 (DKC1) gene in association with various sporadic cancers. Whole genome analyses have suggested that DKC1 may be regulated by the c-MYC oncoprotein. c-MYC is among the most commonly deregulated proteins in human cancer. However, controversy remains as to whether DKC1 is a direct or indirect target of c-MYC. Using human and rodent cell lines expressing conditionally active c-MYC transgenes, we show that c-MYC activation is associated with relatively acute induction of DKC1 expression. Chromatin immunoprecipitation assays reveal c-MYC binding to two distinct, phylogenetically conserved regions within the DKC1 promoter and intron one. We further demonstrate that c-MYC-mediated Dkc1 transcription can occur in the absence of de novo protein synthesis. These data indicate that DKC1 is a direct and conserved transcriptional target of c-MYC, and suggest a biologic basis for DKC1 overexpression in neoplasia.
Collapse
Affiliation(s)
- Faizan Alawi
- School of Dental Medicine, University of Pennsylvania, Department of Pathology, 240 South 40th Street, Philadelphia, PA 19104, USA.
| | | |
Collapse
|
89
|
Zippo A, De Robertis A, Serafini R, Oliviero S. PIM1-dependent phosphorylation of histone H3 at serine 10 is required for MYC-dependent transcriptional activation and oncogenic transformation. Nat Cell Biol 2007; 9:932-44. [PMID: 17643117 DOI: 10.1038/ncb1618] [Citation(s) in RCA: 215] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2007] [Accepted: 06/27/2007] [Indexed: 12/12/2022]
Abstract
The serine/threonine kinase human Pim1 (hereafter PIM1) cooperates with human c-Myc (hereafter MYC) in cell cycle progression and tumorigenesis. However, the nature of this cooperation is still unknown. Here we show that, after stimulation with growth factor, PIM1 forms a complex with the dimer of MYC with MAX (Myc-associated factor X) via the MYC BoxII (MBII) domain. MYC recruits PIM1 to the E boxes of the MYC-target genes FOSL1 (FRA-1) and ID2, and PIM1 phosphorylates serine 10 of histone H3 (H3S10) on the nucleosome at the MYC-binding sites, contributing to their transcriptional activation. MYC and PIM1 colocalize at sites of active transcription, and expression profile analysis revealed that PIM1 contributes to the regulation of 20% of the MYC-regulated genes. Moreover, PIM1-dependent H3S10 phosphorylation contributes to MYC transforming capacity. These results establish a new function for PIM1 as a MYC cofactor that phosphorylates the chromatin at MYC-target loci and suggest that nucleosome phosphorylation, at E boxes, contributes to MYC-dependent transcriptional activation and cellular transformation.
Collapse
Affiliation(s)
- Alessio Zippo
- Dipartimento di Biologia Molecolare Università di Siena, Via Fiorentina 1, 53100 Siena, Italy
| | | | | | | |
Collapse
|
90
|
Reiter F, Hartl M, Karagiannidis AI, Bister K. WS5, a direct target of oncogenic transcription factor Myc, is related to human melanoma glycoprotein genes and has oncogenic potential. Oncogene 2007; 26:1769-79. [PMID: 16964280 DOI: 10.1038/sj.onc.1209975] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2006] [Revised: 08/04/2006] [Accepted: 08/08/2006] [Indexed: 01/24/2023]
Abstract
We have isolated a gene (WS5) that is specifically expressed at the mRNA and protein level in avian fibroblasts transformed by the v-myc oncogene of avian acute leukemia virus MC29. In a conditional cell transformation system, WS5 gene expression was tightly correlated with v-myc activation. The WS5 gene contains 11 exons, encoding a 733-amino acid protein with a transmembrane region and a polycystic kidney disease (PKD) domain. Near the transcriptional start site, the WS5 promoter contains a cluster of four binding sites for the Myc-Max complex and a binding site for transcription factor C/EBPalpha. Electrophoretic mobility shift assays and chromatin immunoprecipitation showed that Myc, Max and C/EBPalpha bind specifically to these sites. Functional promoter analyses revealed that both the Myc-binding site cluster and the C/EBPalpha-binding site are essential for strong transcriptional activation, and that Myc and C/EBPalpha synergistically activate the WS5 promoter. Ectopic expression of WS5 led to cell transformation documented by anchorage-independent growth. The human melanoma antigen Pmel17, a type I transmembrane glycoprotein, is the mammalian protein with the highest amino acid sequence identity (38%) to WS5. The Pmel17 gene is regulated by the MITF protein, a bHLHZip transcription factor with DNA binding specificities similar to those of Myc/Max. WS5 is also related to human glycoprotein GPNMB expressed in metastatic melanoma cells and implicated in the progression of brain and liver tumors.
Collapse
Affiliation(s)
- F Reiter
- Institute of Biochemistry and Center for Molecular Biosciences Innsbruck, University of Innsbruck, Innsbruck, Austria
| | | | | | | |
Collapse
|
91
|
Pezzolesi MG, Zbuk KM, Waite KA, Eng C. Comparative genomic and functional analyses reveal a novel cis-acting PTEN regulatory element as a highly conserved functional E-box motif deleted in Cowden syndrome. Hum Mol Genet 2007; 16:1058-71. [PMID: 17341483 DOI: 10.1093/hmg/ddm053] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Germline mutations in PTEN, encoding a phosphatase on 10q23, cause Cowden syndrome (CS) and Bannayan-Riley-Ruvalcaba syndrome (BRRS). Approximately, 10% of CS-related PTEN mutations occur in the PTEN promoter and 11% of BRRS-related mutations include large deletions, often favoring the gene's 5' end (exon 1, promoter). In order to better understand the mechanism(s) underlying the deregulation of PTEN in these syndromes, it is important that functional cis-regulatory elements be identified. We employed a comparative genomic approach combined with molecular genetic techniques to identify a highly conserved sequence upstream of the PTEN promoter, sharing 80% sequence identity among Homo sapiens, Mus musculus and Rattus norvegicus. Within this region, we identified a canonical E-box sequence (CACGTG) located at position -2181 to -2176, approximately 800 bp upstream of the PTEN core promoter and more than 1.1 kb upstream of its minimal promoter region (located at -958 to -821). In vitro assays suggest that this motif is recognized by members of the basic region-helix-loop-helix-leucine-zipper (bHLH-LZ) transcription factor family, USF1 and USF2, and reporter assays indicate that this novel E-box is involved in mediating PTEN transcriptional activation. Four of 30 CS/CS-like patients, without previously identified PTEN mutations, were found with germline deletions of the E-box element. Of the four, three had deletions stretching to exon 1, but not 3' of it; importantly, one classic CS patient harbored a germline deletion localizing to this E-box region, further affirming the role of this element in PTEN's regulation and deregulation, and its contribution to the pathogenesis of CS.
Collapse
Affiliation(s)
- Marcus G Pezzolesi
- Genomic Medicine Institute, Cleveland Clinic Foundation, 9500 Euclid Avenue, NE-50, Cleveland, OH 44195, USA
| | | | | | | |
Collapse
|
92
|
Abstract
EBV-associated malignancies remain a considerable problem in HIV-infected individuals, even in the era of HAART. Although EBV is a common factor, each disease has a unique pathogenesis. Study of these diseases reveals the viral proteins expressed in the malignancies that might contribute to the development of the disease as well as the molecular basis for pathogenesis. It is likely that this knowledge will contribute to the development of novel therapeutics that will result in more favorable outcomes in the future.
Collapse
Affiliation(s)
- Scott M Long
- Department of Biochemistry, St.Jude Children's Research Hospital, Memphis, TN, USA
| | | |
Collapse
|
93
|
Bayele HK, McArdle H, Srai SKS. Cis and trans regulation of hepcidin expression by upstream stimulatory factor. Blood 2006; 108:4237-45. [PMID: 16902156 DOI: 10.1182/blood-2005-07-027037] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Hepcidin is the presumed negative regulator of systemic iron levels; its expression is induced in iron overload, infection, and inflammation, and by cytokines, but is suppressed in hypoxia and anemia. Although the gene is exquisitely sensitive to changes in iron status in vivo, its mRNA is devoid of prototypical iron-response elements, and it is therefore not obvious how it may be regulated by iron flux. The multiplicity of effectors of its expression also suggests that the transcriptional circuitry controlling the gene may be very complex indeed. In delineating enhancer elements within both the human and mouse hepcidin gene promoters, we show here that members of the basic helix-loop-helix leucine zipper (bHLH-ZIP) family of transcriptional regulators control hepcidin expression. The upstream stimulatory factor 2 (USF2), previously linked to hepcidin through gene ablation in inbred mice, appears to exert a polar or cis-acting effect, while USF1 may act in trans to control hepcidin expression. In mice, we found variation in expression of both hepcidin genes, driven by these transcription factors. In addition, c-Myc and Max synergize to control the expression of this hormone, supporting previous findings for the role of this couple in regulating iron metabolism. Transcriptional activation by both USF1/USF2 and c-Myc/Max heterodimers occurs through E-boxes within the promoter. Site-directed mutagenesis of these elements rendered the promoter unresponsive to USF1/USF2 or c-Myc/Max. Dominant-negative mutants of USF1 and USF2 reciprocally attenuated promoter transactivation by both wild-type USF1 and USF2. Promoter occupancy by the transcription factors was confirmed by DNA-binding and chromatin immunoprecipitation assays. Taken together, it would appear that synergy between these members of the bHLH-ZIP family of transcriptional regulators may subserve an important role in iron metabolism as well as other pathways in which hepcidin may be involved.
Collapse
Affiliation(s)
- Henry K Bayele
- Department of Biochemistry & Molecular Biology, University College London, NW3 2PF, United Kingdom
| | | | | |
Collapse
|
94
|
Watt F, Watanabe R, Yang W, Agren N, Arvidsson Y, Funa K. A novel MASH1 enhancer with N-myc and CREB-binding sites is active in neuroblastoma. Cancer Gene Ther 2006; 14:287-96. [PMID: 17124508 DOI: 10.1038/sj.cgt.7701012] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Neuroblastoma is one of the most common solid tumors in childhood. With the aim of developing a targeting vector for neuroblastoma, we cloned and characterized an enhancer in the 5'-flanking regions of the MASH1 gene by a random-trap method from a 36 kb cosmid DNA. The enhancer-containing clone was identified by the expression of GFP when transfected into neuroblastoma cell lines. The enhancer-luciferase activity is higher in neuroblastoma cell lines, IMR32, BE2 and SH-SY5Y, compared with those in non-neuroblastoma cell lines, U1242 glioma, N417 small cell lung cancer and EOMA hemangioma. The core enhancer was determined within a 0.2 kb fragment, yielding three- to fourfold higher activity than that of the MASH1 promoter alone in IMR32 and BE2. This area possesses GATA- and CREB-binding sites, as well as the E-box. EMSA on this area demonstrated that CREB/ATF could bind the DNA. Chromatin immunoprecipitation assay revealed that N-myc, CREB, and co-activators CBP and PCAF, but not HDAC1, are bound to the core enhancer at the same time as the co-activators and N-myc bind to the promoter. This supports the idea that the commonly overexpressed genes HASH1 and N-myc are regulated in concert, confirming their importance as prognostic markers or targets for therapy.
Collapse
Affiliation(s)
- F Watt
- Children's Cancer Institute Australia for Medical Research, Randwick, New South Wales, Australia
| | | | | | | | | | | |
Collapse
|
95
|
Shchors K, Shchors E, Rostker F, Lawlor ER, Brown-Swigart L, Evan GI. The Myc-dependent angiogenic switch in tumors is mediated by interleukin 1beta. Genes Dev 2006; 20:2527-38. [PMID: 16980582 PMCID: PMC1578676 DOI: 10.1101/gad.1455706] [Citation(s) in RCA: 148] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Although induction of blood vessel growth is acknowledged as a pivotal requirement for the evolution of macroscopic tumors, the events that trigger onset of tumor angiogenesis remain largely obscure. The pervasive Myc oncoprotein is itself a potent inducer of angiogenesis in a wide range of tissues. We have used a reversibly switchable mouse transgenic model of Myc-dependent beta-cell carcinogenesis to delineate the kinetics and causal sequence of angiogenic processes following acute Myc activation. We show that onset of endothelial cell proliferation is induced shortly after Myc-induced cell cycle entry of beta cells. Endothelial cell proliferation is not indirectly induced by local tissue hypoxia but instead via a diffusible angiogenic signal produced by Myc-expressing beta cells. This signal triggers the release of pre-existing, sequestered VEGF from the islet extracellular matrix, that then homes to the endothelial compartment where it induces endothelial cell proliferation. Myc activation in beta cells rapidly induces expression and release of the proinflammatory cytokine interleukin 1beta (IL-1beta). We show that IL-1beta is the principal effector downstream of Myc responsible for triggering rapid onset of islet angiogenesis. Together, our data delineate a complete pathway in vivo by which the highly pleiotropic Myc oncoproteins elicits coexpansion of the vascular compartment during tumorigenic progression.
Collapse
Affiliation(s)
- Ksenya Shchors
- Cancer Research Institute and Department of Cellular and Molecular Pharmacology, University of California at San Francisco Comprehensive Cancer Center, 94143, USA
| | | | | | | | | | | |
Collapse
|
96
|
Wang YW, Chang HS, Lin CH, Yu WCY. HPV-18 E7 conjugates to c-Myc and mediates its transcriptional activity. Int J Biochem Cell Biol 2006; 39:402-12. [PMID: 17070091 DOI: 10.1016/j.biocel.2006.09.006] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2006] [Revised: 09/04/2006] [Accepted: 09/17/2006] [Indexed: 12/01/2022]
Abstract
Several reports in the literature have indicated that the E6 not only elevates the level of c-Myc level but that the protein also associates with the Myc complex and activates Myc-responsive genes. There would seem to be a mechanism by which this oncogene can modulate cell proliferation and differentiation. Furthermore, an increase in c-Myc levels has also observed during ectopic expression of HPV E7 alone. Using the yeast two-hybrid system, we further found that the c-Myc interacts and forms a specific complex with HPV-16E7. In this study, we have demonstrated that E7 does indeed interact with c-Myc and a sequential deletion analysis of E7 maps the c-Myc interaction site to the carboxyl-terminal region. We determined two HPV-18 E7 binding sites on c-Myc involving the amino acids regions 1-100 and 367-439. The interaction of the high-risk type HPV E7 with c-Myc can augment c-Myc transactivation activity but this does not occur with low-risk type HPV E7. Deletion within the Cys-X-X-Cys repeat motif at the C-terminus of HPV-18 E7 leads to a lost of association with c-Myc and also abolishes the enhancement of c-Myc's transactivation activity. Furthermore, the interaction of HPV-18 E7 with c-Myc functionally promotes c-Myc's DNA-binding ability. Using the hTERT promoter as a model, enhanced c-Myc binding ability to the hTERT promoter as measured by immunoprecipitation assay was observed and occurred in an E7 dose-dependent manner. Taken together, these results provide significant new insights into the association of c-Myc with E7 and the possible involvement of high-risk E7 in oncogenesis.
Collapse
Affiliation(s)
- Yi-Wei Wang
- National Health Research Institutes, 35, Keyan Road, Zhunan Town, Miaoli County 350, Taiwan, ROC
| | | | | | | |
Collapse
|
97
|
Frye M, Watt FM. The RNA methyltransferase Misu (NSun2) mediates Myc-induced proliferation and is upregulated in tumors. Curr Biol 2006; 16:971-81. [PMID: 16713953 DOI: 10.1016/j.cub.2006.04.027] [Citation(s) in RCA: 217] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2005] [Revised: 04/05/2006] [Accepted: 04/05/2006] [Indexed: 12/22/2022]
Abstract
BACKGROUND Myc is a well-known proto-oncogene, but its functions in normal tissue remain enigmatic. In adult epidermis, Myc stimulates exit from the stem cell compartment, decreasing cell adhesion and, by an unknown mechanism, triggering proliferation of transit-amplifying cells. RESULTS We describe a novel direct target gene of Myc, Misu, that is expressed at low levels in normal epidermis but is upregulated on Myc activation. Misu encodes a previously uncharacterized RNA methyltransferase with high sequence homology to NSun2 and defines a new family of mammalian SUN-domain-containing proteins. The nucleolar localization of Misu is dependent on RNA polymerase III transcripts, and knockdown of Misu decreases nucleolar size. In G2 phase of the cell cycle, Misu is found in cytoplasmic vesicles, and it decorates the spindle in mitosis. Misu expression is highest in S phase, and RNAi constructs block Myc-induced keratinocyte proliferation and cell-cycle progression. Misu is expressed at low levels in normal tissues, but is highly induced in a range of tumors. Growth of human squamous-cell-carcinoma xenografts is decreased by Misu RNAi. CONCLUSIONS Misu is a novel downstream Myc target that methylates RNA polymerase III transcripts. Misu mediates Myc-induced cell proliferation and growth and is a potential target for cancer therapies.
Collapse
Affiliation(s)
- Michaela Frye
- Keratinocyte Laboratory, Cancer Research UK London Research Institute, 44 Lincoln's Inn Fields, London WC2A 3PX, United Kingdom.
| | | |
Collapse
|
98
|
Abstract
The Myc family proteins are potent oncogenes that can activate and repress a very large number of cellular target genes. The amino terminus of Myc contains a transactivation domain that can recruit a number of nuclear cofactors with diverse activities. Functional studies link transactivation to the ability of Myc to promote normal cell proliferation and for oncogenic transformation. The biochemical mechanism of Myc-mediated transactivation has revealed a wide range of effects on chromatin and basal transcription. This review summarizes recent advances in understanding the function of Myc as a transcriptional activator and the role of this activity in Myc biological activities.
Collapse
Affiliation(s)
- Victoria H Cowling
- Department of Pharmacology, Dartmouth Medical School, One Medical Center Drive, Lebanon, NH 03756, USA
| | | |
Collapse
|
99
|
Nair SK, Burley SK. Structural aspects of interactions within the Myc/Max/Mad network. Curr Top Microbiol Immunol 2006; 302:123-43. [PMID: 16620027 DOI: 10.1007/3-540-32952-8_5] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Recently determined structures of a number of Myc family proteins have provided significant insights into the molecular nature of complex assembly and DNA binding. These structures illuminate the details of specific interactions that govern the assembly of nucleoprotein complexes and, in doing so, raise more questions regarding Myc biology. In this review, we focus on the lessons provided by these structures toward understanding (1) interactions that govern transcriptional repression by Mad via the Sin3 pathway, (2) homodimerization of Max, (3) heterodimerization of Myc-Max and Mad-Max, and (4) DNA recognition by each of the Max-Max, Myc-Max, and Mad-Max dimers.
Collapse
Affiliation(s)
- S K Nair
- Department of Biochemistry and Center for Biophysics & Computational Biology, University of Illinois at Urbana-Champaign, 600 S. Mathews Avenue, Urbana, IL 61801, USA.
| | | |
Collapse
|
100
|
Abstract
Deregulation of Myc expression is a common feature in cancer and leads to tumor formation in experimental model systems. There are several potential barriers that Myc must overcome in order to promote tumorigenesis, including its propensity to sensitize many cell types to apoptotic cell death. Myc activities appear also to be constrained and fine-tuned by a set of proteins that include the Mxd (formerly named Mad) family and the related protein Mnt. Like Myc-family proteins, Mxd and Mnt proteins use Max as a cofactor for DNA binding. But Mnt-Max and Mxd-Max complexes are transcriptional repressors and can antagonize the transcriptional activation function of Myc-Max. Studies examining the relationship between Myc, Mxd and Mnt proteins suggest that whereas Mnt plays a general role as a Myc antagonist, Mxd proteins have more specialized roles as Myc antagonist that is probably related to their more restricted expression patterns. The interplay between these proteins is postulated to fine-tune Myc activity for cell-cycle entry and exit, proliferation rate and apoptosis.
Collapse
Affiliation(s)
- C William Hooker
- Shriners Hospitals for Children and Department of Cell and Developmental Biology, Oregon Health and Science University, 3101 SW Sam Jackson Park Rd, Portland, OR 97239, USA
| | | |
Collapse
|