51
|
Morrisey EE, Ip HS, Tang Z, Lu MM, Parmacek MS. GATA-5: a transcriptional activator expressed in a novel temporally and spatially-restricted pattern during embryonic development. Dev Biol 1997; 183:21-36. [PMID: 9119112 DOI: 10.1006/dbio.1996.8485] [Citation(s) in RCA: 191] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Members of the GATA family of zinc finger transcription factors regulate critical steps of cellular differentiation during vertebrate development. In the studies described in this report, we have isolated and functionally characterized the murine GATA-5 cDNA and protein and defined the temporal and spatial pattern of GATA-5 gene expression during mammalian development. The amino terminus of the mouse GATA-5 protein shares high level amino acid sequence identity with the murine GATA-4 and -6 proteins, but not with other members of the GATA family. GATA-5 binds to the functionally important CEF-1 nuclear protein binding site in the cardiac-specific slow/cardiac troponin C (cTnC) transcriptional enhancer and overexpression of GATA-5 transactivates the cTnC enhancer in noncardiac muscle cell lines. During embryonic and postnatal development, the pattern of GATA-5 gene expression differs significantly from that of other GATA family members. In the primitive streak embryo, GATA-5 mRNA is detectable in the precardiac mesoderm. Within the embryonic heart, the GATA-5 gene is expressed within the atrial and ventricular chambers (ED 9.5), becomes restricted to the atrial endocardium (ED 12.5), and is subsequently not expressed in the heart during late fetal and postnatal development. Moreover, coincident with the earliest steps in lung development, only the GATA-5 gene is expressed within the pulmonary mesenchyme. Finally, the GATA-5 gene is expressed in tissue-restricted subsets of smooth muscle cells (SMCs), including bronchial SMCs and SMCs in the bladder wall. These data are consistent with a model in which GATA-5 performs a unique temporally and spatially restricted function in the embryonic heart and lung. Moreover, these data suggest that GATA-5 may play an important role in the transcriptional program(s) that underlies smooth muscle cell diversity.
Collapse
Affiliation(s)
- E E Morrisey
- Department of Medicine, University of Chicago, Illinois 60637, USA
| | | | | | | | | |
Collapse
|
52
|
Lin MH, Bour BA, Abmayr SM, Storti RV. Ectopic expression of MEF2 in the epidermis induces epidermal expression of muscle genes and abnormal muscle development in Drosophila. Dev Biol 1997; 182:240-55. [PMID: 9070325 DOI: 10.1006/dbio.1996.8484] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Myocyte-specific enhancer-binding factor 2 (MEF2) is a myogenic regulatory factor in vertebrates and Drosophila. Whereas the role of MEF2 in regulating vertebrate myogenesis and muscle genes has been extensively studied, little is known of the role of MEF2 in regulating Drosophila myogenesis. We have shown in a recent analysis of the regulation of the Drosophila Tropomyosin I (TmI) gene in transgenic flies that MEF2 is a positive regulator of TmI expression in the somatic body-wall muscles of embryos, larvae, and adults. To understand further the role of MEF2 in myogenesis and test the role of MEF2 in regulating TmI expression, we have used the yeast GAL4/UAS system to generate embryos in which MEF2 is ectopically expressed in tissues where it is not normally expressed or embryos in which MEF2 is overexpressed in the mesoderm and muscles. We observe that ectopic expression of MEF2 in the epidermis and the ventral midline cells in embryos activates the expression of TmI and other muscle genes in these tissues and that this activation is stage-dependent suggesting a requirement for additional factors. Furthermore, ectopic expression of MEF2 in the epidermis results in a decrease in the expression of signaling molecules in the epidermis and a failure of the embryo to properly form body-wall muscles. These results indicate that MEF2 can function out of context in the epidermis to induce the expression of muscle genes and interfere with a requirement for the epidermis in muscle development. We also find that the level of MEF2 in the mesoderm and/or muscles in embryos is critical to body-wall muscle formation; however, no effect is observed on the development of the visceral muscle or dorsal vessel.
Collapse
Affiliation(s)
- M H Lin
- Department of Biochemistry M/C536, University of Illinois College of Medicine, Chicago 60612, USA
| | | | | | | |
Collapse
|
53
|
Ornatsky OI, McDermott JC. MEF2 protein expression, DNA binding specificity and complex composition, and transcriptional activity in muscle and non-muscle cells. J Biol Chem 1996; 271:24927-33. [PMID: 8798771 DOI: 10.1074/jbc.271.40.24927] [Citation(s) in RCA: 76] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Tissue-specific gene expression can be mediated by complex transcriptional regulatory mechanisms. Based on the dichotomy of the ubiquitous distribution of the myocyte enhancer factor 2 (MEF2) gene mRNAs compared to their cell type-restricted activity, we investigated the basis for their tissue specificity. Electrophoretic mobility shift assays using the muscle creatine kinase MEF2 DNA binding site as a probe showed that HeLa, Schneider, L6E9 muscle, and C2C12 muscle cells have a functional MEF2 binding activity that is indistinguishable based on competition analysis. Interestingly, chloramphenicol acetyltransferase reporter assays showed MEF2 site-dependent trans-activation in myogenic C2C12 cells but no trans-activation by the endogenous MEF2 proteins in HeLa cells. By immunofluorescence, we detected abundant nuclear localized MEF2A and MEF2D protein expression in HeLa cells and C2C12 muscle cells. Using immuno-gel shift analysis and also co-immunoprecipitation studies, we show that the predominant MEF2 DNA binding complex bound to MEF2 sites from either the muscle creatine kinase or c-jun regulatory regions in C2C12 muscle cells is comprised of a MEF2A homodimer, whereas in HeLa cells, it is a MEF2A:MEF2D heterodimer. Thus, the presence of MEF2 DNA binding complexes is not necessarily coupled with trans-activation of target genes. The ability of the MEF2 proteins to activate transcription in vivo correlates with the specific dimer composition of the DNA binding complex and the cellular context.
Collapse
Affiliation(s)
- O I Ornatsky
- Departments of Kinesiology and Biology, Faculty of Pure and Applied Science, York University, Toronto, Ontario M3J 1P3, Canada
| | | |
Collapse
|
54
|
Ritchie ME. Characterization of Human B Creatine Kinase Gene Regulation in the Heart in Vitro and in Vivo. J Biol Chem 1996. [DOI: 10.1016/s0021-9258(19)78317-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
55
|
Qian J, Kumar A, Szucsik JC, Lessard JL. Tissue and developmental specific expression of murine smooth muscle gamma-actin fusion genes in transgenic mice. Dev Dyn 1996; 207:135-44. [PMID: 8906417 DOI: 10.1002/(sici)1097-0177(199610)207:2<135::aid-aja2>3.0.co;2-i] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Smooth muscle gamma-actin (SMGA) is an excellent marker of smooth muscle differentiation because it is essentially restricted to smooth muscle. As a first step toward unraveling the mechanisms underlying smooth muscle development and differentiation, we have examined the tissue-specific and developmental expression patterns of six constructs carrying portions of the murine SMGA gene linked to chloramphenicol acetyltransferase (CAT) in stable lines of transgenic mice. Based on the transgenic studies most, if not all, of the regulatory elements necessary for proper spatial and temporal expression of SMGA are present within a 13.7 kb segment of the SMGA gene containing 4.9 kb of upstream sequence, exon 1, intron 1, and a portion of exon 2 up to the start codon for translation. A second construct (SMGA11.6CAT) that lacks the distal 2.1 kb of upstream sequence but is otherwise identical to SMGA13.7CAT shows a similar level of smooth muscle-specific CAT activity. However, SMGA9.3CAT fusion gene containing only 571 bp of 5' flanking sequence, but otherwise identical to SMGA13.7CAT, and SMGA6.0CAT containing only the 4.9 kb upstream sequence, exon 1, and a miniintron 1 show a more than a 100-fold reduction of CAT activity in most smooth muscle-rich tissues. Furthermore, removal of most or all of intron 1 from a transgene with 571 bp of upstream sequence (SMGA2.0 CAT and SMGA0.6CAT) results in a near-complete or complete loss of activity, respectively, in all tissues. Overall, the studies suggest that upstream elements between -2.7 kb and -571 bp and elements within intron 1 are required for high levels of SMGA gene expression in an appropriate temporal-spatial fashion.
Collapse
Affiliation(s)
- J Qian
- Division of Developmental Biology, Children's Hospital Medical Center, College of Medicine, University of Cincinnati, Ohio 45229-3039, USA
| | | | | | | |
Collapse
|
56
|
Affiliation(s)
- S K Goswami
- Department of Anatomy and Cell Biology, State University of New York Health Science Center at Brooklyn 11203, USA
| | | |
Collapse
|
57
|
Ziober BL, Kramer RH. Identification and characterization of the cell type-specific and developmentally regulated alpha7 integrin gene promoter. J Biol Chem 1996; 271:22915-22. [PMID: 8798472 DOI: 10.1074/jbc.271.37.22915] [Citation(s) in RCA: 78] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Expression of alpha7 is mainly confined to skeletal and cardiac muscle in which it appears to be the major laminin-binding integrin. When myoblasts differentiate to myotubes, alpha7 mRNA and protein expression is up-regulated. To explore the mechanisms involved in the tissue-specific and developmentally regulated expression of alpha7, we isolated and characterized a genomic clone containing approximately 2.8 kilobase pairs (kb) of the 5'-flanking region of the murine alpha7 gene. The 5'-flanking region lacks both TATA and CCAAT boxes but contains five putative Sp1 binding sites located in a CpG island. Two transcription start sites, located near an initiator-like sequence, are 176 and 170 base pairs upstream of the translation start site. There are numerous binding sites for developmental and cell type-specific transcription factors, including AP-1, AP-2, GATA, and several AT-rich sites. There are also eight consensus E-boxes that bind the basic helix-loop-helix family of muscle-specific transcription factors. The approximately 2.8-kb 5'-flanking region was an active promoter in C2C12 skeletal myoblasts and exhibited increased expression upon conversion to myotubes but was inactive in HtLM2 cells, a mouse breast carcinoma epithelial cell line that does not express alpha7. Deletion analysis identified both positive and negative regulatory elements within the approximately 2.8-kb fragment. In 10T1/2 fibroblasts the approximately 2.8-kb alpha7 promoter was trans-activated by the myogenic basic helix-loop-helix proteins myogenin and MyoD but not by MRF4 and myf5. These results suggest that muscle-specific transcription factors play a role in regulating the cell-type expression of the alpha7 gene during development.
Collapse
Affiliation(s)
- B L Ziober
- Department of Stomatology, University of California, San Francisco, California 94143-0512, USA
| | | |
Collapse
|
58
|
Wang GF, Nikovits W, Schleinitz M, Stockdale FE. Atrial chamber-specific expression of the slow myosin heavy chain 3 gene in the embryonic heart. J Biol Chem 1996; 271:19836-45. [PMID: 8702693 DOI: 10.1074/jbc.271.33.19836] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
The quail slow myosin heavy chain 3 (slow MyHC 3) gene is expressed in the developing heart and in slow muscles of the developing limb. It is first expressed in the pulsatile cardiac tube in the embryo, and as the heart chamberizes its expression becomes restricted to the atria. To identify regulatory elements responsible for atrial-specific expression, the 5' upstream region of slow MyHC 3 gene was investigated. An atrial regulatory domain (ARD1) between -840 and -680 acts as an atrial cell-specific enhancer in primary cardiocyte cultures. ARD1 also specifies atrial-specific expression in vivo when the ARD1/heterologous promoter was introduced into developing chick embryos by a replication-competent retroviral vector. ARD1 is the first atrial cell-specific enhancer to be identified. Fine deletion and mutation analysis within ARD1 defined a 40-base pair vitamin D3 receptor-like element that controls atrial cell-specific expression of the slow MyHC 3 gene by inhibiting its expression in ventricular cardiocytes.
Collapse
Affiliation(s)
- G F Wang
- Department of Medicine, Stanford University School of Medicine, Stanford, California 94305-5306, USA
| | | | | | | |
Collapse
|
59
|
Nikovits W, Wang GF, Feldman JL, Miller JB, Wade R, Nelson L, Stockdale FE. Isolation and characterization of an avian slow myosin heavy chain gene expressed during embryonic skeletal muscle fiber formation. J Biol Chem 1996; 271:17047-56. [PMID: 8663323 DOI: 10.1074/jbc.271.29.17047] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
We have isolated and begun characterization of the quail slow myosin heavy chain (MyHC) 3 gene, the first reported avian slow MyHC gene. Expression of slow MyHC 3 in skeletal muscle is restricted to the embryonic period of development, when the fiber pattern of future fast and slow muscle is established. In embryonic hindlimb development, slow MyHC 3 gene expression coincides with slow muscle fiber formation as distinguished by slow MyHC-specific antibody staining. In addition to expression in embryonic appendicular muscle, slow MyHC 3 is expressed continuously in the atria. Transfection of slow MyHC 3 promoter-reporter constructs into embryonic myoblasts that form slow MyHC-expressing fibers identified two regions regulating expression of this gene in skeletal muscle. The proximal promoter, containing potential muscle-specific regulatory motifs, permits expression of a reporter gene in embryonic slow muscle fibers, while a distal element, located greater than 2600 base pairs upstream, further enhances expression 3-fold. The slow muscle fiber-restricted expression of slow MyHC 3 during embryonic development, and expression of slow MyHC 3 promoter-reporter constructs in embryonic muscle fibers in vitro, makes this gene a useful marker to study the mechanism establishing the slow fiber lineage in the embryo.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Base Sequence
- Chick Embryo
- Chickens
- Cloning, Molecular
- Embryo, Nonmammalian/physiology
- Exons
- Gene Expression Regulation, Developmental
- Genomic Library
- Heart/embryology
- In Situ Hybridization
- Molecular Sequence Data
- Muscle Fibers, Fast-Twitch/physiology
- Muscle Fibers, Slow-Twitch/physiology
- Muscle, Skeletal/embryology
- Muscle, Skeletal/metabolism
- Myocardium/metabolism
- Myosin Heavy Chains/biosynthesis
- Myosin Heavy Chains/genetics
- Oligodeoxyribonucleotides
- Promoter Regions, Genetic
- Quail
- RNA, Messenger/biosynthesis
- Rats
- Sequence Homology, Amino Acid
- Transcription, Genetic
Collapse
Affiliation(s)
- W Nikovits
- Department of Medicine, Stanford University School of Medicine, Stanford, California 94305-5306, USA
| | | | | | | | | | | | | |
Collapse
|
60
|
Watanabe M, Sakomura Y, Kurabayashi M, Manabe I, Aikawa M, Kuro-o M, Suzuki T, Yazaki Y, Nagai R. Structure and characterization of the 5'-flanking region of the mouse smooth muscle myosin heavy chain (SM1/2) gene. Circ Res 1996; 78:978-89. [PMID: 8635248 DOI: 10.1161/01.res.78.6.978] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
We have previously shown that smooth muscle myosin heavy chain isoforms (SMs), including SM1, SM2, and SMemb, are differentially expressed during vascular development, and in vascular lesions, such as atherosclerosis. The SM1/2 gene is expressed exclusively in smooth muscle cells and generates SM1 and SM2 mRNAs by alternative splicing. Whereas SM1 is constitutively expressed from early development, SM2 appears only after birth. In this study, we have isolated and characterized the 5'-flanking region of the mouse SM1/2 gene. Transient transfection assays using a series of promoter-luciferase chimeric constructs demonstrated that tandem elements of the CCTCCC sequence, located at -89 and -61 bp relative to the transcription start site, were essential for transcriptional activity of the SM1/2 gene in primary cultured rabbit aortic smooth muscle cells and smooth muscle cell lines derived from the rabbit aorta but not in non-smooth muscle cells. Gel mobility shift assays indicated that CCTCCC was a binding site for nuclear proteins prepared from smooth muscle cells. Double-stranded oligonucleotides containing either the CACC box or the Sp1 consensus sequence efficiently competed with the CCTCCC elements for binding the nuclear extracts. Site-specific mutations of CCTCCC elements resulted in a significant reduction of the promoter activity. Moreover, CCTCCC elements are evolutionary conserved between mouse and rabbit. In conclusion, the results of this study indicate an important role for the interaction of the CCTCCC sequence with Sp1 or related factors in activating transcription from the SM1/2 gene promoter.
Collapse
Affiliation(s)
- M Watanabe
- The Third Department of Internal Medicine, University of Tokyo, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
61
|
Grewal JS, Bag J. Slow troponin C gene expression in chicken heart and liver is regulated by similar enhancers. FEBS Lett 1996; 383:267-72. [PMID: 8925911 DOI: 10.1016/0014-5793(96)00247-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Two isoforms of troponin C (TnC) are encoded by distinct single copy genes. Expression of fast TnC is restricted to the skeletal muscle, whereas the slow isoform is expressed in both skeletal and cardiac muscle. Chicken slow TnC (cTnC) gene is also expressed in some non-muscle tissues like the liver and the brain. Expression of cTnC gene is regulated by two distinct enhancers in cardiac and skeletal muscles. The cardiac specific enhancer is located in the immediate 5' flanking region (bp-124 to -79) of the murine cTnC gene whereas the skeletal enhancer is located within the first intron (bp 997 to 1141). In the present study we have examined how cTnC gene expression is regulated in the chicken liver. Transient transfection of liver cells with CTnC-CAT reporter constructs containing various regions of the murine cTnC gene showed that its expression in chicken liver is regulated by the cardiac specific enhancer. Furthermore, electrophoretic mobility shift assays using synthetic oligonucleotides corresponding to both CEF-1 and CEF-2 regions of the murine cardiac enhancer revealed formation of specific DNA-protein complexes. Ultraviolet light induced covalent linking of nuclear proteins to CEF-1 and CEF-2 oligomers were used to examine the nature of the cardiac enhancer binding polypeptides; one polypeptide of 48 kDa appeared to bind to both CEF-1 and CEF-2 sequences.
Collapse
Affiliation(s)
- J S Grewal
- Department of Molecular Biology and Genetics, University of Guelph, Ont., Canada
| | | |
Collapse
|
62
|
Fabre-Suver C, Hauschka SD. A novel site in the muscle creatine kinase enhancer is required for expression in skeletal but not cardiac muscle. J Biol Chem 1996; 271:4646-52. [PMID: 8617727 DOI: 10.1074/jbc.271.9.4646] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Expression of the muscle creatine kinase (MCK) gene in skeletal and heart muscle is controlled in part by a 5' tissue-specific enhancer. In order to identify new regulatory elements, we designed mutations in a previously untested conserved portion of this enhancer. Transfection analysis of these mutations delineated a new control element, named Trex (Transcriptional regulatory element x), which is required for full transcriptional activity of the MCK enhancer in skeletal but not cardiac muscle cells. Gel mobility shift assays demonstrate that myocyte, myoblast, and fibroblast nuclear extracts but not primary cardiomyocyte nuclear extracts contain a trans-acting factor that binds specifically to Trex. The Trex sequence is similar (7/8 bases) to the TEF-1 consensus DNA-binding site involved in regulating other muscle genes. To determine if TEF-1 interacts with Trex, selected TEF-1 binding sites such as GTIIc and M-CAT and two anti-TEF-1 antisera were used in gel shift assays. These experiments strongly suggest that a factor distinct from TEF-1 binds specifically to Trex. Thus it appears that MCK transcription is regulated in skeletal muscles through a Trex-dependent pathway while Trex is not required for MCK expression in heart. This distinction could account partially for the difference in levels of muscle creatine kinase in these tissues.
Collapse
Affiliation(s)
- C Fabre-Suver
- Department of Biochemistry, University of Washington, Seattle, Washington 98195, USA
| | | |
Collapse
|
63
|
Schmoelzl S, Leeb T, Brinkmeier H, Brem G, Brenig B. Regulation of tissue-specific expression of the skeletal muscle ryanodine receptor gene. J Biol Chem 1996; 271:4763-9. [PMID: 8617743 DOI: 10.1074/jbc.271.9.4763] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
The ryanodine receptors (RYR) are a family of calcium release channels that are expressed in a variety of tissues. Three genes, i. e. ryr1, ryr2, and ryr3, have been identified coding for a skeletal muscle, cardiac muscle, and brain isoform, respectively. Although, the skeletal muscle isoform (RYR1) was shown to be expressed predominantly in skeletal muscle, expression was also detected in the esophagus and brain. To analyze the transcriptional regulation of the RYR1 gene, we have constructed chimeric genes composed of the upstream region of the RYR1 gene and the bacterial chloramphenicol acetyltransferase (CAT) gene and transiently transfected them into primary cultured porcine myoblasts, myotubes, and fibroblasts. A 443-base pair region upstream from the transcription start site was sufficient to direct CAT activity without tissue specificity. Deletion of a 61-base pair fragment from the 5'-end of the promoter resulted in a marked reduction of CAT activity in all three tissue types. A similar reduction of expression was observed when using a construct with the first intron in antisense orientation upstream from the promoter. In contrast, the first intron in sense orientation enhanced expression only in myotubes, while expression was repressed in fibroblasts and myoblasts. Gel retardation analyses showed DNA binding activity in nuclear extracts for two upstream DNA sequence elements. Our data suggest that (i) RYR1 gene expression is regulated by at least two novel transcription factors (designated RYREF-1 and RYREF-2), and (ii) tissue specificity results from a transcriptional repression in nonmuscle cells mediated by the first intron.
Collapse
Affiliation(s)
- S Schmoelzl
- Institute of Veterinary Medicine, University of Göttingen, 37073 Göttingen, Federal Republic of Germany
| | | | | | | | | |
Collapse
|
64
|
Affiliation(s)
- A Buonanno
- National Institutes of Health, Bethesda, Maryland 20892, USA
| | | |
Collapse
|
65
|
Calvo S, Stauffer J, Nakayama M, Buonanno A. Transcriptional control of muscle plasticity: differential regulation of troponin I genes by electrical activity. DEVELOPMENTAL GENETICS 1996; 19:169-81. [PMID: 8900050 DOI: 10.1002/(sici)1520-6408(1996)19:2<169::aid-dvg9>3.0.co;2-7] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Plasticity of the skeletal muscle phenotype can result from the selective repression and activation of gene expression in response to innervation patterns. Motoneurons, eliciting different patterns of depolarization, regulate the contractile properties of the myofibers they innervate by selectively activating expression of genes encoding fiber-type-specific (fast vs. slow) contractile proteins. We have analyzed the regulation of the troponin I slow (TnIs) and fast (TnIf) genes as a model to study the molecular mechanisms regulating fiber-type plasticity. We found that expression of the two TnI isoforms is downregulated by denervation. Moreover, TnI expression is upregulated by specific patterns of electrical activity [10 Hz vs. 100 Hz] used to depolarize muscle. We previously isolated the rat TnIs gene and demonstrated that regulatory sequences reside in its upstream region and second intron [Banerjee-Basu S, Buonanno A (1993), Mol Cell Biol 12:5024-5032]. Using transgenic mice, we show that the upstream region of the TnIs gene extending from -949 to +50 is sufficient to confer transcription specifically in slowtwitch muscles. Serial deletions of the TnIs upstream and intronic regions were generated in a CAT reporter vector to delineate transcriptional regulatory elements in transiently transfected Sol8 myotubes. Sequences necessary to confer the highest levels of TnIs transcription mapped to the upstream region between -0.95 and -0.72 kb, and to a 56 bp sequence located in the second intron. Comparison of the at sequence between -0.95 and -0.72 to the human TnIs gene identified a highly homologous region of 128 bp that we named the TnI SURE (slow upstream regulatory element). Alignment of these two SURE sequences with the quail TnI fast intronic regulatory element identified common motifs, namely, two A/T-rich sequences (A/T1 and A/T2) with homology to homeotic protein and MEF2 binding sites, a CACC box, an E box, and a novel motif (GCAGGCA) that we denoted the CAGG box. Mutation of either the A/T2 site, E box, or CAGG box practically abolish the SURE function in transfected myotubes; mutation of the A/T1 and CACC sites has a lesser effect. Using competitive electrophoretic mobility shift assays with nuclear extracts derived from Sol8 myotubes, we demonstrate specific binding to these motifs. The A/T1 and A/T2 sites are shown to form different complexes. The A/T2 site, which bears extensive homology to a MEF2 site, forms complexes that are super shifted by MEF2A antisera and that are competed by a consensus MEF2 site present in the MCK enhancer. Our results demonstrate that the linear arrangement of DNA sequence motifs is conserved in the regulatory elements of the TnI slow and fast genes and suggest that the interaction of multiple protein-DNA complexes are necessary for enhancer function.
Collapse
MESH Headings
- Animals
- Base Sequence
- Cells, Cultured
- Coturnix/genetics
- Electric Stimulation
- Enhancer Elements, Genetic
- Gene Expression Regulation
- Genes, Reporter
- Humans
- Mice
- Mice, Transgenic
- Models, Genetic
- Muscle Denervation
- Muscle, Skeletal/innervation
- Muscle, Skeletal/metabolism
- Mutagenesis, Site-Directed
- Phenotype
- Promoter Regions, Genetic/genetics
- Rats
- Rats, Wistar
- Sciatic Nerve/injuries
- Sequence Alignment
- Species Specificity
- Transcription, Genetic
- Transfection
- Troponin I/biosynthesis
- Troponin I/genetics
Collapse
Affiliation(s)
- S Calvo
- Unit on Molecular Neurobiology, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892-4480, USA
| | | | | | | |
Collapse
|
66
|
Wan B, Moreadith RW. Structural characterization and regulatory element analysis of the heart isoform of cytochrome c oxidase VIa. J Biol Chem 1995; 270:26433-40. [PMID: 7592858 DOI: 10.1074/jbc.270.44.26433] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
In order to investigate the mechanism(s) governing the striated muscle-specific expression of cytochrome c oxidase VIaH we have characterized the murine gene and analyzed its transcriptional regulatory elements in skeletal myogenic cell lines. The gene is single copy, spans 689 base pairs (bp), and is comprised of three exons. The 5'-ends of transcripts from the gene are heterogeneous, but the most abundant transcript includes a 5'-untranslated region of 30 nucleotides. When fused to the luciferase reporter gene, the 3.5-kilobase 5'-flanking region of the gene directed the expression of the heterologous protein selectively in differentiated Sol8 cells and transgenic mice, recapitulating the pattern of expression of the endogenous gene. Deletion analysis identified a 300-bp fragment sufficient to direct the myotube-specific expression of luciferase in Sol8 cells. The region lacks an apparent TATA element, and sequence motifs predicted to bind NRF-1, NRF-2, ox-box, or PPAR factors known to regulate other nuclear genes encoding mitochondrial proteins are not evident. Mutational analysis, however, identified two cis-elements necessary for the high level expression of the reporter protein: a MEF2 consensus element at -90 to -81 bp and an E-box element at -147 to -142 bp. Additional E-box motifs at closely located positions were mutated without loss of transcriptional activity. The dependence of transcriptional activation of cytochrome c oxidase VIaH on cis-elements similar to those found in contractile protein genes suggests that the striated muscle-specific expression is coregulated by mechanisms that control the lineage-specific expression of several contractile and cytosolic proteins.
Collapse
Affiliation(s)
- B Wan
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas 75235-8573, USA
| | | |
Collapse
|
67
|
Solway J, Seltzer J, Samaha FF, Kim S, Alger LE, Niu Q, Morrisey EE, Ip HS, Parmacek MS. Structure and expression of a smooth muscle cell-specific gene, SM22 alpha. J Biol Chem 1995; 270:13460-9. [PMID: 7768949 DOI: 10.1074/jbc.270.22.13460] [Citation(s) in RCA: 209] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
SM22 alpha is expressed exclusively in smooth muscle-containing tissues of adult animals and is one of the earliest markers of differentiated smooth muscle cells (SMCs). To examine the molecular mechanisms that regulate SMC-specific gene expression, we have isolated and structurally characterized the murine SM22 alpha gene. SM22 alpha is a 6.2-kilobase single copy gene composed of five exons. SM22 alpha mRNA is expressed at high levels in the aorta, uterus, lung, and intestine, and in primary cultures of rat aortic SMCs, and the SMC line, A7r5. In contrast to genes encoding SMC contractile proteins, SM22 alpha gene expression is not decreased in proliferating SMCs. Transient transfection experiments demonstrated that 441 base pairs of SM22 alpha 5'-flanking sequence was necessary and sufficient to program high level transcription of a luciferase reporter gene in both primary rat aortic SMCs and A7r5 cells. DNA sequence analyses revealed that the 441-base pair promoter contains two CArG/SRF boxes, a CACC box, and one potential MEF-2 binding site, cis-acting elements which are each important regulators of striated muscle transcription. Taken together, these studies have identified the murine SM22 alpha promoter as an excellent model system for studies of developmentally regulated, lineage-specific gene expression in SMCs.
Collapse
Affiliation(s)
- J Solway
- Department of Medicine, University of Chicago, Illinois 60637, USA
| | | | | | | | | | | | | | | | | |
Collapse
|