51
|
Helmke S, Lohse K, Mikule K, Wood MR, Pfenninger KH. SRC binding to the cytoskeleton, triggered by growth cone attachment to laminin, is protein tyrosine phosphatase-dependent. J Cell Sci 1998; 111 ( Pt 16):2465-75. [PMID: 9683640 DOI: 10.1242/jcs.111.16.2465] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The interaction of the non-receptor tyrosine kinase, Src, with the cytoskeleton of adhesion sites was studied in nerve growth cones isolated from fetal rat brain. Of particular interest was the role of protein tyrosine phosphatases in the regulation of Src-cytoskeleton binding. Growth cones were found to contain a high level of protein tryrosine phosphatase activity, most of it membrane-associated and forming large, multimeric and wheat germ agglutinin-binding complexes. The receptor tyrosine phosphatase PTPalpha seems to be the most prevalent species among the membrane-associated enzymes. As seen by immunofluorescence, PTPalpha is present throughout the plasmalemma of the growth cone including filopodia, and it forms a punctate pattern consistent with that of integrin beta1. For adhesion site analysis, isolated growth cones were either plated onto the neurite growth substratum, laminin, or kept in suspension. Plating growth cones on laminin triggered an 8-fold increase in Src binding to the adherent cytoskeleton. This effect was blocked completely with the protein tyrosine phosphatase inhibitor, vanadate. Growth cone plating also increased the association with adhesion sites of tyrosine phosphatase activity (14-fold) and of PTPalpha immunoreactivity (6-fold). Vanadate blocked the enzyme activity but not the recruitment of PTPalpha to the adhesion sites. In conjunction with our previous results on growth cones, these data suggest that integrin binding to laminin triggers the recruitment of PTPalpha (and perhaps other protein tyrosine phosphatases) to adhesion sites, resulting in de-phosphorylation of Src's tyr 527. As a result Src unfolds, becomes kinase-active, and its SH2 domain can bind to an adhesion site protein. This implies a critical role for protein tyrosine phosphatase activity in the earliest phases of adhesion site assembly.
Collapse
Affiliation(s)
- S Helmke
- Department of Cellular and Structural Biology, University of Colorado School of Medicine, and University of Colorado Cancer Center, Denver, Colorado 80262, USA
| | | | | | | | | |
Collapse
|
52
|
Cao MY, Huber M, Beauchemin N, Famiglietti J, Albelda SM, Veillette A. Regulation of mouse PECAM-1 tyrosine phosphorylation by the Src and Csk families of protein-tyrosine kinases. J Biol Chem 1998; 273:15765-72. [PMID: 9624175 DOI: 10.1074/jbc.273.25.15765] [Citation(s) in RCA: 91] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
PECAM-1 is an adhesion molecule expressed on hemopoietic and endothelial cells. Recently, it was observed that PECAM-1 becomes tyrosine-phosphorylated in response to a variety of physiological stimuli. Furthermore, tyrosine-phosphorylated PECAM-1 was shown to associate with SHP-2, a Src homology 2 (SH2) domain-containing protein-tyrosine phosphatase expressed ubiquitously. In light of the significance of tyrosine protein phosphorylation as a regulatory mechanism, we wished to understand better the nature and impact of the protein-tyrosine kinases (PTKs) mediating PECAM-1 tyrosine phosphorylation. Through reconstitution experiments in COS-1 cells, we determined that mouse PECAM-1 could be tyrosine-phosphorylated by Src-related PTKs and Csk-related PTKs, but not by other kinases such as Syk, Itk, and Pyk2. Using site-directed mutagenesis and peptide phosphorylation studies, we found that these PTKs were efficient at phosphorylating Tyr-686, but not Tyr-663, of PECAM-1. Src-related enzymes also phosphorylated mouse PECAM-1 at one or more yet to be identified sites. In other studies, we demonstrated that phosphorylation of PECAM-1 by Src or Csk family kinases was sufficient to trigger its association with SHP-2. Moreover, it was able to promote binding of PECAM-1 to SHP-1, a SHP-2-related protein-tyrosine phosphatase expressed in hemopoietic cells. Taken together, these findings indicated that the Src and Csk families of kinases are strong candidates for mediating tyrosine phosphorylation of PECAM-1 and triggering its association with SH2 domain-containing phosphatases under physiological circumstances.
Collapse
Affiliation(s)
- M Y Cao
- McGill Cancer Centre, McGill University, Montréal, Québec H3G 1Y6, Canada
| | | | | | | | | | | |
Collapse
|
53
|
Hirao A, Huang XL, Suda T, Yamaguchi N. Overexpression of C-terminal Src kinase homologous kinase suppresses activation of Lyn tyrosine kinase required for VLA5-mediated Dami cell spreading. J Biol Chem 1998; 273:10004-10. [PMID: 9545346 DOI: 10.1074/jbc.273.16.10004] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The Csk homologous kinase (Chk), which is co-expressed with C-terminal Src kinase (Csk) in hematopoietic cells, negatively regulates Src family kinases in vitro with selectivity toward Lyn but not c-Src in platelets. To explore the role of Src family kinases in hematopoietic cell adhesion, we overexpressed Chk in the megakaryocytic cell line Dami and established clones exhibiting a 10-fold increase in the amount of Chk. Overexpression of Chk was found to suppress VLA5 integrin-mediated cell spreading, but not cell attachment, throughout fibronectin (FN) stimulation. Deletion and point mutagenesis analyses of Chk showed that this suppression was dependent upon both the SH3 domain, which is responsible for membrane anchoring, and kinase activity. FN-induced cell spreading accompanied a sustained increase in Lyn activity with coincidental kinetics and the activation of Lyn was also suppressed by overexpression of Chk but not a Chk mutant lacking the SH3 domain. Expression of a truncated Lyn mutant lacking the kinase domain inhibited both cell spreading and Lyn activation upon stimulation with FN. These results suggest that sustained activation of Lyn, which is regulated by membrane-anchored Chk, plays a crucial role in VLA5-mediated cell spreading but not cell attachment to a FN substrate.
Collapse
Affiliation(s)
- A Hirao
- Department of Cell Differentiation, Institute of Molecular Embryology and Genetics, Kumamoto University School of Medicine, Kumamoto 860-0811, Japan
| | | | | | | |
Collapse
|
54
|
Abstract
Gene function during mammalian development is often studied by making irreversible changes to the genome. This approach has a major drawback in that the function of the gene in question must be deduced from the phenotype of animals that have been deficient for the product of the disrupted gene throughout ontogeny. Compensation for the loss of the gene product could yield an apparently unaltered phenotype. Alternatively, the changes in the regulation of other genes could yield a misleading phenotype. If the genetic manipulation results in embryonic or neonatal lethality, gene function at later stages of development cannot be analyzed. It would thus be highly advantageous if the expression of a particular gene could be restricted both temporally and spatially through the use of an inducible genetic system. This paper describes the various inducible genetic expression systems developed for use in mammalian cells, with particular emphasis on their application in the nervous system of transgenic mice.
Collapse
Affiliation(s)
- J R Gingrich
- Samuel Lunenfeld Research Institute, Mount Sinai Hospital, Toronto, Canada
| | | |
Collapse
|
55
|
Memmo LM, McKeown-Longo P. The alphavbeta5 integrin functions as an endocytic receptor for vitronectin. J Cell Sci 1998; 111 ( Pt 4):425-33. [PMID: 9443892 DOI: 10.1242/jcs.111.4.425] [Citation(s) in RCA: 79] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Endocytosis and degradation of vitronectin by human skin fibroblasts are regulated by the beta5 integrin. To determine whether the beta5 integrin is directly mediating the internalization of vitronectin, both vitronectin and the beta5 integrin were localized by indirect immunofluorescence during the endocytic process. This analysis showed that both vitronectin and beta5 were found in intracellular vesicles within 5 minutes of the addition of exogenous vitronectin to fibroblast cell layers. By 15 minutes, approximately 20% of the vitronectin-containing vesicles stained positively for beta5. In contrast, the beta3 integrin was not found in any intracellular vesicles. Within 30 minutes, more than 50% of vitronectin-containing vesicles also stained for lamp-1, indicating that internalized vitronectin traveled to lysosomes. Inhibition of clathrin assembly by either potassium depletion or hypertonic buffer inhibited vitronectin internalization, suggesting that vitronectin internalization occurred through coated pits. Confocal analysis confirmed the colocalization of vitronectin and alphavbeta5 in intracellular compartments and further demonstrated that the highest colocalization of the two proteins occurred within 1.8 microm from the ventral surface of the cell, suggesting endocytosis occurred at the substrate level. Pretreatment of cells with the PI-3 kinase inhibitor, wortmannin, resulted in a marked increase in the coincidence of vitronectin and beta5 staining within vesicles and prevented the accumulation of vitronectin within lysosomes. This suggests that following internalization, vitronectin and the alphavbeta5 integrin are segregated to different cellular compartments. This study provides the first evidence that the alphavbeta5 vitronectin receptor directly mediates the internalization of vitronectin.
Collapse
Affiliation(s)
- L M Memmo
- Cell and Molecular Biology Program, Albany Medical College, Albany, New York 12208, USA
| | | |
Collapse
|
56
|
Abstract
Src family protein tyrosine kinases are activated following engagement of many different classes of cellular receptors and participate in signaling pathways that control a diverse spectrum of receptor-induced biological activities. While several of these kinases have evolved to play distinct roles in specific receptor pathways, there is considerable redundancy in the functions of these kinases, both with respect to the receptor pathways that activate these kinases and the downstream effectors that mediate their biological activities. This chapter reviews the evidence implicating Src family kinases in specific receptor pathways and describes the mechanisms leading to their activation, the targets that interact with these kinases, and the biological events that they regulate.
Collapse
Affiliation(s)
- S M Thomas
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts 02115, USA.
| | | |
Collapse
|
57
|
Margaron P, Sorrenti R, Levy JG. Photodynamic therapy inhibits cell adhesion without altering integrin expression. BIOCHIMICA ET BIOPHYSICA ACTA 1997; 1359:200-10. [PMID: 9434126 DOI: 10.1016/s0167-4889(97)00115-8] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Adhesion is a primordial cell function that, among others, regulates inflammation, metastasis, and tissue repair. To understand how these events could be affected by photodynamic therapy (PDT), we studied the effects of PDT on human foreskin fibroblast (HFF) adhesion to bovine collagen type I, human vitronectin or fibronectin. PDT, using benzoporphyrin derivative monoacid ring A (verteporfin) as the photosensitizer, inhibited cell adhesion in a drug dose-dependent manner, with no significant difference among matrices. The drug dose that killed 90% of cells within 20 h post-treatment inhibited HFF adhesion by 55%-68%. However, 45 min following PDT, a time period corresponding to that of the adhesion assay, HFF membrane integrity remained unaltered. In addition, cell surface expression of integrins was not modified for at least 2h following PDT. Western blots of cell lysates, using the anti-phosphotyrosine 4G10 monoclonal antibody, revealed that PDT prevented the adhesion-induced phosphorylation of 110-130 kDa proteins. Immunoblots of cell lysates immunoprecipitated with antibodies to focal adhesion kinase suggested that its phosphorylation was suppressed by PDT. These results demonstrate that PDT inhibits cell adhesion and affects integrin signalling without modifying cell membrane integrity or integrin expression.
Collapse
Affiliation(s)
- P Margaron
- QLT PhotoTherapeutics Inc., Vancouver, Canada.
| | | | | |
Collapse
|
58
|
Richardson A, Malik RK, Hildebrand JD, Parsons JT. Inhibition of cell spreading by expression of the C-terminal domain of focal adhesion kinase (FAK) is rescued by coexpression of Src or catalytically inactive FAK: a role for paxillin tyrosine phosphorylation. Mol Cell Biol 1997; 17:6906-14. [PMID: 9372922 PMCID: PMC232547 DOI: 10.1128/mcb.17.12.6906] [Citation(s) in RCA: 270] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
pp125FAK is a tyrosine kinase that appears to regulate the assembly of focal adhesions and thereby promotes cell spreading on the extracellular matrix. In some cells, the C terminus of pp125FAK is expressed as a separate protein, pp41/43FRNK. We have previously shown that overexpression of pp41/43FRNK inhibits tyrosine phosphorylation of pp125FAK and paxillin and, in addition, delays cell spreading and focal adhesion assembly. Thus, pp41/43FRNK functions as a negative inhibitor of adhesion signaling and provides a tool to dissect the mechanism by which pp125FAK promotes cell spreading. We report here that the inhibitory effects of pp41/43FRNK expression can be rescued by the co-overexpression of wild-type pp125FAK and partially rescued by catalytically inactive variants of pp125FAK. However, coexpression of an autophosphorylation site mutant of pp125FAK, which fails to bind the SH2 domain of pp60c-Src, or a mutant that fails to bind paxillin did not promote cell spreading. In contrast, expression of pp41/43FRNK and pp60c-Src reconstituted cell spreading and tyrosine phosphorylation of paxillin but did so without inducing tyrosine phosphorylation of pp125FAK. These data provide additional support for a model whereby pp125FAK acts as a "switchable adaptor" that recruits pp60c-Src to phosphorylate paxillin, promoting cell spreading. In addition, these data point to tyrosine phosphorylation of paxillin as being a critical step in focal adhesion assembly.
Collapse
Affiliation(s)
- A Richardson
- Department of Microbiology, Health Sciences Center, University of Virginia, Charlottesville 22908, USA
| | | | | | | |
Collapse
|
59
|
Meijne AM, Ruuls-Van Stalle L, Feltkamp CA, McCarthy JB, Roos E. v-src-induced cell shape changes in rat fibroblasts require new gene transcription and precede loss of focal adhesions. Exp Cell Res 1997; 234:477-85. [PMID: 9260918 DOI: 10.1006/excr.1997.3637] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The mechanism of v-src-induced morphological transformation is still obscure. We compared LA29 rat fibroblasts, which express a temperature-sensitive (ts) v-src mutant, with D1025 rat fibroblasts, transfected with a ts mutant of v-fps. Upon transformation, LA29 cells adopted an elongated shape with reduced focal adhesions and loss of actin stress fibers. In contrast, activation of v-fps in D1025 cells had little effect on morphology. In both cells, paxillin was strongly tyrosine phosphorylated upon activation of the kinases. This indicates that paxillin phosphorylation is not required, or not sufficient, for the v-src-induced disruption of focal adhesions. As previously described by others, v-src activated the ras-MAP kinase (MAPK) pathway, as indicated by tyrosine phosphorylation of the rasGAP-associated proteins p62 and p190 and MAPK phosphorylation. Since MAPK affects transcription, this suggested that novel gene transcription was required. This notion was confirmed using actinomycin D and cycloheximide, which did not impair activation of v-src kinase activity, but completely blocked v-src-induced morphological changes, as demonstrated using image analysis. Furthermore, we observed that v-src-induced changes in cell shape occurred before the reduction in number and size of focal adhesions. We conclude that v-src-induced transformation of rat fibroblasts depends on synthesis of a protein, which induces rapid changes in cell shape that precede the loss of focal adhesions.
Collapse
Affiliation(s)
- A M Meijne
- Division of Cell Biology, The Netherlands Cancer Institute, Amsterdam
| | | | | | | | | |
Collapse
|
60
|
Jost M, Kari C, Rodeck U. An episomal vector for stable tetracycline-regulated gene expression. Nucleic Acids Res 1997; 25:3131-4. [PMID: 9224615 PMCID: PMC146851 DOI: 10.1093/nar/25.15.3131] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The recently introduced tetracycline (Tc)-regulatable eukaryotic gene expression system based on the Escherichia coli Tn 10 tetracycline operon has proven to be a powerful tool for controlled expression of a variety of genes in vitro as well as in vivo . Control elements of this expression system are contained in two separate plasmid vectors. The tTA vector encodes a transactivator protein and the tetP vector contains a responsive operator-promoter element (tetP) that controls gene expression depending on tTA binding. Establishment of cell lines expressing a gene of interest under tetP control requires two subsequent rounds of transfection and clonal selection after each transfection. Here we describe a modification of this system in which the tetP element is placed in an episomal EBNA-based plasmid that can be stably maintained in primate but not in rodent cells. Using HeLa and human melanoma cells, we show that upon transient or stable transfection a reporter gene is expressed in a Tc-regulated manner similar to the original system. Thus, this expression system combines the advantages of episomal vectors, such as high efficiency of transfection and time-efficient selection of mass cultures, with tight control of gene expression provided by the Tc-regulatable system.
Collapse
Affiliation(s)
- M Jost
- The Wistar Institute of Anatomy and Biology, 3601 Spruce Street, Philadelphia, PA 19104, USA
| | | | | |
Collapse
|
61
|
Vuica M, Desiderio S, Schneck JP. Differential effects of B cell receptor and B cell receptor-FcgammaRIIB1 engagement on docking of Csk to GTPase-activating protein (GAP)-associated p62. J Exp Med 1997; 186:259-67. [PMID: 9221755 PMCID: PMC2198989 DOI: 10.1084/jem.186.2.259] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/1997] [Revised: 05/14/1997] [Indexed: 02/04/2023] Open
Abstract
The stimulatory and inhibitory pathways initiated by engagement of stimulatory receptors such as the B cell receptor for antigen (BCR) and inhibitory receptors such as Fcgamma receptors of the IIB1 type (FcgammaRIIB1) intersect in ways that are poorly understood at the molecular level. Because the tyrosine kinase Csk is a potential negative regulator of lymphocyte activation, we examined the effects of BCR and FcgammaRIIB1 engagement on the binding of Csk to phosphotyrosine-containing proteins. Stimulation of a B lymphoma cell line, A20, with intact anti-IgG antibody induced a direct, SH2-mediated association between Csk and a 62-kD phosphotyrosine-containing protein that was identified as RasGTPase-activating protein-associated p62 (GAP-A.p62). In contrast, stimulation of A20 cells with anti-IgG F(ab')2 resulted in little increase in the association of Csk with GAP-A.p62. The effect of FcgammaRIIB1 engagement on this association was abolished by blockade of FcgammaRIIB1 with the monoclonal antibody 2.4G2. Furthermore, the increased association between Csk and GAP-A.p62 seen upon stimulation with intact anti-Ig was abrogated in the FcgammaRIIB1-deficient cell line IIA1.6 and recovered when FcgammaRIIB1 expression was restored by transfection. The differential effects of BCR and BCR-FcgammaRIIB1-mediated signaling on the phosphorylation of GAP-A.p62 and its association with Csk suggest that docking of Csk to GAP-A.p62 may function in the negative regulation of antigen receptor-mediated signals in B cells.
Collapse
Affiliation(s)
- M Vuica
- Department of Pathology and Medicine, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA.
| | | | | |
Collapse
|
62
|
Sun G, Ke S, Budde RJ. Csk phosphorylation and inactivation in vitro by the cAMP-dependent protein kinase. Arch Biochem Biophys 1997; 343:194-200. [PMID: 9224730 DOI: 10.1006/abbi.1997.0156] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Csk is a protein tyrosine kinase that phosphorylates other protein tyrosine kinases of the Src family and down-regulates their activities. It is not known how Csk is regulated. We investigated the possibility that Csk is regulated through phosphorylation by examining if Csk can serve as an in vitro substrate for a panel of protein kinases. We found that Csk was phosphorylated by the cAMP-dependent protein kinase (PKA), but not by protein kinase C, Src, or the fibroblast growth factor receptor kinase. Csk phosphorylation in vitro by PKA is on a serine residue(s) and can reach a stoichiometry of approximately 0.6 mol phosphate per mole of enzyme. Furthermore, incubation with PKA in the presence of ATP and magnesium ion results in a time-dependent decrease in Csk kinase activity. A six-fold decrease in Csk activity (expressed as Vmax/Km ratio) was achieved due to a threefold increase in its Km and a twofold decrease in its Vmax value within 1 h of incubation with the catalytic subunit of PKA and ATP-Mg. Both phosphorylation and inactivation by PKA were blocked by a PKA-specific inhibitor. Csk mutants with a deleted SH2 or SH3 domain retained their ability to be phosphorylated and inactivated by PKA, indicating that the phosphorylation site is located within the catalytic domain. These studies suggest that the cAMP-dependent protein kinase can regulate Csk activity.
Collapse
Affiliation(s)
- G Sun
- Department of Neuro-Oncology, University of Texas M. D. Anderson Cancer Center, Houston 77030, USA
| | | | | |
Collapse
|
63
|
Kemperman H, Wijnands YM, Roos E. alphaV Integrins on HT-29 colon carcinoma cells: adhesion to fibronectin is mediated solely by small amounts of alphaVbeta6, and alphaVbeta5 is codistributed with actin fibers. Exp Cell Res 1997; 234:156-64. [PMID: 9223381 DOI: 10.1006/excr.1997.3599] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
HT-29 colon carcinoma cells form liver metastases upon intrasplenic injection, and adhesion to fibronectin under the liver microvascular liver endothelium is likely to be important for metastasis formation. We have therefore studied the integrins involved in fibronectin adhesion. This was not affected by blocking antibodies against the beta1, alpha3, and alpha5 integrin subunits, but it was blocked by an RGD-containing peptide, indicating involvement of RGD-dependent non-beta1 alphaV integrins. Both alphaVbeta5 and alphaVbeta6 were detected on HT-29 cells. Blocking mAb against alphaV, but not against alphaVbeta5, abolished adhesion. From a HT-29 cell lysate, only alphaVbeta6 bound to a fibronectin-Sepharose column. Thus, alphaVbeta6 is the main fibronectin receptor on HT-29 cells, despite the very low levels of alphaVbeta6 and the much higher levels of alphaVbeta5. The HT29 cells did not spread on fibronectin in the absence of serum, not even after a three- to fourfold increase in alphaVbeta6 levels, induced by interleukin 4. The cells did spread on vitronectin. Using immunofluorescence we observed that both on vitronectin and on fibronectin alphaVbeta5 was arranged in a striped pattern, aligned with actin fibers, and not in focal adhesions. On fibronectin, but not on vitronectin, alphaVbeta6 was concentrated in a punctate pattern at the periphery of cell islands.
Collapse
Affiliation(s)
- H Kemperman
- Division of Cell Biology, The Netherlands Cancer Institute, Amsterdam
| | | | | |
Collapse
|
64
|
Wan Y, Bence K, Hata A, Kurosaki T, Veillette A, Huang XY. Genetic evidence for a tyrosine kinase cascade preceding the mitogen-activated protein kinase cascade in vertebrate G protein signaling. J Biol Chem 1997; 272:17209-15. [PMID: 9202044 DOI: 10.1074/jbc.272.27.17209] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The signal transduction pathway from heterotrimeric G proteins to the mitogen-activated protein kinase (MAPK) cascade is best understood in the yeast mating pheromone response, in which a serine/threonine protein kinase (STE20) serves as the critical linking component. Little is known in metazoans on how G proteins and the MAPK cascade are coupled. Here we provide genetic and biochemical evidence that a tyrosine kinase cascade bridges G proteins and the MAPK pathway in vertebrate cells. Targeted deletion of tyrosine kinase Csk in avian B lymphoma cells blocks the stimulation of MAPK by Gq-, but not Gi-, coupled receptors. In cells deficient in Bruton's tyrosine kinase (Btk), Gi-coupled receptors failed to activate MAPK, while Gq-coupled receptor-mediated stimulation is unaffected. Taken together with our previous data on tyrosine kinases Lyn and Syk, the Gq-coupled pathway requires tyrosine kinases Csk, Lyn, and Syk, while the Gi-coupled pathway requires tyrosine kinases Btk and Syk to feed into the MAPK cascade in these cells. The central role of Syk is further strengthened by data showing that Syk can bind to purified Lyn, Csk, or Btk.
Collapse
Affiliation(s)
- Y Wan
- Department of Physiology, Cornell University Medical College, New York, New York 10021, USA
| | | | | | | | | | | |
Collapse
|
65
|
Nakamoto T, Sakai R, Honda H, Ogawa S, Ueno H, Suzuki T, Aizawa S, Yazaki Y, Hirai H. Requirements for localization of p130cas to focal adhesions. Mol Cell Biol 1997; 17:3884-97. [PMID: 9199323 PMCID: PMC232241 DOI: 10.1128/mcb.17.7.3884] [Citation(s) in RCA: 125] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
p130cas (Cas) is an adapter protein that has an SH3 domain followed by multiple SH2 binding motifs in the substrate domain. It also contains a tyrosine residue and a proline-rich sequence near the C terminus, which are the binding sites for the SH2 and SH3 domains of Src kinase, respectively. Cas was originally identified as a major tyrosine-phosphorylated protein in v-Crk- and v-Src-transformed cells. Subsequently, Cas was shown to be inducibly tyrosine phosphorylated upon integrin stimulation; it is therefore regarded as one of the focal adhesion proteins. Using an immunofluorescence study, we examined the subcellular localization of Cas and determined the regions required for its localization to focal adhesions. In nontransformed cells, Cas was localized predominantly to the cytoplasm and partially to focal adhesions. However, in 527F-c-Src-transformed cells, Cas was localized mainly to podosomes, where the focal adhesion proteins are assembled. The localization of Cas to focal adhesions was also observed in cells expressing the kinase-negative 527F/295M-c-Src. A series of analyses with deletion mutants expressed in various cells revealed that the SH3 domain of Cas is necessary for its localization to focal adhesions in nontransformed cells while both the SH3 domain and the C-terminal Src binding domain of Cas are required in 527F-c-Src-transformed cells and fibronectin-stimulated cells. In addition, the localization of Cas to focal adhesions was abolished in Src-negative cells. These results demonstrate that the SH3 domain of Cas and the association of Cas with Src kinase play a pivotal role in the localization of Cas to focal adhesions.
Collapse
Affiliation(s)
- T Nakamoto
- Third Department of Internal Medicine, Faculty of Medicine, University of Tokyo, Bunkyo-ku, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
66
|
Joukov V, Sorsa T, Kumar V, Jeltsch M, Claesson-Welsh L, Cao Y, Saksela O, Kalkkinen N, Alitalo K. Proteolytic processing regulates receptor specificity and activity of VEGF-C. EMBO J 1997; 16:3898-911. [PMID: 9233800 PMCID: PMC1170014 DOI: 10.1093/emboj/16.13.3898] [Citation(s) in RCA: 578] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The recently identified vascular endothelial growth factor C (VEGF-C) belongs to the platelet-derived growth factor (PDGF)/VEGF family of growth factors and is a ligand for the endothelial-specific receptor tyrosine kinases VEGFR-3 and VEGFR-2. The VEGF homology domain spans only about one-third of the cysteine-rich VEGF-C precursor. Here we have analysed the role of post-translational processing in VEGF-C secretion and function, as well as the structure of the mature VEGF-C. The stepwise proteolytic processing of VEGF-C generated several VEGF-C forms with increased activity towards VEGFR-3, but only the fully processed VEGF-C could activate VEGFR-2. Recombinant 'mature' VEGF-C made in yeast bound VEGFR-3 (K[D] = 135 pM) and VEGFR-2 (K[D] = 410 pM) and activated these receptors. Like VEGF, mature VEGF-C increased vascular permeability, as well as the migration and proliferation of endothelial cells. Unlike other members of the PDGF/VEGF family, mature VEGF-C formed mostly non-covalent homodimers. These data implicate proteolytic processing as a regulator of VEGF-C activity, and reveal novel structure-function relationships in the PDGF/VEGF family.
Collapse
Affiliation(s)
- V Joukov
- Molecular/Cancer Biology Laboratory, University of Helsinki, Finland
| | | | | | | | | | | | | | | | | |
Collapse
|
67
|
Ruzzene M, Songyang Z, Marin O, Donella-Deana A, Brunati AM, Guerra B, Agostinis P, Cantley LC, Pinna LA. Sequence specificity of C-terminal Src kinase (CSK)--a comparison with Src-related kinases c-Fgr and Lyn. EUROPEAN JOURNAL OF BIOCHEMISTRY 1997; 246:433-9. [PMID: 9208935 DOI: 10.1111/j.1432-1033.1997.t01-1-00433.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
An eicosapeptide encompassing the C-terminal tail of c-Src (Tyr527) which is conserved in most Src-related protein kinases, is phosphorylated by C-terminal Src kinase (CSK) and by the two Src-related protein kinases c-Fgr and Lyn, with similar kinetic constants. Two related peptides reproducing the C-terminal segments of c-Src mutants defective in CSK phosphorylation [MacAuley, A., Okada, M., Nada, S., Nakagawa, H. & Cooper, J. A. (1993) Oncogene 8, 117-124] AFLEDSCTGTEPLYQRGENL (mutant number 28) and AFLEDNFTGTKPQYHPGENL (mutant number 29), proved a better and a much worse substrates, respectively than the wild-type peptide, with either CSK or the two Src kinases. By changing individual residues in the best peptide substrate, it was shown that the main element responsible for its improved phosphorylation is leucine at position -1 (instead of glutamine), while lysine at position -3 (instead of glutamate) has a detrimental effect, possibly accounting for the negligible phosphorylation of peptide derived from mutant number 29. By contrast to most peptide substrates, including the Src C-terminal peptides, which exhibit relatively high K(m) values, a polyoma-virus-middle-T-antigen-(mT)-derived peptide with tyrosine embedded in a highly hydrophobic sequence (EEEPQFEEIPIYLELLP) exhibits with CSK a quite low K(m) value (63 microM). Consistent with this, the optimal sequence selected by CSK in an oriented peptide library is XXXIYMFFF. This is different from sequences selected by Lyn (DEEIYEELX) and c-Fgr (XEEIYGIFF), although they all share a high selection for a hydrophobic residue at n-1. In sharp contrast, TPKIIB/p38syk, related to the catalytic domain of p72syk, selects acidic residues at nearly all positions, n-1 included. These data support the notion that the features determining the specific phosphorylation of the C-terminal tyrosine residue of Src do not reside in the primary structure surrounding the target tyrosine. They also show that this site does not entirely fulfil the optimal consensus sequence recognized by CSK, disclosing the possibility that as yet unrecognized CSK targets structurally unrelated to the C-terminal tyrosine residue of Src kinases may exist.
Collapse
Affiliation(s)
- M Ruzzene
- Dipartimento di Chimica Biologica, Università di Padova, and Centro di Studio delle Biomembrane del Consiglio Nazionale delle Ricerche, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
68
|
Hirao A, Hamaguchi I, Suda T, Yamaguchi N. Translocation of the Csk homologous kinase (Chk/Hyl) controls activity of CD36-anchored Lyn tyrosine kinase in thrombin-stimulated platelets. EMBO J 1997; 16:2342-51. [PMID: 9171348 PMCID: PMC1169835 DOI: 10.1093/emboj/16.9.2342] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Chk/Hyl is a recently isolated non-receptor tyrosine kinase with greatest homology to a ubiquitous negative regulator of Src family kinases, Csk. To understand the significance of co-expression of Chk and Csk in platelets, we examined the subcellular localization of each protein. Chk, but not Csk, was completely translocated from the Triton X-100-soluble to the Triton X-100-insoluble cytoskeletal fraction within 10 s of thrombin stimulation. Chk and Lyn, but not Csk and c-Src, co-fractionated in the higher density lysate fractions of resting platelets, with Chk being found to localize close to CD36 (membrane glycoprotein IV)-anchored Lyn. The kinase activity of co-fractionated Lyn was suppressed 3-fold. In vitro phosphorylation assays showed that Chk suppressed Lyn activity by phosphorylating its C-terminal negative regulatory tyrosine. Upon stimulation of platelets with thrombin, the rapid and complete translocation of Chk away from Lyn caused concomitant activation of Lyn. This activation was accompanied by dephosphorylation of Lyn at its C-terminal negative regulatory tyrosine in cooperation with a protein tyrosine phosphatase. These results suggest that Chk, but not Csk, may function as a translocation-controlled negative regulator of CD36-anchored Lyn in thrombin-induced platelet activation.
Collapse
Affiliation(s)
- A Hirao
- Department of Cell Differentiation, Institute of Molecular Embryology and Genetics, Kumamoto University School of Medicine, Honjo, Japan
| | | | | | | |
Collapse
|
69
|
Takayama Y, Nada S, Nagai K, Okada M. Role of Csk in neural differentiation of the embryonic carcinoma cell line P19. FEBS Lett 1997; 406:11-6. [PMID: 9109376 DOI: 10.1016/s0014-5793(97)00224-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
To examine the neural function of Csk (C-terminal Src kinase), a membrane-targeted form of Csk (Src/Csk) and its kinase-defective variant (DK-Src/Csk) were expressed in the embryonic carcinoma cell line P19. Expression of Src/Csk, but not DK-Src/Csk, caused reduction of the specific activities of Src and Fyn in the differentiated P19 cells. During neural differentiation, the specific activity of Src was elevated in the control P19 cells, whereas the activation was completely eliminated in the Src/Csk transfectant. In normally differentiated P19 cells, cross-linking of a cell adhesion molecule, L1, induced a short-term activation of Src and Fyn. In the Src/Csk transfectant, L1 stimulation induced delayed activation of Src and Fyn peaking at much lower levels than in the control cells. Src/Csk transfectants developed normally in the initial stages of neural differentiation, but exhibited an apparent defect in cell-to-cell interaction, i.e. neurite fasciculation and aggregation of cell bodies, in the latter stages. These findings imply that Csk is involved in the regulation of Src family kinases that play roles in cell-to-cell interaction mediated by cell adhesion molecules.
Collapse
Affiliation(s)
- Y Takayama
- Division of Protein Metabolism, Institute for Protein Research, Osaka University, Suita, Japan
| | | | | | | |
Collapse
|
70
|
Joukov V, Vihinen M, Vainikka S, Sowadski JM, Alitalo K, Bergman M. Identification of csk tyrosine phosphorylation sites and a tyrosine residue important for kinase domain structure. Biochem J 1997; 322 ( Pt 3):927-35. [PMID: 9148770 PMCID: PMC1218276 DOI: 10.1042/bj3220927] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The lack of a conserved tyrosine autophosphorylation site is a unique feature of the C-terminal Src-kinase, Csk, although this protein tyrosine kinase can be autophosphorylated on tyrosine residues in vitro and in bacteria. Here we show that human Csk is tyrosine phosphorylated in HeLa cells treated with sodium pervanadate. Phosphorylation in vivo occurs mainly at Tyr-184 and in vitro mainly at Tyr-304. A Y304F mutation strongly decreased Csk phosphorylation in vitro, and a Y184F mutation abolished tyrosine phosphorylation in vivo. A catalytically inactive form of Csk was also phosphorylated on Tyr-184 in vivo, suggesting that this is not a site of autophosphorylation. The kinase activity of the Y184F protein was not changed, while the Y304F protein showed one-third of wild-type activity. Three-dimensional modelling of the Csk kinase domain indicated that the Y304F mutation abolishes one of two conserved hydrogen bonds between the upper and the lower lobes in the open conformation of the kinase domain. Phosphopeptide binding studies suggested that phosphorylation of Tyr-184 creates a binding site for low-molecular-mass proteins. Cellular Csk was associated with several phosphoproteins, some of which were interacting with the Csk SH2 domain. Taken together these results indicate that Csk can be phosphorylated in vivo at Tyr-184 by an as yet unknown tyrosine kinase, and that autophosphorylation of Tyr-304 occurs only at abnormally high Csk concentrations in vitro. Furthermore, Tyr-304 is required for the maintenance of the structure of the Csk kinase domain.
Collapse
Affiliation(s)
- V Joukov
- Molecular/Cancer Biology Laboratory, Haartman Institute, P.O. Box 21 (Haartmaninkatu 3), FIN-00014, Finland
| | | | | | | | | | | |
Collapse
|
71
|
Ayalon O, Geiger B. Cyclic changes in the organization of cell adhesions and the associated cytoskeleton, induced by stimulation of tyrosine phosphorylation in bovine aortic endothelial cells. J Cell Sci 1997; 110 ( Pt 5):547-56. [PMID: 9092937 DOI: 10.1242/jcs.110.5.547] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
In this study we have investigated the relationships between the stimulation of tyrosine-specific protein phosphorylation and the state of assembly of cell-cell and cell-matrix adherens-type junctions. Bovine aortic endothelial (BAE) cells were treated with either the phosphotyrosine phosphatase inhibitor pervanadate or with epidermal growth factor (EGF), and the effect of the treatment on the organization of cell contacts and the actin cytoskeleton was evaluated by digital immunomicroscopy. We show here that pervanadate induced a dramatic (about 40-fold) increase in the level of phosphotyrosine labeling of cell-cell junctions, which reached maximal values following 20 minutes of incubation. Concomitantly, the junctional levels of vinculin, actin and plakoglobin increased, followed by a slower recruitment of cadherins to these sites. Upon longer incubation cell-cell junctions deteriorated and stress fibers and focal adhesions were formed. EGF stimulation of serum-starved BAE cells induced a rapid ‘wave’ of junctional tyrosine phosphorylation, followed by cyclic changes in the local levels of phosphotyrosine labeling. Periodic changes were also found in the intensity of labeling of junctional actin, vinculin and cadherins. These results suggest that tyrosine phosphorylation and the assembly of cell-cell adherens junctions are interdependent processes, and raise the possibility that the cross-talk between the two is responsible both for the regulation of junction formation and for adhesion-mediated signaling.
Collapse
Affiliation(s)
- O Ayalon
- Department of Molecular Cell Biology, The Weizmann Institute of Science, Rehovot, Israel
| | | |
Collapse
|
72
|
Price DJ, Rivnay B, Fu Y, Jiang S, Avraham S, Avraham H. Direct association of Csk homologous kinase (CHK) with the diphosphorylated site Tyr568/570 of the activated c-KIT in megakaryocytes. J Biol Chem 1997; 272:5915-20. [PMID: 9038210 DOI: 10.1074/jbc.272.9.5915] [Citation(s) in RCA: 67] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
The Csk homologous kinase (CHK), formerly MATK, has previously been shown to bind to activated c-KIT. In this report, we characterize the binding of SH2(CHK) to specific phosphotyrosine sites on the c-KIT protein sequence. Phosphopeptide inhibition of the in vitro interaction of SH2(CHK)-glutathione S-transferase fusion protein/c-KIT from SCF/KL-treated Mo7e megakaryocytic cells indicated that two sites on c-KIT were able to bind SH2(CHK). These sites were the Tyr568/570 diphosphorylated sequence and the monophosphorylated Tyr721 sequence. To confirm this, we precipitated native CHK from cellular extracts using phosphorylated peptides linked to Affi-Gel 15. In addition, purified SH2(CHK)-glutathione S-transferase fusion protein was precipitated with the same peptide beads. All of the peptide bead-binding studies were consistent with the direct binding of SH2(CHK) to phosphorylated Tyr568/570 and Tyr721 sites. Binding of FYN and SHC to the diphosphorylated Tyr568/570 site was observed, while binding of Csk to this site was not observed. The SH2(CHK) binding to the two sites is direct and not through phosphorylated intermediates such as FYN or SHC. Site-directed mutagenesis of the full-length c-KIT cDNA followed by transient transfection indicated that only the Tyr568/570, and not the Tyr721, is able to bind SH2(CHK). This indicates that CHK binds to the same site on c-KIT to which FYN binds, possibly bringing the two into proximity on associated c-KIT subunits and leading to the down-regulation of FYN by CHK.
Collapse
Affiliation(s)
- D J Price
- Divisions of Experimental Medicine and Hematology/Oncology, Beth Israel Deaconess Medical Center, Department of Medicine, Harvard Medical School, Boston, Massachusetts 02215, USA
| | | | | | | | | | | |
Collapse
|
73
|
Ilić D, Damsky CH, Yamamoto T. Focal adhesion kinase: at the crossroads of signal transduction. J Cell Sci 1997; 110 ( Pt 4):401-7. [PMID: 9067592 DOI: 10.1242/jcs.110.4.401] [Citation(s) in RCA: 195] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Morphogenetic processes during development, including cell migration, depend on signals from both the extracellular matrix (ECM) and soluble signaling factors. Extensive evidence has shown that the nonreceptor tyrosine kinase, focal adhesion kinase (FAK), is activated in response to both kind of signal. The most definitive evidence that FAK is directly downstream of signals initiated by the ECM comes from comparing the phenotypes of mice deficient for FAK and the ECM molecule, fibronectin: in both cases embryos die at about E8.5 and display almost identical severe vascular and other mesodermal defects. It is now clear that there are additional FAK-like proteins, indicating the existence of a FAK family. Furthermore, FAK is not located at adhesive sites in all cells where it is expressed. This, plus extensive data indicating that FAK becomes activated in response to several soluble signaling factors, suggests that the FAK family may be at the crossroads of multiple signaling pathways that affect cell and developmental processes.
Collapse
Affiliation(s)
- D Ilić
- Department of Oncology, Institute of Medical Science, Tokyo University, Minato-ku, Japan
| | | | | |
Collapse
|
74
|
Ojaniemi M, Martin SS, Dolfi F, Olefsky JM, Vuori K. The proto-oncogene product p120(cbl) links c-Src and phosphatidylinositol 3'-kinase to the integrin signaling pathway. J Biol Chem 1997; 272:3780-7. [PMID: 9013636 DOI: 10.1074/jbc.272.6.3780] [Citation(s) in RCA: 72] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Integrin-mediated cell adhesion triggers intracellular signaling cascades, including tyrosine phosphorylation of intracellular proteins. We show in this report that p120(cbl) (Cbl), the 120-kDa c-cbl proto-oncogene product, becomes tyrosine-phosphorylated during integrin-mediated macrophage cell adhesion to extracellular matrix substrata and anti-integrin antibodies. This tyrosine phosphorylation does not occur when cells attach to polylysine, to which cells adhere in a nonspecific fashion. It also does not take place when adhesion-induced reorganization of the cytoskeleton is inhibited with cytochalasin D. In contrast to the rapid and transient tyrosine phosphorylation of Cbl by CSF-1 stimulation, tyrosine phosphorylation of Cbl by cell attachment was gradual and persistent. Tyrosine-phosphorylated Cbl was found to form complexes with the SH2 domain-containing signaling proteins Src and phosphatidylinositol 3-kinase; in vitro kinase assays demonstrated that these kinases were active in the Cbl complexes following integrin ligand binding. Furthermore, Cbl was found to translocate to the plasma membrane in response to cell adhesion to fibronectin. These observations suggest that Cbl serves as a docking protein and may transduce signals to downstream signaling pathways following integrin-mediated cell adhesion in macrophages.
Collapse
Affiliation(s)
- M Ojaniemi
- La Jolla Cancer Research Center, The Burnham Institute, La Jolla, California 92037, USA
| | | | | | | | | |
Collapse
|
75
|
Grgurevich S, Linnekin D, Musso T, Zhang X, Modi W, Varesio L, Ruscetti FW, Ortaldo JR, McVicar DW. The Csk-like proteins Lsk, Hyl, and Matk represent the same Csk homologous kinase (Chk) and are regulated by stem cell factor in the megakaryoblastic cell line MO7e. Growth Factors 1997; 14:103-15. [PMID: 9255603 DOI: 10.3109/08977199709021514] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Recently, the cDNAs for Lsk, Matk and Hyl, three Csk-related protein tyrosine kinases, have been cloned. We have examined the relationship of Lsk, Matk and Hyl, and found that the gene for each of these proteins is localized to the same region of human chromosome 19. Further, the proteins encoded by Lsk and Matk cDNAs are immunologically similar. These data strongly suggest that Lsk, Hyl and Matk are the same gene product. Previous reports demonstrating expression of Hyl and Matk in hematopoietic lineages led us to investigate the regulation of Lsk expression in response to stem cell factor (SCF) and granulocyte-macrophage colony stimulating factor (GM-CSF) in M07e, a human leukemic cell line. Induction of Lsk/Hyl/Matk protein and mRNA was observed after treatment with SCF but not with GM-CSF. GM-CSF and IL-3, potent mitogens, had no effect on Lsk/Hyl/Matk expression. In contrast, PMA induced Lsk/Hyl/Matk but did not stimulate proliferation. Therefore, induction of Lsk/ Hyl/Matk does not correlate with the capacity to stimulate proliferation. None of the stimuli examined increased Csk protein or mRNA expression. These data demonstrate differential regulation of Csk family members by cytokines and suggest a role for Lsk/ Hyl/Matk in responses mediated by SCF and PMA. Further, our data demonstrate that, as has been seen in blood monocytes, cytokine driven translational control of Lsk/Hyl/ Matk is likely a critical mode of regulation. Lastly, since our studies strongly suggest that the Lsk, Hyl and Matk kinases are related and regulated distinctly from Csk, we and several of the original authors have agreed to rename this kinase the Csk homologous kinase (Chk).
Collapse
Affiliation(s)
- S Grgurevich
- Laboratory of Experimental Immunology, National Cancer Institute, Frederick, MD, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
76
|
Tremblay L, Hauck W, Aprikian AG, Begin LR, Chapdelaine A, Chevalier S. Focal adhesion kinase (pp125FAK) expression, activation and association with paxillin and p50CSK in human metastatic prostate carcinoma. Int J Cancer 1996. [PMID: 8900422 DOI: 10.1002/(sici)1097-0215(19961009)68:2%3c169::aid-ijc4%3e3.0.co;2-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
pp125FAK, a protein tyrosine kinase (PTK) co-localized with integrins in focal adhesion plaques, is known to transduce signals involved in the regulation of cell adhesion and motility as well as the anchorage-independent growth of transformed cells. We investigated whether pp125FAK could be part of a signalling pathway that contributes to the progression of human prostate carcinoma (PCa). Up-regulation of pp125FAK expression, its activation by phosphorylation on tyrosine and its association with paxillin and p50csk were preferentially observed in PCa tissues from patients with metastases, whereas normal and hyperplastic prostates and localized PCa tissues showed undetectable or low levels of both FAK mRNA and protein and an absence of pp125FAK signalling complexes. The increase in expression and activation of pp125FAK in metastatic PCa tissues was also corroborated by our findings in human PCa cell lines. Indeed, higher levels of pp125FAK and FAK mRNA were observed in highly tumorigenic PC-3 cells as was the presence of activated pp125FAK, as opposed to an inactive form in LNCaP cells, which have a lower tumorigenic ability. In addition, pp125FAK formed signalling complexes with both paxillin and p50csk in PC-3 cells as in metastatic PCa tissues. Together, our results show that an increase in FAK mRNA and protein, as well as pp125FAK activation and association with signalling proteins, correlates with progression and invasion in human PCa tissues and cells.
Collapse
Affiliation(s)
- L Tremblay
- The Montreal General Hospital Research Institute, Canada
| | | | | | | | | | | |
Collapse
|
77
|
Konstantopoulos N, Clark S. Reduced cell attachment and phosphorylation of focal adhesion kinase associated with expression of a mutant insulin receptor. J Biol Chem 1996; 271:28960-8. [PMID: 8910546 DOI: 10.1074/jbc.271.46.28960] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Insulin signaling results in rapid changes to the cell cytoskeleton, and it has recently been shown that insulin stimulates the dephosphorylation of the cytoskeletal-associated tyrosine kinase, focal adhesion kinase (pp125(FAK)). We report here that mutation of two tryptic cleavage sites (Lys164 and Lys582 --> Asn; 2N) in the insulin receptor alpha-subunit results in a cell-line (CHO.2N-10) with altered morphology associated with an increase in cell size, a decrease in cell adhesiveness, and a decrease in pp125(FAK) tyrosine phosphorylation in the absence of insulin (45.2 +/- 9.7% compared to nontransfected Chinese hamster ovary (CHO) cells). In contrast to pp125(FAK), paxillin phosphorylation was similar in all cell lines despite lower levels (61.0 +/- 10.4% compared to CHO cells) of paxillin protein in CHO.2N-10 cells. We observed comparable protein levels of pp125(FAK) and the structural focal adhesion protein, vinculin, in all cell lines. Despite underphosphorylation of pp125(FAK) in the basal state, insulin stimulation of CHO.2N-10 cells still resulted in dephosphorylation of pp125(FAK). CHO.2N-10 and CHO.T (overexpress wild-type insulin receptor) cells have similar insulin binding characteristics, insulin-stimulated autokinase and peptide phosphorylation, and insulin-stimulated pp185/IRS-1 phosphorylation. Our results suggest that the insulin receptor may play an important role in cell-matrix interactions, such as modulating cell adhesion and inducing cell architecture changes.
Collapse
Affiliation(s)
- N Konstantopoulos
- University of Melbourne, Department of Medicine, P. O. Royal Melbourne Hospital, Parkville 3050, Australia.
| | | |
Collapse
|
78
|
Abstract
Focal adhesions are sites of tight adhesion to the underlying extracellular matrix developed by cells in culture. They provided a structural link between the actin cytoskeleton and the extracellular matrix and are regions of signal transduction that relate to growth control. The assembly of focal adhesions is regulated by the GTP-binding protein Rho. Rho stimulates contractility which, in cells that are tightly adherent to the substrate, generates isometric tension. In turn, this leads to the bundling of actin filaments and the aggregation of integrins (extracellular matrix receptors) in the plane of the membrane. The aggregation of integrins activates the focal adhesion kinase and leads to the assembly of a multicomponent signaling complex.
Collapse
Affiliation(s)
- K Burridge
- Department of Cell Biology and Anatomy, University of North Carolina at Chapel Hill 27599-7090, USA
| | | |
Collapse
|
79
|
Tremblay L, Hauck W, Aprikian AG, Begin LR, Chapdelaine A, Chevalier S. Focal adhesion kinase (pp125FAK) expression, activation and association with paxillin and p50CSK in human metastatic prostate carcinoma. Int J Cancer 1996; 68:164-71. [PMID: 8900422 DOI: 10.1002/(sici)1097-0215(19961009)68:2<169::aid-ijc4>3.0.co;2-w] [Citation(s) in RCA: 171] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
pp125FAK, a protein tyrosine kinase (PTK) co-localized with integrins in focal adhesion plaques, is known to transduce signals involved in the regulation of cell adhesion and motility as well as the anchorage-independent growth of transformed cells. We investigated whether pp125FAK could be part of a signalling pathway that contributes to the progression of human prostate carcinoma (PCa). Up-regulation of pp125FAK expression, its activation by phosphorylation on tyrosine and its association with paxillin and p50csk were preferentially observed in PCa tissues from patients with metastases, whereas normal and hyperplastic prostates and localized PCa tissues showed undetectable or low levels of both FAK mRNA and protein and an absence of pp125FAK signalling complexes. The increase in expression and activation of pp125FAK in metastatic PCa tissues was also corroborated by our findings in human PCa cell lines. Indeed, higher levels of pp125FAK and FAK mRNA were observed in highly tumorigenic PC-3 cells as was the presence of activated pp125FAK, as opposed to an inactive form in LNCaP cells, which have a lower tumorigenic ability. In addition, pp125FAK formed signalling complexes with both paxillin and p50csk in PC-3 cells as in metastatic PCa tissues. Together, our results show that an increase in FAK mRNA and protein, as well as pp125FAK activation and association with signalling proteins, correlates with progression and invasion in human PCa tissues and cells.
Collapse
Affiliation(s)
- L Tremblay
- The Montreal General Hospital Research Institute, Canada
| | | | | | | | | | | |
Collapse
|
80
|
Cloutier JF, Veillette A. Association of inhibitory tyrosine protein kinase p50csk with protein tyrosine phosphatase PEP in T cells and other hemopoietic cells. EMBO J 1996; 15:4909-18. [PMID: 8890164 PMCID: PMC452228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
p50csk is a tyrosine protein kinase (TPK) that represses the activity of Src family TPKs. We previously showed that Csk is a potent negative regulator of antigen receptor signaling in T lymphocytes and that its Src homology (SH) 3 and SH2 domains are required to inhibit these signals. To test the idea that the Csk SH3 and SH2 domains mediate interactions with other cellular proteins, we attempted to identify Csk-associated polypeptides using the yeast two-hybrid system. The results of our experiments demonstrated that Csk physically associates with PEP, a protein tyrosine phosphatase (PTP) expressed in hemopoietic cells. Further analyses revealed that this interaction was mediated by the Csk SH3 domain and by a proline-rich region (PPPLPERTP) in the non-catalytic C-terminal portion of PEP. The association between Csk and PEP was documented in transiently transfected Cos-1 cells and in a variety of cells of hemopoietic lineages, including T cells. Additional analyses demonstrated that the association between Csk and PEP is highly specific. Together, these data indicated that PEP may be an effector and/or a regulator of p50csk in T cells and other hemopoietic cells. Moreover, they allowed the identification of PEP as the first known ligand for the Csk SH3 domain.
Collapse
Affiliation(s)
- J F Cloutier
- McGill Cancer Centre, McGill University, Montreal, Canada
| | | |
Collapse
|
81
|
Tobe K, Sabe H, Yamamoto T, Yamauchi T, Asai S, Kaburagi Y, Tamemoto H, Ueki K, Kimura H, Akanuma Y, Yazaki Y, Hanafusa H, Kadowaki T. Csk enhances insulin-stimulated dephosphorylation of focal adhesion proteins. Mol Cell Biol 1996; 16:4765-72. [PMID: 8756634 PMCID: PMC231477 DOI: 10.1128/mcb.16.9.4765] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Insulin has pleiotropic effects on the regulation of cell physiology through binding to its receptor. The wide variety of tyrosine phosphorylation motifs of insulin receptor substrate 1 (IRS-1), a substrate for the activated insulin receptor tyrosine kinase, may account for the multiple functions of insulin. Recent studies have shown that activation of the insulin receptor leads to the regulation of focal adhesion proteins, such as a dephosphorylation of focal adhesion kinase (pp125FAK). We show here that C-terminal Src kinase (Csk), which phosphorylates C-terminal tyrosine residues of Src family protein tyrosine kinases and suppresses their kinase activities, is involved in this insulin-stimulated dephosphorylation of focal adhesion proteins. We demonstrated that the overexpression of Csk enhanced and prolonged the insulin-induced dephosphorylation of pp125FAK. Another focal adhesion protein, paxillin, was also dephosphorylated upon insulin stimulation, and a kinase-negative mutant of Csk was able to inhibit the insulin-induced dephosphorylation of pp125FAK and paxillin. Although we have shown that the Csk Src homology 2 domain can bind to several tyrosine-phosphorylated proteins, including pp125FAK and paxillin, a majority of protein which bound to Csk was IRS-1 when cells were stimulated by insulin. Our data also indicated that tyrosine phosphorylation levels of IRS-1 appear to be paralleled by the dephosphorylation of the focal adhesion proteins. We therefore propose that the kinase activity of Csk, through the insulin-induced complex formation of Csk with IRS-1, is involved in insulin's regulation of the phosphorylation levels of the focal adhesion proteins, possibly through inactivation of the kinase activity of c-Src family kinases.
Collapse
Affiliation(s)
- K Tobe
- Third Department of Internal Medicine, Faculty of Medicine, University of Tokyo, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
82
|
Stuiver I, Ruggeri Z, Smith JW. Divalent cations regulate the organization of integrins alpha v beta 3 and alpha v beta 5 on the cell surface. J Cell Physiol 1996; 168:521-31. [PMID: 8816906 DOI: 10.1002/(sici)1097-4652(199609)168:3<521::aid-jcp4>3.0.co;2-r] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Extracellular divalent cations are important regulators of integrin ligand binding activity. In this study we evaluated how divalent cations affect the organization of integrins into focal adhesion sites. Integrins alpha v beta 3 and alpha v beta 5 were compared because they share a high degree of structural homology and because both integrins mediate cell adhesion to vitronectin. On MG-63 osteosarcoma cells, we found that both the extent and pattern of integrin organization was regulated by the type of extracellular divalent ion. Integrin alpha v beta 3 organized in focal contacts when Mn2+ or Mg2+ was present, but not in Ca2+. In contrast, alpha v beta 5 organized in focal contacts only when Ca2+ or Mg2+ was present. Integrin alpha v beta 5 clustered in a centrally located punctate field on the ventral surface of the cell in the presence of Mn2+. These observations reveal a previously unappreciated role for divalent ions in regulating the organization of integrins into focal adhesion sites.
Collapse
Affiliation(s)
- I Stuiver
- Department of Molecular and Experimental Medicine and Vascular Biology, Scripps Research Institute, La Jolla, California, USA
| | | | | |
Collapse
|
83
|
Ishida T, Peterson TE, Kovach NL, Berk BC. MAP kinase activation by flow in endothelial cells. Role of beta 1 integrins and tyrosine kinases. Circ Res 1996; 79:310-6. [PMID: 8756009 DOI: 10.1161/01.res.79.2.310] [Citation(s) in RCA: 154] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Local alterations in the hemodynamic environment regulate endothelial cell function, but the signal-transduction mechanisms involved in this process remain unclear. We previously demonstrated that mitogen-activated protein (MAP) kinase is rapidly stimulated by flow in bovine aortic endothelial cells. Integrin receptors may act as mechanotransducers, as suggested by rapid remodeling of focal adhesion complexes in response to flow. To study the role of integrins in flow-mediated MAP kinase activation, we compared the effects of beta 1 integrin activation (with 8A2 antibody) and flow in cultured human umbilical vein endothelial cells (HUVECs). Both 8A2 (3 micrograms/mL) and flow (shear stress, 12 dynes/cm2) stimulated MAP kinase, although the flow response was faster and greater. To characterize flow-activated tyrosine kinases, tyrosine-phosphorylated proteins were immunoprecipitated and identified by Western blot. There was a time-dependent increase in phosphotyrosine content in 60- to 80-kD, 110-kD, 125- to 150-kD, and 180- to 190-kD proteins. A 125-kD protein was identified as focal adhesion kinase (FAK), suggesting that flow activates integrins. In comparison with flow, 8A2 caused less tyrosine phosphorylation of fewer proteins, although FAK was tyrosine phosphorylated. Concurrent stimulation of HUVECs with 8A2 and flow caused additive increases in MAP kinase. Antibody 8A2 increased binding of the beta 1 affinity-sensitive antibody, 15/7, while flow failed to increase binding of 15/7. In summary, both a beta 1-activating antibody and flow stimulate tyrosine kinases, leading to activation of FAK and MAP kinase signal-transduction pathways. However, the cellular responses elicited by 8A2 represent only a portion of those stimulated by flow, suggesting that "costimulatory" events such as calcium mobilization, in addition to integrin activation, mediate the HUVEC response to fluid shear stress.
Collapse
Affiliation(s)
- T Ishida
- Department of Medicine, University of Washington, Seattle 98195, USA
| | | | | | | |
Collapse
|
84
|
Abstract
Src is the best understood member of a family of 9 tyrosine kinases that regulates cellular responses to extracellular stimuli. Activated mutants of Src are oncogenic. Using Src as an example, and referring to other Src family members where appropriate, this review describes the structure of Src, the functions of the individual domains, the regulation of Src kinase activity in the cell, the selection of substrates, and the biological functions of Src. The review concentrates on developments in the last 6-7 years, and cites data resulting from the isolation and characterization of Src mutants, crystallographic studies of the structures of SH2, SH3 and tyrosine kinase domains, biochemical studies of Src kinase activity and binding properties, and the biology of transgenic and knockout mouse strains.
Collapse
Affiliation(s)
- M T Brown
- Fred Hutchinson Cancer Research Center, Seattle, WA 98104, USA
| | | |
Collapse
|
85
|
Harte MT, Hildebrand JD, Burnham MR, Bouton AH, Parsons JT. p130Cas, a substrate associated with v-Src and v-Crk, localizes to focal adhesions and binds to focal adhesion kinase. J Biol Chem 1996; 271:13649-55. [PMID: 8662921 DOI: 10.1074/jbc.271.23.13649] [Citation(s) in RCA: 291] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
p130(Cas) (crk associated substrate) has the structural characteristics of an adapter protein, containing multiple consensus SH2 binding sites, an SH3 domain, and a proline-rich domain. The structure of p130(Cas) suggests that it may act to provide a framework for protein-protein interactions; however, as yet, its functional role in cells is unknown. In this report we show that p130(Cas) is localized to focal adhesions. We demonstrate that p130(Cas) associates both in vitro and in vivo with pp125(FAK) (focal adhesion kinase), a kinase implicated in signaling by the integrin family of cell adhesion receptors. p130(Cas) also associates with pp41/43(FRNK) (pp125(FAK)-related, non-kinase), an autonomously expressed form of pp125(FAK) composed of only the C-terminal noncatalytic domain. We show that the association of p130(Cas) with pp125(Fak) and pp41/43(FRNK) is direct, and is mediated by the binding of the SH3 domain of p130(Cas) to a proline-rich sequence present in both the C terminus of pp125(FAK) and in pp41/43(FRNK). In agreement with recent studies we show that p130(Cas) is tyrosine-phosphorylated upon integrin mediated cell adhesion. The association of p130(Cas) with pp125(FAK), a kinase which is activated upon cell adhesion, is likely to be functionally important in integrin mediated signal transduction.
Collapse
Affiliation(s)
- M T Harte
- Department of Microbiology and Cancer Center, University of Virginia, Health Sciences Center, Charlottesville, Virginia 22908, USA
| | | | | | | | | |
Collapse
|
86
|
Hildebrand JD, Taylor JM, Parsons JT. An SH3 domain-containing GTPase-activating protein for Rho and Cdc42 associates with focal adhesion kinase. Mol Cell Biol 1996; 16:3169-78. [PMID: 8649427 PMCID: PMC231310 DOI: 10.1128/mcb.16.6.3169] [Citation(s) in RCA: 272] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
The integrin family of cell surface receptors mediates cell adhesion to components of the extracellular matrix (ECM). Integrin engagement with the ECM initiates signaling cascades that regulate the organization of the actin-cytoskeleton and changes in gene expression. The Rho subfamily of Ras-related low-molecular-weight GTP-binding proteins and several protein tyrosine kinases have been implicated in mediating various aspects of integrin-dependent alterations in cell homeostasis. Focal adhesion kinase (FAK or pp125FAK) is one of the tyrosine kinases predicted to be a critical component of integrin signaling. To elucidate the mechanisms by which FAK participates in integrin-mediated signaling, we have used expression cloning to identify cDNAs that encode potential FAK-binding proteins. We report here the identification of a cDNA that encodes a new member of the GTPase-activating protein (GAP) family of GTPase regulators. This GAP, termed Graf (for GTPase regulator associated with FAK), binds to the C-terminal domain of FAK in an SH3 domain-dependent manner and preferentially stimulates the GTPase activity of the GTP-binding proteins RhoA and Cdc42. Subcellular localization studies using Graf-transfected chicken embryo cells indicates that Graf colocalizes with actin stress fibers, cortical actin structures, and focal adhesions. Graf mRNA is expressed in a variety of avian tissues and is particularly abundant in embryonic brain and liver. Graf represents the first example of a regulator of the Rho family of small GTP-binding proteins that exhibits binding to a protein tyrosine kinase. We suggest that Graf may function to mediate cross talk between the tyrosine kinases such as FAK and the Rho family GTPase that control steps in integrin-initiated signaling events.
Collapse
Affiliation(s)
- J D Hildebrand
- Department of Microbiology, Health Sciences Center, University of Virginia, Charlottesville 22908, USA
| | | | | |
Collapse
|
87
|
Shockett PE, Schatz DG. Diverse strategies for tetracycline-regulated inducible gene expression. Proc Natl Acad Sci U S A 1996; 93:5173-6. [PMID: 8643548 PMCID: PMC39217 DOI: 10.1073/pnas.93.11.5173] [Citation(s) in RCA: 118] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Affiliation(s)
- P E Shockett
- Section of Immunobiology and Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, CT 06520-8011, USA
| | | |
Collapse
|
88
|
Flinn HM, Ridley AJ. Rho stimulates tyrosine phosphorylation of focal adhesion kinase, p130 and paxillin. J Cell Sci 1996; 109 ( Pt 5):1133-41. [PMID: 8743960 DOI: 10.1242/jcs.109.5.1133] [Citation(s) in RCA: 117] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The small GTP-binding protein Rho rapidly stimulates the formation of focal adhesions and actin stress fibres when microinjected into serum-starved Swiss 3T3 fibroblasts. This response is inhibited by tyrosine kinase inhibitors. Addition of growth factors such as lysophosphatidic acid and bombesin to Swiss 3T3 cells stimulates a similar response, which is dependent on endogenous Rho proteins. To investigate signalling events regulated by Rho, we have scrape loaded Rho into serum-starved cells. Activated Rho stimulates the tyrosine phosphorylation of a number of proteins, including three proteins known to localise to focal adhesions, pp125FAK, p130 and paxillin. Rho-induced phosphorylation of pp125FAK, p130 and paxillin is observed in the absence of stress fibre formation and is, therefore, independent of Rho-induced actin polymerisation. We propose that the tyrosine kinase, pp125FAK, and the putative adapter proteins, paxillin and p130, are components of a Rho-regulated signal transduction pathway, and that these protein tyrosine phosphorylation events are likely to be important for the regulation of focal adhesion formation.
Collapse
Affiliation(s)
- H M Flinn
- Ludwig Institute for Cancer Research, University College London School of Medicine, UK
| | | |
Collapse
|
89
|
Bougeret C, Delaunay T, Romero F, Jullien P, Sabe H, Hanafusa H, Benarous R, Fischer S. Detection of a physical and functional interaction between Csk and Lck which involves the SH2 domain of Csk and is mediated by autophosphorylation of Lck on tyrosine 394. J Biol Chem 1996; 271:7465-72. [PMID: 8631775 DOI: 10.1074/jbc.271.13.7465] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
The COOH-terminal Src kinase (Csk) is responsible for the phosphorylation of the conserved, negative regulatory, carboxyl-terminal tyrosine of most of the Src family protein tyrosine kinases. Up to now, no stable binding of Csk to Src kinases has been detected. We therefore decided to analyze this interaction using two systems which allow detection of transient interaction. We produced and purified recombinant proteins in the glutathione S-transferase prokaryotic expression system. First, using real-time biospecific interaction analysis (BIAcore(TM)), we detected in vitro a specific interaction between Csk and one of its substrates Lck, a lymphocyte-specific member of the Src family. This interaction requires the autophosphorylation of Lck on tyrosine 394 (the phosphorylation of which is correlated with an increase of the kinase activity) and involves a functional Csk SH2 domain. Second, using the yeast two-hybrid system, we confirmed in vivo the physical interaction between Csk and Lck. Furthermore, in vitro we showed that autophosphorylation of Lck on tyrosine 394 enhances the phosphorylation of Lck by Csk on the negative regulatory site, tyrosine 505, suggesting that activated Lck serves preferentially as substrate for Csk. These findings might explain the mechanism(s) by which Csk interacts with most of Src kinases to down-regulate their kinase activity.
Collapse
Affiliation(s)
- C Bougeret
- INSERM, Institut Cochin de Génétique Moleculaire/Université Paris, France
| | | | | | | | | | | | | | | |
Collapse
|
90
|
Owens LV, Xu L, Dent GA, Yang X, Sturge GC, Craven RJ, Cance WG. Focal adhesion kinase as a marker of invasive potential in differentiated human thyroid cancer. Ann Surg Oncol 1996; 3:100-5. [PMID: 8770310 DOI: 10.1007/bf02409059] [Citation(s) in RCA: 160] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
BACKGROUND The FAK gene encodes a 125-kDa tyrosine kinase (p125FAK) involved in signal transduction pathways used in cell adhesion, motility, and anchorage-independent growth. Because thyroid carcinomas have a wide variability in their propensity for invasion and metastasis, we studied the expression of FAK in a variety of thyroid tissues. METHODS We synthesized a recombinant N-terminal fragment of the human FAK protein and developed a specific polyclonal antisera. Using Western blot analysis, we assessed the levels of p125FAK expression in 30 human thyroid tissue samples from 27 patients that included paired normal and malignant specimens. Levels of FAK protein in individual tumors were quantitated by densitometric scanning of the immunoblots, and the results were correlated with tumor histology and biologic behavior. RESULTS The levels of FAK expression were directly correlated with thyroid carcinomas demonstrating the most aggressive phenotypes. The highest levels of p125FAK were seen in follicular carcinomas and tumors associated with distant metastatic foci. In contrast, neoplastic thyroid tissues with limited invasive potential, such as papillary carcinomas, follicular adenomas, and other nonmalignant thyroid lesions, showed minimal p125FAX expression. CONCLUSIONS Overexpression of FAK may be part of a mechanism for invasion and metastasis of thyroid cancer. Furthermore, the levels of p125FAK may serve as a marker of biologic behavior in this disease.
Collapse
Affiliation(s)
- L V Owens
- Department of Surgery, University of North Carolina School of Medicine, Chapel Hill 27599, USA
| | | | | | | | | | | | | |
Collapse
|
91
|
Berk BC, Corson MA, Peterson TE, Tseng H. Protein kinases as mediators of fluid shear stress stimulated signal transduction in endothelial cells: a hypothesis for calcium-dependent and calcium-independent events activated by flow. J Biomech 1995; 28:1439-50. [PMID: 8666584 DOI: 10.1016/0021-9290(95)00092-5] [Citation(s) in RCA: 122] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Fluid shear stress regulates endothelial cell function, but the signal transduction mechanisms involved in mechanotransduction remain unclear. Recent findings demonstrate that several intracellular kinases are activated by mechanical forces. In particular, members of the mitogen-activated protein (MAP) kinase family are stimulated by hyperosmolarity, stretch, and stress such as heat shock. We propose a model for mechanotransduction in endothelial cells involving calcium-dependent and calcium-independent protein kinase pathways. The calcium-dependent pathway involves activation of phospholipase C, hydrolysis of phosphatidylinositol 4,5-bisphosphate (PIP2), increases in intracellular calcium and stimulation of kinases such as calcium-calmodulin and C kinases (PKC). The calcium-independent pathway involves activation of a small GTP-binding protein and stimulation of calcium-independent PKC and MAP kinases. The calcium-dependent pathway mediates the rapid, transient response to fluid shear stress including activation of nitric oxide synthase (NOS) and ion transport. In contrast, the calcium-independent pathway mediates a slower response including the sustained activation of NOS and changes in cell morphology and gene expression. We propose that focal adhesion complexes link the calcium-dependent and calcium-independent pathways by regulating activity of phosphatidylinositol 4-phosphate (PIP) 5-kinase (which regulates PIP2 levels) and p125 focal adhesion kinase (FAK, which phosphorylates paxillin and interacts with cytoskeletal proteins). This model predicts that dynamic interactions between integrin molecules present in focal adhesion complexes and membrane events involved in mechanotransduction will be integrated by calcium-dependent and calcium-independent kinases to generate intracellular signals involved in the endothelial cell response to flow.
Collapse
Affiliation(s)
- B C Berk
- Department of Medicine, University of Washington, Seattle 98195, USA
| | | | | | | |
Collapse
|
92
|
Neet K, Hunter T. The nonreceptor protein-tyrosine kinase CSK complexes directly with the GTPase-activating protein-associated p62 protein in cells expressing v-Src or activated c-Src. Mol Cell Biol 1995; 15:4908-20. [PMID: 7544435 PMCID: PMC230737 DOI: 10.1128/mcb.15.9.4908] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
CSK is a predominantly cytosolic protein-tyrosine kinase (PTK) that negatively regulates Src family PTKs by phosphorylation of a conserved tyrosine near their C termini. Little is known about how CSK itself is regulated. On the basis of immunofluorescence studies, a model has been proposed that when c-Src is activated, it is redistributed to podosomes, in which substrates become phosphorylated, creating binding sites for CSK. CSK is recruited to these sites of c-Src activation via its SH2 and SH3 domains and is then in a position to downregulate c-Src activity (B. W. Howell and J. A. Cooper, Mol. Cell. Biol. 14:5402-5411, 1994). To identify phosphotyrosine (P.Tyr)-containing proteins that may mediate translocation of CSK due to c-Src activation, we have examined the whole spectrum of P.Tyr-containing proteins that associate with CSK in v-Src NIH 3T3 cells by anti-P.Tyr immunoblotting. Nine P.Tyr-containing proteins coimmunoprecipitated with CSK from v-Src NIH 3T3 cells. One of these, an approximately 62-kDa protein, also associated with CSK in NIH 3T3 cells treated with vanadate prior to lysis and in NIH 3T3 cells expressing an activated c-Src mutant. This 62-kDa protein was shown to be identical to the GTPase-activating protein (GAP)-associated p62 (GAP-A.p62) protein. The interaction between CSK and GAP-A.p62 could be reconstituted in vitro with glutathione S-transferase fusion proteins containing full-length CSK or the CSK SH2 domain. Furthermore, our data show that CSK interacts directly with GAP.A-p62 and that the complex between the two proteins is localized in subcellular membrane or cytoskeletal fractions. Our results suggest that GAP-A.p62 may function as a docking protein and may mediate translocation of proteins, including GAP and CSK, to membrane or cytoskeletal regions upon c-Src activation.
Collapse
Affiliation(s)
- K Neet
- Graduate Program in Neurosciences, University of California, San Diego, La Jolla 92093, USA
| | | |
Collapse
|