51
|
Pointer MA, Kamilar JM, Warmuth V, Chester SGB, Delsuc F, Mundy NI, Asher RJ, Bradley BJ. RUNX2 tandem repeats and the evolution of facial length in placental mammals. BMC Evol Biol 2012; 12:103. [PMID: 22741925 PMCID: PMC3438065 DOI: 10.1186/1471-2148-12-103] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2012] [Accepted: 06/28/2012] [Indexed: 01/21/2023] Open
Abstract
Background When simple sequence repeats are integrated into functional genes, they can potentially act as evolutionary ‘tuning knobs’, supplying abundant genetic variation with minimal risk of pleiotropic deleterious effects. The genetic basis of variation in facial shape and length represents a possible example of this phenomenon. Runt-related transcription factor 2 (RUNX2), which is involved in osteoblast differentiation, contains a functionally-important tandem repeat of glutamine and alanine amino acids. The ratio of glutamines to alanines (the QA ratio) in this protein seemingly influences the regulation of bone development. Notably, in domestic breeds of dog, and in carnivorans in general, the ratio of glutamines to alanines is strongly correlated with facial length. Results In this study we examine whether this correlation holds true across placental mammals, particularly those mammals for which facial length is highly variable and related to adaptive behavior and lifestyle (e.g., primates, afrotherians, xenarthrans). We obtained relative facial length measurements and RUNX2 sequences for 41 mammalian species representing 12 orders. Using both a phylogenetic generalized least squares model and a recently-developed Bayesian comparative method, we tested for a correlation between genetic and morphometric data while controlling for phylogeny, evolutionary rates, and divergence times. Non-carnivoran taxa generally had substantially lower glutamine-alanine ratios than carnivorans (primates and xenarthrans with means of 1.34 and 1.25, respectively, compared to a mean of 3.1 for carnivorans), and we found no correlation between RUNX2 sequence and face length across placental mammals. Conclusions Results of our diverse comparative phylogenetic analyses indicate that QA ratio does not consistently correlate with face length across the 41 mammalian taxa considered. Thus, although RUNX2 might function as a ‘tuning knob’ modifying face length in carnivorans, this relationship is not conserved across mammals in general.
Collapse
Affiliation(s)
- Marie A Pointer
- Department of Zoology, University of Cambridge, Cambridge, CB2 3EJ, UK
| | | | | | | | | | | | | | | |
Collapse
|
52
|
Kwon TG, Zhao X, Yang Q, Li Y, Ge C, Zhao G, Franceschi RT. Physical and functional interactions between Runx2 and HIF-1α induce vascular endothelial growth factor gene expression. J Cell Biochem 2012; 112:3582-93. [PMID: 21793044 DOI: 10.1002/jcb.23289] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Angiogenesis and bone formation are intimately related processes. Hypoxia during early bone development stabilizes hypoxia-inducible factor-1α (HIF-1α) and increases angiogenic signals including vascular endothelial growth factor (VEGF). Furthermore, stabilization of HIF-1α by genetic or chemical means stimulates bone formation. On the other hand, deficiency of Runx2, a key osteogenic transcription factor, prevents vascular invasion of bone and VEGF expression. This study explores the possibility that HIF-1α and Runx2 interact to activate angiogenic signals. Runx2 over-expression in mesenchymal cells increased VEGF mRNA and protein under both normoxic and hypoxic conditions. In normoxia, Runx2 also dramatically increased HIF-1α protein. In all cases, the Runx2 response was inhibited by siRNA-mediated suppression of HIF-1α and completely blocked by the HIF-1α inhibitor, echinomycin. Similarly, treatment of preosteoblast cells with Runx2 siRNA reduced VEGF mRNA in normoxia or hypoxia. However, Runx2 is not essential for the HIF-1α response since VEGF is induced by hypoxia even in Runx2-null cells. Endogenous Runx2 and HIF-1α were colocalized to the nuclei of MC3T3-E1 preosteoblast cells. Moreover, HIF-1α and Runx2 physically interact using sites within the Runx2 RUNT domain. Chromatin immunoprecipitation also provided evidence for colocalization of Runx2 and HIF-1α on the VEGF promoter. In addition, Runx2 stimulated HIF-1α-dependent activation of an HRE-luciferase reporter gene without requiring a separate Runx2-binding enhancer. These studies indicate that Runx2 functions together with HIF-1α to stimulate angiogenic gene expression in bone cells and may in part explain the known requirement for Runx2 in bone vascularization.
Collapse
Affiliation(s)
- Tae-Geon Kwon
- Department of Periodontics & Oral Medicine and Biological Chemistry, University of Michigan, Ann Arbor, Michigan 48109-1078, USA
| | | | | | | | | | | | | |
Collapse
|
53
|
Ge C, Yang Q, Zhao G, Yu H, Kirkwood KL, Franceschi RT. Interactions between extracellular signal-regulated kinase 1/2 and p38 MAP kinase pathways in the control of RUNX2 phosphorylation and transcriptional activity. J Bone Miner Res 2012; 27:538-51. [PMID: 22072425 PMCID: PMC4285380 DOI: 10.1002/jbmr.561] [Citation(s) in RCA: 131] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
RUNX2, a key transcription factor for osteoblast differentiation, is regulated by ERK1/2 and p38 MAP kinase-mediated phosphorylation. However, the specific contribution of each kinase to RUNX2-dependent transcription is not known. Here we investigate ERK and p38 regulation of RUNX2 using a unique P-RUNX2-specific antibody. Both MAP kinases stimulated RUNX2 Ser319 phosphorylation and transcriptional activity. However, a clear preference for ERK1 versus p38α/β was found when the ability of these MAPKs to phosphorylate and activate RUNX2 was compared. Similarly, ERK1 preferentially bound to a consensus MAPK binding site on RUNX2 that was essential for the activity of either kinase. To assess the relative contribution of ERK1/2 and p38 to osteoblast gene expression, MC3T3-E1 preosteoblast cells were grown in control or ascorbic acid (AA)-containing medium ± BMP2/7. AA-induced gene expression, which requires collagen matrix synthesis, was associated with parallel increases in P-ERK and RUNX2-S319-P in the absence of any changes in P-p38. This response was blocked by ERK, but not p38, inhibition. Significantly, in the presence of AA, BMP2/7 synergistically stimulated RUNX2 S319 phosphorylation and transcriptional activity without affecting total RUNX2 and this response was totally dependent on ERK/MAPK activity. In contrast, although p38 inhibition partially blocked BMP-dependent transcription, it did not affect RUNX2 S319 phosphorylation, suggesting the involvement of other phosphorylation sites and/or transcription factors in this response. Based on this work, we conclude that extracellular matrix and BMP regulation of RUNX2 phosphorylation and transcriptional activity in osteoblasts is predominantly mediated by ERK rather than p38 MAPKs.
Collapse
Affiliation(s)
- Chunxi Ge
- Department of Periodontics and Oral Medicine, School of Dentistry, University of Michigan, Ann Arbor, Michigan 48109-1078, USA
| | - Qian Yang
- Department of Periodontics and Oral Medicine, School of Dentistry, University of Michigan, Ann Arbor, Michigan 48109-1078, USA
| | - Guisheng Zhao
- Department of Periodontics and Oral Medicine, School of Dentistry, University of Michigan, Ann Arbor, Michigan 48109-1078, USA
| | - Hong Yu
- Department of Craniofacial Biology and the Center for Oral Health Research, College of Dental Medicine, Medical University of South Carolina, Charleston, SC, 29425, USA
| | - Keith L. Kirkwood
- Department of Craniofacial Biology and the Center for Oral Health Research, College of Dental Medicine, Medical University of South Carolina, Charleston, SC, 29425, USA
| | - Renny T. Franceschi
- Department of Periodontics and Oral Medicine, School of Dentistry, University of Michigan, Ann Arbor, Michigan 48109-1078, USA
- Department of Biological Chemistry, School of Medicine, University of Michigan, Ann Arbor, Michigan 48109-1078, USA
| |
Collapse
|
54
|
Abstract
Drosophila Groucho (Gro) is the founding member of a family of metazoan corepressors. Gro mediates repression through interactions with a myriad of DNA-binding repressor proteins to direct the silencing of genes involved in many developmental processes, including neurogenesis and patterning of the main body axis, as well as receptor tyrosine kinase/Ras/MAPK, Notch, Wingless (Wg)/Wnt, and Decapentaplegic (Dpp) signaling. Gro mediates repression by multiple molecular mechanisms, depending on the regulatory context. Because Gro is a broadly expressed nuclear factor, whereas its repressor partners display restricted temporal and spatial distribution, it was presumed that this corepressor played permissive rather than instructive roles in development. However, a wide range of studies demonstrates that this is not the case. Gro can sense and integrate many cellular inputs to modulate the expression of variety of genes, making it a versatile corepressor with crucial instructive roles in development and signaling.
Collapse
Affiliation(s)
- Wiam Turki-Judeh
- Department of Chemistry & Biochemistry and Molecular Biology Institute, University of California, Los Angeles, California, USA
| | | |
Collapse
|
55
|
He N, Xiao Z, Yin T, Stubbs J, Li L, Quarles LD. Inducible expression of Runx2 results in multiorgan abnormalities in mice. J Cell Biochem 2011; 112:653-65. [PMID: 21268087 DOI: 10.1002/jcb.22968] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Runx2 is a transcription factor controlling skeletal development, and is also expressed in extraskeletal tissues where its function is not well understood. Existing Runx2 mutant and transgenic mouse models do not allow the necessary control of Runx2 expression to understand its functions in different tissues. We generated conditional, doxycyline-inducible, triple transgenic mice (CMV-Cre;ROSA26-neo(flox/+)-rtTA;Tet-O-Runx2) to investigate the effects of wide spread overexpression of Runx2. Osteoblasts isolated from CMV-Cre;ROSA26-neo(flox/+)-rtTA; Tet-O-Runx2 mice demonstrated a dose-dependent effect of doxycycline to stimulate Runx2 transgene expression. Doxycycline administration to CMV-Cre;ROSA26-neo(flox/+)-rtTA;Tet-O-Runx2 mice induced Runx2 transgene expression in all tissues tested, with the highest levels observed in kidney, ovary, and bone. Runx2 overexpression resulted in deceased body size and reduced viability. With regard to bone, Runx2 overexpressing mice paradoxically displayed profound osteopenia and diminished osteogenesis. Induced expression of Runx2 in extraskeletal tissues resulted in ectopic calcification and induction of the osteogenic program in a limited number of tissues, including lung and muscle. In addition, the triple transgenic mice showed evidence of a myeloproliferative disorder and an apparent inhibition of lymphocyte development. Thus, overexpression of Runx2 both within and outside of the skeleton can have diverse biological effects. Use of tissue specific Cre mice will allow this model to be used to conditionally and inducibly overexpress Runx2 in different tissues and provide a means to study the post-natal tissue- and cell context-dependent functions of Runx2.
Collapse
Affiliation(s)
- Nan He
- The Kidney Institute, University of Kansas Medical Center, Kansas City, Kansas 66160, USA
| | | | | | | | | | | |
Collapse
|
56
|
Lin WD, Lin SP, Wang CH, Tsai Y, Chen CP, Tsai FJ. RUNX2 mutations in Taiwanese patients with cleidocranial dysplasia. Genet Mol Biol 2011; 34:201-4. [PMID: 21734816 PMCID: PMC3115309 DOI: 10.1590/s1415-47572011005000002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2010] [Accepted: 12/12/2010] [Indexed: 12/29/2022] Open
Abstract
Cleidocranial dysplasia (CCD) is an autosomal dominant human skeletal disorder comprising hypoplastic clavicles, wide cranial sutures, supernumerary teeth, short stature, and other skeletal abnormalities. It is known that mutations in the human RUNX2 gene mapped at 6p21 are responsible for CCD. We analyzed the mutation patterns of the RUNX2 gene by direct sequencing in six Taiwanese index cases with typical CCD. One of the patients was a familial case and the others were sporadic cases. Sequencing identified four mutations. Three were caused by single nucleotide substitutions, which created a nonsense (p.R391X), two were missense mutations (p.R190W, p.R225Q), and the forth was a novel mutation (c.1119delC), a one-base deletion. Real time quantitative PCR adapted to determine copy numbers of the promoter, all exons and the 3’UTR region of the RUNX2 gene detected the deletion of a single allele in a sporadic case. The results extend the spectrum of RUNX2 mutations in CCD patients and indicate that complete deletions of the RUNX2 gene should be considered in those CCD patients lacking a point mutation detected by direct sequencing.
Collapse
Affiliation(s)
- Wei-De Lin
- Department of Medical Research, China Medical University Hospital, Taichung, Taiwan
| | | | | | | | | | | |
Collapse
|
57
|
Abstract
Current orthopedic practice to treat osteo-degenerative diseases, such as osteoporosis, calls for antiresorptive therapies and anabolic bone medications. In some cases, surgery, in which metal rods are inserted into the bones, brings symptomatic relief. As these treatments may ameliorate the symptoms, but cannot cure the underlying dysregulation of the bone, the orthopedic field seems ripe for regenerative therapies using transplantation of stem cells. Stem cells bring with them the promise of completely curing a disease state, as these are the cells that normally regenerate tissues in a healthy organism. This chapter assembles reports that have successfully used stem cells to generate osteoblasts, osteoclasts, and chondrocytes - the cells that can be found in healthy bone tissue - in culture, and review and collate studies about animal models that were employed to test the function of these in vitro "made" cells. A particular emphasis is placed on embryonic stem cells, the most versatile of all stem cells. Due to their pluripotency, embryonic stem cells represent the probably most challenging stem cells to bring into the clinic, and therefore, the associated problems are discussed to put into perspective where the field currently is and what we can expect for the future.
Collapse
Affiliation(s)
- Nicole I zur Nieden
- Department of Cell Therapy, Applied Stem Cell Technology Unit, Fraunhofer Institute for Cell Therapy and Immunology, Leipzig, Germany.
| |
Collapse
|
58
|
Abstract
Osteosarcoma is an aggressive but ill-understood cancer of bone that predominantly affects adolescents. Its rarity and biological heterogeneity have limited studies of its molecular basis. In recent years, an important role has emerged for the RUNX2 "platform protein" in osteosarcoma oncogenesis. RUNX proteins are DNA-binding transcription factors that regulate the expression of multiple genes involved in cellular differentiation and cell-cycle progression. RUNX2 is genetically essential for developing bone and osteoblast maturation. Studies of osteosarcoma tumours have revealed that the RUNX2 DNA copy number together with RNA and protein levels are highly elevated in osteosarcoma tumors. The protein is also important for metastatic bone disease of prostate and breast cancers, while RUNX2 may have both tumor suppressive and oncogenic roles in bone morphogenesis. This paper provides a synopsis of the current understanding of the functions of RUNX2 and its potential role in osteosarcoma and suggests directions for future study.
Collapse
|
59
|
Xuan D, Sun X, Yan Y, Xie B, Xu P, Zhang J. Effect of cleidocranial dysplasia-related novel mutation of RUNX2 on characteristics of dental pulp cells and tooth development. J Cell Biochem 2010; 111:1473-81. [DOI: 10.1002/jcb.22875] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
60
|
Beagle B, Johnson GVW. AES/GRG5: more than just a dominant-negative TLE/GRG family member. Dev Dyn 2010; 239:2795-805. [PMID: 20925119 PMCID: PMC2997355 DOI: 10.1002/dvdy.22439] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/02/2010] [Indexed: 11/29/2022] Open
Abstract
The human Transducin-like Enhancer of Split (TLE) and mouse homologue, Groucho gene-related protein (GRG), represent a family of conserved non-DNA binding transcriptional modulatory proteins divided into two subgroups based upon size. The long TLE/GRGs consist of four pentadomain proteins that are dedicated co-repressors for multiple transcription factors (TF). The second TLE/GRG subgroup is composed of the Amino-terminal Enhancer of Split (AES) in humans and its mouse homolog GRG5 (AES/GRG5). In contrast to the dedicated co-repressor function of long TLE/GRGs, AES/GRG5 can both positively or negatively modulate various TF as well as non-TF proteins in a long TLE/GRG-dependent or -independent manner. Therefore, AES/GRG5 is a functionally dynamic protein that is not exclusively defined by its role as a long TLE/GRG antagonist. AES/GRG5 may function in various developmental and pathological processes but the functional characteristics of endogenous AES/GRG5 in a physiologically relevant context remains to be determined.
Collapse
Affiliation(s)
- Brandon Beagle
- Deparkments of Anesthesiology and Pharmacology and Physiology, University of RochesterRochester, New York
- Department of Cell Biology, University of Alabama at BirminghamBirmingham, Alabama
| | - Gail VW Johnson
- Deparkments of Anesthesiology and Pharmacology and Physiology, University of RochesterRochester, New York
- Department of Cell Biology, University of Alabama at BirminghamBirmingham, Alabama
| |
Collapse
|
61
|
Lin L, Dai SD, Fan GY. Glucocorticoid-induced differentiation of primary cultured bone marrow mesenchymal cells into adipocytes is antagonized by exogenous Runx2. APMIS 2010; 118:595-605. [PMID: 20666741 DOI: 10.1111/j.1600-0463.2010.02634.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Long-term clinical use of glucocorticoids often causes the serious side effect of non-traumatic avascular osteonecrosis. The aim of this study was to examine the effects and mechanisms of a glucocorticoid, dexamethasone (Dex), on differentiation of primary cultured rat bone marrow mesenchymal cells (BMCs). We also tried to block the inhibitory effects of Dex on osteoblast differentiation. Adipocyte markers (peroxisome proliferator-activated receptorgamma-2 and aP2) were increased in response to Dex treatment in a dose- and time-dependent manner, while osteoblastic markers [Runx2, COL 1, osterix, alkaline phosphatase (ALP) and OC] were down-regulated, consistent with ALP and osteocalcin promoter activity. To validate the effects of Runx2 on the expression of osteogenesis and adipocyte genes, pCMV/Flag-Runx2 was transfected into BMCs, and relevant markers were detected after 10(-7) M Dex treatment for 48 h. The results indicated that Dex treatment induced adipogenic differentiation and suppressed proliferation. No significant difference was detected in expressions of these genes between Runx2-transfected cells and Dex-treated BMCs. These data suggest that Dex primarily induced adipocyte differentiation of BMCs. Exogenous Runx2 can antagonize the effect of Dex on osteoblast differentiation.
Collapse
Affiliation(s)
- Le Lin
- Departments of Orthopedics, First Affiliated Hospital China Medical University, Shenyang 110001, China
| | | | | |
Collapse
|
62
|
Zhang C, Zheng S, Wang Y, Zhao Y, Zhu J, Ge L. Mutational analysis of RUNX2 gene in Chinese patients with cleidocranial dysplasia. Mutagenesis 2010; 25:589-94. [DOI: 10.1093/mutage/geq044] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
|
63
|
Pan K, Sun Q, Zhang J, Ge S, Li S, Zhao Y, Yang P. Multilineage differentiation of dental follicle cells and the roles of Runx2 over-expression in enhancing osteoblast/cementoblast-related gene expression in dental follicle cells. Cell Prolif 2010; 43:219-28. [PMID: 20546240 DOI: 10.1111/j.1365-2184.2010.00670.x] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
OBJECTIVES Dental follicle cells (DFCs) provide the origin of periodontal tissues, and Runx2 is essential for bone formation and tooth development. In this study, pluripotency of DFCs was evaluated and effects of Runx2 on them were investigated. MATERIALS AND METHODS The DFCs were induced to differentiate towards osteoblasts, adipocytes or chondrocytes, and alizarin red staining, oil red O staining or alcian blue staining was performed to reveal the differentiated states. Bone marrow stromal cells (BMSCs) and primary mouse fibroblasts served as controls. DFCs were also infected with recombinant retroviruses encoding either full-length Runx2 or mutant Runx2 without the VWRPY motif. Western blot analysis, real-time real time RT-PCR and in vitro mineralization assay were performed to evaluate the effects of full-length Runx2 or mutant Runx2 on osteogenic/cementogenic differentiation of the cells. RESULTS The above-mentioned staining methods demonstrated that DFCs were successfully induced to differentiate towards osteoblasts, adipocytes or chondrocytes respectively, confirming the existence of pluripotent mesenchymal stem cells in dental follicle tissues. However, staining intensity in DFC cultures was weaker than in BMSC cultures. Real-time PCR analysis indicated that mutant Runx2 induced a more pronounced increase in expression levels of OC, OPN, Col I and CP23 than full-length Runx2. Mineralization assay also showed that mutant Runx2 increased mineralization nodule formation more prominently than full-length Runx2. CONCLUSIONS Multipotent DFCs can be induced to differentiate towards osteoblasts, adipocytes or chondrocytes in vitro. Runx2 over-expression up-regulated expression levels of osteoblast/cementoblast-related genes and in vitro enhanced osteogenic differentiation of DFCs. In addition, mutant Runx2-induced changes in DFCs were more prominent than those induced by full-length Runx2.
Collapse
Affiliation(s)
- K Pan
- Department of Periodontology and Institute of Oral Biomedicine, School of Dentistry, Shandong University, Jinan, China
| | | | | | | | | | | | | |
Collapse
|
64
|
Sierra OL, Towler DA. Runx2 trans-activation mediated by the MSX2-interacting nuclear target requires homeodomain interacting protein kinase-3. Mol Endocrinol 2010; 24:1478-97. [PMID: 20484411 DOI: 10.1210/me.2010-0029] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Runt-related transcription factor 2 (Runx2) and muscle segment homeobox homolog 2-interacting nuclear target (MINT) (Spen homolog) are transcriptional regulators critical for mammalian development. MINT enhances Runx2 activation of osteocalcin (OC) fibroblast growth factor (FGF) response element in an FGF2-dependent fashion in C3H10T1/2 cells. Although the MINT N-terminal RNA recognition motif domain contributes, the muscle segment homeobox homolog 2-interacting domain is sufficient for Runx2 activation. Intriguingly, Runx1 cannot replace Runx2 in this assay. To better understand this Runx2 signaling cascade, we performed structure-function analysis of the Runx2-MINT trans-activation relationship. Systematic truncation and domain swapping in Runx1:Runx2 chimeras identified that the unique Runx2 activation domain 3 (AD3), encompassed by residues 316-421, conveys MINT+FGF2 trans-activation in transfection assays. Ala mutagenesis of Runx2 Ser/Thr residues identified that S301 and T326 in AD3 are necessary for full MINT+FGF2 trans-activation. Conversely, phosphomimetic Asp substitution of these AD3 Ser/Thr residues enhanced activation by MINT. Adjacent Pro residues implicated regulation by a proline-directed protein kinase (PDPK). Systematic screening with PDPK inhibitors identified that the casein kinase-2/homeodomain-interacting protein kinase (HIPK)/dual specificity tyrosine phosphorylation regulated kinase inhibitor 2-dimethylamino-4,5,6,7-tetrabromo-1H-benzimidazole (DMAT), but not ERK, c-Jun N-terminal kinase, p38MAPK, or other casein kinase-2 inhibitors, abrogated Runx2-, MINT-, and FGF2-activation. Systematic small interfering RNA-mediated silencing of DMAT-inhibited PDPKs revealed that HIPK3 depletion reduced MINT+FGF2-dependent activation of Runx2. HIPK3 and Runx2 coprecipitate after in vitro transcription-translation, and recombinant HIPK3 recognizes Runx2 AD3 as kinase substrate. Furthermore, DMAT treatment and HIPK3 RNAi inhibited MINT+FGF2 activation of Runx2 AD3, and nuclear HIPK3 colocalized with MINT. HIPK3 antisense oligodeoxynucleotide selectively reduced Runx2 protein accumulation and OC gene expression in C3H10T1/2 cells. Thus, HIPK3 participates in MINT+FGF2 regulation of Runx2 AD3 activity and controls Runx2-dependent OC expression.
Collapse
Affiliation(s)
- Oscar L Sierra
- Washington University School of Medicine, Internal Medicine-Endocrinology/Metabolism, Campus Box 8301, 660 South Euclid Avenue, St. Louis, Missouri 63110, USA.
| | | |
Collapse
|
65
|
Walrad PB, Hang S, Joseph GS, Salas J, Gergen JP. Distinct contributions of conserved modules to Runt transcription factor activity. Mol Biol Cell 2010; 21:2315-26. [PMID: 20462957 PMCID: PMC2893994 DOI: 10.1091/mbc.e09-11-0953] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
An investigation of the in vivo roles of conserved regions of the Drosophila Runt protein outside of the DNA-binding Runt domain reveals distinct requirements in different regulatory activities. The conserved VWRPY-containing C-terminus required for repression of only a subset of targets is also found to participate in activation of other targets. Runx proteins play vital roles in regulating transcription in numerous developmental pathways throughout the animal kingdom. Two Runx protein hallmarks are the DNA-binding Runt domain and a C-terminal VWRPY motif that mediates interaction with TLE/Gro corepressor proteins. A phylogenetic analysis of Runt, the founding Runx family member, identifies four distinct regions C-terminal to the Runt domain that are conserved in Drosophila and other insects. We used a series of previously described ectopic expression assays to investigate the functions of these different conserved regions in regulating gene expression during embryogenesis and in controlling axonal projections in the developing eye. The results indicate each conserved region is required for a different subset of activities and identify distinct regions that participate in the transcriptional activation and repression of the segmentation gene sloppy-paired-1 (slp1). Interestingly, the C-terminal VWRPY-containing region is not required for repression but instead plays a role in slp1 activation. Genetic experiments indicating that Groucho (Gro) does not participate in slp1 regulation further suggest that Runt's conserved C-terminus interacts with other factors to promote transcriptional activation. These results provide a foundation for further studies on the molecular interactions that contribute to the context-dependent properties of Runx proteins as developmental regulators.
Collapse
Affiliation(s)
- Pegine B Walrad
- Department of Biochemistry and Cell Biology and the Center for Developmental Genetics, Graduate Programs in Molecular and Cellular Biology and Biochemistry and Structural Biology, Stony Brook University, Stony Brook, NY 11794-5215, USA
| | | | | | | | | |
Collapse
|
66
|
Han MS, Kim HJ, Wee HJ, Lim KE, Park NR, Bae SC, van Wijnen AJ, Stein JL, Lian JB, Stein GS, Choi JY. The cleidocranial dysplasia-related R131G mutation in the Runt-related transcription factor RUNX2 disrupts binding to DNA but not CBF-beta. J Cell Biochem 2010; 110:97-103. [PMID: 20225274 PMCID: PMC3123452 DOI: 10.1002/jcb.22516] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Cleidocranial dysplasia (CCD) is caused by haploinsufficiency in RUNX2 function. We have previously identified a series of RUNX2 mutations in Korean CCD patients, including a novel R131G missense mutation in the Runt-homology domain. Here, we examine the functional consequences of the RUNX2(R131G) mutation, which could potentially affect DNA binding, nuclear localization signal, and/or heterodimerization with core-binding factor-beta (CBF-beta). Immunofluorescence microscopy and western blot analysis with subcellular fractions show that RUNX2(R131G) is localized in the nucleus. Immunoprecipitation analysis reveals that heterodimerization with CBF-beta is retained. However, precipitation assays with biotinylated oligonucleotides and reporter gene assays with RUNX2 responsive promoters together reveal that DNA-binding activity and consequently the transactivation of potential of RUNX2(R131G) is abrogated. We conclude that loss of DNA binding, but not nuclear localization or CBF-beta heterodimerization, causes RUNX2 haploinsufficiency in patients with the RUNX2(R131G) mutation. Retention of specific functions including nuclear localization and binding to CBF-beta of the RUNX2(R131G) mutation may render the mutant protein an effective competitor that interferes with wild-type function.
Collapse
Affiliation(s)
- Min-Su Han
- Department of Biochemistry and Cell Biology, School of Medicine, Kyungpook National University, Daegu 700-422, Korea
- Skeletal Diseases Genome Research Center, WCU project, Kyungpook National University, Daegu 700-422, Korea
| | - Hyo-Jin Kim
- Department of Biochemistry and Cell Biology, School of Medicine, Kyungpook National University, Daegu 700-422, Korea
- Skeletal Diseases Genome Research Center, WCU project, Kyungpook National University, Daegu 700-422, Korea
| | - Hee-Jun Wee
- Department of Biochemistry, School of Medicine, Institute for Tumor Research, Chungbuk National University, Cheongju, South Korea
| | - Kyung-Eun Lim
- Department of Biochemistry and Cell Biology, School of Medicine, Kyungpook National University, Daegu 700-422, Korea
- Skeletal Diseases Genome Research Center, WCU project, Kyungpook National University, Daegu 700-422, Korea
| | - Na-Rae Park
- Department of Biochemistry and Cell Biology, School of Medicine, Kyungpook National University, Daegu 700-422, Korea
- Skeletal Diseases Genome Research Center, WCU project, Kyungpook National University, Daegu 700-422, Korea
| | - Suk-Chul Bae
- Department of Biochemistry, School of Medicine, Institute for Tumor Research, Chungbuk National University, Cheongju, South Korea
| | - Andre J. van Wijnen
- Department of Cell Biology and Cancer Center, University of Massachusetts Medical School, Worcester MA 01655 U.S.A
| | - Janet L. Stein
- Department of Cell Biology and Cancer Center, University of Massachusetts Medical School, Worcester MA 01655 U.S.A
| | - Jane B. Lian
- Department of Cell Biology and Cancer Center, University of Massachusetts Medical School, Worcester MA 01655 U.S.A
| | - Gary S. Stein
- Department of Cell Biology and Cancer Center, University of Massachusetts Medical School, Worcester MA 01655 U.S.A
| | - Je-Yong Choi
- Department of Biochemistry and Cell Biology, School of Medicine, Kyungpook National University, Daegu 700-422, Korea
- Skeletal Diseases Genome Research Center, WCU project, Kyungpook National University, Daegu 700-422, Korea
| |
Collapse
|
67
|
Sato S, Kimura A, Ozdemir J, Asou Y, Miyazaki M, Jinno T, Ae K, Liu X, Osaki M, Takeuchi Y, Fukumoto S, Kawaguchi H, Haro H, Shinomiya KI, Karsenty G, Takeda S. The distinct role of the Runx proteins in chondrocyte differentiation and intervertebral disc degeneration: findings in murine models and in human disease. ACTA ACUST UNITED AC 2010; 58:2764-75. [PMID: 18759297 DOI: 10.1002/art.23805] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
OBJECTIVE Runx2 is a transcription factor that regulates chondrocyte differentiation. This study was undertaken to address the role of the different Runx proteins (Runx1, Runx2, or Runx3) in chondrocyte differentiation using chondrocyte-specific Runx-transgenic mice, and to study the importance of the QA domain of Runx2, which is involved in its transcriptional activation. METHODS Runx expression was analyzed in the mouse embryo by in situ hybridization. Overexpression of Runx1, Runx2 (lacking the QA domain [DeltaQA]), or Runx3 was induced in chondrocytes in vivo, to produce alpha(1)II-Runx1, alpha(1)II-Runx2DeltaQA, and alpha(1)II-Runx3 mice, respectively, for histologic and molecular analyses. Runx expression was also examined in an experimental mouse model of mechanical stress-induced intervertebral disc (IVD) degeneration and in human patients with IVD degeneration. RESULTS Runx1 expression was transiently observed in condensations of mesenchymal cells, whereas Runx2 and Runx3 were robustly expressed in prehypertrophic chondrocytes. Similar to alpha(1)II-Runx2 mice, alpha(1)II-Runx2DeltaQA and alpha(1)II-Runx3 mice developed ectopic mineralization of cartilage, but this was less severe in the alpha(1)II-Runx2DeltaQA mice. In contrast, alpha(1)II-Runx1 mice displayed no signs of ectopic mineralization. Surprisingly, alpha(1)II-Runx1 and alpha(1)II-Runx2 mice developed scoliosis due to IVD degeneration, characterized by an accumulation of extracellular matrix and ectopic chondrocyte hypertrophy. During mouse embryogenesis, Runx2, but not Runx1 or Runx3, was expressed in the IVDs. Moreover, both in the mouse model of IVD degeneration and in human patients with IVD degeneration, there was significant up-regulation of Runx2 expression. CONCLUSION Each Runx protein has a distinct, yet overlapping, role during chondrocyte differentiation. Runx2 contributes to the pathogenesis of IVD degeneration.
Collapse
Affiliation(s)
- Shingo Sato
- Tokyo Medical and Dental University, Tokyo, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
68
|
Abstract
In the past few years, our molecular understanding of bone formation has continued to increase. This review aims to present a comprehensive view of the current state of knowledge in the field. Thus, it will cover our current knowledge of chondrogenesis and osteoblastogenesis. It will also cover the most salient aspects of osteoblast function.
Collapse
Affiliation(s)
- Gerard Karsenty
- Department of Genetics and Development, College of Physicians and Surgeons, Columbia University, New York, New York 10032, USA.
| | | | | |
Collapse
|
69
|
|
70
|
Ge C, Xiao G, Jiang D, Yang Q, Hatch NE, Roca H, Franceschi RT. Identification and functional characterization of ERK/MAPK phosphorylation sites in the Runx2 transcription factor. J Biol Chem 2009; 284:32533-43. [PMID: 19801668 PMCID: PMC2781667 DOI: 10.1074/jbc.m109.040980] [Citation(s) in RCA: 194] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2009] [Revised: 09/28/2009] [Indexed: 11/06/2022] Open
Abstract
The Runx2 transcription factor is required for commitment of mesenchymal cells to bone lineages and is a major regulator of osteoblast-specific gene expression. Runx2 is subject to a number of post-transcriptional controls including selective proteolysis and phosphorylation. We previously reported that Runx2 is phosphorylated and activated by the ERK/MAPK pathway (Xiao, G., Jiang, D., Thomas, P., Benson, M. D., Guan, K., Karsenty, G., and Franceschi, R. T. (2000) J. Biol. Chem. 275, 4453-4459). In this study, we used a combination of in vitro and in vivo phosphorylation analysis, mass spectroscopy, and functional assays to identify two sites at Ser(301) and Ser(319) within the proline/serine/threonine domain of Runx2 that are required for this regulation. These sites are phosphorylated by activated ERK1 in vitro and in cell culture. In addition to confirming ERK-dependent phosphorylation at Ser(319), mass spectroscopy identified two other ERK-phosphorylated sites at Ser(43) and Ser(510). Furthermore, introduction of S301A,S319A mutations rendered Runx2 resistant to MAPK-dependent activation and reduced its ability to stimulate osteoblast-specific gene expression and differentiation after transfection into Runx2-null calvarial cells and mesenchymal cells. In contrast, S301E,S319E Runx2 mutants had enhanced transcriptional activity that was minimally dependent on MAPK signaling, consistent with the addition of a negative charge mimicking serine phosphorylation. These results emphasize the important role played by Runx2 phosphorylation in the control of osteoblast gene expression and provide a mechanism to explain how physiological signals acting on bone through the ERK/MAPK pathway can stimulate osteoblast-specific gene expression.
Collapse
Affiliation(s)
- Chunxi Ge
- From the
Department of Periodontics and Oral Medicine, School of Dentistry, and
| | - Guozhi Xiao
- the
Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania 15240
| | - Di Jiang
- From the
Department of Periodontics and Oral Medicine, School of Dentistry, and
| | - Qian Yang
- From the
Department of Periodontics and Oral Medicine, School of Dentistry, and
| | - Nan E. Hatch
- From the
Department of Periodontics and Oral Medicine, School of Dentistry, and
| | - Hernan Roca
- From the
Department of Periodontics and Oral Medicine, School of Dentistry, and
| | - Renny T. Franceschi
- From the
Department of Periodontics and Oral Medicine, School of Dentistry, and
- Department of Biological Chemistry, School of Medicine, University of Michigan, Ann Arbor, Michigan 48109-1078 and
| |
Collapse
|
71
|
Abstract
Runx2 controls the commitment of mesenchymal cells to the osteoblastic lineage. Distinct promoters, designated P1 and P2, give rise to functionally similar Runx2-II and Runx2-I isoforms. We postulate that this dual promoter gene structure permits temporal and spatial adjustments in the amount of Runx2 isoforms necessary for optimal bone development. To evaluate the gene dose-dependent effect of Runx2 isoforms on bone development, we intercrossed selective Runx2-II(+/-) with nonselective Runx2-II(+/-)/Runx2-I(+/-) mice to create compound mutant mice: Runx2-II(+/-), Runx2-II(+/-)/Runx2-I(+/-), Runx2-II(-/-), Runx2-II(-/-)/Runx2-I(+/-), Runx2-II(-/-)/Runx2-I(-/-). Analysis of the different Runx2-deficient genotypes showed gene dose-dependent differences in the level of expression of the Runx2 isoforms. In addition, we found that Runx2-I is predominately expressed in the perichondrium and proliferating chondrocytes, whereas Runx2-II is expressed in hypertrophic chondrocytes and metaphyseal osteoblasts. Newborn mice showed impaired development of a mineralized skeleton, bone length, and widening of the hypertrophic zone that were proportionate to the reduction in total Runx2 protein expression. Osteoblast differentiation ex vivo was also proportionate to total amount of Runx2 expression that correlated with reduced Runx2 binding to the osteocalcin promoter by quantitative chromatin immunoprecipitation analysis. Functional analysis of P1 and P2 promoters showed differential regulation of the two promoters in osteoblastic cell lines. These findings support the possibility that the total amount of Runx2 derived from two isoforms and the P1 and P2 promoters, by regulating the time, place, and amount of Runx2 in response to changing environmental cues, impacts on bone development.
Collapse
|
72
|
Jonason JH, Xiao G, Zhang M, Xing L, Chen D. Post-translational Regulation of Runx2 in Bone and Cartilage. J Dent Res 2009; 88:693-703. [PMID: 19734454 DOI: 10.1177/0022034509341629] [Citation(s) in RCA: 124] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
The Runx2 gene product is essential for mammalian bone development. In humans, Runx2 haploinsufficiency results in cleidocranial dysplasia, a skeletal disorder characterized by bone and dental abnormalities. At the molecular level, Runx2 acts as a transcription factor for genes expressed in hypertrophic chondrocytes and osteoblasts. Runx2 gene expression and protein function are regulated on multiple levels, including transcription, translation, and post-translational modification. Furthermore, Runx2 is involved in numerous protein-protein interactions, most of which either activate or repress transcription of target genes. In this review, we discuss expression of Runx2 during development as well as the post-translational regulation of Runx2 through modification by phosphorylation, ubiquitination, and acetylation.
Collapse
Affiliation(s)
- J H Jonason
- Department of Orthopaedics, Center for Musculoskeletal Research, University of Rochester School of Medicine, 601 Elmwood Avenue, Box 665, Rochester, NY 14642, USA
| | | | | | | | | |
Collapse
|
73
|
Abstract
OBJECTIVE Mutations in the RUNX2 gene, a master regulator of bone formation, have been identified in cleidocranial dysplasia (CCD) patients. CCD is a rare autosomal-dominant disease characterized by the delayed closure of cranial sutures, defects in clavicle formation, and supernumerary teeth. The purposes of this study were to identify genetic causes of two CCD nuclear families and to report their clinical phenotypes. MATERIALS AND METHODS We identified two CCD nuclear families and performed mutational analyses to clarify the underlying molecular genetic etiology. RESULTS Mutational analysis revealed a novel nonsense mutation (c.273T>A, p.L93X) in family 1 and a de novo missense one (c.673C>T, p.R225W) in family 2. Individuals with a nonsense mutation showed maxillary hypoplasia, delayed eruption, multiple supernumerary teeth, and normal stature. In contrast, an individual with a de novo missense mutation in the Runt domain showed only one supernumerary tooth and short stature. CONCLUSIONS Mutational and phenotypic analyses showed that the severity of mutations on the skeletal system may not necessarily correlate with that of the disruption of tooth development.
Collapse
Affiliation(s)
- H-M Ryoo
- Department of Cell and Developmental Biology, Dental Research Institute and BK21 Program, School of Dentistry, Seoul National University, Seoul 110-768, Korea
| | | | | | | | | |
Collapse
|
74
|
Franceschi RT, Xiao G, Jiang D, Gopalakrishnan R, Yang S, Reith E. Multiple Signaling Pathways Converge on the Cbfa1/Runx2 Transcription Factor to Regulate Osteoblast Differentiation. Connect Tissue Res 2009. [DOI: 10.1080/03008200390152188] [Citation(s) in RCA: 137] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
|
75
|
Li Y, Pan W, Xu W, He N, Chen X, Liu H, Darryl Quarles L, Zhou H, Xiao Z. RUNX2 mutations in Chinese patients with cleidocranial dysplasia. Mutagenesis 2009; 24:425-31. [PMID: 19515746 PMCID: PMC2734498 DOI: 10.1093/mutage/gep025] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Cleidocranial dysplasia (CCD) is an autosomal dominant bone disease in humans caused by haploinsufficiency of the RUNX2 gene. The RUNX2 has two major isoforms derived from P1 and P2 promoters. Over 90 mutations of RUNX2 have been reported associated with CCD. In our study, DNA samples of nine individuals from three unrelated CCD families were collected and screened for all exons of RUNX2 and 2 kb of P1 and P2 promoters. We identified two point mutations in the RUNX2 gene in Case 1, including a nonsense mutation (c.577C>T) that has been reported previously and a silent substitution (c.240G>A). In vitro studies demonstrated that c.577C>T mutation led to truncated RUNX2 protein production and diminished stimulating effects on mouse osteocalcin promoter activity when compared with full-length Runx2-II and Runx2-I isoforms. These results confirm that loss of function RUNX2 mutation (c.577C>T) in Case 1 family is responsible for its CCD phenotype.
Collapse
Affiliation(s)
- Yalin Li
- Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai 201203, China
| | | | | | | | | | | | | | | | | |
Collapse
|
76
|
Abstract
Runx2 is an essential transcription factor for skeletal mineralization because it stimulates osteoblast differentiation of mesenchymal stem cells, promotes chondrocyte hypertrophy, and contributes to endothelial cell migration and vascular invasion of developing bones. Runx2 is also expressed during mouse embryo development in nascent mammary gland epithelium. Recent evidence implicates deregulation of Runx2 as a contributing factor in breast cancer-induced osteolysis and invasion, as well as in ectopic vascular calcification. Like other Runt domain proteins, Runx2 is a context-dependent transcriptional activator and repressor of genes that regulate cellular proliferation and differentiation. Proteins that temporally and spatially associate with Runx2 dictate these opposing transcriptional activities. Recent studies have identified several co-repressor proteins that bind to Runx2 to regulate gene expression. These co-factors include histone deacetylases (HDACs), transducin-like enhancer of split (TLE) proteins, mSin3a, and yes-associated protein (YAP). These proteins do not bind DNA themselves and appear to act by preventing Runx2 from binding DNA, altering chromatin structure, and/or by possibly blocking co-activator complexes. The nuclear localization of several of these factors is regulated by extracellular signaling events. Understanding the mechanisms whereby co-repressor proteins affect Runx2 activity during normal cellular development and tumor progression will identify new therapeutic targets for skeletal disorders such as osteoporosis and for bone metastatic cancers.
Collapse
Affiliation(s)
- Jennifer J Westendorf
- Department of Orthopaedic Surgery and the Cancer Center, University of Minnesota, Minneapolis, Minnesota 55455, USA.
| |
Collapse
|
77
|
Pan K, Yan S, Ge S, Li S, Zhao Y, Yang P. Effects of core binding factor alpha1 or bone morphogenic protein-2 overexpression on osteoblast/cementoblast-related gene expressions in NIH3T3 mouse cells and dental follicle cells. Cell Prolif 2009; 42:364-72. [PMID: 19397592 DOI: 10.1111/j.1365-2184.2009.00599.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
OBJECTIVES Bone morphogenic protein-2 (BMP-2) has long been used to promote bone and periodontal regeneration, while core binding factor alpha1 (CBFA1) plays important roles in both osteogenic differentiation and tooth morphogenesis. The aim of this study was to evaluate the effects of CBFA1 or BMP-2 overexpression on osteoblast/cementoblast-related gene expressions in NIH3T3 cells and dental follicle cells (DFCs). MATERIALS AND METHODS CBFA1 or BMP-2 overexpression in NIH3T3 and DFCs was achieved by infection with retroviral vectors containing CBFA1 or BMP-2 cDNA. Cells stably integrated with CBFA1 or BMP-2 cDNA were selected with G418 for 14 days. Western blotting, real-time reverse transcriptase-polymerase chain reaction, and in vitro mineralization assay were performed to evaluate effects of CBFA1 or BMP-2 overexpression in cells undergoing osteoblast/cementoblast differentiation. RESULTS Our results demonstrated that osteoblast/cementoblast-related gene expression levels in CBFA1-overexpressing NIH3T3 cells were higher than those in BMP-2-overexpressing cells. More mineral nodules were observed in CBFA1-overexpressing NIH3T3 cells than in BMP-2-overexpressing cells. CBFA1 overexpression in DFCs also increased osteoblast/cementoblast-related gene expression and promoted mineral nodule formation. However, no significant changes in gene expression levels nor mineral nodule formation were found in BMP-2-overexpressing DFCs when compared with empty vector transduced DFCs. CONCLUSIONS CBFA1 overexpression up-regulated expression levels of osteoblast/cementoblast-related genes and enhanced in vitro osteogenic differentiation more efficiently than BMP-2 in both NIH3T3 cells and DFCs.
Collapse
Affiliation(s)
- K Pan
- Department of Periodontology, School of Dentistry, Shandong University, Jinan, China
| | | | | | | | | | | |
Collapse
|
78
|
Cunningham ML, Seto ML, Hing AV, Bull MJ, Hopkin RJ, Leppig KA. Cleidocranial dysplasia with severe parietal bone dysplasia: C-terminal RUNX2 mutations. ACTA ACUST UNITED AC 2009; 76:78-85. [PMID: 16463420 DOI: 10.1002/bdra.20231] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
BACKGROUND Cleidocranial dysplasia (CCD) is an autosomal-dominant skeletal dysplasia syndrome that is characterized by widely patent calvarial sutures, clavicular hypoplasia, supernumerary teeth, and short stature. CCD is caused by mutations in the transcription factor RUNX2, which is known to function as a major regulator of bone differentiation. Despite the characterization of 67 unique mutations in 97 individual cases, and the availability of animal models, no obvious genotype-phenotype correlation has emerged. METHODS We describe 3 new cases that were ascertained on the basis of a severe calvarial phenotype, that were associated with 3 novel mutations in the C-terminal region of RUNX2 distal to the DNA-binding runt domain. In addition, a review of all previously described cases was undertaken in an effort to standardize mutation nomenclature, characterize the position of known mutations relative to the runt domain, and explore the hypothesis that C-terminal mutations that preserve the runt domain may lead to more-severe craniofacial phenotypes. RESULTS Upon mutational analysis of RUNX2, we identified either frameshift or splice-site mutations that affect the C-terminal region of the resultant protein distal to the runt domain. CONCLUSIONS In the context of previously described mutations, these cases suggest that C-terminal mutations that preserve the DNA-binding runt domain while disrupting the SMAD 1,2,3,5 binding domain and the nuclear matrix targeting signal may be responsible for the severe phenotype observed.
Collapse
Affiliation(s)
- Michael L Cunningham
- Children's Craniofacial Center, Children's Hospital and Regional Medical Center, Seattle, Washington 98195-6320, USA.
| | | | | | | | | | | |
Collapse
|
79
|
Soltanoff CS, Chen W, Yang S, Li YP. Signaling networks that control the lineage commitment and differentiation of bone cells. Crit Rev Eukaryot Gene Expr 2009; 19:1-46. [PMID: 19191755 PMCID: PMC3392028 DOI: 10.1615/critreveukargeneexpr.v19.i1.10] [Citation(s) in RCA: 132] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Osteoblasts and osteoclasts are the two major bone cells involved in the bone remodeling process. Osteoblasts are responsible for bone formation while osteoclasts are the bone-resorbing cells. The major event that triggers osteogenesis and bone remodeling is the transition of mesenchymal stem cells into differentiating osteoblast cells and monocyte/macrophage precursors into differentiating osteoclasts. Imbalance in differentiation and function of these two cell types will result in skeletal diseases such as osteoporosis, Paget's disease, rheumatoid arthritis, osteopetrosis, periodontal disease, and bone cancer metastases. Osteoblast and osteoclast commitment and differentiation are controlled by complex activities involving signal transduction and transcriptional regulation of gene expression. Recent advances in molecular and genetic studies using gene targeting in mice enable a better understanding of the multiple factors and signaling networks that control the differentiation process at a molecular level. This review summarizes recent advances in studies of signaling transduction pathways and transcriptional regulation of osteoblast and osteoclast cell lineage commitment and differentiation. Understanding the signaling networks that control the commitment and differentiation of bone cells will not only expand our basic understanding of the molecular mechanisms of skeletal development but will also aid our ability to develop therapeutic means of intervention in skeletal diseases.
Collapse
Affiliation(s)
- Carrie S. Soltanoff
- Department of Cytokine Biology, The Forsyth Institute, Boston, MA 02115, USA
| | - Wei Chen
- Department of Cytokine Biology, The Forsyth Institute, Boston, MA 02115, USA
- Department of Developmental Biology, Harvard School of Dental Medicine, Boston, MA 02115, USA
| | - Shuying Yang
- Department of Cytokine Biology, The Forsyth Institute, Boston, MA 02115, USA
- Department of Developmental Biology, Harvard School of Dental Medicine, Boston, MA 02115, USA
| | - Yi-Ping Li
- Department of Cytokine Biology, The Forsyth Institute, Boston, MA 02115, USA
- Department of Developmental Biology, Harvard School of Dental Medicine, Boston, MA 02115, USA
| |
Collapse
|
80
|
Tu Q, Zhang J, Paz J, Wade K, Yang P, Chen J. Haploinsufficiency of Runx2 results in bone formation decrease and different BSP expression pattern changes in two transgenic mouse models. J Cell Physiol 2008; 217:40-7. [PMID: 18459139 PMCID: PMC2818140 DOI: 10.1002/jcp.21472] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Runx2 has been identified as "a master gene" for the differentiation of osteoblasts and Runx2-deficient mice has demonstrated a complete absence of mature osteoblast and ossification. To further characterize the Runx2 responsive elements within the bone sialoprotein (BSP) promoter and further investigate into the role of Runx2 haploinsufficiency in osteoblast differentiation, mBSP9.0Luc mice and mBSP4.8Luc mice were crossed with Runx2-deficient mice respectively. Luciferase assay, micro CT scan, and histological analysis were performed using tissues isolated from mBSP9.0luc/Runx2+/- mice, mBSP4.8luc/Runx2+/- mice and their corresponding Runx2+/+ littermates. Alkaline phosphatase activity, mineralization assays and RT-PCR analysis using calvarial osteoblasts isolated from these transgenic mice were also performed. Luciferase assay demonstrated an early increase in luciferase expression in mBSP9.0luc/Runx2+/- mice before the expression level of luciferase dramatically decreased and turned lower than that in their control littermates in later stages. In contrast, luciferase expression in mBSP4.8luc/Runx2+/- failed to show such an early increase. Micro CT scan and histological analysis showed that BMD and trabecular bone volume were decreased and bone formation was delayed in Runx2+/- mice. Furthermore, mineralization assay and semi-quantitative RT-PCR assay demonstrated a gene-dose-dependent decrease in bone nodule formation and bone marker genes expression levels in cultured calvarial osteoblasts derived from Runx2 knockout mice. Reconstitution of Runx2-null cells with Runx2 vector partially rescued the osteoblast function defects. In conclusion, the 9.0 kb BSP promoter demonstrated a higher tissue-specific regulation of the BSP gene by Runx2 in vivo and full Runx2 gene dose is essential for osteoblast differentiation and normal bone formation.
Collapse
Affiliation(s)
- Qisheng Tu
- Division of Oral Biology, Tufts University School of Dental Medicine, Boston, Massachusetts
| | - Jin Zhang
- Division of Oral Biology, Tufts University School of Dental Medicine, Boston, Massachusetts
- School of Stomatology, Shandong University, Jinan, Shandong Province, China
| | - Jeff Paz
- Division of Oral Biology, Tufts University School of Dental Medicine, Boston, Massachusetts
| | - Katherine Wade
- Division of Oral Biology, Tufts University School of Dental Medicine, Boston, Massachusetts
| | - Pishan Yang
- School of Stomatology, Shandong University, Jinan, Shandong Province, China
| | - Jake Chen
- Division of Oral Biology, Tufts University School of Dental Medicine, Boston, Massachusetts
| |
Collapse
|
81
|
Vladimirova V, Waha A, Lückerath K, Pesheva P, Probstmeier R. Runx2 is expressed in human glioma cells and mediates the expression of galectin-3. J Neurosci Res 2008; 86:2450-61. [PMID: 18438928 DOI: 10.1002/jnr.21686] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Runx2 is a member of the Runx family of transcription factors (Runx1-3) with a restricted expression pattern. It has so far been detected predominantly in skeletal tissues where, inter alia, it regulates the expression of the beta-galactoside-specific lectin galectin-3. Here we show that, in contrast to Runx3, Runx1 and Runx2 are expressed in a variety of human glioma cells. Runx2 expression pattern in these cells correlated completely with that of galectin-3, but not with that of other galectins. A similar correlation in the expression pattern of galectin-3 and Runx2 transcripts was detected in distinct types of 70 primary neural tumors, such as glioblastoma multiforme, but not in others, such as gangliocytomas. In glioma cells, Runx2 is directly involved in the regulation of galectin-3 expression, as shown by RNAi and transcription factor binding assays demonstrating that Runx2 interacts with a Runx2-binding motif present in the human galectin-3 promoter. Knockdown of Runx2 was thus accompanied by a reduction of both galectin-3 mRNA and protein levels by at least 50%, dependent on the glial tumor cell line tested. Reverse transcriptase-polymerase chain reaction analyses, aimed at finding other potential target genes of Runx2 in glial tumor cells, revealed the presence of bone sialoprotein, osteocalcin, osteopontin, and osteoprotegerin. However, their expression patterns only partially overlap with that of Runx2. These data suggest a functional contribution of Runx-2-regulated galectin-3 expression to glial tumor malignancy.
Collapse
Affiliation(s)
- Valentina Vladimirova
- Neuro- and Tumor Cell Biology Group, Department of Nuclear Medicine, University of Bonn Medical Center, Bonn, Germany
| | | | | | | | | |
Collapse
|
82
|
Xuan D, Li S, Zhang X, Lin L, Wang C, Zhang J. A Novel RUNX2 Mutation in Cleidocranial Dysplasia Patients. Biochem Genet 2008; 46:702-7. [PMID: 18777095 DOI: 10.1007/s10528-008-9184-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2007] [Accepted: 05/19/2008] [Indexed: 10/21/2022]
|
83
|
Genetic evidence of PEBP2beta-independent activation of Runx1 in the murine embryo. Int J Hematol 2008; 88:134-138. [PMID: 18594778 DOI: 10.1007/s12185-008-0121-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2007] [Revised: 04/21/2008] [Accepted: 05/06/2008] [Indexed: 10/21/2022]
Abstract
The Runx1/AML1 transcription factor is required for the generation of hematopoietic stem cells and is one of the most frequently targeted genes in human leukemia. Runx1-deficient mice die around embryonic day (E)12.5 due to severe hemorrhage in the central nervous system and the complete absence of definitive hematopoietic cells. Since mice lacking the heterodimeric partner of Runx1, PEBP2beta/CBFbeta, are almost identical in phenotype to Runx1 (-/-) mice, PEBP2beta was believed to be essential for the in vivo function of Runx1. Here we show that transgenic overexpression of Runx1 partially rescues the lethal phenotype of PEBP2beta-deficient mice at E12.5. Some of the rescued mice escaped from the severe hemorrhage at E11.5-12.5, although definitive hematopoiesis was not restored. Thus, PEBP2beta-independent Runx1 activation can occur in vivo. This observation sheds new light on the mechanism(s) that regulate the activity of Runx transcription factors.
Collapse
|
84
|
Lynch VJ, Wagner GP. Resurrecting the role of transcription factor change in developmental evolution. Evolution 2008; 62:2131-54. [PMID: 18564379 DOI: 10.1111/j.1558-5646.2008.00440.x] [Citation(s) in RCA: 149] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A long-standing question in evolutionary and developmental biology concerns the relative contribution of cis-regulatory and protein changes to developmental evolution. Central to this argument is which mutations generate evolutionarily relevant phenotypic variation? A review of the growing body of evolutionary and developmental literature supports the notion that many developmentally relevant differences occur in the cis-regulatory regions of protein-coding genes, generally to the exclusion of changes in the protein-coding region of genes. However, accumulating experimental evidence demonstrates that many of the arguments against a role for proteins in the evolution of gene regulation, and the developmental evolution in general, are no longer supported and there is an increasing number of cases in which transcription factor protein changes have been demonstrated in evolution. Here, we review the evidence that cis-regulatory evolution is an important driver of phenotypic evolution and provide examples of protein-mediated developmental evolution. Finally, we present an argument that the evolution of proteins may play a more substantial, but thus far underestimated, role in developmental evolution.
Collapse
Affiliation(s)
- Vincent J Lynch
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, Connecticut 06511, USA.
| | | |
Collapse
|
85
|
Suh JH, Lee HW, Lee JW, Kim JB. Hes1 stimulates transcriptional activity of Runx2 by increasing protein stabilization during osteoblast differentiation. Biochem Biophys Res Commun 2008; 367:97-102. [DOI: 10.1016/j.bbrc.2007.12.100] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2007] [Accepted: 12/11/2007] [Indexed: 10/22/2022]
|
86
|
Baumert U, Golan I, Driemel O, Reichert TE, Reicheneder C, Muessig D, Rose E. [Cleidocranial dysplasia. Description and analysis of a patient cohort]. ACTA ACUST UNITED AC 2007; 10:385-93. [PMID: 17051365 DOI: 10.1007/s10006-006-0029-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
BACKGROUND Cleidocranial dysplasia (CCD) is a rare dysplasia of bony and dental tissue. Characteristic are typical craniofacial and dental findings including morphological anomalies. CCD is possibly the only general syndrome that can be diagnosed based on the dental findings alone. CCD correlates with mutations in the RUNX2 gene. PURPOSE The present interdisciplinary study correlates phenotypic findings with genetic variations in the corresponding gene. PATIENTS AND METHODS The coding sequence of the RUNX2 gene from 31 CCD patients from 20 families was analyzed using molecular genetic methods including polymerase chain reaction and direct sequencing. The craniofacial and dental findings of each patient were evaluated according to a standardized scoring scheme and tested with homogeneity analysis for general phenotypic findings. RESULTS Several mutations of the RUNX2 gene were identified. Depending on the mutation type, they showed different distribution patterns within the gene coinciding with the functional domains of the gene product. With homogeneity analysis of the phenotype cardinal (especially dental findings) and minor findings (pneumatization disturbances, Wormian bones) were identified. In combination with the genetic data, the statistical analysis showed that loss-of-function mutations of the RUNX2 gene result in a milder markedness of the CCD phenotype than gain-of-function or decrease-of-function mutations. CONCLUSIONS We found that type and location of a specific mutation within the RUNX2 gene might have an impact on the expressivity of CCD. Due to the limited sampling size this hypothesis must be verified by investigations in larger patient groups.
Collapse
Affiliation(s)
- U Baumert
- AG Kraniofaziale Genetik/Tissue Engineering, BioPark Regensburg, Zentrum für Medizinische Biotechnologie, Josef-Engert-Strasse 9, 93051 Regensburg, Germany.
| | | | | | | | | | | | | |
Collapse
|
87
|
Ng CEL, Osato M, Tay BH, Venkatesh B, Ito Y. cDNA cloning of Runx family genes from the pufferfish (Fugu rubripes). Gene 2007; 399:162-73. [PMID: 17604919 DOI: 10.1016/j.gene.2007.05.014] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2006] [Revised: 05/15/2007] [Accepted: 05/15/2007] [Indexed: 11/18/2022]
Abstract
The Runx family genes are involved in hematopoiesis, osteogenesis and neuropoiesis, and mutations in these genes have been frequently associated with human hereditary diseases and cancers. Here we report the cDNA cloning of the full Runx gene family of the pufferfish (Fugu rubripes), which comprises frRunx1, frRunx2, frRunx3, frRunt and frCbfb. Fugu is evolutionarily distant from mammals, thus the annotation of the frRunx family genes greatly facilitates comparative genomics approaches. Protein sequence comparison revealed that the fugu genes show high conservation in the Runt domain and PY and VWRPY motifs. frRunx1 had an extra stretch of eight histidine residues, while frRunx2 lacked the poly-glutamine/-alanine stretch that is a hallmark of the mammalian Runx2 genes. Analysis of the promoter regions revealed high conservation of the binding sites for transcription factors, including Runx sites in the P1 promoters. Abundant CpG dinucleotides in the P2 promoter regions were also detected. The expression patterns of the frRunx family genes in various tissues showed high similarity to those of the mammalian Runx genes. The genomic structures of the fugu and mammalian Runx genes are largely conserved except for a split exon 2 in frRunx1 and an extra exon in the C-terminal region of frRunx3 that is missing in mammalian Runx3 genes. The similarities and differences between the Runx family genes of fugu and mammals will improve our understanding of the functions of these proteins.
Collapse
Affiliation(s)
- Cherry Ee Lin Ng
- Institute of Molecular and Cell Biology, 61 Biopolis Drive, 138673, Singapore
| | | | | | | | | |
Collapse
|
88
|
Zheng L, Iohara K, Ishikawa M, Into T, Takano-Yamamoto T, Matsushita K, Nakashima M. Runx3 negatively regulates Osterix expression in dental pulp cells. Biochem J 2007; 405:69-75. [PMID: 17352693 PMCID: PMC1925241 DOI: 10.1042/bj20070104] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Osterix, a zinc-finger-containing transcription factor, is required for osteoblast differentiation and bone formation. Osterix is also expressed in dental mesenchymal cells of the tooth germ. However, transcriptional regulation by Osterix in tooth development is not clear. Genetic studies in osteogenesis place Osterix downstream of Runx2 (Runt-related 2). The expression of Osterix in odontoblasts overlaps with Runx3 during terminal differentiation in vivo. Runx3 down-regulates Osterix expression in mouse DPCs (dental pulp cells). Therefore the regulatory role of Runx3 on Osterix expression in tooth development was investigated. Enforced expression of Runx3 down-regulated the activity of the Osterix promoter in the human embryonic kidney 293 cell line. When the Runx3 responsive element on the Osterix promoter, located at -713 to -707 bp (site 3, AGTGGTT) relative to the cap site, was mutated, this down-regulation was abrogated. Furthermore, electrophoretic mobility-shift assay and chromatin immunoprecipitation assays in mouse DPCs demonstrated direct functional binding of Runx3 to the Osterix promoter. These results demonstrate the transcriptional regulation of Osterix expression by Runx3 during differentiation of dental pulp cells into odontoblasts during tooth development.
Collapse
Affiliation(s)
- Li Zheng
- *Laboratory of Oral Disease Research, National Institute for Longevity Sciences, National Center for Geriatrics and Gerontology, Aichi 474-8522, Japan
| | - Koichiro Iohara
- *Laboratory of Oral Disease Research, National Institute for Longevity Sciences, National Center for Geriatrics and Gerontology, Aichi 474-8522, Japan
| | - Masaki Ishikawa
- †Department of Endodontology and Operative Dentistry, Division of Oral Rehabilitation, Faculty of Dental Science, Kyushu University, Fukuoka 812-8582, Japan
| | - Takeshi Into
- *Laboratory of Oral Disease Research, National Institute for Longevity Sciences, National Center for Geriatrics and Gerontology, Aichi 474-8522, Japan
| | - Teruko Takano-Yamamoto
- ‡Division of Orthodontics and Dentofacial Orthopedics, Graduate School of Dentistry, Tohoku University, Sendai 980-8575, Japan
| | - Kenji Matsushita
- *Laboratory of Oral Disease Research, National Institute for Longevity Sciences, National Center for Geriatrics and Gerontology, Aichi 474-8522, Japan
| | - Misako Nakashima
- *Laboratory of Oral Disease Research, National Institute for Longevity Sciences, National Center for Geriatrics and Gerontology, Aichi 474-8522, Japan
- To whom correspondence should be addressed (email )
| |
Collapse
|
89
|
Ziros PG, Basdra EK, Papavassiliou AG. Runx2: of bone and stretch. Int J Biochem Cell Biol 2007; 40:1659-63. [PMID: 17656144 DOI: 10.1016/j.biocel.2007.05.024] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2007] [Revised: 05/30/2007] [Accepted: 05/31/2007] [Indexed: 01/12/2023]
Abstract
Runx2 is a key transcriptional modulator of osteoblast differentiation that plays a fundamental role in osteoblast maturation and homeostasis. Runx2-null mice despite normal skeletal patterning have no osteoblasts and consequently bone tissue. Mutations of the runx2 gene in humans cause cleidocranial dysplasia. As a member of the Runx family of transcription factors, Runx2 operates by binding to the osteoblast-specific cis-acting element 2 (OSE2), which is found in the regulatory region of all main osteoblast-related genes controlling their expression. Its expression and/or activity are dictated by a number of different external cues while multiple signalling pathways that affect osteoblast function merge to and are integrated by Runx2. Among the various stimuli that modulate Runx2 activity, mechanical loading (strain/stretching) has been revealed to be one of the most critical signals that connect Runx2 with osteoblast function and bone remodelling through mechanotransduction.
Collapse
Affiliation(s)
- Panos G Ziros
- Department of Biological Chemistry, Medical School, University of Athens, Athens 11527, Greece
| | | | | |
Collapse
|
90
|
Chung DD, Honda K, Cafuir L, McDuffie M, Wotton D. The Runx3 distal transcript encodes an additional transcriptional activation domain. FEBS J 2007; 274:3429-39. [PMID: 17555522 DOI: 10.1111/j.1742-4658.2007.05875.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The runt family transcriptional regulator, Runx3, is upregulated during the differentiation of CD8 single-positive thymocytes and is expressed in peripheral CD8(+) T cells. Mice carrying targeted deletions in Runx3 have severe defects in the development and activation of CD8(+) T cells, resulting in decreased CD8(+) T-cell numbers, aberrant coexpression of CD4, and failure to expand CD8(+) effector cells after activation in vivo or in vitro. Expression of each of the three vertebrate runt family members, including Runx3, is controlled by two promoters that generate proteins with alternative N-terminal sequences. The longer N-terminal region of Runx3, expressed from the distal promoter, is highly conserved among family members and across species. We show that transcripts from the distal Runx3 promoter are selectively expressed in mature CD8(+) T cells and are upregulated upon activation. We show that the N-terminal region encoded by these transcripts carries an independent transcriptional activation domain. This domain can activate transcription in isolation, and contributes to the increased transcriptional activity observed with this isoform as compared to those expressed from the ancestral, proximal promoter. Together, these data suggest an important role for the additional N-terminal Runx3 activation domain in CD8(+) T-cell function.
Collapse
Affiliation(s)
- David D Chung
- Center for Cell Signaling and Department of Biochemistry, and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
| | | | | | | | | |
Collapse
|
91
|
Kerney R, Gross JB, Hanken J. Runx2 is essential for larval hyobranchial cartilage formation inXenopus laevis. Dev Dyn 2007; 236:1650-62. [PMID: 17474117 DOI: 10.1002/dvdy.21175] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
The vertebrate transcription factor protein Runx2 is regarded as a "master regulator" of bone formation due to the dramatic loss of the osseous skeleton in the mouse homozygous knockout. However, Runx2 mRNA also is expressed in the pre-hypertrophic cartilaginous skeleton of the mouse and chicken, where its developmental function is largely unknown. Several tiers of Runx2 regulation exist in the mouse, any of which may account for its seeming biological inactivity during early stages of skeletogenesis. Unlike mouse and chicken, zebrafish require Runx2 function in early cartilage differentiation. The present study reveals that the earlier functional role of Runx2 in cartilage differentiation is shared between zebrafish and Xenopus. A combination of morpholino oligonucleotide injections and neural crest transplants indicate that Runx2 is involved in differentiation of the cartilaginous hyobranchial skeleton in the frog, Xenopus laevis. Additionally, in situ hybridizations show runx2 mRNA expression in mesenchymal precursors of the cartilaginous skull, which reveals the earliest pre-patterning of these cartilages described to date. The early distribution of runx2 resolves the homology of the larval suprarostral plate, which is one of the oldest controversies of anuran skull development. Together these data reveal a shift in Runx2 function protein during vertebrate evolution towards its exclusive roles in cartilage hypertrophy and bone differentiation within the amniote lineage.
Collapse
Affiliation(s)
- Ryan Kerney
- Museum of Comparative Zoology, Harvard University, Cambridge, Massachusetts 02138, USA.
| | | | | |
Collapse
|
92
|
Karsenty G. Update on the transcriptional control of osteoblast differentiation. ACTA ACUST UNITED AC 2007. [DOI: 10.1138/20070262] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
93
|
Huang W, Yang S, Shao J, Li YP. Signaling and transcriptional regulation in osteoblast commitment and differentiation. FRONT BIOSCI-LANDMRK 2007; 12:3068-92. [PMID: 17485283 PMCID: PMC3571113 DOI: 10.2741/2296] [Citation(s) in RCA: 467] [Impact Index Per Article: 25.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The major event that triggers osteogenesis is the transition of mesenchymal stem cells into bone forming, differentiating osteoblast cells. Osteoblast differentiation is the primary component of bone formation, exemplified by the synthesis, deposition and mineralization of extracellular matrix. Although not well understood, osteoblast differentiation from mesenchymal stem cells is a well-orchestrated process. Recent advances in molecular and genetic studies using gene targeting in mouse enable a better understanding of the multiple factors and signaling networks that control the differentiation process at a molecular level. Osteoblast commitment and differentiation are controlled by complex activities involving signal transduction and transcriptional regulation of gene expression. We review Wnt signaling pathway and Runx2 regulation network, which are critical for osteoblast differentiation. Many other factors and signaling pathways have been implicated in regulation of osteoblast differentiation in a network manner, such as the factors Osterix, ATF4, and SATB2 and the TGF-beta, Hedgehog, FGF, ephrin, and sympathetic signaling pathways. This review summarizes the recent advances in the studies of signaling transduction pathways and transcriptional regulation of osteoblast cell lineage commitment and differentiation. The knowledge of osteoblast commitment and differentiation should be applied towards the development of new diagnostic and therapeutic alternatives for human bone diseases.
Collapse
Affiliation(s)
- Wei Huang
- College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Shuying Yang
- Department of Cytokine Biology, Forsyth Institute, Harvard School of Dental Medicine, Boston, Massachusetts
- Department of Developmental Biology, Harvard School of Dental Medicine, Boston, Massachusetts
| | - Jianzhong Shao
- College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Yi-Ping Li
- College of Life Sciences, Zhejiang University, Hangzhou, China
- Department of Cytokine Biology, Forsyth Institute, Harvard School of Dental Medicine, Boston, Massachusetts
- Department of Developmental Biology, Harvard School of Dental Medicine, Boston, Massachusetts
| |
Collapse
|
94
|
Reinhold MI, Naski MC. Direct interactions of Runx2 and canonical Wnt signaling induce FGF18. J Biol Chem 2006; 282:3653-63. [PMID: 17158875 DOI: 10.1074/jbc.m608995200] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Canonical Wnt signaling is clearly required for skeletal development and bone formation. However, the targets of Wnt signaling that convert this signal into bone are unclear. Identification of these targets will yield insight into normal bone physiology and suggest new therapeutics for treatment of bone disease. Here we show that an essential regulator of bone development, FGF18, is a direct target of canonical Wnt signaling. A single DNA binding site for the Wnt-dependent transcription factors TCF/Lef accounted for the stimulation of the fgf18 promoter in response to Wnt signaling. Additionally, targeted disruption of betacat blocked fgf18 expression in vivo. Partially overlapping the TCF/Lef binding site is a Runx2 binding site and experiments showed that Runx2 and TCF/Lef work cooperatively to induce fgf18 expression. RNA interference knockdown of Runx2 inhibited and Runx2 forced expression augmented the induction of fgf18 by canonical Wnt signaling. Significantly, Runx2 formed a complex with Lef1 or TCF4 and this complex bound the composite binding site in the fgf18 promoter. These results demonstrate that two transcription pathways that are essential for bone, physically and functionally converge at the fgf18 promoter.
Collapse
Affiliation(s)
- Martina I Reinhold
- Department of Pathology, University of Texas Health Science Center, San Antonio, Texas 78229, USA
| | | |
Collapse
|
95
|
Abstract
The Runx2 gene is a master transcription factor of bone and plays a role in all stages of bone formation. It is essential for the initial commitment of mesenchymal cells to the osteoblastic lineage and also controls the proliferation, differentiation, and maintenance of these cells. Control is complex, with involvement of a multitude of factors, thereby regulating the expression and activity of this gene both temporally and spatially. The use of multiple promoters and alternative splicing of exons further extends its diversity of actions. RUNX2 is also essential for the later stages of tooth formation, is intimately involved in the development of calcified tooth tissue, and exerts an influence on proliferation of the dental lamina. Furthermore, RUNX2 regulates the alveolar remodelling process essential for tooth eruption and may play a role in the maintenance of the periodontal ligament. In this article, the structure of Runx2 is described. The control and function of the gene and its product are discussed, with special reference to developing tooth tissues, in an attempt to elucidate the role of this gene in the development of the teeth and supporting structures.
Collapse
Affiliation(s)
- Simon Camilleri
- Department of Orthodontics, Dental Institute of Kings College London, London, UK.
| | | |
Collapse
|
96
|
Li YL, Xiao ZS. Advances in Runx2 regulation and its isoforms. Med Hypotheses 2006; 68:169-75. [PMID: 16901655 DOI: 10.1016/j.mehy.2006.06.006] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2006] [Accepted: 06/02/2006] [Indexed: 10/24/2022]
Abstract
During the last 10 years, we have witnessed major progress in skeleton biology. Runx2 is an accepted transcription factor essential for osteoblast development from mesenchymal stem cells and maturation into osteocytes and organize crucial events during bone formation. Alternations in Runx2 expression levels are associated with skeletal diseases. In vitro and in vivo studies have reported that multiple integrated complex path ways (such as Wnt/LRP5/beta-catenin, BMP/Smads, 1, 25-(OH)2-vitaminD3/VDR/VDRE pathway, etc.) and several regulatory proteins (such as Msx2, Dlx5, Twists, etc.) play critical roles in modulating Runx2 gene expression, activity, and the subsequent bone formation. These findings provide novel insights through controlling osteoblast differentiation to treat osteoporosis or other bone diseases with altered bone mass by stimulating Runx2 expression. Further studies have shown that expression of RUNX2 is initiated from two promoters, the distal P1 promoter and the proximal P2 promoter. The alternative use of promoters gives rise to the genesis of two major protein isoforms with distinct amino termini, named as Runx2-TypeI and Runx2-TypeII. Here, we also review a complex spatio-temporal pattern of two major isoforms expressions and their possible function differences in skeleton development.
Collapse
Affiliation(s)
- Ya-Lin Li
- University of Kansas Med Center, The Kidney Institute/6108 WHE, 3901 Rainbow Blvd, Kansas City, KS 66160, United states
| | | |
Collapse
|
97
|
Phillips JE, Gersbach CA, Wojtowicz AM, García AJ. Glucocorticoid-induced osteogenesis is negatively regulated by Runx2/Cbfa1 serine phosphorylation. J Cell Sci 2006; 119:581-91. [PMID: 16443755 DOI: 10.1242/jcs.02758] [Citation(s) in RCA: 101] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Glucocorticoid hormones have complex stimulatory and inhibitory effects on skeletal metabolism. Endogenous glucocorticoid signaling is required for normal bone formation in vivo, and synthetic glucocorticoids, such as dexamethasone, promote osteoblastic differentiation in several in vitro model systems. The mechanism by which these hormones induce osteogenesis remains poorly understood. We demonstrate here that the coordinate action of dexamethasone and the osteogenic transcription factor Runx2/Cbfa1 synergistically induces osteocalcin and bone sialoprotein gene expression, alkaline phosphatase activity, and biological mineral deposition in primary dermal fibroblasts. Dexamethasone decreased Runx2 phosphoserine levels, particularly on Ser125, in parallel with the upregulation of mitogen-activated protein kinase (MAPK) phosphatase-1 (MKP-1) through a glucocorticoid-receptor-mediated mechanism. Inhibition of MKP-1 abrogated the dexamethasone-induced decrease in Runx2 serine phosphorylation, suggesting that glucocorticoids modulate Runx2 phosphorylation via MKP-1. Mutation of Ser125 to glutamic acid, mimicking constitutive phosphorylation, inhibited Runx2-mediated osteoblastic differentiation, which was not rescued by dexamethasone treatment. Conversely, mutation of Ser125 to glycine, mimicking constitutive dephosphorylation, markedly increased osteoblastic differentiation, which was enhanced by, but did not require, additional dexamethasone supplementation. Collectively, these results demonstrate that dexamethasone induces osteogenesis, at least in part, by modulating the phosphorylation state of a negative-regulatory serine residue (Ser125) on Runx2. This work identifies a novel mechanism for glucocorticoid-induced osteogenic differentiation and provides insights into the role of Runx2 phosphorylation during skeletal development.
Collapse
Affiliation(s)
- Jennifer E Phillips
- Wallace H. Coulter Department of Biomedical Engineering and Georgia Tech/Emory Department of Biomedical Engineering, 313 Ferst Drive, Atlanta, GA 30332, USA
| | | | | | | |
Collapse
|
98
|
Lee JS, Thomas DM, Gutierrez G, Carty SA, Yanagawa SI, Hinds PW. HES1 cooperates with pRb to activate RUNX2-dependent transcription. J Bone Miner Res 2006; 21:921-33. [PMID: 16753023 DOI: 10.1359/jbmr.060303] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
UNLABELLED The retinoblastoma protein, pRb, can activate the transcription factor RUNX2, an essential regulator of osteogenic differentiation, but the mechanism of this activation is unknown. Here we studied the interaction of pRb and RUNX2 with HES1, previously reported to augment RUNX2 activity. PRb can act to promote RUNX2/HES1 association with concomitant promoter occupancy and transcriptional activation in bone cells. INTRODUCTION RUNX2 (also known as OSF2/CBFA1) is a transcription factor required for osteoblast differentiation and bone formation. We have reported that RUNX2 can associate with the retinoblastoma protein pRb, a common tumor suppressor in bone, and the resultant complex can bind and activate transcription from bone-specific promoters. This activity of the pRb/RUNX2 complex may thus link differentiation control with tumor suppressor activity. However, the mechanism through which pRb can activate RUNX2 is unknown. HES1 is a reported co-activator of RUNX2 that shares a binding site on RUNX2 with pRb. Thus, we have tested the cooperativity among these factors in activating transcription from bone specific promoters. MATERIALS AND METHODS Coimmunoprecipitation, chromatin immunoprecipitation, and EMSA experiments were used to study the interaction of RUNX2, HES1, and pRb in cell lysates and on DNA. Transcriptional reporter assays were used to analyze the activity of RUNX2 in the presence and absence of HES1 and pRb. RESULTS We showed that pRb can associate with HES1, a previously described RUNX2 interactor that can itself augment RUNX2-dependent transcription. The association of HES1 with RUNX2 is augmented by pRb. Furthermore, both pRb and HES1 increase the amount of RUNX2 bound to promoter sites in vivo, pRb and HES1 synergistically activate a RUNX2-dependent reporter gene, and depletion of HES1 reduces RUNX2/pRb activity. CONCLUSIONS These data indicate that pRb acts as a RUNX2 co-activator at least in part by recruiting HES1 into the pRb/RUNX2 complex and further elucidate a novel role for pRb as a transcriptional co-activator in osteogenesis.
Collapse
Affiliation(s)
- Jong-Seo Lee
- Department of Pathology, Harvard Medical School Boston, Massachusetts, USA
| | | | | | | | | | | |
Collapse
|
99
|
Baumert U, Golan I, Redlich M, Aknin JJ, Muessig D. Cleidocranial dysplasia: molecular genetic analysis and phenotypic-based description of a Middle European patient group. Am J Med Genet A 2006; 139A:78-85. [PMID: 16222673 DOI: 10.1002/ajmg.a.30927] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Cleidocranial dysplasia (CCD) (OMIM 119600) is a rare dysplasia of osseous and dental tissue. Characteristic features are typical facial and dental appearance plus morphologic anomalies. RUNX2 (OMIM 600211), the responsible gene for CCD, is considered to be a master gene for bone development and bone homeostasis. This study describes the genotype-phenotype correlation based on craniofacial features involving an interdisciplinary approach. Our patient cohort consisted of 31 CCD patients from 20 families; five patients from two families were unavailable for clinical examination. Since CCD mostly affects the craniofacial region, phenotypic characterization of each individual focused on craniofacial and dental aspects. After recording patient medical and family history, the phenotypic data was analyzed using homogeneity analysis (HOMALS), a statistical procedure for data reduction in categorical data analysis. The coding sequence of the RUNX2 gene was analyzed using PCR, direct sequencing, and restriction endonuclease digestion. Eight unpublished and four known heterozygous mutations in a total of 14/20 index patients (70%) were identified. In total, we detected 7 missense mutations, 5 frameshift mutations, and 2 nonsense mutations in 14 index patients (35%, 25%, 10%, respectively). The overall CCD phenotype varied from mild to fullblown expression. Using HOMALS, we were able to discriminate four groups of patients showing significant differences in phenotypic expressivity, thereby simplifying the grouping of our large patient cohort into clear distinguishable entities. Analysis of the mutation patterns revealed that mutational frequency and types of mutations found can be attributed to the gene's structure and function.
Collapse
Affiliation(s)
- Uwe Baumert
- Department of Orthodontics, Center for Craniofacial Genetics, University of Regensburg, Regensburg, Germany.
| | | | | | | | | |
Collapse
|
100
|
Kanatani N, Fujita T, Fukuyama R, Liu W, Yoshida CA, Moriishi T, Yamana K, Miyazaki T, Toyosawa S, Komori T. Cbf beta regulates Runx2 function isoform-dependently in postnatal bone development. Dev Biol 2006; 296:48-61. [PMID: 16797526 DOI: 10.1016/j.ydbio.2006.03.039] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2006] [Revised: 03/21/2006] [Accepted: 03/28/2006] [Indexed: 01/10/2023]
Abstract
Runx2 and Cbfbeta are essential for skeletal development during the embryonic stage. Runx2 has two isoforms with different N-termini. We examined the functions of the Runx2 isoforms and Cbfbeta in postnatal bone development. On luciferase and electrophoretic mobility shift assays, Runx2-I was less active than Runx2-II in the absence of Cbfb, but the two Runx2 isoforms had similar activity levels in the presence of Cbfb. We generated Runx2-I transgenic mice under the control of Col1a1 promoter and Runx2-I/Cbfb and Runx2-II/Cbfb double transgenic mice. Runx2-I transgenic mice showed less severe osteopenia and fragility than Runx2-II transgenic mice due to milder inhibition of both osteoblast maturation and transition to osteocytes, even though the former mice showed higher transgene expression. However, Runx2-I/Cbfb and Runx2-II/Cbfb double transgenic mice had enhanced inhibition of osteoblast maturation, resulting in similar severity of osteopenia and fragility, although the latter mice had less osteocytes. These findings indicate that (1) Runx2-II more strongly inhibits osteoblast maturation and transition to osteocytes than Runx2-I; (2) Cbfbeta regulates Runx2 function isoform-dependently; and (3) Runx2-I activity is highly dependent on Cbfbeta. These findings demonstrate that Runx2 isoforms exert their functions through at least partly different mechanisms and Cbfbeta regulates bone development by regulating Runx2 function isoform-dependently.
Collapse
Affiliation(s)
- Naoko Kanatani
- Department of Developmental and Reconstructive Medicine, Division of Cell Biology, Nagasaki University Graduate School of Biomedical Sciences, 1-7-1 Sakamoto, Nagasaki 852-8588, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|