51
|
Witkiewicz AK, Knudsen ES. Retinoblastoma tumor suppressor pathway in breast cancer: prognosis, precision medicine, and therapeutic interventions. Breast Cancer Res 2014; 16:207. [PMID: 25223380 PMCID: PMC4076637 DOI: 10.1186/bcr3652] [Citation(s) in RCA: 93] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
A series of recent studies have demonstrated that the retinoblastoma tumor suppressor (RB) pathway plays a critical role in multiple clinically relevant aspects of breast cancer biology, spanning early stage lesions to targeted treatment of metastatic disease. In ductal carcinoma in situ, multiple groups have shown that dysregulation of the RB pathway is critically associated with recurrence and disease progression. Functional models have similarly illustrated key roles for RB in regulating epithelial–mesenchymal transition and other features contributing to aggressive disease. Invasive breast cancers are treated in distinct fashions, and heterogeneity within the RB pathway relates to prognosis and response to commonly used therapeutics. Luminal B breast cancers that have a poor prognosis amongst estrogen receptor-positive disease are defined based on the expression of RB-regulated genes. Such findings have led to clinical interventions that directly target the RB pathway through CDK4/6 inhibition which have promise in both estrogen receptor-positive and Her2-positive disease. In contrast, RB loss results in improved response to chemotherapy in triple-negative breast cancer, where ongoing research is attempting to define intrinsic vulnerabilities for targeted intervention. These findings support a wide-reaching impact of the RB pathway on disease that could be harnessed for improved clinical interventions.
Collapse
|
52
|
Chung J, Noh H, Park KH, Choi E, Han A. Longer survival in patients with breast cancer with cyclin d1 over-expression after tumor recurrence: longer, but occupied with disease. J Breast Cancer 2014; 17:47-53. [PMID: 24744797 PMCID: PMC3988342 DOI: 10.4048/jbc.2014.17.1.47] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2013] [Accepted: 03/13/2014] [Indexed: 11/30/2022] Open
Abstract
Purpose The effect of cyclin D1 overexpression on breast cancer outcomes and prognosis is controversial, even though amplification of the cyclin D1 gene, CCND1, has been shown to be associated with early relapse and poor prognosis. In this study, we examined the relationship between cyclin D1 overexpression and disease-specific survival (DSS). We also analyzed survival in patients who experienced recurrence. Methods We retrospectively analyzed data from patients diagnosed with ductal carcinoma between April 2005 and December 2010. We examined clinicopathologic factors associated with cyclin D1 overexpression and analyzed the influence of cyclin D1 on recurrence-free survival and DSS. Results We identified 236 patients diagnosed with primary breast cancer who completed all phases of their primary treatment. Cyclin D1 overexpression was significantly associated with longer DSS (5-year DSS, 89.9% in patients without cyclin D1 overexpression vs. 98.9% in patients with cyclin D1 overexpression; p=0.008). Multivariate analysis also found that patients with cyclin D1 overexpressing tumors had significantly longer disease-specific survival than patients whose tumors did not overexpress cyclin D1, with a hazard ratio for disease-specific mortality of 7.97 (1.17-54.22, p=0.034). However, in the group of patients who experienced recurrence, cyclin D1 overexpression was not significantly associated with recurrence-free survival. Cyclin D1 overexpression was significantly associated with increased survival after disease recurrence, indicating that cyclin D1 overexpression might be indicative of more indolent disease progression after metastasis. Conclusion Cyclin D1 overexpression is associated with longer DSS, but not recurrence-free survival, in patients with breast cancer. Longer postrecurrence survival could explain the apparent inconsistency between DSS and recurrence-free survival. Patients with cyclin D1-overexpressing tumors survive longer, but with metastatic disease after recurrence. This information should spark the urgent development of tailored therapies to cure these patients.
Collapse
Affiliation(s)
- Jaesik Chung
- Department of Surgery, Yonsei University Wonju College of Medicine, Wonju, Korea
| | - Hany Noh
- Department of Surgery, Yonsei University Wonju College of Medicine, Wonju, Korea
| | - Kwang Hwa Park
- Department of Pathology, Yonsei University Wonju College of Medicine, Wonju, Korea
| | - Eunhee Choi
- Institute of Lifestyle Medicine, Yonsei University Wonju College of Medicine, Wonju, Korea
| | - Airi Han
- Department of Surgery, Yonsei University Wonju College of Medicine, Wonju, Korea
| |
Collapse
|
53
|
Mir M, Bergamaschi A, Katzenellenbogen BS, Popescu G. Highly sensitive quantitative imaging for monitoring single cancer cell growth kinetics and drug response. PLoS One 2014; 9:e89000. [PMID: 24558461 PMCID: PMC3928317 DOI: 10.1371/journal.pone.0089000] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2013] [Accepted: 01/13/2014] [Indexed: 12/18/2022] Open
Abstract
The detection and treatment of cancer has advanced significantly in the past several decades, with important improvements in our understanding of the fundamental molecular and genetic basis of the disease. Despite these advancements, drug-screening methodologies have remained essentially unchanged since the introduction of the in vitro human cell line screen in 1990. Although the existing methods provide information on the overall effects of compounds on cell viability, they are restricted by bulk measurements, large sample sizes, and lack capability to measure proliferation kinetics at the individual cell level. To truly understand the nature of cancer cell proliferation and to develop personalized adjuvant therapies, there is a need for new methodologies that provide quantitative information to monitor the effect of drugs on cell growth as well as morphological and phenotypic changes at the single cell level. Here we show that a quantitative phase imaging modality known as spatial light interference microscopy (SLIM) addresses these needs and provides additional advantages over existing proliferation assays. We demonstrate these capabilities through measurements on the effects of the hormone estradiol and the antiestrogen ICI182,780 (Faslodex) on the growth of MCF-7 breast cancer cells. Along with providing information on changes in the overall growth, SLIM provides additional biologically relevant information. For example, we find that exposure to estradiol results in rapidly growing cells with lower dry mass than the control population. Subsequently blocking the estrogen receptor with ICI results in slower growing cells, with lower dry masses than the control. This ability to measure changes in growth kinetics in response to environmental conditions provides new insight on growth regulation mechanisms. Our results establish the capabilities of SLIM as an advanced drug screening technology that provides information on changes in proliferation kinetics at the cellular level with greater sensitivity than any existing method.
Collapse
Affiliation(s)
- Mustafa Mir
- Quantitative Light Imaging Laboratory, Department of Electrical and Computer Engineering, Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
| | - Anna Bergamaschi
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
| | - Benita S. Katzenellenbogen
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
| | - Gabriel Popescu
- Quantitative Light Imaging Laboratory, Department of Electrical and Computer Engineering, Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
- * E-mail:
| |
Collapse
|
54
|
Wróbel AM, Gregoraszczuk EŁ. Differential effect of methyl-, butyl- and propylparaben and 17β-estradiol on selected cell cycle and apoptosis gene and protein expression in MCF-7 breast cancer cells and MCF-10A non-malignant cells. J Appl Toxicol 2014; 34:1041-50. [DOI: 10.1002/jat.2978] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2013] [Revised: 11/21/2013] [Accepted: 11/21/2013] [Indexed: 01/27/2023]
Affiliation(s)
- Anna Maria Wróbel
- Department of Physiology and Toxicology of Reproduction Institute of Zoology; Jagiellonian University in Kraków; Gronostajowa 9 30-387 Krakow Poland
| | - Ewa Łucja Gregoraszczuk
- Department of Physiology and Toxicology of Reproduction Institute of Zoology; Jagiellonian University in Kraków; Gronostajowa 9 30-387 Krakow Poland
| |
Collapse
|
55
|
Kang J, Sergio CM, Sutherland RL, Musgrove EA. Targeting cyclin-dependent kinase 1 (CDK1) but not CDK4/6 or CDK2 is selectively lethal to MYC-dependent human breast cancer cells. BMC Cancer 2014; 14:32. [PMID: 24444383 PMCID: PMC3903446 DOI: 10.1186/1471-2407-14-32] [Citation(s) in RCA: 118] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2013] [Accepted: 01/08/2014] [Indexed: 02/06/2023] Open
Abstract
Background Although MYC is an attractive therapeutic target for breast cancer treatment, it has proven challenging to inhibit MYC directly, and clinically effective pharmaceutical agents targeting MYC are not yet available. An alternative approach is to identify genes that are synthetically lethal in MYC-dependent cancer. Recent studies have identified several cell cycle kinases as MYC synthetic-lethal genes. We therefore investigated the therapeutic potential of specific cyclin-dependent kinase (CDK) inhibition in MYC-driven breast cancer. Methods Using small interfering RNA (siRNA), MYC expression was depleted in 26 human breast cancer cell lines and cell proliferation evaluated by BrdU incorporation. MYC-dependent and MYC-independent cell lines were classified based on their sensitivity to siRNA-mediated MYC knockdown. We then inhibited CDKs including CDK4/6, CDK2 and CDK1 individually using either RNAi or small molecule inhibitors, and compared sensitivity to CDK inhibition with MYC dependence in breast cancer cells. Results Breast cancer cells displayed a wide range of sensitivity to siRNA-mediated MYC knockdown. The sensitivity was correlated with MYC protein expression and MYC phosphorylation level. Sensitivity to siRNA-mediated MYC knockdown did not parallel sensitivity to the CDK4/6 inhibitor PD0332991; instead MYC-independent cell lines were generally sensitive to PD0332991. Cell cycle arrest induced by MYC knockdown was accompanied by a decrease in CDK2 activity, but inactivation of CDK2 did not selectively affect the viability of MYC-dependent breast cancer cells. In contrast, CDK1 inactivation significantly induced apoptosis and reduced viability of MYC-dependent cells but not MYC- independent cells. This selective induction of apoptosis by CDK1 inhibitors was associated with up-regulation of the pro-apoptotic molecule BIM and was p53-independent. Conclusions Overall, these results suggest that further investigation of CDK1 inhibition as a potential therapy for MYC-dependent breast cancer is warranted.
Collapse
Affiliation(s)
| | | | | | - Elizabeth A Musgrove
- The Kinghorn Cancer Centre and Cancer Research Division, Garvan Institute of Medical Research, 370 Victoria Street, Darlinghurst, Sydney, NSW, Australia.
| |
Collapse
|
56
|
Vera-Badillo FE, Templeton AJ, de Gouveia P, Diaz-Padilla I, Bedard PL, Al-Mubarak M, Seruga B, Tannock IF, Ocana A, Amir E. Androgen receptor expression and outcomes in early breast cancer: a systematic review and meta-analysis. J Natl Cancer Inst 2013; 106:djt319. [PMID: 24273215 DOI: 10.1093/jnci/djt319] [Citation(s) in RCA: 262] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND The androgen receptor (AR) is expressed frequently in breast cancer, but its prognostic significance is unclear. Preclinical data suggest that expression of AR may modify clinical outcomes in early breast cancer with improved prognosis in estrogen receptor (ER)-positive disease and poorer prognosis in ER-negative disease. METHODS A systematic review of electronic databases was conducted to identify studies published between 1946 and July 2012 and to explore the association between AR expression and overall survival (OS) and disease-free survival (DFS) in women diagnosed with early breast cancer. The odds ratios (OR) for OS and DFS at 3 and 5 years were calculated and then weighted and pooled in a meta-analysis with Mantel-Haenszel random-effect modeling. All statistical tests were two-sided. RESULTS Nineteen studies with a total of 7693 women were included. AR expression was documented in 60.5% of patients. ER-positive tumors were more likely to express AR- than ER-negative tumors (74.8% vs 31.8%, χ(2) P < .001). Compared with tumors without AR expression, those expressing AR were associated with improved OS at both 3 and 5 years (OR = 0.47, 95% confidence interval [CI] = 0.39 to 0.58, P < .001; and OR = 0.40, 95% CI = 0.29 to 0.56, P < .001). The absolute differences in the probability of OS at 3 and 5 years were 6.7% (95% CI = 3.5% to 9.8%) and 13.5% (95% CI = 7.5% to 19.6%), respectively. Results for 3- and 5-year DFS were similar. Coexpression of the ER did not influence OS at 3 or at 5 years. CONCLUSIONS Expression of AR in women with breast cancer is associated with better OS and DFS irrespective of coexpression of ER.
Collapse
Affiliation(s)
- Francisco E Vera-Badillo
- Affiliations of authors: Division of Medical Oncology & Hematology, Princess Margaret Cancer Centre, Department of Medicine, University of Toronto, Toronto, Canada (FEV-B, AJT, PdG, ID-P, PLB, MA-M, IFT, AO, EA); Sector of Medical Oncology, Institute of Oncology Ljubljana, Ljubljana, Slovenia (BS); Medical Oncology Department and Translational Research Unit, Albacete University Hospital, Albacete, Spain (AO)
| | | | | | | | | | | | | | | | | | | |
Collapse
|
57
|
Wu K, Li Z, Cai S, Tian L, Chen K, Wang J, Hu J, Sun Y, Li X, Ertel A, Pestell RG. EYA1 phosphatase function is essential to drive breast cancer cell proliferation through cyclin D1. Cancer Res 2013; 73:4488-99. [PMID: 23636126 DOI: 10.1158/0008-5472.can-12-4078] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The Drosophila Eyes Absent Homologue 1 (EYA1) is a component of the retinal determination gene network and serves as an H2AX phosphatase. The cyclin D1 gene encodes the regulatory subunits of a holoenzyme that phosphorylates and inactivates the pRb protein. Herein, comparison with normal breast showed that EYA1 is overexpressed with cyclin D1 in luminal B breast cancer subtype. EYA1 enhanced breast tumor growth in mice in vivo, requiring the phosphatase domain. EYA1 enhanced cellular proliferation, inhibited apoptosis, and induced contact-independent growth and cyclin D1 abundance. The induction of cellular proliferation and cyclin D1 abundance, but not apoptosis, was dependent upon the EYA1 phosphatase domain. The EYA1-mediated transcriptional induction of cyclin D1 occurred via the AP-1-binding site at -953 and required the EYA1 phosphatase function. The AP-1 mutation did not affect SIX1-dependent activation of cyclin D1. EYA1 was recruited in the context of local chromatin to the cyclin D1 AP-1 site. The EYA1 phosphatase function determined the recruitment of CBP, RNA polymerase II, and acetylation of H3K9 at the cyclin D1 gene AP-1 site regulatory region in the context of local chromatin. The EYA1 phosphatase regulates cell-cycle control via transcriptional complex formation at the cyclin D1 promoter.
Collapse
Affiliation(s)
- Kongming Wu
- Department of Cancer Biology, Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA19107, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
58
|
Caldon CE, Sergio CM, Sutherland RL, Musgrove EA. Differences in degradation lead to asynchronous expression of cyclin E1 and cyclin E2 in cancer cells. Cell Cycle 2013; 12:596-605. [PMID: 23324394 PMCID: PMC3594260 DOI: 10.4161/cc.23409] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Cyclin E1 is expressed at the G 1/S phase transition of the cell cycle to drive the initiation of DNA replication and is degraded during S/G2M. Deregulation of its periodic degradation is observed in cancer and is associated with increased proliferation and genomic instability. We identify that in cancer cells, unlike normal cells, the closely related protein cyclin E2 is expressed predominantly in S phase, concurrent with DNA replication. This occurs at least in part because the ubiquitin ligase component that is responsible for cyclin E1 downregulation in S phase, Fbw7, fails to effectively target cyclin E2 for proteosomal degradation. The distinct cell cycle expression of the two E-type cyclins in cancer cells has implications for their roles in genomic instability and proliferation and may explain their associations with different signatures of disease.
Collapse
Affiliation(s)
- C Elizabeth Caldon
- The Kinghorn Cancer Centre and Cancer Research Program, Garvan Institute of Medical Research, Sydney, NSW, Australia.
| | | | | | | |
Collapse
|
59
|
Caldon CE, Sergio CM, Burgess A, Deans AJ, Sutherland RL, Musgrove EA. Cyclin E2 induces genomic instability by mechanisms distinct from cyclin E1. Cell Cycle 2013; 12:606-17. [PMID: 23324395 DOI: 10.4161/cc.23512] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Cyclins E1 drives the initiation of DNA replication, and deregulation of its periodic expression leads to mitotic delay associated with genomic instability. Since it is not known whether the closely related protein cyclin E2 shares these properties, we overexpressed cyclin E2 in breast cancer cells. This did not affect the duration of mitosis, nor did it cause an increase in p107 association with CDK2. In contrast, cyclin E1 overexpression led to inhibition of the APC complex, prolonged metaphase and increased p107 association with CDK2. Despite these different effects on the cell cycle, elevated levels of either cyclin E1 or E2 led to hallmarks of genomic instability, i.e., an increased proportion of abnormal mitoses, micronuclei and chromosomal aberrations. Cyclin E2 induction of genomic instability by a mechanism distinct from cyclin E1 indicates that these two proteins have unique functions in a cancer setting.
Collapse
Affiliation(s)
- C Elizabeth Caldon
- The Kinghorn Cancer Centre and Cancer Research Program, Garvan Institute of Medical Research, Sydney, NSW, Australia
| | | | | | | | | | | |
Collapse
|
60
|
Wilkerson PM, Reis-Filho JS. the 11q13-q14 amplicon: Clinicopathological correlations and potential drivers. Genes Chromosomes Cancer 2012; 52:333-55. [DOI: 10.1002/gcc.22037] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2012] [Accepted: 11/01/2012] [Indexed: 01/04/2023] Open
|
61
|
Ezzat N, Hafez N. The validity of immunocytochemical expression of cyclin D1 in fine needle aspiration cytology of breast carcinoma. J Egypt Natl Canc Inst 2012; 24:145-50. [DOI: 10.1016/j.jnci.2012.07.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2012] [Revised: 06/21/2012] [Accepted: 07/06/2012] [Indexed: 11/15/2022] Open
|
62
|
Transcriptional activation of breast cancer-associated gene 2 by estrogen receptor. Breast Cancer Res Treat 2012; 135:495-503. [PMID: 22850893 DOI: 10.1007/s10549-012-2107-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2012] [Accepted: 05/18/2012] [Indexed: 12/13/2022]
Abstract
RNF115, or Breast Cancer-Associated Gene 2 (BCA2), encodes a RING-finger ubiquitin E3 ligase, expression of which was associated with estrogen receptor (ER)-positive status in human breast tumors. Although the BCA2 promoter contains several estrogen response element (ERE) half-sites, the role of ER in the regulation of BCA2 transcription has not been reported. The aim of this study is to investigate the molecular mechanism by which estrogen regulates BCA2 transcription. BCA2 mRNA and protein levels were examined by RT-PCR and Western blot analysis, respectively, and localization was assessed by immunofluorescence. BCA2 promoter activity in response to E(2) was tested by a dual luciferase reporter assay and ER binding to the BCA2 promoter was examined by chromatin immunoprecipitation assay. We found that BCA2 mRNA and protein levels are regulated by estrogen in ER-positive MCF7 breast cancer cells and MDA MB 231 cells stably transfected with ER. Estrogen treatment in hormonal depleted MCF7 and MDA MB 231/ER stably transfected cells resulted in increased nuclear ER and cytoplasmic and nuclear BCA2 staining. Cycloheximide is not able to inhibit BCA2 mRNA levels, suggesting potential BCA2 regulation at the transcriptional level. Anti-estrogens like tamoxifen and ICI 182 178 counteracted E(2)-induced BCA2 protein and knockdown of ER by ER siRNA resulted in a significant decrease in BCA2 protein and a lower nuclear expression pattern. Estrogen treatment lead to a significant increase in BCA2 promoter response, associated with increased binding of ER to the ERE region of the BCA2 promoter. BCA2 is therefore a newly identified transcriptional target of estrogen receptor.
Collapse
|
63
|
Gaben AM, Sabbah M, Redeuilh G, Bedin M, Mester J. Ligand-free estrogen receptor activity complements IGF1R to induce the proliferation of the MCF-7 breast cancer cells. BMC Cancer 2012; 12:291. [PMID: 22799881 PMCID: PMC3476977 DOI: 10.1186/1471-2407-12-291] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2011] [Accepted: 06/26/2012] [Indexed: 11/13/2022] Open
Abstract
Background Ligand-dependent activation of the estrogen receptor (ER) as well as of the insulin-like growth factor type 1 (IGF1R) induces the proliferation of luminal breast cancer cells. These two pathways cooperate and are interdependent. We addressed the question of the mechanisms of crosstalk between the ER and IGF1R. Methods We evaluated the mitogenic effects of estradiol (E2; agonist ligand of ER) and of insulin (a ligand of IGF1R) in the MCF-7 cells by flow cytometry and by analyzing the cell levels of cell cycle-related proteins (immunoblotting) and mRNA (RT-QPCR). To verify the requirement for the kinase activity of Akt (a downstream target of IGF1R) in the mitogenic action of estradiol, we used shRNA strategy and shRNA-resistant expression vectors. Results The activation of the ER by E2 is unable to induce the cell cycle progression when the phosphatidyl inositol-3 kinase (PI3K)/Akt signaling is blocked by a chemical inhibitor (LY 294002) or by shRNA targeting Akt1 and Akt2. shRNA-resistant Akt wild-type constructs efficiently complemented the mitogenic signaling activity of E2 whereas constructs with inactivated kinase function did not. In growth factor-starved cells, the residual PI3K/Akt activity is sufficient to complement the mitogenic action of E2. Conversely, when ER function is blocked by the antiestrogen ICI 182780, IGF1R signaling is intact but does not lead to efficient reinitiation of the cell cycle in quiescent, growth factor-starved MCF-7 cells. The basal transcription-promoting activity of ligand-free ER in growth factor-starved cells is sufficient to complement the mitogenic action of the IGF1R-dependent signaling. Conclusions The basal ER activity in the absence of ligand is sufficient to allow efficient mitogenic action of IGF1R agonists and needs to be blocked to prevent the cell cycle progression.
Collapse
Affiliation(s)
- Anne-Marie Gaben
- Inserm U938, Centre de Recherche Saint-Antoine, Hôpital Saint-Antoine, Bâtiment Kourilsky, Paris cedex, France.
| | | | | | | | | |
Collapse
|
64
|
Caldon CE, Sergio CM, Kang J, Muthukaruppan A, Boersma MN, Stone A, Barraclough J, Lee CS, Black MA, Miller LD, Gee JM, Nicholson RI, Sutherland RL, Print CG, Musgrove EA. Cyclin E2 Overexpression Is Associated with Endocrine Resistance but not Insensitivity to CDK2 Inhibition in Human Breast Cancer Cells. Mol Cancer Ther 2012; 11:1488-99. [DOI: 10.1158/1535-7163.mct-11-0963] [Citation(s) in RCA: 116] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
65
|
Association of double-positive FOXA1 and FOXP1 immunoreactivities with favorable prognosis of tamoxifen-treated breast cancer patients. Discov Oncol 2012; 3:147-59. [PMID: 22476979 DOI: 10.1007/s12672-012-0111-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2012] [Accepted: 03/16/2012] [Indexed: 12/20/2022] Open
Abstract
Breast cancer is primarily a hormone-dependent tumor that can be regulated by the status of the steroid hormones estrogen and progesterone. Forkhead box A1 (FOXA1) is a member of the forkhead box transcription factor family and functions as a pioneer factor of the estrogen receptor (ER) in breast cancer. In the present study, we demonstrate that FOXA1 mRNA was upregulated by estrogen and that estrogen receptor-α (ERα) recruitment to ER-binding sites in the vicinity of the FOXA1 gene was increased by estrogen in ERα-positive MCF-7 breast cancer cells. The estrogen-induced FOXA1 upregulation was repressed by 4-hydroxytamoxifen treatment. We also demonstrated that the proliferation and the migration of MCF-7 cells were decreased by FOXA1-specific small interfering RNA (siRNA; siFOXA1). Furthermore, siFOXA1 decreased the estrogen response element-driven transcription and the estrogen-dependent upregulation of ERα target genes in MCF-7 cells. Next, the immunohistochemical analyses of FOXA1 were performed using two groups of breast cancer specimens. The nuclear immunoreactivity of FOXA1 was detected in 80 (74%) of 108 human invasive breast cancers and was negatively correlated with tumor grade and positively correlated with hormone receptor status, including ERα and progesterone receptor, pathological tumor size, and immunoreactivity of FOXP1, another FOX family transcription factor. FOXA1 immunoreactivity was significantly elevated in the relapse-free breast cancer patients treated with tamoxifen. Notably, the double-positive immunoreactivities of FOXA1 and FOXP1 were significantly associated with a favorable prognosis for the relapse-free and overall survival of patients with tamoxifen-treated breast cancer, with lower P values compared with FOXA1 or FOXP1 immunoreactivity alone. These results suggest that FOXA1 plays an important role in the proliferation and migration of breast cancer cells by modulating estrogen signaling and that the double-positive immunoreactivities of FOXA1 and FOXP1 are associated with a favorable prognosis of tamoxifen-treated breast cancer.
Collapse
|
66
|
Holmes KA, Hurtado A, Brown GD, Launchbury R, Ross-Innes CS, Hadfield J, Odom DT, Carroll JS. Transducin-like enhancer protein 1 mediates estrogen receptor binding and transcriptional activity in breast cancer cells. Proc Natl Acad Sci U S A 2012; 109:2748-53. [PMID: 21536917 PMCID: PMC3286936 DOI: 10.1073/pnas.1018863108] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Estrogen receptor (ER) binds to distal enhancers within the genome and requires additional factors, such as the Forkhead protein FoxA1, for mediating chromatin interactions. We now show that the human Groucho protein, Transducin-like enhancer protein 1 (TLE1), positively assists some ER-chromatin interactions, a role that is distinct from its general role as a transcriptional repressor. We show that specific silencing of TLE1 inhibits the ability of ER to bind to a subset of ER binding sites within the genome, a phenomenon that results in perturbations in phospho-RNA Pol II recruitment. Furthermore, TLE1 is essential for effective ER-mediated cell division. We have discovered a distinct role for TLE1, as a necessary transcriptional component of the ER complex, where it facilitates ER-chromatin interactions.
Collapse
Affiliation(s)
- Kelly A. Holmes
- Cancer Research UK, Cambridge Research Institute, Li Ka Shing Centre, Robinson Way, Cambridge CB2 0RE, United Kingdom
| | - Antoni Hurtado
- Cancer Research UK, Cambridge Research Institute, Li Ka Shing Centre, Robinson Way, Cambridge CB2 0RE, United Kingdom
| | - Gordon D. Brown
- Cancer Research UK, Cambridge Research Institute, Li Ka Shing Centre, Robinson Way, Cambridge CB2 0RE, United Kingdom
| | - Rosalind Launchbury
- Cancer Research UK, Cambridge Research Institute, Li Ka Shing Centre, Robinson Way, Cambridge CB2 0RE, United Kingdom
| | - Caryn S. Ross-Innes
- Cancer Research UK, Cambridge Research Institute, Li Ka Shing Centre, Robinson Way, Cambridge CB2 0RE, United Kingdom
| | - James Hadfield
- Genomics Core, Cancer Research UK, Cambridge Research Institute, Li Ka Shing Centre, Robinson Way, Cambridge CB2 0RE, United Kingdom; and
| | - Duncan T. Odom
- Cancer Research UK, Cambridge Research Institute, Li Ka Shing Centre, Robinson Way, Cambridge CB2 0RE, United Kingdom
- Department of Oncology, University of Cambridge, Cambridge, CB2 0RE, United Kingdom
| | - Jason S. Carroll
- Cancer Research UK, Cambridge Research Institute, Li Ka Shing Centre, Robinson Way, Cambridge CB2 0RE, United Kingdom
- Department of Oncology, University of Cambridge, Cambridge, CB2 0RE, United Kingdom
| |
Collapse
|
67
|
Miermont AM, Cabrera MC, Frech SM, Nakles RE, Diaz-Cruz ES, Shiffert MT, Furth PA. Association of Over-Expressed Estrogen Receptor Alpha with Development of Tamoxifen Resistant Hyperplasia and Adenocarcinomas in Genetically Engineered Mice. ACTA ACUST UNITED AC 2012; Suppl 12. [PMID: 24575359 PMCID: PMC3932557 DOI: 10.4172/2161-0940.s12-001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
BACKGROUND Estrogen receptor alpha (ERα) and cyclin D1 are frequently co-expressed in human breast cancer. Some, but not all, studies link tamoxifen resistance to co-expression of cyclin D1 and ERα. In mice over-expression of either cyclin D1 or ERα in mammary epithelial cells is sufficient to induce mammary hyperplasia. Cyclin D1 over-expression in mice leads to mammary adenocarcinoma associated with activated estrogen signaling pathways. ERα over-expression in mice leads to mammary hyperplasia and cancer. Significantly, disease development in these mice is abrogated by loss of cyclin D1. METHODS Genetically engineered mouse models were used to determine whether or not ERα over-expression demonstrated cooperativity with cyclin D1 over-expression in cancer development, reaction to the chemical carcinogen DMBA, or tamoxifen response. RESULTS Adding ERα over-expression to cyclin D1 over-expression increased the prevalence of hyperplasia but not cancer. Single dose DMBA exposure did not increase cancer prevalence in any of the genotypes although cyclin D1 over-expressing mice demonstrated a significant increase in hyperplasia. Tamoxifen treatment was initiated at both young and older ages to test for genotype-specific differences in response. Although normal ductal structures regressed in all genotypes at both younger and older ages, tamoxifen did not significantly reduce the prevalence of either hyperplasia or cancer in any of the genotypes. All of the cancers that developed were hormone receptor positive, including those that developed on tamoxifen, and all showed expression of nuclear-localized cyclin D1. In summary, development of tamoxifen resistant hyperplasia and cancer was associated with expression of ERα and cyclin D1. CONCLUSION These preclinical models will be useful to test strategies for overcoming tamoxifen resistance, perhaps by simultaneously targeting cell cycle regulatory pathways associated with cyclin D1.
Collapse
Affiliation(s)
- Anne M Miermont
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC, 20007, USA
| | - Marina Carla Cabrera
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC, 20007, USA
| | - Silvina M Frech
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC, 20007, USA
| | - Rebecca E Nakles
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC, 20007, USA
| | - Edgar S Diaz-Cruz
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC, 20007, USA
| | - Maddalena Tilli Shiffert
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC, 20007, USA ; Department of Biology, Georgetown University, Washington, DC, 20007, USA
| | - Priscilla A Furth
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC, 20007, USA ; Department of Medicine, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC, 20007, USA ; Department of Nanobiomedical Science and WCU Research Center of Nanobiomedical Science, Dankook University, Chungnam 330-714, Korea
| |
Collapse
|
68
|
Martinez-Outschoorn UE, Goldberg A, Lin Z, Ko YH, Flomenberg N, Wang C, Pavlides S, Pestell RG, Howell A, Sotgia F, Lisanti MP. Anti-estrogen resistance in breast cancer is induced by the tumor microenvironment and can be overcome by inhibiting mitochondrial function in epithelial cancer cells. Cancer Biol Ther 2011; 12:924-38. [PMID: 22041887 DOI: 10.4161/cbt.12.10.17780] [Citation(s) in RCA: 142] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Here, we show that tamoxifen resistance is induced by cancer-associated fibroblasts (CAFs). Coculture of estrogen receptor positive (ER+) MCF7 cells with fibroblasts induces tamoxifen and fulvestrant resistance with 4.4 and 2.5-fold reductions, respectively, in apoptosis compared with homotypic MCF7 cell cultures. Treatment of MCF7 cells cultured alone with high-energy mitochondrial "fuels" (L-lactate or ketone bodies) is sufficient to confer tamoxifen resistance, mimicking the effects of coculture with fibroblasts. To further demonstrate that epithelial cancer cell mitochondrial activity is the origin of tamoxifen resistance, we employed complementary pharmacological and genetic approaches. First, we studied the effects of two mitochondrial "poisons," namely metformin and arsenic trioxide (ATO), on fibroblast-induced tamoxifen resistance. We show here that treatment with metformin or ATO overcomes fibroblast-induced tamoxifen resistance in MCF7 cells. Treatment with the combination of tamoxifen plus metformin or ATO leads to increases in glucose uptake in MCF7 cells, reflecting metabolic uncoupling between epithelial cancer cells and fibroblasts. In coculture, tamoxifen induces the upregulation of TIGAR (TP53-induced glycolysis and apoptosis regulator), a p53 regulated gene that simultaneously inhibits glycolysis, autophagy and apoptosis and reduces ROS generation, thereby promoting oxidative mitochondrial metabolism. To genetically mimic the effects of coculture, we next recombinantly overexpressed TIGAR in MCF7 cells. Remarkably, TIGAR overexpression protects epithelial cancer cells from tamoxifen-induced apoptosis, providing genetic evidence that increased mitochondrial function confers tamoxifen resistance. Finally, CAFs also protect MCF7 cells against apoptosis induced by other anticancer agents, such as the topoisomerase inhibitor doxorubicin (adriamycin) and the PARP-1 inhibitor ABT-888. These results suggest that the tumor microenvironment may be a general mechanism for conferring drug resistance. In summary, we have discovered that mitochondrial activity in epithelial cancer cells drives tamoxifen resistance in breast cancer and that mitochondrial "poisons" are able to re-sensitize these cancer cells to tamoxifen. In this context, TIGAR may be a key "druggable" target for preventing drug resistance in cancer cells, as it protects cancer cells against the onset of stress-induced mitochondrial dys-function and aerobic glycolysis.
Collapse
Affiliation(s)
- Ubaldo E Martinez-Outschoorn
- The Jefferson Stem Cell Biology and Regenerative Medicine Center, Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
69
|
Abstract
MYC is a key regulator of cell growth, proliferation, metabolism, differentiation, and apoptosis. MYC deregulation contributes to breast cancer development and progression and is associated with poor outcomes. Multiple mechanisms are involved in MYC deregulation in breast cancer, including gene amplification, transcriptional regulation, and mRNA and protein stabilization, which correlate with loss of tumor suppressors and activation of oncogenic pathways. The heterogeneity in breast cancer is increasingly recognized. Breast cancer has been classified into 5 or more subtypes based on gene expression profiles, and each subtype has distinct biological features and clinical outcomes. Among these subtypes, basal-like tumor is associated with a poor prognosis and has a lack of therapeutic targets. MYC is overexpressed in the basal-like subtype and may serve as a target for this aggressive subtype of breast cancer. Tumor suppressor BRCA1 inhibits MYC's transcriptional and transforming activity. Loss of BRCA1 with MYC overexpression leads to the development of breast cancer-especially, basal-like breast cancer. As a downstream effector of estrogen receptor and epidermal growth factor receptor family pathways, MYC may contribute to resistance to adjuvant therapy. Targeting MYC-regulated pathways in combination with inhibitors of other oncogenic pathways may provide a promising therapeutic strategy for breast cancer, the basal-like subtype in particular.
Collapse
Affiliation(s)
- Jinhua Xu
- Center for Clinical Cancer Genetics, Department of Medicine, University of Chicago, Chicago, IL, USA
| | | | | |
Collapse
|
70
|
Kim Y, Kim H, Jang SW, Ko J. The role of 14-3-3β in transcriptional activation of estrogen receptor α and its involvement in proliferation of breast cancer cells. Biochem Biophys Res Commun 2011; 414:199-204. [DOI: 10.1016/j.bbrc.2011.09.056] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2011] [Accepted: 09/10/2011] [Indexed: 10/17/2022]
|
71
|
Miller TW, Balko JM, Ghazoui Z, Dunbier A, Anderson H, Dowsett M, González-Angulo AM, Mills GB, Miller WR, Wu H, Shyr Y, Arteaga CL. A gene expression signature from human breast cancer cells with acquired hormone independence identifies MYC as a mediator of antiestrogen resistance. Clin Cancer Res 2011; 17:2024-34. [PMID: 21346144 PMCID: PMC3221728 DOI: 10.1158/1078-0432.ccr-10-2567] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE Although most patients with estrogen receptor α (ER)-positive breast cancer initially respond to endocrine therapy, many ultimately develop resistance to antiestrogens. However, mechanisms of antiestrogen resistance and biomarkers predictive of such resistance are underdeveloped. EXPERIMENTAL DESIGN We adapted four ER(+) human breast cancer cell lines to grow in an estrogen-depleted medium. A gene signature of estrogen independence was developed by comparing expression profiles of long-term estrogen-deprived (LTED) cells to their parental counterparts. We evaluated the ability of the LTED signature to predict tumor response to neoadjuvant therapy with an aromatase inhibitor and disease outcome following adjuvant tamoxifen. We utilized Gene Set Analysis (GSA) of LTED cell gene expression profiles and a loss-of-function approach to identify pathways causally associated with resistance to endocrine therapy. RESULTS The LTED gene expression signature was predictive of high tumor cell proliferation following neoadjuvant therapy with anastrozole and letrozole, each in different patient cohorts. This signature was also predictive of poor recurrence-free survival in two studies of patients treated with adjuvant tamoxifen. Bioinformatic interrogation of expression profiles in LTED cells revealed a signature of MYC activation. The MYC activation signature and high MYC protein levels were both predictive of poor outcome following tamoxifen therapy. Finally, knockdown of MYC inhibited LTED cell growth. CONCLUSIONS A gene expression signature derived from ER(+) breast cancer cells with acquired hormone independence predicted tumor response to aromatase inhibitors and associated with clinical markers of resistance to tamoxifen. Activation of the MYC pathway was associated with this resistance.
Collapse
MESH Headings
- Anastrozole
- Antineoplastic Agents, Hormonal/pharmacology
- Antineoplastic Agents, Hormonal/therapeutic use
- Biomarkers, Tumor/genetics
- Breast Neoplasms/drug therapy
- Breast Neoplasms/genetics
- Breast Neoplasms/pathology
- Cell Line, Tumor
- Cell Proliferation/drug effects
- Chemotherapy, Adjuvant
- Disease-Free Survival
- Drug Resistance, Neoplasm/genetics
- Estrogen Receptor Modulators/pharmacology
- Estrogen Receptor Modulators/therapeutic use
- Female
- Gene Expression Profiling
- Genetic Association Studies
- Humans
- Kaplan-Meier Estimate
- Ki-67 Antigen/metabolism
- Letrozole
- Neoadjuvant Therapy
- Neoplasm Recurrence, Local
- Neoplasms, Hormone-Dependent/drug therapy
- Neoplasms, Hormone-Dependent/genetics
- Neoplasms, Hormone-Dependent/mortality
- Neoplasms, Hormone-Dependent/pathology
- Nitriles/pharmacology
- Nitriles/therapeutic use
- Oligonucleotide Array Sequence Analysis
- Proportional Hazards Models
- Proto-Oncogene Proteins c-myc/genetics
- Proto-Oncogene Proteins c-myc/metabolism
- RNA Interference
- Tamoxifen/pharmacology
- Tamoxifen/therapeutic use
- Treatment Outcome
- Triazoles/pharmacology
- Triazoles/therapeutic use
Collapse
Affiliation(s)
- Todd W. Miller
- Department of Cancer Biology, Vanderbilt-Ingram Comprehensive Cancer Center, Vanderbilt University, Nashville, TN
| | - Justin M. Balko
- Department of Medicine, Vanderbilt-Ingram Comprehensive Cancer Center, Vanderbilt University, Nashville, TN
| | - Zara Ghazoui
- Breakthrough Breast Cancer Centre, Institute of Cancer Research, Royal Marsden Hospital, London, UK
| | - Anita Dunbier
- Breakthrough Breast Cancer Centre, Institute of Cancer Research, Royal Marsden Hospital, London, UK
| | - Helen Anderson
- Breakthrough Breast Cancer Centre, Institute of Cancer Research, Royal Marsden Hospital, London, UK
| | - Mitch Dowsett
- Breakthrough Breast Cancer Centre, Institute of Cancer Research, Royal Marsden Hospital, London, UK
- Academic Department of Biochemistry, Royal Marsden Hospital, London, UK
| | - Ana M. González-Angulo
- Department of Breast Medical Oncology, University of Texas, M.D. Anderson Cancer Center, Houston, TX
- Department of Systems Biology, University of Texas, M.D. Anderson Cancer Center, Houston, TX
| | - Gordon B. Mills
- Department of Systems Biology, University of Texas, M.D. Anderson Cancer Center, Houston, TX
| | - William R. Miller
- Breast Research Group, University of Edinburgh, Edinburgh, EH4 2XU, UK
| | - Huiyun Wu
- Department of Biostatistics, Vanderbilt-Ingram Comprehensive Cancer Center, Vanderbilt University, Nashville, TN
| | - Yu Shyr
- Department of Biostatistics, Vanderbilt-Ingram Comprehensive Cancer Center, Vanderbilt University, Nashville, TN
- Department of Breast Cancer Research Program, Vanderbilt-Ingram Comprehensive Cancer Center, Vanderbilt University, Nashville, TN
| | - Carlos L. Arteaga
- Department of Cancer Biology, Vanderbilt-Ingram Comprehensive Cancer Center, Vanderbilt University, Nashville, TN
- Department of Medicine, Vanderbilt-Ingram Comprehensive Cancer Center, Vanderbilt University, Nashville, TN
- Department of Breast Cancer Research Program, Vanderbilt-Ingram Comprehensive Cancer Center, Vanderbilt University, Nashville, TN
| |
Collapse
|
72
|
Li YW, Zhu GY, Shen XL, Chu JH, Yu ZL, Fong WF. Furanodienone inhibits cell proliferation and survival by suppressing ERα signaling in human breast cancer MCF-7 cells. J Cell Biochem 2011; 112:217-24. [DOI: 10.1002/jcb.22922] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
73
|
Ali S, Buluwela L, Coombes RC. Antiestrogens and their therapeutic applications in breast cancer and other diseases. Annu Rev Med 2011; 62:217-32. [PMID: 21054173 DOI: 10.1146/annurev-med-052209-100305] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2025]
Abstract
The identification of the link between breast cancer and estrogens has led to the development of antiestrogens, in particular tamoxifen, to inhibit the activities of estrogen receptors (ERs) in breast cancer cells. The clinical use of tamoxifen has played a major part in decreasing breast cancer mortality over the past 30 years. Though antiestrogenic in the breast, some antiestrogens have estrogen-like actions in other tissues, acting to promote bone density and protect against cardiovascular disease, thus raising the possibility of their use in counteracting the effects of estrogen loss following menopause. Moreover, antiestrogens show efficacy as chemopreventive agents in women at high risk of developing breast cancer. Thus, antiestrogens define an important and well-understood class of cancer drug, which continue to be a mainstay in breast cancer treatment.
Collapse
Affiliation(s)
- Simak Ali
- Division of Cancer, Department of Surgery and Oncology, Imperial College London, Hammersmith Hospital, London W12 0NN, United Kingdom.
| | | | | |
Collapse
|
74
|
Sergentanis TN, Economopoulos KP. Cyclin D1 G870A polymorphism and breast cancer risk: a meta-analysis comprising 9,911 cases and 11,171 controls. Mol Biol Rep 2010; 38:4955-63. [PMID: 21161398 DOI: 10.1007/s11033-010-0639-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2010] [Accepted: 12/03/2010] [Indexed: 12/12/2022]
Abstract
Cyclin D1 represents a key molecule in the regulation of cell cycle. CCND1 G870A (rs603965) polymorphism has drawn considerable attention as the A allele may generate a variant splice product with possible oncogenic actions. A meta-analysis examining the association between CCND1 G870A polymorphism and breast cancer risk was performed. Separate analyses on Caucasian and Chinese populations were also implemented. Eligible articles were identified for the period up to July 2010. Pooled odds ratios (OR) were appropriately derived from fixed-effects or random-effects models. Sensitivity analysis excluding studies whose genotype frequencies in controls significantly deviated from Hardy-Weinberg Equilibrium (HWE) was performed. Nine case-control studies on Caucasians (7,304 cases and 8,149 controls) and four case-control studies on Chinese (2,607 cases and 3,022 controls) were eligible. At the overall analysis the A allele seemed to be associated with elevated breast cancer risk; the effect seemed to be confined to homozygous carriers (pooled OR = 1.091, 95% CI: 1.008-1.179, P = 0.030, fixed effects) as heterozygous carriers did not exhibit significantly elevated breast cancer risk. No statistically significant associations were demonstrated in Caucasians. On the other hand, Chinese AA carriers exhibited marginally elevated breast cancer risk (pooled OR = 1.144, 95% CI: 0.984-1.329, P = 0.080, fixed effects). Nevertheless, the controls in two out of the four Chinese studies deviated from HWE. In conclusion, this meta-analysis suggests that the A allele of the CCND1 G870A polymorphism may confer additional breast cancer risk when it comes to homozygosity and Chinese populations. The need for additional, methodologically sound studies on Chinese populations seems warranted.
Collapse
|
75
|
Nair BC, Nair SS, Chakravarty D, Challa R, Manavathi B, Yew PR, Kumar R, Tekmal RR, Vadlamudi RK. Cyclin-dependent kinase-mediated phosphorylation plays a critical role in the oncogenic functions of PELP1. Cancer Res 2010; 70:7166-75. [PMID: 20807815 PMCID: PMC3058498 DOI: 10.1158/0008-5472.can-10-0628] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Estrogen receptor (ER) signaling plays an important role in breast cancer progression, and ER functions are influenced by coregulatory proteins. PELP1 (proline-, glutamic acid-, and leucine-rich protein 1) is a nuclear receptor coregulator that plays an important role in ER signaling. Its expression is deregulated in hormonal cancers. We identified PELP1 as a novel cyclin-dependent kinase (CDK) substrate. Using site-directed mutagenesis and in vitro kinase assays, we identified Ser(477) and Ser(991) of PELP1 as CDK phosphorylation sites. Using the PELP1 Ser(991) phospho-specific antibody, we show that PELP1 is hyperphosphorylated during cell cycle progression. Model cells stably expressing the PELP1 mutant that lack CDK sites had defects in estradiol (E2)-mediated cell cycle progression and significantly affected PELP1-mediated oncogenic functions in vivo. Mechanistic studies showed that PELP1 modulates transcription factor E2F1 transactivation functions, that PELP1 is recruited to pRb/E2F target genes, and that PELP1 facilitates ER signaling cross talk with cell cycle machinery. We conclude that PELP1 is a novel substrate of interphase CDKs and that its phosphorylation is important for the proper function of PELP1 in modulating hormone-driven cell cycle progression and also for optimal E2F transactivation function. Because the expression of both PELP1 and CDKs is deregulated in breast tumors, CDK-PELP1 interactions will have implications in breast cancer progression.
Collapse
Affiliation(s)
- Binoj C. Nair
- Department of Obstetrics and Gynecology, and Cancer Therapy and Research Center, San Antonio, TX, USA
- Department of Molecular Medicine, University of Texas Health Science Center, San Antonio, TX, USA
| | - Sujit S. Nair
- Department of Obstetrics and Gynecology, and Cancer Therapy and Research Center, San Antonio, TX, USA
| | - Dimple Chakravarty
- Department of Obstetrics and Gynecology, and Cancer Therapy and Research Center, San Antonio, TX, USA
| | - Rambabu Challa
- Department of Obstetrics and Gynecology, and Cancer Therapy and Research Center, San Antonio, TX, USA
| | | | - P. Renee Yew
- Department of Molecular Medicine, University of Texas Health Science Center, San Antonio, TX, USA
| | - Rakesh Kumar
- Department of Biochemistry and Molecular Biology, The George Washington University Medical Center, Washington DC, USA
| | - Rajeshwar Rao Tekmal
- Department of Obstetrics and Gynecology, and Cancer Therapy and Research Center, San Antonio, TX, USA
| | - Ratna K. Vadlamudi
- Department of Obstetrics and Gynecology, and Cancer Therapy and Research Center, San Antonio, TX, USA
| |
Collapse
|
76
|
Cavaliere C, Corvigno S, Galgani M, Limite G, Nardone A, Veneziani BM. Combined inhibitory effect of formestane and herceptin on a subpopulation of CD44+/CD24low breast cancer cells. Cancer Sci 2010; 101:1661-9. [PMID: 20491779 PMCID: PMC11159050 DOI: 10.1111/j.1349-7006.2010.01593.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
In breast cancer, stromal cells surrounding cancer epithelial cells can influence phenotype by producing paracrine factors. Among many mediators of epithelial-stromal interactions, aromatase activity is perhaps one of the best studied. Clinical data suggest that estrogen-independent signaling leads to increased proliferation even during therapy with aromatase inhibitors (AIs). Molecular mechanism of crosstalk between the estrogen receptor (ER) and the epidermal growth factor receptor (HER) family have been implicated in resistance to endocrine therapy, but this interaction is unclear. The ability of aromatase to induce estradiol biosynthesis provides a molecular rationale to combine agents that target aromatase activity and the HER pathway. We targeted stromal-epithelial interactions using formestane, which exerts antiaromatase activity, combined with the monoclonal anti-HER2 antibody herceptin, in a subpopulation of CD44+/CD24low cells sorted from epithelial-mesenchymal co-cultures of breast cancer tissues. The growth inhibition was respectively 16% (P < 0.01) in the response to herceptin, 25% to formestane (P < 0.01), and 50% (P < 0.001) with the combination of the two drugs, suggesting that herceptin cooperates with formestane-induced inhibition of aromatase and this effect could be mediated through HER family receptors. In cells which expressed ERalpha, formestane/herceptin combination suppressed the mRNA expression of aromatase and HER2 and decreased cyclin D1 expression. These results show that combination therapies involving AIs and anti-HER2 can be efficacious for the treatment of cancer in experimental models and suggest that subtyping breast tumors gives useful information about response to treatment.
Collapse
Affiliation(s)
- Carla Cavaliere
- Department of Cellular and Molecular Biology and Pathology L. Califano, University of Naples Federico II, Naples, Italy
| | | | | | | | | | | |
Collapse
|
77
|
Roy PG, Pratt N, Purdie CA, Baker L, Ashfield A, Quinlan P, Thompson AM. High CCND1 amplification identifies a group of poor prognosis women with estrogen receptor positive breast cancer. Int J Cancer 2010; 127:355-60. [PMID: 19904758 DOI: 10.1002/ijc.25034] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
CCND1 encodes for the cyclin D1 protein involved in G1/S cell cycle transition. In breast cancer the mechanism of CCND1 amplification, relationship between cyclin D1 protein expression and the key clinical markers estrogen receptor (ER) and HER2 requires elucidation. Tissue microarrays of primary invasive breast cancer from 93 women were evaluated for CCND1 amplification by fluorescent in-situ hybridization and cyclin D1 protein overexpression by immunohistochemistry. CCND1 amplification was identified in 27/93 (30%) cancers and 59/93 (63%) cancers had overexpression of cyclin D1. CCND1 amplification was significantly associated with cyclin D1 protein overexpression (p < 0.001; Fisher's exact test) and both CCND1 amplification and cyclin D1 protein expression with oestrogen receptor (ER) expression (p = 0.003 and p < 0.001; Fishers exact test). Neither CCND1 amplification nor cyclinD1 expression was associated with tumor size, pathological node status or HER2 amplification, but high CCND1 amplification (Copy Number Gain (CNG) > or = 8) was associated with high tumor grade (p = 0.005; chi square 7.915, 2 df) and worse prognosis by Nottingham Prognostic Index (p = 0.001; 2 sample t-test). High CCND1 amplification (CNG > or = 8) may identify a subset of patients with poor prognosis ER-positive breast cancers who should be considered for additional therapy.
Collapse
Affiliation(s)
- Pankaj G Roy
- Department of Surgery and Molecular Oncology, Ninewells Hospital and Medical School, Dundee DD1 9SY, UK
| | | | | | | | | | | | | |
Collapse
|
78
|
Szatkowski C, Parys JB, Ouadid-Ahidouch H, Matifat F. Inositol 1,4,5-trisphosphate-induced Ca2+ signalling is involved in estradiol-induced breast cancer epithelial cell growth. Mol Cancer 2010; 9:156. [PMID: 20565939 PMCID: PMC2906470 DOI: 10.1186/1476-4598-9-156] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2009] [Accepted: 06/21/2010] [Indexed: 01/27/2023] Open
Abstract
Background Ca2+ is a ubiquitous messenger that has been shown to be responsible for controlling numerous cellular processes including cell growth and cell death. Whereas the involvement of IP3-induced Ca2+ signalling (IICS) in the physiological activity of numerous cell types is well documented, the role of IICS in cancer cells is still largely unknown. Our purpose was to characterize the role of IICS in the control of growth of the estrogen-dependent human breast cancer epithelial cell line MCF-7 and its potential regulation by 17β-estradiol (E2). Results Our results show that the IP3 receptor (IP3R) inhibitors caffeine, 2-APB and xestospongin C (XeC) inhibited the growth of MCF-7 stimulated by 5% foetal calf serum or 10 nM E2. Furthermore, Ca2+ imaging experiments showed that serum and E2 were able to trigger, in a Ca2+-free medium, an elevation of internal Ca2+ in a 2-APB and XeC-sensitive manner. Moreover, the phospholipase C (PLC) inhibitor U-73122 was able to prevent intracellular Ca2+ elevation in response to serum, whereas the inactive analogue U-73343 was ineffective. Western-blotting experiments revealed that the 3 types of IP3Rs are expressed in MCF-7 cells and that a 48 hours treatment with 10 nM E2 elevated IP3R3 protein expression level in an ICI-182,780 (a specific estrogen receptor antagonist)-dependent manner. Furthermore, IP3R3 silencing by the use of specific small interfering RNA was responsible for a drastic modification of the temporal feature of IICS, independently of a modification of the sensitivity of the Ca2+ release process and acted to counteract the proliferative effect of 10 nM E2. Conclusions Altogether, our results are in favour of a role of IICS in MCF-7 cell growth, and we hypothesize that the regulation of IP3R3 expression by E2 is involved in this effect.
Collapse
Affiliation(s)
- Cécilia Szatkowski
- Laboratoire de Physiologie Cellulaire et Moléculaire - JE-2530: Canaux ioniques et cancer du sein, Université d'Amiens, UFR des Sciences, 33 rue Saint-Leu 80039 Amiens, France
| | | | | | | |
Collapse
|
79
|
Dalvai M, Bystricky K. Cell cycle and anti-estrogen effects synergize to regulate cell proliferation and ER target gene expression. PLoS One 2010; 5:e11011. [PMID: 20543978 PMCID: PMC2882356 DOI: 10.1371/journal.pone.0011011] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2010] [Accepted: 05/06/2010] [Indexed: 12/03/2022] Open
Abstract
Antiestrogens are designed to antagonize hormone induced proliferation and ERalpha target gene expression in mammary tumor cells. Commonly used drugs such as OH-Tamoxifen and ICI 182780 (Fulvestrant) block cell cycle progression in G0/G1. Inversely, the effect of cell cycle stage on ER regulated gene expression has not been tested directly. We show that in ERalpha-positive breast cancer cells (MCF-7) the estrogen receptor gene and downstream target genes are cell cycle regulated with expression levels varying as much as three-fold between phases of the cell cycle. Steroid free culture conditions commonly used to assess the effect of hormones or antiestrogens on gene expression also block MCF-7 cells in G1-phase when several ERalpha target genes are overexpressed. Thus, cell cycle effects have to be taken into account when analyzing the impact of hormonal treatments on gene transcription. We found that antiestrogens repress transcription of several ERalpha target genes specifically in S phase. This observation corroborates the more rapid and strong impact of antiestrogen treatments on cell proliferation in thymidine, hydroxyurea or aphidicolin arrested cells and correlates with an increase of apoptosis compared to similar treatments in lovastatin or nocodazol treated cells. Hence, cell cycle effects synergize with the action of antiestrogens. An interesting therapeutic perspective could be to enhance the action of anti-estrogens by associating hormone-therapy with specific cell cycle drugs.
Collapse
Affiliation(s)
- Mathieu Dalvai
- Université de Toulouse, UPS, Laboratoire de Biologie Moléculaire Eucaryote, Toulouse, France
- CNRS, Laboratoire de Biologie Moléculaire Eucaryote, Toulouse, France
| | - Kerstin Bystricky
- Université de Toulouse, UPS, Laboratoire de Biologie Moléculaire Eucaryote, Toulouse, France
- CNRS, Laboratoire de Biologie Moléculaire Eucaryote, Toulouse, France
| |
Collapse
|
80
|
Villavicencio A, Aguilar G, Argüello G, Dünner C, Gabler F, Soto E, Gaete F, Peñaloza P, Celis M, Rojas C. The effect of overweight and obesity on proliferation and activation of AKT and ERK in human endometria. Gynecol Oncol 2010; 117:96-102. [DOI: 10.1016/j.ygyno.2009.12.022] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2009] [Revised: 12/07/2009] [Accepted: 12/14/2009] [Indexed: 12/11/2022]
|
81
|
Ross-Innes CS, Stark R, Holmes KA, Schmidt D, Spyrou C, Russell R, Massie CE, Vowler SL, Eldridge M, Carroll JS. Cooperative interaction between retinoic acid receptor-alpha and estrogen receptor in breast cancer. Genes Dev 2010; 24:171-82. [PMID: 20080953 DOI: 10.1101/gad.552910] [Citation(s) in RCA: 213] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Retinoic acid receptor-alpha (RAR alpha) is a known estrogen target gene in breast cancer cells. The consequence of RAR alpha induction by estrogen was previously unknown. We now show that RAR alpha is required for efficient estrogen receptor-alpha (ER)-mediated transcription and cell proliferation. RAR alpha can interact with ER-binding sites, but this occurs in an ER-dependent manner, providing a novel role for RAR alpha that is independent of its classic role. We show, on a genome-wide scale, that RAR alpha and ER can co-occupy regulatory regions together within the chromatin. This transcriptionally active co-occupancy and dependency occurs when exposed to the predominant breast cancer hormone, estrogen--an interaction that is promoted by the estrogen-ER induction of RAR alpha. These findings implicate RAR alpha as an essential component of the ER complex, potentially by maintaining ER-cofactor interactions, and suggest that different nuclear receptors can cooperate for effective transcriptional activity in breast cancer cells.
Collapse
Affiliation(s)
- Caryn S Ross-Innes
- Cancer Research UK, Cambridge Research Institute, Li Ka Shing Centre, Cambridge CB2 0RE, United Kingdom
| | | | | | | | | | | | | | | | | | | |
Collapse
|
82
|
Abstract
Endocrine therapies targeting oestrogen action (anti-oestrogens, such as tamoxifen, and aromatase inhibitors) decrease mortality from breast cancer, but their efficacy is limited by intrinsic and acquired therapeutic resistance. Candidate molecular biomarkers and gene expression signatures of tamoxifen response emphasize the importance of deregulation of proliferation and survival signalling in endocrine resistance. However, definition of the specific genetic lesions and molecular processes that determine clinical endocrine resistance is incomplete. The development of large-scale computational and genetic approaches offers the promise of identifying the mediators of endocrine resistance that may be exploited as potential therapeutic targets and biomarkers of response in the clinic.
Collapse
Affiliation(s)
- Elizabeth A Musgrove
- Cancer Research Program, Garvan Institute of Medical Research, Sydney, New South Wales 2010, Australia.
| | | |
Collapse
|
83
|
Zhang Y, Leung DYM, Nordeen SK, Goleva E. Estrogen inhibits glucocorticoid action via protein phosphatase 5 (PP5)-mediated glucocorticoid receptor dephosphorylation. J Biol Chem 2009; 284:24542-52. [PMID: 19586900 DOI: 10.1074/jbc.m109.021469] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Although glucocorticoids suppress proliferation of many cell types and are used in the treatment of certain cancers, trials of glucocorticoid therapy in breast cancer have been a disappointment. Another suggestion that estrogens may affect glucocorticoid action is that the course of some inflammatory diseases tends to be more severe and less responsive to corticosteroid treatment in females. To date, the molecular mechanism of cross-talk between estrogens and glucocorticoids is poorly understood. Here we show that, in both MCF-7 and T47D breast cancer cells, estrogen inhibits glucocorticoid induction of the MKP-1 (mitogen-activated protein kinase phosphatase-1) and serum/glucocorticoid-regulated kinase genes. Estrogen did not affect glucocorticoid-induced glucocorticoid receptor (GR) nuclear translocation but reduced ligand-induced GR phosphorylation at Ser-211, which is associated with the active form of GR. We show that estrogen increases expression of protein phosphatase 5 (PP5), which mediates the dephosphorylation of GR at Ser-211. Gene knockdown of PP5 abolished the estrogen-mediated suppression of GR phosphorylation and induction of MKP-1 and serum/glucocorticoid-regulated kinase. More importantly, after PP5 knockdown estrogen-promoted cell proliferation was significantly suppressed by glucocorticoids. This study demonstrates cross-talk between estrogen-induced PP5 and GR action. It also reveals that PP5 inhibition may antagonize estrogen-promoted events in response to corticosteroid therapy.
Collapse
Affiliation(s)
- Yong Zhang
- Department of Pediatrics, National Jewish Health, Denver, Colorado 80206, USA
| | | | | | | |
Collapse
|
84
|
Abstract
During estrogen-induced proliferation, c-Myc and cyclin D1 initiate independent pathways that activate cyclin E1-Cdk2 by sequestration and/or downregulation of the CDK inhibitor p21(Waf1/Cip1), without significant increases in cyclin E1 protein levels. In contrast, cyclin E2 undergoes a marked increase in expression, which occurs within 9 to 12 h of estrogen treatment of antiestrogen-pretreated MCF-7 breast cancer cells. Both E cyclins are important to estrogen action, as small interfering RNA (siRNA)-mediated knockdown of either cyclin E1 or cyclin E2 attenuated estrogen-mediated proliferation. Inducible expression of cyclin D1 upregulated cyclin E2, while siRNA-mediated knockdown of cyclin D1 attenuated estrogen effects on cyclin E2. However, manipulation of c-Myc levels did not profoundly affect cyclin E2. Cyclin E2 induction by estrogen was accompanied by recruitment of E2F1 to the cyclin E1 and E2 promoters, and cyclin D1 induction was sufficient for E2F1 recruitment. siRNA-mediated knockdown of the chromatin remodelling factor CHD8 prevented cyclin E2 upregulation. Together, these data indicate that cyclin E2-Cdk2 activation by estrogen occurs via E2F- and CHD8-mediated transcription of cyclin E2 downstream of cyclin D1. This contrasts with the predominant regulation of cyclin E1-Cdk2 activity via CDK inhibitor association downstream of both c-Myc and cyclin D1 and indicates that cyclins E1 and E2 are not always coordinately regulated.
Collapse
|
85
|
Liu H, Du J, Hu C, Qi H, Wang X, Wang S, Liu Q, Li Z. Delayed activation of extracellular-signal-regulated kinase 1/2 is involved in genistein- and equol-induced cell proliferation and estrogen-receptor-alpha-mediated transcription in MCF-7 breast cancer cells. J Nutr Biochem 2009; 21:390-6. [PMID: 19427779 DOI: 10.1016/j.jnutbio.2009.01.016] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2008] [Revised: 12/25/2008] [Accepted: 01/16/2009] [Indexed: 11/17/2022]
Abstract
The aim of this study was to determine whether the extracellular-signal-regulated kinase 1/2 (ERK1/2) pathway is involved in genistein- and equol-induced cell proliferation and estrogen receptor (ER) alpha transactivation. For MCF-7 human breast cells, low concentrations of genistein and equol enhanced proliferation and induced MCF-7 cells to enter the S-phase. Genistein- and equol-induced cell proliferation and S-phase entry were blocked by the ERalpha antagonists 4-hydroxytamoxifen and ICI 182,780 and by the mitogen-activated protein kinase 1/2 inhibitor U0126. These data indicated that ERalpha and mitogen-activated protein extracellular kinase/ERK signaling were required for the effects of genistein/equol on cell growth and cell cycle progression. Genistein and equol induced delayed and prolonged activation of ERK1/2. Inhibition of ERK1/2 phosphorylation by U0126 led to complete suppression of genistein- and equol-induced estrogen response element reporter activity and to suppression of the estrogen-responsive gene pS2. The anti-estrogen ICI had no effect on genistein- and equol-induced ERK1/2 phosphorylation. These results suggest that activation of ERK1/2 lies upstream of ER-mediated transcription, and that ERK1/2 activation is necessary for the transactivation of ERalpha. In conclusion, genistein and equol elicit a delayed activation of ERK1/2, and this activation appears to be involved in the proliferation of breast cancer cells and estrogen-dependent transcriptional activation.
Collapse
Affiliation(s)
- Huaqing Liu
- The Key Laboratory of Reproductive Medicine of Jiangsu Province, Institute of Toxicology, Nanjing Medical University, Jiangsu, Nanjing, China
| | | | | | | | | | | | | | | |
Collapse
|
86
|
Alles MC, Gardiner-Garden M, Nott DJ, Wang Y, Foekens JA, Sutherland RL, Musgrove EA, Ormandy CJ. Meta-analysis and gene set enrichment relative to er status reveal elevated activity of MYC and E2F in the "basal" breast cancer subgroup. PLoS One 2009; 4:e4710. [PMID: 19270750 PMCID: PMC2650420 DOI: 10.1371/journal.pone.0004710] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2008] [Accepted: 01/14/2009] [Indexed: 12/20/2022] Open
Abstract
Background Breast cancers lacking the estrogen receptor (ER) can be distinguished from other breast cancers on the basis of poor prognosis, high grade, distinctive histopathology and unique molecular signatures. These features further distinguish estrogen receptor negative (ER−) tumor subtypes, but targeted therapy is currently limited to tumors over-expressing the ErbB2 receptor. Methodology/Principal Findings To uncover the pathways against which future therapies could be developed we undertook a meta-analysis of gene expression from five large microarray datasets relative to ER status. A measure of association with ER status was calculated for every Affymetrix HG-U133A probe set and the pathways that distinguished ER− tumors were defined by testing for enrichment of biologically defined gene sets using Gene Set Enrichment Analysis (GSEA). As expected, the expression of the direct transcriptional targets of the ER was muted in ER− tumors, but the expression of genes indirectly regulated by estrogen was enhanced. We also observed enrichment of independent MYC- and E2F-driven transcriptional programs. We used a cell model of estrogen and MYC action to define the interaction between estrogen and MYC transcriptional activity in breast cancer. We found that the basal subgroup of ER− breast cancer showed a strong MYC transcriptional response that reproduced the indirect estrogen response seen in estrogen receptor positive (ER+) breast cancer cells. Conclusions/Significance Increased transcriptional activity of MYC is a characteristic of basal breast cancers where it mimics a large part of an estrogen response in the absence of the ER, suggesting a mechanism by which these cancers achieve estrogen-independence and providing a potential therapeutic target for this poor prognosis sub group of breast cancer.
Collapse
Affiliation(s)
- M. Chehani Alles
- Cancer Research Program, Garvan Institute of Medical Research, Sydney, Australia
| | | | - David J. Nott
- Department of Statistics and Applied Probability, National University of Singapore, Singapore, Singapore
| | - Yixin Wang
- Veridex LLC, a Johnson & Johnson Company, North Raritan, New Jersey, United States of America
| | - John A. Foekens
- Erasmus MC Rotterdam, Department of Medical Oncology, Josephine Nefkens Institute and Cancer Genomics Centre, Rotterdam, the Netherlands
| | - Robert L. Sutherland
- Cancer Research Program, Garvan Institute of Medical Research, Sydney, Australia
| | | | - Christopher J. Ormandy
- Cancer Research Program, Garvan Institute of Medical Research, Sydney, Australia
- * E-mail:
| |
Collapse
|
87
|
Amendola D, De Salvo M, Marchese R, Verga Falzacappa C, Stigliano A, Carico E, Brunetti E, Moscarini M, Bucci B. Myc down-regulation affects cyclin D1/cdk4 activity and induces apoptosis via Smac/Diablo pathway in an astrocytoma cell line. Cell Prolif 2009; 42:94-109. [PMID: 19143767 DOI: 10.1111/j.1365-2184.2008.00576.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
OBJECTIVES We investigated the antiproliferative effect of Myc down-regulation via cell proliferation inhibition, cell cycle perturbation and apoptosis in two human astrocytoma models (T98G and ADF) steadily expressing an inducible c-myc Anti-sense RNA. MATERIALS AND METHODS Cell growth experiments were performed using the trypan blue dye exclusion test and cell cycle analysis was evaluated by flow cytometry. Cell cycle molecules were detected by Western blot analysis, co-immunoprecipitation and reverse transcription-polymerase chain reaction assays. RESULTS We showed that Myc down-regulation in astrocytoma cells led to G1 accumulation and an inhibition of cell proliferation characterized by S phase delay. Co-immunoprecipitation experiments detected formation of inactive cyclin D1/cdk4 complexes as evaluated by presence of an active unphosphorylated form of retinoblastoma protein, the best characterized target substrate for cyclin D1/cdk4 complex, in ADF pINDc-myc anti-sense 7 cells. We also found that either p57Kip2 "apice" or p27Kip1 "apice" inhibitors bound to cyclin D1/cdk4 complex, thus, suggesting that they cooperated to inhibit the activity of cyclin D1/cdk4. Moreover, c-Myc down-regulation led to activation of the apoptotic mitochondrial pathway, characterized by release of cytochrome c and Smac/Diablo proteins and by reduction of c-IAP levels through activation of proteasome-mediated protein degradation system. CONCLUSIONS Our results suggest that c-Myc could be considered as a good target for the study of new approaches in anticancer astrocytoma treatment.
Collapse
Affiliation(s)
- D Amendola
- Centro Ricerca S. Pietro, Fatebenefratelli Hospital, Rome, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
88
|
Tan H, Zhong Y, Pan Z. Autocrine regulation of cell proliferation by estrogen receptor-alpha in estrogen receptor-alpha-positive breast cancer cell lines. BMC Cancer 2009; 9:31. [PMID: 19171042 PMCID: PMC2636826 DOI: 10.1186/1471-2407-9-31] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2008] [Accepted: 01/26/2009] [Indexed: 01/23/2023] Open
Abstract
BACKGROUND Estrogen receptor-alpha (ERalpha) is essential for mammary gland development and is a major oncogene in breast cancer. Since ERalpha is not colocalized with the cell proliferation marker Ki-67 in the normal mammary glands and the majority of primary breast tumors, it is generally believed that paracrine regulation is involved in ERalpha mediated cell proliferation. In the paracrine model, ERalpha-positive cells don't proliferate but will release some paracrine growth factors to stimulate the neighboring cells to proliferate. In a subpopulation of cancer cells in some primary breast tumors, however, ERalpha does colocalize with the cell proliferation marker Ki-67, suggesting an autocrine regulation by ERalpha in some primary breast tumors. METHODS Colocalization of ERalpha with Ki-67 in ERalpha-positive breast cancer cell lines (MCF-7, T47D, and ZR75-1) was evaluated by immunofluorescent staining. Cell cycle phase dependent expression of ERalpha was determined by co-immunofluorescent staining of ERalpha and the major cyclins (D, E, A, B), and by flow cytometry analysis of ERalphahigh cells. To further confirm the autocrine action of ERalpha, MCF-7 cells were growth arrested by ICI182780 treatment, followed by treatment with EGFR inhibitor, before estrogen stimulation and analyses for colocalization of Ki-67 and ERalpha and cell cycle progression. RESULTS Colocalization of ERalpha with Ki-67 was present in all three ERalpha-positive breast cancer cell lines. Unlike that in the normal mammary glands and the majority of primary breast tumors, ERalpha is highly expressed throughout the cell cycle in MCF-7 cells. Without E2 stimulation, MCF-7 cells released from ICI182780 treatment remain at G1 phase. E2 stimulation of ICI182780 treated cells, however, promotes the expression and colocalization of ERalpha and Ki-67 as well as the cell cycle progressing through the S and G2/M phases. Inhibition of EGFR signaling does not inhibit the autocrine action of ERalpha. CONCLUSION Our data indicate that ERalpha can mediate estrogen-induced cell proliferation in an autocrine mode in ERalpha-positive breast cancer cell lines. All of the three ERalpha-positive cell lines used in our study showed colocalization of ERalpha and Ki-67, indicating that these cell lines might be originated from primary tumor cells with autocrine regulation.
Collapse
Affiliation(s)
- Huining Tan
- Department of Animal Science, Vermont Cancer Center, University of Vermont, Burlington, VT 05405, USA.
| | | | | |
Collapse
|
89
|
Holmes KA, Song JS, Liu XS, Brown M, Carroll JS. Nkx3-1 and LEF-1 function as transcriptional inhibitors of estrogen receptor activity. Cancer Res 2008; 68:7380-5. [PMID: 18794125 DOI: 10.1158/0008-5472.can-08-0133] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Estrogen receptor (ER)-associated cofactors and cooperating transcription factors are one of the primary components determining transcriptional activity of estrogen target genes and may constitute potential therapeutic targets. Recent mapping of ER-binding sites on a genome-wide scale has provided insight into novel cooperating factors based on the enrichment of transcription factor motifs within the ER-binding sites. We have used the ER-binding sites in combination with sequence conservation to identify the statistical enrichment of Nkx and LEF motifs. We find that Nkx3-1 and LEF-1 bind to several ER cis-regulatory elements in vivo, but they both function as transcriptional repressors of estrogen signaling. We show that Nkx3-1 and LEF-1 can inhibit ER binding to chromatin, suggesting competition for common chromatin-binding regions. These data provide insight into the role of Nkx3-1 and LEF-1 as potential regulators of the hormone response in breast cancer.
Collapse
Affiliation(s)
- Kelly A Holmes
- Cancer Research UK, Cambridge Research Institute, Cambridge, United Kingdom
| | | | | | | | | |
Collapse
|
90
|
Tang SW, Chang WH, Su YC, Chen YC, Lai YH, Wu PT, Hsu CI, Lin WC, Lai MK, Lin JY. MYC pathway is activated in clear cell renal cell carcinoma and essential for proliferation of clear cell renal cell carcinoma cells. Cancer Lett 2008; 273:35-43. [PMID: 18809243 DOI: 10.1016/j.canlet.2008.07.038] [Citation(s) in RCA: 98] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2008] [Revised: 07/18/2008] [Accepted: 07/21/2008] [Indexed: 11/25/2022]
Abstract
Clear cell renal cell carcinoma (ccRCC) is the major and aggressive subtype of RCC. Previously, we identified 383 differentially expressed genes by analyzing full-length cDNA libraries of ccRCC and normal kidney tissues. In this study, we applied functional network analysis to the differentially expressed genes for identifying deregulated molecular pathways in ccRCC, and the results indicated that MYC showed a prominent role in the highest scoring network. The upregulation of MYC expression was validated in ccRCC tissues and cell lines. Furthermore, Knockdown of MYC expression by MYC-specific siRNA significantly inhibited the abilities of uncontrolled proliferation, anchorage-independent growth and arrested cell cycle in the G0/G1 phase in ccRCC cells. Moreover, we found that 37 differentially expressed genes were shown to be MYC-target genes, and the upregulation of the MYC-target genes BCL2, CCND1, PCNA, PGK1, and VEGFA were demonstrated. The expression of these MYC-target genes was significantly correlated with the expression of MYC in ccRCC tissues, and knockdown of MYC also suppressed the expression of these MYC-target genes in ccRCC cells. The recruitment of MYC to the promoter regions of BCL2, CCND1, PCNA, PGK1, and VEGFA was shown by Chromatin immunoprecipitation assay. These results suggest that MYC pathway is activated and plays an essential role in the proliferation of ccRCC cells.
Collapse
Affiliation(s)
- Sai-Wen Tang
- Institute of Biochemistry and Molecular Biology, College of Medicine, National Taiwan University, Taipei 100, Taiwan, ROC
| | | | | | | | | | | | | | | | | | | |
Collapse
|
91
|
Musgrove EA, Sergio CM, Loi S, Inman CK, Anderson LR, Alles MC, Pinese M, Caldon CE, Schütte J, Gardiner-Garden M, Ormandy CJ, McArthur G, Butt AJ, Sutherland RL. Identification of functional networks of estrogen- and c-Myc-responsive genes and their relationship to response to tamoxifen therapy in breast cancer. PLoS One 2008; 3:e2987. [PMID: 18714337 PMCID: PMC2496892 DOI: 10.1371/journal.pone.0002987] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2008] [Accepted: 07/29/2008] [Indexed: 11/30/2022] Open
Abstract
Background Estrogen is a pivotal regulator of cell proliferation in the normal breast and breast cancer. Endocrine therapies targeting the estrogen receptor are effective in breast cancer, but their success is limited by intrinsic and acquired resistance. Methodology/Principal Findings With the goal of gaining mechanistic insights into estrogen action and endocrine resistance, we classified estrogen-regulated genes by function, and determined the relationship between functionally-related genesets and the response to tamoxifen in breast cancer patients. Estrogen-responsive genes were identified by transcript profiling of MCF-7 breast cancer cells. Pathway analysis based on functional annotation of these estrogen-regulated genes identified gene signatures with known or predicted roles in cell cycle control, cell growth (i.e. ribosome biogenesis and protein synthesis), cell death/survival signaling and transcriptional regulation. Since inducible expression of c-Myc in antiestrogen-arrested cells can recapitulate many of the effects of estrogen on molecular endpoints related to cell cycle progression, the estrogen-regulated genes that were also targets of c-Myc were identified using cells inducibly expressing c-Myc. Selected genes classified as estrogen and c-Myc targets displayed similar levels of regulation by estrogen and c-Myc and were not estrogen-regulated in the presence of siMyc. Genes regulated by c-Myc accounted for 50% of all acutely estrogen-regulated genes but comprised 85% (110/129 genes) in the cell growth signature. siRNA-mediated inhibition of c-Myc induction impaired estrogen regulation of ribosome biogenesis and protein synthesis, consistent with the prediction that estrogen regulates cell growth principally via c-Myc. The ‘cell cycle’, ‘cell growth’ and ‘cell death’ gene signatures each identified patients with an attenuated response in a cohort of 246 tamoxifen-treated patients. In multivariate analysis the cell death signature was predictive independent of the cell cycle and cell growth signatures. Conclusions/Significance These functionally-based gene signatures can stratify patients treated with tamoxifen into groups with differing outcome, and potentially identify distinct mechanisms of tamoxifen resistance.
Collapse
Affiliation(s)
- Elizabeth A Musgrove
- Cancer Research Program, Garvan Institute of Medical Research, Sydney, Australia.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
92
|
Identification of downstream targets of estrogen and c-myc in breast cancer cells. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2008. [PMID: 18497068 DOI: 10.1007/978-0-387-69080-3_43] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register]
Abstract
Estrogen (E) plays a pivotal regulatory role in the control of cell proliferation in the normal breast and breast cancer (BC). To identify genes with likely roles in proliferation control that are regulated by E and its downstream target c-myc, we compared transcript profiles of antiestrogens-arrested cells stimulated to reinitiate cell cycle progression by E treatment or c-myc induction. Approximately 2/3 of the probe sets significantly regulated by E (adjusted p < 0.01) increased in expression. Half of the E-regulated probe sets were also regulated by c-myc. Genes involved in cell growth, cell proliferation, and cell survival were over-represented in the E-regulated geneset. Analysis of selected candidates has identified a nucleolar protein whose expression is correlated with c-myc expression in BC cell lines. These data indicate that a significant component of E-induced mitogenesis is mediated by c-myc and that selected c-myc target genes may be surrogate markers of c-myc expression in BC.
Collapse
|
93
|
Elsheikh S, Green AR, Aleskandarany MA, Grainge M, Paish CE, Lambros MBK, Reis-Filho JS, Ellis IO. CCND1 amplification and cyclin D1 expression in breast cancer and their relation with proteomic subgroups and patient outcome. Breast Cancer Res Treat 2008; 109:325-35. [PMID: 17653856 DOI: 10.1007/s10549-007-9659-8] [Citation(s) in RCA: 110] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2007] [Accepted: 06/12/2007] [Indexed: 01/02/2023]
Abstract
INTRODUCTION Despite strong evidence regarding the role of CCND1 amplification and protein overexpression in breast carcinoma, the associations between CCND1 amplification/cyclin D1 overexpression and clinicopathological variables and clinical outcome remain controversial. AIMS OF THE STUDY (1) to correlate cyclin D1 expression with gene amplification; (2) to analyse the correlations between CCND1 amplification and overexpression with clinicopathological features and patients' outcome in invasive breast cancer; (3) to define the prevalence and clinical significance of cyclin D1 overexpression and CCND1 amplification in ER positive breast carcinomas (4) to define the prevalence of cyclin D1 overexpression and CCND1 amplification in breast cancers with basal-like immunophenotype. MATERIALS AND METHODS CCND1 amplification and protein expression were assessed on a tissue microarray containing 880 unselected invasive breast cancer cases, by means of chromogenic in situ hybridisation using the Spotlight CCND1 amplification probe and immunohistochemistry, using the rabbit monoclonal antibody SP4. RESULTS A total of 59/613 tumours (9.6%) showed CCND1 amplification and 224/514 (43.6%) showed strong cyclin D1 expression. A strong positive correlation between CCND1 amplification and higher levels of cyclin D1 expression was found (P < 0.001). Basal-like cancers showed infrequent CCND1 amplification and cyclin D1 overexpression (P < 0.001). Both CCND1 amplification and cyclin D1 expression were associated with positive ER status. CCND1 gene amplification was an independent prognostic factor for patients with ER positive breast cancer. CONCLUSION Our results demonstrate a strong correlation between CCND1 amplification and its protein expression in breast cancer. However, protein expression is more pervasive than gene amplification and associated with ER expression.
Collapse
Affiliation(s)
- Somaia Elsheikh
- Department of Histopathology, School of Molecular Medical Sciences, Nottingham City Hospital NHS Trust, University of Nottingham and University Hospitals NHS Trust, Nottingham, UK
| | | | | | | | | | | | | | | |
Collapse
|
94
|
Abstract
Defining transcription mediated by the oestrogen (estrogen) receptor (ER) in breast cancer cell models has been an area of interest for many years. Initial studies focused on promoter regions of putative target genes and revealed significant insight into the basis of ER binding to DNA. More recently, the complexities of ER transcription are starting to become apparent. It is now clear that ER can regulate gene targets from significant distances and that cooperating transcription factors play an integral role in ER activity. It is also clear that the sequence information defining an in vivo ER-binding site is more complicated than initially thought. However, contemporary genomic tools based on chromatin immunoprecipitation (ChIP) – such as ChIP-on-chip and ChIP–sequencing – and gene expression profiling have allowed us to redefine the underlying properties of ER biology on a genomic scale. The advances in technology that have permitted a better understanding of how and where ER can bind to DNA are discussed in this review. The possible clinical implications of these findings for understanding the role of oestrogen in breast cancer are also briefly considered.
Collapse
|
95
|
Butt AJ, Sergio CM, Inman CK, Anderson LR, McNeil CM, Russell AJ, Nousch M, Preiss T, Biankin AV, Sutherland RL, Musgrove EA. The estrogen and c-Myc target gene HSPC111 is over-expressed in breast cancer and associated with poor patient outcome. Breast Cancer Res 2008; 10:R28. [PMID: 18373870 PMCID: PMC2397527 DOI: 10.1186/bcr1985] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2007] [Revised: 03/09/2008] [Accepted: 03/29/2008] [Indexed: 12/21/2022] Open
Abstract
INTRODUCTION Estrogens play a pivotal role in the initiation and progression of breast cancer. The genes that mediate these processes are not fully defined, but potentially include the known mammary oncogene MYC. Characterization of estrogen-target genes may help to elucidate further the mechanisms of estrogen-induced mitogenesis and endocrine resistance. METHODS We used a transcript profiling approach to identify targets of estrogen and c-Myc in breast cancer cells. One previously uncharacterized gene, namely HBV pre-S2 trans-regulated protein 3 (HSPC111), was acutely upregulated after estrogen treatment or inducible expression of c-Myc, and was selected for further functional analysis using over-expression and knock-down strategies. HSPC111 expression was also analyzed in relation to MYC expression and outcome in primary breast carcinomas and published gene expression datasets. RESULTS Pretreatment of cells with c-Myc small interfering RNA abrogated estrogen induction of HSPC111, identifying HSPC111 as a potential c-Myc target gene. This was confirmed by the demonstration of two functional E-box motifs upstream of the transcription start site. HSPC111 mRNA and protein were over-expressed in breast cancer cell lines and primary breast carcinomas, and this was positively correlated with MYC mRNA levels. HSPC111 is present in a large, RNA-dependent nucleolar complex, suggesting a possible role in ribosomal biosynthesis. Neither over-expression or small interfering RNA knock-down of HSPC111 affected cell proliferation rates or sensitivity to estrogen/antiestrogen treatment. However, high expression of HSPC111 mRNA was associated with adverse patient outcome in published gene expression datasets. CONCLUSION These data identify HSPC111 as an estrogen and c-Myc target gene that is over-expressed in breast cancer and is associated with an adverse patient outcome.
Collapse
Affiliation(s)
- Alison J Butt
- Cancer Research Program, Garvan Institute of Medical Research, St, Vincent's Hospital, Victoria Street, Darlinghurst, New South Wales 2010, Australia
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
96
|
Teng J, Wang ZY, Jarrard DF, Bjorling DE. Roles of estrogen receptor alpha and beta in modulating urothelial cell proliferation. Endocr Relat Cancer 2008; 15:351-64. [PMID: 18310301 PMCID: PMC3513362 DOI: 10.1677/erc.1.01255] [Citation(s) in RCA: 94] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
We reported previously that both subtypes of estrogen receptors, ERalpha and ERbeta, are expressed by human urothelial cells and mediate estrogen-induced cell proliferation in these cells. The aim of this study was to determine the extent to which each ER subtype contributes to urothelial cell proliferation and their possible involvement in the regulation of the cell cycle. We compared the expression of ERalpha and ERbeta mRNAs and protein quantitatively in primarily cultured human bladder urothelial cells obtained from six individuals with three immortalized urothelial (E6, E7, and UROtsa) and two bladder cancer cell lines (HTB-9 and T24). We found that all these cells express similar levels of ERbeta, but immortalized and cancer cells express much higher amounts of ERalpha than primary cells. Higher levels of ERalpha mRNA were also observed in the biopsies of bladder transitional cell carcinoma compared with sample from the same bladder unaffected by tumor. Using the ERalpha-selective agonist PPT, the ERbeta-selective agonist DPN, and specific small interfering RNA against ERalpha or ERbeta, we found that ERbeta predominantly mediates estrogen-induced G1/S transition and cell proliferation in the primary urothelial cells. By contrast, ERalpha predominantly mediates estrogen-induced G1/S transition and cell proliferation in bladder cancer cell lines. Furthermore, we found that 17beta-estradiol (E(2)) rapidly induces phosphorylation of extracellular signal-regulated kinases, but U0126, a mitogen-activated protein kinase kinase (MEK) inhibitor, does not affect E(2)-induced urothelial cell proliferation. E(2) up-regulated cyclin D1 and cyclin E expression in both the primary and bladder cancer cells, and the cancer cells have higher cyclin D1 and cyclin E expression during G0/G1 phases. Our data suggest that estrogen exerts its effects through different ER subtypes in urothelial cells. Increased expression of ERalpha may contribute to early induction of cyclin D1 and cyclin E during the cell cycle in bladder cancer cells.
Collapse
MESH Headings
- Blotting, Western
- Carcinoma, Transitional Cell/genetics
- Carcinoma, Transitional Cell/metabolism
- Carcinoma, Transitional Cell/secondary
- Cell Proliferation
- Cyclin D
- Cyclin E/metabolism
- Cyclins/metabolism
- DNA Primers/chemistry
- Estradiol/pharmacology
- Estrogen Receptor alpha/antagonists & inhibitors
- Estrogen Receptor alpha/genetics
- Estrogen Receptor alpha/metabolism
- Estrogen Receptor beta/antagonists & inhibitors
- Estrogen Receptor beta/genetics
- Estrogen Receptor beta/metabolism
- Estrogens/pharmacology
- Flow Cytometry
- G1 Phase/drug effects
- G1 Phase/physiology
- Humans
- Immunoenzyme Techniques
- Ligands
- MAP Kinase Kinase Kinases/antagonists & inhibitors
- MAP Kinase Kinase Kinases/metabolism
- Mitogen-Activated Protein Kinase 1/metabolism
- Mitogen-Activated Protein Kinase 3/metabolism
- Nitriles/pharmacology
- Phenols
- Pyrazoles/pharmacology
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- RNA, Small Interfering/pharmacology
- Response Elements
- Reverse Transcriptase Polymerase Chain Reaction
- S Phase/drug effects
- S Phase/physiology
- Tumor Cells, Cultured/drug effects
- Tumor Cells, Cultured/metabolism
- Tumor Cells, Cultured/pathology
- Urinary Bladder Neoplasms/genetics
- Urinary Bladder Neoplasms/metabolism
- Urinary Bladder Neoplasms/pathology
- Urothelium/metabolism
Collapse
Affiliation(s)
- Jian Teng
- Department of Surgical Sciences, School of Veterinary Medicine, University of Wisconsin, Madison, WI 53706, USA
| | | | | | | |
Collapse
|
97
|
Ishii Y, Waxman S, Germain D. Tamoxifen Stimulates the Growth of Cyclin D1–Overexpressing Breast Cancer Cells by Promoting the Activation of Signal Transducer and Activator of Transcription 3. Cancer Res 2008; 68:852-60. [DOI: 10.1158/0008-5472.can-07-2879] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
98
|
Nair BC, Vadlamudi RK. Regulation of hormonal therapy resistance by cell cycle machinery. GENE THERAPY & MOLECULAR BIOLOGY 2008; 12:395. [PMID: 20148177 PMCID: PMC2817953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Estrogen Receptor (ER) plays a central role in the development and progression of breast cancer. Hormonal therapy substantially improves disease-free survival of ER+ve breast tumors, however acquired resistance to endocrine therapies frequently occur. Emerging data implicate growth factor signaling pathways and their cross talk with ER as major cause of resistance. Both these pathways have been recently shown to use cell cycle machinery as downstream effectors in mediating therapy resistance. Several studies have demonstrated deregulation of cell cycle regulators and their cross talk with ER in therapy resistant tumors. The objective of this article is to review the underlying mechanisms by which tumor cells use cell cycle machinery to override hormonal therapy and to explore cell cycle machinery components as novel therapy targets for overcoming hormonal therapy resistance.
Collapse
Affiliation(s)
- Binoj Chandrasekharan Nair
- Department of Obstetrics and Gynecology, The University of Texas Health Science Center at San Antonio, San Antonio, Texas 78229
| | - Ratna K. Vadlamudi
- Department of Obstetrics and Gynecology, The University of Texas Health Science Center at San Antonio, San Antonio, Texas 78229
| |
Collapse
|
99
|
Cell cycle machinery: links with genesis and treatment of breast cancer. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2008; 630:189-205. [PMID: 18637492 DOI: 10.1007/978-0-387-78818-0_12] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Loss of normal growth control is a hallmark of cancer. Thus, understanding the mechanisms of tissue-specific, normal growth regulation and the changes that occur during tumorigenesis may provide insights of both diagnostic and therapeutic importance. Control of cell proliferation in the normal mammary gland is steroid hormone (estrogen and progestin)-dependent, involves complex interactions with other hormones, growth factors and cytokines and ultimately converges on activation of three proto-oncogenes (c-Myc, cyclin D1 and cyclin E1) that are rate limiting for the G1 to S phase transition during normal cell cycle progression. Mammary epithelial cell-specific overexpression of these genes induces mammary carcinoma in mice, while cyclin D1 null mice have arrested mammary gland development and are resistant to carcinoma induced by the neu/erbB2 and ras oncogenes. Furthermore, c-Myc, cyclins D1, E1 and E2 are commonly overexpressed in primary breast cancer where elevated expression is often associated with a more aggressive disease phenotype and an adverse patient outcome. This may be due in part to overexpression of these genes conferring resistance to endocrine therapies since in vitro studies provide compelling evidence that overexpression of c-Myc and to a lesser extent cyclin D1 and cyclin E1, attenuate the growth inhibitory effects of SERMS, antiestrogens and progestins in breast cancer cells. Thus, abnormal regulation of the expression of cell cycle molecules, involved in the steroidal control of cell proliferation in the mammary gland, are likely to be directly involved in the development, progression and therapeutic responsiveness of breast cancer. Furthermore, a more detailed understanding of these pathways may identify new targets for therapeutic intervention particularly in endocrine-unresponsive and endocrine-resistant disease.
Collapse
|
100
|
Varma H, Skildum AJ, Conrad SE. Functional ablation of pRb activates Cdk2 and causes antiestrogen resistance in human breast cancer cells. PLoS One 2007; 2:e1256. [PMID: 18060053 PMCID: PMC2092387 DOI: 10.1371/journal.pone.0001256] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2007] [Accepted: 11/07/2007] [Indexed: 12/01/2022] Open
Abstract
Estrogens are required for the proliferation of hormone dependent breast cancer cells, making estrogen receptor (ER) positive tumors amenable to endocrine therapies such as antiestrogens. However, resistance to these agents remains a significant cause of treatment failure. We previously demonstrated that inactivation of the retinoblastoma protein (pRb) family tumor suppressors causes antiestrogen resistance in MCF-7 cells, a widely studied model of estrogen responsive human breast cancers. In this study, we investigate the mechanism by which pRb inactivation leads to antiestrogen resistance. Cdk4 and cdk2 are two key cell cycle regulators that can phosphorylate and inactivate pRb, therefore we tested whether these kinases are required in cells lacking pRb function. pRb family members were inactivated in MCF-7 cells by expressing polyomavirus large tumor antigen (PyLT), and cdk activity was inhibited using the cdk inhibitors p16INK4A and p21Waf1/Cip1. Cdk4 activity was no longer required in cells lacking functional pRb, while cdk2 activity was required for proliferation in both the presence and absence of pRb function. Using inducible PyLT cell lines, we further demonstrated that pRb inactivation leads to increased cyclin A expression, cdk2 activation and proliferation in antiestrogen arrested cells. These results demonstrate that antiestrogens do not inhibit cdk2 activity or proliferation of MCF-7 cells in the absence of pRb family function, and suggest that antiestrogen resistant breast cancer cells resulting from pRb pathway inactivation would be susceptible to therapies that target cdk2.
Collapse
Affiliation(s)
- Hemant Varma
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan, United States of America.
| | | | | |
Collapse
|