51
|
Tapping the brake on cardiac growth-endogenous repressors of hypertrophic signaling. J Mol Cell Cardiol 2011; 51:156-67. [PMID: 21586293 DOI: 10.1016/j.yjmcc.2011.04.017] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2011] [Revised: 04/26/2011] [Accepted: 04/30/2011] [Indexed: 12/14/2022]
Abstract
Cardiac hypertrophy is considered an early hallmark during the clinical course of heart failure and an important risk factor for cardiac morbidity and mortality. Although hypertrophy of individual cardiomyocytes in response to pathological stimuli has traditionally been considered as an adaptive response required to sustain cardiac output, accumulating evidence from studies in patients and animal models suggests that in most instances hypertrophy of the heart also harbors maladaptive aspects. Major strides have been made in our understanding of the pathways that convey pro-hypertrophic signals from the outside of the cell to the nucleus. In recent years it also has become increasingly evident that the heart possesses a variety of endogenous feedback mechanisms to counterbalance this growth response. These repressive mechanisms are of particular interest since they may provide valuable therapeutic options. In this review we summarize currently known endogenous repressors of pathological cardiac growth as they have been studied by gene targeting in mice. Many of the repressors that function in signal transduction appear to regulate calcineurin (e.g. PICOT, calsarcin, RCAN) and JNK signaling (e.g. CDC42, MKP-1) and some will be described in greater detail in this review. In addition, we will focus on factors such as Kruppel-like factors (KLF4, KLF15 and KLF10) and histone deacetylases (HDACs), which constitute a relevant group of nuclear proteins that repress transcription of the hypertrophic gene program in cardiomyocytes.
Collapse
|
52
|
Gao X, Huang L, Grosjean F, Esposito V, Wu J, Fu L, Hu H, Tan J, He C, Gray S, Jain MK, Zheng F, Mei C. Low-protein diet supplemented with ketoacids reduces the severity of renal disease in 5/6 nephrectomized rats: a role for KLF15. Kidney Int 2011; 79:987-96. [PMID: 21248717 DOI: 10.1038/ki.2010.539] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Dietary protein restriction is an important treatment for chronic kidney disease. Herein, we tested the effect of low-protein or low-protein plus ketoacids (KA) diet in a remnant kidney model. Rats with a remnant kidney were randomized to receive normal protein diet (22%), low-protein (6%) diet (LPD), or low-protein (5%) plus KA (1%) diet for 6 months. Protein restriction prevented proteinuria, decreased blood urea nitrogen levels, and renal lesions; however, the LPD retarded growth and decreased serum albumin levels. Supplementation with KA corrected these abnormalities and provided superior renal protection compared with protein restriction alone. The levels of Kruppel-like factor-15 (KLF15), a transcription factor shown to reduce cardiac fibrosis, were decreased in remnant kidneys. Protein restriction, which increased KLF15 levels in the normal kidney, partially recovered the levels of KLF15 in remnant kidney. The expression of KLF15 in mesangial cells was repressed by oxidative stress, transforming growth factor-β, and tumor necrosis factor (TNF)-α. The suppressive effect of TNF-α on KLF15 expression was mediated by TNF receptor-1 and nuclear factor-κB. Overexpression of KLF15 in mesangial and HEK293 cells significantly decreased fibronectin and type IV collagen mRNA levels. Furthermore, KLF15 knockout mice developed glomerulosclerosis following uninephrectomy. Thus, KLF15 may be an antifibrotic factor in the kidney, and its decreased expression may contribute to the progression of kidney disease.
Collapse
Affiliation(s)
- Xiang Gao
- Department of Medicine, Kidney Institute of PLA, Changzheng Hospital, Second Military Medical University, Shanghai, People's Republic of China
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
53
|
Teylaert B, Meurice E, Bobowski M, Harduin-Lepers A, Gaucher C, Fontayne A, Jorieux S, Delannoy P. Molecular cloning, characterization, genomic organization and promoter analysis of the α1,6-fucosyltransferase gene (fut8) expressed in the rat hybridoma cell line YB2/0. BMC Biotechnol 2011; 11:1. [PMID: 21208406 PMCID: PMC3022693 DOI: 10.1186/1472-6750-11-1] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2010] [Accepted: 01/05/2011] [Indexed: 02/02/2023] Open
Abstract
Background The rat hybridoma cell line YB2/0 appears a good candidate for the large-scale production of low fucose recombinant mAbs due to its lower expression of fut8 gene than other commonly used rodent cell lines. However, important variations of the fucose content of recombinant mAbs are observed in production culture conditions. To improve our knowledge on the YB2/0 fucosylation capacity, we have cloned and characterized the rat fut8 gene. Results The cDNAs encoding the rat α1,6-fucosyltransferase (FucT VIII) were cloned from YB2/0 cells by polymerase chain reaction-based and 5' RNA-Ligase-Mediated RACE methods. The cDNAs contain an open reading frame of 1728 bp encoding a 575 amino acid sequence showing 94% and 88% identity to human and pig orthologs, respectively. The recombinant protein expressed in COS-7 cells exhibits a α1,6-fucosyltransferase activity toward human asialo-agalacto-apotransferrin. The rat fut8 gene is located on chromosome 6 q and spans over 140 kbp. It contains 9 coding exons and four 5'-untranslated exons. FISH analysis shows a heterogeneous copy number of fut8 in YB2/0 nuclei with 2.8 ± 1.4 mean copy number. The YB2/0 fut8 gene is expressed as two main transcripts that differ in the first untranslated exon by the usage of distinct promoters and alternative splicing. Luciferase assays allow defining the minimal promoting regions governing the initiation of the two transcripts, which are differentially expressed in YB2/0 as shown by duplex Taqman QPCR analysis. Bioinformatics analysis of the minimal promoter regions upstream exons E-2 and E-3, governing the transcription of T1 and T2 transcripts, respectively, evidenced several consensus sequences for potential transcriptional repressors. Transient transfections of Rat2 cells with transcription factor expression vectors allowed identifying KLF15 as a putative repressor of T1 transcript in Rat2 cells. Conclusion Altogether, these data contribute to a better knowledge of fut8 expression in YB2/0 that will be useful to better control the fucosylation of recombinant mAbs produced in these cells.
Collapse
Affiliation(s)
- Béatrice Teylaert
- Laboratoire Français du Fractionnement et des Biotechnologies, Lille, France
| | | | | | | | | | | | | | | |
Collapse
|
54
|
Abstract
The Krüppel-like factor (KLF) family of transcription factors regulates diverse biological processes that include proliferation, differentiation, growth, development, survival, and responses to external stress. Seventeen mammalian KLFs have been identified, and numerous studies have been published that describe their basic biology and contribution to human diseases. KLF proteins have received much attention because of their involvement in the development and homeostasis of numerous organ systems. KLFs are critical regulators of physiological systems that include the cardiovascular, digestive, respiratory, hematological, and immune systems and are involved in disorders such as obesity, cardiovascular disease, cancer, and inflammatory conditions. Furthermore, KLFs play an important role in reprogramming somatic cells into induced pluripotent stem (iPS) cells and maintaining the pluripotent state of embryonic stem cells. As research on KLF proteins progresses, additional KLF functions and associations with disease are likely to be discovered. Here, we review the current knowledge of KLF proteins and describe common attributes of their biochemical and physiological functions and their pathophysiological roles.
Collapse
Affiliation(s)
- Beth B McConnell
- Departments of Medicine and of Hematology and Medical Oncology, Emory University School of Medicine,Atlanta, Georgia 30322, USA
| | | |
Collapse
|
55
|
Leenders JJ, Wijnen WJ, Hiller M, van der Made I, Lentink V, van Leeuwen REW, Herias V, Pokharel S, Heymans S, de Windt LJ, Høydal MA, Pinto YM, Creemers EE. Regulation of cardiac gene expression by KLF15, a repressor of myocardin activity. J Biol Chem 2010; 285:27449-27456. [PMID: 20566642 DOI: 10.1074/jbc.m110.107292] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Pathological forms of left ventricular hypertrophy (LVH) often progress to heart failure. Specific transcription factors have been identified that activate the gene program to induce pathological forms of LVH. It is likely that apart from activating transcriptional inducers of LVH, constitutive transcriptional repressors need to be removed during the development of cardiac hypertrophy. Here, we report that the constitutive presence of Krüppel-like factor 15 (KLF15) is lost in pathological hypertrophy and that this loss precedes progression toward heart failure. We show that transforming growth factor-beta-mediated activation of p38 MAPK is necessary and sufficient to decrease KLF15 expression. We further show that KLF15 robustly inhibits myocardin, a potent transcriptional activator. Loss of KLF15 during pathological LVH relieves the inhibitory effects on myocardin and stimulates the expression of serum response factor target genes, such as atrial natriuretic factor. This uncovers a novel mechanism where activated p38 MAPK decreases KLF15, an important constitutive transcriptional repressor whose removal seems a vital step to allow the induction of pathological LVH.
Collapse
Affiliation(s)
- Joost J Leenders
- Heart Failure Research Center, Academic Medical Center, Meibergdreef 15, 1105 AZ Amsterdam, The Netherlands
| | - Wino J Wijnen
- Heart Failure Research Center, Academic Medical Center, Meibergdreef 15, 1105 AZ Amsterdam, The Netherlands
| | - Monika Hiller
- Heart Failure Research Center, Academic Medical Center, Meibergdreef 15, 1105 AZ Amsterdam, The Netherlands
| | - Ingeborg van der Made
- Heart Failure Research Center, Academic Medical Center, Meibergdreef 15, 1105 AZ Amsterdam, The Netherlands
| | - Viola Lentink
- Experimental and Molecular Cardiology, Cardiovascular Research Institute Maastricht, University of Maastricht, Universiteitssingel 50, 6229 ER Maastricht, The Netherlands
| | - Rick E W van Leeuwen
- Experimental and Molecular Cardiology, Cardiovascular Research Institute Maastricht, University of Maastricht, Universiteitssingel 50, 6229 ER Maastricht, The Netherlands
| | - Veronica Herias
- Experimental and Molecular Cardiology, Cardiovascular Research Institute Maastricht, University of Maastricht, Universiteitssingel 50, 6229 ER Maastricht, The Netherlands
| | - Saraswati Pokharel
- Department of Pathology and Laboratory Medicine, University of Louisville, Louisville, Kentucky 40292
| | - Stephane Heymans
- Experimental and Molecular Cardiology, Cardiovascular Research Institute Maastricht, University of Maastricht, Universiteitssingel 50, 6229 ER Maastricht, The Netherlands
| | - Leon J de Windt
- Experimental and Molecular Cardiology, Cardiovascular Research Institute Maastricht, University of Maastricht, Universiteitssingel 50, 6229 ER Maastricht, The Netherlands
| | - Morten A Høydal
- Department of Circulation and Medical Imaging, Norwegian University of Science and Technology, NO-7491 Trondheim, Norway
| | - Yigal M Pinto
- Heart Failure Research Center, Academic Medical Center, Meibergdreef 15, 1105 AZ Amsterdam, The Netherlands
| | - Esther E Creemers
- Heart Failure Research Center, Academic Medical Center, Meibergdreef 15, 1105 AZ Amsterdam, The Netherlands.
| |
Collapse
|
56
|
Chen G, Yang Y, Fröhlich O, Klein JD, Sands JM. Suppression subtractive hybridization analysis of low-protein diet- and vitamin D-induced gene expression from rat kidney inner medullary base. Physiol Genomics 2010; 41:203-11. [PMID: 20197420 DOI: 10.1152/physiolgenomics.00129.2009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Protein restriction and hypercalcemia result in a urinary concentrating defect in rats and humans. Previous tubular perfusion studies show that there is an increased active urea transport activity in the initial inner medullary (IM) collecting duct in low-protein diet (LPD) and vitamin D (Vit D) animal models. To investigate the possible mechanisms that cause the urinary concentrating defect and to clone the new active urea transporter, we employed a modified two-tester suppression subtractive hybridization (ttSSH) approach and examined gene expression induced by LPD and Vit D in kidney IM base. Approximately 600 clones from the subtracted library were randomly selected; 150 clones were further confirmed to be the true positive genes by slot blot hybridization with subtracted probes from LPD and Vit D and sent for DNA sequencing. We identified 10 channel/transporter genes that were upregulated in IM base in LPD and Vit D animal models; 8 were confirmed by real-time PCR. These genes include aquaporin 2 (AQP2), two-pore calcium channel protein 2, brain-specific organic cation transporter, Na(+)- and H(+)-coupled glutamine transporter, and solute carrier family 25. Nine genes are totally new, and twelve are uncharacterized hypothetical proteins. Among them, four genes were shown to be new transmembrane proteins as judged by Kyte-Doolittle hydrophobic plot analysis. ttSSH provides a useful method to identify new genes from two conditioned populations.
Collapse
|
57
|
Li J, Yang Y, Jiang B, Zhang X, Zou Y, Gong Y. Sp1 and KLF15 regulate basal transcription of the human LRP5 gene. BMC Genet 2010; 11:12. [PMID: 20141633 PMCID: PMC2831824 DOI: 10.1186/1471-2156-11-12] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2009] [Accepted: 02/08/2010] [Indexed: 11/16/2022] Open
Abstract
Background LRP5, a member of the low density lipoprotein receptor superfamily, regulates diverse developmental processes in embryogenesis and maintains physiological homeostasis in adult organisms. However, how the expression of human LRP5 gene is regulated remains unclear. Results In order to characterize the transcriptional regulation of human LRP5 gene, we cloned the 5' flanking region and evaluated its transcriptional activity in a luciferase reporter system. We demonstrated that both KLF15 and Sp1 binding sites between -72 bp and -53 bp contribute to the transcriptional activation of human LRP5 promoter. Chromatin immunoprecipitation assay demonstrated that the ubiquitous transcription factors KLF15 and Sp1 bind to this region. Using Drosophila SL2 cells, we showed that KLF15 and Sp1 trans-activated the LRP5 promoter in a manner dependent on the presence of Sp1-binding and KLF15-binding motifs. Conclusions Both KLF15 and Sp1 binding sites contribute to the basal activity of human LRP5 promoter. This study provides the first insight into the mechanisms by which transcription of human LRP5 gene is regulated.
Collapse
Affiliation(s)
- Jiangxia Li
- Key Laboratory for Experimental Teratology of the Ministry of Education and Institute of Medical Genetics, Shandong University School of Medicine, Jinan, Shandong, China
| | | | | | | | | | | |
Collapse
|
58
|
Tchapyjnikov D, Li Y, Pisitkun T, Hoffert JD, Yu MJ, Knepper MA. Proteomic profiling of nuclei from native renal inner medullary collecting duct cells using LC-MS/MS. Physiol Genomics 2009; 40:167-83. [PMID: 19996160 DOI: 10.1152/physiolgenomics.00148.2009] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Vasopressin is a peptide hormone that regulates renal water excretion in part through its actions on the collecting duct. The regulation occurs in part via control of transcription of genes coding for the water channels aquaporin-2 (Aqp2) and aquaporin-3 (Aqp3). To identify transcription factors expressed in collecting duct cells, we have carried out LC-MS/MS-based proteomic profiling of nuclei isolated from native rat inner medullary collecting ducts (IMCDs). To maximize the number of proteins identified, we matched spectra to rat amino acid sequences using three different search algorithms (SEQUEST, InsPecT, and OMSSA). All searches were coupled to target-decoy methodology to limit false-discovery identifications to 2% of the total for single-peptide identifications. In addition, we developed a computational tool (ProMatch) to identify and eliminate ambiguous identifications. With this approach, we identified >3,500 proteins, including 154 proteins classified as "transcription factor" proteins (Panther Classification System). Among these, are members of CREB, ETS, RXR, NFAT, HOX, GATA, EBOX, EGR, MYT1, KLF, and CP2 families, which were found to have evolutionarily conserved putative binding sites in the 5'-flanking region or first intron of the Aqp2 gene, as well as members of EBOX, NR2, GRE, MAZ, KLF, and SP1 families corresponding to conserved sites in the 5'-flanking region of the Aqp3 gene. In addition, several novel phosphorylation sites in nuclear proteins were identified using the neutral loss-scanning LC-MS(3) technique. The newly identified proteins have been incorporated into the IMCD Proteome Database (http://dir.nhlbi.nih.gov/papers/lkem/imcd/).
Collapse
Affiliation(s)
- Dmitry Tchapyjnikov
- Epithelial Systems Biology Laboratory, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland 20892-1603, USA
| | | | | | | | | | | |
Collapse
|
59
|
Du X, Rosenfield RL, Qin K. KLF15 Is a transcriptional regulator of the human 17beta-hydroxysteroid dehydrogenase type 5 gene. A potential link between regulation of testosterone production and fat stores in women. J Clin Endocrinol Metab 2009; 94:2594-601. [PMID: 19366843 PMCID: PMC2708951 DOI: 10.1210/jc.2009-0139] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
CONTEXT Kruppel-like factor 15 (KLF15) is a newly discovered transcription factor that plays an important role in glucose homeostasis and lipid accumulation in cells. We present evidence for KLF15 as a transcriptional regulator of the human 17beta-hydroxysteroid dehydrogenase type 5 gene (HSD17B5) and its potential role in the pathogenesis of hyperandrogenism. OBJECTIVE The aim was to investigate the molecular mechanism of HSD17B5 regulation. METHODS Diverse molecular biology techniques were used. DESIGN AND RESULTS We identified a KLF15 binding site in the HSD17B5 promoter by using luciferase promoter constructs, EMSA, and chromatin immunoprecipitation assays. Overexpression of KLF15 increased HSD17B5 promoter activity and testosterone formation at least 3-fold in cultured H295R cells. Insulin increased KLF15 mRNA expression according to real-time RT-PCR and increased HSD17B5 promoter activity according to luciferase assays. KLF15 overexpression in combination with insulin, glucocorticoid, and cAMP stimulated adipogenesis in H295R cells. In silico and RT-PCR analyses showed that the KLF15 gene promoter undergoes alternative splicing in a tissue-specific manner. Comparison of the HSD17B5 promoter in seven different species revealed that the KLF15 binding site has no human homolog in species other than orangutans. CONCLUSIONS KLF15 is potentially a novel link between the regulation of testosterone production and fat stores by insulin in humans.
Collapse
Affiliation(s)
- Xiaofei Du
- Section of Pediatric Endocrinology, 5839 South Maryland Avenue, MC 5053, Chicago, Illinois 60637, USA
| | | | | |
Collapse
|
60
|
Nagare T, Sakaue H, Takashima M, Takahashi K, Gomi H, Matsuki Y, Watanabe E, Hiramatsu R, Ogawa W, Kasuga M. The Krüppel-like factor KLF15 inhibits transcription of the adrenomedullin gene in adipocytes. Biochem Biophys Res Commun 2008; 379:98-103. [PMID: 19094967 DOI: 10.1016/j.bbrc.2008.12.020] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2008] [Accepted: 12/04/2008] [Indexed: 11/17/2022]
Abstract
KLF15 (Krüppel-like factor 15) plays a key role in adipocyte differentiation and glucose transport in adipocytes through activation of its target genes. We have now identified six target genes regulated directly by KLF15 in 3T3-L1 mouse adipocytes with the use of a combination of microarray-based chromatin immunoprecipitation and gene expression analyses. We confirmed the direct regulation by KLF15 of one of these genes, that for adrenomedullin, with the use of a luciferase reporter assay in 3T3-L1 preadipocytes and adipocytes. Such analysis revealed that the most proximal CACCC element in the promoter of the human adrenomedullin gene (located in the region spanning nucleotides -70 and -29) is required for trans-inhibition by KLF15. Furthermore, chromatin immunoprecipitation showed that KLF15 binds to this region of the human adrenomedullin gene promoter in cultured human adipocytes. These results thus implicate KLF15 in the regulation of adrenomedullin expression in adipose tissue.
Collapse
Affiliation(s)
- Tomoki Nagare
- Department of Internal Medicine, Division of Diabetes, Kobe University Graduate School of Medicine, Kobe, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
61
|
Cullingford TE, Butler MJ, Marshall AK, Tham EL, Sugden PH, Clerk A. Differential regulation of Krüppel-like factor family transcription factor expression in neonatal rat cardiac myocytes: effects of endothelin-1, oxidative stress and cytokines. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2008; 1783:1229-36. [PMID: 18406357 PMCID: PMC2396231 DOI: 10.1016/j.bbamcr.2008.03.007] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Figures] [Subscribe] [Scholar Register] [Received: 11/13/2007] [Revised: 03/11/2008] [Accepted: 03/12/2008] [Indexed: 02/03/2023]
Abstract
Krüppel-like transcription factors (Klfs) modulate fundamental cell processes. Cardiac myocytes are terminally-differentiated, but hypertrophy in response to stimuli such as endothelin-1. H2O2 or cytokines promote myocyte apoptosis. Microarray studies of neonatal rat myocytes identified several Klfs as endothelin-1-responsive genes. We used quantitative PCR for further analysis of Klf expression in neonatal rat myocytes. In response to endothelin-1, Klf2 mRNA expression was rapidly increased (∼ 9-fold; 15–30 min) with later increases in expression of Klf4 and Klf6 (∼ 5-fold; 30–60 min). All were regulated as immediate early genes (cycloheximide did not inhibit the increases in expression). Klf5 expression was increased at 1–2 h (∼ 13-fold) as a second phase response (cycloheximide inhibited the increase). These increases were transient and attenuated by U0126. H2O2 increased expression of Klf2, Klf4 and Klf6, but interleukin-1β or tumor necrosis factor α downregulated Klf2 expression with no effect on Klf4 or Klf6. Of the Klfs which repress transcription, endothelin-1 rapidly downregulated expression of Klf3, Klf11 and Klf15. The dynamic regulation of expression of multiple Klf family members in cardiac myocytes suggests that, as a family, they are actively involved in regulating phenotypic responses (hypertrophy and apoptosis) to extracellular stimuli.
Collapse
Affiliation(s)
- Timothy E Cullingford
- National Heart and Lung Institute (NHLI) Division, Faculty of Medicine, Imperial College London, Flowers Building (4th Floor), Armstrong Road, London SW7 2AZ, UK
| | | | | | | | | | | |
Collapse
|
62
|
Adler L, Efrati E, Zelikovic I. Molecular mechanisms of epithelial cell-specific expression and regulation of the human anion exchanger (pendrin) gene. Am J Physiol Cell Physiol 2008; 294:C1261-76. [PMID: 18322141 DOI: 10.1152/ajpcell.00486.2007] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Pendrin, a Cl(-)/anion exchanger encoded by the gene PDS, is highly expressed in the kidney, thyroid, and inner ear epithelia and is essential for bicarbonate secretion, iodide accumulation, and endolymph ion balance, respectively. This study aimed to define promoter regulatory elements essential for renal, thyroid, and inner ear epithelial cell-specific expression of human PDS (hPDS) and to explore the effect of ambient pH and aldosterone on hPDS promoter activity. Endogenous pendrin mRNA and protein were detected in renal HEK293, thyroid LA2, and inner ear VOT36 epithelial cell lines, but not in the fibroblast cell line, NIH3T3. A 4.2-kb hPDS 5'-flanking DNA sequence and consecutive 5'-deletion products were cloned into luciferase reporter vectors and transiently transfected into the above cell lines. Distinct differences in expression/activity of deduced positive/negative regulatory elements within the hPDS promoter between HEK293, LA2, and VOT36 cells were demonstrated, with only basal activity in NIH3T3 cells. Acidic pH (7.0-7.1) decreased and alkaline pH (7.6-7.7) increased hPDS promoter activity in transfected HEK293 and VOT36, but not in LA2 cells. Aldosterone (10(-8) M) reduced hPDS promoter activity in HEK293 but had no effect in LA2 and VOT36 cells. These pH and aldosterone-induced effects on the hPDS promoter occurred within 96-bp and 89-bp regions, respectively, which likely contain distinct response elements to these modulators. Acidic pH and aldosterone decreased, and alkaline pH increased, endogenous pendrin mRNA level in HEK293 cells. In conclusion, pendrin-mediated HCO3(-) secretion in the renal tubule and anion transport in the endolymph may be regulated transcriptionally by systemic pH and aldosterone.
Collapse
Affiliation(s)
- Lior Adler
- Department of Physiology and Biophysics, Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | | | | |
Collapse
|
63
|
Natesampillai S, Kerkvliet J, Leung PCK, Veldhuis JD. Regulation of Kruppel-like factor 4, 9, and 13 genes and the steroidogenic genes LDLR, StAR, and CYP11A in ovarian granulosa cells. Am J Physiol Endocrinol Metab 2008; 294:E385-91. [PMID: 18056793 PMCID: PMC2747322 DOI: 10.1152/ajpendo.00480.2007] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Kruppel-like factors (KLFs) are important Sp1-like eukaryotic transcriptional proteins. The LDLR, StAR, and CYP11A genes exhibit GC-rich Sp1-like sites, which have the potential to bind KLFs in multiprotein complexes. We now report that KLF4, KLF9, and KLF13 transcripts are expressed in and regulate ovarian cells. KLF4 and 13, but not KLF9, mRNA expression was induced and then repressed over time (P < 0.001). Combined LH and IGF-I stimulation increased KLF4 mRNA at 2 h (P < 0.01), whereas LH decreased KLF13 mRNA at 6 h (P < 0.05), and IGF-I reduced KLF13 at 24 h (P < 0.01) compared with untreated control. KLF9 was not regulated by either hormone. Transient transfection of KLF4, KLF9, and KLF13 suppressed LDLR/luc, StAR/luc, and CYP11A/luc by 80-90% (P < 0.001). Histone-deacetylase (HDAC) inhibitors stimulated LDLR/luc five- to sixfold and StAR/luc and CYP11A/luc activity twofold (P < 0.001) and partially reversed suppression by all three KLFs (P < 0.001). Deletion of the zinc finger domain of KLF13 abrogated repression of LDLR/luc. Lentiviral overexpression of the KLF13 gene suppressed LDLR mRNA (P < 0.001) and CYP11A mRNA (P = 0.003) but increased StAR mRNA (P = 0.007). Collectively, these data suggest that KLFs may recruit inhibitory complexes containing HDAC corepressors, thereby repressing LDLR and CYP11A transcription. Conversely, KLF13 may recruit unknown coactivators or stabilize StAR mRNA, thereby explaining enhancement of in situ StAR gene expression. These data introduce new potent gonadal transregulators of genes encoding proteins that mediate sterol uptake and steroid biosynthesis.
Collapse
Affiliation(s)
- Sekar Natesampillai
- Endocrine Research Unit, Department of Internal Medicine, Mayo Clinic School of Medicine, Rochester, MN, United States, 55901
| | - Jason Kerkvliet
- Endocrine Research Unit, Department of Internal Medicine, Mayo Clinic School of Medicine, Rochester, MN, United States, 55901
| | - Peter C. K. Leung
- Department of Obstetrics and Gynecology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Johannes D. Veldhuis
- Endocrine Research Unit, Department of Internal Medicine, Mayo Clinic School of Medicine, Rochester, MN, United States, 55901
- Corresponding author: Tel: (507) 255-0906, Fax: (507) 255-0901,
| |
Collapse
|
64
|
Krämer BK, Bergler T, Stoelcker B, Waldegger S. Mechanisms of Disease: the kidney-specific chloride channels ClCKA and ClCKB, the Barttin subunit, and their clinical relevance. ACTA ACUST UNITED AC 2008; 4:38-46. [DOI: 10.1038/ncpneph0689] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2007] [Accepted: 08/17/2007] [Indexed: 01/13/2023]
|
65
|
Haldar SM, Ibrahim OA, Jain MK. Kruppel-like Factors (KLFs) in muscle biology. J Mol Cell Cardiol 2007; 43:1-10. [PMID: 17531262 PMCID: PMC2743293 DOI: 10.1016/j.yjmcc.2007.04.005] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2007] [Accepted: 04/03/2007] [Indexed: 11/23/2022]
Abstract
The Kruppel-like Factor (KLF) family of zinc-finger transcription factors are critical regulators of cell differentiation, phenotypic modulation and physiologic function. An emerging body of evidence implicates an important role for these factors in cardiovascular biology, however, the role of KLFs in muscle biology is only beginning to be understood. This article reviews the published data describing the role of KLFs in the heart, smooth muscle, and skeletal muscle and highlights the importance of these factors in cardiovascular development, physiology and disease pathobiology.
Collapse
Affiliation(s)
| | | | - Mukesh K. Jain
- Address correspondence to: Mukesh K. Jain M.D., Case Cardiovascular Research Institute, Case Medical School and Cardiovascular Division, University Hospitals of Cleveland, 2103 Cornell Road, Room 4-522, Cleveland, OH 44106. ; Tel: (216) 368-3609, Fax: (216) 368-0556
| |
Collapse
|
66
|
Fisch S, Gray S, Heymans S, Haldar SM, Wang B, Pfister O, Cui L, Kumar A, Lin Z, Sen-Banerjee S, Das H, Petersen CA, Mende U, Burleigh BA, Zhu Y, Pinto YM, Liao R, Jain MK. Kruppel-like factor 15 is a regulator of cardiomyocyte hypertrophy. Proc Natl Acad Sci U S A 2007; 104:7074-9. [PMID: 17438289 PMCID: PMC1855421 DOI: 10.1073/pnas.0701981104] [Citation(s) in RCA: 171] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Cardiac hypertrophy is a common response to injury and hemodynamic stress and an important harbinger of heart failure and death. Herein, we identify the Kruppel-like factor 15 (KLF15) as an inhibitor of cardiac hypertrophy. Myocardial expression of KLF15 is reduced in rodent models of hypertrophy and in biopsy samples from patients with pressure-overload induced by chronic valvular aortic stenosis. Overexpression of KLF15 in neonatal rat ventricular cardiomyocytes inhibits cell size, protein synthesis and hypertrophic gene expression. KLF15-null mice are viable but, in response to pressure overload, develop an eccentric form of cardiac hypertrophy characterized by increased heart weight, exaggerated expression of hypertrophic genes, left ventricular cavity dilatation with increased myocyte size, and reduced left ventricular systolic function. Mechanistically, a combination of promoter analyses and gel-shift studies suggest that KLF15 can inhibit GATA4 and myocyte enhancer factor 2 function. These studies identify KLF15 as part of a heretofore unrecognized pathway regulating the cardiac response to hemodynamic stress.
Collapse
Affiliation(s)
- Sudeshna Fisch
- *Cardiovascular Division, Brigham and Women's Hospital, Harvard Medical School, 75 Francis Street, Boston, MA 02115
| | - Susan Gray
- *Cardiovascular Division, Brigham and Women's Hospital, Harvard Medical School, 75 Francis Street, Boston, MA 02115
| | - Stephane Heymans
- Experimental and Molecular Cardiology/CARIM, University of Maastricht, 6200 MD, Maastricht, The Netherlands; and
| | - Saptarsi M. Haldar
- Case Cardiovascular Research Institute, Case Western Reserve University School of Medicine, 2103 Cornell Road, Room 4-503, Cleveland, OH 44106
| | - Baiqiu Wang
- Case Cardiovascular Research Institute, Case Western Reserve University School of Medicine, 2103 Cornell Road, Room 4-503, Cleveland, OH 44106
| | | | - Lei Cui
- Cardiac Muscle Research Laboratory
| | - Ajay Kumar
- *Cardiovascular Division, Brigham and Women's Hospital, Harvard Medical School, 75 Francis Street, Boston, MA 02115
| | - Zhiyong Lin
- Case Cardiovascular Research Institute, Case Western Reserve University School of Medicine, 2103 Cornell Road, Room 4-503, Cleveland, OH 44106
| | - Sucharita Sen-Banerjee
- *Cardiovascular Division, Brigham and Women's Hospital, Harvard Medical School, 75 Francis Street, Boston, MA 02115
| | - Hiranmoy Das
- Case Cardiovascular Research Institute, Case Western Reserve University School of Medicine, 2103 Cornell Road, Room 4-503, Cleveland, OH 44106
| | - Christine A. Petersen
- Department of Immunology and Infectious Diseases, Harvard School of Public Health, Boston, MA 02115
| | - Ulrike Mende
- *Cardiovascular Division, Brigham and Women's Hospital, Harvard Medical School, 75 Francis Street, Boston, MA 02115
| | - Barbara A. Burleigh
- Department of Immunology and Infectious Diseases, Harvard School of Public Health, Boston, MA 02115
| | - Yan Zhu
- Division of Cardiovascular Research, Caritas St. Elizabeth's Medical Center, Tufts University School of Medicine, Boston, MA 02135
| | - Yigal M. Pinto
- Experimental and Molecular Cardiology/CARIM, University of Maastricht, 6200 MD, Maastricht, The Netherlands; and
| | | | - Mukesh K. Jain
- Case Cardiovascular Research Institute, Case Western Reserve University School of Medicine, 2103 Cornell Road, Room 4-503, Cleveland, OH 44106
- **To whom correspondence should be addressed. E-mail:
| |
Collapse
|
67
|
Suda S, Rai T, Sohara E, Sasaki S, Uchida S. Postnatal expression of KLF12 in the inner medullary collecting ducts of kidney and its trans-activation of UT-A1 urea transporter promoter. Biochem Biophys Res Commun 2006; 344:246-52. [PMID: 16615998 DOI: 10.1016/j.bbrc.2006.03.138] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2006] [Accepted: 03/20/2006] [Indexed: 11/29/2022]
Abstract
Maturation of the inner medulla of the kidney occurs after birth and is vital for mammals to acquire maximal urinary concentrating ability. During this process, expression of several kidney transporters and channels involved in urine concentrating mechanisms is known to be regulated. We previously isolated KLF15 as a transcription factor that regulates the expression of the ClC-K1 chloride channel. We have now found that another KLF transcription factor, KLF12, is expressed in the kidney from around 15 days after birth. To gain insight into its involvement in the maturation process of the inner medulla, we first determined the expression site of KLF12 within the kidney by in situ hybridization. By comparing the AQP2 immunolocalization in sequential sections, KLF12 was found to be expressed in the collecting ducts. Because expression of the urea transporter UT-A1 and amiloride-sensitive epithelial sodium channels ENaC is known to be tightly regulated in the collecting ducts after birth, we tested whether KLF12 has a regulatory role in the promoter activities of these genes. KLF12 is able to increase UT-A1 but not ENaC promoter activity through the binding to CACCC motif. These results suggest that KLF12 is involved in the maturation processes of collecting ducts after birth, and that UT-A1 is a target gene of KLF12.
Collapse
Affiliation(s)
- Shin Suda
- Department of Nephrology, Graduate School of Medicine, Tokyo Medical and Dental University, Japan
| | | | | | | | | |
Collapse
|
68
|
Malakooti J, Sandoval R, Memark VC, Dudeja PK, Ramaswamy K. Zinc finger transcription factor Egr-1 is involved in stimulation of NHE2 gene expression by phorbol 12-myristate 13-acetate. Am J Physiol Gastrointest Liver Physiol 2005; 289:G653-63. [PMID: 15976391 DOI: 10.1152/ajpgi.00010.2005] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The apical membrane Na(+)/H(+) exchanger isoforms NHE2 and NHE3 are involved in transepithelial Na(+) absorption in the intestine. However, they exhibit differences in their pattern of tissue expression and regulation of their activity by various molecular signals. To study the mechanisms involved in the transcriptional regulation of these genes, we characterized cis-acting elements within the human NHE2 promoter that regulate NHE2 promoter expression in C2BBe1 cells. A small DNA region (-85/+249) was involved in the regulation of basal transcriptional activity of the NHE2 promoter as determined by transient transfection assays. RT-PCR analysis showed that NHE2 mRNA was upregulated in response to phorbol 12-myristate 13-acetate (PMA). Results from actinomycin D-treated cells indicated that the regulation of the NHE2 gene by PMA occurs in part at the transcriptional level. Furthermore, PMA treatment led to a 100% increase in promoter activity through elements located on the -415/+249 DNA fragment. A PMA-induced nuclear factor that bound to the NHE2 promoter was identified as the transcription factor Egr-1. We identified two PMA response elements in the -415/+1 promoter region that bind to Sp1 and Sp3 in untreated nuclear extracts and to Egr-1 in PMA-treated nuclear extracts. In cotransfection experiments, Egr-1 was able to transactivate the NHE2 promoter. Our data indicate that Egr-1 may play a key role in regulated expression of the human NHE2 gene.
Collapse
Affiliation(s)
- Jaleh Malakooti
- Dept. of Medicine, Section of Digestive and Liver Diseases, University of Illinois, Chicago, IL 60612, USA.
| | | | | | | | | |
Collapse
|
69
|
van der Zwaag B, Burbach JPH, Scharfe C, Oefner PJ, Brunner HG, Padberg GW, van Bokhoven H. Identifying new candidate genes for hereditary facial paresis on chromosome 3q21–q22 by RNA in situ hybridization in mouse. Genomics 2005; 86:55-67. [PMID: 15953540 DOI: 10.1016/j.ygeno.2005.03.007] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2005] [Revised: 03/21/2005] [Accepted: 03/22/2005] [Indexed: 11/12/2022]
Abstract
Hereditary congenital facial paresis (HCFP) belongs to the family of congenital cranial dysinnervation disorders and is characterized by an isolated dysfunction of the facial nerve (nVII). While genetic defects have been identified for several members of this disease family, genes underlying congenital facial paresis and Möbius syndrome remain to be discovered. Here we focus on HCFP linked to chromosome 3q21-q22 and identify new candidate genes using expression analysis by means of RNA in situ hybridization during mouse embryogenesis. We selected 28 positional candidates and identified 17 genes with undetectable expression levels during mouse development, ubiquitous expression, or expression in tissues not affected in HCFP. Additionally, 7 genes were excluded by direct sequence or reverse transcription-PCR analysis. The remaining 4 genes (Klf15, Flj40083, Kiaa0779, and Podxl2) were found to be expressed at spatial and temporal positions during mouse development that correlate with HCFP regions in humans, defining these genes as primary candidates in HCFP.
Collapse
Affiliation(s)
- Bert van der Zwaag
- Department of Neurology, University Medical Centre Nijmegen, 6500 HB Nijmegen, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
70
|
Otteson DC, Lai H, Liu Y, Zack DJ. Zinc-finger domains of the transcriptional repressor KLF15 bind multiple sites in rhodopsin and IRBP promoters including the CRS-1 and G-rich repressor elements. BMC Mol Biol 2005; 6:15. [PMID: 15963234 PMCID: PMC1182371 DOI: 10.1186/1471-2199-6-15] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2005] [Accepted: 06/17/2005] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND In the retina, many of the genes that encode components of the visual transduction cascade and retinoid recycling are exclusively expressed in photoreceptor cells and show highly stereotyped temporal and spatial expression patterns. Multiple transcriptional activators of photoreceptor-specific genes have been identified, but little is known about negative regulation of gene expression in the retina. We recently identified KLF15, a member of the Sp/Krüppel-like Factor family of zinc-finger containing transcription factors, as an in vitro repressor of the promoters of the photoreceptor-specific genes rhodopsin and IRBP/Rbp3. To gain further insight into the mechanism of KLF15-mediated regulation of gene expression, we have characterized the binding characteristics and specificity of KLF15's DNA binding domains and defined the KLF15 binding sites in the rhodopsin and IRBP promoters. RESULTS In EMSA and DNAseI footprinting assays, a KLF15-GST fusion protein containing the C-terminal zinc-finger domains (123 amino acids) showed zinc-dependent and sequence-specific binding to a 9 bp consensus sequence containing a core CG/TCCCC. Both the bovine rhodopsin and IRBP promoters contained multiple KLF15 binding sites that included the previously identified CRS-1 and G-rich repressor elements. KLF15 binding sites were highly conserved between the bovine, human, chimp and dog rhodopsin promoters, but less conserved in rodents. KLF15 reduced luciferase expression by bRho130-luc (containing 4 KLF15 sites) and repressed promoter activation by CRX (cone rod homeobox) and/or NRL (neural retina leucine zipper), although the magnitude of the reduction was smaller than previously reported for a longer bRho225-luc (containing 6 KFL15 sites). CONCLUSION KLF15 binds to multiple 9 bp consensus sites in the Rhodospin and IRBP promoters including the CRS-1 and G-rich repressor elements. Based on the known expression pattern of KLF15 in non-photoreceptor cells, we hypothesize an in vivo role for KLF15 in repressing photoreceptor-specific gene expression in the inner retina.
Collapse
Affiliation(s)
- Deborah C Otteson
- Guerrieri Center for Genetic Engineering and Molecular Ophthalmology at the Wilmer Eye Institute, Johns Hopkins University School of Medicine; 600 North Wolfe Street; Baltimore, MD 21287 USA
- Department of Ophthalmology, Johns Hopkins University School of Medicine; 600 North Wolfe Street; Baltimore, MD 21287 USA
- College of Optometry, University of Houston; Houston, TX 77204 USA
| | - Hong Lai
- Department of Ophthalmology, Johns Hopkins University School of Medicine; 600 North Wolfe Street; Baltimore, MD 21287 USA
- Department of Genetics, Stanford University School of Medicine; Stanford, CA 94305 USA
| | - Yuhui Liu
- Department of Ophthalmology, Johns Hopkins University School of Medicine; 600 North Wolfe Street; Baltimore, MD 21287 USA
| | - Donald J Zack
- Guerrieri Center for Genetic Engineering and Molecular Ophthalmology at the Wilmer Eye Institute, Johns Hopkins University School of Medicine; 600 North Wolfe Street; Baltimore, MD 21287 USA
- Department of Ophthalmology, Johns Hopkins University School of Medicine; 600 North Wolfe Street; Baltimore, MD 21287 USA
- Departments of Neuroscience, and Molecular Biology and Genetics; Johns Hopkins University School of Medicine; 600 North Wolfe Street; Baltimore, MD 21287 USA
| |
Collapse
|
71
|
Teshigawara K, Ogawa W, Mori T, Matsuki Y, Watanabe E, Hiramatsu R, Inoue H, Miyake K, Sakaue H, Kasuga M. Role of Krüppel-like factor 15 in PEPCK gene expression in the liver. Biochem Biophys Res Commun 2005; 327:920-6. [PMID: 15649433 DOI: 10.1016/j.bbrc.2004.12.096] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2004] [Indexed: 10/26/2022]
Abstract
Regulation of hepatic gene expression is important for energy homeostasis. We now show that hepatic expression of the gene for the transcription factor Kruppel-like factor 15 (KLF15) is increased by food deprivation and reduced by feeding in mice. Expression of the KLF15 gene in mouse liver was also down-regulated by a euglycemic-hyperinsulinemic clamp and was increased by inhibition of phosphatidylinositol 3-kinase. In cultured rat hepatocytes, KLF15 gene expression was induced by dexamethasone and a non-hydrolyzing analog of cAMP, and this effect was inhibited by insulin in a manner dependent on phosphatidylinositol 3-kinase signaling. Forced expression of KLF15 in cultured hepatocytes increased both the expression and the promoter activity of the gene for phosphoenolpyruvate carboxykinase (PEPCK). These results suggest that insulin and its counteracting hormones regulate the hepatic expression of KLF15, and that this transcription factor contributes to the regulation of PEPCK gene expression in the liver.
Collapse
Affiliation(s)
- Kiyoshi Teshigawara
- Department of Clinical Molecular Medicine, Division of Diabetes and Digestive and Kidney Diseases, Kobe University Graduate School of Medicine, Kobe 650-0017, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
72
|
Mori T, Sakaue H, Iguchi H, Gomi H, Okada Y, Takashima Y, Nakamura K, Nakamura T, Yamauchi T, Kubota N, Kadowaki T, Matsuki Y, Ogawa W, Hiramatsu R, Kasuga M. Role of Krüppel-like factor 15 (KLF15) in transcriptional regulation of adipogenesis. J Biol Chem 2005; 280:12867-75. [PMID: 15664998 DOI: 10.1074/jbc.m410515200] [Citation(s) in RCA: 261] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Krüppel-like zinc finger transcription factors (KLFs) play diverse roles during cell differentiation and development in mammals. We have now shown by microarray analysis that expression of the KLF15 gene is markedly up-regulated during the differentiation of 3T3-L1 preadipocytes into adipocytes. Inhibition of the function of KLF15, either by expression of a dominant negative mutant or by RNA interference, both reduced the expression of peroxisome proliferator-activated receptor gamma (PPARgamma) and blocked adipogenesis in 3T3-L1 preadipocytes exposed to inducers of adipocyte differentiation. However, the dominant negative mutant of KLF15 did not affect the expression of CCAAT/enhancer-binding protein beta (C/EBPbeta) elicited by inducers of differentiation in 3T3-L1 preadipocytes. In addition, ectopic expression of KLF15 in NIH 3T3 or C2C12 cells triggered both lipid accumulation and the expression of PPARgamma in the presence of inducers of adipocyte differentiation. Ectopic expression of C/EBPbeta, C/EBPdelta, or C/EBPalpha in NIH 3T3 cells also elicited the expression of KLF15 in the presence of inducers of adipocyte differentiation. Moreover, KLF15 and C/EBPalpha acted synergistically to increase the activity of the PPARgamma2 gene promoter in 3T3-L1 adipocytes. Our observations thus demonstrate that KLF15 plays an essential role in adipogenesis in 3T3-L1 cells through its regulation of PPAR gamma expression.
Collapse
Affiliation(s)
- Toshiyuki Mori
- Department of Clinical Molecular Medicine, Division of Diabetes and Digestive and Kidney Diseases, Kobe University Graduate School of Medicine, Kobe 650-0017, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
73
|
Abstract
The discovery of insulin receptor substrate (IRS) proteins and their role to link cell surface receptors to the intracellular signaling cascades is a key step to understanding insulin and insulin-like growth factor (IGF) action. Moreover, IRS-proteins coordinate signals from the insulin and IGF receptor tyrosine kinases with those generated by proinflammatory cytokines and nutrients. The IRS2-branch of the insulin/IGF signaling cascade has an important role in both peripheral insulin response and pancreatic beta-cell growth and function. Dysregulation of IRS2 signaling in mice causes the failure of compensatory hyperinsulinemia during peripheral insulin resistance. IRS protein signaling is down regulated by serine phosphorylation or proteasome-mediated degradation, which might be an important mechanism of insulin resistance during acute injury and infection, or chronic stress associated with aging or obesity. Understanding the regulation and signaling by IRS1 and IRS2 in cell growth, metabolism and survival will reveal new strategies to prevent or cure diabetes and other metabolic diseases.
Collapse
Affiliation(s)
- Yong Hee Lee
- Institute for Tumor Research, Chungbuk National University, Cheongju, Chungbuk 361-763, Korea
| | | |
Collapse
|
74
|
Ray A, Kumar D, Ray P, Ray BK. Transcriptional activity of serum amyloid A-activating factor-1 is regulated by distinct functional modules. J Biol Chem 2004; 279:54637-46. [PMID: 15498774 DOI: 10.1074/jbc.m411830200] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Serum amyloid A-activating transcription factor-1 (SAF-1) plays a major role in regulating transcription of several inflammation-responsive genes, including SAA and matrix metalloproteinase-1, that are implicated in the pathogenesis of reactive secondary amyloidosis, atherosclerosis, and arthritis. SAF-1 is a 477-amino acid protein with six zinc fingers. Its activation during inflammatory condition by a phosphorylation event that leads to an altered structure suggested possible structural modification of this protein as a leading cause of higher activity. However, no information is available regarding structural features that might regulate its activity. Here, we have characterized its functional domains, delineating activation and repression modules, DNA binding, and nuclear localization activities. Using GAL4AD chimeras and a DNA-binding assay with proteins prepared from various deletion constructs, the core DNA-binding domain of SAF-1 is mapped between amino acids 282 and 361, which contain second, third, and fourth zinc fingers. Results from several deletion and point mutants using green fluorescent protein reporter show that SAF-1 contains two independent nuclear localization signals; one is composed of a stretch of basic amino acids, and the other is a bipartite signal located within the core DNA-binding domain. SAF-1 contains several negative and positively functioning transactivation modules clustered at the two ends of this protein. Removal of any one of the terminal negative modules renders the SAF-1 protein functionally very active. These findings suggest that the terminal repression modules act in conjunction to regulate the functional activity of this protein.
Collapse
Affiliation(s)
- Alpana Ray
- Department of Veterinary Pathobiology, University of Missouri, Columbia, Missouri 65211, USA
| | | | | | | |
Collapse
|
75
|
Efrati E, Arsentiev-Rozenfeld J, Zelikovic I. The human paracellin-1 gene (hPCLN-1): renal epithelial cell-specific expression and regulation. Am J Physiol Renal Physiol 2004; 288:F272-83. [PMID: 15353399 DOI: 10.1152/ajprenal.00021.2004] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Tubular reabsorption of Mg2+ is mediated by the tight junction protein paracellin-1, which is encoded by the gene PCLN-1 (CLDN16) and exclusively expressed in the kidney. Tubular Mg2+ reclamation is modulated by many hormones and factors. The aim of this study was to define regulatory elements essential for renal tubular cell-specific expression of human PCLN-1 (hPCLN-1) and to explore the effect of Mg2+ transport modulators on the paracellin-1 gene promoter. Endogenous paracellin-1 mRNA and protein were detected in renal cell lines opossom kidney (OK), HEK293, and MDCT, but not in the fibroblast cell line NIH3T3. A 7.5-kb hPCLN-1 5'-flanking DNA sequence along with seven 5'-deletion products were cloned into luciferase reporter vectors and transiently transfected into the renal and nonrenal cells. The highest levels of luciferase activity resulted from transfection of a 5'-flanking 2.5-kb fragment (pJ2M). This activity was maximal in OK cells, was orientation dependent, and was absent in NIH3T3 cells. Mg2+ deprivation significantly increased pJ2M-driven activity in transfected OK cells, whereas Mg2+ load decreased it compared with conditions of normal Mg2+. Deletion analysis along with electrophoretic mobility-shift assay demonstrated that OK cells contain nuclear proteins, which bind a 70-bp region between -1633 and -1703 of major functional significance. Deleting this 70-bp segment, which contains a single peroxisome proliferator-response element (PPRE), or mutating the PPRE, caused a 60% reduction in luciferase activity. Stimulating the 70-bp sequence with 1,25(OH)2 vitamin D decreased luciferase activity by 52%. This effect of 1,25(OH)2 vitamin D was abolished in the absence of PPRE or in the presence of mutated PPRE. We conclude that the PPRE within this 70-bp DNA region may play a key role in the cell-specific and regulatory activity of the hPCLN-1 promoter. Ambient Mg2+ concentration and 1,25(OH)2 vitamin D may modulate paracellular, paracellin-1-mediated, Mg2+ transport at the transcriptional level. 1,25(OH)2 vitamin D exerts its activity on the hPCLN-1 promoter likely via the PPRE site.
Collapse
Affiliation(s)
- Edna Efrati
- Laboratory of Developmental Nephrology, Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | | | | |
Collapse
|
76
|
Otteson DC, Liu Y, Lai H, Wang C, Gray S, Jain MK, Zack DJ. Kruppel-like factor 15, a zinc-finger transcriptional regulator, represses the rhodopsin and interphotoreceptor retinoid-binding protein promoters. Invest Ophthalmol Vis Sci 2004; 45:2522-30. [PMID: 15277472 PMCID: PMC2660604 DOI: 10.1167/iovs.04-0072] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
PURPOSE To identify novel transcriptional regulators of rhodopsin expression as a model for understanding photoreceptor-specific gene regulation. METHODS A bovine retinal cDNA library was screened in a yeast one-hybrid assay, with a 29-bp bovine rhodopsin promoter fragment as bait. Expression studies used RT-PCR and beta-galactosidase (LacZ) histochemistry of retinas from transgenic mice heterozygous for a targeted LacZ replacement of KLF15. Promoter transactivation assays measured luciferase expression in HEK293 cells transiently transfected with bovine rhodopsin or IRBP promoter-reporter constructs and expression constructs containing cDNAs for full or truncated KLF15, Crx (cone rod homeobox), and/or Nrl (neural retina leucine zipper). Data were analyzed with general linear models. RESULTS The zinc-finger transcription factor KLF15 was identified as a rhodopsin-promoter-binding protein in a yeast one-hybrid screen. Expression was detected by RT-PCR in multiple tissues, including the retina, where KLF15-LacZ was observed in the inner nuclear layer, ganglion cell layer, and pigmented epithelial cells, but not in photoreceptors. KLF15 repressed transactivation of rhodopsin and IRBP promoters alone and in combination with the transcriptional activators Crx and/or Nrl. Repressor activity required both a 198-amino-acid element in the N-terminal domain and the C-terminal zinc finger DNA-binding domains. CONCLUSIONS The zinc finger containing transcription factor KLF15 is a transcriptional repressor of the rhodopsin and IRBP promoters in vitro and, in the retina, is a possible participant in repression of photoreceptor-specific gene expression in nonphotoreceptor cells.
Collapse
Affiliation(s)
- Deborah C. Otteson
- Guerrieri Center for Genetic Engineering and Molecular Ophthalmology at the Wilmer Eye Institute, The Johns Hopkins University School of Medicine, Baltimore, Maryland
- Department of Ophthalmology, The Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Yuhui Liu
- Department of Ophthalmology, The Johns Hopkins University School of Medicine, Baltimore, Maryland
- Current affiliation: Department of Genetics, Stanford University School of Medicine, Stanford, California
| | - Hong Lai
- Department of Ophthalmology, The Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - ChenWei Wang
- Guerrieri Center for Genetic Engineering and Molecular Ophthalmology at the Wilmer Eye Institute, The Johns Hopkins University School of Medicine, Baltimore, Maryland
- Department of Ophthalmology, The Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Susan Gray
- Cardiovascular Division, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts
| | - Mukesh K. Jain
- Cardiovascular Division, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts
| | - Donald J. Zack
- Guerrieri Center for Genetic Engineering and Molecular Ophthalmology at the Wilmer Eye Institute, The Johns Hopkins University School of Medicine, Baltimore, Maryland
- Department of Ophthalmology, The Johns Hopkins University School of Medicine, Baltimore, Maryland
- Current affiliation: Department of Genetics, Stanford University School of Medicine, Stanford, California
- Department of Neuroscience, The Johns Hopkins University School of Medicine, Baltimore, Maryland
- Department of Molecular Biology and Genetics, The Johns Hopkins University School of Medicine, Baltimore, Maryland
- Institute of Genetic Medicine, The Johns Hopkins University School of Medicine, Baltimore, Maryland
| |
Collapse
|
77
|
Yamamoto J, Ikeda Y, Iguchi H, Fujino T, Tanaka T, Asaba H, Iwasaki S, Ioka RX, Kaneko IW, Magoori K, Takahashi S, Mori T, Sakaue H, Kodama T, Yanagisawa M, Yamamoto TT, Ito S, Sakai J. A Kruppel-like factor KLF15 contributes fasting-induced transcriptional activation of mitochondrial acetyl-CoA synthetase gene AceCS2. J Biol Chem 2004; 279:16954-62. [PMID: 14960588 DOI: 10.1074/jbc.m312079200] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Acetyl-CoA synthetase 2 (AceCS2) produces acetyl-CoA for oxidation through the citric acid cycle in the mitochondrial matrix. AceCS2 is highly expressed in the skeletal muscle and is robustly induced by fasting. Quantification of AceCS2 transcripts both in C2C12 and human myotubes indicated that fasting-induced AceCS2 gene expression appears to be independent on insulin action. Characterization of 5'-flanking region of the mouse AceCS2 gene demonstrates that Krüppel-like factor 15 (KLF15) plays a key role in the trans-activation of the AceCS2 gene. Deletion and mutation analyses of AceCS2 promoter region revealed that the most proximal KLF site is a curtail site for the trans-activation of the AceCS2 gene by KLF15. Using Sp-null Drosophila SL2 cells, we showed that the combination of KLF15 and Sp1 resulted in a synergistic activation of the AceCS2 promoter. Mutation analyses of three GC-boxes in the AceCS2 promoter indicated that the GC-box, located 8 bases downstream of the most proximal KLF15 site, is the most important GC-box in the synergistic trans-activation of the AceCS2 gene by KLF15 and Sp1. GST pull-down assays showed that KLF15 interacts with Sp1 in vitro. Quantification of various KLF transcripts revealed that 48 h fasting robustly induced the KLF15 transcripts in the skeletal muscle. Together with the trans-activation of the AceCS2 promoter, it is suggested that fasting-induced AceCS2 expression is largely contributed by KLF15. Furthermore, KLF15 overexpression induced the levels of AceCS2 transcripts both in myoblasts and in myotubes, indicating that AceCS2 gene expression in vivo is indeed induced by KLF15.
Collapse
Affiliation(s)
- Joji Yamamoto
- Division of Nephrology, Endocrinology, and Vascular Medicine, Department of Medicine, the Tohoku University Graduate School of Medicine, Sendai 980-8574, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
78
|
Ray A, Ray P, Guthrie N, Shakya A, Kumar D, Ray BK. Protein kinase A signaling pathway regulates transcriptional activity of SAF-1 by unmasking its DNA-binding domains. J Biol Chem 2003; 278:22586-95. [PMID: 12697757 DOI: 10.1074/jbc.m300705200] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Serum amyloid A (SAA) activating factor-1 (SAF-1) is an inducible transcription factor that plays a key role in the regulation of several inflammation-responsive genes including SAA and matrix metalloproteinase-1. Increased synthesis of SAA and matrix metalloproteinase-1 is associated with pathogenesis of several diseases including amyloidosis, arthritis, and atherosclerosis. Previously, we showed in vivo interaction of SAF-1 and protein kinase A (PKA) and presented evidence for induction of SAF-1-regulated genes by a PKA signaling pathway. Here we demonstrate a mechanism by which PKA increases functional activities of SAF-1. Site-directed mutagenesis and phosphorylation analyses revealed two sites in the SAF-1 protein, serine 187 and threonine 386, as the target of PKA. Interestingly, mutation of both PKA phosphorylation sites created a highly active SAF-1 protein with high DNA-binding ability. Furthermore, we found that terminal deletion of SAF-1 protein from either end creates SAF-1 isoforms that are highly transcriptionally active. Partial proteolysis experiments indicated that unphosphorylated and phosphorylated SAF-1 proteins are structurally distinct. Together these results suggest that under native condition, N and C termini of SAF-1 are engaged in an inhibitory intramolecular interaction. PKA-mediated phosphorylation increases transcriptional activity of SAF-1 by unmasking the DNA-binding domain.
Collapse
Affiliation(s)
- Alpana Ray
- Department of Veterinary Pathobiology, University of Missouri, Columbia, Missouri 65211, USA.
| | | | | | | | | | | |
Collapse
|
79
|
Auzanneau C, Thoreau V, Kitzis A, Becq F. A Novel voltage-dependent chloride current activated by extracellular acidic pH in cultured rat Sertoli cells. J Biol Chem 2003; 278:19230-6. [PMID: 12637509 DOI: 10.1074/jbc.m301096200] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Sertoli cells from mammalian testis are key cells involved in development and maintenance of stem cell spermatogonia as well as secretion of a chloride- and potassium-rich fluid into the lumen of seminiferous tubules. Using whole-cell patch clamp experiments, a novel chloride current was identified. It is activated only in the presence of an extracellular acidic pH, with an estimated half-maximal activation at pH 5.5. The current is strongly outwardly rectifying, activated with a fast time-dependent onset of activation but a slow time-dependent kinetic at depolarization pulses. The pH-activated chloride current was not detected at physiological or basic pH and is not sensitive to intracellular or extracellular Ca2+ variation. Diphenylamine-2-carboxylic acid and 4,4'-diisothiocyanatostilbene-2,2'-disulfonic acid blocked the induced currents, and its anionic selectivity sequence was Cl- > Br- > I-> gluconate. We have performed a reverse transcription-PCR analysis to search for voltage-dependent chloride rClC channels in cultured rat Sertoli cells. Among the nine members of the family only rClC-2, rClC-3, rClC-6, and rClC-7 have been identified. The inwardly rectifying rClC-2 chloride current was activated by hyperpolarization but not by pH variation. A different depolarization-activated outwardly rectifying chloride current was activated only by hypotonic challenge and may correspond either to rClC-3 or rClC-6. Immunolocalization experiments demonstrate that rClC-7 resides in the intracellular compartment of Sertoli cells. This study provides the first functional identification of a native acid-activated chloride current. Based on our molecular analysis of rClC proteins, this new chloride current does not correspond to rClC-2, rClC-3, rClC-6, or rClC-7 channels. The potential physiological role of this native current in an epithelial cell from the reproductive system is discussed.
Collapse
Affiliation(s)
- Céline Auzanneau
- Laboratoire des Biomembranes et Signalisation Cellulaire CNRS UMR 6558, Université de Poitiers, 40 Avenue du Recteur Pineau, Poitiers, France
| | | | | | | |
Collapse
|
80
|
Ray BK, Murphy R, Ray P, Ray A. SAF-2, a splice variant of SAF-1, acts as a negative regulator of transcription. J Biol Chem 2002; 277:46822-30. [PMID: 12270922 DOI: 10.1074/jbc.m206299200] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Serum amyloid A-activating factor-1 (SAF-1), a Cys(2)His(2)-type zinc finger transcription factor, regulates inflammation-induced expression of serum amyloid A protein that is linked to the pathogenesis of reactive amyloidosis, rheumatoid arthritis, and atherosclerosis. Here we report the identification of a novel splice variant, SAF-2, of the SAF family bearing strong sequence similarity to SAF-1. The N-terminal 426 amino acids of both SAF-1 and SAF-2 are identical containing two polyalanine tracts, one proline-rich domain, and six zinc fingers. However, the C terminus of SAF-2 containing two additional zinc fingers is different from SAF-1, which indicates the capability of different biochemical function. We show that SAF-2 interacts more avidly with the SAF-binding element, but its transactivation potential is much lower than SAF-1. Furthermore, co-expression of SAF-2 markedly suppresses SAF-1-regulated promoter function. Finally, we show that the level of SAF-2 protein is reduced during many inflammatory conditions, whereas the SAF-1 protein level remains unchanged. Together, these data suggest that the relative abundance of SAF-2 plays a critical role in the fine tuned regulation of inflammation-responsive genes that are controlled by SAF-1.
Collapse
Affiliation(s)
- Bimal K Ray
- Department of Veterinary Pathobiology, University of Missouri, Columbia, Missouri 65211.
| | | | | | | |
Collapse
|
81
|
Gray S, Feinberg MW, Hull S, Kuo CT, Watanabe M, Sen-Banerjee S, DePina A, Haspel R, Jain MK. The Krüppel-like factor KLF15 regulates the insulin-sensitive glucose transporter GLUT4. J Biol Chem 2002; 277:34322-8. [PMID: 12097321 DOI: 10.1074/jbc.m201304200] [Citation(s) in RCA: 192] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Resistance to the stimulatory effects of insulin on glucose utilization is a key feature of type 2 diabetes, obesity, and the metabolic syndrome. Recent studies suggest that insulin resistance is primarily caused by a defect in glucose transport. GLUT4 is the main insulin-responsive glucose transporter and is expressed predominantly in muscle and adipose tissues. Whereas GLUT4 has been shown to play a critical role in maintaining systemic glucose homeostasis, the mechanisms regulating its expression are incompletely understood. We have cloned the murine homologue of KLF15, a member of the Krüppel-like family of transcription factors. KLF15 is highly expressed in adipocytes and myocytes in vivo and is induced when 3T3-L1 preadipocytes are differentiated into adipocytes. Overexpression of KLF15 in adipose and muscle cell lines potently induces GLUT4 expression. This effect is specific to KLF15 as overexpression of two other Krüppel-like factors, KLF2/LKLF and KLF4/GKLF, did not induce GLUT4 expression. Both basal (3.3-fold, p < 0.001) and insulin-stimulated (2.4-fold, p < 0.00001) glucose uptake are increased in KLF15-overexpressing adipocytes. In co-transfection assays, KLF15 and MEF2A, a known activator of GLUT4, synergistically activates the GLUT4 promoter. Promoter deletion and mutational analyses provide evidence that this activity requires an intact KLF15-binding site proximal to the MEF2A site. Finally, co-immunoprecipitation assays show that KLF15 specifically interacts with MEF2A. These studies indicate that KLF15 is an important regulator of GLUT4 in both adipose and muscle tissues.
Collapse
Affiliation(s)
- Susan Gray
- Cardiovascular Division, Brigham and Women's Hospital, Thorn Building, 20 Shattuck Street, Boston, MA 02115, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
82
|
Higaki Y, Schullery D, Kawata Y, Shnyreva M, Abrass C, Bomsztyk K. Synergistic activation of the rat laminin gamma1 chain promoter by the gut-enriched Kruppel-like factor (GKLF/KLF4) and Sp1. Nucleic Acids Res 2002; 30:2270-9. [PMID: 12034813 PMCID: PMC117209 DOI: 10.1093/nar/30.11.2270] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Laminin is a multifunctional heterotrimeric protein present in extracellular matrix where it regulates processes that compose tissue architecture including cell differentiation. Laminin gamma1 is the most widely expressed laminin chain and its absence causes early lethality in mouse embryos. Laminin gamma1 chain gene (LAMC1) promoter contains several GC/GT-rich motifs including the bcn-1 element. Using the bcn-1 element as a bait in the yeast one-hybrid screen, we cloned the gut-enriched Kruppel-like factor (GKLF or KLF4) from a rat mesangial cell library. We show that GKLF binds bcn-1, but this binding is not required for the GKLF-mediated activation of the LAMC1 promoter. The activity of GKLF is dependent on a synergism with another Kruppel-like factor, Sp1. The LAMC1 promoter appears to have multiple GKLF- and Sp1-responsive elements which may account for the synergistic activation. We provide evidence that the synergistic action of GKLF and Sp1 is dependent on the promoter context and the integrity of GKLF activation and DNA-binding domain. GKLF is thought to participate in the switch from cell proliferation to differentiation. Thus, the Sp1-GKLF synergistic activation of the LAMC1 promoter may be one of the avenues for expression of laminin gamma1 chain when laminin is needed to regulate cell differentiation.
Collapse
Affiliation(s)
- Yuji Higaki
- Department of Medicine, Box 356521, University of Washington, Seattle, WA 98195, USA
| | | | | | | | | | | |
Collapse
|
83
|
Yoshida T, Yoshino J, Hayashi M, Saruta T. Identification of a renal proximal tubular cell-specific enhancer in the mouse 25-hydroxyvitamin d 1alpha-hydroxylase gene. J Am Soc Nephrol 2002; 13:1455-63. [PMID: 12039974 DOI: 10.1097/01.asn.0000013885.23734.ca] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
The active form of vitamin D is synthesized by 25-hydroxyvitamin D 1alpha-hydroxylase (1alpha-hydroxylase), which is expressed predominantly in renal proximal tubular cells. To clarify the mechanism of cell-specific gene expression of this enzyme, the 5'-flanking region of the mouse 1alpha-hydroxylase gene was investigated. Investigation began with mRNA expression of 1alpha-hydroxylase in cultured cells, including LLC-PK1, NIH/3T3, HepG2, MDCK, and OK cells. Expression of 1alpha-hydroxylase mRNA was restricted in LLC-PK1 cells. Several lengths of the 5'-flanking region of 1alpha-hydroxylase gene were linked to a pGL3-basic luciferase vector and introduced into these cells. Only LLC-PK1 cells had a substantial luciferase activity. Deletion analyses revealed that luciferase activity was detected in constructs extending from the transcription initiation site to -1652 to -105 bp, whereas further deletion to -80 bp resulted in a marked decrease in activity. The region from -105 to -80 bp contained two ternary complex factor-1 (TCF-1) sites, and mutations in the proximal TCF-1 site decreased the activity. Electrophoretic mobility shift assay demonstrated binding of LLC-PK1 nuclear proteins to this region. Tests of enhancer function in LLC-PK1 cells indicated that the 26-bp fragment behaved as a classical enhancer, i.e., independently of position and orientation. Moreover, a decoy oligonucleotide corresponding to this region substantially inhibited the promoter activity of 1alpha-hydroxylase gene. This study suggests that the -105 to -80 bp element of mouse 1alpha-hydroxylase gene contains an enhancer to be necessary for renal proximal tubular cell-specific expression.
Collapse
Affiliation(s)
- Tadashi Yoshida
- Department of Internal Medicine, School of Medicine, Keio University, Tokyo, Japan
| | | | | | | |
Collapse
|
84
|
Jentsch TJ, Stein V, Weinreich F, Zdebik AA. Molecular structure and physiological function of chloride channels. Physiol Rev 2002; 82:503-68. [PMID: 11917096 DOI: 10.1152/physrev.00029.2001] [Citation(s) in RCA: 949] [Impact Index Per Article: 41.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Cl- channels reside both in the plasma membrane and in intracellular organelles. Their functions range from ion homeostasis to cell volume regulation, transepithelial transport, and regulation of electrical excitability. Their physiological roles are impressively illustrated by various inherited diseases and knock-out mouse models. Thus the loss of distinct Cl- channels leads to an impairment of transepithelial transport in cystic fibrosis and Bartter's syndrome, to increased muscle excitability in myotonia congenita, to reduced endosomal acidification and impaired endocytosis in Dent's disease, and to impaired extracellular acidification by osteoclasts and osteopetrosis. The disruption of several Cl- channels in mice results in blindness. Several classes of Cl- channels have not yet been identified at the molecular level. Three molecularly distinct Cl- channel families (CLC, CFTR, and ligand-gated GABA and glycine receptors) are well established. Mutagenesis and functional studies have yielded considerable insights into their structure and function. Recently, the detailed structure of bacterial CLC proteins was determined by X-ray analysis of three-dimensional crystals. Nonetheless, they are less well understood than cation channels and show remarkably different biophysical and structural properties. Other gene families (CLIC or CLCA) were also reported to encode Cl- channels but are less well characterized. This review focuses on molecularly identified Cl- channels and their physiological roles.
Collapse
Affiliation(s)
- Thomas J Jentsch
- Zentrum für Molekulare Neurobiologie Hamburg, Universität Hamburg, Hamburg, Germany.
| | | | | | | |
Collapse
|
85
|
Zhang F, Nakanishi G, Kurebayashi S, Yoshino K, Perantoni A, Kim YS, Jetten AM. Characterization of Glis2, a novel gene encoding a Gli-related, Krüppel-like transcription factor with transactivation and repressor functions. Roles in kidney development and neurogenesis. J Biol Chem 2002; 277:10139-49. [PMID: 11741991 DOI: 10.1074/jbc.m108062200] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
In this study, we describe the characterization of a gene encoding a novel Krüppel-like protein, named Glis2. Glis2 encodes a relatively proline-rich, basic 55.8-kDa protein. Its five tandem Cys(2)-His(2) zinc finger motifs exhibit the highest homology to those of members of the Gli and Zic subfamilies of Krüppel-like proteins. Confocal microscopic analysis demonstrated that Glis2 localizes to the nucleus. Analysis of the genomic structure of the Glis2 gene showed that it is composed of 6 exons separated by 5 introns spanning a genomic region of more than 7.5 kb. Fluorescence in situ hybridization mapped the mouse Glis2 gene to chromosome 16A3-B1. Northern blot analysis showed that the Glis2 gene encodes a 3.8-kb transcript that is most abundant in adult mouse kidney. By in situ hybridization, expression was localized to somites and neural tube, and during metanephric development predominantly to the ureteric bud, precursor of the collecting duct, and inductor of nephronic tubule formation. One-hybrid analysis using Glis2 deletion mutants identified a novel activation function (AF) at the N terminus. The activation of transcription through this AF domain was totally suppressed by two repressor functions just downstream from the AF. One of the repressor functions is contained within the first zinc finger motif. The level of transcriptional activation and repression varied with the cell line tested, which might be due to differences in cell type-specific expression of co-activators and co-repressors. Our results suggest that Glis2 behaves as a bifunctional transcriptional regulator. Both the activation and repressor functions may play an important role in the regulation of gene expression during embryonic development.
Collapse
Affiliation(s)
- Feng Zhang
- Cell Biology Section Division of Intramural Research, NIEHS, National Institutes of Health, Research Triangle Park, North Carolina 27709, USA
| | | | | | | | | | | | | |
Collapse
|
86
|
Vitzthum H, Castrop H, Meier-Meitinger M, Riegger GAJ, Kurtz A, Krämer BK, Wolf K. Nephron specific regulation of chloride channel CLC-K2 mRNA in the rat. Kidney Int 2002; 61:547-54. [PMID: 11849395 DOI: 10.1046/j.1523-1755.2002.00165.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
BACKGROUND This study investigated the influence of salt intake on the nephron specific gene expression of the kidney chloride channel CLC-K2. To this end, male Sprague-Dawley rats were fed a low (0.02% wt/wt), normal (0.6% wt/wt), or high salt (8% wt/wt) diet for ten days, or they received the loop diuretic furosemide (12 mg/kg/day) for six days. METHODS Expression and regulation of messenger RNA for CLC-K2 was demonstrated by RNase protection assay and in situ hybridization in kidney cortex, outer medulla and inner medulla. Tubular localization and regulation were determined precisely by reverse transcription-polymerase chain reaction (RT-PCR) and real time PCR of microdissected nephron segments. RESULTS In situ hybridization analysis and RNase protection assay of the total kidney revealed a down-regulation of CLC-K2 mRNA in the high salt diet rats and an up-regulation of CLC-K2 mRNA in furosemide treated rats, which were restricted to the outer medulla. Microdissection of collagenase treated kidney revealed CLC-K2 mRNA expression in the outer medullary thick ascending limb (mTAL), cortical thick ascending limb (cTAL), distal convoluted tubule (DCT), connecting tubule and cortical collecting duct (CNT/CCD), and outer medullary collecting duct (OMCD), whereas no signals were detected in proximal convoluted and straight tubules (PCT and PST), descending thin limb from the outer medulla (dTL), descending and ascending thin limb from the inner medulla (TL), inner medullary collecting duct (IMCD) and glomeruli (glom). Using RT-PCR and real time PCR, the changing levels of CLC-K2 mRNA after furosemide treatment or high salt diet were restricted to the mTAL, whereas CLC-K2 mRNA levels in cTAL and OMCD were not changed in furosemide or high salt rats compared to time paired controls. CONCLUSIONS Given that CLC-K2 expressed in the thick ascending limb of Henle's loop is responsible for net chloride reabsorption in this part of the nephron, our findings suggest that in states of surplus salt and in states of severe salt deprivation, selective regulation of CLC-K2 mRNA plays a role in the adaptation of the kidney to different salt loads.
Collapse
Affiliation(s)
- Helga Vitzthum
- Institut für Physiologie, Universität Regensburg, and Klinik und Poliklinik für Innere Medizin II, Klinikum der Universität Regensburg, Regensburg, Germany
| | | | | | | | | | | | | |
Collapse
|
87
|
Ray A, Yu GY, Ray BK. Cytokine-responsive induction of SAF-1 activity is mediated by a mitogen-activated protein kinase signaling pathway. Mol Cell Biol 2002; 22:1027-35. [PMID: 11809795 PMCID: PMC134650 DOI: 10.1128/mcb.22.4.1027-1035.2002] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
SAF-1, a zinc finger transcription factor, is activated by a number of inflammatory agents, including interleukin-1 (IL-1) and IL-6. It is involved in the cytokine-mediated transcriptional induction of serum amyloid A, an acute-phase plasma protein that is associated with the pathogenesis of reactive amyloidosis, rheumatoid arthritis, and atherosclerosis. Here, we show that the mitogen-activated protein (MAP) kinase signaling pathway regulates cytokine-mediated induction of the DNA-binding activity and transactivation potential of SAF-1. Phosphorylation of endogenous SAF-1 in response to IL-1 and IL-6 was markedly inhibited by the addition of MAP kinase inhibitors. Consistent with this finding, we show that a consensus MAP kinase phosphorylation site, PPTP, within SAF-1 could be phosphorylated by MAP kinase in vitro. To analyze the contribution of MAP kinase in the activation of SAF-1, we prepared two independent mutant proteins in which the threonine residue of the PPTP motif was altered to either valine or alanine. These mutant proteins lost the ability to be phosphorylated by MAP kinase both in vivo and in vitro and exhibited a significantly reduced ability to promote expression of the SAF-1-regulated promoter. While the DNA-binding activity of wild-type SAF-1 protein was markedly increased upon phosphorylation with MAP kinase, no such increase could be detected with the mutant SAF-1 proteins. Further analysis with the GAL-4 reporter system showed that mutation of the MAP kinase phosphorylation site considerably lowers the transactivation potential of SAF-1. Together, these results show that activation of SAF-1 in response to IL-1 and -6 is mediated via MAP kinase-regulated phosphorylation.
Collapse
Affiliation(s)
- Alpana Ray
- Department of Veterinary Pathobiology, University of Missouri, Columbia, Missouri 65211, USA.
| | | | | |
Collapse
|
88
|
Ray A, Kumar D, Ray BK. Promoter-binding activity of inflammation-responsive transcription factor SAF is regulated by cyclic AMP signaling pathway. DNA Cell Biol 2002; 21:31-40. [PMID: 11879578 DOI: 10.1089/10445490252810294] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The serum amyloid A activating factor (SAF) was identified as a family of inducible transcription factors that is activated by many mediators of inflammation. Its activation involves a phosphorylation event, whose mechanism is not fully understood. Here, we show that cAMP treatment of several cell types, including mouse liver-derived BNL CL.2, human monocyte-derived THP-1, and a primary culture of vascular smooth muscle cells from porcine aorta, activated cellular SAF's ability to bind DNA. The protein kinase A (PKA) activity in cytoplasmic extracts of cAMP-treated cells was responsible for the potentiation of the DNA-binding activity of the cellular SAF proteins. Furthermore, treatment of nuclear extracts of untreated cells with purified PKA increased the DNA-binding activity of cellular SAF proteins, and specific inhibitors of PKA abrogated the enhanced DNA-binding ability of SAF in the cAMP-treated cells. Consistent with these findings, overexpression of the catalytic subunit of PKA markedly increased expression of the SAF-regulated promoter. These results imply a functional role for the previously detected protein-protein interaction between SAF-1 transcription factor and the catalytic subunit of PKA and further demonstrate the consequences of cAMP-mediated signaling for the expression of SAF-regulated genes.
Collapse
Affiliation(s)
- Alpana Ray
- Department of Veterinary Pathobiology, University of Missouri, Columbia, Missouri 65211, USA
| | | | | |
Collapse
|
89
|
Affiliation(s)
- J J Bieker
- Department of Biochemistry and Molecular Biology, Mount Sinai School of Medicine, New York, New York 10029, USA.
| |
Collapse
|
90
|
Ray BK, Chen J, Ray A. Catalytic subunit of protein kinase A is an interacting partner of the inflammation-responsive transcription factor serum amyloid A-activating factor-1. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2001; 167:2343-8. [PMID: 11490023 DOI: 10.4049/jimmunol.167.4.2343] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Serum amyloid A-activating factor-1 (SAF-1) is a zinc finger transcription factor that is activated by many mediators of inflammation including IL-1, IL-6, and bacterial LPS. However, the mechanism of activation is not fully understood. To identify possible activation partners for SAF-1, we used a yeast two-hybrid system that detected interaction between the catalytic subunit of cyclic AMP-dependent protein kinase (PKA-Calpha) and SAF-1. Immunofluorescence and combined immunoprecipitation-Western blot analyses revealed colocalization and interaction between SAF-1 and PKA-Calpha. In vivo evidence of SAF-1 and PKA-Calpha interaction was further revealed by coimmunoprecipitation of these two proteins in cAMP-activated liver cells. We further show that SAF-1 is phosphorylated in vitro by PKA-Calpha and that addition of cAMP markedly induces in vivo phosphorylation of SAF-1 and transcription of SAF-regulated reporter genes. These results showed that SAF1-PKA-Calpha interaction is involved in functional activation of SAF-1.
Collapse
Affiliation(s)
- B K Ray
- Department of Veterinary Pathobiology, University of Missouri, Columbia, MO 65211, USA
| | | | | |
Collapse
|
91
|
Uchida S, Sasaki S, Marumo F. Isolation of a novel zinc finger repressor that regulates the kidney-specific CLC-K1 promoter. Kidney Int 2001; 60:416-21. [PMID: 11473619 DOI: 10.1046/j.1523-1755.2001.060002416.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
CLC-K1 and CLC-K2, two kidney-specific CLC chloride channels, are transcriptionally regulated on a tissue-specific basis. We have shown that a GA element near their transcriptional start sites is important for basal and cell-specific activities of the CLC-K1 and CLC-K2 gene promoters. To identify the GA-binding proteins, a kidney cDNA library was screened by a yeast one-hybrid system. A novel member of the Cys2-His2 zinc finger gene designated as KKLF (kidney-enriched Krüppel-like factor) and the myc-associated zinc finger protein (MAZ) were cloned. KKLF was found to be abundantly expressed in the liver, kidney, heart, and skeletal muscle. In the kidney, KKLF protein was localized in interstitial cells, mesangial cells, and nephron segments where CLC-K1 and CLC-K2 were not expressed. Gel mobility shift assay revealed that recombinant KKLF and MAZ proteins exhibited sequence-specific binding to the CLC-K1 GA element and that the consensus sequence for the KKLF binding site was GGGGNGGNG. In transient transfection, MAZ had a strong activating effect on the CLC-K1-luciferase reporter gene transcription. On the other hand, KKLF coexpression with MAZ appeared to block the activating effect of MAZ. These results suggest that a novel set of zinc finger proteins may help regulate the strict tissue and nephron segment-specific expression of CLC-K1 and CLC-K2 channel genes through their GA cis element.
Collapse
Affiliation(s)
- S Uchida
- Homeostasis Medicine and Nephrology, Graduate School, Tokyo Medical and Dental University, Tokyo, Japan.
| | | | | |
Collapse
|
92
|
Taniyama Y, Sato K, Sugawara A, Uruno A, Ikeda Y, Kudo M, Ito S, Takeuchi K. Renal tubule-specific transcription and chromosomal localization of rat thiazide-sensitive Na-Cl cotransporter gene. J Biol Chem 2001; 276:26260-8. [PMID: 11313351 DOI: 10.1074/jbc.m101614200] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The molecular mechanism underlying the renal expression localization of the thiazide-sensitive Na-Cl cotransporter (TSC) gene was studied. The TSC gene was localized to chromosome 19p12-14. In cultured cells, tissue-specific transcription activity of the 5'-flanking region of the rat rTSC gene (5'FL/rTSC) was demonstrated, and the major promoter region was located between position -580 and -141. To further examine the tissue-specific transcription, transgenic rats harboring the 5'FL/rTSC fused upstream of the LacZ gene were generated. Immunohistochemical analysis clearly showed that LacZ gene expression was co-localized to distal convoluted tubules (DCT) with TSC, indicating that the 5'FL/rTSC regulates the renal tubule-specific TSC expression. Because a transcription factor, HFH-3 (hepatocyte nuclear factor-3/folk head homologue-3), had also been localized to DCT, a possible role of the putative cis-acting element (HFH-3/rTSC, -400/-387 position) for HFH-3 binding in the tissue-specific transcription was examined. Deletion and mutation analyses suggested that transcription of the HFH-3/rTSC was actually responsive to HFH-3, and electrophoretic mobility shift assay showed a direct binding of in vitro synthesized HFH-3 to the HFH-3/rTSC. In conclusion, the rTSC gene is localized to rat chromosome 19p12--24. The transcription regulatory region of the TSC gene confers DCT-specific gene expression. DCT-specific transcription factor HFH-3 may be involved in the renal tubule-specific transcription of TSC gene.
Collapse
Affiliation(s)
- Y Taniyama
- Division of Nephrology, Endocrinology, and Vascular Medicine, Department of Medicine, Tohoku University Graduate School of Medicine, 1-1 Seiryo-machi, Aoba-ku, Sendai 980-8574, Japan
| | | | | | | | | | | | | | | |
Collapse
|
93
|
Albert T, Wells J, Funk JO, Pullner A, Raschke EE, Stelzer G, Meisterernst M, Farnham PJ, Eick D. The chromatin structure of the dual c-myc promoter P1/P2 is regulated by separate elements. J Biol Chem 2001; 276:20482-90. [PMID: 11279041 DOI: 10.1074/jbc.m100265200] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The proto-oncogene c-myc is transcribed from a dual promoter P1/P2, with transcription initiation sites 160 base pairs apart. Here we have studied the transcriptional activation of both promoters on chromatin templates. c-myc chromatin was reconstituted on stably transfected, episomal, Epstein-Barr virus-derived vectors in a B cell line. Episomal P1 and P2 promoters showed only basal activity but were strongly inducible by histone deacetylase inhibitors. The effect of promoter mutations on c-myc activity, chromatin structure, and E2F binding was studied. The ME1a1 binding site between P1 and P2 was required for the maintenance of an open chromatin configuration of the dual c-myc promoters. Mutation of this site strongly reduced the sensitivity of the core promoter region of P1/P2 to micrococcal nuclease and prevented binding of polymerase II (pol II) at the P2 promoter. In contrast, mutation of the P2 TATA box also abolished binding of pol II at the P2 promoter but did not affect the chromatin structure of the P1/P2 core promoter region. The E2F binding site adjacent to ME1a1 is required for repression of the P2 promoter but not the P1 promoter, likely by recruitment of histone deacetylase activity. Chromatin precipitation experiments with E2F-specific antibodies revealed binding of E2F-1, E2F-2, and E2F-4 to the E2F site of the c-myc promoter in vivo if the E2F site was intact. Taken together, the analyses support a model with a functional hierarchy for regulatory elements in the c-myc promoter region; binding of proteins to the ME1a1 site provides a nucleosome-free region of chromatin near the P2 start site, binding of E2F results in transcriptional repression without affecting polymerase recruitment, and the TATA box is required for polymerase recruitment.
Collapse
Affiliation(s)
- T Albert
- Institute of Clinical Molecular Biology and Tumor Genetics, Department for Protein Chemistry, Research Centre for Environment and Health (GSF), Marchioninistrasse 25, D-81377 München, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
94
|
Lei L, Ma L, Nef S, Thai T, Parada LF. mKlf7, a potential transcriptional regulator of TrkA nerve growth factor receptor expression in sensory and sympathetic neurons. Development 2001; 128:1147-58. [PMID: 11245580 DOI: 10.1242/dev.128.7.1147] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Development of the nervous system relies on stringent regulation of genes that are crucial to this process. TrkA, the receptor for nerve growth factor (NGF), is tightly regulated during embryonic development and is essential for the survival and differentiation of neural crest-derived sensory and sympathetic neurons. We have previously identified a mouse TrkA enhancer and have characterized several cis regulatory elements that are important for appropriate TrkA expression in vivo. We now report the cloning of a novel gene encoding a Kruppel-like factor from a mouse dorsal root ganglion expression library. This Kruppel-like factor, named mKlf7, binds specifically to an Ikaros core binding element that is crucial for in vivo TrkA enhancer function. Using in situ hybridization, we demonstrate that mKlf7 is coexpressed with TrkA in sensory and sympathetic neurons during embryogenesis and in adulthood. These data are consistent with the idea that mKlf7 may directly regulate TrkA gene expression in the peripheral nervous system.
Collapse
Affiliation(s)
- L Lei
- Center for Developmental Biology, University of Texas, Southwestern Medical Center, Dallas, TX 75390-9133, USA
| | | | | | | | | |
Collapse
|
95
|
Abstract
Insulin receptor substrate (IRS) molecules are key mediators in insulin signalling and play a central role in maintaining basic cellular functions, such as growth, survival and metabolism. They act as docking proteins for the insulin receptor and a complex network of intracellular signalling molecules containing Src homology 2 (SH2) domains. Four members (IRS-1, IRS-2, IRS-3 and IRS-4) of this family have been identified that differ in tissue distribution, subcellular localisation, developmental expression, binding to the insulin receptor and interaction with SH2 domain-containing proteins. Results from targeted disruption of the IRS genes in mice have provided important clues as to the functional differences among these related molecules and suggest that they play very different roles in vivo. The available data are consistent with the notion that both IRS-1 and IRS-2 are important for insulin action and glucose homeostasis in vivo, whereas IRS-and IRS-4 appear to play a redundant role in the IRS signalling system. Considering their key role in both insulin action and insulin secretion, IRS-1 and IRS-2 molecules have been considered plausible candidate genes involved in the pathogenesis of Type 2 diabetes. Several polymorphisms in the IRS genes have been identified, but only the Gly --> Arg72 substitution of IRS-1, acting with environmental factors, seems to have a pathogenic role in the development of Type 2 diabetes. In contrast, polymorphisms of the other IRS genes do not appear to contribute to Type 2 diabetes.
Collapse
Affiliation(s)
- G Sesti
- Department of Internal Medicine, University of Rome-Tor Vergata, Italy.
| |
Collapse
|
96
|
Dang DT, Pevsner J, Yang VW. The biology of the mammalian Krüppel-like family of transcription factors. Int J Biochem Cell Biol 2000; 32:1103-21. [PMID: 11137451 PMCID: PMC2754176 DOI: 10.1016/s1357-2725(00)00059-5] [Citation(s) in RCA: 358] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Recent advances in molecular cloning have led to the identification of a large number of mammalian zinc finger-containing transcription factors that exhibit homology to the Drosophila melanogaster protein, Krüppel. Although the amino acid sequences in the zinc finger domains of these Krüppel-like factors (KLFs) are closely related to one another, the regions outside the zinc fingers of the proteins are usually unique. KLFs display seemingly different and broad biological properties with each functioning as an activator of transcription, a repressor or both. This review article provides a current phylogenetic classification of the identified KLFs to date. More importantly, the currently known biological activities of the KLFs in regulating transcription, cell proliferation, differentiation and development are summarized and compared. Further characterization of this interesting protein family should provide additional insights into the their respective regulatory role in various important biological processes.
Collapse
Affiliation(s)
- Duyen T. Dang
- Department of Medicine, The Johns Hopkins University School of Medicine, 918 Ross Research Building, 720 Rutland Avenue, Baltimore, MD 21205, USA
| | - Jonathan Pevsner
- Department of Neurology, Kennedy Krieger Research Institute, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Vincent W. Yang
- Department of Medicine, The Johns Hopkins University School of Medicine, 918 Ross Research Building, 720 Rutland Avenue, Baltimore, MD 21205, USA
- Department of Biological Chemistry, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Corresponding author. Tel.: +1-410-955-9691; fax: +1-410-955-9677. E-mail address: (V.W. Yang)
| |
Collapse
|