51
|
Jimenez JM, Boyall D, Brenchley G, Collier PN, Davis CJ, Fraysse D, Keily SB, Henderson J, Miller A, Pierard F, Settimo L, Twin HC, Bolton CM, Curnock AP, Chiu P, Tanner AJ, Young S. Design and Optimization of Selective Protein Kinase C θ (PKCθ) Inhibitors for the Treatment of Autoimmune Diseases. J Med Chem 2013; 56:1799-810. [DOI: 10.1021/jm301465a] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Juan-Miguel Jimenez
- Department of Chemistry and ‡Department of Biology, Vertex Pharmaceuticals (Europe) Ltd., 88 Milton Park, Abingdon, Oxfordshire OX14 4RY, U.K
| | - Dean Boyall
- Department of Chemistry and ‡Department of Biology, Vertex Pharmaceuticals (Europe) Ltd., 88 Milton Park, Abingdon, Oxfordshire OX14 4RY, U.K
| | - Guy Brenchley
- Department of Chemistry and ‡Department of Biology, Vertex Pharmaceuticals (Europe) Ltd., 88 Milton Park, Abingdon, Oxfordshire OX14 4RY, U.K
| | - Philip N. Collier
- Department of Chemistry and ‡Department of Biology, Vertex Pharmaceuticals (Europe) Ltd., 88 Milton Park, Abingdon, Oxfordshire OX14 4RY, U.K
| | - Christopher J. Davis
- Department of Chemistry and ‡Department of Biology, Vertex Pharmaceuticals (Europe) Ltd., 88 Milton Park, Abingdon, Oxfordshire OX14 4RY, U.K
| | - Damien Fraysse
- Department of Chemistry and ‡Department of Biology, Vertex Pharmaceuticals (Europe) Ltd., 88 Milton Park, Abingdon, Oxfordshire OX14 4RY, U.K
| | - Shazia B. Keily
- Department of Chemistry and ‡Department of Biology, Vertex Pharmaceuticals (Europe) Ltd., 88 Milton Park, Abingdon, Oxfordshire OX14 4RY, U.K
| | - Jaclyn Henderson
- Department of Chemistry and ‡Department of Biology, Vertex Pharmaceuticals (Europe) Ltd., 88 Milton Park, Abingdon, Oxfordshire OX14 4RY, U.K
| | - Andrew Miller
- Department of Chemistry and ‡Department of Biology, Vertex Pharmaceuticals (Europe) Ltd., 88 Milton Park, Abingdon, Oxfordshire OX14 4RY, U.K
| | - Francoise Pierard
- Department of Chemistry and ‡Department of Biology, Vertex Pharmaceuticals (Europe) Ltd., 88 Milton Park, Abingdon, Oxfordshire OX14 4RY, U.K
| | - Luca Settimo
- Department of Chemistry and ‡Department of Biology, Vertex Pharmaceuticals (Europe) Ltd., 88 Milton Park, Abingdon, Oxfordshire OX14 4RY, U.K
| | - Heather C. Twin
- Department of Chemistry and ‡Department of Biology, Vertex Pharmaceuticals (Europe) Ltd., 88 Milton Park, Abingdon, Oxfordshire OX14 4RY, U.K
| | - Claire M. Bolton
- Department of Chemistry and ‡Department of Biology, Vertex Pharmaceuticals (Europe) Ltd., 88 Milton Park, Abingdon, Oxfordshire OX14 4RY, U.K
| | - Adam P. Curnock
- Department of Chemistry and ‡Department of Biology, Vertex Pharmaceuticals (Europe) Ltd., 88 Milton Park, Abingdon, Oxfordshire OX14 4RY, U.K
| | - Peter Chiu
- Department of Chemistry and ‡Department of Biology, Vertex Pharmaceuticals (Europe) Ltd., 88 Milton Park, Abingdon, Oxfordshire OX14 4RY, U.K
| | - Adam J. Tanner
- Department of Chemistry and ‡Department of Biology, Vertex Pharmaceuticals (Europe) Ltd., 88 Milton Park, Abingdon, Oxfordshire OX14 4RY, U.K
| | - Stephen Young
- Department of Chemistry and ‡Department of Biology, Vertex Pharmaceuticals (Europe) Ltd., 88 Milton Park, Abingdon, Oxfordshire OX14 4RY, U.K
| |
Collapse
|
52
|
Affiliation(s)
- Jean-Damien Charrier
- Chemistry Department at Vertex Pharmaceuticals (Europe) Ltd, 86-88 Jubilee Avenue, Milton Park, Abingdon, Oxfordshire OX14 4RW, UK
| | - Ronald MA Knegtel
- Chemistry Department at Vertex Pharmaceuticals (Europe) Ltd, 86-88 Jubilee Avenue, Milton Park, Abingdon, Oxfordshire OX14 4RW, UK
| |
Collapse
|
53
|
Yan Zhang E, Kong KF, Altman A. The yin and yang of protein kinase C-theta (PKCθ): a novel drug target for selective immunosuppression. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2013; 66:267-312. [PMID: 23433459 PMCID: PMC3903317 DOI: 10.1016/b978-0-12-404717-4.00006-8] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Protein kinase C-theta (PKCθ) is a protein kinase C (PKC) family member expressed predominantly in T lymphocytes, and extensive studies addressing its function have been conducted. PKCθ is the only T cell-expressed PKC that localizes selectively to the center of the immunological synapse (IS) following conventional T cell antigen stimulation, and this unique localization is essential for PKCθ-mediated downstream signaling. While playing a minor role in T cell development, early in vitro studies relying, among others, on the use of PKCθ-deficient (Prkcq(-/-)) T cells revealed that PKCθ is required for the activation and proliferation of mature T cells, reflecting its importance in activating the transcription factors nuclear factor kappa B, activator protein-1, and nuclear factor of activated T cells, as well as for the survival of activated T cells. Upon subsequent analysis of in vivo immune responses in Prkcq(-/-) mice, it became clear that PKCθ has a selective role in the immune system: it is required for experimental Th2- and Th17-mediated allergic and autoimmune diseases, respectively, and for alloimmune responses, but is dispensable for protective responses against pathogens and for graft-versus-leukemia responses. Surprisingly, PKCθ was recently found to be excluded from the IS of regulatory T cells and to negatively regulate their suppressive function. These attributes of PKCθ make it an attractive target for catalytic or allosteric inhibitors that are expected to selectively suppress harmful inflammatory and alloimmune responses without interfering with beneficial immunity to infections. Early progress in developing such drugs is being made, but additional studies on the role of PKCθ in the human immune system are urgently needed.
Collapse
Affiliation(s)
| | | | - Amnon Altman
- Division of Cell Biology, La Jolla Institute for Allergy and Immunology, La Jolla, California, USA
| |
Collapse
|
54
|
Isakov N, Altman A. PKC-theta-mediated signal delivery from the TCR/CD28 surface receptors. Front Immunol 2012; 3:273. [PMID: 22936936 PMCID: PMC3425079 DOI: 10.3389/fimmu.2012.00273] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2012] [Accepted: 08/09/2012] [Indexed: 12/23/2022] Open
Abstract
Protein kinase C-theta (PKCθ) is a key enzyme in T lymphocytes, where it plays an important role in signal transduction downstream of the activated T cell antigen receptor (TCR) and the CD28 costimulatory receptor. Interest in PKCθ as a potential drug target has increased following recent findings that PKCθ is essential for harmful inflammatory responses mediated by Th2 (allergies) and Th17 (autoimmunity) cells as well as for graft-versus-host disease (GvHD) and allograft rejection, but is dispensable for beneficial responses such as antiviral immunity and graft-versus-leukemia (GvL) response. TCR/CD28 engagement triggers the translocation of the cytosolic PKCθ to the plasma membrane (PM), where it localizes at the center of the immunological synapse (IS), which forms at the contact site between an antigen-specific T cell and antigen-presenting cells (APC). However, the molecular basis for this unique localization, and whether it is required for its proper function have remained unresolved issues until recently. Our recent study resolved these questions by demonstrating that the unique V3 (hinge) domain of PKCθ and, more specifically, a proline-rich motif within this domain, is essential and sufficient for its localization at the IS, where it is anchored to the cytoplasmic tail of CD28 via an indirect mechanism involving Lck protein tyrosine kinase (PTK) as an intermediate. Importantly, the association of PKCθ with CD28 is essential not only for IS localization, but also for PKCθ-mediated activation of downstream signaling pathways, including the transcription factors NF-κB and NF-AT, which are essential for productive T cell activation. Hence, interference with formation of the PKCθ-Lck-CD28 complex provides a promising basis for the design of novel, clinically useful allosteric PKCθ inhibitors. An additional recent study demonstrated that TCR triggering activates the germinal center kinase (GSK)-like kinase (GLK) and induces its association with the SLP-76 adaptor at the IS, where GLK phosphorylates the activation loop of PKCθ, converting it into an active enzyme. This recent progress, coupled with the need to study the biology of PKCθ in human T cells, is likely to facilitate the development of PKCθ-based therapeutic modalities for T cell-mediated diseases.
Collapse
Affiliation(s)
- Noah Isakov
- The Shraga Segal Department of Microbiology and Immunology, Faculty of Health Sciences and the Cancer Research Center, Ben-Gurion University of the Negev Beer Sheva, Israel
| | | |
Collapse
|
55
|
Fujinaga K, Barboric M, Li Q, Luo Z, Price DH, Peterlin BM. PKC phosphorylates HEXIM1 and regulates P-TEFb activity. Nucleic Acids Res 2012; 40:9160-70. [PMID: 22821562 PMCID: PMC3467075 DOI: 10.1093/nar/gks682] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The positive transcription elongation factor b (P-TEFb) regulates RNA polymerase II elongation. In cells, P-TEFb partitions between small active and larger inactive states. In the latter, HEXIM1 binds to 7SK snRNA and recruits as well as inactivates P-TEFb in the 7SK snRNP. Several stimuli can affect this P-TEFb equilibrium. In this study, we demonstrate that protein kinase C (PKC) phosphorylates the serine at position158 (S158) in HEXIM1. This phosphorylated HEXIM1 protein neither binds to 7SK snRNA nor inhibits P-TEFb. Phorbol esters or the engagement of the T cell antigen receptor, which activate PKC and the expression of the constitutively active (CA) PKCθ protein, which is found in T cells, inhibit the formation of the 7SK snRNP. All these stimuli increase P-TEFb-dependent transcription. In contrast, the kinase-negative PKCθ and the mutant HEXIM1 (S158A) proteins block effects of these PKC-activating stimuli. These results indicate that the phosphorylation of HEXIM1 by PKC represents a major regulatory step of P-TEFb activity in cells.
Collapse
Affiliation(s)
- Koh Fujinaga
- Departments of Medicine, Microbiology and Immunology, Rosalind Russell Research Center, University of California, San Francisco, San Francisco, CA 94143-0703, USA
| | | | | | | | | | | |
Collapse
|
56
|
Abstract
Scaffold proteins play pivotal roles in the regulation of signal transduction pathways by connecting upstream receptors to downstream effector molecules. During the last decade, many scaffold proteins that contain caspase-recruitment domains (CARD) have been identified. Investigating the roles of CARD proteins has revealed that many of them play crucial roles in signaling cascades leading to activation of nuclear factor-κB (NF-κB). In this review, we discuss the contributions of CARD proteins to NF-κB activation in various signaling cascades. In particular, we share some of our personal experiences during the initial investigation of the functions of the CARMA family of CARD proteins and then summarize the roles of these proteins in signaling pathways induced by antigen receptors, G protein-coupled receptors, receptor tyrosine kinase, and C-type lectin receptors in the context of recent progress in these field.
Collapse
Affiliation(s)
- Changying Jiang
- Department of Molecular and Cellular Oncology, The University of Texas, M D Anderson Cancer Center, Houston, TX 77030, USA
| | | |
Collapse
|
57
|
Stahelin RV, Kong KF, Raha S, Tian W, Melowic HR, Ward KE, Murray D, Altman A, Cho W. Protein kinase Cθ C2 domain is a phosphotyrosine binding module that plays a key role in its activation. J Biol Chem 2012; 287:30518-28. [PMID: 22787157 DOI: 10.1074/jbc.m112.391557] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Protein kinase Cθ (PKCθ) is a novel PKC that plays a key role in T lymphocyte activation. To understand how PKCθ is regulated in T cells, we investigated the properties of its N-terminal C2 domain that functions as an autoinhibitory domain. Our measurements show that a Tyr(P)-containing peptide derived from CDCP1 binds the C2 domain of PKCθ with high affinity and activates the enzyme activity of the intact protein. The Tyr(P) peptide also binds the C2 domain of PKCδ tightly, but no enzyme activation was observed with PKCδ. Mutations of PKCθ-C2 residues involved in Tyr(P) binding abrogated the enzyme activation and association of PKCθ with Tyr-phosphorylated full-length CDCP1 and severely inhibited the T cell receptor/CD28-mediated activation of a PKCθ-dependent reporter gene in T cells. Collectively, these studies establish the C2 domain of PKCθ as a Tyr(P)-binding domain and suggest that the domain may play a major role in PKCθ activation via its Tyr(P) binding.
Collapse
Affiliation(s)
- Robert V Stahelin
- Department of Chemistry, University of Illinois, Chicago, IL 60607, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
58
|
Chang TT, Walther I, Li CF, Boonyaratanakornkit J, Galleri G, Meloni MA, Pippia P, Cogoli A, Hughes-Fulford M. The Rel/NF-κB pathway and transcription of immediate early genes in T cell activation are inhibited by microgravity. J Leukoc Biol 2012; 92:1133-45. [PMID: 22750545 DOI: 10.1189/jlb.0312157] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
This study tested the hypothesis that transcription of immediate early genes is inhibited in T cells activated in μg. Immunosuppression during spaceflight is a major barrier to safe, long-term human space habitation and travel. The goals of these experiments were to prove that μg was the cause of impaired T cell activation during spaceflight, as well as understand the mechanisms controlling early T cell activation. T cells from four human donors were stimulated with Con A and anti-CD28 on board the ISS. An on-board centrifuge was used to generate a 1g simultaneous control to isolate the effects of μg from other variables of spaceflight. Microarray expression analysis after 1.5 h of activation demonstrated that μg- and 1g-activated T cells had distinct patterns of global gene expression and identified 47 genes that were significantly, differentially down-regulated in μg. Importantly, several key immediate early genes were inhibited in μg. In particular, transactivation of Rel/NF-κB, CREB, and SRF gene targets were down-regulated. Expression of cREL gene targets were significantly inhibited, and transcription of cREL itself was reduced significantly in μg and upon anti-CD3/anti-CD28 stimulation in simulated μg. Analysis of gene connectivity indicated that the TNF pathway is a major early downstream effector pathway inhibited in μg and may lead to ineffective proinflammatory host defenses against infectious pathogens during spaceflight. Results from these experiments indicate that μg was the causative factor for impaired T cell activation during spaceflight by inhibiting transactivation of key immediate early genes.
Collapse
Affiliation(s)
- Tammy T Chang
- Department of Surgery, University of California, San Francisco, CA, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
59
|
Song JK, Jo MR, Park MH, Song HS, An BJ, Song MJ, Han SB, Hong JT. Cell growth inhibition and induction of apoptosis by snake venom toxin in ovarian cancer cell via inactivation of nuclear factor κB and signal transducer and activator of transcription 3. Arch Pharm Res 2012; 35:867-76. [PMID: 22644854 DOI: 10.1007/s12272-012-0512-1] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2011] [Revised: 10/18/2011] [Accepted: 11/02/2011] [Indexed: 01/05/2023]
Abstract
Snake venom toxin from Vipera lebetina turanica induces apoptosis in many cancer cell lines, but there is no study about the apoptotic effect of snake venom toxin on human ovarian cancer cells. In this study, we investigated the apoptotic effect of snake venom toxin in human ovarian cancer PA-1 and SK-OV3 cells. Snake venom toxin dose dependently (0∼10 μg/mL) inhibited ovarian cancer cell growth with IC(50) values 4.5 μg/mL in PA-1 cells, and 6.5 μg/mL in SK-OV3 cells. Our results also showed that apoptotic cell death increased by snake venom toxin in a dose dependent manner (0∼10 μg/mL). Consistent with increased cell death, snake venom toxin increased the expression of pro-apoptotic protein Bax and caspase-3, but down-regulated anti-apoptotic protein Bcl-2. Untreated ovarian cancer cells showed a high DNA binding activity of nuclear factor B (NF-κB), but it was inhibited by snake venom toxin accompanied by inhibition of p50 and p65 translocation into the nucleus as well as phosphorylation of inhibitory κB. Snake venom toxin also inhibited DNA binding activity of the signal transducer and activator of transcription 3 (STAT3). Moreover, the combination treatment of NF-κB (salicylic acid, 1 or 5 μM) and STAT3 (stattic, 1 μM) with snake venom toxin (1 μg/mL) further enhanced cell growth inhibitory effects of snake venom toxin. These results showed that snake venom toxin from Vipera lebetina turanica caused apoptotic cell death of ovarian cancer cells through the inhibition of NF-κB and STAT3 signal, and suggested that snake venom toxin may be applicable as an anticancer agent for ovarian cancer.
Collapse
Affiliation(s)
- Ju Kyoung Song
- College of Pharmacy and Medical Research Center, Chungbuk National University, Cheongju, Korea
| | | | | | | | | | | | | | | |
Collapse
|
60
|
Ma J, Ding Y, Fang X, Wang R, Sun Z. Protein kinase C-θ inhibits inducible regulatory T cell differentiation via an AKT-Foxo1/3a-dependent pathway. THE JOURNAL OF IMMUNOLOGY 2012; 188:5337-47. [PMID: 22539794 DOI: 10.4049/jimmunol.1102979] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Protein kinase C (PKC)-θ has been shown to be a critical TCR signaling molecule that promotes the activation and differentiation of naive T cells into inflammatory effector T cells. In this study, we demonstrate that PKC-θ-mediated signals inhibit inducible regulatory T cell (iTreg) differentiation via an AKT-Foxo1/3A pathway. TGF-β-induced iTreg differentiation was enhanced in PKC-θ(-/-) T cells or wild-type cells treated with a specific PKC-θ inhibitor, but was inhibited by the PKC-θ activator PMA, or by CD28 crosslinking, which enhances PKC-θ activation. PKC-θ(-/-) T cells had reduced activity of the AKT kinase, and the expression of a constitutively active form of AKT in PKC-θ(-/-) T cells restored the ability to inhibit iTreg differentiation. Furthermore, knockdown or overexpression of the AKT downstream targets Foxo1 and Foxo3a was found to inhibit or promote iTreg differentiation in PKC-θ(-/-) T cells accordingly, indicating that the AKT-Foxo1/3A pathway is responsible for the inhibition of iTreg differentiation of iTregs downstream of PKC-θ. We conclude that PKC-θ is able to control T cell-mediated immune responses by shifting the balance between the differentiation of effector T cells and inhibitory Tregs.
Collapse
Affiliation(s)
- Jian Ma
- Division of Immunology, Beckman Research Institute of City of Hope, Duarte, CA 91010, USA
| | | | | | | | | |
Collapse
|
61
|
Wang K, Diao LH, Gong Y, Liu X, Li Y. NEMO differentially regulates TCR and TNF-α induced NF-κB pathways and has an inhibitory role in TCR-induced NF-κB activation. Cell Signal 2012; 24:1556-64. [PMID: 22513115 DOI: 10.1016/j.cellsig.2012.03.022] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2012] [Revised: 03/30/2012] [Accepted: 03/30/2012] [Indexed: 11/29/2022]
Abstract
NF-κB essential modulator (NEMO), the regulatory subunit of the IκB kinase (IKK) complex, is an essential adaptor both for inflammation stimuli and TCR-induced NF-κB activation. However, the exact mechanism of its function has not been fully understood. Here, we report that knockdown of NEMO by RNA interference in Jurkat E6.1 cells enhanced TCR-induced NF-κB report gene activity and IL-2 production by promotion of IκBα degradation and p65 nuclear translocation, whereas inhibited TNF-α and LPS-induced IκBα degradation without influencing the phosphorylation of MAPKs. In human primary T and Jurkat E6.1 cells, both CD3/CD28 and PMA/Ionomycin induced NF-κB activation showed a para-curve correlation with the dosage of small interfering RNA targeting NEMO (siNEMO): the NF-κB report gene activity was increased along with ascending doses of transfected siNEMO and reached the highest activity when knockdown about 70% of NEMO, then turned to decline and gradually be blocked once almost thoroughly knockdown of NEMO. Meanwhile, TNF-α induced NF-κB was always inhibited no matter how much NEMO was knockdown. Subcellular fractionation results suggested that upon CD3/CD28 costimulation, NEMO and IKKβ may not cotranslocate to cytoskeleton fraction as a conventional NEMO/IKK complex with a static stoichiometric ratio, instead the ratio of NEMO: IKKβ continuously shift from high to low. Depletion of NEMO accelerated TCR-induced cytoskeleton translocation of IKKβ. Altogether, this study suggests that NEMO may function as a rheostat exerting a negative action on TCR-induced NF-κB activation and differentially regulates TNF-α and TCR-induced NF-κB pathways.
Collapse
Affiliation(s)
- Kai Wang
- State Key Laboratory of Biocontrol, Key Laboratory of Gene Engineering of the Ministry of Education, School of Life Sciences, Sun Yat-Sen University, Guangzhou, China
| | | | | | | | | |
Collapse
|
62
|
Ameliorated ConA-induced hepatitis in the absence of PKC-theta. PLoS One 2012; 7:e31174. [PMID: 22347449 PMCID: PMC3274545 DOI: 10.1371/journal.pone.0031174] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2011] [Accepted: 01/04/2012] [Indexed: 11/23/2022] Open
Abstract
Severe liver injury that occurs when immune cells mistakenly attack an individual's own liver cells leads to autoimmune hepatitis. In mice, acute hepatitis can be induced by concanavalin A (ConA) treatment, which causes rapid activation of CD1d-positive natural killer (NK) T cells. These activated NKT cells produce large amounts of cytokines, which induce strong inflammation that damages liver tissues. Here we show that PKC-θ−/− mice were resistant to ConA-induced hepatitis due to essential function of PKC-θ in NKT cell development and activation. A dosage of ConA (25 mg/kg) that was lethal to wild-type (WT) mice failed to induce death resulting from liver injury in PKC-θ−/− mice. Correspondingly, ConA-induced production of cytokines such as IFNγ, IL-6, and TNFα, which mediate the inflammation responsible for liver injury, were significantly lower in PKC-θ−/− mice. Peripheral NKT cells had developmental defects at early stages in the thymus in PKC-θ−/− mice, and as a result their frequency and number were greatly reduced. Furthermore, PKC-θ−/− bone marrow adoptively transferred to WT mice displayed similar defects in NKT cell development, suggesting an intrinsic requirement for PKC-θ in NKT cell development. In addition, upon stimulation with NKT cell-specific lipid ligand, peripheral PKC-θ−/− NKT cells produced lower levels of inflammatory cytokines than that of WT NKT cells, suggesting that activation of NKT cells also requires PKC-θ. Our results suggest PKC-θ is an essential molecule required for activation of NKT cell to induce hepatitis, and thus, is a potential drug target for prevention of autoimmune hepatitis.
Collapse
|
63
|
Clavijo PE, Frauwirth KA. Anergic CD8+ T lymphocytes have impaired NF-κB activation with defects in p65 phosphorylation and acetylation. THE JOURNAL OF IMMUNOLOGY 2011; 188:1213-21. [PMID: 22205033 DOI: 10.4049/jimmunol.1100793] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Because of the cytotoxic potential of CD8(+) T cells, maintenance of CD8(+) peripheral tolerance is extremely important. A major peripheral tolerance mechanism is the induction of anergy, a refractory state in which proliferation and IL-2 production are inhibited. We used a TCR transgenic mouse model to investigate the signaling defects in CD8(+) T cells rendered anergic in vivo. In addition to a previously reported alteration in calcium/NFAT signaling, we also found a defect in NF-κB-mediated gene transcription. This was not due to blockade of early NF-κB activation events, including IκB degradation and NF-κB nuclear translocation, as these occurred normally in tolerant T cells. However, we discovered that anergic cells failed to phosphorylate the NF-κB p65 subunit at Ser(311) and also failed to acetylate p65 at Lys(310). Both of these modifications have been implicated as critical for NF-κB transactivation capacity, and thus, our results suggest that defects in key phosphorylation and acetylation events are important for the inhibition of NF-κB activity (and subsequent T cell function) in anergic CD8(+) T cells.
Collapse
Affiliation(s)
- Paúl E Clavijo
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD 20742, USA
| | | |
Collapse
|
64
|
Wang R, Xie H, Huang Z, Shang W, Sun Z. Developing and activated T cell survival depends on differential signaling pathways to regulate anti-apoptotic Bcl-x(L). Clin Dev Immunol 2011; 2012:632837. [PMID: 22235227 PMCID: PMC3253460 DOI: 10.1155/2012/632837] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2011] [Accepted: 11/07/2011] [Indexed: 12/22/2022]
Abstract
Survival of T cells in both the central and peripheral immune system determines its ultimate function in the regulation of immune responses. In the thymus, developing T cells undergo positive and negative selection to generate a T cell repertoire that responds to foreign, but not self, antigens. During T cell development, the T cell receptor α chain is rearranged. However, the first round of rearrangement may fail, which triggers another round of α chain rearrangement until either successful positive selection or cell death occurs. Thus, the lifespan of double positive (CD4(+)CD8(+); DP) thymocytes determines how many rounds of α chain rearrangement can be carried out and influences the likelihood of completing positive selection. The anti-apoptotic protein Bcl-x(L) is the ultimate effector regulating the survival of CD4(+)CD8(+) thymocytes subject to the selection process, and the deletion of Bcl-x(L) leads to premature apoptosis of thymocytes prior to the completion of the developmental process. In addition to its critical function in the thymus, Bcl-x(L) also regulates the survival of peripheral T cells. Upon engagement with antigens, T cells are activated and differentiated into effectors. Activated T cells upregulate Bcl-x(L) to enhance their own survival. Bcl-x(L)-mediated survival is required for the generation of effectors that carry out the actual immune responses. In the absence of Bcl-x(L), mature T cells undergo apoptosis prior to the completion of the differentiation process to become effector cells. Therefore, Bcl-x(L) ensures the survival of both developing and peripheral T cells, which is essential for a functional immune system.
Collapse
Affiliation(s)
- Ruiqing Wang
- Division of Immunology, Beckman Research Institute of the City of Hope, 1500 East Duarte Road, Duarte, CA 91010, USA
- Irell and Manella Graduate School of Biological Sciences, City of Hope, Duarte, CA 91010, USA
| | - Huimin Xie
- Department of Microbiology and Immunology, Medical School of the University of Illinois, Chicago, IL 60612, USA
| | - Zhaofeng Huang
- Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, 510080, China
| | - Weirong Shang
- Department of Gynecology and Obstetrics, Emory University School of Medicine, 550 Peachtree Street, Suite 1800, Atlanta, GA 30308, USA
| | - Zuoming Sun
- Division of Immunology, Beckman Research Institute of the City of Hope, 1500 East Duarte Road, Duarte, CA 91010, USA
| |
Collapse
|
65
|
Vaspin prevents TNF-α-induced intracellular adhesion molecule-1 via inhibiting reactive oxygen species-dependent NF-κB and PKCθ activation in cultured rat vascular smooth muscle cells. Pharmacol Res 2011; 64:493-500. [DOI: 10.1016/j.phrs.2011.06.001] [Citation(s) in RCA: 94] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2011] [Revised: 06/02/2011] [Accepted: 06/02/2011] [Indexed: 11/19/2022]
|
66
|
Kong KF, Yokosuka T, Canonigo-Balancio AJ, Isakov N, Saito T, Altman A. A motif in the V3 domain of the kinase PKC-θ determines its localization in the immunological synapse and functions in T cells via association with CD28. Nat Immunol 2011; 12:1105-12. [PMID: 21964608 PMCID: PMC3197934 DOI: 10.1038/ni.2120] [Citation(s) in RCA: 118] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2011] [Accepted: 08/29/2011] [Indexed: 12/13/2022]
Abstract
Protein kinase C-θ (PKC-θ) translocates to the center of the immunological synapse, but the underlying mechanism and its importance in T cell activation are unknown. Here we found that the V3 domain of PKC-θ was necessary and sufficient for localization to the immunological synapse mediated by association with the coreceptor CD28 and dependent on the kinase Lck. We identified a conserved proline-rich motif in V3 required for association with CD28 and immunological synapse localization. We found association with CD28 to be essential for PKC-θ-mediated downstream signaling and the differentiation of T helper type 2 cells (T(H)2 cells) and interleukin 17-producing helper T cells (T(H)17 cells) but not of T helper type 1 cells (T(H)1 cells). Ectopic expression of V3 sequestered PKC-θ from the immunological synapse and interfered with its functions. Our results identify a unique mode of CD28 signaling, establish a molecular basis for the immunological synapse localization of PKC-θ and indicate V3-based 'decoys' may be therapeutic modalities for T cell-mediated inflammatory diseases.
Collapse
Affiliation(s)
- Kok-Fai Kong
- Division of Cell Biology, La Jolla Institute for Allergy and Immunology, La Jolla, California, USA
| | | | | | | | | | | |
Collapse
|
67
|
Abstract
NF-κB family transcription factors are a common downstream target for inducible transcription mediated by many different cell-surface receptors, especially those receptors involved in inflammation and adaptive immunity. It is now clear that different classes of receptors employ different proximal signaling strategies to activate the common NF-κB signaling components, such as the IKK complex. For antigen receptors expressed by T and B cells, this pathway requires a complex of proteins including the proteins Carma1, Bcl10, and Malt1. Here, we discuss some of what is known about regulation of these proteins downstream of TCR/CD3 and co-stimulatory CD28 signaling. We also discuss another unique aspect of TCR-mediated NF-κB activation, i.e., the spatial restriction imposed on signaling events by the formation of the immunological synapse between a T cell and antigen-presenting cell presenting specific peptide/MHC.
Collapse
Affiliation(s)
- Jing Cheng
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | | | | |
Collapse
|
68
|
Zanin-Zhorov A, Dustin ML, Blazar BR. PKC-θ function at the immunological synapse: prospects for therapeutic targeting. Trends Immunol 2011; 32:358-63. [PMID: 21733754 DOI: 10.1016/j.it.2011.04.007] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2011] [Revised: 04/18/2011] [Accepted: 04/19/2011] [Indexed: 12/16/2022]
Abstract
Protein kinase C (PKC)-θ regulates conventional effector T (Teff) cell function. Since this initial finding, it has become clear that the role of PKC-θ in T cells is complex. PKC-θ plays a central role in Teff cell activation and survival, and negatively regulates stability of the immunological synapse (IS). Recent studies demonstrated that PKC-θ is required for the development of natural CD4(+)Foxp3(+) regulatory T (Treg) cells, and mediates negative regulation of Treg cell function. Here, we examine the role of PKC-θ in the IS, evidence for its distinct localization in Treg cells and the therapeutic implications of inhibiting PKC-θ in Teff cells, to reduce effector function, and in Treg cells, to increase suppressor function, for the prevention and treatment of autoimmune and alloimmune disease states.
Collapse
Affiliation(s)
- Alexandra Zanin-Zhorov
- Molecular Pathogenesis Program, Helen and Martin Kimmel Center for Biology and Medicine, Skirball Institute of Biomolecular Medicine, Department of Pathology, New York University School of Medicine, New York, NY 10016, USA
| | | | | |
Collapse
|
69
|
Barbarulo A, Grazioli P, Campese AF, Bellavia D, Di Mario G, Pelullo M, Ciuffetta A, Colantoni S, Vacca A, Frati L, Gulino A, Felli MP, Screpanti I. Notch3 and canonical NF-kappaB signaling pathways cooperatively regulate Foxp3 transcription. THE JOURNAL OF IMMUNOLOGY 2011; 186:6199-206. [PMID: 21508258 DOI: 10.4049/jimmunol.1002136] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Notch3 overexpression has been previously shown to positively regulate the generation and function of naturally occurring regulatory T cells and the expression of Foxp3, in cooperation with the pTα/pre-TCR pathway. In this study, we show that Notch3 triggers the trans activation of Foxp3 promoter depending on the T cell developmental stage. Moreover, we discovered a novel CSL/NF-κB overlapping binding site within the Foxp3 promoter, and we demonstrate that the activation of NF-κB, mainly represented by p65-dependent canonical pathway, plays a positive role in Notch3-dependent regulation of Foxp3 transcription. Accordingly, the deletion of protein kinase C, which mediates canonical NF-κB activation, markedly reduces regulatory T cell number and per cell Foxp3 expression in transgenic mice with a constitutive activation of Notch3 signaling. Collectively, our data indicate that the cooperation among Notch3, protein kinase C, and p65/NF-κB subunit modulates Foxp3 expression, adding new insights in the understanding of the molecular mechanisms involved in regulatory T cell homeostasis and function.
Collapse
|
70
|
Tuosto L. NF-κB family of transcription factors: Biochemical players of CD28 co-stimulation. Immunol Lett 2011; 135:1-9. [DOI: 10.1016/j.imlet.2010.09.005] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2010] [Revised: 09/09/2010] [Accepted: 09/14/2010] [Indexed: 12/31/2022]
|
71
|
Lee K, Gudapati P, Dragovic S, Spencer C, Joyce S, Killeen N, Magnuson MA, Boothby M. Mammalian target of rapamycin protein complex 2 regulates differentiation of Th1 and Th2 cell subsets via distinct signaling pathways. Immunity 2010; 32:743-53. [PMID: 20620941 PMCID: PMC2911434 DOI: 10.1016/j.immuni.2010.06.002] [Citation(s) in RCA: 385] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2009] [Revised: 04/29/2010] [Accepted: 05/11/2010] [Indexed: 12/15/2022]
Abstract
Many functions of the mammalian target of rapamycin (mTOR) complex 1 (mTORC1) have been defined, but relatively little is known about the biology of an alternative mTOR complex, mTORC2. We showed that conditional deletion of rictor, an essential subunit of mTORC2, impaired differentiation into T helper 1 (Th1) and Th2 cells without diversion into FoxP3(+) status or substantial effect on Th17 cell differentiation. mTORC2 promoted phosphorylation of protein kinase B (PKB, or Akt) and PKC, Akt activity, and nuclear NF-kappaB transcription factors in response to T cell activation. Complementation with active Akt restored only T-bet transcription factor expression and Th1 cell differentiation, whereas activated PKC-theta reverted only GATA3 transcription factor and the Th2 cell defect of mTORC2 mutant cells. Collectively, the data uncover vital mTOR-PKC and mTOR-Akt connections in T cell differentiation and reveal distinct pathways by which mTORC2 regulates development of Th1 and Th2 cell subsets.
Collapse
Affiliation(s)
- Keunwook Lee
- Department of Microbiology & Immunology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | | | | | | | | | | | | | | |
Collapse
|
72
|
Wong VKW, Zhou H, Cheung SSF, Li T, Liu L. Mechanistic study of saikosaponin-d (Ssd) on suppression of murine T lymphocyte activation. J Cell Biochem 2009; 107:303-15. [PMID: 19301261 DOI: 10.1002/jcb.22126] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Saikosaponin-d (Ssd) is a triterpene saponin derived from the medicinal plant, Bupleurum falcatum L. (Umbelliferae). Previous findings showed that Ssd exhibits a variety of pharmacological and immunomodulatory activities including anti-inflammatory, anti-bacterial, anti-viral and anti-cancer effects. In the current study we have investigated the effects of Ssd on activated mouse T lymphocytes through the NF-kappaB, NF-AT and AP-1 signaling pathways, cytokine secretion, and IL-2 receptor expression. The results demonstrated that Ssd not only suppressed OKT3/CD28-costimulated human T cell proliferation, it also inhibited PMA, PMA/Ionomycin and Con A-induced mouse T cell activation in vitro. The inhibitory effect of Ssd on PMA-induced T cell activation was associated with down-regulation of NF-kappaB signaling through suppression of IKK and Akt activities. In addition, Ssd suppressed both DNA binding activity and the nuclear translocation of NF-AT and activator protein 1 (AP-1) of the PMA/Ionomycin-stimulated T cells. The cell surface markers like IL-2 receptor (CD25) were also down-regulated together with decreased production of pro-inflammatory cytokines of IL-6, TNF-alpha and IFN-gamma. These results indicate that the NF-kappaB, NF-AT and AP-1 (c-Fos) signaling pathways are involved in the T cell inhibition evoked by Ssd, so it can be a potential candidate for further study in treating T cell-mediated autoimmune conditions.
Collapse
|
73
|
Briones J, Moga E, Espinosa I, Vergara C, Alvarez E, Villa J, Bordes R, Delgado J, Prat J, Sierra J. Bcl-10 protein highly correlates with the expression of phosphorylated p65 NF-kappaB in peripheral T-cell lymphomas and is associated with clinical outcome. Histopathology 2009; 54:478-85. [PMID: 19309400 DOI: 10.1111/j.1365-2559.2009.03250.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
AIMS In T cells, protein kinase C (PKC) theta plays a major role in T-cell receptor (TCR)-mediated activation of a novel nuclear factor (NF)-kappaB pathway that involves phosphorylation of p65 at serine 536 (Pp65(Ser536)). Bcl-10 acts along the same pathway downstream of PKC theta to activate NF-kappaB. The aim was to investigate the relationship between the expression of PKC theta, Bcl-10 and P-p65(Ser536) proteins and their prognostic significance in peripheral T-cell lymphomas (PTCLs). METHODS AND RESULTS Paraffin-embedded tissues from 30 patients with PTCLs treated with curative intention were evaluated retrospectively. Expression of PKC theta, Bcl-10 and P-p65(Ser536) proteins was assessed using immunohistochemistry. Expression of PKC theta was detected in 22 of 30 cases (73%), Bcl-10 in 20 of 30 (67%) and P-p65(Ser536) in 21 of 30 (70%). Bcl-10+ tumours were associated with PKC theta (18 of 22) (P < 0.0001) and Pp65Ser536 (19 of 21) expression (P < 0.0001). Patients with Bcl-10+ or P-p65(Ser536+) tumours fared better, with a 5-year overall survival of 48 and 45%, respectively, versus 0% for negative tumours (P = 0.029 and P = 0.04, respectively). CONCLUSIONS Bcl-10 is expressed in PTCLs, correlates with PKC theta and Pp65(Ser536) expression and seems to be associated with better survival.
Collapse
Affiliation(s)
- Javier Briones
- Departments of Clinical Haematology and Pathology, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
74
|
Ban JO, Oh JH, Hwang BY, Moon DC, Jeong HS, Lee S, Kim S, Lee H, Kim KB, Han SB, Hong JT. Inflexinol inhibits colon cancer cell growth through inhibition of nuclear factor-kappaB activity via direct interaction with p50. Mol Cancer Ther 2009; 8:1613-24. [PMID: 19509257 DOI: 10.1158/1535-7163.mct-08-0694] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Kaurane diterpene compounds have been known to be cytotoxic against several cancer cells through inhibition of nuclear factor-kappaB (NF-kappaB) activity. Here, we showed that inflexinol, a novel kaurane diterpene compound, inhibited the activity of NF-kappaB and its target gene expression as well as cancer cell growth through induction of apoptotic cell death in vitro and in vivo. These inhibitory effects on NF-kappaB activity and on cancer cell growth were suppressed by the reducing agents DTT and glutathione and were abrogated in the cells transfected with mutant p50 (C62S). Sol-gel biochip and surface plasmon resonance analysis showed that inflexinol binds to the p50 subunit of NF-kappaB. These results suggest that inflexinol inhibits colon cancer cell growth via induction of apoptotic cell death through inactivation of NF-kappaB by a direct modification of cysteine residue in the p50 subunit of NF-kappaB.
Collapse
Affiliation(s)
- Jung Ok Ban
- College of Pharmacy, Chungbuk National University, 48 Gaeshin-dong, Heungduk-gu, Cheonju, Korea
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
75
|
Huang X, Chen LY, Doerner AM, Pan WW, Smith L, Huang S, Papadimos TJ, Pan ZK. An atypical protein kinase C (PKC zeta) plays a critical role in lipopolysaccharide-activated NF-kappa B in human peripheral blood monocytes and macrophages. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2009; 182:5810-5. [PMID: 19380829 DOI: 10.4049/jimmunol.0804073] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2025]
Abstract
We have reported that the bacterial LPS induces the activation of NF-kappaB and inflammatory cytokine gene expression and that this requires the activity of small GTPase, RhoA. In this study, we show that an atypical protein kinase C isozyme, PKCzeta, associates functionally with RhoA and that PKCzeta acts as a signaling component downstream of RhoA. Stimulation of monocytes and macrophages with LPS resulted in PKCzeta activation and that inhibition of PKCzeta activity blocks both LPS-stimulated activation of NF-kappaB and IL-1beta gene expression. Our results also indicate that transforming growth factor beta-activated kinase 1 acts as a signaling component downstream of PKCzeta in cytokine gene transcription stimulated by LPS in human peripheral blood monocytes and macrophages. The specificity of this response suggests an important role for the Rho GTPase/PKCzeta/transforming growth factor beta-activated kinase 1/NF-kappaB pathway in host defense and in proinflammatory cytokine synthesis induced by bacterial LPS.
Collapse
Affiliation(s)
- XueSong Huang
- Department of Medical Microbiology & Immunology, University of Toledo Medical Center, Toledo, OH 43614, USA
| | | | | | | | | | | | | | | |
Collapse
|
76
|
Bour-Jordan H, Bluestone JA. Regulating the regulators: costimulatory signals control the homeostasis and function of regulatory T cells. Immunol Rev 2009; 229:41-66. [PMID: 19426214 PMCID: PMC2714548 DOI: 10.1111/j.1600-065x.2009.00775.x] [Citation(s) in RCA: 167] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
SUMMARY Costimulation is a concept that goes back to the early 1980s when Lafferty and others hypothesized that cell surface and soluble molecules must exist that are essential for initiating immune responses subsequent to antigen exposure. The explosion in this field of research ensued as over a dozen molecules have been identified to function as second signals following T-cell receptor engagement. By 1994, it seemed clear that the most prominent costimulatory pathway CD28 and functionally related costimulatory molecules, such as CD154, were the major drivers of a positive immune response. Then the immunology world turned upside down. CD28 knockout mice, which were, in most cases, immunodeficient, led to increased autoimmunity when bred into the non-obese diabetic background. Another CD28 family member, cytotoxic T-lymphocyte-associated protein 4, which was presumed to be a costimulatory molecule on activated T cells, turned out to be critical in downregulating immunity. These results, coupled with the vast suppressor cell literature which had been largely rebuked, suggested that the immune system was not poised for response but controlled in such a way that regulation was dominant. Over the last decade, we have learned that these costimulatory molecules play a key role in the now classical CD4(+)CD25(+)Foxp3(+) regulatory T cells (Tregs) that provide critical control of unwanted autoimmune responses. In this review, we discuss the connections between costimulation and Tregs that have changed the costimulation paradigm.
Collapse
Affiliation(s)
- Hélène Bour-Jordan
- UCSF Diabetes Center, University of California at San Francisco, San Francisco, CA USA
| | - Jeffrey A. Bluestone
- UCSF Diabetes Center, University of California at San Francisco, San Francisco, CA USA
| |
Collapse
|
77
|
O'Shaughnessy MJ, Vogtenhuber C, Sun K, Sitcheran R, Baldwin AS, Murphy WJ, Dang L, Jaffee B, Palmer E, Serody JS, Blazar BR. Ex vivo inhibition of NF-kappaB signaling in alloreactive T-cells prevents graft-versus-host disease. Am J Transplant 2009; 9:452-62. [PMID: 19260829 PMCID: PMC2680009 DOI: 10.1111/j.1600-6143.2008.02533.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The ex vivo induction of alloantigen-specific hyporesponsiveness by costimulatory pathway blockade or exposure to immunoregulatory cytokines has been shown to inhibit proliferation, IL-2 production, and the graft-versus-host disease (GVHD) capacity of adoptively transferred T-cells. We hypothesized that inhibition of the intracellular NF-kappaB pathway in alloreactive T-cells, which is critical for T-cell activation events including IL-2 transcription, could lead to alloantigen hyporesponsiveness and loss of GVHD capacity. We demonstrate that treatment of mixed lymphocyte reaction (MLR) cultures with PS1145, a potent inhibitor of NF-kappaB activation, can induce T-cell hyporesponsiveness to alloantigen in primary and secondary responses while preserving in vitro responses to potent mitogenic stimulation. GVHD lethality in recipients of ex vivo PS1145-treated cells was profoundly inhibited. Parking of control or PS1145-treated MLR cells in syngeneic Rag(-/-) recipients resulted in intact contact hypersensitivity (CHS) responses. However, GVHD lethality capacity also was restored, suggesting that lymphopenic expansion uncoupled alloantigen hyporesponsiveness. These results indicate that the NF-kappaB pathway is a critical regulator of alloresponses and provide a novel small molecule inhibitor based approach that is effective in preventing early posttransplant GVHD lethality but that also permits donor T-cell responses to recover after a period of lymphopenic expansion.
Collapse
Affiliation(s)
- M J O'Shaughnessy
- Department of Pediatrics, Division of Bone Marrow Transplantation, University of Minnesota Cancer Center, Minneapolis, MN, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
78
|
Abstract
Activation of transcription factor nuclear factor-kappaB (NF-kappaB) and Jun N-terminal kinase (JNK) play the pivotal roles in regulation of lymphocyte activation and proliferation. Deregulation of these signaling pathways leads to inappropriate immune response and contributes to the development of leukemia/lymphoma. The scaffold protein CARMA1 [caspase-recruitment domain (CARD) membrane-associated guanylate kinase (MAGUK) protein 1] has a central role in regulation of NF-kappaB and the JNK2/c-Jun complex in both B and T lymphocytes. During last several years, tremendous work has been done to reveal the mechanism by which CARMA1 and its signaling partners, B cell CLL-lymphoma 10 and mucosa-associated lymphoid tissue 1, are activated and mediate NF-kappaB and JNK activation. In this review, we summarize our findings in revealing the roles of CARMA1 in the NF-kappaB and JNK signaling pathways in the context of recent advances in this field.
Collapse
Affiliation(s)
- Marzenna Blonska
- Department of Molecular and Cellular Oncology, University of Texas, M.D. Anderson Cancer Center, Houston, TX 77030, USA
| | | |
Collapse
|
79
|
Wang L, Xiang Z, Ma LL, Chen Z, Gao X, Sun Z, Williams P, Chari RS, Yin DP. Deficiency of Protein Kinase C-Theta Facilitates Tolerance Induction. Transplantation 2009; 87:507-16. [DOI: 10.1097/tp.0b013e318195fd36] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
80
|
Huang J, Ren T, Guan H, Jiang Y, Cheng H. HTLV-1 Tax is a critical lipid raft modulator that hijacks IkappaB kinases to the microdomains for persistent activation of NF-kappaB. J Biol Chem 2009; 284:6208-17. [PMID: 19129196 DOI: 10.1074/jbc.m806390200] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Upon T cell activation, IkappaB kinases (IKKs) are transiently recruited to the plasma membrane-associated lipid raft microdomains for activation of NF-kappaB in promoting T cell proliferation. Retroviral Tax proteins from human T cell leukemia virus type 1 and type 2 (HTLV-1 and -2) are capable of activating IKK, yet only HTLV-1 infection causes T cell leukemia, which correlates with persistent activation of NF-kappaB induced by Tax1. Here, we show that the Tax proteins exhibit differential modes of IKK activation. The subunits of IKK are constitutively present in lipid rafts in activated forms in HTLV-1-infected T cells that express Tax. Disruption of lipid rafts impairs IkappaB kinase activation by Tax1. We also show that the cytoplasmic Tax1 protein persistently resides in the Golgi-associated lipid raft microdomains. Tax1 directs lipid raft translocation of IKK through selective interaction with IKKgamma and accordingly, depletion of IKKgamma impairs Tax1-directed lipid raft recruitment of IKKalpha and IKKbeta. In contrast, Tax2 activates NF-kappaB in a manner independent of lipid raft recruitment of IKK. These findings indicate that Tax1 actively recruits IKK to the lipid raft microdomains for persistent activation of NF-kappaB, thereby contributing to HTLV-1 oncogenesis.
Collapse
Affiliation(s)
- Jiannan Huang
- Penn State Cancer Institute, Department of Medicine, Penn State University College of Medicine, Hershey, Pennsylvania 17033, USA
| | | | | | | | | |
Collapse
|
81
|
Gupta S, Manicassamy S, Vasu C, Kumar A, Shang W, Sun Z. Differential requirement of PKC-theta in the development and function of natural regulatory T cells. Mol Immunol 2008; 46:213-24. [PMID: 18842300 PMCID: PMC2700121 DOI: 10.1016/j.molimm.2008.08.275] [Citation(s) in RCA: 122] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2008] [Accepted: 08/27/2008] [Indexed: 01/25/2023]
Abstract
CD4+CD25+ natural Treg cells, which are developed in the thymus, migrate to the periphery to actively maintain self-tolerance. Similar to conventional T cells, TCR signals are critical for the development and activation of Treg cell inhibitory function. While PKC-theta-mediated TCR signals are required for the activation of peripheral naïve T cells, they are dispensable for their thymic development. Here, we show that mice deficient in PKC-theta had a greatly reduced number of CD4+Foxp3+ Treg cells, which was independent of PKC-theta-regulated survival, as transgenic Bcl-x(L) could not restore the Treg cell population in PKC-theta(-/-) mice. Active and WT PKC-theta markedly stimulated, whereas inactive PKC-theta and dominant negative NFAT inhibited Foxp3 promoter activity. In addition, mice-deficient in calcineurin Abeta had a decreased Treg cell population, similar to that observed in PKC-theta deficient mice. It is likely that PKC-theta promoted the development of Treg cells by enhancing Foxp3 expression via activation of the calcineurin/NFAT pathway. Finally, Treg cells deficient in PKC-theta were as potent as WT Treg cells in inhibiting T cell activation, indicating that PKC-theta was not required for Treg cell-mediated inhibitory function. Our data highlight the contrasting roles PKC-theta plays in conventional T cell and natural Treg cell function.
Collapse
Affiliation(s)
- Sonal Gupta
- Department of Microbiology & Immunology, School of Medicine, University of Illinois, Chicago, IL 60612, USA
| | - Santhakumar Manicassamy
- Department of Microbiology & Immunology, School of Medicine, University of Illinois, Chicago, IL 60612, USA
| | - Chenthamarakshan Vasu
- Department of Surgery, School of Medicine, University of Illinois, Chicago, IL 60612, USA
| | - Anvita Kumar
- Department of Immunology/Microbiology, Rush University Medical Center, Chicago, IL, 60612, USA
| | - Weirong Shang
- Department of Gynecology and Obstetrics, Emory University School of Medicine, Atlanta, GA 30308
| | - Zuoming Sun
- Department of Microbiology & Immunology, School of Medicine, University of Illinois, Chicago, IL 60612, USA
| |
Collapse
|
82
|
Jeurink PV, Vissers YM, Rappard B, Savelkoul HF. T cell responses in fresh and cryopreserved peripheral blood mononuclear cells: Kinetics of cell viability, cellular subsets, proliferation, and cytokine production. Cryobiology 2008; 57:91-103. [DOI: 10.1016/j.cryobiol.2008.06.002] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2008] [Revised: 06/04/2008] [Accepted: 06/05/2008] [Indexed: 01/12/2023]
|
83
|
Manicassamy S, Yin D, Zhang Z, Molinero LL, Alegre ML, Sun Z. A critical role for protein kinase C-theta-mediated T cell survival in cardiac allograft rejection. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2008; 181:513-20. [PMID: 18566417 PMCID: PMC2488962 DOI: 10.4049/jimmunol.181.1.513] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Protein kinase C (PKC)-theta mediates the critical TCR signals required for T cell activation. Previously, we have shown that in response to TCR stimulation, PKC-theta-/- T cells undergo apoptosis due to greatly reduced levels of the anti-apoptotic molecule, Bcl-xL. In this study, we demonstrate that PKC-theta-regulated expression of Bcl-xL is essential for T cell-mediated cardiac allograft rejection. Rag1-/- mice reconstituted with wild-type T cells readily rejected fully mismatched cardiac allografts, whereas Rag1-/- mice reconstituted with PKC-theta-/- T cells failed to promote rejection. Transgenic expression of Bcl-xL in PKC-theta-/- T cells was sufficient to restore cardiac allograft rejection, suggesting that PKC-theta-regulated survival is required for T cell-mediated cardiac allograft rejection in this adoptive transfer model. In contrast to adoptive transfer experiments, intact PKC-theta-/- mice displayed delayed, but successful cardiac allograft rejection, suggesting the potential compensation for PKC-theta function. Finally, a subtherapeutic dose of anti-CD154 Ab or CTLA4-Ig, which was not sufficient to prevent cardiac allograft rejection in the wild-type mice, prevented heart rejection in the PKC-theta-/- mice. Thus, in combination with other treatments, inhibition of PKC-theta may facilitate achieving long-term survival of allografts.
Collapse
Affiliation(s)
- Santhakumar Manicassamy
- Department of Microbiology & Immunology, Medical School of the University of Illinois, Chicago, IL 60612
| | - Dengping Yin
- Department of Surgery, Division of Heptatobiliary Surgery and Transplantation, Vanderbilt University Medical Center, Nashville, TN 37232
| | - Zheng Zhang
- Department of Surgery-Organ Transplantation, Northwestern University Feinberg School of Medicine, Chicago, IL 60611
| | - Luciana L. Molinero
- Section of Rheumatology, Department of Medicine, University of Chicago, Chicago, IL 60637
| | - Marisa-Luisa Alegre
- Section of Rheumatology, Department of Medicine, University of Chicago, Chicago, IL 60637
| | - Zuoming Sun
- Division of Immunology, Beckman Research Institute of the City of Hope, Duarte, CA 91010
- Department of Microbiology & Immunology, Medical School of the University of Illinois, Chicago, IL 60612
| |
Collapse
|
84
|
Impaired anti-leukemic immune response in PKCθ-deficient mice. Mol Immunol 2008; 45:3463-9. [DOI: 10.1016/j.molimm.2008.03.016] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2008] [Accepted: 03/26/2008] [Indexed: 01/27/2023]
|
85
|
Mellström B, Savignac M, Gomez-Villafuertes R, Naranjo JR. Ca2+-Operated Transcriptional Networks: Molecular Mechanisms and In Vivo Models. Physiol Rev 2008; 88:421-49. [DOI: 10.1152/physrev.00041.2005] [Citation(s) in RCA: 122] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Calcium is the most universal signal used by living organisms to convey information to many different cellular processes. In this review we present well-known and recently identified proteins that sense and decode the calcium signal and are key elements in the nucleus to regulate the activity of various transcriptional networks. When possible, the review also presents in vivo models in which the genes encoding these calcium sensors-transducers have been modified, to emphasize the critical role of these Ca2+-operated mechanisms in many physiological functions.
Collapse
|
86
|
Belguise K, Sonenshein GE. PKCtheta promotes c-Rel-driven mammary tumorigenesis in mice and humans by repressing estrogen receptor alpha synthesis. J Clin Invest 2008; 117:4009-21. [PMID: 18037997 DOI: 10.1172/jci32424] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2007] [Accepted: 09/19/2007] [Indexed: 12/14/2022] Open
Abstract
The vast majority of primary human breast cancer tissues display aberrant nuclear NF-kappaB c-Rel expression. A causal role for c-Rel in mammary tumorigenesis has been demonstrated using a c-Rel transgenic mouse model; however, tumors developed with a long latency, suggesting a second event is needed to trigger tumorigenesis. Here we show that c-Rel activity in the mammary gland is repressed by estrogen receptor alpha (ERalpha) signaling, and we identify an epigenetic mechanism in breast cancer mediated by activation of what we believe is a novel PKCtheta-Akt pathway that leads to downregulation of ERalpha synthesis and derepression of c-Rel. ERalpha levels were lower in c-Rel-induced mammary tumors compared with normal mammary gland tissue. PKCtheta induced c-Rel activity and target gene expression and promoted growth of c-Rel- and c-RelxCK2alpha-driven mouse mammary tumor-derived cell lines. RNA expression levels of PKCtheta and c-Rel target genes were inversely correlated with ERalpha levels in human breast cancer specimens. PKCtheta activated Akt, thereby inactivating forkhead box O protein 3a (FOXO3a) and leading to decreased synthesis of its target genes, ERalpha and p27(Kip1). Thus we have shown that activation of PKCtheta inhibits the FOXO3a/ERalpha/p27(Kip1) axis that normally maintains an epithelial cell phenotype and induces c-Rel target genes, thereby promoting proliferation, survival, and more invasive breast cancer.
Collapse
Affiliation(s)
- Karine Belguise
- Department of Biochemistry and Women's Health Interdisciplinary Research Center, Boston University School of Medicine, Boston, Massachusetts 02118, USA
| | | |
Collapse
|
87
|
Olazabal IM, Martín-Cofreces NB, Mittelbrunn M, Martínez del Hoyo G, Alarcón B, Sánchez-Madrid F. Activation outcomes induced in naïve CD8 T-cells by macrophages primed via "phagocytic" and nonphagocytic pathways. Mol Biol Cell 2007; 19:701-10. [PMID: 18077558 DOI: 10.1091/mbc.e07-07-0650] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
The array of phagocytic receptors expressed by macrophages make them very efficient at pathogen clearance, and the phagocytic process links innate with adaptive immunity. Primary macrophages modulate antigen cross-presentation and T-cell activation. We assessed ex vivo the putative role of different phagocytic receptors in immune synapse formation with CD8 naïve T-cells from OT-I transgenic mice and compared this with the administration of antigen as a soluble peptide. Macrophages that have phagocytosed antigen induce T-cell microtubule-organizing center and F-actin cytoskeleton relocalization to the contact site, as well as the recruitment of proximal T-cell receptor signals such as activated Vav1 and PKC. At the same doses of loaded antigen (1 microM), "phagocytic" macrophages were more efficient than peptide-antigen-loaded macrophages at forming productive immune synapses with T-cells, as indicated by active T-cell TCR/CD3 conformation, LAT phosphorylation, IL-2 production, and T-cell proliferation. Similar T-cell proliferation efficiency was obtained when low doses of soluble peptide (3-30 nM) were loaded on macrophages. These results suggest that the pathway used for antigen uptake may modulate the antigen density presented on MHC-I, resulting in different signals induced in naïve CD8 T-cells, leading either to CD8 T-cell activation or anergy.
Collapse
Affiliation(s)
- Isabel María Olazabal
- Servicio de Inmunología, Hospital de la Princesa, Universidad Autónoma de Madrid, 28006 Madrid, Spain
| | | | | | | | | | | |
Collapse
|
88
|
Aspalter RM, Eibl MM, Wolf HM. Defective T-cell activation caused by impairment of the TNF receptor 2 costimulatory pathway in common variable immunodeficiency. J Allergy Clin Immunol 2007; 120:1193-200. [PMID: 17825894 DOI: 10.1016/j.jaci.2007.07.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2006] [Revised: 06/29/2007] [Accepted: 07/06/2007] [Indexed: 01/29/2023]
Abstract
BACKGROUND Patients with common variable immunodeficiency have defective T-cell activation after stimulation via T-cell receptor (TCR)/CD28 or by recall antigens. OBJECTIVE In the current study, we investigated whether TNF-receptor 2 (RII) costimulation, which is important for sufficient TCR/CD28 stimulation, was significantly impaired in common variable immunodeficiency (CVID). METHODS We studied T-cell activation events such as CD69 induction, calcium flux through store operated calcium channels, protein kinase C-theta translocation, and costimulation via TNF-RII compared with costimulation via CD28. RESULTS By measuring TNF receptor-associated factor 1 expression, which is induced by TCR alone and can be upregulated by either CD28 or TNF-RII costimulation, we show that costimulation via CD28 is intact, whereas costimulation via TNF-RII in these patients is impaired. The ras-activation pathway as tested by CD69 induction, calcium flux through store operated calcium channels, and protein kinase C-theta translocation were comparable in CVID and control T cells. CONCLUSION Taken together, these data indicate that the primary TCR signal as well as the signal derived from CD28 are normal but that TNF-RII-supported TCR costimulation is defective, most likely leading to impairment of an important amplification loop, such as TNF-RII augmented nuclear factor-kappaB activation. CLINICAL IMPLICATIONS The finding of defective TNF-RII cosignaling in patients with CVID may help to define the activation pathway affected, thus potentially leading to a characterization of the molecular defect and molecular diagnosis in at least some of these patients.
Collapse
|
89
|
Gruber T, Fresser F, Jenny M, Uberall F, Leitges M, Baier G. PKCtheta cooperates with atypical PKCzeta and PKCiota in NF-kappaB transactivation of T lymphocytes. Mol Immunol 2007; 45:117-26. [PMID: 17588663 DOI: 10.1016/j.molimm.2007.05.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2007] [Revised: 05/01/2007] [Accepted: 05/08/2007] [Indexed: 02/07/2023]
Abstract
Using yeast two-hybrid, we isolated atypical PKCzeta as a PKCtheta-interacting kinase and demonstrated that it selectively interacted with, and was phosphorylated by, PKCtheta. Importantly, however, both atypical PKCzeta and PKCiota were functionally required in TCR/CD28-mediated activation of NF-kappaB downstream of PKCtheta in Jurkat T cells albeit, activation responses of PKCzeta-deficient CD3+ T cells were comparable with wildtype controls. This normal activation thresholds of PKCzeta-/- T cells suggested that PKCiota, the closest structural relative, might play a compensatory role in TCR/CD28-induced signalling. Consistently, both PKCzeta and PKCiota resided in the plasma membrane lipid raft microdomains of Jurkat as well as primary mouse CD3+ T cells. Thus, PKCtheta, the established constituent of the immunological synapse, physically and functionally interacted with PKCzeta and PKCiota. Together, these data demonstrate that atypical PKCzeta/iota isotypes serve as direct downstream targets of PKCtheta in the signalling pathway leading to NF-kappaB activation in T lymphocytes.
Collapse
Affiliation(s)
- Thomas Gruber
- Department for Medical Genetics, Molecular and Clinical Pharmacology, Innsbruck Medical University, Schoepfstrasse 41, A-6020 Innsbruck, Austria
| | | | | | | | | | | |
Collapse
|
90
|
Saibil SD, Jones RG, Deenick EK, Liadis N, Elford AR, Vainberg MG, Baerg H, Woodgett JR, Gerondakis S, Ohashi PS. CD4+ and CD8+ T cell survival is regulated differentially by protein kinase Ctheta, c-Rel, and protein kinase B. THE JOURNAL OF IMMUNOLOGY 2007; 178:2932-9. [PMID: 17312138 DOI: 10.4049/jimmunol.178.5.2932] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
An effective immune response requires the expansion and survival of a large number of activated T cells. This study compared the role of protein kinase C (PKC)theta and associated signaling molecules in the survival of activated primary CD4+ vs CD8+ murine T cells. We demonstrate that the absence of PKCtheta resulted in a moderate survival defect in CD4+ T cells and a striking survival defect of CD8+ T lymphocytes. CD8+ T cells lacking the c-Rel, but not the NF-kappaB1/p50, member of the NF-kappaB family of transcription factors displayed a similar impairment in cell survival as PKCtheta(-/-) CD8(+) T lymphocytes. This implicates c-Rel as a key target of PKCtheta-mediated survival signals in CD8+ T cells. In addition, both c-Rel(-/-) and PKCtheta(-/-) T cells also displayed impaired expression of the antiapoptotic Bcl-x(L) protein upon activation. Changes in Bcl-x(L) expression, however, did not correlate with the survival of CD4+ or CD8+ lymphocytes. The addition of protein kinase B-mediated survival signals could restore partially CD4+ T cell viability, but did not dramatically influence CD8+ survival. Active protein kinase B was also unable to restore proliferative responses in CD8+ PKCtheta(-/-) T cells. The survival of CD4+ and CD8+ T cells deficient in either PKCtheta or c-Rel, however, was promoted by the addition of IL-2. Collectively, these data demonstrate that CD4+ and CD8+ T cell survival signals are differentially programmed.
Collapse
Affiliation(s)
- Samuel D Saibil
- Department of Medical Biophysics, University of Toronto, 610 University Avenue, Toronto, Ontario, Canada
| | | | | | | | | | | | | | | | | | | |
Collapse
|
91
|
Manicassamy S, Sun Z. The critical role of protein kinase C-theta in Fas/Fas ligand-mediated apoptosis. THE JOURNAL OF IMMUNOLOGY 2007; 178:312-9. [PMID: 17182568 DOI: 10.4049/jimmunol.178.1.312] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
A functional immune system not only requires rapid expansion of antigenic specific T cells, but also requires efficient deletion of clonally expanded T cells to avoid accumulation of T cells. Fas/Fas ligand (FasL)-mediated apoptosis plays a critical role in the deletion of activated peripheral T cells, which is clearly demonstrated by superantigen-induced expansion and subsequent deletion of T cells. In this study, we show that in the absence of protein kinase C-theta (PKC-theta), superantigen (staphylococcal enterotoxin B)-induced deletion of Vbeta8(+) CD4(+) T cells was defective in PKC-theta(-/-) mice. In response to staphylococcal enterotoxin B challenge, up-regulation of FasL, but not Fas, was significantly reduced in PKC-theta(-/-) mice. PKC-theta is thus required for maximum up-regulation of FasL in vivo. We further show that stimulation of FasL expression depends on PKC-theta-mediated activation of NF-AT pathway. In addition, PKC-theta(-/-) T cells displayed resistance to Fas-mediated apoptosis as well as activation-induced cell death (AICD). In the absence of PKC-theta, Fas-induced activation of apoptotic molecules such as caspase-8, caspase-3, and Bid was not efficient. However, AICD as well as Fas-mediated apoptosis of PKC-theta(-/-) T cells were restored in the presence of high concentration of IL-2, a critical factor required for potentiating T cells for AICD. PKC-theta is thus required for promoting FasL expression and for potentiating Fas-mediated apoptosis.
Collapse
Affiliation(s)
- Santhakumar Manicassamy
- Department of Microbiology and Immunology, School of Medicine, University of Illinois, Chicago, IL 60612, USA
| | | |
Collapse
|
92
|
Son DJ, Park MH, Chae SJ, Moon SO, Lee JW, Song HS, Moon DC, Kang SS, Kwon YE, Hong JT. Inhibitory effect of snake venom toxin fromVipera lebetina turanicaon hormone-refractory human prostate cancer cell growth: induction of apoptosis through inactivation of nuclear factor κB. Mol Cancer Ther 2007; 6:675-83. [PMID: 17308063 DOI: 10.1158/1535-7163.mct-06-0328] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
We investigated whether the snake venom toxin (SVT) from Vipera lebetina turanica inhibits cell growth of human prostate cancer cells by inducing apoptosis and also studied possible signaling pathways involved in this cell death. SVT inhibited growth of PC-3 and DU145 cells, androgen-independent prostate cancer cells, but not LNCaP cells, a human androgen-dependent prostate cancer cell. Cells were arrested in the G(2)-M phase by SVT with a concomitant decrease in the expression of the G(2)-M phase regulatory protein cyclin B1 and were also arrested in the G(1)-S phase with decreasing expression of cyclin-dependent kinase 4, cyclin D1 and cyclin E. In addition to the growth-inhibitory effect, SVT increased the induction of apoptotic cell death. Untreated PC-3 cells show high DNA binding activity of nuclear factor kappaB (NF-kappaB), an antiapoptotic transcriptional factor, but this was inhibited by SVT and accompanied by a significant inhibition of p50 translocation into the nucleus, as well as phosphorylation of inhibitory kappaB. Consistent with the induction of apoptosis and inhibition of NF-kappaB, this toxin increased the expression of proapoptotic proteins such as p53, Bax, caspase-3, and caspase-9, but down-regulated antiapoptotic protein Bcl-2. However, SVT did not show an inhibitory effect on cell growth and caspase-3 activity in cells carrying mutant p50 and inhibitory kappaB kinase plasmids. Confocal microscopy analysis showed that SVT is taken up into the nucleus of the cells. These findings suggest that a nanogram concentration range of SVT from V. lebetina turanica could inhibit hormone-refractory human prostate cancer cell growth, and the effect may be related to NF-kappaB signal-mediated induction of apoptosis.
Collapse
Affiliation(s)
- Dong Ju Son
- College of Pharmacy, Chungbuk National University, 48 Gaesin-dong, Heungduk-gu, Cheongju, Chungbuk, 361-763 Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|
93
|
Barouch-Bentov R, Altman A. Protein kinase C-theta (PKCtheta): new perspectives on its functions in T cell biology. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2007; 584:1-13. [PMID: 16802595 DOI: 10.1007/0-387-34132-3_1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Rina Barouch-Bentov
- Division of Cell Biology, La Jolla Institute for Allergy and Immunology, 10355 Science Center Drive, San Diego, California 92121, USA
| | | |
Collapse
|
94
|
Abstract
Signal transduction events leading to the survival, differentiation, or apoptosis of cells of the innate or adaptive immune system must be properly coordinated to ensure the normal mounting and termination of immune responses. One of the key transcription factors in immune responses is nuclear factor kappaB (NF-kappaB), which has been the focus of intense investigation over the past two decades. With the identification of the CARMA1-BCL10-MALT1 complex and ongoing progress in understanding the molecular mechanisms connecting T cell and B cell receptor proximal signals to the IkappaB kinase (IKK) complex, a cohesive model of antigen receptor (AgR)-dependent signaling to NF-kappaB activation is beginning to emerge. In this review, we provide an overview of the current state of research into the mechanisms that regulate AgR-mediated NF-kappaB transcriptional activity, with particular focus on the events leading to activation of the IKK complex.
Collapse
Affiliation(s)
- Jan Schulze-Luehrmann
- Section of Immunobiology and Department of Molecular Biophysics & Biochemistry, Yale University School of Medicine, New Haven, CT 06520, USA
| | | |
Collapse
|
95
|
Kubo-Murai M, Hazeki K, Sukenobu N, Yoshikawa K, Nigorikawa K, Inoue K, Yamamoto T, Matsumoto M, Seya T, Inoue N, Hazeki O. Protein kinase Cdelta binds TIRAP/Mal to participate in TLR signaling. Mol Immunol 2006; 44:2257-64. [PMID: 17161867 DOI: 10.1016/j.molimm.2006.11.005] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2006] [Revised: 10/21/2006] [Accepted: 11/06/2006] [Indexed: 02/04/2023]
Abstract
Toll-like receptor (TLR) family members recognize specific molecular patterns within pathogens. Signaling through TLRs results in a proximal event that involves direct binding of adaptor proteins to the receptors. We observed that TIRAP/Mal, an adaptor protein for TLR2 and TLR4, binds protein kinase Cdelta (PKCdelta). TIRAP/Mal GST-fusion protein and a TIRAP/Mal antibody were able to precipitate PKCdelta from rat peritoneal macrophage and THP1 cell lysates. Truncation mutants of TIRAP/Mal showed that the TIR domain of TIRAP/Mal is responsible for binding. TLR2- and TLR4-mediated phosphorylation of p38 MAPK, IKK, and IkappaB in RAW264.7 cells were abolished by depletion of PKCdelta. These results suggest that PKCdelta binding to TIRAP/Mal promotes TLR signaling events.
Collapse
Affiliation(s)
- Miho Kubo-Murai
- The Division of Molecular Medical Science, Graduate School of Biomedical Sciences, Hiroshima University, Hiroshima 734-8551, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
96
|
Abstract
One of the primary physiological roles of nuclear factor-kappa B (NF-kappaB) is in the immune system. In particular, NF-kappaB family members control the transcription of cytokines and antimicrobial effectors as well as genes that regulate cellular differentiation, survival and proliferation, thereby regulating various aspects of innate and adaptive immune responses. In addition, NF-kappaB also contributes to the development and survival of the cells and tissues that carry out immune responses in mammals. This review, therefore, describes the role of the NF-kappaB pathway in the development and functioning of the immune system.
Collapse
Affiliation(s)
- M S Hayden
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06510, USA
| | | | | |
Collapse
|
97
|
Springael C, Thomas S, Rahmouni S, Vandamme A, Goldman M, Willems F, Vosters O. Rottlerin inhibits human T cell responses. Biochem Pharmacol 2006; 73:515-25. [PMID: 17141738 DOI: 10.1016/j.bcp.2006.10.034] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2006] [Revised: 10/25/2006] [Accepted: 10/27/2006] [Indexed: 12/16/2022]
Abstract
Rottlerin is a pharmacological inhibitor of protein kinase C (PKC) theta, a novel PKC selectively expressed in T lymphocytes. PKC theta is known to regulate T cell receptor (TCR)/CD28 signalling pathways in T lymphocytes, but the impact of PKC theta inhibition on human T cell responses remains undefined. In this work, we describe the effects of rottlerin on the responses of CD4+ and CD8+ human T lymphocytes upon polyclonal activation. We observed a dose-dependent inhibition of CD4+ and CD8+ T cell proliferation in response to anti-CD3/anti-CD28 antibodies stimulation in the presence of rottlerin. This inhibition was associated with impaired CD25 expression and decreased interleukin (IL)-2 production in activated T cells. In contrast, rottlerin did not alter IL-2-induced T cell proliferation. Furthermore, we demonstrated that rottlerin blocked interferon (IFN) gamma, IL-10 and IL-13 mRNA expression in TCR/CD28 activated CD4+ T cells. These findings place rottlerin as a potent immunosuppressive agent for the development of novel therapies in T cell mediated immune disorders.
Collapse
Affiliation(s)
- Cécile Springael
- Institute for Medical Immunology (IMI), Université Libre de Bruxelles (ULB), Rue Adrienne Bolland, 8, B-6041 Gosselies, Belgium
| | | | | | | | | | | | | |
Collapse
|
98
|
Fisher WG, Yang PC, Medikonduri RK, Jafri MS. NFAT and NFkappaB activation in T lymphocytes: a model of differential activation of gene expression. Ann Biomed Eng 2006; 34:1712-28. [PMID: 17031595 PMCID: PMC1764593 DOI: 10.1007/s10439-006-9179-4] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2006] [Accepted: 08/15/2006] [Indexed: 12/22/2022]
Abstract
Mathematical models for the regulation of the Ca(2+)-dependent transcription factors NFAT and NFkappaB that are involved in the activation of the immune and inflammatory responses in T lymphocytes have been developed. These pathways are important targets for drugs, which act as powerful immunosuppressants by suppressing activation of NFAT and NFkappaB in T cells. The models simulate activation and deactivation over physiological concentrations of Ca(2+), diacyl glycerol (DAG), and PKCtheta using single and periodic step increases. The model suggests the following: (1) the activation NFAT does not occur at low frequencies as NFAT requires calcineurin activated by Ca(2+) to remain dephosphorylated and in the nucleus; (2) NFkappaB is activated at lower Ca(2+) oscillation frequencies than NFAT as IkappaB is degraded in response to elevations in Ca(2+) allowing free NFkappaB to translocate into the nucleus; and (3) the degradation of IkappaB is essential for efficient translocation of NFkappaB to the nucleus. Through sensitivity analysis, the model also suggests that the largest controlling factor for NFAT activation is the dissociation/reassociation rate of the NFAT:calcineurin complex and the translocation rate of the complex into the nucleus and for NFkappaB is the degradation/resynthesis rate of IkappaB and the import rate of IkappaB into the nucleus.
Collapse
Affiliation(s)
- Wayne G. Fisher
- Eugene McDermott Center for Human Growth and Development, The University of Texas Southwestern Medical Center, Dallas, TX 75390 USA
- Department of Mathematical Sciences, The University of Texas at Dallas, Dallas, TX 75083 USA
| | - Pei-Chi Yang
- Department of Bioinformatics and Computational Biology, George Mason University, 10900 University Blvd. MSN 5B3, Manassas, VA 20110 USA
| | - Ram K. Medikonduri
- Department of Mathematical Sciences, The University of Texas at Dallas, Dallas, TX 75083 USA
| | - M. Saleet Jafri
- Department of Bioinformatics and Computational Biology, George Mason University, 10900 University Blvd. MSN 5B3, Manassas, VA 20110 USA
- Medical Biotechnology Center, University of Maryland Biotechnology Institute, Baltimore, MD 20201 USA
| |
Collapse
|
99
|
Hayashi K, Altman A. Filamin A is required for T cell activation mediated by protein kinase C-theta. THE JOURNAL OF IMMUNOLOGY 2006; 177:1721-8. [PMID: 16849481 DOI: 10.4049/jimmunol.177.3.1721] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Induction of T cell responses following engagement of the Ag-specific TCR depends on TCR-initiated rearrangements of the cellular actin cytoskeleton and highly coordinated and tightly regulated interactions and of diverse intracellular signaling proteins. In this study, we show that filamin A (FLNa), an actin-binding and signal mediator scaffolding protein, is required for T cell activation. Following Ag stimulation, FLNa was recruited to the T cell-APC contact area, where it colocalized with protein kinase C-theta (PKCtheta). Depletion of FLNa by RNA interference did not affect TCR-induced early tyrosine phosphorylation or actin polymerization but, nevertheless, resulted in impaired IL-2 expression by human primary T cells and reduced activation of NF-kappaB, AP-1, and NFAT reporter genes in transfected T cells. TCR stimulation induced stable physical association of FLNa with PKCtheta. Furthermore, the TCR/CD28-induced membrane translocation of PKCtheta was inhibited in FLNa-depleted T cells. These results reveal novel role for FLNa in the TCR/CD28 signaling pathway leading to transcription factor activation and IL-2 production, and suggest that this role is mediated, in part, through the inducible interaction of FLNa with PKCtheta.
Collapse
Affiliation(s)
- Keitaro Hayashi
- Division of Cell Biology, La Jolla Institute for Allergy and Immunology, San Diego, CA 92121, USA
| | | |
Collapse
|
100
|
Watanabe R, Harada Y, Takeda K, Takahashi J, Ohnuki K, Ogawa S, Ohgai D, Kaibara N, Koiwai O, Tanabe K, Toma H, Sugamura K, Abe R. Grb2 and Gads exhibit different interactions with CD28 and play distinct roles in CD28-mediated costimulation. THE JOURNAL OF IMMUNOLOGY 2006; 177:1085-91. [PMID: 16818765 DOI: 10.4049/jimmunol.177.2.1085] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Although both CD28 and ICOS bind PI3K and provide stimulatory signal for T cell activation, unlike CD28, ICOS does not costimulate IL-2 secretion. CD28 binds both PI3K and Grb2, whereas ICOS binds only PI3K. We have generated an ICOS mutant, which can bind Grb2 by replacement of its PI3K binding motif YMFM with the CD28 YMNM motif, and shown that it induces significant activation of the IL-2 promoter. However, this mutant ICOS was insufficient to activate the NF-kappaB pathway. In this study, we show that Gads, but not Grb2, is essential for CD28-mediated NF-kappaB activation, and its binding to CD28 requires the whole CD28 cytoplasmic domain in addition to the YMNM motif. Mutagenesis experiments have indicated that mutations in the N-terminal and/or C-terminal PXXP motif(s) of CD28 significantly reduce their association with Gads, whereas their associations with Grb2 are maintained. They induced strong activity of the NFAT/AP-1 reporter comparable with the CD28 wild type, but weak activity of the NF-kappaB reporter. Grb2- and Gads-dominant-negative mutants had a strong effect on NFAT/AP-1 reporter, but only Gads-dominant-negative significantly inhibited NF-kappaB reporter. Our data suggest that, in addition to the PI3K binding motif, the PXXP motif in the CD28 cytoplasmic domain may also define a functional difference between the CD28- and ICOS-mediated costimulatory signals by binding to Gads.
Collapse
Affiliation(s)
- Ryosuke Watanabe
- Research Institute for Biological Sciences, Faculty of Science and Technology, Tokyo University of Science, 1669 Yamazaki, Noda, Chiba 278-0022, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|