51
|
Gerhardt J, Jafar S, Spindler MP, Ott E, Schepers A. Identification of new human origins of DNA replication by an origin-trapping assay. Mol Cell Biol 2006; 26:7731-46. [PMID: 16954389 PMCID: PMC1636883 DOI: 10.1128/mcb.01392-06] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Metazoan genomes contain thousands of replication origins, but only a limited number have been characterized so far. We developed a two-step origin-trapping assay in which human chromatin fragments associated with origin recognition complex (ORC) in vivo were first enriched by chromatin immunoprecipitation. In a second step, these fragments were screened for transient replication competence in a plasmid-based assay utilizing the Epstein-Barr virus latent origin oriP. oriP contains two elements, an origin (dyad symmetry element [DS]) and the family of repeats, that when associated with the viral protein EBNA1 facilitate extrachromosomal stability. Insertion of the ORC-binding human DNA fragments in oriP plasmids in place of DS enabled us to screen functionally for their abilities to restore replication. Using the origin-trapping assay, we isolated and characterized five previously unknown human origins. The assay was validated with nascent strand abundance assays that confirm these origins as active initiation sites in their native chromosomal contexts. Furthermore, ORC and MCM2-7 components localized at these origins during G(1) phase of the cell cycle but were not detected during mitosis. This finding extends the current understanding of origin-ORC dynamics by suggesting that replication origins must be reestablished during the early stages of each cell division cycle and that ORC itself participates in this process.
Collapse
Affiliation(s)
- Jeannine Gerhardt
- Department of Gene Vectors, GSF-National Research Center for Environment and Health, Marchioninistrasse 25, D-81377 Munich, Germany
| | | | | | | | | |
Collapse
|
52
|
Ghosh M, Kemp M, Liu G, Ritzi M, Schepers A, Leffak M. Differential binding of replication proteins across the human c-myc replicator. Mol Cell Biol 2006; 26:5270-83. [PMID: 16809765 PMCID: PMC1592723 DOI: 10.1128/mcb.02137-05] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The binding of the prereplication complex proteins Orc1, Orc2, Mcm3, Mcm7, and Cdc6 and the novel DNA unwinding element (DUE) binding protein DUE-B to the endogenous human c-myc replicator was studied by chromatin immunoprecipitation. In G(1)-arrested HeLa cells, Mcm3, Mcm7, and DUE-B were prominent near the DUE, while Orc1 and Orc2 were least abundant near the DUE and more abundant at flanking sites. Cdc6 binding mirrored that of Orc2 in G(1)-arrested cells but decreased in asynchronous or M-phase cells. Similarly, the signals from Orc1, Mcm3, and Mcm7 were at background levels in cells arrested in M phase, whereas Orc2 retained the distribution seen in G(1)-phase cells. Previously shown to cause histone hyperacetylation and delocalization of replication initiation, trichostatin A treatment of cells led to a parallel qualitative change in the distribution of Mcm3, but not Orc2, across the c-myc replicator. Orc2, Mcm3, and DUE-B were also bound at an ectopic c-myc replicator, where deletion of sequences essential for origin activity was associated with the loss of DUE-B binding or the alteration of chromatin structure and loss of Mcm3 binding. These results show that proteins implicated in replication initiation are selectively and differentially bound across the c-myc replicator, dependent on discrete structural elements in DNA or chromatin.
Collapse
Affiliation(s)
- Maloy Ghosh
- Department of Biochemistry and Molecular Biology, Wright State University, 3640 Colonel Glenn Highway, Dayton, Ohio 45435, USA
| | | | | | | | | | | |
Collapse
|
53
|
Di Paola D, Price GB, Zannis-Hadjopoulos M. Differentially active origins of DNA replication in tumor versus normal cells. Cancer Res 2006; 66:5094-103. [PMID: 16707432 DOI: 10.1158/0008-5472.can-05-3951] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Previously, a degenerate 36 bp human consensus sequence was identified as a determinant of autonomous replication in eukaryotic cells. Random mutagenesis analyses further identified an internal 20 bp of the 36 bp consensus sequence as sufficient for acting as a core origin element. Here, we have located six versions of the 20 bp consensus sequence (20mer) on human chromosome 19q13 over a region spanning approximately 211 kb and tested them for ectopic and in situ replication activity by transient episomal replication assays and nascent DNA strand abundance analyses, respectively. The six versions of the 20mer alone were capable of supporting autonomous replication of their respective plasmids, unlike random genomic sequence of the same length. Furthermore, comparative analyses of the endogenous replication activity of these 20mers at their respective chromosomal sites, in five tumor/transformed and two normal cell lines, done by in situ chromosomal DNA replication assays, involving preparation of nascent DNA by the lambda exonuclease method and quantification by real-time PCR, showed that these sites coincided with chromosomal origins of DNA replication in all cell lines. Moreover, a 2- to 3-fold higher origin activity in the tumor/transformed cells by comparison to the normal cells was observed, suggesting a higher activation of these origins in tumor/transformed cell lines.
Collapse
Affiliation(s)
- Domenic Di Paola
- McGill Cancer Center and Department of Biochemistry, McGill University, Montreal, Quebec, Canada
| | | | | |
Collapse
|
54
|
Rowntree RK, Lee JT. Mapping of DNA replication origins to noncoding genes of the X-inactivation center. Mol Cell Biol 2006; 26:3707-17. [PMID: 16648467 PMCID: PMC1489014 DOI: 10.1128/mcb.26.10.3707-3717.2006] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In mammals, few DNA replication origins have been identified. Although there appears to be an association between origins and epigenetic regulation, their underlying link to monoallelic gene expression remains unclear. Here, we identify novel origins of DNA replication (ORIs) within the X-inactivation center (Xic). We analyze 86 kb of the Xic using an unbiased approach and find an unexpectedly large number of functional ORIs. Although there has been a tight correlation between ORIs and CpG islands, we find that ORIs are not restricted to CpG islands and there is no dependence on transcriptional activity. Interestingly, these ORIs colocalize to important genetic elements or genes involved in X-chromosome inactivation. One prominent ORI maps to the imprinting center and to a domain within Tsix known to be required for X-chromosome counting and choice. Location and/or activity of ORIs appear to be modulated by removal of specific Xic elements. These data provide a foundation for testing potential relationships between DNA replication and epigenetic regulation in future studies.
Collapse
Affiliation(s)
- Rebecca K Rowntree
- Howard Hughes Medical Institute, Department of Molecular Biology, Massachusetts General Hospital, Boston, Massachusetts 02114, USA
| | | |
Collapse
|
55
|
Radichev I, Kwon SW, Zhao Y, DePamphilis ML, Vassilev A. Genetic analysis of human Orc2 reveals specific domains that are required in vivo for assembly and nuclear localization of the origin recognition complex. J Biol Chem 2006; 281:23264-73. [PMID: 16762929 DOI: 10.1074/jbc.m603873200] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Eukaryotic DNA replication begins with the binding of a six subunit origin recognition complex (ORC) to DNA. To study the assembly and function of mammalian ORC proteins in their native environment, HeLa cells were constructed that constitutively expressed an epitope-tagged, recombinant human Orc2 subunit that had been genetically altered. Analysis of these cell lines revealed that Orc2 contains a single ORC assembly domain that is required in vivo for interaction with all other ORC subunits, as well as two nuclear localization signals (NLSs) that are required for ORC accumulation in the nucleus. The recombinant Orc2 existed in the nucleus either as an ORC-(2-5) or ORC-(1-5) complex; no other combinations of ORC subunits were detected. Moreover, only ORC-(1-5) was bound to the chromatin fraction, suggesting that Orc1 is required in vivo to load ORC-(2-5) onto chromatin. Surprisingly, recombinant Orc2 suppressed expression of endogenous Orc2, revealing that mammalian cells limit the intracellular level of Orc2, and thereby limit the amount of ORC-(2-5) in the nucleus. Because this suppression required only the ORC assembly and NLS domains, these domains appear to constitute the functional domain of Orc2.
Collapse
Affiliation(s)
- Ilian Radichev
- NICHD, National Institutes of Health, Bethesda, Maryland 20892-2753, USA
| | | | | | | | | |
Collapse
|
56
|
DePamphilis ML, Blow JJ, Ghosh S, Saha T, Noguchi K, Vassilev A. Regulating the licensing of DNA replication origins in metazoa. Curr Opin Cell Biol 2006; 18:231-9. [PMID: 16650748 DOI: 10.1016/j.ceb.2006.04.001] [Citation(s) in RCA: 124] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2006] [Accepted: 04/04/2006] [Indexed: 01/19/2023]
Abstract
Eukaryotic DNA replication is a highly conserved process; the proteins and sequence of events that replicate animal genomes are remarkably similar to those that replicate yeast genomes. Moreover, the assembly of prereplication complexes at DNA replication origins ('DNA licensing') is regulated in all eukaryotes so that no origin fires more than once in a single cell cycle. And yet there are significant differences between species both in the selection of replication origins and in the way in which these origins are licensed to operate. Moreover, these differences impart advantages to multicellular animals and plants that facilitate their development, such as better control over endoreduplication, flexibility in origin selection, and discrimination between quiescent and proliferative states.
Collapse
Affiliation(s)
- Melvin L DePamphilis
- National Institute of Child Health and Human Development, National Institutes of Health, Building 6/3A-15, 9000 Rockville Pike, Bethesda, MD 20892-2753, USA.
| | | | | | | | | | | |
Collapse
|
57
|
Gonzalez S, Klatt P, Delgado S, Conde E, Lopez-Rios F, Sanchez-Cespedes M, Mendez J, Antequera F, Serrano M. Oncogenic activity of Cdc6 through repression of the INK4/ARF locus. Nature 2006; 440:702-6. [PMID: 16572177 DOI: 10.1038/nature04585] [Citation(s) in RCA: 137] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2005] [Accepted: 01/18/2006] [Indexed: 01/01/2023]
Abstract
The INK4/ARF locus encodes three tumour suppressors (p15(INK4b), ARF and p16(INK4a)) and is among the most frequently inactivated loci in human cancer. However, little is known about the mechanisms that govern the expression of this locus. Here we have identified a putative DNA replication origin at the INK4/ARF locus that assembles a multiprotein complex containing Cdc6, Orc2 and MCMs, and that coincides with a conserved noncoding DNA element (regulatory domain RD(INK4/ARF)). Targeted and localized RNA-interference-induced heterochromatinization of RD(INK4/ARF) results in transcriptional repression of the locus, revealing that RD(INK4/ARF) is a relevant transcriptional regulatory element. Cdc6 is overexpressed in human cancers, where it might have roles in addition to DNA replication. We have found that high levels of Cdc6 result in RD(INK4/ARF)-dependent transcriptional repression, recruitment of histone deacetylases and heterochromatinization of the INK4/ARF locus, and a concomitant decrease in the expression of the three tumour suppressors encoded by this locus. This mechanism is reminiscent of the silencing of the mating-type HM loci in yeast by replication factors. Consistent with its ability to repress the INK4/ARF locus, Cdc6 has cellular immortalization activity and neoplastic transformation capacity in cooperation with oncogenic Ras. Furthermore, human lung carcinomas with high levels of Cdc6 are associated with low levels of p16(INK4a). We conclude that aberrant expression of Cdc6 is oncogenic by directly repressing the INK4/ARF locus through the RD(INK4/ARF) element.
Collapse
Affiliation(s)
- Susana Gonzalez
- Tumor Suppression Group, Spanish National Cancer Research Center (CNIO), E-28029 Madrid, Spain
| | | | | | | | | | | | | | | | | |
Collapse
|
58
|
Saha T, Ghosh S, Vassilev A, DePamphilis ML. Ubiquitylation, phosphorylation and Orc2 modulate the subcellular location of Orc1 and prevent it from inducing apoptosis. J Cell Sci 2006; 119:1371-82. [PMID: 16537645 PMCID: PMC2766536 DOI: 10.1242/jcs.02851] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Previous studies have suggested that the activity of the mammalian origin recognition complex (ORC) is regulated by cell-cycle-dependent changes in its Orc1 subunit. Here, we show that Orc1 modifications such as mono-ubiquitylation and hyperphosphorylation that occur normally during S and G2-M phases, respectively, can cause Orc1 to accumulate in the cytoplasm. This would suppress reassembly of pre-replication complexes until mitosis is complete. In the absence of these modifications, transient expression of Orc1 rapidly induced p53-independent apoptosis, and Orc1 accumulated perinuclearly rather than uniformly throughout the nucleus. This behavior mimicked the increased concentration and perinuclear accumulation of endogenous Orc1 in apoptotic cells that arise spontaneously in proliferating cell cultures. Remarkably, expression of Orc1 in the presence of an equivalent amount of Orc2, the only ORC subunit that did not induce apoptosis, prevented induction of apoptosis and restored uniform nuclear localization of Orc1. This would promote assembly of ORC-chromatin sites, such as occurs during the transition from M to G1 phase. These results provide direct evidence in support of the regulatory role proposed for Orc1, and suggest that aberrant DNA replication during mammalian development could result in apoptosis through the appearance of 'unmodified' Orc1.
Collapse
|
59
|
Baltin J, Leist S, Odronitz F, Wollscheid HP, Baack M, Kapitza T, Schaarschmidt D, Knippers R. DNA replication in protein extracts from human cells requires ORC and Mcm proteins. J Biol Chem 2006; 281:12428-35. [PMID: 16537544 DOI: 10.1074/jbc.m510758200] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We used protein extracts from proliferating human HeLa cells to support plasmid DNA replication in vitro. An extract with soluble nuclear proteins contains the major replicative chain elongation functions, whereas a high salt extract from isolated nuclei contains the proteins for initiation. Among the initiator proteins active in vitro are the origin recognition complex (ORC) and Mcm proteins. Recombinant Orc1 protein stimulates in vitro replication presumably in place of endogenous Orc1 that is known to be present in suboptimal amounts in HeLa cell nuclei. Partially purified endogenous ORC, but not recombinant ORC, is able to rescue immunodepleted nuclear extracts. Plasmid replication in the in vitro replication system is slow and of limited efficiency but robust enough to serve as a basis to investigate the formation of functional pre-replication complexes under biochemically defined conditions.
Collapse
Affiliation(s)
- Jens Baltin
- Department of Biology, University of Konstanz, D-78457 Konstanz, Germany
| | | | | | | | | | | | | | | |
Collapse
|
60
|
Waga S, Zembutsu A. Dynamics of DNA binding of replication initiation proteins during de novo formation of pre-replicative complexes in Xenopus egg extracts. J Biol Chem 2006; 281:10926-34. [PMID: 16497662 DOI: 10.1074/jbc.m600299200] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We investigated the dynamics of DNA binding of replication initiation proteins during formation of the pre-replicative complex (pre-RC) on plasmids in Xenopus egg extracts. The pre-RC was efficiently formed on plasmids at 23 degrees C, with one or a few origin recognition complex (ORC) molecules and approximately 10-20 mini-chromosome maintenance 2 (MCM2) molecules loaded onto each plasmid. Although geminin inhibited MCM loading, MCM interacted weakly but stoichiometrically with the plasmid in an ORC-dependent manner, even in the presence of geminin (with approximately 10 MCM2 molecules per plasmid). Interestingly, DNA binding of ORC, CDC6, and CDT1 was significantly stabilized in the presence of geminin, under which conditions approximately 10-20 molecules each of ORC and CDC6 were bound. Moreover, a similarly stable ORC-CDC6-CDT1 complex rapidly formed on DNA at lower temperature (0 degrees C) without geminin, with approximately 10-20 molecules each of ORC and CDC6 bound to the plasmid, but almost no binding of MCM. However, upon shifting the temperature to 23 degrees C, most ORC, CDC6, and CDT1 molecules were displaced from the DNA, leaving about one ORC molecule on the plasmid, whereas approximately 10 MCM2 molecules were loaded onto each plasmid. Furthermore, it was possible to load MCM onto DNA when the isolated ORC-CDC6-CDT1-DNA complex was mixed with purified MCM proteins. These results suggest that an ORC-CDC6-CDT1 complex pre-formed on DNA is directly involved in MCM loading and imply that each DNA-bound ORC molecule loads only one or a few MCM2-7 complexes during metazoan pre-RC formation.
Collapse
Affiliation(s)
- Shou Waga
- Laboratories for Biomolecular Network, Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka 565-0871, Japan.
| | | |
Collapse
|
61
|
Teer JK, Machida YJ, Labit H, Novac O, Hyrien O, Marheineke K, Zannis-Hadjopoulos M, Dutta A. Proliferating human cells hypomorphic for origin recognition complex 2 and pre-replicative complex formation have a defect in p53 activation and Cdk2 kinase activation. J Biol Chem 2006; 281:6253-60. [PMID: 16407251 DOI: 10.1074/jbc.m507150200] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The Origin Recognition Complex (ORC) is a critical component of replication initiation. We have previously reported generation of an Orc2 hypomorph cell line (Delta/-) that expresses very low levels of Orc2 but is viable. We have shown here that Chk2 is phosphorylated, suggesting that DNA damage checkpoint pathways are activated. p53 was inactivated during the derivation of the Orc2 hypomorphic cell lines, accounting for their survival despite active Chk2. These cells also show a defect in the G1 to S-phase transition. Cdk2 kinase activation in G1 is decreased due to decreased Cyclin E levels, preventing progression into S-phase. Molecular combing of bromodeoxyuridine-labeled DNA revealed that once the Orc2 hypomorphic cells enter S-phase, fork density and fork progression are approximately comparable with wild type cells. Therefore, the low level of Orc2 hinders normal cell cycle progression by delaying the activation of G1 cyclin-dependent kinases. The results suggest that hypomorphic mutations in initiation factor genes may be particularly deleterious in cancers with mutant p53 or increased activity of Cyclin E/Cdk2.
Collapse
Affiliation(s)
- Jamie K Teer
- Biological and Biomedical Sciences Program, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | | | | | | | | | | | |
Collapse
|
62
|
Li KG, Yang JS, Attia K, Su W, He GM, Qian XY. Cloning and characterization of OsORC2, a new member of rice origin recognition complex. Biotechnol Lett 2005; 27:1355-9. [PMID: 16215849 DOI: 10.1007/s10529-005-0937-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2005] [Accepted: 07/11/2005] [Indexed: 11/29/2022]
Abstract
In eukaryotic cells, the origin recognition complex (ORC) governs the initiation site of DNA replication and formation of the prereplication complex. The isolation, characterization and tissue-specific expression of a putative ORC subunit 2 (OsORC2) in Oryza sativa is described here. A novel cDNA fragment encoding rice ORC2 was isolated by screening the subtractive library, which had a higher expression level in inflorescence meristem than in shoot apical meristem. The full-length cDNA of rice ORC2 was obtained by the method of rapid amplification of cDNA ends, which contained an 1140 bp open reading frame encoding a 379 amino acid polypeptide. Sequence alignment shows that there is a high homology between the deduced amino sequence of OsORC2 and maize ORC2 (85%). The tissue-specific expression pattern of OsORC2 reveals that it is abundant in roots, seedling and inflorescence meristem, while its expression level is much lower in mature leaves and shoot.
Collapse
Affiliation(s)
- Ke-Gui Li
- Institute of Genetics, State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, People's Republic of China
| | | | | | | | | | | |
Collapse
|
63
|
McNairn AJ, Okuno Y, Misteli T, Gilbert DM. Chinese hamster ORC subunits dynamically associate with chromatin throughout the cell-cycle. Exp Cell Res 2005; 308:345-56. [PMID: 15950218 PMCID: PMC1350721 DOI: 10.1016/j.yexcr.2005.05.009] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2004] [Revised: 05/02/2005] [Accepted: 05/03/2005] [Indexed: 12/11/2022]
Abstract
In yeast, the Origin Recognition Complex (ORC) is bound to replication origins throughout the cell-cycle, but in animal cells, there are conflicting data as to whether and when ORC is removed from chromatin. We find ORC1, 2 and ORC4 to be metabolically stable proteins that co-fractionate with chromatin throughout the cell-cycle in Chinese hamster fibroblasts. Since cellular extraction methods cannot directly examine the chromatin binding properties of proteins in vivo, we examined ORC:chromatin interactions in living cells. Fluorescence loss in photobleaching (FLIP) studies revealed ORC1 and ORC4 to be highly dynamic proteins during the cell-cycle with exchange kinetics similar to other regulatory chromatin proteins. In vivo interaction with chromatin was not significantly altered throughout the cell-cycle, including S-phase. These data support a model in which ORC subunits dynamically interact with chromatin throughout the cell-cycle.
Collapse
Affiliation(s)
- Adrian J. McNairn
- Department of Biochemistry and Molecular Biology, S.U.N.Y. Upstate Medical University, 750 East Adams Street, Syracuse, NY 13210, USA
| | - Yukiko Okuno
- Department of Biochemistry and Molecular Biology, S.U.N.Y. Upstate Medical University, 750 East Adams Street, Syracuse, NY 13210, USA
| | - Tom Misteli
- National Cancer Institute, NIH 41 Library Drive Bldg. 41, Bethesda, MD 20892, USA
| | - David M. Gilbert
- Department of Biochemistry and Molecular Biology, S.U.N.Y. Upstate Medical University, 750 East Adams Street, Syracuse, NY 13210, USA
| |
Collapse
|
64
|
Todorovic V, Giadrossi S, Pelizon C, Mendoza-Maldonado R, Masai H, Giacca M. Human Origins of DNA Replication Selected from a Library of Nascent DNA. Mol Cell 2005; 19:567-75. [PMID: 16109380 DOI: 10.1016/j.molcel.2005.07.005] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2004] [Revised: 03/24/2005] [Accepted: 07/05/2005] [Indexed: 11/25/2022]
Abstract
The identification of metazoan origins of DNA replication has so far been hampered by the lack of a suitable genetic screening and by the cumbersomeness of the currently available mapping procedures. Here we describe the construction of a library of nascent DNA, representative of all cellular origin sequences, and its utilization as a screening probe for origin identification in large genomic regions. The procedure developed was successfully applied to the human 5q31.1 locus, encoding for the IL-3 and GM-CSF genes. Two novel origins were identified and subsequently characterized by competitive PCR mapping, located approximately 3.5 kb downstream of the GM-CSF gene. The two origins (GM-CSF Ori1 and Ori2) were shown to interact with different members of the DNA prereplication complex. This observation reinforces the universal paradigm that initiation of DNA replication takes place at, or in close proximity to, the binding sites of the trans-acting initiator proteins.
Collapse
Affiliation(s)
- Vesna Todorovic
- Molecular Medicine Laboratory, International Centre for Genetic Engineering and Biotechnology, Padriciano, 99, 34012 Trieste, Italy
| | | | | | | | | | | |
Collapse
|
65
|
Sibani S, Price GB, Zannis-Hadjopoulos M. Decreased origin usage and initiation of DNA replication in haploinsufficient HCT116 Ku80+/- cells. J Cell Sci 2005; 118:3247-61. [PMID: 16014376 DOI: 10.1242/jcs.02427] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
One of the functions of the abundant heterodimeric nuclear protein, Ku (Ku70/Ku80), is its involvement in the initiation of DNA replication through its ability to bind to chromosomal replication origins in a sequence-specific and cell cycle dependent manner. Here, using HCT116 Ku80+/- cells, the effect of Ku80 deficiency on cell cycle progression and origin activation was examined. Western blot analyses revealed a 75% and 36% decrease in the nuclear expression of Ku80 and Ku70, respectively. This was concomitant with a 33% and 40% decrease in chromatin binding of both proteins, respectively. Cell cycle analysis of asynchronous and late G1 synchronized Ku80+/- cells revealed a prolonged G1 phase. Furthermore, these Ku-deficient cells had a 4.5-, 3.4- and 4.3-fold decrease in nascent strand DNA abundance at the lamin B2, beta-globin and c-myc replication origins, respectively. Chromatin immunoprecipitation (ChIP) assays showed that the association of Ku80 with the lamin B2, beta-globin and c-myc origins was decreased by 1.5-, 2.3- and 2.5-fold, respectively, whereas that of Ku70 was similarly decreased (by 2.1-, 1.5- and 1.7-fold, respectively) in Ku80+/- cells. The results indicate that a deficiency of Ku80 resulted in a prolonged G1 phase, as well as decreased Ku binding to and activation of origins of DNA replication.
Collapse
Affiliation(s)
- Sahar Sibani
- McGill Cancer Center, McGill University, Montreal, Quebec H3G 1Y6, Canada
| | | | | |
Collapse
|
66
|
Touchon M, Nicolay S, Audit B, Brodie of Brodie EB, d'Aubenton-Carafa Y, Arneodo A, Thermes C. Replication-associated strand asymmetries in mammalian genomes: toward detection of replication origins. Proc Natl Acad Sci U S A 2005; 102:9836-41. [PMID: 15985556 PMCID: PMC1174978 DOI: 10.1073/pnas.0500577102] [Citation(s) in RCA: 97] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2005] [Indexed: 12/25/2022] Open
Abstract
In the course of evolution, mutations do not affect both strands of genomic DNA equally. This imbalance mainly results from asymmetric DNA mutation and repair processes associated with replication and transcription. In prokaryotes, prevalence of G over C and T over A is frequently observed in the leading strand. The sign of the resulting TA and GC skews changes abruptly when crossing replication-origin and termination sites, producing characteristic step-like transitions. In mammals, transcription-coupled skews have been detected, but so far, no bias has been associated with replication. Here, analysis of intergenic and transcribed regions flanking experimentally identified human replication origins and the corresponding mouse and dog homologous regions demonstrates the existence of compositional strand asymmetries associated with replication. Multiscale analysis of human genome skew profiles reveals numerous transitions that allow us to identify a set of 1,000 putative replication initiation zones. Around these putative origins, the skew profile displays a characteristic jagged pattern also observed in mouse and dog genomes. We therefore propose that in mammalian cells, replication termination sites are randomly distributed between adjacent origins. Taken together, these analyses constitute a step toward genome-wide studies of replication mechanisms.
Collapse
Affiliation(s)
- Marie Touchon
- Centre de Génétique Moléculaire, Centre National de la Recherche Scientifique, Allée de la Terrasse, 91198 Gif-sur-Yvette, France
| | | | | | | | | | | | | |
Collapse
|
67
|
Brodie Of Brodie EB, Nicolay S, Touchon M, Audit B, d'Aubenton-Carafa Y, Thermes C, Arneodo A. From DNA sequence analysis to modeling replication in the human genome. PHYSICAL REVIEW LETTERS 2005; 94:248103. [PMID: 16090582 DOI: 10.1103/physrevlett.94.248103] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2004] [Indexed: 05/03/2023]
Abstract
We explore the large-scale behavior of nucleotide compositional strand asymmetries along human chromosomes. As we observe for 7 of 9 origins of replication experimentally identified so far, the (TA+GC) skew displays rather sharp upward jumps, with a linear decreasing profile in between two successive jumps. We present a model of replication with well positioned replication origins and random terminations that accounts for the observed characteristic serrated skew profiles. We succeed in identifying 287 pairs of putative adjacent replication origins with an origin spacing approximately 1-2 Mbp that are likely to correspond to replication foci observed in interphase nuclei and recognized as stable structures that persist throughout subsequent cell generations.
Collapse
Affiliation(s)
- E B Brodie Of Brodie
- Laboratoire Joliot-Curie (CNRS), Ecole Normale Supérieure de Lyon, 46 Allée d'Italie, 69364 Lyon Cedex 07, France
| | | | | | | | | | | | | |
Collapse
|
68
|
Miccoli L, Frouin I, Novac O, Di Paola D, Harper F, Zannis-Hadjopoulos M, Maga G, Biard DSF, Angulo JF. The human stress-activated protein kin17 belongs to the multiprotein DNA replication complex and associates in vivo with mammalian replication origins. Mol Cell Biol 2005; 25:3814-30. [PMID: 15831485 PMCID: PMC1084281 DOI: 10.1128/mcb.25.9.3814-3830.2005] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The human stress-activated protein kin17 accumulates in the nuclei of proliferating cells with predominant colocalization with sites of active DNA replication. The distribution of kin17 protein is in equilibrium between chromatin-DNA and the nuclear matrix. An increased association with nonchromatin nuclear structure is observed in S-phase cells. We demonstrated here that kin17 protein strongly associates in vivo with DNA fragments containing replication origins in both human HeLa and monkey CV-1 cells. This association was 10-fold higher than that observed with nonorigin control DNA fragments in exponentially growing cells. In addition, the association of kin17 protein to DNA fragments containing replication origins was also analyzed as a function of the cell cycle. High binding of kin17 protein was found at the G(1)/S border and throughout the S phase and was negligible in both G(0) and M phases. Specific monoclonal antibodies against kin17 protein induced a threefold inhibition of in vitro DNA replication of a plasmid containing a minimal replication origin that could be partially restored by the addition of recombinant kin17 protein. Immunoelectron microscopy confirmed the colocalization of kin17 protein with replication proteins like RPA, PCNA, and DNA polymerase alpha. A two-step chromatographic fractionation of nuclear extracts from HeLa cells revealed that kin17 protein localized in vivo in distinct protein complexes of high molecular weight. We found that kin17 protein purified within an approximately 600-kDa protein complex able to support in vitro DNA replication by means of two different biochemical methods designed to isolate replication complexes. In addition, the reduced in vitro DNA replication activity of the multiprotein replication complex after immunodepletion for kin17 protein highlighted for a direct role in DNA replication at the origins.
Collapse
Affiliation(s)
- Laurent Miccoli
- Commissariat à l'Energie Atomique, Centre de Fontenay-aux-Roses, LGR/DRR/DSV, BP6, 92265 Fontenay-aux-Roses Cedex, France.
| | | | | | | | | | | | | | | | | |
Collapse
|
69
|
Hu HG, Illges H, Gruss C, Knippers R. Distribution of the chromatin protein DEK distinguishes active and inactive CD21/CR2 gene in pre- and mature B lymphocytes. Int Immunol 2005; 17:789-96. [PMID: 15908448 DOI: 10.1093/intimm/dxh261] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
DEK is an abundant and ubiquitous chromatin protein that has only recently attracted attention. DEK preferentially binds to cruciform and superhelical DNA and induces positive supercoils into closed circular DNA. It is quite likely therefore that DEK performs an important architectural function in chromatin. However, it is not known how DEK is distributed in chromatin. As the first study of its kind, we investigate the distribution of DEK at the CD21/complement receptor 2 gene regulatory regions in two B lymphocyte lines, namely Ramos, which expresses the CD21 gene, and Nalm-6, which does not. We use a chromatin immunoprecipitation approach and show that DEK appears to be distributed over various regions of the expressed and silent genes, but occurs in 2- to 3-fold higher amounts at a promoter-proximal site of the expressed gene. Moreover, induction of CD21 expression in Nalm-6 cells leads to accumulation of DEK at this site. We propose that the accumulation of DEK is functionally linked to gene expression.
Collapse
Affiliation(s)
- Hong-gang Hu
- Department of Biology, University of Konstanz, D-78457 Konstanz, Germany.
| | | | | | | |
Collapse
|
70
|
Ricke R, Bielinsky AK. Easy detection of chromatin binding proteins by the Histone Association Assay. Biol Proced Online 2005; 7:60-9. [PMID: 16136225 PMCID: PMC1190380 DOI: 10.1251/bpo106] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2005] [Revised: 04/08/2005] [Accepted: 04/14/2005] [Indexed: 01/01/2023] Open
Abstract
The Histone Association Assay provides an easy approach for detecting proteins that bind chromatin in vivo. This technique is based on a chromatin immunoprecipitation protocol using histone H3-specific antibodies to precipitate bulk chromatin from crosslinked whole cell extracts. Proteins that co-precipitate with chromatin are subsequently detected by conventional SDS-PAGE and Western blot analysis. Unlike techniques that separate chromatin and non-chromatin interacting proteins by centrifugation, this method can be used to delineate whether a protein is chromatin associated regardless of its innate solubility. Moreover, the relative amount of protein bound to DNA can be ascertained under quantitative conditions. Therefore, this technique may be utilized for analyzing the chromatin association of proteins involved in diverse cellular processes.
Collapse
Affiliation(s)
- Robin Ricke
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota. Minneapolis, MN 55455. USA
| | - Anja-Katrin Bielinsky
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota. Minneapolis, MN 55455. USA
| |
Collapse
|
71
|
Shukla A, Navadgi VM, Mallikarjuna K, Rao BJ. Interaction of hRad51 and hRad52 with MCM complex: a cross-talk between recombination and replication proteins. Biochem Biophys Res Commun 2005; 329:1240-5. [PMID: 15766559 DOI: 10.1016/j.bbrc.2005.02.106] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2005] [Indexed: 12/26/2022]
Abstract
Human Rad51 and Rad52 are implicated in DNA repair during replication. Here we show, by pull-down assays, that purified hRad51 and hRad52 interact with each other as well as with Mini chromosome maintenance (MCM) proteins in HeLa cell extracts. Furthermore, immunoprecipitation experiments corroborate the same where hRad51 and hRad52 proteins not only cross-talk with each other but also pull down MCM3 and MCM2/3 proteins, respectively. The interaction scoring assays, performed reciprocally, demonstrate the same specificity, based on which, we speculate that MCM complex exhibits strong propensity to get physically recruited to the sites where hRad51 and hRad52-mediated homologously aligned ends need to be replicationally repaired.
Collapse
Affiliation(s)
- Ashish Shukla
- Department of Biological Sciences, Tata Institute of Fundamental Research, Colaba, Mumbai 05, India
| | | | | | | |
Collapse
|
72
|
Kusic J, Kojic S, Divac A, Stefanovic D. Noncanonical DNA elements in the lamin B2 origin of DNA replication. J Biol Chem 2005; 280:9848-54. [PMID: 15611042 DOI: 10.1074/jbc.m408310200] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
DNA replication origins of eukaryotes lack linear replicator elements but contain short (dT)(n) (dA)(n) sequences that could build mutually equivalent unorthodox structures. Here we report that the lamin B2 origin of DNA replication adopts an alternative form characterized by unpaired regions CTTTTTTTTTTCC/GGAAAAAAAAAAG (3900-3912) and CCTTTTTTTTC/GAAAAAAAAGG (4141-4151). Both unpaired regions are resistant to DNase and except in central parts of their homopyrimidine strands are sensitive to single strand-specific chemicals. Interactions that protect central pyrimidines probably stabilize the bubble-like areas. Because DNA fragments containing either one or both bubbles migrate in TBM (89 mm Tris base, 89 mm boric acid, and 2 mm MgCl(2)) PAGE even faster than expected from their linear size, interacting regions are expected to belong to the same molecule. In an origin fragment containing a single bubble, free homopyrimidine strand can only interact with Hoogsteen hydrogen bonding surfaces from a complementary double stranded sequence. Indeed, this origin fragment reacts with triplex preferring antibody. In competition binding experiments control double stranded DNA or single stranded (dT)(40) do not affect origin-antibody interaction, whereas TAT and GGC triplexes exert competitive effect. Because the chosen fragment does not contain potential GGC forming sequences, these experiments confirm that the lamin B2 origin adopts a structure partly composed of intramolecular TAT triads.
Collapse
Affiliation(s)
- Jelena Kusic
- Institute of Molecular Genetics and Genetic Engineering, 11010 Belgrade, Serbia and Montenegro
| | | | | | | |
Collapse
|
73
|
Abstract
Eukaryotic DNA replication begins at numerous but often poorly characterized sequences called origins, which are distributed fairly regularly along chromosomes. The elusive and idiosyncratic nature of origins in higher eukaryotes is now understood as resulting from a strong epigenetic influence on their specification, which provides flexibility in origin selection and allows for tailoring the dynamics of chromosome replication to the specific needs of cells. By contrast, the factors that assemble in trans to make these origins competent for replication and the kinases that trigger initiation are well conserved. Genome-wide and single-molecule approaches are being developed to elucidate the dynamics of chromosome replication. The notion that a well-coordinated progression of replication forks is crucial for many aspects of the chromosome cycle besides simply duplication begins to be appreciated.
Collapse
Affiliation(s)
- Etienne Schwob
- Institute of Molecular Genetics, CNRS UMR5535 and University Montpellier 2, 1919, route de Mende, 34293 Montpellier, France
| |
Collapse
|
74
|
Casper JM, Kemp MG, Ghosh M, Randall GM, Vaillant A, Leffak M. The c-myc DNA-unwinding element-binding protein modulates the assembly of DNA replication complexes in vitro. J Biol Chem 2005; 280:13071-83. [PMID: 15653697 DOI: 10.1074/jbc.m404754200] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The presence of DNA-unwinding elements (DUEs) at eukaryotic replicators has raised the question of whether these elements contribute to origin activity by their intrinsic helical instability, as protein-binding sites, or both. We used the human c-myc DUE as bait in a yeast one-hybrid screen and identified a DUE-binding protein, designated DUE-B, with a predicted mass of 23.4 kDa. Based on homology to yeast proteins, DUE-B was previously classified as an aminoacyl-tRNA synthetase; however, the human protein is approximately 60 amino acids longer than its orthologs in yeast and worms and is primarily nuclear. In vivo, chromatin-bound DUE-B localized to the c-myc DUE region. DUE-B levels were constant during the cell cycle, although the protein was preferentially phosphorylated in cells arrested early in S phase. Inhibition of DUE-B protein expression slowed HeLa cell cycle progression from G1 to S phase and induced cell death. DUE-B extracted from HeLa cells or expressed from baculovirus migrated as a dimer during gel filtration and co-purified with ATPase activity. In contrast to endogenous DUE-B, baculovirus-expressed DUE-B efficiently formed high molecular mass complexes in Xenopus egg and HeLa extracts. In Xenopus extracts, baculovirus-expressed DUE-B inhibited chromatin replication and replication protein A loading in the presence of endogenous DUE-B, suggesting that differential covalent modification of these proteins can alter their effect on replication. Recombinant DUE-B expressed in HeLa cells restored replication activity to egg extracts immunodepleted with anti-DUE-B antibody, suggesting that DUE-B plays an important role in replication in vivo.
Collapse
Affiliation(s)
- John M Casper
- Department of Biochemistry and Molecular Biology, Wright State University School of Medicine, Dayton, Ohio 45435, USA
| | | | | | | | | | | |
Collapse
|
75
|
Giordano-Coltart J, Ying CY, Gautier J, Hurwitz J. Studies of the properties of human origin recognition complex and its Walker A motif mutants. Proc Natl Acad Sci U S A 2004; 102:69-74. [PMID: 15618391 PMCID: PMC544074 DOI: 10.1073/pnas.0408690102] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The eukaryotic six-subunit origin recognition complex (ORC) governs the initiation site of DNA replication and formation of the prereplication complex. In this report we describe the isolation of the wild-type Homo sapiens (Hs)ORC and variants containing a Walker A motif mutation in the Orc1, Orc4, or Orc5 subunit using the baculovirus-expression system. Coexpression of all six HsORC subunits yielded a stable complex containing HsOrc subunits 1-5 (HsORC1-5) with virtually no Orc6 protein (Orc6p). We examined the ATPase, DNA-binding, and replication activities of these complexes. Similar to other eukaryotic ORCs, wild-type HsORC1-5 possesses ATPase activity that is stimulated only 2-fold by single-stranded DNA. HsORC1-5 with a mutated Walker A motif in Orc1p contains no ATPase activity, whereas a similar mutation of either the Orc4 or Orc5 subunit did not affect this activity. The DNA-binding activity of HsORC1-5, using lamin B2 DNA as substrate, is stimulated by ATP 3- to 5-fold. Mutations in the Walker A motif of Orc1p, Orc4p, or Orc5p reduced the binding efficiency of HsORC1-5 modestly (2- to 5-fold). Xenopus laevis ORC-depleted extracts supplemented with HsORC1-5 supported prereplication complex formation and X. laevis sperm DNA replication, whereas the complex with a mutation in the Walker A motif of the Orc1, Orc4, or Orc5 subunit did not. These studies indicate that the ATP-binding motifs of Orc1, Orc4, and Orc5 are all essential for the replication activity associated with HsORC.
Collapse
Affiliation(s)
- Jennifer Giordano-Coltart
- Molecular Biology Program, Memorial Sloan-Kettering Cancer Center, 1275 York Avenue, Box 97, New York, NY 10021, USA
| | | | | | | |
Collapse
|
76
|
Ito E, Sahri D, Knippers R, Carstens EB. Baculovirus proteins IE-1, LEF-3, and P143 interact with DNA in vivo: a formaldehyde cross-linking study. Virology 2004; 329:337-47. [PMID: 15518813 DOI: 10.1016/j.virol.2004.08.035] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2004] [Revised: 08/18/2004] [Accepted: 08/27/2004] [Indexed: 10/26/2022]
Abstract
IE-1, LEF-3, and P143 are three of six proteins encoded by Autographa californica nucleopolyhedrovirus (AcMNPV) essential for baculovirus DNA replication in transient replication assays. IE-1 is the major baculovirus immediate early transcription regulator. LEF-3 is a single-stranded DNA binding protein (SSB) and P143 is a DNA helicase protein. To investigate their interactions in vivo, we treated AcMNPV-infected Spodoptera frugiperda cells with formaldehyde and separated soluble proteins from chromatin by cell fractionation and cesium chloride equilibrium centrifugation. Up to 70% of the total LEF-3 appeared in the fraction of soluble, probably nucleoplasmic proteins, while almost all P143 and IE-1 were associated with viral chromatin in the nucleus. This suggests that LEF-3 is produced in quantities that are higher than needed for the coverage of single stranded regions that arise during viral DNA replication and is consistent with the hypothesis that LEF-3 has other functions such as the localization of P143 to the nucleus. Using a chromatin immunoprecipitation procedure, we present the first direct evidence of LEF-3, P143, and IE-1 proteins binding to closely linked sites on viral chromatin in vivo, suggesting that they may form replication complexes on viral DNA in infected cells.
Collapse
Affiliation(s)
- Emma Ito
- Department of Microbiology and Immunology, Queen's University, Kingston, Ontario, Canada K7L 3N6
| | | | | | | |
Collapse
|
77
|
Antequera F. Genomic specification and epigenetic regulation of eukaryotic DNA replication origins. EMBO J 2004; 23:4365-70. [PMID: 15510221 PMCID: PMC526466 DOI: 10.1038/sj.emboj.7600450] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2004] [Accepted: 09/24/2004] [Indexed: 11/09/2022] Open
Abstract
Identification of DNA replication origins (ORIs) at a genome-wide level in eukaryotes has proved to be difficult due to the high degree of degeneracy of their sequences. Recent structural and functional approaches, however, have circumvented this limitation and have provided reliable predictions of their genomic distribution in the yeasts Saccharomyces cerevisiae and Schizosaccharomyces pombe, and they have also significantly increased the number of characterized ORIs in animals. This article reviews recent evidence on how ORIs are specified and maintained in these systems and on their regulation and sensitivity to epigenetic signals. It also discusses the possible additional involvement of ORIs in processes other than DNA replication.
Collapse
Affiliation(s)
- Francisco Antequera
- Instituto de Microbiología Bioquímica, CSIC/Universidad de Salamanca, Edificio Departamental, Campus Miguel de Unamuno, Salamanca, Spain
- Instituto de Microbiología Bioquímica, CSIC/Universidad de Salamanca, Edificio Departamental, Campus Miguel de Unamuno, 37007 Salamanca, Spain. Tel.: +34 923 121778; Fax: +34 923 224876; E-mail:
| |
Collapse
|
78
|
Iwahori S, Ikeda M, Kobayashi M. Association of Sf9 cell proliferating cell nuclear antigen with the DNA replication site of Autographa californica multicapsid nucleopolyhedrovirus. J Gen Virol 2004; 85:2857-2862. [PMID: 15448347 DOI: 10.1099/vir.0.80114-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The accumulation of cellular proliferating cell nuclear antigen (PCNA) in the nucleus of Sf9 cells has been shown to increase upon infection with Autographa californica multicapsid nucleopolyhedrovirus (AcMNPV). Here, analysis by DNase I treatment and chromatin immunoprecipitation revealed that cellular PCNA in the nucleus of Sf9 cells bound AcMNPV DNA. Immunocytochemical analysis showed colocalization of Sf9 cell PCNA and AcMNPV DNA replication sites. Similar colocalization was also observed in BmN-4 cells infected with Bombyx mori NPV, which is inherently missing the pcna gene. The amount of cellular PCNA associated with viral DNA replication sites was greater in cells infected with pcna-defective AcMNPV mutants than in cells infected with wild-type AcMNPV. These results suggest that both cellular and viral PCNAs are involved in AcMNPV DNA replication and that pcna-defective AcMNPV mutants are able to substitute cellular PCNA for viral PCNA.
Collapse
Affiliation(s)
- Satoko Iwahori
- Laboratory of Sericulture and Entomoresources, Graduate School of Bioagricultural Sciences, Nagoya University, Chikusa, Nagoya 464-8601, Japan
| | - Motoko Ikeda
- Laboratory of Sericulture and Entomoresources, Graduate School of Bioagricultural Sciences, Nagoya University, Chikusa, Nagoya 464-8601, Japan
| | - Michihiro Kobayashi
- Laboratory of Biodynamics, Graduate School of Bioagricultural Sciences, Nagoya University, Chikusa, Nagoya 464-8601, Japan
| |
Collapse
|
79
|
Lidonnici MR, Rossi R, Paixão S, Mendoza-Maldonado R, Paolinelli R, Arcangeli C, Giacca M, Biamonti G, Montecucco A. Subnuclear distribution of the largest subunit of the human origin recognition complex during the cell cycle. J Cell Sci 2004; 117:5221-31. [PMID: 15454574 DOI: 10.1242/jcs.01405] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In eukaryotes, initiation of DNA replication requires the activity of the origin recognition complex (ORC). The largest subunit of this complex, Orc1p, has a critical role in this activity. Here we have studied the subnuclear distribution of the overexpressed human Orc1p during the cell cycle. Orc1p is progressively degraded during S-phase according to a spatio-temporal program and it never colocalizes with replication factories. Orc1p is resynthesized in G1. In early G1, the protein is distributed throughout the cell nucleus, but successively it preferentially associates with heterochromatin. This association requires a functional ATP binding site and a protein region partially overlapping the bromo-adjacent homology domain at the N-terminus of Orc1p. The same N-terminal region mediates the in vitro interaction with heterochromatin protein 1 (HP1). Fluorescence resonance energy transfer (FRET) experiments demonstrate the interaction of human Orc1p and HP1 in vivo. Our data suggest a role of HP1 in the recruitment but not in the stable association of Orc1p with heterochromatin. Indeed, the subnuclear distribution of Orc1p is not affected by treatments that trigger the dispersal of HP1.
Collapse
|
80
|
Hu L, Xu X, Valenzuela MS. Initiation sites for human DNA replication at a putative ribulose-5-phosphate 3-epimerase gene. Biochem Biophys Res Commun 2004; 320:648-55. [PMID: 15240097 DOI: 10.1016/j.bbrc.2004.06.018] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2004] [Indexed: 11/23/2022]
Abstract
Replication of the human genome requires the activation of thousands of replicons distributed along each one of the chromosomes. Each replicon contains an initiation, or origin, site, at which DNA synthesis begins. However, very little information is known about the nature and positioning of these initiation sites along human chromosomes. We have recently focused our attention to a 1.1 kb region of human chromosome 2 which functioned as an episomal origin in the yeast Saccharomyces cerevisiae. This region corresponded to the largest exon of a putative ribulose-5-phosphate-3-epimerase gene (RPE). In the present study we have used a real-time PCR-based nascent strand DNA abundance assay to map initiation sites for DNA replication in in vivo human chromosomes around a 13.4 kb region encompassing the putative RPE gene. By applying this analysis to a 1-1.4 kb nascent strand DNA fraction isolated from both normal skin fibroblasts, and the breast cell line MCF10; we have identified five initiation sites within the 13.4 kb region of chromosome 2. The initiation sites appear to map to similar positions in both cell lines and occur outside the coding regions of the putative RPE gene.
Collapse
Affiliation(s)
- Lan Hu
- Department of Microbiology, School of Medicine, Meharry Medical College, 1005 D.B. Todd Jr. Boulevard, Nashville, TN 37208, USA
| | | | | |
Collapse
|
81
|
Li CJ, Vassilev A, DePamphilis ML. Role for Cdk1 (Cdc2)/cyclin A in preventing the mammalian origin recognition complex's largest subunit (Orc1) from binding to chromatin during mitosis. Mol Cell Biol 2004; 24:5875-86. [PMID: 15199143 PMCID: PMC480893 DOI: 10.1128/mcb.24.13.5875-5886.2004] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The eukaryotic origin recognition complex (ORC) selects the genomic sites where prereplication complexes are assembled and DNA replication begins. In proliferating mammalian cells, ORC activity appears to be regulated by reducing the affinity of the Orc1 subunit for chromatin during S phase and then preventing reformation of a stable ORC-chromatin complex until mitosis is completed and a nuclear membrane is assembled. Here we show that part of the mechanism by which this is accomplished is the selective association of Orc1 with Cdk1 (Cdc2)/cyclin A during the G(2)/M phase of cell division. This association accounted for the appearance in M-phase cells of hyperphosphorylated Orc1 that was subsequently dephosphorylated during the M-to-G(1) transition. Moreover, inhibition of Cdk activity in metaphase cells resulted in rapid binding of Orc1 to chromatin. However, chromatin binding was not mediated through increased affinity of Orc1 for Orc2, suggesting that additional events are involved in the assembly of functional ORC-chromatin sites. These results reveal that the same cyclin-dependent protein kinase that initiates mitosis in mammalian cells also concomitantly inhibits assembly of functional ORC-chromatin sites.
Collapse
Affiliation(s)
- Cong-jun Li
- Growth Biology Laboratory, Animal and Natural Resources Institute, Agricultural Research Service, U.S. Department of Agriculture, Beltsville, Maryland 20705, USA
| | | | | |
Collapse
|
82
|
Sakakibara S, Ueda K, Nishimura K, Do E, Ohsaki E, Okuno T, Yamanishi K. Accumulation of heterochromatin components on the terminal repeat sequence of Kaposi's sarcoma-associated herpesvirus mediated by the latency-associated nuclear antigen. J Virol 2004; 78:7299-310. [PMID: 15220403 PMCID: PMC434099 DOI: 10.1128/jvi.78.14.7299-7310.2004] [Citation(s) in RCA: 81] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
In the latent infection of Kaposi's sarcoma-associated herpesvirus (KSHV), its 160-kb circularized episomal DNA is replicated and maintained in the host nucleus. KSHV latency-associated nuclear antigen (LANA) is a key factor for maintaining viral latency. LANA binds to the terminal repeat (TR) DNA of the viral genome, leading to its localization to specific dot structures in the nucleus. In such an infected cell, the expression of the viral genes is restricted by a mechanism that is still unclear. Here, we found that LANA interacts with SUV39H1 histone methyltransferase, a key component of heterochromatin formation, as determined by use of a DNA pull-down assay with a biotinylated DNA fragment that contained a LANA-specific binding sequence and a maltose-binding protein pull-down assay. The diffuse localization of LANA on the chromosomes of uninfected cells changed to a punctate one with the introduction of a bacterial artificial chromosome containing most of the TR region, and SUV39H1 clearly colocalized with the LANA-associated dots. Thus, the LANA foci in KSHV-infected cells seemed to include SUV39H1 as well as heterochromatin protein 1. Furthermore, a chromatin immunoprecipitation assay revealed that the TR and the open reading frame (ORF) K1 and ORF50/RTA genes, but not the ORF73/LANA gene, lay within the heterochromatin during KSHV latency. Taken together, these observations indicate that LANA recruits heterochromatin components to the viral genome, which may lead to the establishment of viral latency and govern the transcription program.
Collapse
Affiliation(s)
- Shuhei Sakakibara
- Department of Microbiology C1, Osaka University Medical School, Suita, Osaka 565-0871, Japan
| | | | | | | | | | | | | |
Collapse
|
83
|
Kulartz M, Knippers R. The replicative regulator protein geminin on chromatin in the HeLa cell cycle. J Biol Chem 2004; 279:41686-94. [PMID: 15284237 DOI: 10.1074/jbc.m405798200] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Geminin is believed to have a major function in the regulation of genome replication and cell proliferation. Published evidence shows that geminin specifically interacts with Cdt1 to block its function in the assembly of prereplication complexes. However, in proliferating HeLa cells geminin and Cdt1 are co-expressed during a relatively short time at the G(1)-to-S phase transition. Under these conditions, nearly all Cdt1 and a major part of geminin are bound to chromatin and reside at the same or closely adjacent sites as shown here by chromatin immunoprecipitation. Cdt1 is rapidly degraded early in S phase, but geminin remains bound to the chromatin sites. One function that chromatin-bound geminin could perform is to prevent access to Cdt1 that may escape S phase-dependent degradation or is synthesized in excess. Indeed, Cdt1 continues to be synthesized in HeLa cells in S phase but never accumulates because of the efficient degradation. Therefore, geminin can be eliminated by RNA interference without detectable effects on cell cycle parameters.
Collapse
Affiliation(s)
- Monika Kulartz
- Department of Biology, University of Konstanz, D-78457 Konstanz, Germany.
| | | |
Collapse
|
84
|
Altman AL, Fanning E. Defined sequence modules and an architectural element cooperate to promote initiation at an ectopic mammalian chromosomal replication origin. Mol Cell Biol 2004; 24:4138-50. [PMID: 15121836 PMCID: PMC400449 DOI: 10.1128/mcb.24.10.4138-4150.2004] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2003] [Revised: 08/12/2003] [Accepted: 02/19/2004] [Indexed: 01/01/2023] Open
Abstract
A small DNA fragment containing the high-frequency initiation region (IR) ori-beta from the hamster dihydrofolate reductase locus functions as an independent replicator in ectopic locations in both hamster and human cells. Conversely, a fragment of the human lamin B2 locus containing the previously mapped IR serves as an independent replicator at ectopic chromosomal sites in hamster cells. At least four defined sequence elements are specifically required for full activity of ectopic ori-beta in hamster cells. These include an AT-rich element, a 4-bp sequence located within the mapped IR, a region of intrinsically bent DNA located between these two elements, and a RIP60 protein binding site adjacent to the bent region. The ori-beta AT-rich element is critical for initiation activity in human, as well as hamster, cells and can be functionally substituted for by an AT-rich region from the human lamin B2 IR that differs in nucleotide sequence and length. Taken together, the results demonstrate that two mammalian replicators can be activated at ectopic sites in chromosomes of another mammal and lead us to speculate that they may share functionally related elements.
Collapse
Affiliation(s)
- Amy L Altman
- Department of Biological Sciences and the Vanderbilt-Ingram Cancer Center, Vanderbilt University, Nashville, Tennessee 37235, USA
| | | |
Collapse
|
85
|
Weinmann AS. Novel ChIP-based strategies to uncover transcription factor target genes in the immune system. Nat Rev Immunol 2004; 4:381-6. [PMID: 15122203 DOI: 10.1038/nri1353] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Affiliation(s)
- Amy S Weinmann
- Department of Immunology, University of Washington, Seattle, Washington 98195, USA.
| |
Collapse
|
86
|
Gómez M, Brockdorff N. Heterochromatin on the inactive X chromosome delays replication timing without affecting origin usage. Proc Natl Acad Sci U S A 2004; 101:6923-8. [PMID: 15105447 PMCID: PMC406443 DOI: 10.1073/pnas.0401854101] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
DNA replication origins (ORIs) map close to promoter regions in many organisms, including mammals. However, the relationship between initiation of replication and transcription is not well understood. To address this issue, we have analyzed replication timing and activity of several CpG island-associated ORIs on the transcriptionally active and silent X chromosomes. We find equivalent ORI usage and efficiency of both alleles at sites that are replicated late on the inactive X chromosome. Thus, in contrast to its repressive effect on transcription, heterochromatin does not influence ORI activity. These findings suggest that the relationship between sites of transcription and replication initiation at CpG island regions is restricted to early development, and that subsequent gene silencing and heterochromatin formation influence only the timing of ORI activation.
Collapse
Affiliation(s)
- María Gómez
- X Inactivation Group, Medical Research Council Clinical Sciences Centre, Faculty of Medicine, Imperial College for Science, Technology, and Medicine, Hammersmith Hospital, DuCane Road, London W12 0NN, United Kingdom
| | | |
Collapse
|
87
|
Stehle IM, Scinteie MF, Baiker A, Jenke ACW, Lipps HJ. Exploiting a minimal system to study the epigenetic control of DNA replication: the interplay between transcription and replication. Chromosome Res 2004; 11:413-21. [PMID: 12971718 DOI: 10.1023/a:1024962308071] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
In order to analyze epigenetic factors involved in the regulation of DNA replication in higher eukaryotic cells, minimal systems have to be established. We have recently constructed a non-viral episomal vector system which replicates episomally in mammalian cells and is stably maintained in the cell in the absence of selection. The potential functional elements contained in this construct are an expression cassette upstream of a chromosomal S/MAR sequence and the SV40 origin of replication. In this report we describe that an active transcription upstream of the S/MAR running into this sequence is required and probably sufficient for episomal replication. We propose a model for the activation of replication in this system which may be the basis for further analysis of replication control in other systems.
Collapse
Affiliation(s)
- Isa M Stehle
- Institute of Cell Biology, University Witten/Herdecke, Witten, FRG
| | | | | | | | | |
Collapse
|
88
|
Biamonti G, Paixão S, Montecucco A, Peverali FA, Riva S, Falaschi A. Is DNA sequence sufficient to specify DNA replication origins in metazoan cells? Chromosome Res 2004; 11:403-12. [PMID: 12971717 DOI: 10.1023/a:1024910307162] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
DNA replication occupies a central position in the cell cycle and, therefore, in the development and life of multicellular organisms. During the last 10 years, our comprehension of this important process has considerably improved. Although the mechanisms that coordinate DNA replication with the other moments of the cell cycle are not yet fully understood, it is known that they mainly operate through DNA replication origins and the protein complexes bound to them. In eukaryotes, the packaging status of chromatin seems to be part of the mechanism that controls whether or not and when during the S-phase a particular origin will be activated. Intriguingly, the protein complexes bound to DNA replication origins appear to be directly involved in controlling chromatin packaging. In this manner they can also affect gene expression. In this review we focus on DNA replication origins in metazoan cells and on the relationship between these elements and the structural and functional organization of the genome.
Collapse
Affiliation(s)
- Giuseppe Biamonti
- Istituto di Genetica Molecolare, Consiglio Nazionale delle Ricerche, Via Abbiategrasso 207, 27100 Pavia, Italy.
| | | | | | | | | | | |
Collapse
|
89
|
Paixão S, Colaluca IN, Cubells M, Peverali FA, Destro A, Giadrossi S, Giacca M, Falaschi A, Riva S, Biamonti G. Modular structure of the human lamin B2 replicator. Mol Cell Biol 2004; 24:2958-67. [PMID: 15024083 PMCID: PMC371099 DOI: 10.1128/mcb.24.7.2958-2967.2004] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2003] [Revised: 09/07/2003] [Accepted: 12/22/2003] [Indexed: 11/20/2022] Open
Abstract
The cis-acting elements necessary for the activity of DNA replication origins in metazoan cells are still poorly understood. Here we report a thorough characterization of the DNA sequence requirements of the origin associated with the human lamin B2 gene. A 1.2-kb DNA segment, comprising the start site of DNA replication and located within a large protein-bound region, as well as a CpG island, displays origin activity when moved to different ectopic positions. Genomic footprinting analysis of both the endogenous and the ectopic origins indicates that the large protein complex is assembled in both cases around the replication start site. Replacement of this footprinted region with an unrelated sequence, maintaining the CpG island intact, abolishes origin activity and the interaction with hORC2, a subunit of the origin recognition complex. Conversely, the replacement of 17 bp within the protected region reduces the extension of the protection without affecting the interaction with hORC2. This substitution does not abolish the origin activity but makes it more sensitive to the integration site. Finally, the nearby CpG island positively affects the efficiency of initiation. This analysis reveals the modular structure of the lamin B2 origin and supports the idea that sequence elements close to the replication start site play an important role in origin activation.
Collapse
Affiliation(s)
- Sónia Paixão
- Istituto di Genetica Molecolare, Consiglio Nazionale delle Ricerche, 27100 Pavia, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
90
|
Breier AM, Chatterji S, Cozzarelli NR. Prediction of Saccharomyces cerevisiae replication origins. Genome Biol 2004; 5:R22. [PMID: 15059255 PMCID: PMC395781 DOI: 10.1186/gb-2004-5-4-r22] [Citation(s) in RCA: 86] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2003] [Revised: 02/02/2004] [Accepted: 02/04/2004] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Autonomously replicating sequences (ARSs) function as replication origins in Saccharomyces cerevisiae. ARSs contain the 17 bp ARS consensus sequence (ACS), which binds the origin recognition complex. The yeast genome contains more than 10,000 ACS matches, but there are only a few hundred origins, and little flanking sequence similarity has been found. Thus, identification of origins by sequence alone has not been possible. RESULTS We developed an algorithm, Oriscan, to predict yeast origins using similarity to 26 characterized origins. Oriscan used 268 bp of sequence, including the T-rich ACS and a 3' A-rich region. The predictions identified the exact location of the ACS. A total of 84 of the top 100 Oriscan predictions, and 56% of the top 350, matched known ARSs or replication protein binding sites. The true accuracy was even higher because we tested 25 discrepancies, and 15 were in fact ARSs. Thus, 94% of the top 100 predictions and an estimated 70% of the top 350 were correct. We compared the predictions to corresponding sequences in related Saccharomyces species and found that the ACSs of experimentally supported predictions show significant conservation. CONCLUSIONS The high accuracy of the predictions indicates that we have defined near-sufficient conditions for ARS activity, the A-rich region is a recognizable feature of ARS elements with a probable role in replication initiation, and nucleotide sequence is a reliable predictor of yeast origins. Oriscan detected most origins in the genome, demonstrating previously unrecognized generality in yeast replication origins and significant discriminatory power in the algorithm.
Collapse
Affiliation(s)
- Adam M Breier
- Graduate Group in Biophysics, University of California-Berkeley, Berkeley, CA 94720-3204, USA
| | - Sourav Chatterji
- Department of Computer Science, University of California-Berkeley, Berkeley, CA 94720-3204, USA
| | - Nicholas R Cozzarelli
- Department of Molecular and Cellular Biology, Barker Hall, University of California-Berkeley, Berkeley, CA 94720-3204, USA
| |
Collapse
|
91
|
Méndez J, Stillman B. Perpetuating the double helix: molecular machines at eukaryotic DNA replication origins. Bioessays 2004; 25:1158-67. [PMID: 14635251 DOI: 10.1002/bies.10370] [Citation(s) in RCA: 150] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The hardest part of replicating a genome is the beginning. The first step of DNA replication (called "initiation") mobilizes a large number of specialized proteins ("initiators") that recognize specific sequences or structural motifs in the DNA, unwind the double helix, protect the exposed ssDNA, and recruit the enzymatic activities required for DNA synthesis, such as helicases, primases and polymerases. All of these components are orderly assembled before the first nucleotide can be incorporated. On the occasion of the 50th anniversary of the discovery of the DNA structure, we review our current knowledge of the molecular mechanisms that control initiation of DNA replication in eukaryotic cells, with particular emphasis on the recent identification of novel initiator proteins. We speculate how these initiators assemble molecular machines capable of performing specific biochemical tasks, such as loading a ring-shaped helicase onto the DNA double helix.
Collapse
Affiliation(s)
- Juan Méndez
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA.
| | | |
Collapse
|
92
|
Abstract
Proteins involved in DNA replication are conserved from yeast to mammals, suggesting that the mechanism was established at an early stage of eukaryotic evolution. In spite of this common origin, recent findings have revealed surprising variations in how replication initiation is controlled, implying that a conserved mechanism has not necessarily resulted in regulatory conservation.
Collapse
Affiliation(s)
- Stephen E Kearsey
- Department of Zoology, South Parks Road, Oxford OX1 3PS, United Kingdom.
| | | |
Collapse
|
93
|
Hu L, Xu X, Valenzuela MS. Identification of novel initiation sites for human DNA replication around ARSH1, a previously characterized yeast replicator. Biochem Biophys Res Commun 2004; 313:1058-64. [PMID: 14706650 DOI: 10.1016/j.bbrc.2003.12.040] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Replication of mammalian chromosomes depends on the activation of a large number of origins of DNA replication distributed along the chromosomes. We have focused our attention on a human DNA region, named ARSH1, localized to chromosome 2, that had been previously shown to act as an episomal origin in the yeast Saccharomyces cerevisiae. In the present study we have used a nascent strand DNA abundance assay to map initiation sites for DNA replication in in vivo human chromosomes around a 5 kb region encompassing ARSH1. This analysis applied to a 1-1.4 kb nascent DNA strand fraction isolated from normal skin fibroblasts revealed the presence of two major initiations sites surrounding the ARSH1 region. With an equivalent DNA fraction obtained from HeLa cells, in addition to these sites, a broad initiation profile was observed which included the ARSH1 region. This DNA region however was not sufficient to support episomal replication of an ARSH1-containing plasmid transfected into HeLa cells.
Collapse
Affiliation(s)
- Lan Hu
- Department of Microbiology, School of Medicine, Meharry Medical College, 1005 D.B. Todd Boulevard, Nashville, TN 37208, USA
| | | | | |
Collapse
|
94
|
Schaarschmidt D, Baltin J, Stehle IM, Lipps HJ, Knippers R. An episomal mammalian replicon: sequence-independent binding of the origin recognition complex. EMBO J 2003; 23:191-201. [PMID: 14685267 PMCID: PMC1271667 DOI: 10.1038/sj.emboj.7600029] [Citation(s) in RCA: 111] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2003] [Accepted: 11/17/2003] [Indexed: 11/09/2022] Open
Abstract
An extrachromosomally replicating plasmid was used to investigate the specificity by which the origin recognition complex (ORC) interacts with DNA sequences in mammalian cells in vivo. We first showed that the plasmid pEPI-1 replicates semiconservatively in a once-per-cell-cycle manner and is stably transmitted over many cell generations in culture without selection. Chromatin immunoprecipitations and quantitative polymerase chain reaction analysis revealed that, in G1-phase cells, Orc1 and Orc2, as well as Mcm3, another component of the prereplication complex, are bound to multiple sites on the plasmid. These binding sites are functional because they show the S-phase-dependent dissociation of Orc1 and Mcm3 known to be characteristic for prereplication complexes in mammalian cells. In addition, we identified replicative nascent strands and showed that they correspond to many plasmid DNA regions. This work has implications for current models of replication origins in mammalian systems. It indicates that specific DNA sequences are not required for the chromatin binding of ORC in vivo. The conclusion is that epigenetic mechanisms determine the sites where mammalian DNA replication is initiated.
Collapse
|
95
|
Avni D, Yang H, Martelli F, Hofmann F, ElShamy WM, Ganesan S, Scully R, Livingston DM. Active localization of the retinoblastoma protein in chromatin and its response to S phase DNA damage. Mol Cell 2003; 12:735-46. [PMID: 14527418 DOI: 10.1016/s1097-2765(03)00355-1] [Citation(s) in RCA: 95] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The Rb protein suppresses development of an abnormal state of endoreduplication arising after S phase DNA damage. In diploid, S phase cells, the activity of protein phosphatase 2A (PP2A) licenses the stable association of un(der)phosphorylated Rb with chromatin. After damage, chromatin-associated pRb is attracted to certain chromosomal replication initiation sites in the order in which they normally fire. Like S phase DNA damage in Rb(-/-) cells, specific interruption of PP2A function in irradiated, S phase wt cells also elicited a state of endoreduplication. Thus, PP2A normally licenses the recruitment of Rb to chromatin sites in S phase from which, after DNA damage, it relocalizes to selected replication control sites and suppresses abnormal, postdamage rereplicative activity.
Collapse
Affiliation(s)
- Dror Avni
- Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA 02115, USA
| | | | | | | | | | | | | | | |
Collapse
|
96
|
Stefanovic D, Stanojcic S, Vindigni A, Ochem A, Falaschi A. In vitro protein-DNA interactions at the human lamin B2 replication origin. J Biol Chem 2003; 278:42737-43. [PMID: 12902329 DOI: 10.1074/jbc.m307058200] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The complexity of mammalian origins of DNA replication has prevented, so far, the in vitro studies of the modalities of initiator protein binding and origin selection. We approached this problem by utilizing the human lamin B2 origin, wherein the precise start sites of replication initiation have been identified and known to be bound in vivo by the origin recognition complex (ORC). In order to analyze the in vitro interactions occurring at this origin, we have compared the DNA binding requirements and patterns of the human recombinant Orc4 with those of preparations of HeLa nuclear proteins containing the ORC complex. Here we show that both HsOrc4 alone and HeLa nuclear proteins recognize multiple sites within a 241-bp DNA sequence encompassing the lamin B2 origin. The DNA binding activity of HeLa cells requires the presence of ORC and can be reproduced in the absence of all the other proteins known to be recruited to origins by ORC. Both HsOrc4 alone and HeLa nuclear proteins exhibit cooperative and ATP-independent binding. This binding covers nucleotides 3853-3953 and then spreads outward. Because this region contains the start sites of DNA synthesis as well as the area protected in vivo and preserves protein binding capacity in vitro after removal of a fraction of the protected region, we suggest that it could contain the primary binding site. Thus the in vitro approach points to the sequence requirements for ORC binding as a key element for origin recognition.
Collapse
Affiliation(s)
- Dragana Stefanovic
- International Centre for Genetic Engineering and Biotechnology, Padriciano 99, I-34012 Trieste, Italy
| | | | | | | | | |
Collapse
|
97
|
Ohta S, Tatsumi Y, Fujita M, Tsurimoto T, Obuse C. The ORC1 cycle in human cells: II. Dynamic changes in the human ORC complex during the cell cycle. J Biol Chem 2003; 278:41535-40. [PMID: 12909626 DOI: 10.1074/jbc.m307535200] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The origin recognition complex (ORC) plays a central role in regulating the initiation of DNA replication in eukaryotes. The level of the ORC1 subunit oscillates throughout the cell cycle, defining an ORC1 cycle. ORC1 accumulates in G1 and is degraded in S phase, although other ORC subunits (ORCs 2-5) remain at almost constant levels. The behavior of ORC components in human cell nuclei with respect to the ORC1 cycle demonstrates that ORCs 2-5 form a complex that is present throughout the cell cycle and that associates with ORC1 when it accumulates in G1 nuclei. ORCs 2-5 are found in both nuclease-insoluble and -soluble fractions. The appearance of nuclease-insoluble ORCs 2-5 parallels the increase in the level of ORC1 associating with nuclease-insoluble, non-chromatin nuclear structures. Thus, ORCs 2-5 are temporally recruited to nuclease-insoluble structures by formation of the ORC1-5 complex. An artificial reduction in the level of ORC1 in human cells by RNA interference results in a shift of ORC2 to the nuclease-soluble fraction, and the association of MCM proteins with chromatin fractions is also blocked by this treatment. These results indicate that ORC1 regulates the status of the ORC complex in human nuclei by tethering ORCs 2-5 to nuclear structures. This dynamic shift is further required for the loading of MCM proteins onto chromatin. Thus, the pre-replication complex in human cells may be regulated by the temporal accumulation of ORC1 in G1 nuclei.
Collapse
Affiliation(s)
- Satoshi Ohta
- Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara 630-0101, Japan
| | | | | | | | | |
Collapse
|
98
|
Ritzi M, Tillack K, Gerhardt J, Ott E, Humme S, Kremmer E, Hammerschmidt W, Schepers A. Complex protein-DNA dynamics at the latent origin of DNA replication of Epstein-Barr virus. J Cell Sci 2003; 116:3971-84. [PMID: 12953058 DOI: 10.1242/jcs.00708] [Citation(s) in RCA: 96] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
The sequential binding of the origin recognition complex (ORC), Cdc6p and the minichromosome maintenance proteins (MCM2-7) mediates replication competence at eukaryotic origins of DNA replication. The latent origin of Epstein-Barr virus, oriP, is a viral origin known to recruit ORC. OriP also binds EBNA1, a virally encoded protein that lacks any activity predicted to be required for replication initiation. Here, we used chromatin immunoprecipitation and chromatin binding to compare the cell-cycle-dependent binding of pre-RC components and EBNA1 to oriP and to global cellular chromatin. Prereplicative-complex components such as the Mcm2p-Mcm7p proteins and HsOrc1p are regulated in a cell-cycle-dependent fashion, whereas other HsOrc subunits and EBNA1 remain constantly bound. In addition, HsOrc1p becomes sensitive to the 26S proteasome after release from DNA during S phase. These results show that the complex protein-DNA dynamics at the viral oriP are synchronized with the cell division cycle. Chromatin-binding and chromatin-immunoprecipitation experiments on G0 arrested cells indicated that the ORC core complex (ORC2-5) and EBNA1 remain bound to chromatin and oriP. HsOrc6p and the MCM2-7 complex are released in resting cells. HsOrc1p is partly liberated from chromatin. Our data suggest that origins remain marked in resting cells by the ORC core complex to ensure a rapid and regulated reentry into the cell cycle. These findings indicate that HsOrc is a dynamic complex and that its DNA binding activity is regulated differently in the various stages of the cell cycle.
Collapse
Affiliation(s)
- Marion Ritzi
- Department of Gene Vectors, GSF-National Research Center for Environment and Health, Marchioninistrasse 25, 81377 München, Germany
| | | | | | | | | | | | | | | |
Collapse
|
99
|
Abdurashidova G, Danailov MB, Ochem A, Triolo G, Djeliova V, Radulescu S, Vindigni A, Riva S, Falaschi A. Localization of proteins bound to a replication origin of human DNA along the cell cycle. EMBO J 2003; 22:4294-303. [PMID: 12912926 PMCID: PMC175794 DOI: 10.1093/emboj/cdg404] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2002] [Revised: 05/19/2003] [Accepted: 06/27/2003] [Indexed: 12/17/2022] Open
Abstract
The proteins bound in vivo at the human lamin B2 DNA replication origin and their precise sites of binding were investigated along the cell cycle utilizing two novel procedures based on immunoprecipitation following UV irradiation with a pulsed laser light source. In G(1), the pre-replicative complex contains CDC6, MCM3, ORC1 and ORC2 proteins; of these, the post-replicative complex in S phase contains only ORC2; in M phase none of them are bound. The precise nucleotide of binding was identified for the two ORC and the CDC6 proteins near the start sites for leading-strand synthesis; the transition from the pre- to the post-replicative complex is accompanied by a 17 bp displacement of the ORC2 protein towards the start site.
Collapse
Affiliation(s)
- Gulnara Abdurashidova
- International Centre for Genetic Engineering and Biotechnology, Padriciano 99, I-34012 Trieste, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
100
|
Vashee S, Cvetic C, Lu W, Simancek P, Kelly TJ, Walter JC. Sequence-independent DNA binding and replication initiation by the human origin recognition complex. Genes Dev 2003; 17:1894-908. [PMID: 12897055 PMCID: PMC196240 DOI: 10.1101/gad.1084203] [Citation(s) in RCA: 232] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
We report that a highly purified human origin recognition complex (HsORC) has intrinsic DNA-binding activity, and that this activity is modestly stimulated by ATP. HsORC binds preferentially to synthetic AT-rich polydeoxynucleotides, but does not effectively discriminate between natural DNA fragments that contain known human origins and control fragments. The complex fully restores DNA replication to ORC-depleted Xenopus egg extracts, providing strong evidence for its initiator function. Strikingly, HsORC stimulates initiation from any DNA sequence, and it does not preferentially replicate DNA containing human origin sequences. These data provide a biochemical explanation for the observation that in metazoans, initiation of DNA replication often occurs in a seemingly random pattern, and they have important implications for the nature of human origins of DNA replication.
Collapse
Affiliation(s)
- Sanjay Vashee
- Institute for Biological Energy Alternatives, Rockville, Maryland 20850, USA
| | | | | | | | | | | |
Collapse
|