51
|
Wen YY, Wang XX, Pei DS, Zheng JN. p21-Activated kinase 5: a pleiotropic kinase. Bioorg Med Chem Lett 2013; 23:6636-9. [PMID: 24215894 DOI: 10.1016/j.bmcl.2013.10.051] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2013] [Revised: 10/08/2013] [Accepted: 10/23/2013] [Indexed: 02/03/2023]
Abstract
The PAKs (p21-activated kinases) are highly conserved serine/threonine protein kinases which comprise six mammalian PAKs. PAK5 (p21-activated kinase 5) is the least understood member of PAKs that regulate many intracellular processes when they are stimulated by activated forms of the small GTPases Cdc42 and Rac. PAK5 takes an important part in multiple signal pathways in mammalian cells and controls a variety of cellular functions including cytoskeleton organization, cell motility and apoptosis. The main goal of this review is to describe the structure, mechanisms underlying its activity regulation, its role in apoptosis and the likely directions of further research.
Collapse
Affiliation(s)
- Yi-Yang Wen
- Jiangsu Key Laboratory of Biological Cancer Therapy, Xuzhou Medical College, 84 West Huai-hai Road, Xuzhou 221002, Jiangsu, China
| | | | | | | |
Collapse
|
52
|
Liu X, Busby J, John C, Wei J, Yuan X, Lu ML. Direct interaction between AR and PAK6 in androgen-stimulated PAK6 activation. PLoS One 2013; 8:e77367. [PMID: 24130878 PMCID: PMC3795072 DOI: 10.1371/journal.pone.0077367] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2013] [Accepted: 09/02/2013] [Indexed: 01/14/2023] Open
Abstract
A p21-activated kinase 6 (PAK6) was previously identified to be an androgen receptor (AR) interacting protein through a yeast two-hybrid screening. We used hormone responsive prostate cancer LAPC4 and LNCap cell lines as models to study the signaling events associated with androgen stimulation and PAK6. An androgen-stimulated PAK6 kinase activation was observed in LAPC4 cells expressing endogenous PAK6 and in LNCap cells ectopically expressing a wild type PAK6. This activation was likely mediated through a direct interaction between AR and PAK6 since siRNA knock-down of AR in LAPC4 cells downregulated androgen-stimulated PAK6 activation. In addition, LNCap cells expressing a non-AR-interacting PAK6 mutant exhibited dampened androgen-stimulated kinase activation. As a consequence of androgen-stimulated activation, PAK6 was phosphorylated at multiple serine/threonine residues including the AR-interacting domain of PAK6. Furthermore, androgen-stimulation promoted prostate cancer cell motility and invasion were demonstrated in LNCap cells ectopically expressing PAK6-WT. In contrast, LNCap expressing non-AR-interacting mutant PAK6 did not respond to androgen stimulation with increased cell motility and invasion. Our results demonstrate that androgen-stimulated PAK6 activation is mediated through a direct interaction between AR and PAK6 and PAK6 activation promotes prostate cancer cells motility and invasion.
Collapse
Affiliation(s)
- Xia Liu
- Urologic Research, Brigham and Women's Hospital, Department of Surgery, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Jennifer Busby
- Department of Molecular Therapeutics, Scripps South Florida, Jupiter, Florida, United States of America
| | - Ciny John
- Department of Biomedical Science, Florida Atlantic University, Boca Raton, Florida, United States of America
| | - Jianning Wei
- Department of Biomedical Science, Florida Atlantic University, Boca Raton, Florida, United States of America
| | - Xin Yuan
- Division of Hematology-Oncology, Beth Israel Deaconess Medical Center, Department of Medicine, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Michael L. Lu
- Department of Biomedical Science, Florida Atlantic University, Boca Raton, Florida, United States of America
- * E-mail:
| |
Collapse
|
53
|
Lathrop KL, Steketee MB. Mitochondrial Dynamics in Retinal Ganglion Cell Axon Regeneration and Growth Cone Guidance. JOURNAL OF OCULAR BIOLOGY 2013; 1:9. [PMID: 24616897 PMCID: PMC3946936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Failed axon regeneration and retinal ganglion cell (RGC) death after trauma or disease, including glaucomatous and mitochondrial optic neuropathies, are increasingly linked to mitochondrial dysfunction. Mitochondria are highly dynamic organelles whose size, organization, and function are regulated by a balance between mitochondrial fission and fusion. Mitochondria are ubiquitous in axonal growth cones both in vitro and in vivo and during development and regeneration. However, the roles that mitochondrial fission and fusion dynamics play in the growth cone during axon regeneration are largely unstudied. Here we discuss recent data suggesting mitochondria in the distal axon and growth cone play a central role in axon growth by integrating intrinsic axon growth states with signaling from extrinsic cues. Mitochondrial fission and fusion are intrinsically regulated in the distal axon in the growth cones of acutely purified embryonic and postnatal RGCs with differing intrinsic axon growth potentials. These differences in fission and fusion correlate with differences in mitochondrial bioenergetics; embryonic RGCs with high intrinsic axon growth potential rely more on glycolysis whereas RGCs with low intrinsic axon growth potential rely more on oxidative phosphorylation. Mitochondrial fission and fusion are also differentially modulated by KLFs that either promote or suppress intrinsic axon growth, and altering the balance between mitochondrial fission and fusion can differentially regulate axon growth rate and growth cone guidance responses to both inhibitory and permissive guidance cues.
Collapse
Affiliation(s)
- Kira L. Lathrop
- Department of Ophthalmology, University of Pittsburgh, Pittsburgh, PA, USA
- Swanson School of Engineering, Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA
| | - Michael B. Steketee
- Department of Ophthalmology, University of Pittsburgh, Pittsburgh, PA, USA
- Center for Neuroscience, University of Pittsburgh, Pittsburgh, PA, USA
- Louis J. Fox Center for Vision Restoration, University of Pittsburgh, Pittsburgh, PA, USA
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
54
|
Downregulation of PAK5 inhibits glioma cell migration and invasion potentially through the PAK5-Egr1-MMP2 signaling pathway. Brain Tumor Pathol 2013; 31:234-41. [PMID: 24062079 DOI: 10.1007/s10014-013-0161-1] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2013] [Accepted: 08/19/2013] [Indexed: 12/29/2022]
Abstract
PAK5 (p21 activated kinase 5) is upregulated in human colorectal carcinoma cells and is a known tumor promoter in carcinogenesis of the colon. Little is known regarding the mechanisms underlying the downstream targets of PAK5, and information concerning its biological significance in glioma is lacking. In this study, we investigated the effects of PAK5 on proliferation, migration, invasion, and apoptosis in human U87 and U251 glioma cells and examined the underlying molecular mechanism. We performed cell growth assays and cell cycle analysis to observe the cell proliferation. Flow cytometry analysis was performed to evaluate apoptosis, and in vitro scratch assays, cell migration assays, and gelatin zymography were performed to examine cell migration. Western blot analysis was performed to examine signal transduction in the cells. We demonstrated that suppression of PAK5 in glioma cells significantly inhibited cell migration and invasion. We also observed that suppression of PAK5 in human glioma cell lines inhibited cell growth because of G1 phase arrest. Additionally, flow cytometry and Western blot analysis indicated that PAK5 could inhibit cell apoptosis. These results suggest that the PAK5-Egr1-MMP2 signaling pathway is involved in tumor progression and may have a potential role in cancer prevention and treatment.
Collapse
|
55
|
Fernald K, Kurokawa M. Evading apoptosis in cancer. Trends Cell Biol 2013; 23:620-33. [PMID: 23958396 DOI: 10.1016/j.tcb.2013.07.006] [Citation(s) in RCA: 406] [Impact Index Per Article: 33.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2013] [Revised: 07/16/2013] [Accepted: 07/17/2013] [Indexed: 12/12/2022]
Abstract
Carcinogenesis is a mechanistically complex and variable process with a plethora of underlying genetic causes. Cancer development comprises a multitude of steps that occur progressively starting with initial driver mutations leading to tumorigenesis and, ultimately, metastasis. During these transitions, cancer cells accumulate a series of genetic alterations that confer on the cells an unwarranted survival and proliferative advantage. During the course of development, however, cancer cells also encounter a physiologically ubiquitous cellular program that aims to eliminate damaged or abnormal cells: apoptosis. Thus, it is essential that cancer cells acquire instruments to circumvent programmed cell death. Here we discuss emerging evidence indicating how cancer cells adopt various strategies to override apoptosis, including amplifying the antiapoptotic machinery, downregulating the proapoptotic program, or both.
Collapse
Affiliation(s)
- Kaleigh Fernald
- Department of Pharmacology and Toxicology, Geisel School of Medicine at Dartmouth, Hanover, NH 03755, USA
| | | |
Collapse
|
56
|
Shin YJ, Kim EH, Roy A, Kim JH. Evidence for a novel mechanism of the PAK1 interaction with the Rho-GTPases Cdc42 and Rac. PLoS One 2013; 8:e71495. [PMID: 23936510 PMCID: PMC3731272 DOI: 10.1371/journal.pone.0071495] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2013] [Accepted: 07/03/2013] [Indexed: 12/15/2022] Open
Abstract
P21-activated kinase 1 (PAK1) is activated by binding to GTP-bound Rho GTPases Cdc42 and Rac via its CRIB domain. Here, we provide evidence that S79 in the CRIB domain of PAK1 is not directly involved in this binding but is crucial for PAK1 activation. S79A mutation reduces the binding affinity of PAK1 for the GTPases and inhibits autophosphorylation and kinase activity of PAK1. Thus, this mutation abrogates the ability of PAK1 to induce changes in cell morphology and motility and to promote malignant transformation of prostate epithelial cells. We also show that growth of the prostate cancer cell line PC3 is inhibited by the treatment of a PAK1-inhibiting peptide comprising 19 amino acids centered on S79, but not by the PAK1 peptide containing the S79A mutation, and that this growth inhibition is correlated with reduced autophosphorylation activity of PAK1. Together, these findings demonstrate a significant role of S79 in PAK1 activation and provide evidence for a novel mechanism of the CRIB-mediated interaction of PAK1 with Cdc42 and Rac.
Collapse
Affiliation(s)
- Yong Jae Shin
- Department of Biochemistry and Molecular Medicine, The George Washington University Medical Center, Washington, D.C., United of States of America
| | - Eun Hye Kim
- Department of Biochemistry and Molecular Medicine, The George Washington University Medical Center, Washington, D.C., United of States of America
| | - Adhiraj Roy
- Department of Biochemistry and Molecular Medicine, The George Washington University Medical Center, Washington, D.C., United of States of America
| | - Jeong-Ho Kim
- Department of Biochemistry and Molecular Medicine, The George Washington University Medical Center, Washington, D.C., United of States of America
- * E-mail:
| |
Collapse
|
57
|
Li D, Yao X, Zhang P. The overexpression of P21-activated kinase 5 (PAK5) promotes paclitaxel-chemoresistance of epithelial ovarian cancer. Mol Cell Biochem 2013; 383:191-9. [PMID: 23877225 DOI: 10.1007/s11010-013-1767-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2012] [Accepted: 07/10/2013] [Indexed: 12/28/2022]
Abstract
P21-activated kinase 5 (PAK5) is the recently identified member of the group II p21-activated kinases (PAKs) family, which is characterized by a highly conserved amino-terminal Cdc42/Rac interactive binding domain and a carboxyl terminal kinase domain. However, the role of PAK5 in gynecological cancers has not been evaluated so far. It is remarkable that we found PAK5 was overexpressed in epithelial ovarian cancer (EOC), which is faced with an obstacle of paclitaxel resistance. Therefore, in this study, we aim to examine the PAK5 expression during EOC progression, the role of PAK5 in malignant progression of EOC and the probable relationship between PAK5 and EOC paclitaxel resistance. By immunohistochemistry, our results showed that PAK5 expression was increased with EOC progression through the adenoma to carcinoma sequence, with the highest expression level in invasive and metastatic EOCs. Furthermore, the expression level of PAK5 was also found to increase in accordance with the development of EOC Federation International of Gynecology and Obstetrics stages (P = 0.038) and differentiation grades (P = 0.008). Remarkably, those patients who recurred within 6 months after accepting tumor reductive surgery and the following carboplatin + paclitaxel chemotherapy had the highest PAK5 expression (P = 0.015). Moreover, in in vitro studies, we found that SK-OV-3 cell growth was decreased while paclitaxel chemosensitivity was correspondingly increased with the down-regulation of PAK5. Taken together, our study demonstrated that PAK5 is correlated to human EOC and increased PAK5 expression promotes EOC progression, and PAK5 regulates EOC cell paclitaxel chemoresistance.
Collapse
Affiliation(s)
- Diyou Li
- Department of Gynecology, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200092, People's Republic of China
| | | | | |
Collapse
|
58
|
Wang XX, Cheng Q, Zhang SN, Qian HY, Wu JX, Tian H, Pei DS, Zheng JN. PAK5-Egr1-MMP2 signaling controls the migration and invasion in breast cancer cell. Tumour Biol 2013; 34:2721-9. [PMID: 23696025 DOI: 10.1007/s13277-013-0824-x] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2013] [Accepted: 04/26/2013] [Indexed: 12/19/2022] Open
Abstract
p21-activated kinases (PAKs) are activated by various extracellular stimuli and, in turn, activate other kinases by phosphorylating them at specific serine/threonine residues or through protein-protein interaction. As a recently identified member of the group B PAK family, the role of PAK5 in cancer is poorly understood. In this study, we investigated the effect of PAK5 on the malignant phenotype, such as proliferation, cell cycle, apoptosis, migration, and invasion. Cell growth assay and cell cycle analysis consistently showed that knockdown of PAK5 could significantly inhibit the proliferation of breast cancer cells. Wound healing assay. migration assay, and invasion assay showed that PAK5 promoted cell migration. Furthermore, in order to elucidate the underlying mechanism of PAK5 on cellular growth and migration, we examined the protein expressions of cyclin D1, p21, early growth response protein 1 (Egr1), and matrix metalloproteinase 2 (MMP2). Our work further reveals the PAK5-Egr1-MMP2 signaling pathway to be a critical regulator of cell migration and invasion. These results suggest that PAK5 may be a potential therapeutic target for breast cancer.
Collapse
Affiliation(s)
- Xiao-Xia Wang
- Jiangsu Key Laboratory of Biological Cancer Therapy, Xuzhou Medical College, 84 West Huai-hai Road, Xuzhou, Jiangsu, 221002, China
| | | | | | | | | | | | | | | |
Collapse
|
59
|
Schmidt EM, Schmid E, Münzer P, Hermann A, Eyrich AK, Russo A, Walker B, Gu S, vom Hagen JM, Faggio C, Schaller M, Föller M, Schöls L, Gawaz M, Borst O, Storch A, Stournaras C, Lang F. Chorein sensitivity of cytoskeletal organization and degranulation of platelets. FASEB J 2013; 27:2799-806. [PMID: 23568775 DOI: 10.1096/fj.13-229286] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Chorea-acanthocytosis (ChAc), a lethal disease caused by defective chorein, is characterized by neurodegeneration and erythrocyte acanthocytosis. The functional significance of chorein in other cell types remained ill-defined. The present study revealed chorein expression in blood platelets. As compared to platelets from healthy volunteers, platelets from patients with ChAc displayed a 47% increased globular/filamentous actin ratio, indicating actin depolymerization. Moreover, phosphoinositide-3-kinase subunit p85 phosphorylation, p21 protein-activated kinase (PAK1) phosphorylation, as well as vesicle-associated membrane protein 8 (VAMP8) expression were significantly reduced in platelets from patients with ChAc (by 17, 22, and 39%, respectively) and in megakaryocytic (MEG-01) cells following chorein silencing (by 16, 54, and 11%, respectively). Activation-induced platelet secretion from dense granules (ATP release) and α granules (P-selectin exposure) were significantly less (by 55% after stimulation with 1 μg/ml CRP and by 33% after stimulation with 5 μM TRAP, respectively) in ChAc platelets than in control platelets. Furthermore, platelet aggregation following stimulation with different platelet agonists was significantly impaired. These observations reveal a completely novel function of chorein, i.e., regulation of secretion and aggregation of blood platelets.
Collapse
Affiliation(s)
- Eva-Maria Schmidt
- Department of Physiology, University of Tübingen, Gmelinstrasse 5, 72076 Tübingen, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
60
|
Dart AE, Wells CM. P21-activated kinase 4--not just one of the PAK. Eur J Cell Biol 2013; 92:129-38. [PMID: 23642861 DOI: 10.1016/j.ejcb.2013.03.002] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2013] [Revised: 03/24/2013] [Accepted: 03/25/2013] [Indexed: 12/18/2022] Open
Abstract
P21-activated kinase 4 (PAK4) is a member of the p21-activated kinase (PAK) family. Historically much of the attention has been directed towards founding family member PAK1 but the focus is now shifting towards PAK4. It is a pluripotent serine/threonine kinase traditionally recognised as a downstream effector of the Rho-family GTPases. However, emerging research over the last few years has revealed that this kinase is much more than that. New findings have shed light on the molecular mechanism of PAK4 activation and how this kinase is critical for early development. Moreover, the number of PAK4 substrates and binding partners is rapidly expanding highlighting the increasing amount of cellular functions controlled by PAK4. We propose that PAK4 should be considered a signalling integrator regulating numerous fundamental cellular processes, including actin cytoskeletal dynamics, cell morphology and motility, cell survival, embryonic development, immune defence and oncogenic transformation. This review will outline our current understanding of PAK4 biology.
Collapse
Affiliation(s)
- Anna E Dart
- Division of Cancer Studies, New Hunts House, Guy's Campus, King's College London, London SE1 1UL, UK
| | | |
Collapse
|
61
|
Gu J, Li K, Li M, Wu X, Zhang L, Ding Q, Wu W, Yang J, Mu J, Wen H, Ding Q, Lu J, Hao Y, Chen L, Zhang W, Li S, Liu Y. A role for p21-activated kinase 7 in the development of gastric cancer. FEBS J 2012; 280:46-55. [PMID: 23106939 DOI: 10.1111/febs.12048] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2012] [Revised: 09/29/2012] [Accepted: 10/19/2012] [Indexed: 01/14/2023]
Abstract
p21-activated kinase (PAK)7 (also known as PAK5) is a member of the group B PAK family of serine/threonine protein kinases, which are effectors of the small GTPases Rac and CDC42. PAK7 can promote neurite outgrowth, induce microtubule stabilization, and activate cell survival signaling pathways. However, the role of PAK7 in cancer is still poorly understood. Here, we showed that PAK7 expression was upregulated in different gastric cancer cell lines and gastric cancer tissues, as compared with human embryonic kidney 293 cells and adjacent normal tissues, respectively. The results suggested that PAK7 expression was related to gastric cancer progression. Thus, we employed lentivirus-mediated small interfering RNA to inhibit PAK7 expression, to investigate the role of PAK7 in human gastric carcinogenesis. RNA interference efficiently downregulated expression of PAK7 in SGC-7901 and MGC-803 cells at both mRNA and protein levels. Knockdown of PAK7 inhibited human gastric cancer cell proliferation by inducing cell cycle arrest in G(0)/G(1) phase, in concordance with the downregulation of CDK2, CDC25A, and cyclin D1. Our data suggest that PAK7 is a new hallmark of gastric cancer, in which PAK7 might contribute to gain of tumor growth potential, acting by affecting the expression of cell cycle regulators. Therefore, PAK7 may be an attractive candidate as a therapeutic target in gastric cancer.
Collapse
Affiliation(s)
- Jun Gu
- Department of General Surgery, Xinhua Hospital, Affiliated to School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
62
|
Srivastava N, Robichaux MA, Chenaux G, Henkemeyer M, Cowan CW. EphB2 receptor forward signaling controls cortical growth cone collapse via Nck and Pak. Mol Cell Neurosci 2012; 52:106-16. [PMID: 23147113 DOI: 10.1016/j.mcn.2012.11.003] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2012] [Revised: 10/03/2012] [Accepted: 11/02/2012] [Indexed: 02/08/2023] Open
Abstract
EphB receptors and their ephrinB ligands transduce bidirectional signals that mediate contact-dependent axon guidance primarily by promoting growth cone repulsion. However, how EphB receptor-mediated forward signaling induces axonal repulsion remains poorly understood. Here, we identify Nck and Pak proteins as essential forward signaling components of EphB2-dependent growth cone collapse in cortical neurons. We show that kinase-active EphB2 binds to Pak and promotes growth cone repulsion via Pak kinase activity, Pak-Nck binding, RhoA signaling and endocytosis. However, Pak's function in this context appears to be independent of Rac/Cdc42-GTP, consistent with the absence of Rac-GTP production after ephrinB treatment of cortical neurons. Taken together, our findings suggest that ephrinB-activated EphB2 receptors recruit a novel Nck/Pak signaling complex to mediate repulsive cortical growth cone guidance, which may be relevant for EphB forward signaling-dependent axon guidance in vivo.
Collapse
Affiliation(s)
- Nishi Srivastava
- Department of Psychiatry, The University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, United States
| | | | | | | | | |
Collapse
|
63
|
He H, Baldwin GS. p21-activated kinases and gastrointestinal cancer. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2012; 1833:33-9. [PMID: 23092728 DOI: 10.1016/j.bbamcr.2012.10.015] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2012] [Revised: 10/15/2012] [Accepted: 10/15/2012] [Indexed: 12/19/2022]
Abstract
p21-activated kinases (PAKs) were initially identified as effector proteins downstream from GTPases of the Rho family. To date, six members of the PAK family have been discovered in mammalian cells. PAKs play important roles in growth factor signalling, cytoskeletal remodelling, gene transcription, cell proliferation and oncogenic transformation. A large body of research has demonstrated that PAKs are up-regulated in several human cancers, and that their overexpression is linked to tumour progression and resistance to therapy. Structural and biochemical studies have revealed the mechanisms involved in PAK signalling, and opened the way to the development of PAK-targeted therapies for cancer treatment. Here we summarise recent findings from biological and clinical research on the role of PAKs in gastrointestinal cancer, and discuss the current status of PAK-targeted anticancer therapies.
Collapse
Affiliation(s)
- Hong He
- Department of Surgery, University of Melbourne, Austin Health, Melbourne, Victoria, Australia
| | | |
Collapse
|
64
|
Law SHW, Sargent TD. Maternal pak4 expression is required for primitive myelopoiesis in zebrafish. Mech Dev 2012; 130:181-94. [PMID: 23032194 DOI: 10.1016/j.mod.2012.09.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2012] [Accepted: 09/21/2012] [Indexed: 01/08/2023]
Abstract
Transcripts of pak4, the zebrafish ortholog of p21-activated kinase 4 (PAK4), are most abundant in the egg and fall to low levels by the end of gastrulation, after which expression is essentially ubiquitous. Translation of maternal mRNA into pak4 protein is first detectable at high stage (3.3hpf). Splice-blocking morpholino oligonucleotides (MOs) were used to prevent zygotic pak4 expression. This had no discernable effect on development through larval stages. In contrast, a translation-blocking MO, alone or in combination with the splice MOs, resulted in a complex lethal phenotype. In addition to disrupted somite development and other morphogenetic abnormalities, the knockdown of maternal pak4 expression led to alterations in regulatory gene expression in the primitive hematopoietic domains, leading to deficiencies in granulocyte and leukocyte lineages. At least some of the effects of pak4 knockdown on gene expression could be mimicked by treatment with actin depolymerization agents, suggesting a mechanistic link between regulation of microfilament dynamics by pak4 and regulation of gene expression in primitive myeloid cell differentiation.
Collapse
Affiliation(s)
- Sheran H W Law
- Section on Vertebrate Development, Program on Genomics of Differentiation, Eunice Kennedy Shriver National Institute of Child Health and Development, National Institutes of Health, Bethesda, MD, USA
| | | |
Collapse
|
65
|
Type II p21-activated kinases (PAKs) are regulated by an autoinhibitory pseudosubstrate. Proc Natl Acad Sci U S A 2012; 109:16107-12. [PMID: 22988085 DOI: 10.1073/pnas.1214447109] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
The type II p21-activated kinases (PAKs) are key effectors of RHO-family GTPases involved in cell motility, survival, and proliferation. Using a structure-guided approach, we discovered that type II PAKs are regulated by an N-terminal autoinhibitory pseudosubstrate motif centered on a critical proline residue, and that this regulation occurs independently of activation loop phosphorylation. We determined six X-ray crystal structures of either full-length PAK4 or its catalytic domain, that demonstrate the molecular basis for pseudosubstrate binding to the active state with phosphorylated activation loop. We show that full-length PAK4 is constitutively autoinhibited, but mutation of the pseudosubstrate releases this inhibition and causes increased phosphorylation of the apoptotic regulation protein Bcl-2/Bcl-X(L) antagonist causing cell death and cellular morphological changes. We also find that PAK6 is regulated by the pseudosubstrate region, indicating a common type II PAK autoregulatory mechanism. Finally, we find Src SH3, but not β-PIX SH3, can activate PAK4. We provide a unique understanding for type II PAK regulation.
Collapse
|
66
|
Force-induced apoptosis mediated by the Rac/Pak/p38 signalling pathway is regulated by filamin A. Biochem J 2012; 445:57-67. [PMID: 22489840 DOI: 10.1042/bj20112119] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Cells in mechanically challenged environments cope with high-amplitude exogenous forces that can lead to cell death, but the mechanisms that mediate force-induced apoptosis and the identity of mechanoprotective cellular factors are not defined. We assessed apoptosis in NIH 3T3 and HEK (human embryonic kidney)-293 cells exposed to tensile forces applied through β1-integrins. Apoptosis was mediated by Rac-dependent activation of p38α. Depletion of Pak1 (p21-activated kinase 1), a downstream effector of Rac, prevented force-induced p38 activation and apoptosis. Rac was recruited to sites of force transfer by filamin A, which inhibited force-induced apoptosis mediated by Rac and p38α. We conclude that, in response to tensile force, filamin A regulates Rac-dependent signals, which induce apoptosis through Pak1 and p38.
Collapse
|
67
|
Chang KH, Sanchez-Aguilera A, Shen S, Sengupta A, Madhu MN, Ficker AM, Dunn SK, Kuenzi AM, Arnett JL, Santho RA, Agirre X, Perentesis JP, Deininger MW, Zheng Y, Bustelo XR, Williams DA, Cancelas JA. Vav3 collaborates with p190-BCR-ABL in lymphoid progenitor leukemogenesis, proliferation, and survival. Blood 2012; 120:800-11. [PMID: 22692505 PMCID: PMC3412345 DOI: 10.1182/blood-2011-06-361709] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2011] [Accepted: 05/29/2012] [Indexed: 11/20/2022] Open
Abstract
Despite the introduction of tyrosine kinase inhibitor therapy, the prognosis for p190-BCR-ABL(+) acute lymphoblastic leukemia remains poor. In the present study, we present the cellular and molecular roles of the Rho GTPase guanine nucleotide exchange factor Vav in lymphoid leukemogenesis and explore the roles of Vav proteins in BCR-ABL-dependent signaling. We show that genetic deficiency of the guanine nucleotide exchange factor Vav3 delays leukemogenesis by p190-BCR-ABL and phenocopies the effect of Rac2 deficiency, a downstream effector of Vav3. Compensatory up-regulation of expression and activation of Vav3 in Vav1/Vav2-deficient B-cell progenitors increases the transformation ability of p190-BCR-ABL. Vav3 deficiency induces apoptosis of murine and human leukemic lymphoid progenitors, decreases the activation of Rho GTPase family members and p21-activated kinase, and is associated with increased Bad phosphorylation and up-regulation of Bax, Bak, and Bik. Finally, Vav3 activation only partly depends on ABL TK activity, and Vav3 deficiency collaborates with tyrosine kinase inhibitors to inhibit CrkL activation and impair leukemogenesis in vitro and in vivo. We conclude that Vav3 represents a novel specific molecular leukemic effector for multitarget therapy in p190-BCR-ABL-expressing acute lymphoblastic leukemia.
Collapse
Affiliation(s)
- Kyung Hee Chang
- Division of Experimental Hematology, Cincinnati Children's Research Foundation, Cincinnati Children's Hospital Medical Center, Cincinnati, OH
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
68
|
The phosphorylation-dependent regulation of mitochondrial proteins in stress responses. JOURNAL OF SIGNAL TRANSDUCTION 2012; 2012:931215. [PMID: 22848813 PMCID: PMC3403084 DOI: 10.1155/2012/931215] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/22/2012] [Accepted: 06/10/2012] [Indexed: 12/22/2022]
Abstract
To maintain cellular homeostasis, cells are equipped with precise systems that trigger the appropriate stress responses. Mitochondria not only provide cellular energy but also integrate stress response signaling pathways, including those regulating cell death. Several lines of evidence suggest that the mitochondrial proteins that function in this process, such as Bcl-2 family proteins in apoptosis and phosphoglycerate mutase family member 5 (PGAM5) in necroptosis, are regulated by several kinases. It has also been suggested that the phosphorylation-dependent regulation of mitochondrial fission machinery, dynamin-related protein 1 (Drp1), facilitates appropriate cellular stress responses. However, mitochondria themselves are also damaged by various stresses. To avoid the deleterious effects exerted by damaged mitochondria, cells remove these mitochondria in a selective autophagic degradation process called mitophagy. Interestingly, several kinases, such as PTEN-induced putative kinase 1 (PINK1) in mammals and stress-responsive mitogen-activated protein (MAP) kinases in yeast, have recently been shown to be involved in mitophagy. In this paper, we focus on the phosphorylation-dependent regulation of mitochondrial proteins and discuss the roles of this regulation in the mitochondrial and cellular stress responses.
Collapse
|
69
|
Gough SM, Chung YJ, Aplan PD. Depletion of cytotoxic T-cells does not protect NUP98-HOXD13 mice from myelodysplastic syndrome but reveals a modest tumor immunosurveillance effect. PLoS One 2012; 7:e36876. [PMID: 22606303 PMCID: PMC3350481 DOI: 10.1371/journal.pone.0036876] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2012] [Accepted: 04/13/2012] [Indexed: 12/20/2022] Open
Abstract
Myelodysplastic syndrome (MDS) and aplastic anemia (AA) patients both present with symptoms of bone marrow failure. In many AA patients, these features are thought to result from an oligoclonal expansion of cytotoxic T-cells that destroy haematopoietic stem or progenitor cells. This notion is supported by the observation that AA patients respond to immunosuppressive therapy. A fraction of MDS patients also respond well to immunosuppressive therapy suggesting a similar role for cytotoxic T-cells in the etiology of MDS, however the role of cytotoxic T-cells in MDS remains unclear. Mice that express a NUP98-HOXD13 (NHD13) transgene develop a MDS that closely mimics the human condition in terms of dysplasia, ineffective hematopoiesis, and transformation to acute myeloid leukemia (AML). We followed a cohort of NHD13 mice lacking the Rag1 protein (NHD13/Rag1KO) to determine if the absence of lymphocytes might 1) delay the onset and/or diminish the severity of the MDS, or 2) effect malignant transformation and survival of the NHD13 mice. No difference was seen in the onset or severity of MDS between the NHD13 and NHD13/Rag1KO mice. However, NHD13/Rag1KO mice had decreased survival and showed a trend toward increased incidence of transformation to AML compared to the NHD13 mice, suggesting protection from AML transformation by a modest immuno-surveillance effect. In the absence of functional Tcrb signaling in the NHD13/Rag1KO T-cell tumors, Pak7 was identified as a potential Tcrb surrogate survival signal.
Collapse
MESH Headings
- Animals
- Cell Survival/genetics
- Cell Survival/immunology
- Disease Models, Animal
- Genes, T-Cell Receptor beta
- Homeodomain Proteins/genetics
- Homeodomain Proteins/immunology
- Humans
- Immunologic Surveillance
- Leukemia, Experimental/etiology
- Leukemia, Experimental/immunology
- Leukemia, Experimental/pathology
- Lymphocyte Depletion
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Mice, Transgenic
- Myelodysplastic Syndromes/etiology
- Myelodysplastic Syndromes/immunology
- Myelodysplastic Syndromes/pathology
- Myelodysplastic Syndromes/therapy
- Oncogene Proteins, Fusion/genetics
- Oncogene Proteins, Fusion/immunology
- T-Lymphocytes/immunology
- T-Lymphocytes/pathology
- T-Lymphocytes, Cytotoxic/immunology
- p21-Activated Kinases/immunology
Collapse
Affiliation(s)
- Sheryl M. Gough
- Leukemia Biology Section, Genetics Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Yang Jo Chung
- Leukemia Biology Section, Genetics Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Peter D. Aplan
- Leukemia Biology Section, Genetics Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States of America
- * E-mail:
| |
Collapse
|
70
|
Identification of neuronal substrates implicates Pak5 in synaptic vesicle trafficking. Proc Natl Acad Sci U S A 2012; 109:4116-21. [PMID: 22371566 DOI: 10.1073/pnas.1116560109] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Synaptic transmission is mediated by a complex set of molecular events that must be coordinated in time and space. While many proteins that function at the synapse have been identified, the signaling pathways regulating these molecules are poorly understood. Pak5 (p21-activated kinase 5) is a brain-specific isoform of the group II Pak kinases whose substrates and roles within the central nervous system are largely unknown. To gain insight into the physiological roles of Pak5, we engineered a Pak5 mutant to selectively radiolabel its substrates in murine brain extract. Using this approach, we identified two novel Pak5 substrates, Pacsin1 and Synaptojanin1, proteins that directly interact with one another to regulate synaptic vesicle endocytosis and recycling. Pacsin1 and Synaptojanin1 were phosphorylated by Pak5 and the other group II Paks in vitro, and Pak5 phosphorylation promoted Pacsin1-Synaptojanin1 binding both in vitro and in vivo. These results implicate Pak5 in Pacsin1- and Synaptojanin1-mediated synaptic vesicle trafficking and may partially account for the cognitive and behavioral deficits observed in group II Pak-deficient mice.
Collapse
|
71
|
Li Y, Shao Y, Tong Y, Shen T, Zhang J, Li Y, Gu H, Li F. Nucleo-cytoplasmic shuttling of PAK4 modulates β-catenin intracellular translocation and signaling. BIOCHIMICA ET BIOPHYSICA ACTA 2012; 1823:465-75. [PMID: 22173096 DOI: 10.1016/j.bbamcr.2011.11.013] [Citation(s) in RCA: 111] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2011] [Revised: 11/08/2011] [Accepted: 11/29/2011] [Indexed: 01/15/2023]
Abstract
The canonical Wnt/β-catenin signaling pathway plays a central role in development and cancer. The p21-activated kinase 4 (PAK4) involves in a wide range of cellular processes, including cytoskeletal reorganization, cell proliferation, gene transcription and oncogenic transformation. However, the cross talk between the Wnt and PAK4 signaling pathways is poorly understood. Here, we show that PAK4 is a nucleo-cytoplasmic shuttling protein, containing three nuclear export signals (NESs) and two nuclear localization signals (NLSs). PAK4 is exported by the chromosome region maintenance-1 (CRM-1)-dependent pathway and is imported into the nucleus in an importin α5-dependent manner. PAK4 interacts with and phosphorylates β-catenin on Ser675, which promotes the TCF/LEF transcriptional activity and stabilizes β-catenin through inhibition of its degradation. Moreover, nuclear import of PAK4 accompanies with the nuclear import of β-catenin and increased TCF/LEF transcriptional activity. We further demonstrated that PAK4 associates with the TCF/LEF transcriptional complex by ChIP assays. These findings uncover a novel role for PAK4 in modulating intracellular translocation and signaling of β-catenin.
Collapse
Affiliation(s)
- Yan Li
- Department of Cell Biology, Key Laboratory of Cell Biology, Ministry of Public Health, China Medical University, Shenyang, PR China
| | | | | | | | | | | | | | | |
Collapse
|
72
|
|
73
|
Föller M, Hermann A, Gu S, Alesutan I, Qadri SM, Borst O, Schmidt E, Schiele F, Hagen JMV, Saft C, Schöls L, Lerche H, Stournaras C, Storch A, Lang F. Chorein‐sensitive polymerization of cortical actin and suicidal cell death in chorea‐acanthocytosis. FASEB J 2012; 26:1526-34. [DOI: 10.1096/fj.11-198317] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Michael Föller
- Department of PhysiologyUniversity of TübingenTübingenGermany
| | - Andreas Hermann
- Division of Neurodegenerative DiseasesDepartment of NeurologyUniversity of TechnologyDresdenGermany
| | - Shuchen Gu
- Department of PhysiologyUniversity of TübingenTübingenGermany
| | - Ioana Alesutan
- Department of PhysiologyUniversity of TübingenTübingenGermany
| | - Syed M. Qadri
- Department of PhysiologyUniversity of TübingenTübingenGermany
| | - Oliver Borst
- Department of PhysiologyUniversity of TübingenTübingenGermany
| | | | - Franziska Schiele
- Department of NeurologyUniversity of TübingenTübingenGermany
- Hertie‐Institute for Clinical Brain ResearchUniversity of TübingenTübingenGermany
| | - Jennifer Müller vom Hagen
- Department of NeurologyUniversity of TübingenTübingenGermany
- Hertie‐Institute for Clinical Brain ResearchUniversity of TübingenTübingenGermany
| | - Carsten Saft
- Department of NeurologyRuhr UniversityBochumGermany
| | - Ludger Schöls
- Department of NeurologyUniversity of TübingenTübingenGermany
- Hertie‐Institute for Clinical Brain ResearchUniversity of TübingenTübingenGermany
- DZNEResearch Site TübingenTübingenGermany
| | - Holger Lerche
- Department of NeurologyUniversity of TübingenTübingenGermany
- Hertie‐Institute for Clinical Brain ResearchUniversity of TübingenTübingenGermany
| | | | - Alexander Storch
- Division of Neurodegenerative DiseasesDepartment of NeurologyUniversity of TechnologyDresdenGermany
- German Center for Neurodegenerative Diseases (DZNE)Research Site DresdenDresdenGermany
| | - Florian Lang
- Department of PhysiologyUniversity of TübingenTübingenGermany
| |
Collapse
|
74
|
Human embryonic stem cells express elevated levels of multiple pro-apoptotic BCL-2 family members. PLoS One 2011; 6:e28530. [PMID: 22174832 PMCID: PMC3235131 DOI: 10.1371/journal.pone.0028530] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2011] [Accepted: 11/09/2011] [Indexed: 01/06/2023] Open
Abstract
Two of the greatest challenges in regenerative medicine today remain (1) the ability to culture human embryonic stem cells (hESCs) at a scale sufficient to satisfy clinical demand and (2) the ability to eliminate teratoma-forming cells from preparations of cells with clinically desirable phenotypes. Understanding the pathways governing apoptosis in hESCs may provide a means to address these issues. Limiting apoptosis could aid scaling efforts, whereas triggering selective apoptosis in hESCs could eliminate unwanted teratoma-forming cells. We focus here on the BCL-2 family of proteins, which regulate mitochondrial-dependent apoptosis. We used quantitative PCR to compare the steady-state expression profile of all human BCL-2 family members in hESCs with that of human primary cells from various origins and two cancer lines. Our findings indicate that hESCs express elevated levels of the pro-apoptotic BH3-only BCL-2 family members NOXA, BIK, BIM, BMF and PUMA when compared with differentiated cells and cancer cells. However, compensatory expression of pro-survival BCL-2 family members in hESCs was not observed, suggesting a possible explanation for the elevated rates of apoptosis observed in proliferating hESC cultures, as well as a mechanism that could be exploited to limit hESC-derived neoplasms.
Collapse
|
75
|
Ye DZ, Jin S, Zhuo Y, Field J. p21-Activated kinase 1 (Pak1) phosphorylates BAD directly at serine 111 in vitro and indirectly through Raf-1 at serine 112. PLoS One 2011; 6:e27637. [PMID: 22096607 PMCID: PMC3214075 DOI: 10.1371/journal.pone.0027637] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2010] [Accepted: 10/21/2011] [Indexed: 12/17/2022] Open
Abstract
Background Cell survival depends on the balance between protective and apoptotic signals. When the balance of signals tips towards apoptosis, cells undergo programmed cell death. This balance has profound implications in diseases including cancer. Oncogenes and tumor suppressors are mutated to promote cell survival during tumor development, and many chemotherapeutic drugs kill tumor cells by stimulating apoptosis. BAD is a pro-apoptotic member of the Bcl-2 family of proteins, which can be phosphorylated on numerous sites to modulate binding to Bcl-2 and 14-3-3 proteins and inhibit its pro-apoptotic activities. One of the critical phosphorylation sites is the serine 112 (S112), which can be phosphorylated by several kinases including Pak1. Methodology/Principal Findings We mapped the Pak phosphorylation sites by making serine to alanine mutations in BAD and testing them as substrates in in vitro kinase assays. We found that the primary phosphorylation site is not S112 but serine 111 (S111), a site that is sometimes found phosphorylated in vivo. In transfection assays of HEK293T cells, we showed that Pak1 required Raf-1 to stimulate phosphorylation on S112. Mutating either S111 or S112 to alanine enhanced binding to Bcl-2, but the double mutant S111/112A bound better to Bcl-2. Moreover, BAD phosphorylation at S111 was observed in several other cell lines, and treating one of them with the Pak1 inhibitor 2,2′-Dihydroxy-1,1′-dinaphthyldisulfide (IPA-3) reduced phosphorylation primarily at S112 and to a smaller extent at S111, while Raf inhibitors only reduced phosphorylation at S112. Conclusion/Significance Together, these findings demonstrate that Pak1 phosphorylates BAD directly at S111, but phosphorylated S112 through Raf-1. These two sites of BAD serve as redundant regulatory sites for Bcl-2 binding.
Collapse
Affiliation(s)
- Diana Z. Ye
- Department of Pharmacology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Shenghao Jin
- Department of Pharmacology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Ya Zhuo
- Department of Pharmacology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Jeffrey Field
- Department of Pharmacology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|
76
|
Hadad M, Bresler-Musikant T, Neuman-Silberberg FS. Drosophila spoonbill encodes a dual-specificity A-kinase anchor protein essential for oogenesis. Mech Dev 2011; 128:471-82. [PMID: 21983075 DOI: 10.1016/j.mod.2011.09.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2011] [Revised: 08/25/2011] [Accepted: 09/23/2011] [Indexed: 01/07/2023]
Abstract
spoonbill is a Drosophila female-sterile mutation, which interferes with normal egg patterning during oogenesis. Previous analyzes linked the mutation to a number of seemingly unrelated pathways, including GRK/EGFR and DPP, two major pathways essential for Drosophila and vertebrate development. Further work suggested that spoonbill may also function in actin polymerization and border-cell migration. Here we describe the molecular cloning of the spoonbill gene and characterize new mutant alleles, further demonstrating that spoonbill's function is essential during oogenesis. We found spoonbill to be allelic to CG3249 (also known as yu), which encodes the only known dual-specificity A-kinase anchor protein in Drosophila. Our data indicate that similar to mammalian AKAPs, Spoonbill protein contains a number of potential kinase and phosphatase binding motifs, and is targeted, in the ovary, to mitochondria and Golgi. Finally, we address some of spoonbill's mutant phenotypes from the perspective of the published data on the AKAP protein family.
Collapse
Affiliation(s)
- Meytal Hadad
- Department of Virology and Developmental Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | | | | |
Collapse
|
77
|
Takeda K, Naguro I, Nishitoh H, Matsuzawa A, Ichijo H. Apoptosis signaling kinases: from stress response to health outcomes. Antioxid Redox Signal 2011; 15:719-61. [PMID: 20969480 DOI: 10.1089/ars.2010.3392] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Apoptosis is a highly regulated process essential for the development and homeostasis of multicellular organisms. Whereas caspases, a large family of intracellular cysteine proteases, play central roles in the execution of apoptosis, other proapoptotic and antiapoptotic regulators such as the members of the Bcl-2 family are also critically involved in the regulation of apoptosis. A large body of evidence has revealed that a number of protein kinases are among such regulators and regulate cellular sensitivity to various proapoptotic signals at multiple steps in apoptosis. However, recent progress in the analysis of these apoptosis signaling kinases demonstrates that they generally act as crucial regulators of diverse cellular responses to a wide variety of stressors, beyond their roles in apoptosis regulation. In this review, we have cataloged apoptosis signaling kinases involved in cellular stress responses on the basis of their ability to induce apoptosis and discuss their roles in stress responses with particular emphasis on health outcomes upon their dysregulation.
Collapse
Affiliation(s)
- Kohsuke Takeda
- Laboratory of Cell Signaling, Graduate School of Pharmaceutical Sciences, Strategic Approach to Drug Discovery and Development in Pharmaceutical Sciences, Global Center of Excellence Program and Core Research for Evolutional Science and Technology, Japan Science and Technology Corporation, The University of Tokyo, Tokyo, Japan.
| | | | | | | | | |
Collapse
|
78
|
Ruwanpura SM, McLeod L, Miller A, Jones J, Bozinovski S, Vlahos R, Ernst M, Armes J, Bardin PG, Anderson GP, Jenkins BJ. Interleukin-6 promotes pulmonary emphysema associated with apoptosis in mice. Am J Respir Cell Mol Biol 2011; 45:720-30. [PMID: 21297079 DOI: 10.1165/rcmb.2010-0462oc] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
The IL-6 cytokine family, which signals via the shared gp130 coreceptor, is linked with the pathogenesis of emphysema. However, the definitive mechanisms by which these cytokines cause emphysema remain ill-defined. We took an in vivo genetic complementation approach to identify the specific IL-6 cytokine family members and gp130-regulated cellular processes that cause emphysema. We used gp130(F/F) mice homozygous for a subtle knock-in mutation in gp130 that deregulates intracellular signaling by the IL-6 cytokine family. The gp130(F/F) mice spontaneously develop emphysema by age 6 months. Within the IL-6 cytokine family, only IL-6 was significantly up-regulated in the lungs of gp130(F/F) mice, and the genetic targeting of IL-6 in gp130(F/F) mice (gp130(F/F):IL-6(-/-)) prevented emphysema. By contrast, the genetic ablation of receptor signaling via IL-11, which like IL-6 signals via a gp130 homodimer and uses the same signaling machinery, failed to ameliorate emphysema in gp130(F/F) mice. Among the disease-associated processes examined, emphysema strongly correlated with elevated alveolar cell apoptosis. Acute (4-day) exposure to cigarette smoke (CS) further augmented the expression of IL-6 in lungs of gp130(F/F) mice, and subchronic (6-week) exposure to CS exacerbated emphysematous and apoptotic changes in the lungs of gp130(F/F) but not gp130(F/F): IL-6(-/-) mice. IL-6 is the main causative agent of IL-6 cytokine family-induced emphysema, and operates to induce apoptosis in the lung. We propose that the discrete targeting of IL-6 signaling may provide an effective therapeutic strategy against human lung disease.
Collapse
Affiliation(s)
- Saleela M Ruwanpura
- Centre for Innate Immunity and Infectious Diseases, Monash Institute of Medical Research, Monash University, 27-31 Wright Street, Clayton 3168, Victoria, Australia
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
79
|
Wong LE, Reynolds AB, Dissanayaka NT, Minden A. p120-catenin is a binding partner and substrate for Group B Pak kinases. J Cell Biochem 2010; 110:1244-54. [PMID: 20564219 DOI: 10.1002/jcb.22639] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Pak5 is a member of the Group B p21-activated kinases, which are effectors of the Rho family GTPases Cdc42 and Rac. Pak5 has been shown to promote cytoskeletal reorganization, inducing filopodia formation and neurite outgrowth in neuroblastoma cells. In this study, we used affinity chromatography followed by SDS-PAGE and mass spectrometry to identify potential downstream effectors of Pak5. Using this approach, we isolated p120-catenin (p120), a known regulator of cytoskeletal reorganization and Rho GTPases. Using co-immunoprecipitation assays we found that p120 preferentially interacts with Pak5 among the Group B Paks. Results from immunofluorescence studies revealed that Pak5 and p120 co-localize in cells. Both Pak5 and constitutively active Pak4, the founding member of the Group B Paks, directly phosphorylate p120 in vitro. The phosphorylation was shown by Western blot and immunofluorescence to take place specifically on serine 288. This study is the first report of an upstream serine/threonine kinase that phosphorylates p120.
Collapse
Affiliation(s)
- Lisa Epstein Wong
- Susan Lehman Cullman Laboratory for Cancer Research, Department of Chemical Biology, Ernest Mario School of Pharmacy at Rutgers, The State University of New Jersey, Piscataway, New Jersey 08854, USA
| | | | | | | |
Collapse
|
80
|
p21-activated kinase 5 inhibits camptothecin-induced apoptosis in colorectal carcinoma cells. Tumour Biol 2010; 31:575-82. [PMID: 20567954 DOI: 10.1007/s13277-010-0071-3] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2010] [Accepted: 06/08/2010] [Indexed: 12/27/2022] Open
Abstract
p21-activated kinase 5 (PAK5) is a recently identified member of the group B PAK family. The PAK proteins are effectors of the small GTPase Cdc42 and Rac1 and are known to regulate cell motility and activate cell-survival signaling pathways. Especially, the mitochondrial localization of PAK5 is vital to its effects on apoptosis and cell survival. Previously, we demonstrated that PAK5 expression increased significantly during the malignant progression of colorectal carcinoma (CRC) and that PAK5 promoted CRC metastasis by regulating CRC cell adhesion and migration. In the present study, we aim to investigate the role of PAK5 in camptothecin-induced apoptosis and its potential mechanism of action. Our results showed that overexpression of PAK5 inhibited camptothecin-induced apoptosis by inhibiting the activity of caspase-8 in CRC cells. Accordingly, knockdown of PAK5 in LoVo cells resulted in increased apoptosis. Mechanistically, we found that PAK5 directly phosphorylated Bad on serine 112 and indirectly led to phosphorylation of serine 136 via the Akt pathway. In conclusion, our study revealed previously unappreciated inhibitory role of PAK5 in camptothecin-induced apoptosis, thus suggesting PAK5 as a novel therapeutic target in CRC.
Collapse
|
81
|
Abstract
IMPORTANCE OF THE FIELD Gastric cancer is one of the most common causes of cancer death worldwide. P21-activated kinases (PAKs), regulators of cancer-cell signalling networks, play fundamental roles in a range of cellular processes through their binding partners or kinase substrates. AREAS COVERED IN THIS REVIEW The complex regulation of PAKs through their upstream or downstream effectors in human cancers, especially in gastric cancer, are described and the identified inhibitors of PAKs are summarized. WHAT THE READERS WILL GAIN The structural differences and activation mechanisms between two subgroups of PAK are described. Both groups of PAKs play complicated and important roles in human gastric cancer, which indicated a possible way for us to identify the specific inhibitors targeting PAKs for gastric cancer. TAKE HOME MESSAGE PAKs play important roles in progression of many cancer types, the full mechanisms of PAKs in gastric cancer are still unclear. It seems there are different roles for two groups of PAKs in cancers. Group I PAKs play their functions mostly through their specific substrates, however, many binding partners that are independent of phosphorylation by group II PAKs were identified. Finding specific inhibitors of PAKs will help us discover the roles of PAKs and target these kinases in human gastric cancer.
Collapse
Affiliation(s)
- Xiaodong Li
- Department of Cell Biology, China Medical University, Key Laboratory of Cell Biology, Ministry of Public Health, Shenyang, Liaoning 110001, P. R. China.
| | | | | |
Collapse
|
82
|
Zhang M, Siedow M, Saia G, Chakravarti A. Inhibition of p21-activated kinase 6 (PAK6) increases radiosensitivity of prostate cancer cells. Prostate 2010; 70:807-16. [PMID: 20054820 PMCID: PMC2860659 DOI: 10.1002/pros.21114] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
BACKGROUND p21-activated kinase 6 (PAK6) is a serine/threonine kinase belonging to the p21-activated kinase (PAK) family. We investigated the role of PAK6 in radiation-induced cell death in human prostate cancer cells. METHODS We used a short hairpin RNA (shRNA) strategy to stably knock down PAK6 in PC3 and DU145 cells. Radiation sensitivities were compared in PAK6 stably knockdown cells versus the scrambled shRNA-expressing control cells. RESULTS PAK6 mRNA and protein levels in PC3 and DU145 cells were upregulated upon exposure to 6 Gy of radiation. After irradiation, an increased percentage of apoptotic cells and cleaved caspase-3 levels were demonstrated in combination with a decrease in cell viability and a reduction in clonogenic survival in PAK6-knockdown cells. In addition, transfection with PAK6 shRNA blocked cells in a more radiosensitive G2-M phase and increased levels of DNA double-strand breaks. We further explored the potential mechanisms by which PAK6 mediates resistance to radiation-induced apoptosis. Inhibition of PAK6 caused a decrease in Ser(112) phosphorylation of BAD, a proapoptotic member of the Bcl-2 family, which led to enhanced binding of BAD to Bcl-2 and Bcl-X(L) and release of cytochrome c culminating into caspase activation and cell apoptosis. CONCLUSIONS The combination of PAK6 inhibition and irradiation resulted in significantly decreased survival of prostate cancer cells. The underlying mechanisms by which targeting PAK6 may improve radiation response seem to be multifaceted, and involve alterations in cell cycle distribution and impaired DNA double-strand break repair as well as relieved BAD phosphorylation.
Collapse
Affiliation(s)
- Min Zhang
- Department of Radiation Oncology, The Ohio State University Medical School, Columbus, Ohio, USA
| | | | | | | |
Collapse
|
83
|
Gad AK, Aspenström P. Rif proteins take to the RhoD: Rho GTPases at the crossroads of actin dynamics and membrane trafficking. Cell Signal 2010; 22:183-9. [DOI: 10.1016/j.cellsig.2009.10.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2009] [Accepted: 10/01/2009] [Indexed: 01/03/2023]
|
84
|
Abstract
The current 5-year survival rate of pancreatic cancer is about 3% and the median survival less than 6 months because the chemotherapy and radiation therapy presently available provide only marginal benefit. Clearly, pancreatic cancer requires new therapeutic concepts. Recently, the kinase inhibitors imatinib and gefitinib, developed to treat chronic myelogenous leukaemia and breast cancer, respectively, gave very good results. Kinases are deregulated in many diseases, including cancer. Given that phosphorylation controls cell survival signalling, strategies targeting kinases should obviously improve cancer treatment. The purpose of this review is to summarize the present knowledge on kinases potentially usable as therapeutic targets in the treatment of pancreatic cancer. All clinical trials using available kinase inhibitors in monotherapy or in combination with chemotherapeutic drugs failed to improve survival of patients with pancreatic cancer. To detect kinases relevant to this disease, we undertook a systematic screening of the human kinome to define a 'survival kinase' catalogue for pancreatic cells. We selected 56 kinases that are potential therapeutic targets in pancreatic cancer. Preclinical studies using combined inhibition of PAK7, MAP3K7 and CK2 survival kinases in vitro and in vivo showed a cumulative effect on apoptosis induction. We also observed that these three kinases are rather specific of pancreatic cancer cells. In conclusion, if kinase inhibitors presently available are unfortunately not efficient for treating pancreatic cancer, recent data suggest that inhibitors of other kinases, involved more specifically in pancreatic cancer development, might, in the future, become interesting therapeutic targets.
Collapse
Affiliation(s)
- Valentin Giroux
- INSERM U624, Stress Cellulaire, Parc Scientifique et Technologique de Luminy, Marseille Cedex 9, France
| | | | | |
Collapse
|
85
|
Abstract
The Rho-family GTPases Rho Rac and Cdc42 regulate many intracellular processes through their interaction with downstream effector proteins. The PAKs (p21-activated kinases) are a family of effector proteins for Rac and Cdc42. PAKs are important regulators of actin cytoskeletal dynamics, neurite outgrowth, cell survival, hormone signalling and gene transcription. There are six mammalian PAKs that can be divided into two groups: group I PAKs (PAK1-3) and group II PAKs (PAK4-6). Although the two PAK groups are architecturally similar, there are differences in their mode of regulation, suggesting that their cellular functions are likely to be different. Whereas much is known about group I PAKs, less is known about the more recently discovered PAK4, PAK5 and PAK6. This review will focus on the latest structural and functional results relating to the group II PAKs and discuss the emerging importance of group II PAKs in disease progression.
Collapse
|
86
|
Deruelle MJ, De Corte N, Englebienne J, Nauwynck HJ, Favoreel HW. Pseudorabies virus US3-mediated inhibition of apoptosis does not affect infectious virus production. J Gen Virol 2010; 91:1127-32. [PMID: 20053819 DOI: 10.1099/vir.0.015297-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Preventing apoptosis during the early stages of infection of a host cell is generally thought to result in a higher yield of progeny virus. The US3 protein kinase of pseudorabies virus (PRV) and herpes simplex virus (HSV) is able to protect infected cells from apoptosis, which may be one of the reasons why both US3null PRV and US3null HSV replicate to lower virus titres in several cell types. However, such potential correlation between the higher amount of apoptosis in US3null virus-infected cells and the lower virus titres of US3null virus has not been investigated directly. In the current study, we found that a broad-spectrum caspase-inhibitor efficiently inhibited apoptosis in swine testicle and human laryngeal epidermoid carcinoma cells infected with US3null or wild-type (WT) PRV. However, inhibition of apoptosis did not affect US3null or WT PRV extracellular or cell-associated virus titres, nor did it restore the small plaque phenotype of US3null PRV.
Collapse
Affiliation(s)
- Matthias J Deruelle
- Department of Virology, Parasitology, and Immunology, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium
| | | | | | | | | |
Collapse
|
87
|
Abstract
The BH3-only pro-apoptotic proteins are upstream sensors of cellular damage that selectively respond to specific, proximal death and survival signals. Genetic models and biochemical studies indicate that these molecules are latent killers until activated through transcriptional or post-translational mechanisms in a tissue-restricted and signal-specific manner. The large number of BH3-only proteins, their unique subcellular localization, protein-interaction network and diverse modes of activation suggest specialization of their damage-sensing function, ensuring that the core apoptotic machinery is poised to receive input from a wide range of cellular stress signals. The apoptotic response initiated by the activation of BH3-only proteins ultimately culminates in allosteric activation of pro-apoptotic BAX and BAK, the gateway proteins to the mitochondrial pathway of apoptosis. From activation of BH3-only proteins to oligomerization of BAX and BAK and mitochondrial outer membrane permeabilization, an intricate network of interactions between the pro- and anti-apoptotic members of the BCL-2 family orchestrates the decision to undergo apoptosis. Beyond regulation of apoptosis, multiple BCL-2 proteins have recently emerged as active components of select homeostatic pathways carrying other cellular functions. This review focuses on BAD, which was the first BH3-only protein linked to proximal survival signals through phosphorylation by survival kinases. In addition to findings that delineated the physiological role of BAD in apoptosis and its dynamic regulation by phosphorylation, studies pointing to new roles for this protein in other physiological pathways, such as glucose metabolism, are highlighted. By executing its 'day' and 'night' jobs in metabolism and apoptosis, respectively, BAD helps coordinate mitochondrial fuel metabolism and the apoptotic machinery.
Collapse
|
88
|
Abstract
Angiogenesis recapitulates the growth of blood vessels that progressively expand and remodel into a highly organized and stereotyped vascular network. During adulthood, endothelial cells that formed the vascular wall retain their plasticity and can be engaged in neo-vascularization in response to physiological stimuli, such as hypoxia, wound healing and tissue repair, ovarian cycle and pregnancy. In addition, numerous human diseases and pathological conditions are characterized by an excessive, uncontrolled and aberrant angiogenesis. The signalling pathways involving the small Rho GTPase, Rac and its downstream effector the p21-activated serine/threonine kinase (PAK) had recently emerged as pleiotropic modulators in these processes. Indeed, Rac and PAK were found to modulate endothelial cell biology, such as sprouting, migration, polarity, proliferation, lumen formation, and maturation. Elucidating the Rac/PAK molecular circuitry will provide essential information for the development of new therapeutic agents designed to normalize the blood vasculature in human diseases.
Collapse
|
89
|
Abstract
Some of the characteristics of cancer cells are high rates of cell proliferation, cell survival, and the ability to invade surrounding tissue. The cytoskeleton has an essential role in these processes. Dynamic changes in the cytoskeleton are necessary for cell motility and cancer cells are dependent on motility for invasion and metastasis. The signaling pathways behind the reshaping and migrating properties of the cytoskeleton in cancer cells involve a group of Ras-related small GTPases and their effectors, including the p21-activated kinases (Paks). Paks are a family of serine/threonine protein kinases comprised of six isoforms (Pak 1-6), all of which are direct targets of the small GTPases Rac and Cdc42. Besides their role in cytoskeletal dynamics, Paks have recently been shown to regulate various other cellular activities, including cell survival, mitosis, and transcription. Paks are overexpressed and/or hyperactivated in several human tumors and their role in cell transformation makes them attractive therapeutic targets. Pak-targeted therapeutics may efficiently inhibit certain types of tumors and efforts to identify selective Pak-inhibitors are underway.
Collapse
Affiliation(s)
- Bettina Dummler
- Department of Pharmacology, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA
| | | | | | | |
Collapse
|
90
|
Gong W, An Z, Wang Y, Pan X, Fang W, Jiang B, Zhang H. P21-activated kinase 5 is overexpressed during colorectal cancer progression and regulates colorectal carcinoma cell adhesion and migration. Int J Cancer 2009; 125:548-55. [PMID: 19415746 DOI: 10.1002/ijc.24428] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
P21-activated kinase 5 (PAK5) is the recently identified member of the group B p21-activated kinase (PAK) family which are effectors of the small GTPase Cdc42 and Rac1, known to regulate cell motility and activate cell-survival signaling pathways. However, overexpression of PAK5 has not been associated with any cancers so far. Interestingly, we found that PAK5 was overexpressed in a variety of colorectal carcinoma (CRC) cell lines in a Western-blotting examination. Therefore, in this study, we aim to examine the PAK5 expression during CRC progression and to answer if PAK5 is involved in malignant progression of CRC. By immunohistochemistry, our results showed that PAK5 expression was increased with CRC progression through the adenoma to carcinoma sequence, with the most significant increases in invasive and metastatic CRCs (p < 0.0001). Furthermore, increased PAK5 expression was also found with the development of CRC from lower Duke's grades to higher ones (p < 0.01). Moreover, PAK5 was also increased from well to poorly differentiated CRCs (p < 0.01). Using gain and loss of function experiments, we found that PAK5 reduced CRC cell adhesion but promoted their migration on collagen type I. Taken together, our study demonstrated that PAK5 expression increased significantly with malignant progression of CRC and that PAK5 might promote CRC metastasis by regulating CRC cell adhesion and migration.
Collapse
Affiliation(s)
- Wei Gong
- Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|
91
|
Molli PR, Li DQ, Brion M, Rayala SK, Kumar R. PAK signaling in oncogenesis. Oncogene 2009; 28:2545-55. [PMID: 19465939 PMCID: PMC2731678 DOI: 10.1038/onc.2009.119] [Citation(s) in RCA: 194] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2008] [Revised: 03/23/2009] [Accepted: 04/08/2009] [Indexed: 12/24/2022]
Abstract
The p21-activated kinase (PAK) family of serine/threonine kinases is important in physiological processes including motility, survival, mitosis, transcription and translation. PAKs are evolutionally conserved and widely expressed in a variety of tissues and are often overexpressed in multiple cancer types. Depending on structural and functional similarities, the six members of PAK family are divided into two groups with three members in each group. Group I PAKs are activated by extracellular signals through GTPase-dependent and GTPase-independent mechanisms. In contrast, group II PAKs are constitutively active. Over the years, accumulating data from tissue culture models and human tumors has increased our understanding about the biology of PAK family members. In this review, we have summarized the complex regulation of PAK and its downstream diverse myriads of effectors, which in turn are responsible for the biological effects of PAK family of kinases in cancer cells.
Collapse
Affiliation(s)
- Poonam R. Molli
- Department of Biochemistry and Molecular Biology, George Washington University Medical Center, Washington DC 20037, USA
| | - Da-Qiang Li
- Department of Biochemistry and Molecular Biology, George Washington University Medical Center, Washington DC 20037, USA
| | - Murray Brion
- Pfizer Global Research and Development, La Jolla Laboratories, 10646 Science Center Drive, San Diego, CA 92121
| | - Suresh K. Rayala
- Department of Biochemistry and Molecular Biology, George Washington University Medical Center, Washington DC 20037, USA
| | - Rakesh Kumar
- Department of Biochemistry and Molecular Biology, George Washington University Medical Center, Washington DC 20037, USA
| |
Collapse
|
92
|
Abstract
The p21-activated kinases (PAKs) are signaling nodes that play a crucial role in cellular processes including cell motility, differentiation, survival, gene transcription, and hormone signaling. PAKs are highly conserved family of serine-threonine kinases that act as effector for small GTPases Rac and Cdc42. Most of our knowledge about PAK functions has been derived from genetic approaches in lower organisms and many of these functions are similar to that seen in mammalian cells. In this review, we have summarized the extensive information generated in lower eukaryotes and very briefly discussed the current status of PAKs in humans.
Collapse
Affiliation(s)
- Anupam Kumar
- Department of Biochemistry and Molecular Biology, George Washington University Medical Center, Washington DC 20037, USA
| | - Poonam R. Molli
- Department of Biochemistry and Molecular Biology, George Washington University Medical Center, Washington DC 20037, USA
| | - Suresh B. Pakala
- Department of Biochemistry and Molecular Biology, George Washington University Medical Center, Washington DC 20037, USA
| | - Tri Bui Nguyen
- Department of Biochemistry and Molecular Biology, George Washington University Medical Center, Washington DC 20037, USA
| | - Suresh K. Rayala
- Department of Biochemistry and Molecular Biology, George Washington University Medical Center, Washington DC 20037, USA
| | - Rakesh Kumar
- Department of Biochemistry and Molecular Biology, George Washington University Medical Center, Washington DC 20037, USA
| |
Collapse
|
93
|
Giroux V, Iovanna JL, Garcia S, Dagorn JC. Combined inhibition of PAK7, MAP3K7 and CK2alpha kinases inhibits the growth of MiaPaCa2 pancreatic cancer cell xenografts. Cancer Gene Ther 2009; 16:731-40. [PMID: 19363471 DOI: 10.1038/cgt.2009.22] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
A panel of kinases whose inhibition increased apoptosis of pancreatic adenocarcinoma cells in vitro was recently established. The aim of this work was to observe in a mouse xenograft model whether inhibition of these kinases would alter pancreatic tumor growth. Rate of apoptosis, caspase-3 activity and cell viability were assessed in two pancreatic cancer cell lines, MiaPaCa2 and BxPC3, after inhibiting selected kinases by transfection of specific siRNAs. For in vivo experiments, MiaPaCa2 cells were injected into the pancreas of nude mice, where they formed tumors. Inhibition of kinases was obtained by repeated intraperitoneal (i.p.) injections of modified O-Methyl (OMe) siRNAs specific for the selected kinases. Tumor volumes were assessed after 21 days. Among selected kinases, PAK7, MAP3K7 and CK2alpha were those whose inhibition increased apoptosis the most in vitro. Simultaneous inhibition of two of them increased apoptosis up to five times. Moreover, inhibiting these kinases had little effect on 10 non-pancreatic cell lines, suggesting pancreatic specificity. In vivo, OMe-siRNAs induced significant but incomplete inhibition of kinase expression (45-75%). Nevertheless, such inhibition resulted in a twofold increase in caspase-3 activity in tumors and a strong reduction in tumor volume (about 75%). In vivo inhibition by OMe-siRNAs of three survival kinases apparently specific for pancreatic cancer cells, PAK7, MAP3K7 and CK2alpha, decreases significantly the growth of xenografted MiaPaCa2 cells. This strategy is therefore of potential clinical interest.
Collapse
Affiliation(s)
- V Giroux
- Centre de Recherche INSERM, Unité 624, Stress Cellulaire, Université de la Méditerranée, Case 915 Parc Scientifique de Luminy, Marseille 13288 Cedex 9, France
| | | | | | | |
Collapse
|
94
|
Luo S, Rubinsztein DC. Huntingtin promotes cell survival by preventing Pak2 cleavage. J Cell Sci 2009; 122:875-85. [PMID: 19240112 PMCID: PMC2714430 DOI: 10.1242/jcs.050013] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/20/2008] [Indexed: 11/20/2022] Open
Abstract
Huntington's disease is caused by a polyglutamine expansion in the huntingtin protein. Wild-type huntingtin, by contrast, appears to protect cells from pro-apoptotic insults. Here we describe a novel anti-apoptotic function for huntingtin. When cells are exposed to Fas-related signals, the ubiquitously expressed p21-activated kinase 2 (Pak2) can be activated via cleavage by caspases to release a constitutively active C-terminal fragment, which mediates cell death. Our data show that huntingtin interacts with Pak2. Overexpression of huntingtin significantly inhibits caspase-3-mediated and caspase-8-mediated cleavage of Pak2 in cells. Moreover, huntingtin prevents Pak2 cleavage by caspase-3 and caspase-8 in vitro. Although huntingtin is cytoprotective in wild-type cells that are exposed to TNFalpha, it has no significant benefit in TNFalpha-treated cells with Pak2 knockdown. Thus, huntingtin exerts anti-apoptotic effects by binding to Pak2, which reduces the abilities of caspase-3 and caspase-8 to cleave Pak2 and convert it into a mediator of cell death.
Collapse
Affiliation(s)
- Shouqing Luo
- Department of Medical Genetics, Cambridge Institute for Medical Research, Wellcome/MRC Building, Addenbrooke's Hospital, Hills Road, Cambridge CB2 0XY, UK
| | | |
Collapse
|
95
|
Wu X, Carr HS, Dan I, Ruvolo PP, Frost JA. p21 activated kinase 5 activates Raf-1 and targets it to mitochondria. J Cell Biochem 2008; 105:167-75. [PMID: 18465753 PMCID: PMC2575069 DOI: 10.1002/jcb.21809] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Raf-1 is an important effector of Ras mediated signaling and is a critical regulator of the ERK/MAPK pathway. Raf-1 activation is controlled in part by phosphorylation on multiple residues, including an obligate phosphorylation site at serine 338. Previously PAK1 and casein kinase II have been implicated as serine 338 kinases. To identify novel kinases that phosphorylate this site, we tested the ability of group II PAKs (PAKs 4-6) to control serine 338 phosphorylation. We observed that all group II PAKs were efficient serine 338 kinases, although only PAK1 and PAK5 significantly stimulated Raf-1 kinase activity. We also showed that PAK5 forms a tight complex with Raf-1 in the cell, but not A-Raf or B-Raf. Importantly, we also demonstrated that the association of Raf-1 with PAK5 targets a subpopulation of Raf-1 to mitochondria. These data indicate that PAK5 is a potent regulator of Raf-1 activity and may control Raf-1 dependent signaling at mitochondria.
Collapse
Affiliation(s)
- Xiaochong Wu
- Department of Integrative Biology and Pharmacology, University of Texas Health Science Center at Houston, 6431 Fannin St., Houston, TX 77030
| | - Heather S. Carr
- Department of Integrative Biology and Pharmacology, University of Texas Health Science Center at Houston, 6431 Fannin St., Houston, TX 77030
| | - Ippeita Dan
- CREST and Department of Biological Science, Nagoya University, Chikusa-ku, Nagoya 464-8602, Japan
| | - Peter P. Ruvolo
- Center for Cell Signaling, Institute for Molecular Medicine, University of Texas Health Science Center at Houston, Houston, Texas 77030
| | - Jeffrey A. Frost
- Department of Integrative Biology and Pharmacology, University of Texas Health Science Center at Houston, 6431 Fannin St., Houston, TX 77030
| |
Collapse
|
96
|
UnPAKing the class differences among p21-activated kinases. Trends Biochem Sci 2008; 33:394-403. [PMID: 18639460 DOI: 10.1016/j.tibs.2008.06.002] [Citation(s) in RCA: 97] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2008] [Revised: 06/03/2008] [Accepted: 06/04/2008] [Indexed: 12/24/2022]
Abstract
The p21-activated kinases (PAKs) are signal transducers, central to many vital cellular processes, including cell morphology, motility, survival, gene transcription and hormone signalling. The mammalian PAK family contains six serine/threonine kinases divided into two subgroups, group I (PAK 1-3) and group II (PAK4-6), based on their domain architecture and regulation. PAKs functioning as dynamic signalling nodes present themselves as attractive therapeutic targets in tumours, neurological diseases and infection. The recent findings across all PAKs, including newly reported structures, shed light on the cellular functions of PAKs, highlighting molecular mechanisms of activation, catalysis and substrate specificity. We believe that a comprehensive understanding of the entire PAK family is essential for developing strategies towards PAK-targeted therapeutics.
Collapse
|
97
|
Nekrasova T, Jobes ML, Ting JH, Wagner GC, Minden A. Targeted disruption of the Pak5 and Pak6 genes in mice leads to deficits in learning and locomotion. Dev Biol 2008; 322:95-108. [PMID: 18675265 DOI: 10.1016/j.ydbio.2008.07.006] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2007] [Revised: 06/12/2008] [Accepted: 07/07/2008] [Indexed: 11/26/2022]
Abstract
PAK6 is a member of the group B family of PAK serine/threonine kinases, and is highly expressed in the brain. The group B PAKs, including PAK4, PAK5, and PAK6, were first identified as effector proteins for the Rho GTPase Cdc42. They have important roles in filopodia formation, the extension of neurons, and cell survival. Pak4 knockout mice die in utero, and the embryos have several abnormalities, including a defect in the development of motor neurons. In contrast, Pak5 knockout mice do not have any noticeable abnormalities. So far nothing is known about the biological function of Pak6. To address this, we have deleted the Pak6 gene in mice. Since Pak6 and Pak5 are both expressed in the brain, we also generated Pak5/Pak6 double knockout mice. These mice were viable and fertile, but had several locomotor and behavioral deficits. Our results indicate that Pak5 and Pak6 together are not required for viability, but are required for a normal level of locomotion and activity as well as for learning and memory. This is consistent with a role for the group B PAKs in the nervous system.
Collapse
Affiliation(s)
- Tanya Nekrasova
- Susan Lehman Cullman Laboratory for Cancer Research, Department of Chemical Biology, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | | | | | | | | |
Collapse
|
98
|
Chan PM, Lim L, Manser E. PAK is regulated by PI3K, PIX, CDC42, and PP2Calpha and mediates focal adhesion turnover in the hyperosmotic stress-induced p38 pathway. J Biol Chem 2008; 283:24949-61. [PMID: 18586681 DOI: 10.1074/jbc.m801728200] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Fractionation of brain extracts and functional biochemical assays identified PP2Calpha, a serine/threonine phosphatase, as the major biochemical activity inhibiting PAK1. PP2Calpha dephosphorylated PAK1 and p38, both of which were activated upon hyperosmotic shock with the same kinetics. In comparison to growth factors, hyperosmolality was a more potent activator of PAK1. Therefore we characterize the PAK signaling pathway in the hyperosmotic shock response. Endogenous PAKs were recruited to the p38 kinase complex in a phosphorylation-dependent manner. Overexpression of a PAK inhibitory peptide or dominant negative Cdc42 revealed that p38 activation was dependent on PAK and Cdc42 activities. PAK mutants deficient in binding to Cdc42 or PAK-interacting exchange factor were not activated. Using a panel of kinase inhibitors, we identified PI3K acting upstream of PAK, which correlated with PAK repression by pTEN overexpression. RNA interference knockdown of PAK expression reduced stress-induced p38 activation and conversely, PP2Calpha knockdown increased its activation. Hyperosmotic stress-induced PAK translocation away from focal adhesions to the perinuclear compartment and resulted in disassembly of focal adhesions, which are hallmarks of PAK activation. Inhibition of PAK by overexpression of PP2Calpha or the kinase inhibitory domain prevented sorbitol-induced focal adhesion dissolution. Inhibition of MAPK pathways showed that MEK-ERK signaling but not p38 is required for full PAK activation and focal adhesion turnover. We conclude that 1) PAK plays a required role in hyperosmotic signaling through the PI3K/pTEN/Cdc42/PP2Calpha/p38 pathway, and 2) PAK and PP2Calpha modulate the effects of this pathway on focal adhesion dynamics.
Collapse
Affiliation(s)
- Perry M Chan
- GSK-IMCB Group, Institute of Molecular and Cell Biology, Proteos Building, 61 Biopolis Drive, Singapore 138673.
| | | | | |
Collapse
|
99
|
Deacon SW, Beeser A, Fukui JA, Rennefahrt UEE, Myers C, Chernoff J, Peterson JR. An isoform-selective, small-molecule inhibitor targets the autoregulatory mechanism of p21-activated kinase. ACTA ACUST UNITED AC 2008; 15:322-31. [PMID: 18420139 DOI: 10.1016/j.chembiol.2008.03.005] [Citation(s) in RCA: 307] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2007] [Revised: 02/25/2008] [Accepted: 03/03/2008] [Indexed: 01/28/2023]
Abstract
Autoregulatory domains found within kinases may provide more unique targets for chemical inhibitors than the conserved ATP-binding pocket targeted by most inhibitors. The kinase Pak1 contains an autoinhibitory domain that suppresses the catalytic activity of its kinase domain. Pak1 activators relieve this autoinhibition and initiate conformational rearrangements and autophosphorylation events leading to kinase activation. We developed a screen for allosteric inhibitors targeting Pak1 activation and identified the inhibitor IPA-3. Remarkably, preactivated Pak1 is resistant to IPA-3. IPA-3 also inhibits activation of related Pak isoforms regulated by autoinhibition, but not more distantly related Paks, nor >200 other kinases tested. Pak1 inhibition by IPA-3 in live cells supports a critical role for Pak in PDGF-stimulated Erk activation. These studies illustrate an alternative strategy for kinase inhibition and introduce a highly selective, cell-permeable chemical inhibitor of Pak.
Collapse
Affiliation(s)
- Sean W Deacon
- Basic Sciences Division, Fox Chase Cancer Center, Philadelphia, PA 19111, USA
| | | | | | | | | | | | | |
Collapse
|
100
|
Luo S, Mizuta H, Rubinsztein DC. p21-activated kinase 1 promotes soluble mutant huntingtin self-interaction and enhances toxicity. Hum Mol Genet 2008; 17:895-905. [PMID: 18065495 DOI: 10.1093/hmg/ddm362] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/30/2025] Open
Abstract
Huntington's disease (HD) is caused by a polyglutamine (polyQ) expansion in the huntingtin (htt) protein. While aggregation is a pathological hallmark of HD and related polyQ expansion diseases, the role of aggregates has been disputed. Here we report that p21-activated kinase 1 (Pak1) binds to htt in vivo and in vitro. Pak1 colocalized with mutant htt (muhtt) aggregates in cell models and in human HD brains. Pak1 overexpression enhanced the aggregation of muhtt. Furthermore, we observed SDS-soluble wild-type htt (wthtt)-wthtt, wthtt-muhtt and muhtt-muhtt interactions, which were enhanced by the presence of Pak1. We show that Pak1 overexpression enhanced htt toxicity in cell models and neurons in parallel with its ability to promote aggregation, while Pak1 knockdown suppressed both aggregation and toxicity. Overexpression of either kinase-dead or wild-type Pak enhanced both aggregation and toxicity. Our data reveal a novel mechanism regulating muhtt oligomerization and toxicity and suggest that pathology may be at least partly dependent on soluble muhtt-muhtt interactions.
Collapse
Affiliation(s)
- Shouqing Luo
- Department of Medical Genetics, Cambridge Institute for Medical Research, Wellcome/MRC Building, Addenbrooke's Hospital, Hills Road, Cambridge CB2 2XY, UK
| | | | | |
Collapse
|