51
|
Teruel M, Barturen G, Martínez-Bueno M, Castellini-Pérez O, Barroso-Gil M, Povedano E, Kerick M, Català-Moll F, Makowska Z, Buttgereit A, Pers JO, Marañón C, Ballestar E, Martin J, Carnero-Montoro E, Alarcón-Riquelme ME. Integrative epigenomics in Sjögren´s syndrome reveals novel pathways and a strong interaction between the HLA, autoantibodies and the interferon signature. Sci Rep 2021; 11:23292. [PMID: 34857786 PMCID: PMC8640069 DOI: 10.1038/s41598-021-01324-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 10/19/2021] [Indexed: 12/24/2022] Open
Abstract
Primary Sjögren's syndrome (SS) is a systemic autoimmune disease characterized by lymphocytic infiltration and damage of exocrine salivary and lacrimal glands. The etiology of SS is complex with environmental triggers and genetic factors involved. By conducting an integrated multi-omics study, we confirmed a vast coordinated hypomethylation and overexpression effects in IFN-related genes, what is known as the IFN signature. Stratified and conditional analyses suggest a strong interaction between SS-associated HLA genetic variation and the presence of Anti-Ro/SSA autoantibodies in driving the IFN epigenetic signature and determining SS. We report a novel epigenetic signature characterized by increased DNA methylation levels in a large number of genes enriched in pathways such as collagen metabolism and extracellular matrix organization. We identified potential new genetic variants associated with SS that might mediate their risk by altering DNA methylation or gene expression patterns, as well as disease-interacting genetic variants that exhibit regulatory function only in the SS population. Our study sheds new light on the interaction between genetics, autoantibody profiles, DNA methylation and gene expression in SS, and contributes to elucidate the genetic architecture of gene regulation in an autoimmune population.
Collapse
Affiliation(s)
- María Teruel
- GENYO, Center for Genomics and Oncological Research Pfizer/University of Granada/Andalusian Regional Government, 18016, Granada, Spain
| | - Guillermo Barturen
- GENYO, Center for Genomics and Oncological Research Pfizer/University of Granada/Andalusian Regional Government, 18016, Granada, Spain
| | - Manuel Martínez-Bueno
- GENYO, Center for Genomics and Oncological Research Pfizer/University of Granada/Andalusian Regional Government, 18016, Granada, Spain
| | - Olivia Castellini-Pérez
- GENYO, Center for Genomics and Oncological Research Pfizer/University of Granada/Andalusian Regional Government, 18016, Granada, Spain
| | - Miguel Barroso-Gil
- GENYO, Center for Genomics and Oncological Research Pfizer/University of Granada/Andalusian Regional Government, 18016, Granada, Spain
| | - Elena Povedano
- GENYO, Center for Genomics and Oncological Research Pfizer/University of Granada/Andalusian Regional Government, 18016, Granada, Spain
| | - Martin Kerick
- IPBLN-CSIC, Instituto de Parasitología y Biomedicina López-Neyra, Consejo Superior de Investigaciones Científicas, 18016, Granada, Spain
| | - Francesc Català-Moll
- Epigenetics and Immune Disease Group, Josep Carreras Research Institute (IJC), 08916, Badalona, Barcelona, Spain
- IDIBELL, Bellvitge Biomedical Research Institute 08907 L'Hospitalet de Llobregat, Barcelona, Spain
| | - Zuzanna Makowska
- Pharmaceuticals Division, Bayer Pharma Aktiengesellschaft, Berlin, Germany
| | - Anne Buttgereit
- Pharmaceuticals Division, Bayer Pharma Aktiengesellschaft, Berlin, Germany
| | | | - Concepción Marañón
- GENYO, Center for Genomics and Oncological Research Pfizer/University of Granada/Andalusian Regional Government, 18016, Granada, Spain
| | - Esteban Ballestar
- Epigenetics and Immune Disease Group, Josep Carreras Research Institute (IJC), 08916, Badalona, Barcelona, Spain
- IDIBELL, Bellvitge Biomedical Research Institute 08907 L'Hospitalet de Llobregat, Barcelona, Spain
| | - Javier Martin
- IPBLN-CSIC, Instituto de Parasitología y Biomedicina López-Neyra, Consejo Superior de Investigaciones Científicas, 18016, Granada, Spain
| | - Elena Carnero-Montoro
- GENYO, Center for Genomics and Oncological Research Pfizer/University of Granada/Andalusian Regional Government, 18016, Granada, Spain.
| | - Marta E Alarcón-Riquelme
- GENYO, Center for Genomics and Oncological Research Pfizer/University of Granada/Andalusian Regional Government, 18016, Granada, Spain.
- Institute for Environmental Medicine, Karolinska Institutet, 171 67, Solna, Sweden.
| |
Collapse
|
52
|
Marion MC, Ramos PS, Bachali P, Labonte AC, Zimmerman KD, Ainsworth HC, Heuer SE, Robl RD, Catalina MD, Kelly JA, Howard TD, Lipsky PE, Grammer AC, Langefeld CD. Nucleic Acid-Sensing and Interferon-Inducible Pathways Show Differential Methylation in MZ Twins Discordant for Lupus and Overexpression in Independent Lupus Samples: Implications for Pathogenic Mechanism and Drug Targeting. Genes (Basel) 2021; 12:genes12121898. [PMID: 34946847 PMCID: PMC8701117 DOI: 10.3390/genes12121898] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 11/22/2021] [Accepted: 11/25/2021] [Indexed: 12/27/2022] Open
Abstract
Systemic lupus erythematosus (SLE) is a chronic, multisystem, autoimmune inflammatory disease with genomic and non-genomic contributions to risk. We hypothesize that epigenetic factors are a significant contributor to SLE risk and may be informative for identifying pathogenic mechanisms and therapeutic targets. To test this hypothesis while controlling for genetic background, we performed an epigenome-wide analysis of DNA methylation in genomic DNA from whole blood in three pairs of female monozygotic (MZ) twins of European ancestry, discordant for SLE. Results were replicated on the same array in four cell types from a set of four Danish female MZ twin pairs discordant for SLE. Genes implicated by the epigenetic analyses were then evaluated in 10 independent SLE gene expression datasets from the Gene Expression Omnibus (GEO). There were 59 differentially methylated loci between unaffected and affected MZ twins in whole blood, including 11 novel loci. All but two of these loci were hypomethylated in the SLE twins relative to the unaffected twins. The genes harboring these hypomethylated loci exhibited increased expression in multiple independent datasets of SLE patients. This pattern was largely consistent regardless of disease activity, cell type, or renal tissue type. The genes proximal to CpGs exhibiting differential methylation (DM) in the SLE-discordant MZ twins and exhibiting differential expression (DE) in independent SLE GEO cohorts (DM-DE genes) clustered into two pathways: the nucleic acid-sensing pathway and the type I interferon pathway. The DM-DE genes were also informatically queried for potential gene–drug interactions, yielding a list of 41 drugs including a known SLE therapy. The DM-DE genes delineate two important biologic pathways that are not only reflective of the heterogeneity of SLE but may also correlate with distinct IFN responses that depend on the source, type, and location of nucleic acid molecules and the activated receptors in individual patients. Cell- and tissue-specific analyses will be critical to the understanding of genetic factors dysregulating the nucleic acid-sensing and IFN pathways and whether these factors could be appropriate targets for therapeutic intervention.
Collapse
Affiliation(s)
- Miranda C. Marion
- Department of Biostatistics and Data Science, Division of Public Health Sciences, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA; (M.C.M.); (H.C.A.)
- Center for Precision Medicine, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA;
| | - Paula S. Ramos
- Division of Rheumatology and Immunology, Department of Medicine, Medical University of South Carolina, Charleston, SC 29425, USA;
| | - Prathyusha Bachali
- AMPEL BioSolutions, LLC and RILITE Research Institute, Charlottesville, VA 22902, USA; (P.B.); (A.C.L.); (S.E.H.); (R.D.R.); (M.D.C.); (P.E.L.); (A.C.G.)
| | - Adam C. Labonte
- AMPEL BioSolutions, LLC and RILITE Research Institute, Charlottesville, VA 22902, USA; (P.B.); (A.C.L.); (S.E.H.); (R.D.R.); (M.D.C.); (P.E.L.); (A.C.G.)
| | - Kip D. Zimmerman
- Center for Precision Medicine, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA;
| | - Hannah C. Ainsworth
- Department of Biostatistics and Data Science, Division of Public Health Sciences, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA; (M.C.M.); (H.C.A.)
- Center for Precision Medicine, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA;
| | - Sarah E. Heuer
- AMPEL BioSolutions, LLC and RILITE Research Institute, Charlottesville, VA 22902, USA; (P.B.); (A.C.L.); (S.E.H.); (R.D.R.); (M.D.C.); (P.E.L.); (A.C.G.)
- The Jackson Laboratory, Tufts Graduate School of Biomedical Sciences, Bar Harbor, ME 04609, USA
| | - Robert D. Robl
- AMPEL BioSolutions, LLC and RILITE Research Institute, Charlottesville, VA 22902, USA; (P.B.); (A.C.L.); (S.E.H.); (R.D.R.); (M.D.C.); (P.E.L.); (A.C.G.)
| | - Michelle D. Catalina
- AMPEL BioSolutions, LLC and RILITE Research Institute, Charlottesville, VA 22902, USA; (P.B.); (A.C.L.); (S.E.H.); (R.D.R.); (M.D.C.); (P.E.L.); (A.C.G.)
| | - Jennifer A. Kelly
- Arthritis and Clinical Immunology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA;
| | - Timothy D. Howard
- Department of Biochemistry, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA;
| | - Peter E. Lipsky
- AMPEL BioSolutions, LLC and RILITE Research Institute, Charlottesville, VA 22902, USA; (P.B.); (A.C.L.); (S.E.H.); (R.D.R.); (M.D.C.); (P.E.L.); (A.C.G.)
| | - Amrie C. Grammer
- AMPEL BioSolutions, LLC and RILITE Research Institute, Charlottesville, VA 22902, USA; (P.B.); (A.C.L.); (S.E.H.); (R.D.R.); (M.D.C.); (P.E.L.); (A.C.G.)
| | - Carl D. Langefeld
- Department of Biostatistics and Data Science, Division of Public Health Sciences, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA; (M.C.M.); (H.C.A.)
- Center for Precision Medicine, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA;
- Correspondence:
| |
Collapse
|
53
|
Li J, Li L, Wang Y, Huang G, Li X, Xie Z, Zhou Z. Insights Into the Role of DNA Methylation in Immune Cell Development and Autoimmune Disease. Front Cell Dev Biol 2021; 9:757318. [PMID: 34790667 PMCID: PMC8591242 DOI: 10.3389/fcell.2021.757318] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 10/07/2021] [Indexed: 12/26/2022] Open
Abstract
To date, nearly 100 autoimmune diseases have been an area of focus, and these diseases bring health challenges to approximately 5% of the population worldwide. As a type of disease caused by tolerance breakdown, both environmental and genetic risk factors contribute to autoimmune disease development. However, in most cases, there are still gaps in our understanding of disease pathogenesis, diagnosis, and treatment. Therefore, more detailed knowledge of disease pathogenesis and potential therapies is indispensable. DNA methylation, which does not affect the DNA sequence, is one of the key epigenetic silencing mechanisms and has been indicated to play a key role in gene expression regulation and to participate in the development of certain autoimmune diseases. Potential epigenetic regulation via DNA methylation has garnered more attention as a disease biomarker in recent years. In this review, we clarify the basic function and distribution of DNA methylation, evaluate its effects on gene expression and discuss related key enzymes. In addition, we summarize recent aberrant DNA methylation modifications identified in the most important cell types related to several autoimmune diseases and then provide potential directions for better diagnosing and monitoring disease progression driven by epigenetic control, which may broaden our understanding and contribute to further epigenetic research in autoimmune diseases.
Collapse
Affiliation(s)
- Jiaqi Li
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology (Central South University), Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Lifang Li
- Department of Ultrasound, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Yimeng Wang
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology (Central South University), Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Gan Huang
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology (Central South University), Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Xia Li
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology (Central South University), Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Zhiguo Xie
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology (Central South University), Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Zhiguang Zhou
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology (Central South University), Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, China
| |
Collapse
|
54
|
Ha E, Bae SC, Kim K. Recent advances in understanding the genetic basis of systemic lupus erythematosus. Semin Immunopathol 2021; 44:29-46. [PMID: 34731289 DOI: 10.1007/s00281-021-00900-w] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 10/14/2021] [Indexed: 12/22/2022]
Abstract
Systemic lupus erythematosus (SLE) is a polygenic chronic autoimmune disease leading to multiple organ damage. A large heritability of up to 66% is estimated in SLE, with roughly 180 reported susceptibility loci that have been identified mostly by genome-wide association studies (GWASs) and account for approximately 30% of genetic heritability. A vast majority of risk variants reside in non-coding regions, which makes it quite challenging to interpret their functional implications in the SLE-affected immune system, suggesting the importance of understanding cell type-specific epigenetic regulation around SLE GWAS variants. The latest genetic studies have been highly fruitful as several dozens of SLE loci were newly discovered in the last few years and many loci have come to be understood in systemic approaches integrating GWAS signals with other biological resources. In this review, we summarize SLE-associated genetic variants in both the major histocompatibility complex (MHC) and non-MHC loci, examining polygenetic risk scores for SLE and their associations with clinical features. Finally, variant-driven pathogenetic functions underlying genetic associations are described, coupled with discussion about challenges and future directions in genetic studies on SLE.
Collapse
Affiliation(s)
- Eunji Ha
- Department of Biology, Kyung Hee University, Seoul, Republic of Korea.,Department of Biomedical and Pharmaceutical Sciences, Kyung Hee University, Seoul, Republic of Korea
| | - Sang-Cheol Bae
- Department of Rheumatology, Hanyang University Hospital for Rheumatic Diseases, Seoul, Republic of Korea. .,Hanyang University Institute for Rheumatology Research, Seoul, Republic of Korea.
| | - Kwangwoo Kim
- Department of Biology, Kyung Hee University, Seoul, Republic of Korea. .,Department of Biomedical and Pharmaceutical Sciences, Kyung Hee University, Seoul, Republic of Korea.
| |
Collapse
|
55
|
Qi X, Wang XQ, Jin L, Gao LX, Guo HF. Uncovering potential single nucleotide polymorphisms, copy number variations and related signaling pathways in primary Sjogren's syndrome. Bioengineered 2021; 12:9313-9331. [PMID: 34723755 PMCID: PMC8809958 DOI: 10.1080/21655979.2021.2000245] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Primary Sjogren’s syndrome (pSS) is a complex systemic autoimmune disease, which is difficult to accurately diagnose due to symptom diversity in patients, especially at earlier stages. We tried to find potential single nucleotide polymorphisms (SNPs), copy number variations (CNVs) and related signaling pathways. Genomic DNA was extracted from peripheral blood of 12 individuals (7 individuals from 3 pSS pedigrees and 5 sporadic cases) for whole-exome sequencing (WES) analysis. SNPs and CNVs were identified, followed by functional annotation of genes with SNPs and CNVs. Gene expression profile (involving 64 normal controls and 166 cases) was downloaded from the Gene Expression Omnibus database (GEO) dataset for differentially expression analysis. Sanger sequencing and in vitro validation was used to validate the identified SNPs and differentially expressed genes, respectively. A total of 5 SNPs were identified in both pedigrees and sporadic cases, such as FES, PPM1J, and TRAPPC9. A total of 3402 and 19 CNVs were identified in pedigrees and sporadic cases, respectively. Fifty-one differentially expressed genes were associated with immunity, such as BATF3, LAP3, BATF2, PARP9, and IL15RA. AMPK signaling pathway and cell adhesion molecules (CAMs) were the most significantly enriched signaling pathways of identified SNPs. Identified CNVs were associated with systemic lupus erythematosus, mineral absorption, and HTLV-I infection. IL2-STAT5 signaling, interferon-gamma response, and interferon-alpha response were significantly enriched immune related signaling pathways of identified differentially expressed genes. In conclusion, our study found some potential SNPs, CNVs, and related signaling pathways, which could be useful in understanding the pathological mechanism of pSS.
Collapse
Affiliation(s)
- Xuan Qi
- Department of Rheumatism and Immunology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Xi-Qin Wang
- Internal Medicine, Yuhua Yunfang Integrated Traditional Chinese and Western Medicine Clinic, Shijiazhuang, Hebei, China
| | - Lu Jin
- Department of Rheumatism and Immunology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Li-Xia Gao
- Department of Rheumatism and Immunology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Hui-Fang Guo
- Department of Rheumatism and Immunology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| |
Collapse
|
56
|
Liu K, Jiang J, Lin Y, Liu W, Zhu X, Zhang Y, Jiang H, Yu K, Liu X, Zhou M, Yuan Y, Long P, Wang Q, Zhang X, He M, Chen W, Guo H, Wu T. Exposure to polycyclic aromatic hydrocarbons, DNA methylation and heart rate variability among non-current smokers. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 288:117777. [PMID: 34265559 DOI: 10.1016/j.envpol.2021.117777] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 04/28/2021] [Accepted: 07/09/2021] [Indexed: 06/13/2023]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) exposure is associated with heart rate variability (HRV) reduction, a widely used marker of cardiovascular autonomic dysfunction. The role of DNA methylation in the relationship between PAHs exposure and decreased HRV is largely unknown. This study aims to explore epigenome-wide DNA methylation changes associated with PAHs exposure and further evaluate their associations with HRV alternations among non-current smokers. We measured 10 mono-hydroxylated PAHs (OH-PAHs) in urine and DNA methylation levels in blood leukocytes among participants from three panels of Chinese non-current smokers (152 in WHZH, 99 in SY, and 53 in COW). We conducted linear regression analyses between DNA methylation and OH-PAHs metabolites with adjustment for age, gender, body mass index, drinking, blood cell counts, and surrogate variables in each panel separately, and combined the results by using inverse-variance weighted fixed-effect meta-analysis to obtain estimates of effect size. The median value of total OH-PAHs ranged from 0.92 × 10-2 in SY panel (62.6% men) to 13.82 × 10-2 μmol/mmol creatinine in COW panel (43.4% men). The results showed that methylation levels of cg18223625 (COL20A1) and cg07805771 (SLC16A1) were significantly or marginally significantly associated with urinary 2-hydroxynaphthalene [β(SE) = 0.431(0.074) and 0.354(0.068), FDR = 0.016 and 0.056, respectively], while methylation level of cg09235308 (PLEC1) was positively associated with urinary total OH-PAHs [β(SE) = 0.478(0.079), FDR = 0.004]. Hypermethylations of cg18223625, cg07805771, and cg09235308 were inversely associated with HRV indices among the WHZH and COW non-current smokers. However, we did not observe significant epigenome-wide associations for the other 9 urinary OH-PAHs. These findings provide new evidence that PAHs exposure is linked to differential DNA methylation, which may help better understand the influences of PAHs exposure on HRV alternations.
Collapse
Affiliation(s)
- Kang Liu
- Department of Occupational and Environmental Health, Key Laboratory of Environment and Health, Ministry of Education and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Jing Jiang
- Department of Occupational and Environmental Health, Key Laboratory of Environment and Health, Ministry of Education and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Yuhui Lin
- Department of Occupational and Environmental Health, Key Laboratory of Environment and Health, Ministry of Education and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Wei Liu
- Department of Occupational and Environmental Health, Key Laboratory of Environment and Health, Ministry of Education and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Xiaoyan Zhu
- Department of Occupational and Environmental Health, Key Laboratory of Environment and Health, Ministry of Education and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China; Suzhou Center for Disease Prevention and Control, Suzhou, 215004, China
| | - Yizhi Zhang
- Department of Occupational and Environmental Health, Key Laboratory of Environment and Health, Ministry of Education and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Haijing Jiang
- Department of Occupational and Environmental Health, Key Laboratory of Environment and Health, Ministry of Education and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Kuai Yu
- Department of Occupational and Environmental Health, Key Laboratory of Environment and Health, Ministry of Education and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Xuezhen Liu
- Department of Occupational and Environmental Health, Key Laboratory of Environment and Health, Ministry of Education and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Min Zhou
- Department of Occupational and Environmental Health, Key Laboratory of Environment and Health, Ministry of Education and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Yu Yuan
- Department of Occupational and Environmental Health, Key Laboratory of Environment and Health, Ministry of Education and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Pinpin Long
- Department of Occupational and Environmental Health, Key Laboratory of Environment and Health, Ministry of Education and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Qiuhong Wang
- Department of Occupational and Environmental Health, Key Laboratory of Environment and Health, Ministry of Education and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Xiaomin Zhang
- Department of Occupational and Environmental Health, Key Laboratory of Environment and Health, Ministry of Education and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Meian He
- Department of Occupational and Environmental Health, Key Laboratory of Environment and Health, Ministry of Education and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Weihong Chen
- Department of Occupational and Environmental Health, Key Laboratory of Environment and Health, Ministry of Education and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Huan Guo
- Department of Occupational and Environmental Health, Key Laboratory of Environment and Health, Ministry of Education and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| | - Tangchun Wu
- Department of Occupational and Environmental Health, Key Laboratory of Environment and Health, Ministry of Education and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| |
Collapse
|
57
|
Wang M, Bissonnette N, Dudemaine PL, Zhao X, Ibeagha-Awemu EM. Whole Genome DNA Methylation Variations in Mammary Gland Tissues from Holstein Cattle Producing Milk with Various Fat and Protein Contents. Genes (Basel) 2021; 12:1727. [PMID: 34828333 PMCID: PMC8618717 DOI: 10.3390/genes12111727] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 10/22/2021] [Accepted: 10/22/2021] [Indexed: 12/20/2022] Open
Abstract
Milk fat and protein contents are among key elements of milk quality, and they are attracting more attention in response to consumers' demand for high-quality dairy products. To investigate the potential regulatory roles of DNA methylation underlying milk component yield, whole genome bisulfite sequencing was employed to profile the global DNA methylation patterns of mammary gland tissues from 17 Canada Holstein cows with various milk fat and protein contents. A total of 706, 2420 and 1645 differentially methylated CpG sites (DMCs) were found between high vs. low milk fat (HMF vs. LMF), high vs. low milk protein (HMP vs. LMP), and high vs. low milk fat and protein (HMFP vs. LMFP) groups, respectively (q value < 0.1). Twenty-seven, 56 and 67 genes harboring DMCs in gene regions (denoted DMC genes) were identified for HMF vs. LMF, HMP vs. LMP and HMFP vs. LMFP, respectively. DMC genes from HMP vs. LMP and HMFP vs. LMFP comparisons were significantly overrepresented in GO terms related to aerobic electron transport chain and/or mitochondrial ATP (adenosine triphosphate) synthesis coupled electron transport. A total of 83 (HMF vs. LMF), 708 (HMP vs. LMP) and 408 (HMFP vs. LMFP) DMCs were co-located with 87, 147 and 158 quantitative trait loci (QTL) for milk component and yield traits, respectively. In conclusion, the identified methylation changes are potentially involved in the regulation of milk fat and protein yields, as well as the variation in reported co-located QTLs.
Collapse
Affiliation(s)
- Mengqi Wang
- Sherbrooke Research and Development Centre, Agriculture and Agri-Food Canada, Sherbrooke, QC J1M 0C8, Canada; (M.W.); (N.B.); (P.-L.D.)
| | - Nathalie Bissonnette
- Sherbrooke Research and Development Centre, Agriculture and Agri-Food Canada, Sherbrooke, QC J1M 0C8, Canada; (M.W.); (N.B.); (P.-L.D.)
| | - Pier-Luc Dudemaine
- Sherbrooke Research and Development Centre, Agriculture and Agri-Food Canada, Sherbrooke, QC J1M 0C8, Canada; (M.W.); (N.B.); (P.-L.D.)
| | - Xin Zhao
- Department of Animal Science, McGill University, Ste-Anne-De-Bellevue, QC H9X 3V9, Canada;
| | - Eveline M. Ibeagha-Awemu
- Sherbrooke Research and Development Centre, Agriculture and Agri-Food Canada, Sherbrooke, QC J1M 0C8, Canada; (M.W.); (N.B.); (P.-L.D.)
| |
Collapse
|
58
|
Gallucci S, Meka S, Gamero AM. Abnormalities of the type I interferon signaling pathway in lupus autoimmunity. Cytokine 2021; 146:155633. [PMID: 34340046 PMCID: PMC8475157 DOI: 10.1016/j.cyto.2021.155633] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 06/11/2021] [Indexed: 12/16/2022]
Abstract
Type I interferons (IFNs), mostly IFNα and IFNβ, and the type I IFN Signature are important in the pathogenesis of Systemic Lupus Erythematosus (SLE), an autoimmune chronic condition linked to inflammation. Both IFNα and IFNβ trigger a signaling cascade that, through the activation of JAK1, TYK2, STAT1 and STAT2, initiates gene transcription of IFN stimulated genes (ISGs). Noteworthy, other STAT family members and IFN Responsive Factors (IRFs) can also contribute to the activation of the IFN response. Aberrant type I IFN signaling, therefore, can exacerbate SLE by deregulated homeostasis leading to unnecessary persistence of the biological effects of type I IFNs. The etiopathogenesis of SLE is partially known and considered multifactorial. Family-based and genome wide association studies (GWAS) have identified genetic and transcriptional abnormalities in key molecules directly involved in the type I IFN signaling pathway, namely TYK2, STAT1 and STAT4, and IRF5. Gain-of-function mutations that heighten IFNα/β production, which in turn maintains type I IFN signaling, are found in other pathologies like the interferonopathies. However, the distinctive characteristics have yet to be determined. Signaling molecules activated in response to type I IFNs are upregulated in immune cell subsets and affected tissues of SLE patients. Moreover, Type I IFNs induce chromatin remodeling leading to a state permissive to transcription, and SLE patients have increased global and gene-specific epigenetic modifications, such as hypomethylation of DNA and histone acetylation. Epigenome wide association studies (EWAS) highlight important differences between SLE patients and healthy controls in Interferon Stimulated Genes (ISGs). The combination of environmental and genetic factors may stimulate type I IFN signaling transiently and produce long-lasting detrimental effects through epigenetic alterations. Substantial evidence for the pathogenic role of type I IFNs in SLE advocates the clinical use of neutralizing anti-type I IFN receptor antibodies as a therapeutic strategy, with clinical studies already showing promising results. Current and future clinical trials will determine whether drugs targeting molecules of the type I IFN signaling pathway, like non-selective JAK inhibitors or specific TYK2 inhibitors, may benefit people living with lupus.
Collapse
Affiliation(s)
- Stefania Gallucci
- Laboratory of Dendritic Cell Biology, Department of Microbiology and Immunology, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States.
| | - Sowmya Meka
- Laboratory of Dendritic Cell Biology, Department of Microbiology and Immunology, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| | - Ana M Gamero
- Department of Medical Genetics and Molecular Biochemistry, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States; Fels Cancer Institute for Personalized Medicine, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| |
Collapse
|
59
|
Ma Y, Fan D, Xu S, Deng J, Gao X, Guan S, Zhang X, Pan F. Ankylosing Spondylitis Patients Display Aberrant ERAP1 Gene DNA Methylation and Expression. Immunol Invest 2021; 51:1548-1560. [PMID: 34555981 DOI: 10.1080/08820139.2021.1982965] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
BACKGROUND Endoplasmic reticulum aminopeptidase 1 (ERAP1) is known to participate in the pathogenesis of ankylosing spondylitis (AS). This study aimed to evaluate the relationship between promoter methylation and mRNA levels of ERAP1 and AS susceptibility. METHODS DNA methylation levels of 100 AS patients and 100 healthy controls (HCs) were tested using a targeted bisulfite sequencing assay. To verify the results of DNA methylation, mRNA levels of ERAP1 were measured in 20 AS patients and HCs used quantitative real-time reverse transcription-polymerase chain reaction. RESULTS The DNA methylation levels of two CpG islands containing 31 loci in ERAP1 promoter were measured. ERAP1_1 (P< .001) and ERAP1_2 (P< .001) islands were significantly hypermethylated in AS patients compared with HCs. In the verification study, the mRNA levels of ERAP1 were significantly decreased in AS patients. The ROC curve analysis showed that the sensitivity, specificity and area under curve were 0.717, 0.737, and 0.779 of differential methylated CpG loci of ERAP1 for AS diagnosis. In AS patients, the methylation levels of EARP1 were associated with family history, non-steroidal anti-inflammatory drugs use, X-ray classification, and clinical manifestations. CONCLUSIONS Our study demonstrated that the ERAP1 gene is significantly hypermethylated, and mRNA levels of EARP1 decreased, in AS patients. Our findings suggested that the aberrant methylation of ERAP1 promoter may be involved in the pathogenesis of AS and could be considered as a diagnostic tool and therapeutic target of AS.Abbreviations AS: Ankylosing Spondylitis; AUC: Area Under Curve; BASDAI: Bath Ankylosing Spondylitis Disease Activity Index; BASFI: Bath Ankylosing Spondylitis Functional Index; CI: Confidence Interval; CpG: Cytosine-guanine Dinucleotide; CRP: C-reactive Protein; ERAP1: Endoplasmic Reticulum Aminopeptidase 1; ESR: Erythrocyte Sedimentation Rate; EWAS: Epigenome-Wide Association Study; HLA: Human Leukocyte Antigen; OR: Odds Ratio; PCR: Polymerase Chain Reaction; ROC: Receiver Operating Characteristic; NSAIDs: Non-Steroidal Anti-Inflammatory Drugs.
Collapse
Affiliation(s)
- Yubo Ma
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, Anhui, China.,The Key Laboratory of Major Autoimmune Diseases, Anhui Medical University, Hefei, Anhui, China
| | - Dazhi Fan
- Foshan Institute of Fetal Medicine, Southern Medical University Affiliated Maternal and Child Health Hospital of Foshan, Foshan, Guangdong, China
| | - Shanshan Xu
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, Anhui, China.,The Key Laboratory of Major Autoimmune Diseases, Anhui Medical University, Hefei, Anhui, China
| | - Jixiang Deng
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, Anhui, China.,The Key Laboratory of Major Autoimmune Diseases, Anhui Medical University, Hefei, Anhui, China
| | - Xing Gao
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, Anhui, China.,The Key Laboratory of Major Autoimmune Diseases, Anhui Medical University, Hefei, Anhui, China
| | - Shiyang Guan
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, Anhui, China.,The Key Laboratory of Major Autoimmune Diseases, Anhui Medical University, Hefei, Anhui, China
| | - Xu Zhang
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, Anhui, China.,The Key Laboratory of Major Autoimmune Diseases, Anhui Medical University, Hefei, Anhui, China
| | - Faming Pan
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, Anhui, China.,The Key Laboratory of Major Autoimmune Diseases, Anhui Medical University, Hefei, Anhui, China
| |
Collapse
|
60
|
Abstract
The three classes of interferons (IFNs) share the ability to inhibit viral replication, activating cell transcriptional programs that regulate both innate and adaptive responses to viral and intracellular bacterial challenge. Due to their unique potency in regulating viral replication, and their association with numerous autoimmune diseases, the tightly orchestrated transcriptional regulation of IFNs has long been a subject of intense investigation. The protective role of early robust IFN responses in the context of infection with SARS-CoV-2 has further underscored the relevance of these pathways. In this viewpoint, rather than focusing on the downstream effects of IFN signaling (which have been extensively reviewed elsewhere), we will summarize the historical and current understanding of the stepwise assembly and function of factors that regulate IFNβ enhancer activity (the "enhanceosome") and highlight opportunities for deeper understanding of the transcriptional control of the ifnb gene.
Collapse
Affiliation(s)
- Andrew W Daman
- Department of Pathology, Weill Cornell Medicine, New York, NY
| | | |
Collapse
|
61
|
Suhre K, Zaghlool S. Connecting the epigenome, metabolome and proteome for a deeper understanding of disease. J Intern Med 2021; 290:527-548. [PMID: 33904619 DOI: 10.1111/joim.13306] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 03/18/2021] [Accepted: 03/22/2021] [Indexed: 12/26/2022]
Abstract
Epigenome-wide association studies (EWAS) identify genes that are dysregulated by the studied clinical endpoints, thereby indicating potential new diagnostic biomarkers, drug targets and therapy options. Combining EWAS with deep molecular phenotyping, such as approaches enabled by metabolomics and proteomics, allows further probing of the underlying disease-associated pathways. For instance, methylation of the TXNIP gene is associated robustly with prevalent type 2 diabetes and further with metabolites that are short-term markers of glycaemic control. These associations reflect TXNIP's function as a glucose uptake regulator by interaction with the major glucose transporter GLUT1 and suggest that TXNIP methylation can be used as a read-out for the organism's exposure to glucose stress. Another case is the association between DNA methylation of the AHRR and F2RL3 genes with smoking and a protein that is involved in the reprogramming of the bronchial epithelium. These examples show that associations between DNA methylation and intermediate molecular traits can open new windows into how the body copes with physiological challenges. This knowledge, if carefully interpreted, may indicate novel therapy options and, together with monitoring of the methylation state of specific methylation sites, may in the future allow the early diagnosis of impending disease. It is essential for medical practitioners to recognize the potential that this field holds in translating basic research findings to clinical practice. In this review, we present recent advances in the field of EWAS with metabolomics and proteomics and discuss both the potential and the challenges of translating epigenetic associations, with deep molecular phenotypes, to biomedical applications.
Collapse
Affiliation(s)
- K Suhre
- From the, Bioinformatics Core, Weill Cornell Medicine-Qatar, Education City, Doha, Qatar.,Department of Biophysics and Physiology, Weill Cornell Medicine, New York, USA
| | - S Zaghlool
- From the, Bioinformatics Core, Weill Cornell Medicine-Qatar, Education City, Doha, Qatar.,Department of Biophysics and Physiology, Weill Cornell Medicine, New York, USA
| |
Collapse
|
62
|
Chen Z, Liu X, Liu F, Zhang G, Tu H, Lin W, Lin H. Identification of 4-methylation driven genes based prognostic signature in thyroid cancer: an integrative analysis based on the methylmix algorithm. Aging (Albany NY) 2021; 13:20164-20178. [PMID: 34456184 PMCID: PMC8436924 DOI: 10.18632/aging.203338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 07/01/2021] [Indexed: 12/09/2022]
Abstract
Thyroid cancer (TC) is known with a high rate of persistence and recurrence. We aimed to develop a prognostic signature to monitor and assess the survival of TC patients. mRNA expression and methylation data were downloaded from the TCGA database. Then, R package methylmix was applied to construct a mixed model was used to identify methylation-driven genes (MDGs) according to the methylation levels. Furthermore, an MDGs based prognostic signature and predictive nomogram were constructed according to the analysis of univariate and multivariate Cox regression. Totally 62 methylation-driven genes that were mainly enriched in substrate-dependent cell migration, cellular response to mechanical stimulus, et al. were found in TC tissues. aldolase C (AldoC), C14orf62, dishevelled 1 (DVL1), and protein tyrosine phosphatase receptor type C (PTPRC) were identified to be significantly related to patients' survival, and may serve as independent prognostic biomarkers for TC. Additionally, the prognostic methylation signature and a novel prognostic, predictive nomogram was established based on the methylation level of 4 MDGs. In this study, we developed a 4-MDGs based prognostic model, which might be the potential predictors for the survival rate of TC patients, and this findings might provide a novel sight for accurate monitoring and prognosis assessment.
Collapse
Affiliation(s)
- Zhiwei Chen
- Department of Pathology, The Affiliated Hospital of Putian University, Putian 351100, Fujian Province, China
| | - Xiaoli Liu
- Department of Pathology, The Affiliated Hospital of Putian University, Putian 351100, Fujian Province, China
| | - Fangfang Liu
- Department of Pathology, The Affiliated Hospital of Putian University, Putian 351100, Fujian Province, China
| | - Guolie Zhang
- Department of Thyroid Surgery, The Affiliated Hospital of Putian University, Putian 351100, Fujian Province, China
| | - Haijian Tu
- Clinical Laboratory, The Affiliated Hospital of Putian University, Putian 351100, Fujian Province, China
| | - Wei Lin
- Department of Gastrointestinal Surgery, The Affiliated Hospital of Putian University, Putian 351100, Fujian Province, China
| | - Haifeng Lin
- Department of Gastroenterology, The Affiliated Hospital of Putian University, Putian 351100, Fujian Province, China
| |
Collapse
|
63
|
Imgenberg-Kreuz J, Sandling JK, Norheim KB, Johnsen SJA, Omdal R, Syvänen AC, Svenungsson E, Rönnblom L, Eloranta ML, Nordmark G. DNA Methylation-Based Interferon Scores Associate With Sub-Phenotypes in Primary Sjögren's Syndrome. Front Immunol 2021; 12:702037. [PMID: 34335613 PMCID: PMC8322981 DOI: 10.3389/fimmu.2021.702037] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 06/28/2021] [Indexed: 11/15/2022] Open
Abstract
Primary Sjögren's syndrome (pSS) is an autoimmune inflammatory disease with profound clinical heterogeneity, where excessive activation of the type I interferon (IFN) system is considered one of the key mechanisms in disease pathogenesis. Here we present a DNA methylation-based IFN system activation score (DNAm IFN score) and investigate its potential associations with sub-phenotypes of pSS. The study comprised 100 Swedish patients with pSS and 587 Swedish controls. For replication, 48 patients with pSS from Stavanger, Norway, were included. IFN scores were calculated from DNA methylation levels at the IFN-induced genes RSAD2, IFIT1 and IFI44L. A high DNAm IFN score, defined as > meancontrols +2SDcontrols (IFN score >4.4), was observed in 59% of pSS patients and in 4% of controls (p=1.3x10-35). Patients with a high DNAm IFN score were on average seven years younger at symptom onset (p=0.017) and at diagnosis (p=3x10-3). The DNAm IFN score levels were significantly higher in pSS positive for both SSA and SSB antibodies compared to SSA/SSB negative patients (pdiscovery=1.9x10-8, preplication=7.8x10-4). In patients positive for both SSA subtypes Ro52 and Ro60, an increased score was identified compared to single positive patients (p=0.022). Analyzing the discovery and replication cohorts together, elevated DNAm IFN scores were observed in pSS with hypergammaglobulinemia (p=2x10-8) and low C4 (p=1.5x10-3) compared to patients without these manifestations. Patients < 70 years with ongoing lymphoma at DNA sampling or lymphoma at follow-up (n=7), presented an increased DNAm IFN score compared to pSS without lymphoma (p=0.025). In conclusion, the DNAm-based IFN score is a promising alternative to mRNA-based scores for identification of patients with activation of the IFN system and may be applied for patient stratification guiding treatment decisions, monitoring and inclusion in clinical trials.
Collapse
Affiliation(s)
- Juliana Imgenberg-Kreuz
- Section of Rheumatology and Science for Life Laboratory, Department of Medical Sciences, Uppsala University, Uppsala, Sweden
- Clinical Immunology Unit, Department of Internal Medicine, Stavanger University Hospital, Stavanger, Norway
| | - Johanna K. Sandling
- Section of Rheumatology and Science for Life Laboratory, Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| | - Katrine Brække Norheim
- Clinical Immunology Unit, Department of Internal Medicine, Stavanger University Hospital, Stavanger, Norway
| | - Svein Joar Auglænd Johnsen
- Clinical Immunology Unit, Department of Internal Medicine, Stavanger University Hospital, Stavanger, Norway
| | - Roald Omdal
- Clinical Immunology Unit, Department of Internal Medicine, Stavanger University Hospital, Stavanger, Norway
| | - Ann-Christine Syvänen
- Molecular Medicine and Science for Life Laboratory, Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| | - Elisabet Svenungsson
- Rheumatology Unit, Department of Medicine Solna, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Lars Rönnblom
- Section of Rheumatology and Science for Life Laboratory, Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| | - Maija-Leena Eloranta
- Section of Rheumatology and Science for Life Laboratory, Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| | - Gunnel Nordmark
- Section of Rheumatology and Science for Life Laboratory, Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| |
Collapse
|
64
|
Bolin K, Imgenberg-Kreuz J, Leonard D, Sandling JK, Alexsson A, Pucholt P, Haarhaus ML, Almlöf JC, Nititham J, Jönsen A, Sjöwall C, Bengtsson AA, Rantapää-Dahlqvist S, Svenungsson E, Gunnarsson I, Syvänen AC, Lerang K, Troldborg A, Voss A, Molberg Ø, Jacobsen S, Criswell L, Rönnblom L, Nordmark G. Variants in BANK1 are associated with lupus nephritis of European ancestry. Genes Immun 2021; 22:194-202. [PMID: 34127828 PMCID: PMC8277572 DOI: 10.1038/s41435-021-00142-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 05/17/2021] [Accepted: 05/27/2021] [Indexed: 12/23/2022]
Abstract
The genetic background of lupus nephritis (LN) has not been completely elucidated. We performed a case-only study of 2886 SLE patients, including 947 (33%) with LN. Renal biopsies were available from 396 patients. The discovery cohort (Sweden, n = 1091) and replication cohort 1 (US, n = 962) were genotyped on the Immunochip and replication cohort 2 (Denmark/Norway, n = 833) on a custom array. Patients with LN, proliferative nephritis, or LN with end-stage renal disease were compared with SLE without nephritis. Six loci were associated with LN (p < 1 × 10−4, NFKBIA, CACNA1S, ITGA1, BANK1, OR2Y, and ACER3) in the discovery cohort. Variants in BANK1 showed the strongest association with LN in replication cohort 1 (p = 9.5 × 10−4) and proliferative nephritis in a meta-analysis of discovery and replication cohort 1. There was a weak association between BANK1 and LN in replication cohort 2 (p = 0.052), and in the meta-analysis of all three cohorts the association was strengthened (p = 2.2 × 10−7). DNA methylation data in 180 LN patients demonstrated methylation quantitative trait loci (meQTL) effects between a CpG site and BANK1 variants. To conclude, we describe genetic variations in BANK1 associated with LN and evidence for genetic regulation of DNA methylation within the BANK1 locus. This indicates a role for BANK1 in LN pathogenesis.
Collapse
Affiliation(s)
- Karin Bolin
- Department of Medical Sciences and Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Juliana Imgenberg-Kreuz
- Department of Medical Sciences and Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Dag Leonard
- Department of Medical Sciences and Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Johanna K Sandling
- Department of Medical Sciences and Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Andrei Alexsson
- Department of Medical Sciences and Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Pascal Pucholt
- Department of Medical Sciences and Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Malena Loberg Haarhaus
- Department of Medicine Solna, Karolinska Institutet, Karolinska University Hospital Stockholm, Stockholm, Sweden
| | - Jonas Carlsson Almlöf
- Molecular Medicine, Department of Medical Sciences and Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Joanne Nititham
- Russell/Engleman Rheumatology Research Center, Department of Medicine, University of California San Francisco, San Francisco, CA, USA
| | - Andreas Jönsen
- Department of Rheumatology, Lund University, Lund, Sweden
| | - Christopher Sjöwall
- Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | | | | | - Elisabet Svenungsson
- Department of Medicine Solna, Karolinska Institutet, Karolinska University Hospital Stockholm, Stockholm, Sweden
| | - Iva Gunnarsson
- Department of Medicine Solna, Karolinska Institutet, Karolinska University Hospital Stockholm, Stockholm, Sweden
| | - Ann-Christine Syvänen
- Molecular Medicine, Department of Medical Sciences and Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Karoline Lerang
- Department of Rheumatology, University of Oslo, Oslo, Norway
| | - Anne Troldborg
- Department of Rheumatology, Aarhus University Hospital and Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Anne Voss
- Department of Rheumatology, Odense University Hospital, Odense, Denmark
| | - Øyvind Molberg
- Department of Rheumatology, University of Oslo, Oslo, Norway
| | - Søren Jacobsen
- Department of Clinical Medicine, Copenhagen University Hospital, Copenhagen, Denmark
| | - Lindsey Criswell
- Russell/Engleman Rheumatology Research Center, Department of Medicine, University of California San Francisco, San Francisco, CA, USA
| | - Lars Rönnblom
- Department of Medical Sciences and Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Gunnel Nordmark
- Department of Medical Sciences and Science for Life Laboratory, Uppsala University, Uppsala, Sweden.
| |
Collapse
|
65
|
Abstract
Type I interferons (IFN-Is) are a very important group of cytokines that are produced by innate immune cells but also act on adaptive immune cells. IFN-Is possess antiviral, antitumor, and anti-proliferative effects, as well are associated with the initiation and maintenance of autoimmune disorders. Studies have shown that aberrantly expressed IFN-Is and/or type I IFN-inducible gene signatures in the serum or tissues of patients with autoimmune disorders are linked to their pathogenesis, clinical manifestations, and disease activity. Type I interferonopathies with mutations in genes impacting the type I IFN signaling pathway have shown symptoms and characteristics similar to those of systemic lupus erythematosus (SLE). Furthermore, both interventions in animal models and clinical trials of therapies targeting the type I IFN signaling pathway have shown efficacy in the treatment of autoimmune diseases. Our review aims to summarize the functions and targeted therapies (as well as clinical trials) of IFN-Is in both adult and pediatric autoimmune diseases, such as SLE, pediatric SLE (pSLE), rheumatoid arthritis (RA), juvenile idiopathic arthritis (JIA), juvenile dermatomyositis (JDM), Sjögren syndrome (SjS), and systemic sclerosis (SSc), discussing the potential abnormal regulation of transcription factors and epigenetic modifications and providing a potential mechanism for pathogenesis and therapeutic strategies for future clinical use.
Collapse
|
66
|
Xie L, Jiang X, Chen Y, Huang C, Chen Y, Liu G, Sun W, Zeng L, Lu R. 3 CpG methylation biomarkers for the diagnosis of polycystic ovary syndrome (PCOS) in blood. Comb Chem High Throughput Screen 2021; 25:1304-1313. [PMID: 34080962 DOI: 10.2174/1386207321666210602170054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 03/26/2021] [Accepted: 04/12/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND Polycystic ovary syndrome (PCOS) is a common endocrine disease in women that seriously interferes with the patient's metabolic and reproductive functions. The current diagnostic criteria for PCOS are expert-based and still disputed. Previous studies have identified changes in DNA methylation in peripheral blood of women with PCOS, but their diagnostic potential for PCOS remains to be studied. OBJECTIVE The present study aimed to identify potential methylation biomarkers for the diagnosis of PCOS in blood. METHODS Methylation profiles of peripheral blood were downloaded from a public database, Gene Expression Omnibus (GEO), of 30 PCOS patients (diagnosed with the revised 2003 Rotterdam consensus criteria), and 30 age-matched healthy women were recruited from the Centre of Reproductive Medicine, Linyi People's Hospital, Shandong, China. Weighted gene co-expression network analysis (WGCNA) was utilized to identify PCOS-related co-methylation CpG sites (co-MPs). Functional enrichment analysis was performed on the localized genes of PCOS-related co-MPs. The least absolute shrinkage and selection operator (LASSO) regression was used to screen CpG methylation signatures for PCOS diagnosis and receiver operating characteristic (ROC) analysis was conducted to evaluate their diagnostic accuracy, respectively. To assess the accuracy of the combination of the investigated indicators, multivariate ROC analysis was performed on the predicted probability values obtained using binary logistic regression on the methylation levels of selected CpGs together. RESULTS Seven co-methylation modules were obtained, most relevant to PCOS of which was the turquoise module, containing 194 co-MPs. The genes that these co-MPs located in were mainly associated with the immune-related pathway. According to LASSO regression, three Co-MPs (cg23464743, cg06834912, cg00103771) were identified as potential diagnostic biomarkers of PCOS. ROC analysis showed an AUC (area under the curve) of 0.7556 (sensitivity 60.0%, specificity 83.3%) for cg23464743, 0.7822 (sensitivity 70.0%, specificity 80.0%) for cg06834912, and 0.7611 (sensitivity 63.3%, specificity 83.3%) for cg00103771. The diagnostic accuracy of the combination of these 3 indicators presented to be higher than any single one of them, with an AUC of 0.8378 (sensitivity 73.3%, specificity 93.3%). CONCLUSION The combination of 3 CpG methylation signatures in blood was identified with a good diagnostic accuracy for PCOS, which may bring new insight into the development of PCOS diagnostic markers in the future.
Collapse
Affiliation(s)
- Linling Xie
- Guangzhou University of Chinese Medicine, Guangzhou 515000, China
| | - Xiaotao Jiang
- Guangzhou University of Chinese Medicine, Guangzhou 515000, China
| | - Yi Chen
- Guangzhou University of Chinese Medicine, Guangzhou 515000, China
| | - Cihui Huang
- Guangzhou University of Chinese Medicine, Guangzhou 515000, China
| | - Yanfen Chen
- Guangzhou University of Chinese Medicine, Guangzhou 515000, China
| | - Guantong Liu
- Guangzhou University of Chinese Medicine, Guangzhou 515000, China
| | - Wenxi Sun
- Guangzhou University of Chinese Medicine, Guangzhou 515000, China
| | - Lei Zeng
- Guangzhou University of Chinese Medicine, Guangzhou 515000, China
| | - Ruling Lu
- Guangzhou University of Chinese Medicine, Guangzhou 515000, China
| |
Collapse
|
67
|
Yavuz S, Lipsky PE. Current Status of the Evaluation and Management of Lupus Patients and Future Prospects. Front Med (Lausanne) 2021; 8:682544. [PMID: 34124113 PMCID: PMC8193052 DOI: 10.3389/fmed.2021.682544] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Accepted: 04/27/2021] [Indexed: 12/24/2022] Open
Abstract
The vastly diverse nature of systemic lupus erythematosus (SLE) poses great challenges to clinicians and patients, as well as to research and drug development efforts. Precise management of lupus patients would be advanced by the ability to identify specific abnormalities operative in individual patients at the time of encounter with the clinician. Advances in new technologies and bioinformatics have greatly improved the understanding of the pathophysiology of SLE. Recent research has focused on the discovery and classification of sensitive and specific markers that could aid early accurate diagnosis, better monitoring of disease and identification of appropriate therapy choices based on specific dysregulated molecular pathways. Here, we summarize some of the advances and discuss the challenges in moving toward precise patient-centric management modalities in SLE.
Collapse
Affiliation(s)
- Sule Yavuz
- Department of Medical Sciences, Rheumatology, Uppsala University, Uppsala, Sweden
| | - Peter E Lipsky
- Ampel BioSolutions and Re-Imagine Lupus Investigation, Treatment and Education Research Institute, Charlottesville, VA, United States
| |
Collapse
|
68
|
Björk A, Richardsdotter Andersson E, Imgenberg-Kreuz J, Thorlacius GE, Mofors J, Syvänen AC, Kvarnström M, Nordmark G, Wahren-Herlenius M. Protein and DNA methylation-based scores as surrogate markers for interferon system activation in patients with primary Sjögren's syndrome. RMD Open 2021; 6:rmdopen-2019-000995. [PMID: 31958277 PMCID: PMC7046975 DOI: 10.1136/rmdopen-2019-000995] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Revised: 10/30/2019] [Accepted: 11/13/2019] [Indexed: 02/02/2023] Open
Abstract
OBJECTIVE Standard assessment of interferon (IFN) system activity in systemic rheumatic diseases depends on the availability of RNA samples. In this study, we describe and evaluate alternative methods using plasma, serum and DNA samples, exemplified in the IFN-driven disease primary Sjögren's syndrome (pSS). METHODS Patients with pSS seropositive or negative for anti-SSA/SSB and controls were included. Protein-based IFN (pIFN) scores were calculated from levels of PD-1, CXCL9 and CXCL10. DNA methylation-based (DNAm) IFN scores were calculated from DNAm levels at RSAD2, IFIT1 and IFI44L . Scores were compared with mRNA-based IFN scores measured by quantitative PCR (qPCR), Nanostring or RNA sequencing (RNAseq). RESULTS mRNA-based IFN scores displayed strong correlations between B cells and monocytes (r=0.93 and 0.95, p<0.0001) and between qPCR and Nanostring measurements (r=0.92 and 0.92, p<0.0001). The pIFN score in plasma and serum was higher in patients compared with controls (p<0.0001) and correlated well with mRNA-based IFN scores (r=0.62-0.79, p<0.0001), as well as with each other (r=0.94, p<0.0001). Concordance of classification as 'high' or 'low' IFN signature between the pIFN score and mRNA-based IFN scores ranged from 79.5% to 88.6%, and the pIFN score was effective at classifying patients and controls (area under the curve, AUC=0.89-0.93, p<0.0001). The DNAm IFN score showed strong correlation to the RNAseq IFN score (r=0.84, p<0.0001) and performed well in classifying patients and controls (AUC=0.96, p<0.0001). CONCLUSIONS We describe novel methods of assessing IFN system activity in plasma, serum or DNA samples, which may prove particularly valuable in studies where RNA samples are not available.
Collapse
Affiliation(s)
- Albin Björk
- Division of Rheumatology, Department of Medicine, Karolinska Institutet, Stockholm, Sweden
| | | | - Juliana Imgenberg-Kreuz
- Department of Medical Sciences, Rheumatology and Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Gudny Ella Thorlacius
- Division of Rheumatology, Department of Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Johannes Mofors
- Division of Rheumatology, Department of Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Ann-Christine Syvänen
- Department of Medical Sciences, Molecular Medicine and Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Marika Kvarnström
- Division of Rheumatology, Department of Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Gunnel Nordmark
- Department of Medical Sciences, Rheumatology and Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Marie Wahren-Herlenius
- Division of Rheumatology, Department of Medicine, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
69
|
Wang M, Ibeagha-Awemu EM. Impacts of Epigenetic Processes on the Health and Productivity of Livestock. Front Genet 2021; 11:613636. [PMID: 33708235 PMCID: PMC7942785 DOI: 10.3389/fgene.2020.613636] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Accepted: 12/21/2020] [Indexed: 12/23/2022] Open
Abstract
The dynamic changes in the epigenome resulting from the intricate interactions of genetic and environmental factors play crucial roles in individual growth and development. Numerous studies in plants, rodents, and humans have provided evidence of the regulatory roles of epigenetic processes in health and disease. There is increasing pressure to increase livestock production in light of increasing food needs of an expanding human population and environment challenges, but there is limited related epigenetic data on livestock to complement genomic information and support advances in improvement breeding and health management. This review examines the recent discoveries on epigenetic processes due to DNA methylation, histone modification, and chromatin remodeling and their impacts on health and production traits in farm animals, including bovine, swine, sheep, goat, and poultry species. Most of the reports focused on epigenome profiling at the genome-wide or specific genic regions in response to developmental processes, environmental stressors, nutrition, and disease pathogens. The bulk of available data mainly characterized the epigenetic markers in tissues/organs or in relation to traits and detection of epigenetic regulatory mechanisms underlying livestock phenotype diversity. However, available data is inadequate to support gainful exploitation of epigenetic processes for improved animal health and productivity management. Increased research effort, which is vital to elucidate how epigenetic mechanisms affect the health and productivity of livestock, is currently limited due to several factors including lack of adequate analytical tools. In this review, we (1) summarize available evidence of the impacts of epigenetic processes on livestock production and health traits, (2) discuss the application of epigenetics data in livestock production, and (3) present gaps in livestock epigenetics research. Knowledge of the epigenetic factors influencing livestock health and productivity is vital for the management and improvement of livestock productivity.
Collapse
Affiliation(s)
- Mengqi Wang
- Agriculture and Agri-Food Canada, Sherbrooke Research and Development Centre, Sherbrooke, QC, Canada
- Department of Animal Science, Laval University, Quebec, QC, Canada
| | - Eveline M. Ibeagha-Awemu
- Agriculture and Agri-Food Canada, Sherbrooke Research and Development Centre, Sherbrooke, QC, Canada
| |
Collapse
|
70
|
Akita K, Yasaka K, Shirai T, Ishii T, Harigae H, Fujii H. Interferon α Enhances B Cell Activation Associated With FOXM1 Induction: Potential Novel Therapeutic Strategy for Targeting the Plasmablasts of Systemic Lupus Erythematosus. Front Immunol 2021; 11:498703. [PMID: 33633721 PMCID: PMC7902015 DOI: 10.3389/fimmu.2020.498703] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 12/15/2020] [Indexed: 01/01/2023] Open
Abstract
Systemic lupus erythematosus (SLE) is an autoimmune disease. It is characterized by the production of various pathogenic autoantibodies and is suggested to be triggered by increased type I interferon (IFN) signature. Previous studies have identified increased plasmablasts in the peripheral blood of SLE patients. The biological characteristics of SLE plasmablasts remain unknown, and few treatments that target SLE plasmablasts have been applied despite the unique cellular properties of plasmablasts compared with other B cell subsets and plasma cells. We conducted microarray analysis of naïve and memory B cells and plasmablasts (CD38+CD43+ B cells) that were freshly isolated from healthy controls and active SLE (n = 4, each) to clarify the unique biological properties of SLE plasmablasts. The results revealed that all B cell subsets of SLE expressed more type I IFN-stimulated genes. In addition, SLE plasmablasts upregulated the expression of cell cycle-related genes associated with higher FOXM1 and FOXM1-regulated gene expression levels than that in healthy controls. This suggests that a causative relationship exists between type I IFN priming and enhanced proliferative capacity through FOXM1. The effects of pretreatment of IFNα on B cell activation and FOXM1 inhibitor FDI-6 on B cell proliferation and survival were investigated. Pretreatment with IFNα promoted B cell activation after stimulation with anti-IgG/IgM antibody. Flow cytometry revealed that pretreatment with IFNα preferentially enhanced the Atk and p38 pathways after triggering B cell receptors. FDI-6 inhibited cell division and induced apoptosis in activated B cells. These effects were pronounced in activated B cells pretreated with interferon α. This study can provide better understanding of the pathogenic mechanism of interferon-stimulated genes on SLE B cells and an insight into the development of novel therapeutic strategies.
Collapse
Affiliation(s)
- Kanae Akita
- Department of Hematology and Rheumatology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Ken Yasaka
- Department of Hematology and Rheumatology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Tsuyoshi Shirai
- Department of Hematology and Rheumatology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Tomonori Ishii
- Department of Clinical Research, Innovation and Education Center, Tohoku University Hospital, Sendai, Japan
| | - Hideo Harigae
- Department of Hematology and Rheumatology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Hiroshi Fujii
- Department of Hematology and Rheumatology, Tohoku University Graduate School of Medicine, Sendai, Japan
| |
Collapse
|
71
|
Lin WY, Fordham SE, Sunter N, Elstob C, Rahman T, Willmore E, Shepherd C, Strathdee G, Mainou-Fowler T, Piddock R, Mearns H, Barrow T, Houlston RS, Marr H, Wallis J, Summerfield G, Marshall S, Pettitt A, Pepper C, Fegan C, Forconi F, Dyer MJS, Jayne S, Sellors A, Schuh A, Robbe P, Oscier D, Bailey J, Rais S, Bentley A, Cawkwell L, Evans P, Hillmen P, Pratt G, Allsup DJ, Allan JM. Genome-wide association study identifies risk loci for progressive chronic lymphocytic leukemia. Nat Commun 2021; 12:665. [PMID: 33510140 PMCID: PMC7843618 DOI: 10.1038/s41467-020-20822-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Accepted: 12/16/2020] [Indexed: 02/05/2023] Open
Abstract
Prognostication in patients with chronic lymphocytic leukemia (CLL) is challenging due to heterogeneity in clinical course. We hypothesize that constitutional genetic variation affects disease progression and could aid prognostication. Pooling data from seven studies incorporating 842 cases identifies two genomic locations associated with time from diagnosis to treatment, including 10q26.13 (rs736456, hazard ratio (HR) = 1.78, 95% confidence interval (CI) = 1.47-2.15; P = 2.71 × 10-9) and 6p (rs3778076, HR = 1.99, 95% CI = 1.55-2.55; P = 5.08 × 10-8), which are particularly powerful prognostic markers in patients with early stage CLL otherwise characterized by low-risk features. Expression quantitative trait loci analysis identifies putative functional genes implicated in modulating B-cell receptor or innate immune responses, key pathways in CLL pathogenesis. In this work we identify rs736456 and rs3778076 as prognostic in CLL, demonstrating that disease progression is determined by constitutional genetic variation as well as known somatic drivers.
Collapse
Affiliation(s)
- Wei-Yu Lin
- Translational and Clinical Research Institute, Newcastle University Centre for Cancer, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Sarah E Fordham
- Translational and Clinical Research Institute, Newcastle University Centre for Cancer, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Nicola Sunter
- Translational and Clinical Research Institute, Newcastle University Centre for Cancer, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Claire Elstob
- Translational and Clinical Research Institute, Newcastle University Centre for Cancer, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Thahira Rahman
- Translational and Clinical Research Institute, Newcastle University Centre for Cancer, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Elaine Willmore
- Translational and Clinical Research Institute, Newcastle University Centre for Cancer, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Colin Shepherd
- Translational and Clinical Research Institute, Newcastle University Centre for Cancer, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Gordon Strathdee
- Translational and Clinical Research Institute, Newcastle University Centre for Cancer, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Tryfonia Mainou-Fowler
- Translational and Clinical Research Institute, Newcastle University Centre for Cancer, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Rachel Piddock
- Translational and Clinical Research Institute, Newcastle University Centre for Cancer, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Hannah Mearns
- Translational and Clinical Research Institute, Newcastle University Centre for Cancer, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Timothy Barrow
- Faculty of Health Sciences and Wellbeing, University of Sunderland, Sunderland, UK
| | - Richard S Houlston
- Division of Genetics and Epidemiology, The Institute of Cancer Research, London, UK
| | - Helen Marr
- Department of Haematology, Freeman Hospital, Newcastle upon Tyne, UK
| | - Jonathan Wallis
- Department of Haematology, Freeman Hospital, Newcastle upon Tyne, UK
| | | | | | | | | | - Christopher Fegan
- Institute of Cancer and Genetics, School of Medicine, Cardiff University, Cardiff, UK
| | - Francesco Forconi
- Cancer Sciences Unit, Cancer Research UK and NIHR Experimental Cancer Medicine Centres, University of Southampton, Southampton, UK
| | - Martin J S Dyer
- The Ernest and Helen Scott Haematological Research Institute, Leicester Cancer Research Centre, University of Leicester, Leicester, UK
| | - Sandrine Jayne
- The Ernest and Helen Scott Haematological Research Institute, Leicester Cancer Research Centre, University of Leicester, Leicester, UK
| | - April Sellors
- The Ernest and Helen Scott Haematological Research Institute, Leicester Cancer Research Centre, University of Leicester, Leicester, UK
| | | | | | | | - James Bailey
- Hull University Teaching Hospital NHS Trust, Hull, UK
| | - Syed Rais
- Hull University Teaching Hospital NHS Trust, Hull, UK
| | - Alison Bentley
- Centre for Atherothrombosis and Metabolic Disease, Hull York Medical School, Hull, UK
| | | | - Paul Evans
- Haematological Malignancy Diagnostic Service Laboratory, St James' Institute of Oncology, Leeds, UK
| | - Peter Hillmen
- Section of Experimental Haematology, Leeds Institute of Medical Research at St James's, University of Leeds, Leeds, UK
| | - Guy Pratt
- University of Birmingham, Birmingham, UK
| | - David J Allsup
- Hull University Teaching Hospital NHS Trust, Hull, UK.
- Centre for Atherothrombosis and Metabolic Disease, Hull York Medical School, Hull, UK.
| | - James M Allan
- Translational and Clinical Research Institute, Newcastle University Centre for Cancer, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK.
| |
Collapse
|
72
|
Baker Frost D, da Silveira W, Hazard ES, Atanelishvili I, Wilson RC, Flume J, Day KL, Oates JC, Bogatkevich GS, Feghali-Bostwick C, Hardiman G, Ramos PS. Differential DNA Methylation Landscape in Skin Fibroblasts from African Americans with Systemic Sclerosis. Genes (Basel) 2021; 12:129. [PMID: 33498390 PMCID: PMC7909410 DOI: 10.3390/genes12020129] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 01/15/2021] [Accepted: 01/18/2021] [Indexed: 01/20/2023] Open
Abstract
The etiology and reasons underlying the ethnic disparities in systemic sclerosis (SSc) remain unknown. African Americans are disproportionally affected by SSc and yet are underrepresented in research. The aim of this study was to comprehensively investigate the association of DNA methylation levels with SSc in dermal fibroblasts from patients of African ancestry. Reduced representation bisulfite sequencing (RRBS) was performed on primary dermal fibroblasts from 15 SSc patients and 15 controls of African ancestry, and over 3.8 million CpG sites were tested for differential methylation patterns between cases and controls. The dermal fibroblasts from African American patients exhibited widespread reduced DNA methylation. Differentially methylated CpG sites were most enriched in introns and intergenic regions while depleted in 5' UTR, promoters, and CpG islands. Seventeen genes and eleven promoters showed significant differential methylation, mostly in non-coding RNA genes and pseudogenes. Gene set enrichment analysis (GSEA) and gene ontology (GO) analyses revealed an enrichment of pathways related to interferon signaling and mesenchymal differentiation. The hypomethylation of DLX5 and TMEM140 was accompanied by these genes' overexpression in patients but underexpression for lncRNA MGC12916. These data show that differential methylation occurs in dermal fibroblasts from African American patients with SSc and identifies novel coding and non-coding genes.
Collapse
Affiliation(s)
- DeAnna Baker Frost
- Department of Medicine, Division of Rheumatology and Immunology, Medical University of South Carolina, Charleston, SC 29425, USA; (D.B.F.); (I.A.); (J.F.); (J.C.O.); (G.S.B.); (C.F.-B.)
| | - Willian da Silveira
- Institute for Global Food Security, School of Biological Sciences, Queens University Belfast, Belfast BT9 5DL, UK; (W.d.S.); (G.H.)
| | - E. Starr Hazard
- Computational Biology Resource Center, Medical University of South Carolina, Charleston, SC 29425, USA;
| | - Ilia Atanelishvili
- Department of Medicine, Division of Rheumatology and Immunology, Medical University of South Carolina, Charleston, SC 29425, USA; (D.B.F.); (I.A.); (J.F.); (J.C.O.); (G.S.B.); (C.F.-B.)
| | - Robert C. Wilson
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC 29425, USA;
| | - Jonathan Flume
- Department of Medicine, Division of Rheumatology and Immunology, Medical University of South Carolina, Charleston, SC 29425, USA; (D.B.F.); (I.A.); (J.F.); (J.C.O.); (G.S.B.); (C.F.-B.)
| | | | - James C. Oates
- Department of Medicine, Division of Rheumatology and Immunology, Medical University of South Carolina, Charleston, SC 29425, USA; (D.B.F.); (I.A.); (J.F.); (J.C.O.); (G.S.B.); (C.F.-B.)
- Rheumatology Section, Ralph H. Johnson VA Medical Center, Charleston, SC 29425, USA
| | - Galina S. Bogatkevich
- Department of Medicine, Division of Rheumatology and Immunology, Medical University of South Carolina, Charleston, SC 29425, USA; (D.B.F.); (I.A.); (J.F.); (J.C.O.); (G.S.B.); (C.F.-B.)
| | - Carol Feghali-Bostwick
- Department of Medicine, Division of Rheumatology and Immunology, Medical University of South Carolina, Charleston, SC 29425, USA; (D.B.F.); (I.A.); (J.F.); (J.C.O.); (G.S.B.); (C.F.-B.)
| | - Gary Hardiman
- Institute for Global Food Security, School of Biological Sciences, Queens University Belfast, Belfast BT9 5DL, UK; (W.d.S.); (G.H.)
| | - Paula S. Ramos
- Department of Medicine, Division of Rheumatology and Immunology, Medical University of South Carolina, Charleston, SC 29425, USA; (D.B.F.); (I.A.); (J.F.); (J.C.O.); (G.S.B.); (C.F.-B.)
- Department of Public Health Sciences, Medical University of South Carolina, Charleston, SC 29425, USA
| |
Collapse
|
73
|
Wu Q, Zhao J, Zheng Y, Xie X, He Q, Zhu Y, Wang N, Huang L, Lu L, Hu T, Zeng J, Xia H, Zhang Y, Zhong W. Associations between common genetic variants in microRNAs and Hirschsprung disease susceptibility in Southern Chinese children. J Gene Med 2021; 23:e3301. [PMID: 33294994 PMCID: PMC7900950 DOI: 10.1002/jgm.3301] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Revised: 11/16/2020] [Accepted: 11/20/2020] [Indexed: 12/11/2022] Open
Abstract
Introduction Hirschsprung disease (HSCR), characterized by the defective migration of enteric neural crest cells, is a severe congenital tract disease in infants. Its etiology is not clear at present, although a genetic component plays an important role in its etiology. Many studies focused on the polymorphisms of microRNA (miRNA) in several disease progressions have been reported, including HSCR. However, the findings remain inconclusive. The present study aimed to explore the association of genetic variants in miRNAs and HSCR susceptibility in Southern Chinese children. Methods Five single nucleotide polymorphisms (SNPs) (miR‐146A rs2910164, miR‐4318 rs8096901, miR‐3142 rs2431697, miR‐3142 rs2431097 and miR‐3142 rs5705329) were included to be genotyped in the stratified analysis through the Mass ARRAY iPLEX Gold system (Sequenom, San Diego, CA, USA) conducted on all the samples, comprising 1470 cases and 1473 controls. After quality control, the minor allele frequency was compared in cases and controls to analyze the association between SNPs and HSCR using PLINK 1.9 (https://www.cog‐genomics.org/plink) and multiple heritability models were tested (additive, recessive and dominant models). Results Our results indicated that miR‐4318 rs8096901 polymorphisms were associated with HSCR susceptibility in Southern Chinese children, especially in short‐segment HSCR (S‐HSCR) patients after stratified analysis. Conclusions In summary, we report that miR‐4318 rs8096901 was associated with HSCR, especially in SHSCR patients.
Collapse
Affiliation(s)
- Qi Wu
- Department of Pediatric Surgery, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Jinglu Zhao
- Department of Pediatric Surgery, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Yi Zheng
- Department of Pediatric Surgery, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Xiaoli Xie
- Department of Pediatric Surgery, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Qiuming He
- Department of Pediatric Surgery, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Yun Zhu
- Department of Pediatric Surgery, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Ning Wang
- Department of Pediatric Surgery, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Lihua Huang
- Department of Pediatric Surgery, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Lifeng Lu
- Department of Pediatric Surgery, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Tuqun Hu
- Department of Pediatric Surgery, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Jixiao Zeng
- Department of Pediatric Surgery, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Huimin Xia
- Department of Pediatric Surgery, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Yan Zhang
- Department of Pediatric Surgery, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Wei Zhong
- Department of Pediatric Surgery, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, Guangdong, China
| |
Collapse
|
74
|
Vejrazkova D, Vcelak J, Vaclavikova E, Vankova M, Zajickova K, Vrbikova J, Duskova M, Pacesova P, Novak Z, Bendlova B. Recurrence of Graves' Disease: What Genetics of HLA and PTPN22 Can Tell Us. Front Endocrinol (Lausanne) 2021; 12:761077. [PMID: 34887833 PMCID: PMC8650699 DOI: 10.3389/fendo.2021.761077] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 11/01/2021] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Approximately half of patients diagnosed with Graves' disease (GD) relapse within two years of thyreostatic drug withdrawal. It is then necessary to decide whether to reintroduce conservative treatment that can have serious side effects, or to choose a radical approach. Familial forms of GD indicate a significant genetic component. Our aim was to evaluate the practical benefits of HLA and PTPN22 genetic testing for the assessment of disease recurrence risk in the Czech population. METHODS In 206 patients with GD, exon 2 in the HLA genes DRB1, DQA1, DQB1 and rs2476601 in the gene PTPN22 were sequenced. RESULTS The risk HLA haplotype DRB1*03-DQA1*05-DQB1*02 was more frequent in our GD patients than in the general European population. During long-term retrospective follow-up (many-year to lifelong perspective), 87 patients relapsed and 26 achieved remission lasting over 2 years indicating a 23% success rate for conservative treatment of the disease. In 93 people, the success of conservative treatment could not be evaluated (thyroidectomy immediately after the first attack or ongoing antithyroid therapy). Of the examined genes, the HLA-DQA1*05 variant reached statistical significance in terms of the ability to predict relapse (p=0.03). Combinations with either both other HLA risk genes forming the risk haplotype DRB1*03-DQA1*05-DQB1*02 or with the PTPN22 SNP did not improve the predictive value. CONCLUSION the DQA1*05 variant may be a useful prognostic marker in patients with an unclear choice of treatment strategy.
Collapse
Affiliation(s)
- Daniela Vejrazkova
- Department of Molecular Endocrinology, Institute of Endocrinology, Prague, Czechia
- *Correspondence: Daniela Vejrazkova,
| | - Josef Vcelak
- Department of Molecular Endocrinology, Institute of Endocrinology, Prague, Czechia
| | - Eliska Vaclavikova
- Department of Molecular Endocrinology, Institute of Endocrinology, Prague, Czechia
| | - Marketa Vankova
- Department of Molecular Endocrinology, Institute of Endocrinology, Prague, Czechia
| | - Katerina Zajickova
- Department of Clinical Endocrinology, Institute of Endocrinology, Prague, Czechia
| | - Jana Vrbikova
- Department of Clinical Endocrinology, Institute of Endocrinology, Prague, Czechia
| | - Michaela Duskova
- Department of Steroids and Proteohormones, Institute of Endocrinology, Prague, Czechia
| | - Petra Pacesova
- Department of Clinical Endocrinology, Institute of Endocrinology, Prague, Czechia
| | - Zdenek Novak
- Department of Clinical Endocrinology, Institute of Endocrinology, Prague, Czechia
| | - Bela Bendlova
- Department of Molecular Endocrinology, Institute of Endocrinology, Prague, Czechia
| |
Collapse
|
75
|
Jochems SP, Jacquelin B, Tchitchek N, Busato F, Pichon F, Huot N, Liu Y, Ploquin MJ, Roché E, Cheynier R, Dereuddre-Bosquet N, Stahl-Henning C, Le Grand R, Tost J, Müller-Trutwin M. DNA methylation changes in metabolic and immune-regulatory pathways in blood and lymph node CD4 + T cells in response to SIV infections. Clin Epigenetics 2020; 12:188. [PMID: 33298174 PMCID: PMC7724887 DOI: 10.1186/s13148-020-00971-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 11/05/2020] [Indexed: 02/07/2023] Open
Abstract
The molecular mechanisms underlying HIV-induced inflammation, which persists even during effective long-term treatment, remain incompletely defined. Here, we studied pathogenic and nonpathogenic simian immunodeficiency virus (SIV) infections in macaques and African green monkeys, respectively. We longitudinally analyzed genome-wide DNA methylation changes in CD4 + T cells from lymph node and blood, using arrays. DNA methylation changes after SIV infection were more pronounced in lymph nodes than blood and already detected in primary infection. Differentially methylated genes in pathogenic SIV infection were enriched for Th1-signaling (e.g., RUNX3, STAT4, NFKB1) and metabolic pathways (e.g., PRKCZ). In contrast, nonpathogenic SIVagm infection induced DNA methylation in genes coding for regulatory proteins such as LAG-3, arginase-2, interleukin-21 and interleukin-31. Between 15 and 18% of genes with DNA methylation changes were differentially expressed in CD4 + T cells in vivo. Selected identified sites were validated using bisulfite pyrosequencing in an independent cohort of uninfected, viremic and SIV controller macaques. Altered DNA methylation was confirmed in blood and lymph node CD4 + T cells in viremic macaques but was notably absent from SIV controller macaques. Our study identified key genes differentially methylated already in primary infection and in tissues that could contribute to the persisting metabolic disorders and inflammation in HIV-infected individuals despite effective treatment.
Collapse
Affiliation(s)
- Simon P Jochems
- HIV Inflammation and Persistence Unit, Institut Pasteur, 28 Rue Didot, 75015, Paris, France
- Sorbonne Paris Cité, Université Paris Diderot, Paris, France
- Leiden University Medical Center, Leiden, The Netherlands
| | - Beatrice Jacquelin
- HIV Inflammation and Persistence Unit, Institut Pasteur, 28 Rue Didot, 75015, Paris, France
| | - Nicolas Tchitchek
- IDMIT Department/IBFJ, Immunology of Viral Infections and Autoimmune Diseases (IMVA), INSERM U1184, CEA, Université Paris Sud, Fontenay-aux-Roses, France
| | - Florence Busato
- Laboratory for Epigenetics and Environment, Centre National de Recherche en Génomique Humaine, CEA-Institut de Biologie François Jacob, Evry, France
| | - Fabien Pichon
- Laboratory for Epigenetics and Environment, Centre National de Recherche en Génomique Humaine, CEA-Institut de Biologie François Jacob, Evry, France
| | - Nicolas Huot
- HIV Inflammation and Persistence Unit, Institut Pasteur, 28 Rue Didot, 75015, Paris, France
| | - Yi Liu
- Laboratory for Epigenetics and Environment, Centre National de Recherche en Génomique Humaine, CEA-Institut de Biologie François Jacob, Evry, France
| | - Mickaël J Ploquin
- HIV Inflammation and Persistence Unit, Institut Pasteur, 28 Rue Didot, 75015, Paris, France
| | - Elodie Roché
- Laboratory for Epigenetics and Environment, Centre National de Recherche en Génomique Humaine, CEA-Institut de Biologie François Jacob, Evry, France
| | - Rémi Cheynier
- UMR8104, CNRS, U1016, INSERM, Institut Cochin, Université de Paris, 75014, Paris, France
| | - Nathalie Dereuddre-Bosquet
- IDMIT Department/IBFJ, Immunology of Viral Infections and Autoimmune Diseases (IMVA), INSERM U1184, CEA, Université Paris Sud, Fontenay-aux-Roses, France
| | | | - Roger Le Grand
- IDMIT Department/IBFJ, Immunology of Viral Infections and Autoimmune Diseases (IMVA), INSERM U1184, CEA, Université Paris Sud, Fontenay-aux-Roses, France
| | - Jorg Tost
- Laboratory for Epigenetics and Environment, Centre National de Recherche en Génomique Humaine, CEA-Institut de Biologie François Jacob, Evry, France
| | - Michaela Müller-Trutwin
- HIV Inflammation and Persistence Unit, Institut Pasteur, 28 Rue Didot, 75015, Paris, France.
| |
Collapse
|
76
|
Tsai CY, Shen CY, Liu CW, Hsieh SC, Liao HT, Li KJ, Lu CS, Lee HT, Lin CS, Wu CH, Kuo YM, Yu CL. Aberrant Non-Coding RNA Expression in Patients with Systemic Lupus Erythematosus: Consequences for Immune Dysfunctions and Tissue Damage. Biomolecules 2020; 10:biom10121641. [PMID: 33291347 PMCID: PMC7762297 DOI: 10.3390/biom10121641] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 12/02/2020] [Accepted: 12/03/2020] [Indexed: 12/11/2022] Open
Abstract
Systemic lupus erythematosus (SLE) is a complex systemic autoimmune disease with heterogeneous clinical manifestations. A diverse innate and adaptive immune dysregulation is involved in the immunopathogenesis of SLE. The dysregulation of immune-related cells may derive from the intricate interactions among genetic, epigenetic, environmental, and immunological factors. Of these contributing factors, non-coding RNAs (ncRNAs), including microRNAs (miRNAs, miRs), and long non-coding RNAs (lncRNAs) play critical roles in the post-transcriptional mRNA expression of cytokines, chemokines, and growth factors, which are essential for immune modulation. In the present review, we emphasize the roles of ncRNA expression in the immune-related cells and cell-free plasma, urine, and tissues contributing to the immunopathogenesis and tissue damage in SLE. In addition, the circular RNAs (circRNA) and their post-translational regulation of protein synthesis in SLE are also briefly described. We wish these critical reviews would be useful in the search for biomarkers/biosignatures and novel therapeutic strategies for SLE patients in the future.
Collapse
MESH Headings
- Adaptive Immunity/genetics
- Autoimmunity/genetics
- Chemokines/genetics
- Chemokines/immunology
- Dendritic Cells/immunology
- Dendritic Cells/pathology
- Gene Expression Regulation
- Humans
- Immunity, Innate/genetics
- Intercellular Signaling Peptides and Proteins/genetics
- Intercellular Signaling Peptides and Proteins/immunology
- Killer Cells, Natural/immunology
- Killer Cells, Natural/pathology
- Lupus Erythematosus, Systemic/blood
- Lupus Erythematosus, Systemic/genetics
- Lupus Erythematosus, Systemic/immunology
- Lupus Erythematosus, Systemic/pathology
- MicroRNAs/genetics
- MicroRNAs/immunology
- Neutrophils/immunology
- Neutrophils/pathology
- RNA, Circular/genetics
- RNA, Circular/immunology
- RNA, Long Noncoding/genetics
- RNA, Long Noncoding/immunology
- RNA, Messenger/genetics
- RNA, Messenger/immunology
- T-Lymphocytes/immunology
- T-Lymphocytes/pathology
Collapse
Affiliation(s)
- Chang-Youh Tsai
- Division of Allergy, Immunology & Rheumatology, Taipei Veterans General Hospital and National Yang-Ming University, Taipei 11217, Taiwan; (C.-W.L.); (H.-T.L.)
- Correspondence: (C.-Y.T.); (C.-L.Y.)
| | - Chieh-Yu Shen
- Division of Rheumatology, Immunology, & Allergy, Department of Internal Medicine, National Taiwan University Hospital, Taipei 10002, Taiwan; (C.-Y.S.); (S.-C.H.); (K.-J.L.); (C.-S.L.); (C.-H.W.); (Y.-M.K.)
- Institute of Clinical Medicine, National Taiwan University School of Medicine, Taipei 10002, Taiwan
| | - Chih-Wei Liu
- Division of Allergy, Immunology & Rheumatology, Taipei Veterans General Hospital and National Yang-Ming University, Taipei 11217, Taiwan; (C.-W.L.); (H.-T.L.)
| | - Song-Chou Hsieh
- Division of Rheumatology, Immunology, & Allergy, Department of Internal Medicine, National Taiwan University Hospital, Taipei 10002, Taiwan; (C.-Y.S.); (S.-C.H.); (K.-J.L.); (C.-S.L.); (C.-H.W.); (Y.-M.K.)
| | - Hsien-Tzung Liao
- Division of Allergy, Immunology & Rheumatology, Taipei Veterans General Hospital and National Yang-Ming University, Taipei 11217, Taiwan; (C.-W.L.); (H.-T.L.)
| | - Ko-Jen Li
- Division of Rheumatology, Immunology, & Allergy, Department of Internal Medicine, National Taiwan University Hospital, Taipei 10002, Taiwan; (C.-Y.S.); (S.-C.H.); (K.-J.L.); (C.-S.L.); (C.-H.W.); (Y.-M.K.)
| | - Cheng-Shiun Lu
- Division of Rheumatology, Immunology, & Allergy, Department of Internal Medicine, National Taiwan University Hospital, Taipei 10002, Taiwan; (C.-Y.S.); (S.-C.H.); (K.-J.L.); (C.-S.L.); (C.-H.W.); (Y.-M.K.)
| | - Hui-Ting Lee
- Mackay Memorial Hospital and Mackay College of Medicine, Taipei 10449, Taiwan;
| | - Cheng-Sung Lin
- Department of Thoracic Surgery, Ministry of Health and Welfare Taipei Hospital, New Taipei City 24213, Taiwan;
| | - Cheng-Han Wu
- Division of Rheumatology, Immunology, & Allergy, Department of Internal Medicine, National Taiwan University Hospital, Taipei 10002, Taiwan; (C.-Y.S.); (S.-C.H.); (K.-J.L.); (C.-S.L.); (C.-H.W.); (Y.-M.K.)
| | - Yu-Min Kuo
- Division of Rheumatology, Immunology, & Allergy, Department of Internal Medicine, National Taiwan University Hospital, Taipei 10002, Taiwan; (C.-Y.S.); (S.-C.H.); (K.-J.L.); (C.-S.L.); (C.-H.W.); (Y.-M.K.)
| | - Chia-Li Yu
- Division of Rheumatology, Immunology, & Allergy, Department of Internal Medicine, National Taiwan University Hospital, Taipei 10002, Taiwan; (C.-Y.S.); (S.-C.H.); (K.-J.L.); (C.-S.L.); (C.-H.W.); (Y.-M.K.)
- Correspondence: (C.-Y.T.); (C.-L.Y.)
| |
Collapse
|
77
|
Höglund A, Henriksen R, Fogelholm J, Churcher AM, Guerrero-Bosagna CM, Martinez-Barrio A, Johnsson M, Jensen P, Wright D. The methylation landscape and its role in domestication and gene regulation in the chicken. Nat Ecol Evol 2020; 4:1713-1724. [PMID: 32958860 PMCID: PMC7616959 DOI: 10.1038/s41559-020-01310-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Accepted: 08/26/2020] [Indexed: 01/06/2023]
Abstract
Domestication is one of the strongest examples of artificial selection and has produced some of the most extreme within-species phenotypic variation known. In the case of the chicken, it has been hypothesized that DNA methylation may play a mechanistic role in the domestication response. By inter-crossing wild-derived red junglefowl with domestic chickens, we mapped quantitative trait loci for hypothalamic methylation (methQTL), gene expression (eQTL) and behaviour. We find large, stable methylation differences, with 6,179 cis and 2,973 trans methQTL identified. Over 46% of the trans effects were genotypically controlled by five loci, mainly associated with increased methylation in the junglefowl genotype. In a third of eQTL, we find that there is a correlation between gene expression and methylation, while statistical causality analysis reveals multiple instances where methylation is driving gene expression, as well as the reverse. We also show that methylation is correlated with some aspects of behavioural variation in the inter-cross. In conclusion, our data suggest a role for methylation in the regulation of gene expression underlying the domesticated phenotype of the chicken.
Collapse
Affiliation(s)
- Andrey Höglund
- AVIAN Behavioural Genomics and Physiology Group, Linköping University, Linköping, Sweden
| | - Rie Henriksen
- AVIAN Behavioural Genomics and Physiology Group, Linköping University, Linköping, Sweden
| | - Jesper Fogelholm
- AVIAN Behavioural Genomics and Physiology Group, Linköping University, Linköping, Sweden
| | | | - Carlos M Guerrero-Bosagna
- AVIAN Behavioural Genomics and Physiology Group, Linköping University, Linköping, Sweden
- Evolutionary Biology Centrum, Dept of Organismal Biology, Uppsala University, Uppsala, Sweden
| | | | - Martin Johnsson
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, The University of Edinburgh, Edinburgh, UK
- Department of Animal Breeding and Genetics, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Per Jensen
- AVIAN Behavioural Genomics and Physiology Group, Linköping University, Linköping, Sweden
| | - Dominic Wright
- AVIAN Behavioural Genomics and Physiology Group, Linköping University, Linköping, Sweden.
| |
Collapse
|
78
|
APOC3 rs2070667 Associates with Serum Triglyceride Profile and Hepatic Inflammation in Nonalcoholic Fatty Liver Disease. BIOMED RESEARCH INTERNATIONAL 2020; 2020:8869674. [PMID: 33294458 PMCID: PMC7718051 DOI: 10.1155/2020/8869674] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 11/02/2020] [Accepted: 11/10/2020] [Indexed: 02/07/2023]
Abstract
Single-nucleotide polymorphisms (SNPs) of apolipoprotein C3 (APOC3) play important role in lipid metabolism, and dyslipidemia underlies nonalcoholic fatty liver disease (NAFLD). But the correlation of serum lipidomics, APOC3 SNPs, and NAFLD remains limited understood. Enrolling thirty-four biopsy-proven NAFLD patients from Tianjin, Shanghai, Fujian, we investigated their APOC3 genotype and serum lipid profile by DNA sequencing and ultraperformance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS), respectively. Scoring of hepatocyte steatosis, ballooning, lobular inflammation, and liver fibrosis was then performed to reveal the role of lipidomics-affecting APOC3 SNPs in NAFLD-specific pathological alterations. Here, we reported that APOC3 SNPs (rs4225, rs4520, rs5128, rs2070666, and rs2070667) intimately correlated to serum lipidomics in NAFLD patients. A allele instead of G allele at rs2070667, which dominated the SNPs underlying lipidomic alteration, exhibited downregulatory effect on triacylglycerols (TGs: TG 54 : 7, TG 54 : 8, and TG 56 : 9) containing polyunsaturated fatty acid (PUFA). Moreover, subjects with low-level PUFA-containing TGs were predisposed to high-grade lobular inflammation (TG 54 : 7, rho = -0.454 and P = 0.007; TG 54 : 8, rho = -0.411 and P =0.016; TG 56 : 9, rho = -0.481 and P = 0.004). The significant correlation of APOC3 rs2070667 and inflammation grading [G/G vs. G/A+A/A: 0.00 (0.00 and 1.00) vs. 1.50 (0.75 and 2.00), P = 0.022] further confirmed its pathological action on the basis of lipidomics-impacting activity. These findings suggest an inhibitory effect of A allele at APOC3 rs2070667 on serum levels of PUFA-containing TGs, which are associated with high-grade lobular inflammation in NAFLD patients.
Collapse
|
79
|
Coit P, Ortiz-Fernandez L, Lewis EE, McCune WJ, Maksimowicz-McKinnon K, Sawalha AH. A longitudinal and transancestral analysis of DNA methylation patterns and disease activity in lupus patients. JCI Insight 2020; 5:143654. [PMID: 33108347 PMCID: PMC7710270 DOI: 10.1172/jci.insight.143654] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 10/14/2020] [Indexed: 12/16/2022] Open
Abstract
Epigenetic dysregulation is implicated in the pathogenesis of lupus. We performed a longitudinal analysis to assess changes in DNA methylation in lupus neutrophils over 4 years of follow-up and across disease activity levels using 229 patient samples. We demonstrate that DNA methylation profiles in lupus are partly determined by ancestry-associated genetic variations and are highly stable over time. DNA methylation levels in 2 CpG sites correlated significantly with changes in lupus disease activity. Progressive demethylation in SNX18 was observed with increasing disease activity in African American patients. Importantly, demethylation of a CpG site located within GALNT18 was associated with the development of active lupus nephritis. Differentially methylated genes between African American and European American lupus patients include type I IFN-response genes such as IRF7 and IFI44, and genes related to the NF-κB pathway. TREML4, which plays a vital role in TLR signaling, was hypomethylated in African American patients and demonstrated a strong cis-methylation quantitative trait loci (cis-meQTL) effect among 8855 cis-meQTL associations identified in our study.
Collapse
Affiliation(s)
- Patrick Coit
- Division of Rheumatology, Department of Pediatrics, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Graduate Program in Immunology and
| | - Lourdes Ortiz-Fernandez
- Division of Rheumatology, Department of Pediatrics, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Emily E. Lewis
- Division of Rheumatology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - W. Joseph McCune
- Division of Rheumatology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | | | - Amr H. Sawalha
- Division of Rheumatology, Department of Pediatrics, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Division of Rheumatology and Clinical Immunology, Department of Medicine, University of Pittsburgh, Pennsylvania, USA
- Lupus Center of Excellence, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
- Department of Immunology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
80
|
Lanata CM, Blazer A, Criswell LA. The Contribution of Genetics and Epigenetics to Our Understanding of Health Disparities in Rheumatic Diseases. Rheum Dis Clin North Am 2020; 47:65-81. [PMID: 34042055 DOI: 10.1016/j.rdc.2020.09.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Socioeconomic determinants of health are associated with worse outcomes in the rheumatic diseases and contribute significantly to health disparities. However, genetic and epigenetic risk factors may affect different populations disproportionally and further exacerbate health disparities. We discuss the role of genetics and epigenetics to the health disparities observed in rheumatic diseases. We review concepts of population genetics and natural selection, current genome-wide genetic and epigenetic studies of several autoimmune diseases, and environmental exposures associated with disease risk in different populations. To understand how genomics influence health disparities in the rheumatic diseases, further studies in different populations worldwide are needed.
Collapse
Affiliation(s)
- Cristina M Lanata
- Russell/Engleman Rheumatology Research Center, University of California, San Francisco, 513 Parnassus Avenue, MSB S865, San Francisco, CA, USA
| | - Ashira Blazer
- Department of Medicine, Division of Rheumatology, NYU Langone Health, 550 1st Avenue, MSB 606, New York, NY 10029, USA
| | - Lindsey A Criswell
- Russell/Engleman Rheumatology Research Center, University of California, San Francisco, 513 Parnassus Avenue, MSB S864, San Francisco, CA, USA.
| |
Collapse
|
81
|
Zhang B, Liu L, Zhou T, Shi X, Wu H, Xiang Z, Zhao M, Lu Q. A simple and highly efficient method of IFI44L methylation detection for the diagnosis of systemic lupus erythematosus. Clin Immunol 2020; 221:108612. [PMID: 33069854 DOI: 10.1016/j.clim.2020.108612] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2020] [Revised: 10/10/2020] [Accepted: 10/11/2020] [Indexed: 01/17/2023]
Abstract
Systemic lupus erythematosus (SLE) is a complex heterogenous autoimmune disease that can be challenging to diagnose. We previously identified the IFN-induced protein 44-like (IFI44L) methylation marker for SLE diagnosis, which can be detected by pyrosequencing. Although the previous technique has high sensitivity and specificity, it requires special equipment and high cost for detection. Here, we established a high-resolution melting-quantitative polymerase chain reaction (HRM-qPCR) assay to detect the methylation of IFI44L promoter for the diagnosis of SLE. The result was determined according to the standard melting curve of the methylation level of the IFI44L promoter region. The sensitivity was 88.571% and the specificity was 97.087%. The HRM-qPCR and pyrosequencing results presented good consistency when both methods were used to detect the methylation of the IFI44L promoter for SLE diagnosis. Furthermore, the HRM-qPCR method can be used to distinguish SLE from other autoimmune diseases, infectious diseases and virus-related cancers.
Collapse
Affiliation(s)
- Bo Zhang
- Department of Dermatology, Second Xiangya Hospital, Central South University, Hunan Key Laboratory of Medical Epigenomics, Changsha, Hunan, China; Research Unit of Key Technologies of Diagnosis and Treatment for Immune-related Skin Diseases, Chinese Academy of Medical Sciences (2019RU027), Changsha, Hunan, China
| | - Limin Liu
- Department of Dermatology, Second Xiangya Hospital, Central South University, Hunan Key Laboratory of Medical Epigenomics, Changsha, Hunan, China; Research Unit of Key Technologies of Diagnosis and Treatment for Immune-related Skin Diseases, Chinese Academy of Medical Sciences (2019RU027), Changsha, Hunan, China
| | - Tian Zhou
- Department of Dermatology, Second Xiangya Hospital, Central South University, Hunan Key Laboratory of Medical Epigenomics, Changsha, Hunan, China; Research Unit of Key Technologies of Diagnosis and Treatment for Immune-related Skin Diseases, Chinese Academy of Medical Sciences (2019RU027), Changsha, Hunan, China
| | - Xiaoli Shi
- Department of Dermatology, Second Xiangya Hospital, Central South University, Hunan Key Laboratory of Medical Epigenomics, Changsha, Hunan, China; Research Unit of Key Technologies of Diagnosis and Treatment for Immune-related Skin Diseases, Chinese Academy of Medical Sciences (2019RU027), Changsha, Hunan, China
| | - Haijing Wu
- Department of Dermatology, Second Xiangya Hospital, Central South University, Hunan Key Laboratory of Medical Epigenomics, Changsha, Hunan, China; Research Unit of Key Technologies of Diagnosis and Treatment for Immune-related Skin Diseases, Chinese Academy of Medical Sciences (2019RU027), Changsha, Hunan, China
| | - Zhongyuan Xiang
- Department of Clinical Laboratory, Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Ming Zhao
- Department of Dermatology, Second Xiangya Hospital, Central South University, Hunan Key Laboratory of Medical Epigenomics, Changsha, Hunan, China; Research Unit of Key Technologies of Diagnosis and Treatment for Immune-related Skin Diseases, Chinese Academy of Medical Sciences (2019RU027), Changsha, Hunan, China.
| | - Qianjin Lu
- Department of Dermatology, Second Xiangya Hospital, Central South University, Hunan Key Laboratory of Medical Epigenomics, Changsha, Hunan, China; Research Unit of Key Technologies of Diagnosis and Treatment for Immune-related Skin Diseases, Chinese Academy of Medical Sciences (2019RU027), Changsha, Hunan, China.
| |
Collapse
|
82
|
Guffroy A, Martin T, Gies V. Auto-immunité et médecine personnalisée. Rev Med Interne 2020; 41:649-652. [DOI: 10.1016/j.revmed.2020.07.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 06/29/2020] [Accepted: 07/04/2020] [Indexed: 10/23/2022]
|
83
|
Hagberg N, Lundtoft C, Rönnblom L. Immunogenetics in systemic lupus erythematosus: Transitioning from genetic associations to cellular effects. Scand J Immunol 2020; 92:e12894. [DOI: 10.1111/sji.12894] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 05/07/2020] [Accepted: 05/13/2020] [Indexed: 12/16/2022]
Affiliation(s)
- Niklas Hagberg
- Rheumatology and Science for Life Laboratories Department of Medical Sciences Uppsala University Uppsala Sweden
| | - Christian Lundtoft
- Rheumatology and Science for Life Laboratories Department of Medical Sciences Uppsala University Uppsala Sweden
| | - Lars Rönnblom
- Rheumatology and Science for Life Laboratories Department of Medical Sciences Uppsala University Uppsala Sweden
| |
Collapse
|
84
|
Ballestar E, Sawalha AH, Lu Q. Clinical value of DNA methylation markers in autoimmune rheumatic diseases. Nat Rev Rheumatol 2020; 16:514-524. [PMID: 32759997 DOI: 10.1038/s41584-020-0470-9] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/02/2020] [Indexed: 12/18/2022]
Abstract
Methylation of cytosine residues in DNA, the best studied epigenetic modification, is associated with gene transcription and nuclear organization, and ultimately the function of a cell. DNA methylation can be influenced by various factors, including changes in neighbouring genomic sites such as those induced by transcription factor binding. The DNA methylation profiles in relevant cell types are altered in most human diseases compared with the healthy state. Given the physical stability of DNA and methylated DNA compared with other epigenetic modifications, DNA methylation is an ideal marker for clinical purposes. However, few DNA methylation-based markers have made it into clinical practice, with the notable exception of some markers used in the field of oncology. Autoimmune rheumatic diseases are genetically complex entities that can vary widely in terms of prognosis, subtypes, progression and treatment responses. Increasing reports showing strong links between DNA methylation profiles and different clinical outcomes and other clinical aspects in autoimmune rheumatic diseases reinforce the usefulness of DNA methylation profiles as novel clinical markers. In this Review, we provide an updated discussion on DNA methylation alterations in autoimmune rheumatic diseases and the advantages and disadvantages of using these markers in clinical practice.
Collapse
Affiliation(s)
- Esteban Ballestar
- Epigenetics and Immune Disease Group, Josep Carreras Research Institute (IJC), Badalona, Barcelona, Spain.
| | - Amr H Sawalha
- Division of Rheumatology, Department of Pediatrics; Division of Rheumatology and Clinical Immunology, Department of Medicine, Lupus Center of Excellence, University of Pittsburgh, Pittsburgh, PA, USA
| | - Qianjin Lu
- Hunan Key Laboratory of Medical Epigenomics, Department of Dermatology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| |
Collapse
|
85
|
Akbaba TH, Sag E, Balci-Peynircioglu B, Ozen S. Epigenetics for Clinicians from the Perspective of Pediatric Rheumatic Diseases. Curr Rheumatol Rep 2020; 22:46. [DOI: 10.1007/s11926-020-00912-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
86
|
Tekola-Ayele F, Zeng X, Ouidir M, Workalemahu T, Zhang C, Delahaye F, Wapner R. DNA methylation loci in placenta associated with birthweight and expression of genes relevant for early development and adult diseases. Clin Epigenetics 2020; 12:78. [PMID: 32493484 PMCID: PMC7268466 DOI: 10.1186/s13148-020-00873-x] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Accepted: 05/21/2020] [Indexed: 02/03/2023] Open
Abstract
Background Birthweight marks an important milestone of health across the lifespan, including cardiometabolic disease risk in later life. The placenta, a transient organ at the maternal-fetal interface, regulates fetal growth. Identifying genetic loci where DNA methylation in placenta is associated with birthweight can unravel genomic pathways that are dysregulated in aberrant fetal growth and cardiometabolic diseases in later life. Results We performed placental epigenome-wide association study (EWAS) of birthweight in an ethnic diverse cohort of pregnant women (n = 301). Methylation at 15 cytosine-(phosphate)-guanine sites (CpGs) was associated with birthweight (false discovery rate (FDR) < 0.05). Methylation at four (26.7%) CpG sites was associated with placental transcript levels of 15 genes (FDR < 0.05), including genes known to be associated with adult lipid traits, inflammation and oxidative stress. Increased methylation at cg06155341 was associated with higher birthweight and lower FOSL1 expression, and lower FOSL1 expression was correlated with higher birthweight. Given the role of the FOSL1 transcription factor in regulating developmental processes at the maternal-fetal interface, epigenetic mechanisms at this locus may regulate fetal development. We demonstrated trans-tissue portability of methylation at four genes (MLLT1, PDE9A, ASAP2, and SLC20A2) implicated in birthweight by a previous study in cord blood. We also found that methylation changes known to be related to maternal underweight, preeclampsia and adult type 2 diabetes were associated with lower birthweight in placenta. Conclusion We identified novel placental DNA methylation changes associated with birthweight. Placental epigenetic mechanisms may underlie dysregulated fetal development and early origins of adult cardiometabolic diseases. Clinical trial registration ClinicalTrials.gov, NCT00912132
Collapse
Affiliation(s)
- Fasil Tekola-Ayele
- Epidemiology Branch, Division of Intramural Population Health Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, 6710B Rockledge Dr, room 3204, Bethesda, MD, 20892, USA.
| | - Xuehuo Zeng
- Division of Intramural Population Health Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Marion Ouidir
- Epidemiology Branch, Division of Intramural Population Health Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, 6710B Rockledge Dr, room 3204, Bethesda, MD, 20892, USA
| | - Tsegaselassie Workalemahu
- Epidemiology Branch, Division of Intramural Population Health Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, 6710B Rockledge Dr, room 3204, Bethesda, MD, 20892, USA
| | - Cuilin Zhang
- Epidemiology Branch, Division of Intramural Population Health Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, 6710B Rockledge Dr, room 3204, Bethesda, MD, 20892, USA
| | - Fabien Delahaye
- Department of Genetics, Albert Einstein College of Medicine, Bronx, New York, USA.,UMR 1283, Institut Pasteur de Lille, Lille, France
| | - Ronald Wapner
- Department of Obstetrics and Gynecology, Columbia University, New York, NY, USA
| |
Collapse
|
87
|
Sawalha AH, Zhao M, Coit P, Lu Q. Epigenetic dysregulation of ACE2 and interferon-regulated genes might suggest increased COVID-19 susceptibility and severity in lupus patients. Clin Immunol 2020; 215:108410. [PMID: 32276140 PMCID: PMC7139239 DOI: 10.1016/j.clim.2020.108410] [Citation(s) in RCA: 182] [Impact Index Per Article: 36.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 04/04/2020] [Accepted: 04/04/2020] [Indexed: 12/13/2022]
Abstract
Infection caused by SARS-CoV-2 can result in severe respiratory complications and death. Patients with a compromised immune system are expected to be more susceptible to a severe disease course. In this report we suggest that patients with systemic lupus erythematous might be especially prone to severe COVID-19 independent of their immunosuppressed state from lupus treatment. Specifically, we provide evidence in lupus to suggest hypomethylation and overexpression of ACE2, which is located on the X chromosome and encodes a functional receptor for the SARS-CoV-2 spike glycoprotein. Oxidative stress induced by viral infections exacerbates the DNA methylation defect in lupus, possibly resulting in further ACE2 hypomethylation and enhanced viremia. In addition, demethylation of interferon-regulated genes, NFκB, and key cytokine genes in lupus patients might exacerbate the immune response to SARS-CoV-2 and increase the likelihood of cytokine storm. These arguments suggest that inherent epigenetic dysregulation in lupus might facilitate viral entry, viremia, and an excessive immune response to SARS-CoV-2. Further, maintaining disease remission in lupus patients is critical to prevent a vicious cycle of demethylation and increased oxidative stress, which will exacerbate susceptibility to SARS-CoV-2 infection during the current pandemic. Epigenetic control of the ACE2 gene might be a target for prevention and therapy in COVID-19.
Collapse
MESH Headings
- Angiotensin-Converting Enzyme 2
- Betacoronavirus/immunology
- Betacoronavirus/pathogenicity
- CD11a Antigen/genetics
- CD11a Antigen/immunology
- COVID-19
- Coronavirus Infections/complications
- Coronavirus Infections/epidemiology
- Coronavirus Infections/genetics
- Coronavirus Infections/immunology
- Cytokines/genetics
- Cytokines/immunology
- DNA Methylation
- Disease Progression
- Epigenesis, Genetic
- Genetic Predisposition to Disease
- Host-Pathogen Interactions/genetics
- Host-Pathogen Interactions/immunology
- Humans
- Interferon Regulatory Factors/genetics
- Interferon Regulatory Factors/immunology
- Lupus Erythematosus, Systemic/complications
- Lupus Erythematosus, Systemic/epidemiology
- Lupus Erythematosus, Systemic/genetics
- Lupus Erythematosus, Systemic/immunology
- NF-kappa B/genetics
- NF-kappa B/immunology
- Oxidative Stress/genetics
- Oxidative Stress/immunology
- Pandemics
- Peptidyl-Dipeptidase A/genetics
- Peptidyl-Dipeptidase A/immunology
- Pneumonia, Viral/complications
- Pneumonia, Viral/epidemiology
- Pneumonia, Viral/genetics
- Pneumonia, Viral/immunology
- Protein Binding
- Receptors, KIR/genetics
- Receptors, KIR/immunology
- SARS-CoV-2
- Signal Transduction
- Spike Glycoprotein, Coronavirus/genetics
- Spike Glycoprotein, Coronavirus/immunology
- Viremia/complications
- Viremia/epidemiology
- Viremia/genetics
- Viremia/immunology
Collapse
Affiliation(s)
- Amr H Sawalha
- Division of Rheumatology, Department of Pediatrics, Children's Hospital of Pittsburgh, University of Pittsburgh, Pittsburgh, PA, USA; Division of Rheumatology and Clinical Immunology, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA; Lupus Center of Excellence, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.
| | - Ming Zhao
- Department of Dermatology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China; Hunan Key Laboratory of Medical Epigenomics, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Patrick Coit
- Division of Rheumatology, Department of Pediatrics, Children's Hospital of Pittsburgh, University of Pittsburgh, Pittsburgh, PA, USA; Graduate Immunology Program, University of Michigan School of Medicine, Ann Arbor, MI, USA
| | - Qianjin Lu
- Department of Dermatology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China; Hunan Key Laboratory of Medical Epigenomics, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| |
Collapse
|
88
|
Eze IC, Jeong A, Schaffner E, Rezwan FI, Ghantous A, Foraster M, Vienneau D, Kronenberg F, Herceg Z, Vineis P, Brink M, Wunderli JM, Schindler C, Cajochen C, Röösli M, Holloway JW, Imboden M, Probst-Hensch N. Genome-Wide DNA Methylation in Peripheral Blood and Long-Term Exposure to Source-Specific Transportation Noise and Air Pollution: The SAPALDIA Study. ENVIRONMENTAL HEALTH PERSPECTIVES 2020; 128:67003. [PMID: 32484729 PMCID: PMC7263738 DOI: 10.1289/ehp6174] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Revised: 04/27/2020] [Accepted: 04/30/2020] [Indexed: 05/24/2023]
Abstract
BACKGROUND Few epigenome-wide association studies (EWAS) on air pollutants exist, and none have been done on transportation noise exposures, which also contribute to environmental burden of disease. OBJECTIVE We performed mutually independent EWAS on transportation noise and air pollution exposures. METHODS We used data from two time points of the Swiss Cohort Study on Air Pollution and Lung and Heart Diseases in Adults (SAPALDIA) from 1,389 participants contributing 2,542 observations. We applied multiexposure linear mixed-effects regressions with participant-level random intercept to identify significant Cytosine-phosphate-Guanine (CpG) sites and differentially methylated regions (DMRs) in relation to 1-y average aircraft, railway, and road traffic day-evening-night noise (Lden); nitrogen dioxide (NO 2 ); and particulate matter (PM) with aerodynamic diameter < 2.5 μ m (PM 2.5 ). We performed candidate (CpG-based; cross-systemic phenotypes, combined into "allostatic load") and agnostic (DMR-based) pathway enrichment tests, and replicated previously reported air pollution EWAS signals. RESULTS We found no statistically significant CpGs at false discovery rate < 0.05 . However, 14, 48, 183, 8, and 71 DMRs independently associated with aircraft, railway, and road traffic Lden; NO 2 ; and PM 2.5 , respectively, with minimally overlapping signals. Transportation Lden and air pollutants tendentially associated with decreased and increased methylation, respectively. We observed significant enrichment of candidate DNA methylation related to C-reactive protein and body mass index (aircraft, road traffic Lden, and PM 2.5 ), renal function and "allostatic load" (all exposures). Agnostic functional networks related to cellular immunity, gene expression, cell growth/proliferation, cardiovascular, auditory, embryonic, and neurological systems development were enriched. We replicated increased methylation in cg08500171 (NO 2 ) and decreased methylation in cg17629796 (PM 2.5 ). CONCLUSIONS Mutually independent DNA methylation was associated with source-specific transportation noise and air pollution exposures, with distinct and shared enrichments for pathways related to inflammation, cellular development, and immune responses. These findings contribute in clarifying the pathways linking these exposures and age-related diseases but need further confirmation in the context of mediation analyses. https://doi.org/10.1289/EHP6174.
Collapse
Affiliation(s)
- Ikenna C Eze
- Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | - Ayoung Jeong
- Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | - Emmanuel Schaffner
- Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | - Faisal I Rezwan
- Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, UK
- School of Water, Energy and Environment, Cranfield University, Cranfield, UK
| | - Akram Ghantous
- Epigenetics Group, International Agency for Research on Cancer, Lyon, France
| | - Maria Foraster
- Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
- ISGlobal, Barcelona Institute for Global Health, Barcelona, Spain
- University Pompeu Fabra, Barcelona, Spain
- CIBER Epidemiologia y Salud Publica, Madrid, Spain
- Blanquerna School of Health Science, Universitat Ramon Llull, Barcelona, Spain
| | - Danielle Vienneau
- Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | - Florian Kronenberg
- Institute of Genetic Epidemiology, Department of Genetics and Pharmacology, Medical University of Innsbruck, Innsbruck, Austria
| | - Zdenko Herceg
- Epigenetics Group, International Agency for Research on Cancer, Lyon, France
| | - Paolo Vineis
- MRC-PHE Centre for Environment and Health, School of Public Health, Imperial College London, UK
- Italian Institute for Genomic Medicine (IIGM), Turin, Italy
| | - Mark Brink
- Federal Office for the Environment, Bern, Switzerland
| | - Jean-Marc Wunderli
- Empa Laboratory for Acoustics/Noise Control, Swiss Federal Laboratories for Material Science and Technology, Dübendorf, Switzerland
| | - Christian Schindler
- Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | - Christian Cajochen
- Center for Chronobiology, Psychiatric Hospital of the University of Basel, and Transfaculty Research Platform Molecular and Cognitive Neurosciences (MCN), Basel, Switzerland
| | - Martin Röösli
- Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | - John W Holloway
- Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Medea Imboden
- Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | - Nicole Probst-Hensch
- Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
| |
Collapse
|
89
|
Sawalha AH, Zhao M, Coit P, Lu Q. Epigenetic dysregulation of ACE2 and interferon-regulated genes might suggest increased COVID-19 susceptibility and severity in lupus patients. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2020:2020.03.30.20047852. [PMID: 32511654 PMCID: PMC7277010 DOI: 10.1101/2020.03.30.20047852] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Infection caused by SARS-CoV-2 can result in severe respiratory complications and death. Patients with a compromised immune system are expected to be more susceptible to a severe disease course. In this report we suggest that patients with systemic lupus erythematous might be especially prone to severe COVID-19 independent of their immunosuppressed state from lupus treatment. Specially, we provide evidence in lupus to suggest hypomethylation and overexpression of ACE2, which is located on the X chromosome and encodes a functional receptor for the SARS-CoV-2 spike glycoprotein. Oxidative stress induced by viral infections exacerbates the DNA methylation defect in lupus, possibly resulting in further ACE2 hypomethylation and enhanced viremia. In addition, demethylation of interferon-regulated genes, NFκB, and key cytokine genes in lupus patients might exacerbate the immune response to SARS-CoV-2 and increase the likelihood of cytokine storm. These arguments suggest that inherent epigenetic dysregulation in lupus might facilitate viral entry, viremia, and an excessive immune response to SARS-CoV-2. Further, maintaining disease remission in lupus patients is critical to prevent a vicious cycle of demethylation and increased oxidative stress, which will exacerbate susceptibility to SARS-CoV-2 infection during the current pandemic. Epigenetic control of the ACE2 gene might be a target for prevention and therapy in COVID-19.
Collapse
|
90
|
Fernandez-Jimenez N, Bilbao JR. Mendelian randomization analysis of celiac GWAS reveals a blood expression signature with diagnostic potential in absence of gluten consumption. Hum Mol Genet 2020; 28:3037-3042. [PMID: 31127932 PMCID: PMC6737291 DOI: 10.1093/hmg/ddz113] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Revised: 05/10/2019] [Accepted: 05/20/2019] [Indexed: 12/26/2022] Open
Abstract
Celiac disease (CeD) is an immune-mediated enteropathy with a strong genetic component where the main environmental trigger is dietary gluten, and currently a correct diagnosis of the disease is impossible if gluten-free diet (GFD) has already been started. We hypothesized that merging different levels of genomic information through Mendelian randomization (MR) could help discover genetic biomarkers useful for CeD diagnosis. MR was performed using public databases of expression quantitative trait loci (QTL) and methylation QTL as exposures and the largest CeD genome-wide association study conducted to date as the outcome, in order to identify potential causal genes. As a result, we identified UBE2L3, an ubiquitin ligase located in a CeD-associated region. We interrogated the expression of UBE2L3 in an independent data set of peripheral blood mononuclear cells (PBMCs) and found that its expression is altered in CeD patients on GFD when compared to non-celiac controls. The relative expression of UBE2L3 isoforms predicts CeD with 100% specificity and sensitivity and could be used as a diagnostic marker, especially in the absence of gluten consumption. This approach could be applicable to other diseases where diagnosis of asymptomatic patients can be complicated.
Collapse
Affiliation(s)
- Nora Fernandez-Jimenez
- University of the Basque Country (UPV/EHU), BioCruces-Bizkaia Health Research Institute, Leioa, Basque Country, Spain
| | - Jose Ramon Bilbao
- University of the Basque Country (UPV/EHU), BioCruces-Bizkaia Health Research Institute, Leioa, Basque Country, Spain.,Spanish Biomedical Research Center in Diabetes and Associated Metabolic Disorders (CIBERDEM) Madrid, Spain
| |
Collapse
|
91
|
Song W, Tang D, Chen D, Zheng F, Huang S, Xu Y, Yu H, He J, Hong X, Yin L, Liu D, Dai W, Dai Y. Advances in applying of multi-omics approaches in the research of systemic lupus erythematosus. Int Rev Immunol 2020; 39:163-173. [PMID: 32138562 DOI: 10.1080/08830185.2020.1736058] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Affiliation(s)
- Wencong Song
- Department of Clinical Medical Research Center, The Second Clinical Medical College of Jinan University, The First Affiliated Hospital Southern University of Science and Technology, Shenzhen People’s Hospital, Shenzhen, Guangdong, China
| | - Donge Tang
- Department of Clinical Medical Research Center, The Second Clinical Medical College of Jinan University, The First Affiliated Hospital Southern University of Science and Technology, Shenzhen People’s Hospital, Shenzhen, Guangdong, China
| | - Deheng Chen
- Department of Clinical Medical Research Center, The Second Clinical Medical College of Jinan University, The First Affiliated Hospital Southern University of Science and Technology, Shenzhen People’s Hospital, Shenzhen, Guangdong, China
| | - Fengping Zheng
- Department of Clinical Medical Research Center, The Second Clinical Medical College of Jinan University, The First Affiliated Hospital Southern University of Science and Technology, Shenzhen People’s Hospital, Shenzhen, Guangdong, China
| | - Shaoying Huang
- Department of Clinical Medical Research Center, The Second Clinical Medical College of Jinan University, The First Affiliated Hospital Southern University of Science and Technology, Shenzhen People’s Hospital, Shenzhen, Guangdong, China
| | - Yong Xu
- Department of Clinical Medical Research Center, The Second Clinical Medical College of Jinan University, The First Affiliated Hospital Southern University of Science and Technology, Shenzhen People’s Hospital, Shenzhen, Guangdong, China
| | - Haiyan Yu
- Department of Clinical Medical Research Center, The Second Clinical Medical College of Jinan University, The First Affiliated Hospital Southern University of Science and Technology, Shenzhen People’s Hospital, Shenzhen, Guangdong, China
| | - Jingquan He
- Department of Clinical Medical Research Center, The Second Clinical Medical College of Jinan University, The First Affiliated Hospital Southern University of Science and Technology, Shenzhen People’s Hospital, Shenzhen, Guangdong, China
| | - Xiaoping Hong
- Department of Clinical Medical Research Center, The Second Clinical Medical College of Jinan University, The First Affiliated Hospital Southern University of Science and Technology, Shenzhen People’s Hospital, Shenzhen, Guangdong, China
| | - Lianghong Yin
- Department of Nephrology, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Dongzhou Liu
- Department of Clinical Medical Research Center, The Second Clinical Medical College of Jinan University, The First Affiliated Hospital Southern University of Science and Technology, Shenzhen People’s Hospital, Shenzhen, Guangdong, China
| | - Weier Dai
- College of Natural Science, University of Texas at Austin, Austin, TX, USA
| | - Yong Dai
- Department of Clinical Medical Research Center, The Second Clinical Medical College of Jinan University, The First Affiliated Hospital Southern University of Science and Technology, Shenzhen People’s Hospital, Shenzhen, Guangdong, China
| |
Collapse
|
92
|
Lever E, Alves MR, Isenberg DA. Towards Precision Medicine in Systemic Lupus Erythematosus. PHARMACOGENOMICS & PERSONALIZED MEDICINE 2020; 13:39-49. [PMID: 32099443 PMCID: PMC7007776 DOI: 10.2147/pgpm.s205079] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Accepted: 01/14/2020] [Indexed: 12/12/2022]
Abstract
Systemic lupus erythematosus (SLE) is a remarkable condition characterised by diversity amongst its clinical features and immunological abnormalities. In this review, we attempt to capture the major immunological changes linked to the pathophysiology of lupus and discuss the challenge it presents in moving towards the concept of precision medicine. Currently broadly similar types of drugs, e.g., steroids, immunosuppressives, hydroxychloroquine are used to treat many of the diverse clinical features of SLE. We suspect that, as the precise immunopathological abnormalities differ between the various organs/systems in lupus patients, it will be some time before precision medicine can be fully applied to SLE.
Collapse
Affiliation(s)
- Elliott Lever
- Centre for Rheumatology, Division of Medicine, University College Hospital London, London, UK
| | - Marta R Alves
- Internal Medicine, Department of Medicine, Centro Hospitalar do Porto, Porto, Portugal
| | - David A Isenberg
- Centre for Rheumatology, Division of Medicine, University College Hospital London, London, UK
| |
Collapse
|
93
|
Abstract
Lupus nephritis (LN) is a form of glomerulonephritis that constitutes one of the most severe organ manifestations of the autoimmune disease systemic lupus erythematosus (SLE). Most patients with SLE who develop LN do so within 5 years of an SLE diagnosis and, in many cases, LN is the presenting manifestation resulting in the diagnosis of SLE. Understanding of the genetic and pathogenetic basis of LN has improved substantially over the past few decades. Treatment of LN usually involves immunosuppressive therapy, typically with mycophenolate mofetil or cyclophosphamide and with glucocorticoids, although these treatments are not uniformly effective. Despite increased knowledge of disease pathogenesis and improved treatment options, LN remains a substantial cause of morbidity and death among patients with SLE. Within 10 years of an initial SLE diagnosis, 5-20% of patients with LN develop end-stage kidney disease, and the multiple comorbidities associated with immunosuppressive treatment, including infections, osteoporosis and cardiovascular and reproductive effects, remain a concern. Clearly, early and accurate diagnosis of LN and prompt initiation of therapy are of vital importance to improve outcomes in patients with SLE.
Collapse
|
94
|
de la Calle-Fabregat C, Morante-Palacios O, Ballestar E. Understanding the Relevance of DNA Methylation Changes in Immune Differentiation and Disease. Genes (Basel) 2020; 11:E110. [PMID: 31963661 PMCID: PMC7017047 DOI: 10.3390/genes11010110] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 01/13/2020] [Accepted: 01/15/2020] [Indexed: 12/11/2022] Open
Abstract
Immune cells are one of the most complex and diverse systems in the human organism. Such diversity implies an intricate network of different cell types and interactions that are dependently interconnected. The processes by which different cell types differentiate from progenitors, mature, and finally exert their function requires an orchestrated succession of molecular processes that determine cell phenotype and function. The acquisition of these phenotypes is highly dependent on the establishment of unique epigenetic profiles that confer identity and function on the various types of effector cells. These epigenetic mechanisms integrate microenvironmental cues into the genome to establish specific transcriptional programs. Epigenetic modifications bridge environment and genome regulation and play a role in human diseases by their ability to modulate physiological programs through external stimuli. DNA methylation is one of the most ubiquitous, stable, and widely studied epigenetic modifications. Recent technological advances have facilitated the generation of a vast amount of genome-wide DNA methylation data, providing profound insights into the roles of DNA methylation in health and disease. This review considers the relevance of DNA methylation to immune system cellular development and function, as well as the participation of DNA methylation defects in immune-mediated pathologies, illustrated by selected paradigmatic diseases.
Collapse
Affiliation(s)
| | | | - Esteban Ballestar
- Epigenetics and Immune Disease Group, Josep Carreras Leukaemia Research Institute (IJC), 08916 Badalona, Barcelona, Spain; (C.d.l.C.-F.); (O.M.-P.)
| |
Collapse
|
95
|
Lymphocyte DNA methylation mediates genetic risk at shared immune-mediated disease loci. J Allergy Clin Immunol 2020; 145:1438-1451. [PMID: 31945409 PMCID: PMC7201180 DOI: 10.1016/j.jaci.2019.12.910] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 12/04/2019] [Accepted: 12/10/2019] [Indexed: 12/21/2022]
Abstract
Background Defining regulatory mechanisms through which noncoding risk variants influence the cell-mediated pathogenesis of immune-mediated disease (IMD) has emerged as a priority in the post–genome-wide association study era. Objectives With a focus on rheumatoid arthritis, we sought new insight into genetic mechanisms of adaptive immune dysregulation to help prioritize molecular pathways for targeting in this and related immune pathologies. Methods Whole-genome methylation and transcriptional data from isolated CD4+ T cells and B cells of more than 100 genotyped and phenotyped patients with inflammatory arthritis, all of whom were naive to immunomodulatory treatments, were obtained. Analysis integrated these comprehensive data with genome-wide association study findings across IMDs and other publicly available resources. Results We provide strong evidence that disease-associated DNA variants regulate cis-CpG methylation in CD4+ T and/or B cells at 37% RA loci. Using paired, cell-specific transcriptomic data and causal inference testing, we identify examples where site-specific DNA methylation in turn mediates gene expression, including FCRL3 in both cell types and ORMDL3/GSDMB, IL6ST/ANKRD55, and JAZF1 in CD4+ T cells. A number of genes regulated in this way highlight mechanisms common to RA and other IMDs including multiple sclerosis and asthma, in turn distinguishing them from osteoarthritis, a primarily degenerative disease. Finally, we corroborate the observed effects experimentally. Conclusions Our observations highlight important mechanisms of genetic risk in RA and the wider context of immune dysregulation. They confirm the utility of DNA methylation profiling as a tool for causal gene prioritization and, potentially, therapeutic targeting in complex IMD.
Collapse
|
96
|
Mo X, Guo Y, Qian Q, Fu M, Lei S, Zhang Y, Zhang H. Mendelian randomization analysis revealed potential causal factors for systemic lupus erythematosus. Immunology 2019; 159:279-288. [PMID: 31670388 DOI: 10.1111/imm.13144] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2019] [Revised: 07/13/2019] [Accepted: 09/05/2019] [Indexed: 12/14/2022] Open
Abstract
Genome-wide association studies (GWAS) have identified many loci for systemic lupus erythematosus (SLE). However, identification of functionally relevant genes remains a challenge. The aim of this study was to highlight potential causal genes for SLE in the GWAS loci. By applying Mendelian randomization (MR) methods, such as summary data-based MR (SMR), generalized SMR and MR pleiotropy residual sum and outlier, we identified DNA methylations in 15 loci and mRNA expression of 21 genes that were causally associated with SLE. The identified genes enriched in 14 specific KEGG pathways (e.g. SLE, viral carcinogenesis) and two GO terms (interferon-γ-mediated signaling pathway and innate immune response). Among the identified genes, UBE2L3 and BLK variants were significantly associated with UBE2L3 and BLK methylations and gene expressions, respectively. UBE2L3 was up-regulated in SLE patients in several types of immune cells. Methylations (e.g. cg06850285) and mRNA expression of UBE2L3 were causally associated with SLE. Methylation site cg09528494 and mRNA expression of BLK were causally associated with SLE. BLK single nucleotide polymorphisms that were significantly associated with SLE were strongly associated with plasma cathepsin B level. Deep analysis identified that plasma cathepsin B level was causally associated with SLE. In summary, this study identified hundreds of DNA methylations and genes as potential risk factors for SLE. Genetic variants in UBE2L3 gene might affect SLE by influencing gene expression. Genetic variants in BLK gene might affect SLE by influencing BLK gene expression and plasma cathepsin B protein level.
Collapse
Affiliation(s)
- Xingbo Mo
- Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Soochow University, Suzhou, China.,Center for Genetic Epidemiology and Genomics, School of Public Health, Soochow University, Suzhou, China.,Department of Epidemiology, School of Public Health, Soochow University, Suzhou, China
| | - Yufan Guo
- Department of Rheumatology, the First Affiliated Hospital of Soochow University, Suzhou, China
| | - Qiyu Qian
- Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Soochow University, Suzhou, China.,Department of Epidemiology, School of Public Health, Soochow University, Suzhou, China
| | - Mengzhen Fu
- Department of Rheumatology, the First Affiliated Hospital of Soochow University, Suzhou, China
| | - Shufeng Lei
- Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Soochow University, Suzhou, China.,Center for Genetic Epidemiology and Genomics, School of Public Health, Soochow University, Suzhou, China
| | - Yonghong Zhang
- Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Soochow University, Suzhou, China.,Department of Epidemiology, School of Public Health, Soochow University, Suzhou, China
| | - Huan Zhang
- Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Soochow University, Suzhou, China.,Department of Epidemiology, School of Public Health, Soochow University, Suzhou, China
| |
Collapse
|
97
|
Chuang HC, Tan TH. MAP4K Family Kinases and DUSP Family Phosphatases in T-Cell Signaling and Systemic Lupus Erythematosus. Cells 2019; 8:cells8111433. [PMID: 31766293 PMCID: PMC6912701 DOI: 10.3390/cells8111433] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 11/08/2019] [Accepted: 11/11/2019] [Indexed: 12/21/2022] Open
Abstract
T cells play a critical role in the pathogenesis of systemic lupus erythematosus (SLE), which is a severe autoimmune disease. In the past 60 years, only one new therapeutic agent with limited efficacy has been approved for SLE treatment; therefore, the development of early diagnostic biomarkers and therapeutic targets for SLE is desirable. Mitogen-activated protein kinase kinase kinase kinases (MAP4Ks) and dual-specificity phosphatases (DUSPs) are regulators of MAP kinases. Several MAP4Ks and DUSPs are involved in T-cell signaling and autoimmune responses. HPK1 (MAP4K1), DUSP22 (JKAP), and DUSP14 are negative regulators of T-cell activation. Consistently, HPK1 and DUSP22 are downregulated in the T cells of human SLE patients. In contrast, MAP4K3 (GLK) is a positive regulator of T-cell signaling and T-cell-mediated immune responses. MAP4K3 overexpression-induced RORγt–AhR complex specifically controls interleukin 17A (IL-17A) production in T cells, leading to autoimmune responses. Consistently, MAP4K3 and the RORγt–AhR complex are overexpressed in the T cells of human SLE patients, as are DUSP4 and DUSP23. In addition, DUSPs are also involved in either human autoimmune diseases (DUSP2, DUSP7, DUSP10, and DUSP12) or T-cell activation (DUSP1, DUSP5, and DUSP14). In this review, we summarize the MAP4Ks and DUSPs that are potential biomarkers and/or therapeutic targets for SLE.
Collapse
|
98
|
Marvisi C, Sinico RA, Salvarani C, Jayne D, Prisco D, Terrier B, Emmi G, Vaglio A. New perspectives in eosinophilic granulomatosis with polyangiitis (EGPA): report of the first meeting of the European EGPA Study Group. Intern Emerg Med 2019; 14:1193-1197. [PMID: 31388893 DOI: 10.1007/s11739-019-02166-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Accepted: 07/29/2019] [Indexed: 01/16/2023]
Abstract
The European Eosinophilic Granulomatosis with Polyangiitis (EGPA) study group first gathered in Firenze in December 2018. The discussion was centred around the clinical and therapeutic needs in EGPA which still remain unmet. Indeed, EGPA is a puzzling and rare disease which shares clinical features with other anti-neutrophil cytoplasmic antibody (ANCA)-associated vasculitis (AAVs) and hypereosinophilic syndromes (HESs). Some of the recommendations published in 2015 are based on data derived from EGPA-related diseases, rather than from EGPA itself, and therefore need to be updated. Thus, the aim of the meeting was to stimulate ongoing research, to promote collaborative European studies and to define the main issues on which future studies should be focused. Current fields of research on EGPA include potential serological biomarkers of disease activity and of specific organ involvement, possible links between different genetic variants and clinical phenotypes, and new therapeutic perspectives. Herein, we give an overview of the meeting with the goal to stimulate an international collaboration and new points of discussion.
Collapse
Affiliation(s)
- Chiara Marvisi
- University of Modena and Reggio Emilia, and Azienda USL-IRCCS, Reggio Emilia, Italy
| | - Renato Alberto Sinico
- Department of Medicine and Surgery, University of Milano-Bicocca and ASST Monza, Monza, Italy
| | - Carlo Salvarani
- University of Modena and Reggio Emilia, and Azienda USL-IRCCS, Reggio Emilia, Italy
| | - David Jayne
- Department of Medicine, University of Cambridge, Cambridge, UK
| | - Domenico Prisco
- Dipartimento Di Medicina Sperimentale e Clinica, Università Di Firenze, Largo Brambilla 3, 50134, Florence, Italy
| | - Benjamin Terrier
- Department of Internal Medicine, National Referral Center for Rare Systemic and Autoimmune Diseases, Hôpital Cochin, Paris, France
- Assistance Publique-Hôpitaux de Paris, Université Paris Descartes, Paris, France
| | - Giacomo Emmi
- Dipartimento Di Medicina Sperimentale e Clinica, Università Di Firenze, Largo Brambilla 3, 50134, Florence, Italy.
| | - Augusto Vaglio
- SOC Nefrologia E Dialisi, Azienda Ospedaliero-Universitaria Meyer, e Dipartimento Di Scienze Biomediche, Sperimentali e Cliniche "Mario Serio", Università Di Firenze, Viale Pieraccini 6, 50139, Florence, Italy.
| |
Collapse
|
99
|
Fernández-Sanlés A, Sayols-Baixeras S, Castro DE Moura M, Esteller M, Subirana I, Torres-Cuevas S, Pérez-Fernández S, Aslibekyan S, Marrugat J, Elosua R. Physical Activity and Genome-wide DNA Methylation: The REgistre GIroní del COR Study. Med Sci Sports Exerc 2019; 52:589-597. [PMID: 31652233 DOI: 10.1249/mss.0000000000002174] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
INTRODUCTION DNA methylation may be one of the biological mechanisms underlying the health benefits of physical activity (PA). Our objective was to determine the association between PA and genome-wide DNA methylation at CpG level. METHODS We designed a two-stage epigenome wide association study. In the discovery stage, we used 619 individuals from the REgistre GIroní del COR cohort. Next, we validated the CpG suggestively associated with PA (P < 10) in two independent populations (n = 1735 and 190, respectively). Physical activity was assessed with validated questionnaires and classified as light PA (LPA), moderate PA, vigorous PA, moderate-vigorous PA (MVPA) and total PA. We examined linear and nonlinear associations and meta-analyzed the results in the three populations. The linear associations were meta-analyzed with a fixed-effects model and the P values of the nonlinear associations with the Stouffer and Fisher methods. We established a P value threshold that fulfilled Bonferroni criteria over the number of CpG analyzed (0.05/421,940 = 1.185 × 10). RESULTS In the meta-analyses, two CpG sites had a statistically significant nonlinear association with MVPA. cg24155427 (P = 1.19 × 10), located in an intergenic region in chromosome 1, has been previously associated with smoking, lupus, and aging. cg09565397 (P = 1.59 × 10), located within DGAT1 in chromosome 8, which encodes an enzyme involved in triacylglycerol synthesis. CONCLUSIONS This population-based study identified two new, differentially methylated CpG sites with a nonlinear dose-response relationship to MVPA. These associations must be additionally validated and may be considered for further research on the biological mechanisms underlying health benefits of PA.
Collapse
Affiliation(s)
| | | | - Manuel Castro DE Moura
- Cancer Epigenetics and Biology Program (PEBC), Bellvitge Biomedical Research Institute (IDIBELL), Barcelona, Catalonia, SPAIN
| | | | | | | | | | - Stella Aslibekyan
- Department of Epidemiology, School of Public Health, University of Alabama at Birmingham, Birmingham, AL
| | | | | |
Collapse
|
100
|
Langie SA, Timms JA, De Boever P, McKay JA. DNA methylation and the hygiene hypothesis: connecting respiratory allergy and childhood acute lymphoblastic leukemia. Epigenomics 2019; 11:1519-1537. [PMID: 31536380 DOI: 10.2217/epi-2019-0052] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Aim: The hygiene hypothesis states that a lack of infection in early-life suppresses immune system development, and is linked to respiratory allergy (RA) and childhood acute lymphoblastic leukemia (ALL) risk. Little is known about underlying mechanisms, but DNA methylation is altered in RA and ALL, and in response to infection. We investigated if aberrant methylation may be in common between these diseases and associated with infection. Materials & methods: RA and ALL disease-associated methylation signatures were compared and related to exposure-to-infection signatures. Results: A significant number of genes overlapped between RA and ALL signatures (p = 0.0019). Significant overlaps were observed between exposure-to-infection signatures and disease-associated signatures. Conclusion: DNA methylation may be a mediating mechanism through which the hygiene hypothesis is associated with RA and ALL risk.
Collapse
Affiliation(s)
- Sabine As Langie
- VITO-Health, 2400 Mol, Belgium.,Centre for Environmental Sciences, Hasselt University, Diepenbeek, 3590, Belgium
| | - Jessica A Timms
- Institute for Health & Society, Human Nutrition Research Centre, Newcastle University, NE2 4HH, UK.,Systems Cancer Immunology Lab, Comprehensive Cancer Centre, School of Cancer and Pharmaceutical Sciences, Research Oncology, King's College London, Guy's Hospital, SE1 9RT, UK
| | - Patrick De Boever
- VITO-Health, 2400 Mol, Belgium.,Centre for Environmental Sciences, Hasselt University, Diepenbeek, 3590, Belgium
| | - Jill A McKay
- Institute for Health & Society, Human Nutrition Research Centre, Newcastle University, NE2 4HH, UK.,Faculty of Health & Life Sciences, Department of Applied Sciences, Northumbria University, NE1 8ST, UK
| |
Collapse
|