51
|
Monaco A, Choi D, Uzun S, Maitland A, Riley B. Association of mast-cell-related conditions with hypermobile syndromes: a review of the literature. Immunol Res 2022; 70:419-431. [PMID: 35449490 PMCID: PMC9022617 DOI: 10.1007/s12026-022-09280-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 04/11/2022] [Indexed: 11/26/2022]
Abstract
Ehlers-Danlos syndrome (EDS) is a group of related connective tissue disorders consisting of 13 subtypes, each with its own unique phenotypic and genetic variation. The overlap of symptoms and multitude of EDS variations makes it difficult for patients to achieve a diagnosis early in the course of their disease. The most common form, hypermobile type EDS (hEDS) and its variant, hypermobile spectrum disorder (HSD), are correlated with rheumatologic and inflammatory conditions. Evidence is still needed to determine the pathophysiology of hEDS; however, the association among these conditions and their prevalence in hEDS/HSD may be explained through consideration of persistent chronic inflammation contributing to a disruption of the connective tissue. Aberrant mast cell activation has been shown to play a role in disruption of connective tissue integrity through activity of its mediators including histamine and tryptase which affects multiple organ systems resulting in mast cell activation disorders (MCAD). The overlap of findings associated with MCAD and the immune-mediated and rheumatologic conditions in patients with hEDS/HSD may provide an explanation for the relationship among these conditions and the presence of chronic inflammatory processes in these patients. It is clear that a multidisciplinary approach is required for the treatment of patients with EDS. However, it is also important for clinicians to consider the summarized symptoms and MCAD-associated characteristics in patients with multiple complaints as possible manifestations of connective tissue disorders, in order to potentially aid in establishing an early diagnosis of EDS.
Collapse
Affiliation(s)
- Ashley Monaco
- Department of Family Medicine, NYIT College of Osteopathic Medicine, Northern Boulevard, Old Westbury, NY, 11568, USA.
| | - Diane Choi
- Department of Family Medicine, NYIT College of Osteopathic Medicine, Northern Boulevard, Old Westbury, NY, 11568, USA
| | - Serife Uzun
- Department of Family Medicine, NYIT College of Osteopathic Medicine, Northern Boulevard, Old Westbury, NY, 11568, USA
| | - Anne Maitland
- Division of Medicine, Icahn School of Medicine at Mount Sinai, Gustave L. Levy Place, New York, NY, 10029, USA
| | - Bernadette Riley
- Department of Family Medicine, NYIT College of Osteopathic Medicine, Northern Boulevard, Old Westbury, NY, 11568, USA
| |
Collapse
|
52
|
Lucarini E, Micheli L, Pagnotta E, Toti A, Ferrara V, Ciampi C, Margiotta F, Martelli A, Testai L, Calderone V, Matteo R, Suriano S, Troccoli A, Pecchioni N, Manera C, Mannelli LDC, Ghelardini C. The Efficacy of Camelina sativa Defatted Seed Meal against Colitis-Induced Persistent Visceral Hypersensitivity: The Relevance of PPAR α Receptor Activation in Pain Relief. Nutrients 2022; 14:nu14153137. [PMID: 35956313 PMCID: PMC9370738 DOI: 10.3390/nu14153137] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 07/20/2022] [Accepted: 07/25/2022] [Indexed: 02/06/2023] Open
Abstract
Brassicaceae are natural sources of bioactive compounds able to promote gut health. Belonging to this plant family, Camelina sativa is an ancient oil crop rich in glucosinolates, polyunsaturated fatty acids, and antioxidants that is attracting renewed attention for its nutraceutical potential. This work aimed at investigating the therapeutic effects of a defatted seed meal (DSM) of Camelina sativa on the colon damage and the persistent visceral hypersensitivity associated with colitis in rats. Inflammation was induced by the intrarectal injection of 2,4-dinitrobenzenesulfonic acid (DNBS). The acute administration of Camelina sativa DSM (0.1–1 g kg−1) showed a dose-dependent pain-relieving effect in DNBS-treated rats. The efficacy of the meal was slightly enhanced after bioactivation with myrosinase, which increased isothiocyanate availability, and drastically decreased by pre-treating the animals with the selective peroxisome proliferator-activated receptor alpha (PPAR α) receptor antagonist GW6471. Repeated treatments with Camelina sativa DSM (1 g kg−1) meal counteracted the development, as well as the persistence, of visceral hyperalgesia in DNBS-treated animals by reducing the intestinal inflammatory damage and preventing enteric neuron damage. In conclusion, Camelina sativa meal might be employed as a nutraceutical tool to manage persistent abdominal pain in patients and to promote gut healing.
Collapse
Affiliation(s)
- Elena Lucarini
- Department of Neuroscience, Psychology, Drug Research, and Child Health—NEUROFARBA—Pharmacology and Toxicology Section, University of Florence, 50139 Florence, Italy; (E.L.); (L.M.); (A.T.); (V.F.); (C.C.); (F.M.); (C.G.)
| | - Laura Micheli
- Department of Neuroscience, Psychology, Drug Research, and Child Health—NEUROFARBA—Pharmacology and Toxicology Section, University of Florence, 50139 Florence, Italy; (E.L.); (L.M.); (A.T.); (V.F.); (C.C.); (F.M.); (C.G.)
| | - Eleonora Pagnotta
- CREA—Council for Agricultural Research and Economics, Research Centre for Cereal and Industrial Crops, 40128 Bologna, Italy; (E.P.); (R.M.)
| | - Alessandra Toti
- Department of Neuroscience, Psychology, Drug Research, and Child Health—NEUROFARBA—Pharmacology and Toxicology Section, University of Florence, 50139 Florence, Italy; (E.L.); (L.M.); (A.T.); (V.F.); (C.C.); (F.M.); (C.G.)
| | - Valentina Ferrara
- Department of Neuroscience, Psychology, Drug Research, and Child Health—NEUROFARBA—Pharmacology and Toxicology Section, University of Florence, 50139 Florence, Italy; (E.L.); (L.M.); (A.T.); (V.F.); (C.C.); (F.M.); (C.G.)
| | - Clara Ciampi
- Department of Neuroscience, Psychology, Drug Research, and Child Health—NEUROFARBA—Pharmacology and Toxicology Section, University of Florence, 50139 Florence, Italy; (E.L.); (L.M.); (A.T.); (V.F.); (C.C.); (F.M.); (C.G.)
| | - Francesco Margiotta
- Department of Neuroscience, Psychology, Drug Research, and Child Health—NEUROFARBA—Pharmacology and Toxicology Section, University of Florence, 50139 Florence, Italy; (E.L.); (L.M.); (A.T.); (V.F.); (C.C.); (F.M.); (C.G.)
| | - Alma Martelli
- Department of Pharmacy, University of Pisa, 56126 Pisa, Italy; (A.M.); (L.T.); (V.C.); (C.M.)
- Interdepartmental Research Centre Nutraceuticals and Food for Health—NUTRAFOOD, University of Pisa, 56126 Pisa, Italy
- Interdepartmental Research Centre of Ageing Biology and Pathology, University of Pisa, 56126 Pisa, Italy
| | - Lara Testai
- Department of Pharmacy, University of Pisa, 56126 Pisa, Italy; (A.M.); (L.T.); (V.C.); (C.M.)
- Interdepartmental Research Centre Nutraceuticals and Food for Health—NUTRAFOOD, University of Pisa, 56126 Pisa, Italy
- Interdepartmental Research Centre of Ageing Biology and Pathology, University of Pisa, 56126 Pisa, Italy
| | - Vincenzo Calderone
- Department of Pharmacy, University of Pisa, 56126 Pisa, Italy; (A.M.); (L.T.); (V.C.); (C.M.)
- Interdepartmental Research Centre Nutraceuticals and Food for Health—NUTRAFOOD, University of Pisa, 56126 Pisa, Italy
- Interdepartmental Research Centre of Ageing Biology and Pathology, University of Pisa, 56126 Pisa, Italy
| | - Roberto Matteo
- CREA—Council for Agricultural Research and Economics, Research Centre for Cereal and Industrial Crops, 40128 Bologna, Italy; (E.P.); (R.M.)
| | - Serafino Suriano
- CREA—Council for Agricultural Research and Economics, Research Centre for Cereal and Industrial Crops, 71122 Foggia, Italy; (S.S.); (A.T.); (N.P.)
| | - Antonio Troccoli
- CREA—Council for Agricultural Research and Economics, Research Centre for Cereal and Industrial Crops, 71122 Foggia, Italy; (S.S.); (A.T.); (N.P.)
| | - Nicola Pecchioni
- CREA—Council for Agricultural Research and Economics, Research Centre for Cereal and Industrial Crops, 71122 Foggia, Italy; (S.S.); (A.T.); (N.P.)
| | - Clementina Manera
- Department of Pharmacy, University of Pisa, 56126 Pisa, Italy; (A.M.); (L.T.); (V.C.); (C.M.)
| | - Lorenzo Di Cesare Mannelli
- Department of Neuroscience, Psychology, Drug Research, and Child Health—NEUROFARBA—Pharmacology and Toxicology Section, University of Florence, 50139 Florence, Italy; (E.L.); (L.M.); (A.T.); (V.F.); (C.C.); (F.M.); (C.G.)
- Correspondence:
| | - Carla Ghelardini
- Department of Neuroscience, Psychology, Drug Research, and Child Health—NEUROFARBA—Pharmacology and Toxicology Section, University of Florence, 50139 Florence, Italy; (E.L.); (L.M.); (A.T.); (V.F.); (C.C.); (F.M.); (C.G.)
| |
Collapse
|
53
|
Thakur V, Bashashati M, Enriquez J, Chattopadhyay M. Inhibiting Fatty Acid Amide Hydrolase Ameliorates Enteropathy in Diabetic Mice: A Cannabinoid 1 Receptor Mediated Mechanism. Vet Sci 2022; 9:364. [PMID: 35878381 PMCID: PMC9319435 DOI: 10.3390/vetsci9070364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 07/09/2022] [Accepted: 07/13/2022] [Indexed: 11/16/2022] Open
Abstract
Gastrointestinal (GI) dysmotility in diabetics exhibits fecal incontinence or constipation which affects patients' quality of life. In this study, we aimed to understand the pattern of GI transit in type 1 diabetic (T1D) mice and whether inhibiting endocannabinoid degradation would exhibit therapeutic effect. Whole gut-transit time and fecal-pellet output were measured at 16 week post-diabetes. T1D mice treated with fatty acid amide hydrolase (FAAH) inhibitor URB597 showed reduced fecal output as well as improved gut transit time. Cannabinoid 1 receptor antagonist, AM251 blocked the effects of URB597, which may demonstrate that FAAH inhibitor is a potential remedial strategy for GI dysmotility.
Collapse
Affiliation(s)
- Vikram Thakur
- Center of Emphasis in Diabetes and Metabolism, Department of Molecular and Translational Medicine, Texas Tech University Health Sciences Center El Paso, El Paso, TX 79905, USA;
| | - Mohammad Bashashati
- Division of Gastroenterology, Department of Internal Medicine, Texas Tech University Health Sciences Center El Paso, El Paso, TX 79905, USA;
| | - Josue Enriquez
- Graduate School of Biomedical Sciences, Texas Tech University Health Sciences Center El Paso, El Paso, TX 79905, USA;
| | - Munmun Chattopadhyay
- Center of Emphasis in Diabetes and Metabolism, Department of Molecular and Translational Medicine, Texas Tech University Health Sciences Center El Paso, El Paso, TX 79905, USA;
- Graduate School of Biomedical Sciences, Texas Tech University Health Sciences Center El Paso, El Paso, TX 79905, USA;
| |
Collapse
|
54
|
Maev IV, Barkalova EV, Ovsepian MA, Andreev DN. Phenotypes of gastroesophageal reflux disease: classification, pathogenesis and diagnostic criteria: A review. CONSILIUM MEDICUM 2022. [DOI: 10.26442/20751753.2022.5.201703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
The literature review focuses on the current understanding of visceral hypersensitivity mechanisms in the esophagus. Mechanisms of peripheral and central sensitization and their relation to heartburn symptoms are covered in detail. Diagnostic criteria and algorithms for non-erosive reflux disease, functional heartburn, and esophagus hypersensitivity based on pH-impedance testing and high-resolution esophageal manometry data are presented.
Collapse
|
55
|
Hasler WL, Grabauskas G, Singh P, Owyang C. Mast cell mediation of visceral sensation and permeability in irritable bowel syndrome. Neurogastroenterol Motil 2022; 34:e14339. [PMID: 35315179 PMCID: PMC9286860 DOI: 10.1111/nmo.14339] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 11/09/2021] [Accepted: 12/03/2021] [Indexed: 12/13/2022]
Abstract
Abnormalities of mast cell structure or function may play prominent roles in irritable bowel syndrome (IBS) symptom genesis. Mast cells show close apposition to sensory nerves and release bioactive substances in response to varied stimuli including infection, stress, and other neuroendocrine factors. Most studies focus on patients who develop IBS after enteric infection or who report diarrhea-predominant symptoms. Three topics underlying IBS pathogenesis have been emphasized in recent investigations. Visceral hypersensitivity to luminal stimulation is found in most IBS patients and may contribute to abdominal pain. Mast cell dysfunction also may disrupt epithelial barrier function which alters mucosal permeability potentially leading to altered bowel function and pain. Mast cell products including histamine, proteases, prostaglandins, and cytokines may participate in hypersensitivity and permeability defects, especially with diarrhea-predominant IBS. Recent experimental evidence indicates that the pronociceptive effects of histamine and proteases are mediated by the generation of prostaglandins in the mast cell. Enteric microbiome interactions including increased mucosal bacterial translocation may activate mast cells to elicit inflammatory responses underlying some of these pathogenic effects. Therapies to alter mast cell activity (mast cell stabilizers) or function (histamine antagonists) have shown modest benefits in IBS. Future investigations will seek to define patient subsets with greater potential to respond to therapies that address visceral hypersensitivity, epithelial permeability defects, and microbiome alterations secondary to mast cell dysfunction in IBS.
Collapse
Affiliation(s)
- William L. Hasler
- Division of Gastroenterology and HepatologyUniversity of Michigan Health SystemAnn ArborMichiganUSA
| | - Gintautas Grabauskas
- Division of Gastroenterology and HepatologyUniversity of Michigan Health SystemAnn ArborMichiganUSA
| | - Prashant Singh
- Division of Gastroenterology and HepatologyUniversity of Michigan Health SystemAnn ArborMichiganUSA
| | - Chung Owyang
- Division of Gastroenterology and HepatologyUniversity of Michigan Health SystemAnn ArborMichiganUSA
| |
Collapse
|
56
|
N Cavallone I, Santos SK, Oliveira KS, D Passero LF, D Laurenti M, Jesus JA, P Marinsek G, Chucri TM, Mari RB. Histological and neuronal changes in the duodenum of hamsters infected with Leishmania (Leishmania) infantum. Exp Parasitol 2022; 239:108315. [PMID: 35780863 DOI: 10.1016/j.exppara.2022.108315] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 04/07/2022] [Accepted: 06/20/2022] [Indexed: 11/26/2022]
Abstract
Visceral leishmaniasis is a neglected tropical disease caused by parasites belonging to the Leishmania genus that infect macrophages in different tissues such as the spleen, liver, lymph nodes, bone marrow, and intestine. Therefore, this study aimed to investigate the integrity of the intestinal tract and the nitrergic (NADPH-dp) and metabolically active (NADH-dp) myenteric neurons of the duodenum of golden hamsters infected with L. (L.) infantum. Therefore, thirty golden hamsters were divided into six groups (n = 5); three of them were infected with 2 × 107 promastigote forms of L. (L.) infantum by intraperitoneal route (Infected Group - IG) and three were inoculated with saline solution (control group - CG). After 30, 60 and 90 days post-infection (DPI) infected animals were euthanized and the liver, spleen and duodenum were collected to analyze tissue parasitism. The duodenum was processed using usual histological techniques to analyze the main changes that occurred during infection and histochemical techniques to phenotype myenteric neurons. Amastigote forms were observed in the spleen, liver, and duodenum during all experimental periods, and tissue parasitism in these organs increased significantly over time. At 30 DPI, reduction in muscle tunic, increase in the total intestinal wall and the number of goblet cells PAS+ was observed. At 60 DPI, an increase in intestinal crypts and intraepithelial lymphocytes was observed, and a reduction in intestinal villi was observed at 90 DPI, along with an increase in crypt size. Regarding neurons, an increase in the density of the NADPH-dp population was observed at 30 DPI, but at 60 and 90 DPI a significant reduction of this population was observed. In general, infection progression was observed to cause significant morphofunctional changes in the duodenum of infected hamsters.
Collapse
Affiliation(s)
- Italo N Cavallone
- Animal Morphophysiology Laboratory, Department of Biological and Environmental Sciences, São Paulo State University (UNESP), São Vicente, 11.380-97, Brazil
| | - Sarah K Santos
- Animal Morphophysiology Laboratory, Department of Biological and Environmental Sciences, São Paulo State University (UNESP), São Vicente, 11.380-97, Brazil
| | - Karine S Oliveira
- Animal Morphophysiology Laboratory, Department of Biological and Environmental Sciences, São Paulo State University (UNESP), São Vicente, 11.380-97, Brazil
| | - Luiz Felipe D Passero
- Animal Morphophysiology Laboratory, Department of Biological and Environmental Sciences, São Paulo State University (UNESP), São Vicente, 11.380-97, Brazil
| | - Márcia D Laurenti
- Laboratory of Pathology and Infectious Diseases, Department of Pathology, FMUSP, São Paulo, 01246903, Brazil
| | - Jéssica Adriana Jesus
- Laboratory of Pathology and Infectious Diseases, Department of Pathology, FMUSP, São Paulo, 01246903, Brazil
| | - Gabriela P Marinsek
- Animal Morphophysiology Laboratory, Department of Biological and Environmental Sciences, São Paulo State University (UNESP), São Vicente, 11.380-97, Brazil
| | - Thaís M Chucri
- Animal Morphophysiology Laboratory, Department of Biological and Environmental Sciences, São Paulo State University (UNESP), São Vicente, 11.380-97, Brazil
| | - Renata B Mari
- Animal Morphophysiology Laboratory, Department of Biological and Environmental Sciences, São Paulo State University (UNESP), São Vicente, 11.380-97, Brazil.
| |
Collapse
|
57
|
Wei L, Singh R, Ghoshal UC. Enterochromaffin Cells-Gut Microbiota Crosstalk: Underpinning the Symptoms, Pathogenesis, and Pharmacotherapy in Disorders of Gut-Brain Interaction. J Neurogastroenterol Motil 2022; 28:357-375. [PMID: 35719046 PMCID: PMC9274469 DOI: 10.5056/jnm22008] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 03/16/2022] [Accepted: 04/04/2022] [Indexed: 11/20/2022] Open
Abstract
Disorders of gut-brain interaction (DGBIs) are common conditions in community and clinical practice. As specialized enteroendocrine cells, enterochromaffin (EC) cells produce up to 95% of total body serotonin and coordinate luminal and basolateral communication in the gastrointestinal (GI) tract. EC cells affect a broad range of gut physiological processes, such as motility, absorption, secretion, chemo/mechanosensation, and pathologies, including visceral hypersensitivity, immune dysfunction, and impaired gastrointestinal barrier function. We aim to review EC cell and serotonin-mediated physiology and pathophysiology with particular emphasis on DGBIs. We explored the knowledge gap and attempted to suggest new perspectives of physiological and pathophysiological insights of DGBIs, such as (1) functional heterogeneity of regionally distributed EC cells throughout the entire GI tract; (2) potential pathophysiological mechanisms mediated by EC cell defect in DGBIs; (3) cellular and molecular mechanisms characterizing EC cells and gut microbiota bidirectional communication; (4) differential modulation of EC cells through GI segment-specific gut microbiota; (5) uncover whether crosstalk between EC cells and (i) luminal contents; (ii) enteric nervous system; and (iii) central nervous system are core mechanisms modulating gut-brain homeostasis; and (6) explore the therapeutic modalities for physiological and pathophysiological mechanisms mediated through EC cells. Insights discussed in this review will fuel the conception and realization of pathophysiological mechanisms and therapeutic clues to improve the management and clinical care of DGBIs.
Collapse
Affiliation(s)
- Lai Wei
- Enteric NeuroScience Program, Mayo Clinic, Rochester, MN, USA
| | - Rajan Singh
- Department of Physiology and Cell Biology, University of Nevada, Reno, School of Medicine, NV, USA
| | - Uday C Ghoshal
- Department of Gastroenterology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, India
| |
Collapse
|
58
|
Gao J, Xiong T, Grabauskas G, Owyang C. Mucosal Serotonin Reuptake Transporter Expression in Irritable Bowel Syndrome Is Modulated by Gut Microbiota Via Mast Cell-Prostaglandin E2. Gastroenterology 2022; 162:1962-1974.e6. [PMID: 35167867 PMCID: PMC9117493 DOI: 10.1053/j.gastro.2022.02.016] [Citation(s) in RCA: 59] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 01/17/2022] [Accepted: 02/08/2022] [Indexed: 02/07/2023]
Abstract
BACKGROUND & AIMS Increased colonic serotonin (5-HT) level and decreased serotonin reuptake transporter (SERT) expression in irritable bowel syndrome (IBS) may contribute to diarrhea and visceral hypersensitivity. We investigated whether mucosal SERT is modulated by gut microbiota via a mast cell-prostaglandin E2 (PGE2) pathway. METHODS C57Bl/6 mice received intracolonic infusion of fecal supernatant (FS) from healthy controls or patients with diarrhea-predominant irritable bowel syndrome (IBS-D). The role of mast cells was studied in mast cell-deficient mice. Colonic organoids and/or mast cells were used for in vitro experiments. SERT expression was measured by quantitative polymerase chain reaction and Western blot. Visceromotor responses to colorectal distension and colonic transit were assessed. RESULTS Intracolonic infusion of IBS-D FS in mice caused an increase in mucosal 5-HT compared with healthy control FS, accompanied by ∼50% reduction in SERT expression. Mast cell stabilizers, cyclooxygenase-2 inhibitors, and PGE2 receptor antagonist prevented SERT downregulation. Intracolonic infusion of IBS-D FS failed to reduce SERT expression in mast cell-deficient (W/Wv) mice. This response was restored by mast cell reconstitution. The downregulation of SERT expression evoked by IBS FS was prevented by lipopolysaccharide (LPS) antagonist LPS from Rhodobacter sphaeroides and a bacterial trypsin inhibitor. In vitro LPS treatment caused increased cyclooxygenase-2 expression and PGE2 release from cultured mouse mast cells. Intracolonic infusion of IBS-D FS in mice reduced colonic transit, increased fecal water content, and increased visceromotor responses to colorectal distension. Ondansetron prevented these changes. CONCLUSIONS Fecal LPS acting in concert with trypsin in patients with IBS-D stimulates mucosal mast cells to release PGE2, which downregulates mucosal SERT, resulting in increased mucosal 5-HT. This may contribute to diarrhea and abdominal pain common in IBS.
Collapse
Affiliation(s)
| | | | | | - Chung Owyang
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan.
| |
Collapse
|
59
|
Eosinophils in the Gastrointestinal Tract: Key Contributors to Neuro-Immune Crosstalk and Potential Implications in Disorders of Brain-Gut Interaction. Cells 2022; 11:cells11101644. [PMID: 35626681 PMCID: PMC9139532 DOI: 10.3390/cells11101644] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 05/10/2022] [Accepted: 05/11/2022] [Indexed: 02/07/2023] Open
Abstract
Eosinophils are innate immune granulocytes actively involved in defensive responses and in local and systemic inflammatory processes. Beyond these effector roles, eosinophils are fundamental to maintaining homeostasis in the tissues they reside. Gastrointestinal eosinophils modulate barrier function and mucosal immunity and promote tissue development through their direct communication with almost every cellular component. This is possible thanks to the variety of receptors they express and the bioactive molecules they store and release, including cytotoxic proteins, cytokines, growth factors, and neuropeptides and neurotrophines. A growing body of evidence points to the eosinophil as a key neuro-immune player in the regulation of gastrointestinal function, with potential implications in pathophysiological processes. Eosinophil–neuron interactions are facilitated by chemotaxis and adhesion molecules, and the mediators released may have excitatory or inhibitory effects on each cell type, with physiological consequences dependent on the type of innervation involved. Of special interest are the disorders of the brain–gut interaction (DBGIs), mainly functional dyspepsia (FD) and irritable bowel syndrome (IBS), in which mucosal eosinophilia and eosinophil activation have been identified. In this review, we summarize the main roles of gastrointestinal eosinophils in supporting gut homeostasis and the evidence available on eosinophil–neuron interactions to bring new insights that support the fundamental role of this neuro-immune crosstalk in maintaining gut health and contributing to the pathophysiology of DBGIs.
Collapse
|
60
|
Kurin M, Elangovan A, Alikhan MM, Dulaijan BA, Silver E, Kaelber DC, Cooper G. Irritable bowel syndrome is strongly associated with the primary and idiopathic mast cell disorders. Neurogastroenterol Motil 2022; 34:e14265. [PMID: 34535952 PMCID: PMC9191257 DOI: 10.1111/nmo.14265] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Revised: 07/12/2021] [Accepted: 08/18/2021] [Indexed: 01/12/2023]
Abstract
BACKGROUND Mounting evidence supports a mechanistic association between irritable bowel syndrome (IBS) symptoms and mast cell hyperactivity. Yet, association between IBS and mast cell disorders (MCDs) has not been studied. We examined this association using two large databases and verified with manual chart review. METHODS The IBM Watson Health Explorys database (Somers, NY), an aggregate of electronic health record (EHR) data from over two dozen US healthcare systems, and Epic's SlicerDicer tool, a self-service tool containing de-identified data from the Epic EHR, were used to identify patients with IBS and MCDs. Patients with organic gastrointestinal disease or diseases associated with secondary mast cell hyperproliferation were excluded. Results were verified with manual chart review from two academic centers. KEY RESULTS Up to 4% of IBS patients had a comorbid MCD. IBS was strongly associated with all MCDs. The strongest association was between IBS and mast cell activation syndrome (OR 16.3; 95% CI 13.1-20.3). Odds ratios for IBS+urticaria, IBS+idiopathic urticaria, IBS+non-malignant mastocytosis, and IBS+mast cell malignancy ranged from 4.5 to 9.9. Patients from each of these overlap cohorts were predominantly female, and the overlap occurred with all IBS subtypes. Thorough endoscopic evaluation and comorbid mood disorders and migraines are more common in the overlap cohorts than in IBS alone. CONCLUSIONS/INFERENCES In a large US database encompassing >53 million patients over >20 years, patients with IBS are at least 4 times more likely to have a MCD than the general population. Further study of mast cell involvement in the pathogenesis of IBS is warranted.
Collapse
Affiliation(s)
- Michael Kurin
- Division of Gastroenterology and Hepatology, University Hospitals Cleveland Medical Center, Cleveland, OH
| | - Abbinaya Elangovan
- Internal Medicine-Pediatrics Residency Program, MetroHealth Medical Center, Cleveland, OH
| | - Muhammed Mustafa Alikhan
- Internal Medicine Residency Program, Department of General Internal Medicine, University Hospitals Cleveland Medical Center, Cleveland, OH
| | - Basmah Al Dulaijan
- Internal Medicine Residency Program, Department of General Internal Medicine, University Hospitals Cleveland Medical Center, Cleveland, OH
| | - Eli Silver
- Division of Pediatric Allergy and Immunology, University Hospitals Cleveland Medical Center, Assistant Professor of Pediatrics, Case Western Reserve University, Cleveland, OH
| | - David C. Kaelber
- Center for Clinical Informatics Research and Education, The MetroHealth System and Departments of Internal Medicine, Pediatrics and Population and Quantitative Health Sciences, Case Western Reserve University, Cleveland OH
| | - Gregory Cooper
- Gastroenterology Fellowship Program director, University Hospitals Cleveland Medical Center, Professor of Medicine, Oncology, Population and Quantitative Health Sciences, Case Western Reserve University
| |
Collapse
|
61
|
Harris LA, Cash BD, Moftah K, Franklin H. An Open-label, Multicenter Study to Assess the Efficacy and Safety of a Novel Probiotic Blend in Patients With Functional Gastrointestinal Symptoms. J Clin Gastroenterol 2022; 56:444-451. [PMID: 34028393 PMCID: PMC8989638 DOI: 10.1097/mcg.0000000000001567] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 04/09/2021] [Indexed: 12/19/2022]
Abstract
GOAL A novel 5-strain (Bl-04, Bi-07, HN019, NCFM, and Lpc-37) probiotic blend was developed and its safety and efficacy were evaluated in patients with functional gastrointestinal (GI) symptoms. BACKGROUND These strains administered together have not previously been investigated. STUDY Patients aged 18 to 75 years with functional GI symptoms were eligible for inclusion in a single-arm, open-label, multicenter study (NCT04155801). An oral capsule containing the novel probiotic blend was administered once daily for 30 days. The primary efficacy endpoint was patient-reported improvement in overall GI well-being at day 30. Secondary efficacy endpoints included changes in GI symptoms assessed using the GI Health Symptom Questionnaire. Incidence of treatment-emergent adverse events was recorded at all visits. RESULTS Of 188 enrolled patients, 72.3% were female and mean (SD) age was 44.1 (13.4) years. At day 30, 85.1% of patients achieved the primary endpoint, a positive response signifying improvement in overall GI well-being. Improvements from baseline were reported at day 30 in diarrhea frequency (baseline frequency≥3 to 4 d/wk) and severity (baseline severity≥5/10) for 75.8% and 87.3% of patients, respectively. Over the same time period, constipation frequency (baseline frequency≥3 to 4 d/wk) and severity (baseline severity≥5/10) improved in 73.6% and 80.4% of patients, respectively. Most patients reported improvements at day 30 in frequency and severity of straining, urgency, abdominal pain/discomfort, bloating, and distention. Improvements reported at day 30 were generally observable at day 14. No safety signals were identified. CONCLUSION A novel 5-strain probiotic blend improved functional GI symptoms and was safe.
Collapse
Affiliation(s)
- Lucinda A. Harris
- Division of Gastroenterology and Hepatology, Mayo Clinic, Alix School of Medicine, Scottsdale, AZ
| | - Brooks D. Cash
- Division of Gastroenterology, Hepatology, and Nutrition, University of Texas Health Science Center, Houston, TX
| | | | - Howard Franklin
- Salix Pharmaceuticals, A Division of Bausch Health US LLC, Bridgewater, NJ
| |
Collapse
|
62
|
Kamphuis JBJ, Reber LL, Eutamène H, Theodorou V. Increased fermentable carbohydrate intake alters colonic mucus barrier function through glycation processes and increased mast cell counts. FASEB J 2022; 36:e22297. [PMID: 35394686 DOI: 10.1096/fj.202100494rrr] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 03/07/2022] [Accepted: 03/23/2022] [Indexed: 12/19/2022]
Abstract
Irritable bowel syndrome (IBS) is a functional gastrointestinal disorder for which dietary interventions can be a useful treatment. In recent years, the low-FODMAP approach is gaining traction in this regard. The fermentation of these non-absorbed carbohydrates by the gut microbiota can generate toxic glycating metabolites, such as methylglyoxal. These metabolites can have harmful effects by their role in the generation of advanced glycation end products (AGEs), which activates Receptor for AGEs (AGER). Mast cells can be stimulated by AGEs and play a role in IBS. We have treated mice with lactose or fructo-oligosaccharides (FOS), with or without co-administration of pyridoxamine and investigated the colonic mucus barrier. We have found that an increased intake of lactose and fructo-oligosaccharides induces a dysregulation of the colonic mucus barrier, increasing mucus discharge in empty colon, while increasing variability and decreasing average thickness mucus layer covering the fecal pellet. Changes were correlated with increased mast cell counts, pointing to a role for the crosstalk between these and goblet cells. Additionally, AGE levels in colonic epithelium were increased by treatment with the selected fermentable carbohydrates. Observed effects were prevented by co-treatment with anti-glycation agent pyridoxamine, implicating glycation processes in the negative impact of fermentable carbohydrate ingestion. This study shows that excessive intake of fermentable carbohydrates can cause colonic mucus barrier dysregulation in mice, by a process that involves glycating agents and increased mucosal mast cell counts.
Collapse
Affiliation(s)
- J B J Kamphuis
- Institut national de recherche pour l'agriculture, l'alimentation et l'environnement (INRAE) Toxicologie alimentaire (Toxalim), UMR1331, INRAE/INP/Université de Toulouse III, Toulouse, France.,Institut national de la santé et de la recherche médicale (INSERM), Toulouse Institute for Infectious and Inflammatory Diseases (Infinity), INSERM UMR1291 - CNRS UMR5051 - Université de Toulouse III, Toulouse, France
| | - L L Reber
- Institut national de la santé et de la recherche médicale (INSERM), Toulouse Institute for Infectious and Inflammatory Diseases (Infinity), INSERM UMR1291 - CNRS UMR5051 - Université de Toulouse III, Toulouse, France
| | - H Eutamène
- Institut national de recherche pour l'agriculture, l'alimentation et l'environnement (INRAE) Toxicologie alimentaire (Toxalim), UMR1331, INRAE/INP/Université de Toulouse III, Toulouse, France
| | - V Theodorou
- Institut national de recherche pour l'agriculture, l'alimentation et l'environnement (INRAE) Toxicologie alimentaire (Toxalim), UMR1331, INRAE/INP/Université de Toulouse III, Toulouse, France
| |
Collapse
|
63
|
Accarie A, Toth J, Wauters L, Farré R, Tack J, Vanuytsel T. Estrogens Play a Critical Role in Stress-Related Gastrointestinal Dysfunction in a Spontaneous Model of Disorders of Gut-Brain Interaction. Cells 2022; 11:cells11071214. [PMID: 35406778 PMCID: PMC8997409 DOI: 10.3390/cells11071214] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 03/28/2022] [Accepted: 04/01/2022] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Disorders of the gut-brain interaction (DGBI), such as irritable bowel syndrome and functional dyspepsia, are more prevalent in women than in men, with a ratio of 2:1. Furthermore, stressful life events have been reported as one of the triggers for symptoms in DGBI patients. METHODS Here, we studied the effect of an early-life stressor (maternal separation (MS)) on jejunal and colonic alterations, including colonic sensitivity and immune cells infiltration and activation in a validated spontaneous model of DGBI (BBDP-N), and investigated the involvement of β-estradiol on stress-worsened intestinal alterations. RESULTS We found that maternal separation exacerbated colonic sensitivity and mast cell and eosinophil infiltration and activation in females only. Ovariectomy partially rescued the stress phenotype by decreasing colonic sensitivity, which was restored by β-estradiol injections and did not impact immune cells infiltration and activation. Stressed males exposed to β-estradiol demonstrated similar intestinal alterations as MS females. CONCLUSION Estrogen plays a direct critical role in colonic hypersensitivity in a spontaneous animal model of DGBI, while for immune activation, estrogen seems to be involved in the first step of their recruitment and activation. Our data point towards a complex interaction between stress and β-estradiol in DGBI.
Collapse
Affiliation(s)
- Alison Accarie
- Translational Research Center for Gastrointestinal Disorders (TARGID), Department of Chronic Diseases and Metabolism (ChroMetA), KU Leuven, 3000 Leuven, Belgium; (A.A.); (J.T.); (L.W.); (R.F.); (J.T.)
| | - Joran Toth
- Translational Research Center for Gastrointestinal Disorders (TARGID), Department of Chronic Diseases and Metabolism (ChroMetA), KU Leuven, 3000 Leuven, Belgium; (A.A.); (J.T.); (L.W.); (R.F.); (J.T.)
| | - Lucas Wauters
- Translational Research Center for Gastrointestinal Disorders (TARGID), Department of Chronic Diseases and Metabolism (ChroMetA), KU Leuven, 3000 Leuven, Belgium; (A.A.); (J.T.); (L.W.); (R.F.); (J.T.)
- Department of Gastroenterology and Hepatology, University Hospitals Leuven, 3000 Leuven, Belgium
| | - Ricard Farré
- Translational Research Center for Gastrointestinal Disorders (TARGID), Department of Chronic Diseases and Metabolism (ChroMetA), KU Leuven, 3000 Leuven, Belgium; (A.A.); (J.T.); (L.W.); (R.F.); (J.T.)
| | - Jan Tack
- Translational Research Center for Gastrointestinal Disorders (TARGID), Department of Chronic Diseases and Metabolism (ChroMetA), KU Leuven, 3000 Leuven, Belgium; (A.A.); (J.T.); (L.W.); (R.F.); (J.T.)
- Department of Gastroenterology and Hepatology, University Hospitals Leuven, 3000 Leuven, Belgium
| | - Tim Vanuytsel
- Translational Research Center for Gastrointestinal Disorders (TARGID), Department of Chronic Diseases and Metabolism (ChroMetA), KU Leuven, 3000 Leuven, Belgium; (A.A.); (J.T.); (L.W.); (R.F.); (J.T.)
- Department of Gastroenterology and Hepatology, University Hospitals Leuven, 3000 Leuven, Belgium
- Correspondence:
| |
Collapse
|
64
|
Wauters L, Ceulemans M, Schol J, Farré R, Tack J, Vanuytsel T. The Role of Leaky Gut in Functional Dyspepsia. Front Neurosci 2022; 16:851012. [PMID: 35422683 PMCID: PMC9002356 DOI: 10.3389/fnins.2022.851012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Accepted: 03/07/2022] [Indexed: 12/12/2022] Open
Abstract
Patients with functional dyspepsia (FD) complain of epigastric symptoms with no identifiable cause. Increased intestinal permeability has been described in these patients, especially in the proximal small bowel or duodenum, and was associated with mucosal immune activation and symptoms. In this review, we discuss duodenal barrier function, including techniques currently applied in FD research. We summarize the available data on duodenal permeability in FD and factors associated to increased permeability, including mucosal eosinophils, mast cells, luminal and systemic factors. While the increased influx of antigens into the duodenal mucosa could result in local immune activation, clinical evidence for a causal role of permeability is lacking in the absence of specific barrier-protective treatments. As both existing and novel treatments, including proton pump inhibitors (PPI) and pre- or probiotics may impact duodenal barrier function, it is important to recognize and study these alterations to improve the knowledge and management of FD.
Collapse
Affiliation(s)
- Lucas Wauters
- Department of Gastroenterology and Hepatology, University Hospitals Leuven, Leuven, Belgium
- Translational Research Center for Gastrointestinal Disorders (TARGID), Department of Chronic Diseases and Metabolism, KU Leuven, Leuven, Belgium
- *Correspondence: Lucas Wauters,
| | - Matthias Ceulemans
- Translational Research Center for Gastrointestinal Disorders (TARGID), Department of Chronic Diseases and Metabolism, KU Leuven, Leuven, Belgium
| | - Jolien Schol
- Department of Gastroenterology and Hepatology, University Hospitals Leuven, Leuven, Belgium
- Translational Research Center for Gastrointestinal Disorders (TARGID), Department of Chronic Diseases and Metabolism, KU Leuven, Leuven, Belgium
| | - Ricard Farré
- Translational Research Center for Gastrointestinal Disorders (TARGID), Department of Chronic Diseases and Metabolism, KU Leuven, Leuven, Belgium
| | - Jan Tack
- Department of Gastroenterology and Hepatology, University Hospitals Leuven, Leuven, Belgium
- Translational Research Center for Gastrointestinal Disorders (TARGID), Department of Chronic Diseases and Metabolism, KU Leuven, Leuven, Belgium
| | - Tim Vanuytsel
- Department of Gastroenterology and Hepatology, University Hospitals Leuven, Leuven, Belgium
- Translational Research Center for Gastrointestinal Disorders (TARGID), Department of Chronic Diseases and Metabolism, KU Leuven, Leuven, Belgium
| |
Collapse
|
65
|
Mamieva Z, Poluektova E, Svistushkin V, Sobolev V, Shifrin O, Guarner F, Ivashkin V. Antibiotics, gut microbiota, and irritable bowel syndrome: What are the relations? World J Gastroenterol 2022; 28:1204-1219. [PMID: 35431513 PMCID: PMC8968486 DOI: 10.3748/wjg.v28.i12.1204] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 12/01/2021] [Accepted: 02/23/2022] [Indexed: 02/06/2023] Open
Abstract
Irritable bowel syndrome (IBS) is a functional gastrointestinal disorder in which recurrent abdominal pain is associated with defecation or a change in bowel habits (constipation, diarrhea, or both), and it is often accompanied by symptoms of abdominal bloating and distension. IBS is an important health care issue because it negatively affects the quality of life of patients and places a considerable financial burden on health care systems. Despite extensive research, the etiology and underlying pathophysiology of IBS remain incompletely understood. Proposed mechanisms involved in its pathogenesis include increased intestinal permeability, changes in the immune system, visceral hypersensitivity, impaired gut motility, and emotional disorders. Recently, accumulating evidence has highlighted the important role of the gut microbiota in the development of IBS. Microbial dysbiosis within the gut is thought to contribute to all aspects of its multifactorial pathogenesis. The last few decades have also seen an increasing interest in the impact of antibiotics on the gut microbiota. Moreover, antibiotics have been suggested to play a role in the development of IBS. Extensive research has established that antibacterial therapy induces remarkable shifts in the bacterial community composition that are quite similar to those observed in IBS. This suggestion is further supported by data from cohort and case-control studies, indicating that antibiotic treatment is associated with an increased risk of IBS. This paper summarizes the main findings on this issue and contributes to a deeper understanding of the link between antibiotic use and the development of IBS.
Collapse
Affiliation(s)
- Zarina Mamieva
- Department of Internal Disease Propaedeutics, N.V. Sklifosovsky Institute of Clinical Medicine, I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow 119991, Russia
| | - Elena Poluektova
- Department of Internal Disease Propaedeutics, N.V. Sklifosovsky Institute of Clinical Medicine, I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow 119991, Russia
| | - Valery Svistushkin
- Department of Ear, Throat and Nose Diseases, N.V. Sklifosovsky Institute of Clinical Medicine, I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow 119991, Russia
| | - Vasily Sobolev
- Department of Ear, Throat and Nose Diseases, N.V. Sklifosovsky Institute of Clinical Medicine, I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow 119991, Russia
| | - Oleg Shifrin
- Department of Internal Disease Propaedeutics, N.V. Sklifosovsky Institute of Clinical Medicine, I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow 119991, Russia
| | - Francisco Guarner
- Digestive System Research Unit, Vall d’Hebron Research Institute, Barcelona 08035, Spain
| | - Vladimir Ivashkin
- Department of Internal Disease Propaedeutics, N.V. Sklifosovsky Institute of Clinical Medicine, I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow 119991, Russia
| |
Collapse
|
66
|
Curci F, Corbo F, Clodoveo ML, Salvagno L, Rosato A, Corazza I, Budriesi R, Micucci M, Mattioli LB. Polyphenols from Olive-Mill Wastewater and Biological Activity: Focus on Irritable Bowel Syndrome. Nutrients 2022; 14:nu14061264. [PMID: 35334922 PMCID: PMC8952826 DOI: 10.3390/nu14061264] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 03/09/2022] [Accepted: 03/11/2022] [Indexed: 02/04/2023] Open
Abstract
Waste represents a cost for companies, in particular for agro-food companies, which can become a resource as a secondary material. In this work, we examine three products of olive-oil waste water, named MOMAST® (Plus30, PW25, and HY100). Based on the chemical composition, obtained with different methods, we hypothesized a possible application as food supplements in irritable bowel syndrome (IBS). We therefore studied MOMASTs on some targets linked to this pathology: antioxidant action and spontaneous and induced intestinal contractility of the ileum and colon. Plus30, which showed a more promising biological of activity also for its oleuropein content, was characterized by an interesting action against some microorganisms. The results highlighted the ability of Plus30 to modulate spontaneous and induced contractility, to exert a good antioxidant action, and to significantly act on various microorganisms. These effects are synergistic in the presence of antibiotics. In conclusion, we can confirm that Plus30 could be a great candidate as a food supplement in patients with IBS.
Collapse
Affiliation(s)
- Francesca Curci
- Department of Pharmacy-Drug Sciences, University of Bari “Aldo Moro”, 70125 Bari, Italy; (F.C.); (F.C.); (L.S.); (A.R.)
| | - Filomena Corbo
- Department of Pharmacy-Drug Sciences, University of Bari “Aldo Moro”, 70125 Bari, Italy; (F.C.); (F.C.); (L.S.); (A.R.)
| | - Maria Lisa Clodoveo
- Interdisciplinary Department of Medicine, School of Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy;
| | - Lara Salvagno
- Department of Pharmacy-Drug Sciences, University of Bari “Aldo Moro”, 70125 Bari, Italy; (F.C.); (F.C.); (L.S.); (A.R.)
| | - Antonio Rosato
- Department of Pharmacy-Drug Sciences, University of Bari “Aldo Moro”, 70125 Bari, Italy; (F.C.); (F.C.); (L.S.); (A.R.)
| | - Ivan Corazza
- Department of Experimental Diagnostic and Specialty Medicine (DIMES), Alma Mater Studiorum University of Bologna, 40138 Bologna, Italy;
| | - Roberta Budriesi
- Department of Pharmacy and Biotechnology, Food Chemistry and Nutraceutical Lab, Alma Mater Studiorum-University of Bologna, 40126 Bologna, Italy;
- Correspondence: ; Tel.: +39-051-209-9721
| | - Matteo Micucci
- Department of Biomolecular Sciences, University of Urbino “Carlo Bo”, 61029 Urbino, Italy;
- UniCamillus-Saint Camillus International University of Health Sciences, Via di Sant’Alessandro, 800131 Rome, Italy
| | - Laura Beatrice Mattioli
- Department of Pharmacy and Biotechnology, Food Chemistry and Nutraceutical Lab, Alma Mater Studiorum-University of Bologna, 40126 Bologna, Italy;
| |
Collapse
|
67
|
Ma L, Yu J, Zhang H, Zhao B, Zhang J, Yang D, Luo F, Wang B, Jin B, Liu J. Effects of Immune Cells on Intestinal Stem Cells: Prospects for Therapeutic Targets. Stem Cell Rev Rep 2022; 18:2296-2314. [DOI: 10.1007/s12015-022-10347-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/27/2022] [Indexed: 11/29/2022]
|
68
|
Cordeiro Santos ML, da Silva Júnior RT, de Brito BB, França da Silva FA, Santos Marques H, Lima de Souza Gonçalves V, Costa dos Santos T, Ladeia Cirne C, Silva NOE, Oliveira MV, de Melo FF. Non-pharmacological management of pediatric functional abdominal pain disorders: Current evidence and future perspectives. World J Clin Pediatr 2022; 11:105-119. [PMID: 35433299 PMCID: PMC8985495 DOI: 10.5409/wjcp.v11.i2.105] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Revised: 07/19/2021] [Accepted: 02/13/2022] [Indexed: 02/06/2023] Open
Abstract
Functional abdominal pain disorders (FAPDs) are an important and prevalent cause of functional gastrointestinal disorders among children, encompassing the diagnoses of functional dyspepsia, irritable bowel syndrome, abdominal migraine, and the one not previously present in Rome III, functional abdominal pain not otherwise specified. In the absence of sufficiently effective and safe pharmacological treatments for this public problem, non-pharmacological therapies emerge as a viable means of treating these patients, avoiding not only possible side effects, but also unnecessary prescription, since many of the pharmacological treatments prescribed do not have good efficacy when compared to placebo. Thus, the present study provides a review of current and relevant evidence on non-pharmacological management of FAPDs, covering the most commonly indicated treatments, from cognitive behavioral therapy to meditation, acupuncture, yoga, massage, spinal manipulation, moxibustion, and physical activities. In addition, this article also analyzes the quality of publications in the area, assessing whether it is possible to state if non-pharmacological therapies are viable, safe, and sufficiently well-based for an appropriate and effective prescription of these treatments. Finally, it is possible to observe an increase not only in the number of publications on the non-pharmacological treatments for FAPDs in recent years, but also an increase in the quality of these publications. Finally, the sample selection of satisfactory age groups in these studies enables the formulation of specific guidelines for this age group, thus avoiding the need for adaptation of prescriptions initially made for adults, but for children use.
Collapse
Affiliation(s)
- Maria Luísa Cordeiro Santos
- Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Vitória da Conquista 45029-094, Bahia, Brazil
| | | | - Breno Bittencourt de Brito
- Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Vitória da Conquista 45029-094, Bahia, Brazil
| | | | - Hanna Santos Marques
- Campus Vitória da Conquista, Universidade Estadual do Sudoeste da Bahia, Vitória da Conquista 45083-900, Bahia, Brazil
| | | | - Talita Costa dos Santos
- Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Vitória da Conquista 45029-094, Bahia, Brazil
| | - Carolina Ladeia Cirne
- Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Vitória da Conquista 45029-094, Bahia, Brazil
| | - Natália Oliveira e Silva
- Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Vitória da Conquista 45029-094, Bahia, Brazil
| | - Márcio Vasconcelos Oliveira
- Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Vitória da Conquista 45029-094, Bahia, Brazil
| | - Fabrício Freire de Melo
- Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Vitória da Conquista 45029-094, Bahia, Brazil
| |
Collapse
|
69
|
Tabuchi T, Yokobayashi Y. High-throughput screening of cell-free riboswitches by fluorescence-activated droplet sorting. Nucleic Acids Res 2022; 50:3535-3550. [PMID: 35253887 PMCID: PMC8989549 DOI: 10.1093/nar/gkac152] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 02/15/2022] [Accepted: 02/20/2022] [Indexed: 11/14/2022] Open
Abstract
Cell-free systems that display complex functions without using living cells are emerging as new platforms to test our understanding of biological systems as well as for practical applications such as biosensors and biomanufacturing. Those that use cell-free protein synthesis (CFPS) systems to enable genetically programmed protein synthesis have relied on genetic regulatory components found or engineered in living cells. However, biological constraints such as cell permeability, metabolic stability, and toxicity of signaling molecules prevent development of cell-free devices using living cells even if cell-free systems are not subject to such constraints. Efforts to engineer regulatory components directly in CFPS systems thus far have been based on low-throughput experimental approaches, limiting the availability of basic components to build cell-free systems with diverse functions. Here, we report a high-throughput screening method to engineer cell-free riboswitches that respond to small molecules. Droplet-sorting of riboswitch variants in a CFPS system rapidly identified cell-free riboswitches that respond to compounds that are not amenable to bacterial screening methods. Finally, we used a histamine riboswitch to demonstrate chemical communication between cell-sized droplets.
Collapse
Affiliation(s)
- Takeshi Tabuchi
- Nucleic Acid Chemistry and Engineering Unit, Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa 904-0495, Japan
| | - Yohei Yokobayashi
- Nucleic Acid Chemistry and Engineering Unit, Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa 904-0495, Japan
| |
Collapse
|
70
|
Mischopoulou M, D'Ambrosio M, Bigagli E, Luceri C, Farrugia G, Cipriani G. Role of Macrophages and Mast Cells as Key Players in the Maintenance of Gastrointestinal Smooth Muscle Homeostasis and Disease. Cell Mol Gastroenterol Hepatol 2022; 13:1849-1862. [PMID: 35245688 PMCID: PMC9123576 DOI: 10.1016/j.jcmgh.2022.02.017] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 02/18/2022] [Accepted: 02/22/2022] [Indexed: 12/18/2022]
Abstract
The gut contains the largest macrophage pool in the body, with populations of macrophages residing in the mucosa and muscularis propria of the gastrointestinal (GI) tract. Muscularis macrophages (MMs), which are located within the muscularis propria, interact with cells essential for GI function, such as interstitial cells of Cajal, enteric neurons, smooth muscle cells, enteric glia, and fibroblast-like cells, suggesting that these immune cells contribute to several aspects of GI function. This review focuses on the latest insights on the factors contributing to MM heterogeneity and the functional interaction of MMs with other cell types essential for GI function. This review integrates the latest findings on macrophages in other organs with increasing knowledge of MMs to better understand their role in a healthy and diseased gut. We describe the factors that contribute to (muscularis macrophage) MM heterogeneity, and the nature of MM interactions with cells regulating GI function. Finally, we also describe the increasing evidence suggesting a critical role of another immune cell type, the mast cell, in normal and diseased GI physiology.
Collapse
Affiliation(s)
| | - Mario D'Ambrosio
- Section of Pharmacology and Toxicology, Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), University of Florence, Florence, Italy
| | - Elisabetta Bigagli
- Section of Pharmacology and Toxicology, Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), University of Florence, Florence, Italy
| | - Cristina Luceri
- Section of Pharmacology and Toxicology, Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), University of Florence, Florence, Italy
| | | | | |
Collapse
|
71
|
Singh R, Zogg H, Ghoshal UC, Ro S. Current Treatment Options and Therapeutic Insights for Gastrointestinal Dysmotility and Functional Gastrointestinal Disorders. Front Pharmacol 2022; 13:808195. [PMID: 35145413 PMCID: PMC8822166 DOI: 10.3389/fphar.2022.808195] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 01/04/2022] [Indexed: 12/12/2022] Open
Abstract
Functional gastrointestinal disorders (FGIDs) have been re-named as disorders of gut-brain interactions. These conditions are not only common in clinical practice, but also in the community. In reference to the Rome IV criteria, the most common FGIDs, include functional dyspepsia (FD) and irritable bowel syndrome (IBS). Additionally, there is substantial overlap of these disorders and other specific gastrointestinal motility disorders, such as gastroparesis. These disorders are heterogeneous and are intertwined with several proposed pathophysiological mechanisms, such as altered gut motility, intestinal barrier dysfunction, gut immune dysfunction, visceral hypersensitivity, altered GI secretion, presence and degree of bile acid malabsorption, microbial dysbiosis, and alterations to the gut-brain axis. The treatment options currently available include lifestyle modifications, dietary and gut microbiota manipulation interventions including fecal microbiota transplantation, prokinetics, antispasmodics, laxatives, and centrally and peripherally acting neuromodulators. However, treatment that targets the pathophysiological mechanisms underlying the symptoms are scanty. Pharmacological agents that are developed based on the cellular and molecular mechanisms underlying pathologies of these disorders might provide the best avenue for future pharmaceutical development. The currently available therapies lack long-term effectiveness and safety for their use to treat motility disorders and FGIDs. Furthermore, the fundamental challenges in treating these disorders should be defined; for instance, 1. Cause and effect cannot be disentangled between symptoms and pathophysiological mechanisms due to current therapies that entail the off-label use of medications to treat symptoms. 2. Despite the knowledge that the microbiota in our gut plays an essential part in maintaining gut health, their exact functions in gut homeostasis are still unclear. What constitutes a healthy microbiome and further, the precise definition of gut microbial dysbiosis is lacking. More comprehensive, large-scale, and longitudinal studies utilizing multi-omics data are needed to dissect the exact contribution of gut microbial alterations in disease pathogenesis. Accordingly, we review the current treatment options, clinical insight on pathophysiology, therapeutic modalities, current challenges, and therapeutic clues for the clinical care and management of functional dyspepsia, gastroparesis, irritable bowel syndrome, functional constipation, and functional diarrhea.
Collapse
Affiliation(s)
- Rajan Singh
- Department of Physiology and Cell Biology, Reno School of Medicine, University of Nevada, Reno, NV, United States
| | - Hannah Zogg
- Department of Physiology and Cell Biology, Reno School of Medicine, University of Nevada, Reno, NV, United States
| | - Uday C Ghoshal
- Department of Gastroenterology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, India
| | - Seungil Ro
- Department of Physiology and Cell Biology, Reno School of Medicine, University of Nevada, Reno, NV, United States
| |
Collapse
|
72
|
Progress on the Mechanism of Visceral Hypersensitivity in Nonerosive Reflux Disease. Gastroenterol Res Pract 2022; 2022:4785077. [PMID: 35096053 PMCID: PMC8794695 DOI: 10.1155/2022/4785077] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 01/08/2022] [Indexed: 12/21/2022] Open
Abstract
Nonerosive reflux disease (NERD) is the most common type of gastroesophageal reflux disease (GERD). Its clinical symptoms can recur, and clinical treatment is often ineffective, causing patients severe economic and psychological burden. In recent years, studies that have explored in-depth the pathogenesis of NERD have found that visceral hypersensitivity (VH) plays an important role. VH refers to the phenomenon that viscera react strongly to nociceptive stimuli or produce a negative reaction to physiological stimuli due to the decrease of one’s visceral pain threshold. Studies have found that the VH mechanism in NERD primarily includes abnormal neurotransmitters, the activation of acid-sensitive receptors, and abnormal psychological factors—all of which we review in this article.
Collapse
|
73
|
Buscail E, Deraison C. Postoperative Ileus: a Pharmacological Perspective. Br J Pharmacol 2022; 179:3283-3305. [PMID: 35048360 DOI: 10.1111/bph.15800] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 12/31/2021] [Accepted: 01/05/2022] [Indexed: 11/29/2022] Open
Abstract
Post-operative ileus (POI) is a frequent complication after abdominal surgery. The consequences of POI can be potentially serious such as bronchial inhalation or acute functional renal failure. Numerous advances in peri-operative management, particularly early rehabilitation, have made it possible to decrease POI. Despite this, the rate of prolonged POI ileus remains high and can be as high as 25% of patients in colorectal surgery. From a pathophysiological point of view, POI has two phases, an early neurological phase and a later inflammatory phase, to which we could add a "pharmacological" phase during which analgesic drugs, particularly opiates, play a central role. The aim of this review article is to describe the phases of the pathophysiology of POI, to analyse the pharmacological treatments currently available through published clinical trials and finally to discuss the different research areas for potential pharmacological targets.
Collapse
Affiliation(s)
- Etienne Buscail
- IRSD, INSERM, INRAE, ENVT, University of Toulouse, CHU Purpan (University Hospital Centre), Toulouse, France.,Department of digestive surgery, colorectal surgery unit, Toulouse University Hospital, Toulouse, France
| | - Céline Deraison
- IRSD, INSERM, INRAE, ENVT, University of Toulouse, CHU Purpan (University Hospital Centre), Toulouse, France
| |
Collapse
|
74
|
Kumari MV, Amarasiri L, Rajindrajith S, Devanarayana NM. Gastric motility and pulmonary function in children with functional abdominal pain disorders and asthma: A pathophysiological study. PLoS One 2022; 17:e0262086. [PMID: 34982797 PMCID: PMC8726504 DOI: 10.1371/journal.pone.0262086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 12/17/2021] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND An association has been shown between functional abdominal pain disorders (FAPDs) and asthma. However, the exact reason for this association is obscured. The main objective of this study is to identify the possible underlying pathophysiological mechanisms for the association between FAPDs and asthma using gastric motility and lung function tests. METHODS This was a cross-sectional comparative study that consisted of four study groups. Twenty-four children (age 7-12 years) each were recruited for four study groups; asthma only, FAPDs only, both asthma and FAPDs, and healthy controls. Asthma was diagnosed using the history and bronchodilator reversibility test. The diagnosis of FAPDs was made using Rome IV criteria. All subjects underwent ultrasound assessment of gastric motility and pulmonary function assessment by spirometry, using validated techniques. RESULTS All gastric motility parameters, gastric emptying rate, amplitude of antral contraction, and antral motility index, were significantly impaired in children with FAPDs only, children with asthma only, and children with both asthma & FAPDs, compared to controls (p<0.05). Pulmonary function parameters indicating airway obstruction (FEV1/FVC ratio, peak expiratory flow rate, FEF25-75%) were not impaired in children with FAPDs only compared to controls (p>0.05), but significantly impaired in children with asthma and children with both disorders. Antral motility index correlated with the FEV1/FVC ratio (r = 0.60, p = 0.002) and FEF25%-75% (r = 0.49, p = 0.01) in children with both asthma and FAPDs. CONCLUSIONS Gastric motor functions were significantly impaired in children with asthma, children with FAPDs, and children with both disorders. Motility index, measuring overall gastric motor activity, showed a significant positive correlation with lung function parameters that measure airflow limitation. Therefore, these diseases might arise as a result of primary disturbance of smooth muscle activity in the airways and gastrointestinal wall, which could be a possible pathophysiological mechanism for this association between asthma and FAPDs.
Collapse
Affiliation(s)
- Manori Vijaya Kumari
- Department of Physiology, Faculty of Medicine & Allied Sciences, Rajarata University of Sri Lanka, Anuradhapura, North Central Province, Sri Lanka
| | - Lakmali Amarasiri
- Department of Physiology, Faculty of Medicine, University of Colombo, Colombo, Western Province, Sri Lanka
| | - Shaman Rajindrajith
- Department of Pediatrics, Faculty of Medicine, University of Colombo, Colombo, Western Province, Sri Lanka
| | | |
Collapse
|
75
|
Mucosal Mast Cell Distribution in the Gastrointestinal Tract of Children: A Preliminary Study for Establishing Reference Values. J Pediatr Gastroenterol Nutr 2022; 74:46-53. [PMID: 34694267 DOI: 10.1097/mpg.0000000000003338] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
OBJECTIVES The physiological number and distribution of mast cells (MCs) in the pediatric gastrointestinal (GI) tract is not well defined and reference values of normality are missing. To define a physiological and disease defining cut-off, a systematic histological exploration of MC distribution from the esophagus to the rectum in healthy as well as in patients with gastrointestinal food allergies (GFA) was performed. METHODS Nine pediatric subjects that exhibited unremarkable histopathological evaluations or underwent endoscopy for surveillance reasons after a previous polypectomy of single colonic juvenile polyps served as reference cohort. In all of these subjects, a chronic inflammatory disease (eg, inflammatory bowel disease, celiac disease) or allergy was excluded. In addition, a group of 15 patients with gastrointestinal complaints suspected to be caused by a GFA were investigated. Immunohistochemistry was performed from all biopsies using CD117 (c-Kit) as a reliable marker to identify MCs in the lamina propria. RESULTS There were distinct differences of MC counts in all parts of the pediatric GI tract. The highest counts of MCs in both symptomatic patients and control cohort, were found in the duodenum, terminal ileum, cecum and ascending colon. The lowest counts were found in the esophagus. Significant disparities between GFA and healthy subjects were found in the gastric corpus (22.1 ± 4.0/ high power field [HPF] vs 32.0 ± 10.1/HPF; P = 0.034) and ascending colon (44.8 ± 10.4/HPF vs 60.4 ± 24.3/HPF; P = 0.047). CONCLUSIONS Mucosal MC counts in the pediatric GI tract are higher than previously reported, with a considerable overlap between healthy and GFA patients. These results provide detailed information on distribution and numbers of MCs in pediatric allergic patients while allowing estimates of physiological values in childhood for the first time. With regard to diagnostic procedures in GFA further laboratory parameters have to be integrated.
Collapse
|
76
|
Fabrizio V, Harris CL, Walsh KR, Wampler JL, Zhuang W, Wu SS. Softer More Frequent Stools in Infants With Difficult Stooling Fed Hydrolyzed Protein Formula With Added Prebiotics: Randomized Controlled Trial. Front Pediatr 2022; 10:894626. [PMID: 35712635 PMCID: PMC9194470 DOI: 10.3389/fped.2022.894626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 05/02/2022] [Indexed: 11/29/2022] Open
Abstract
OBJECTIVE To evaluate stool consistency in infants with reported hard or infrequent stools fed hydrolyzed protein formula with added prebiotics designed to promote stool softening. METHODS In this multi-center, double-blind, controlled study, eligible infants (28-300 days of age at enrollment) were randomized to: partially hydrolyzed cow's milk protein formula (PHF, 75% carbohydrate as lactose; 12 mg Mg/100 kcal; n = 49) or routine intact protein cow's milk-based infant formula (Control, 92% carbohydrate as lactose; 8 mg Mg/100 kcal; n = 51) over a 14-day period. Both formulas had a prebiotic blend (polydextrose and galactooligosaccharides, 4 g/L; 1:1 ratio). Parent-reported stool consistency (hard = 1 through watery = 5) and other daily outcomes were collected by diary. Endpoint stool consistency (mean score over last 3 days of study feeding) was the primary outcome. Adverse events were recorded. RESULTS Baseline stool consistency (Control: 1.4 ± 0.1, PHF: 1.4 ± 0.1) and frequency were similar between groups; the majority had hard (n = 61, 64%) or formed (n = 30, 32%) stools. Stool consistency became softer over Day 1-3 (Control: 2.5 ± 0.1, PHF: 2.6 ± 0.1) and remained similar from Day 4 to 6 through study end (post hoc analysis). For PHF vs Control, endpoint stool consistency was significantly softer (3.4 ± 0.1 vs 3.0 ± 0.1; P = 0.019) and frequency significantly higher (1.5 ± 0.1 vs 1.0 ± 0.1; P = 0.002). Crying, fussing, and appearance of pain during stooling decreased from baseline to study end in both groups. Formula intake, infant fussiness and incidence of adverse events were similar between groups. CONCLUSION An infant formula designed to promote stool softening was well-tolerated and associated with softer, more frequent stools in infants with reported hard or infrequent stools.
Collapse
Affiliation(s)
- Veronica Fabrizio
- Medical and Scientific Affairs, Reckitt
- Mead Johnson Nutrition Institute (MJNI), Evansville, IN, United States.,Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Cheryl L Harris
- Medical and Scientific Affairs, Reckitt
- Mead Johnson Nutrition Institute (MJNI), Evansville, IN, United States
| | - Kelly R Walsh
- Medical and Scientific Affairs, Reckitt
- Mead Johnson Nutrition Institute (MJNI), Evansville, IN, United States
| | - Jennifer L Wampler
- Medical and Scientific Affairs, Reckitt
- Mead Johnson Nutrition Institute (MJNI), Evansville, IN, United States
| | - Weihong Zhuang
- Medical and Scientific Affairs, Reckitt
- Mead Johnson Nutrition Institute (MJNI), Evansville, IN, United States
| | - Steven S Wu
- Medical and Scientific Affairs, Reckitt
- Mead Johnson Nutrition Institute (MJNI), Evansville, IN, United States.,Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN, United States
| |
Collapse
|
77
|
Louwies T, Meerveld BGV. Abdominal Pain. COMPREHENSIVE PHARMACOLOGY 2022:132-163. [DOI: 10.1016/b978-0-12-820472-6.00037-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
78
|
Song X, Pi S, Gao Y, Zhou F, Yan S, Chen Y, Qiao L, Dou X, Shao D, Xu C. The Role of Vasoactive Intestinal Peptide and Mast Cells in the Regulatory Effect of Lactobacillus casei ATCC 393 on Intestinal Mucosal Immune Barrier. Front Immunol 2021; 12:723173. [PMID: 34899686 PMCID: PMC8657605 DOI: 10.3389/fimmu.2021.723173] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 11/09/2021] [Indexed: 01/07/2023] Open
Abstract
Vasoactive intestinal peptide (VIP) plays an important role in the neuro-endocrine-immune system. Mast cells (MCs) are important immune effector cells. This study was conducted to investigate the protective effect of L. casei ATCC 393 on Enterotoxigenic Escherichia coli (ETEC) K88-induced intestinal mucosal immune barrier injury and its association with VIP/MC signaling by in vitro experiments in cultures of porcine mucosal mast cells (PMMCs) and in vivo experiments using VIP receptor antagonist (aVIP) drug. The results showed that compared with the ETEC K88 and lipopolysaccharides (LPS)-induced model groups, VIP pretreatment significantly inhibited the activation of MCs and the release of β-hexosaminidase (β-hex), histamine and tryptase. Pretreatment with aVIP abolished the protective effect of L. casei ATCC 393 on ETEC K88-induced intestinal mucosal immune barrier dysfunction in C57BL/6 mice. Also, with the blocking of VIP signal transduction, the ETEC K88 infection increased serum inflammatory cytokines, and the numbers of degranulated MCs in ileum, which were decreased by administration of L. casei ATCC 393. In addition, VIP mediated the regulatory effect of L. casei ATCC 393 on intestinal microbiota in mice. These findings suggested that VIP may mediate the protective effect of L.casei ATCC 393 on intestinal mucosal immune barrier dysfunction via MCs.
Collapse
Affiliation(s)
- Xiaofan Song
- The Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, China
| | - Shanyao Pi
- The Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, China
| | - Yueming Gao
- The Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, China
| | - Fengxia Zhou
- The Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, China
| | - Shuqi Yan
- The Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, China
| | - Yue Chen
- The Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, China
| | - Lei Qiao
- The Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, China
| | - Xina Dou
- The Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, China
| | - Dongyan Shao
- The Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, China
| | - Chunlan Xu
- The Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, China
| |
Collapse
|
79
|
Mohammadi M, Mirzaei H, Motallebi M. The role of anaerobic bacteria in the development and prevention of colorectal cancer: A review study. Anaerobe 2021; 73:102501. [PMID: 34906686 DOI: 10.1016/j.anaerobe.2021.102501] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 11/15/2021] [Accepted: 12/07/2021] [Indexed: 02/07/2023]
Abstract
Colorectal cancer (CRC) is the third most frequently diagnosed cancer in both males and females in the Unites States. Colonoscopy is considered a safe method for screening this disorder; however, it can be challenging for patients. As research on microbiota, especially anaerobic microbiota, has expanded substantially, new links have been determined between anaerobic bacteria and CRC progression. These associations can be useful in screening CRC in the near future. This review discusses current research investigating the presence of anaerobic bacteria, including Bacteroides fragilis, Peptostreptococcus anaerobius, Clostridium septicum, Porphyromonas gingivalis, Fusobacterium nucleatum, and Parvimonas micra in CRC and presents an overview about their mechanisms of action. We also discuss the current anaerobic probiotics used for the treatment and prevention of CRC.
Collapse
Affiliation(s)
- Mehrdad Mohammadi
- Department of Immunology and Microbiology, Faculty of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Mitra Motallebi
- Department of Immunology and Microbiology, Faculty of Medicine, Kashan University of Medical Sciences, Kashan, Iran; Infectious Diseases Research Center, Kashan University of Medical Sciences, Kashan, Iran.
| |
Collapse
|
80
|
Layer P, Andresen V, Allescher H, Bischoff SC, Claßen M, Elsenbruch S, Freitag M, Frieling T, Gebhard M, Goebel-Stengel M, Häuser W, Holtmann G, Keller J, Kreis ME, Kruis W, Langhorst J, Jansen PL, Madisch A, Mönnikes H, Müller-Lissner S, Niesler B, Pehl C, Pohl D, Raithel M, Röhrig-Herzog G, Schemann M, Schmiedel S, Schwille-Kiuntke J, Storr M, Preiß JC, Andus T, Buderus S, Ehlert U, Engel M, Enninger A, Fischbach W, Gillessen A, Gschossmann J, Gundling F, Haag S, Helwig U, Hollerbach S, Karaus M, Katschinski M, Krammer H, Kuhlbusch-Zicklam R, Matthes H, Menge D, Miehlke S, Posovszky MC, Schaefert R, Schmidt-Choudhury A, Schwandner O, Schweinlin A, Seidl H, Stengel A, Tesarz J, van der Voort I, Voderholzer W, von Boyen G, von Schönfeld J, Wedel T. Update S3-Leitlinie Reizdarmsyndrom: Definition, Pathophysiologie, Diagnostik und Therapie. Gemeinsame Leitlinie der Deutschen Gesellschaft für Gastroenterologie, Verdauungs- und Stoffwechselkrankheiten (DGVS) und der Deutschen Gesellschaft für Neurogastroenterologie und Motilität (DGNM) – Juni 2021 – AWMF-Registriernummer: 021/016. ZEITSCHRIFT FUR GASTROENTEROLOGIE 2021; 59:1323-1415. [PMID: 34891206 DOI: 10.1055/a-1591-4794] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- P Layer
- Medizinische Klinik, Israelitisches Krankenhaus, Hamburg, Deutschland
| | - V Andresen
- Medizinische Klinik, Israelitisches Krankenhaus, Hamburg, Deutschland
| | - H Allescher
- Zentrum für Innere Medizin, Gastroent., Hepatologie u. Stoffwechsel, Klinikum Garmisch-Partenkirchen, Garmisch-Partenkirchen, Deutschland
| | - S C Bischoff
- Institut für Ernährungsmedizin, Universität Hohenheim, Stuttgart, Deutschland
| | - M Claßen
- Klinik für Kinder- und Jugendmedizin, Klinikum Links der Weser, Bremen, Deutschland
| | - S Elsenbruch
- Klinik für Neurologie, Translational Pain Research Unit, Universitätsklinikum Essen, Essen, Deutschland.,Abteilung für Medizinische Psychologie und Medizinische Soziologie, Ruhr-Universität Bochum, Bochum, Deutschland
| | - M Freitag
- Abteilung Allgemeinmedizin Department für Versorgungsforschung, Universität Oldenburg, Oldenburg, Deutschland
| | - T Frieling
- Medizinische Klinik II, Helios Klinikum Krefeld, Krefeld, Deutschland
| | - M Gebhard
- Gemeinschaftspraxis Pathologie-Hamburg, Hamburg, Deutschland
| | - M Goebel-Stengel
- Innere Medizin II, Helios Klinik Rottweil, Rottweil, und Innere Medizin VI, Psychosomat. Medizin u. Psychotherapie, Universitätsklinikum Tübingen, Tübingen, Deutschland
| | - W Häuser
- Innere Medizin I mit Schwerpunkt Gastroenterologie, Klinikum Saarbrücken, Saarbrücken, Deutschland
| | - G Holtmann
- Faculty of Medicine & Faculty of Health & Behavioural Sciences, Princess Alexandra Hospital, Brisbane, Australien
| | - J Keller
- Medizinische Klinik, Israelitisches Krankenhaus, Hamburg, Deutschland
| | - M E Kreis
- Klinik für Allgemein-, Viszeral- und Gefäßchirurgie, Charité - Universitätsmedizin Berlin, Campus Benjamin Franklin, Berlin, Deutschland
| | | | - J Langhorst
- Klinik für Integrative Medizin und Naturheilkunde, Sozialstiftung Bamberg, Klinikum am Bruderwald, Bamberg, Deutschland
| | - P Lynen Jansen
- Deutsche Gesellschaft für Gastroenterologie, Verdauungs- und Stoffwechselkrankheiten, Berlin, Deutschland
| | - A Madisch
- Klinik für Gastroenterologie, interventionelle Endoskopie und Diabetologie, Klinikum Siloah, Klinikum Region Hannover, Hannover, Deutschland
| | - H Mönnikes
- Klinik für Innere Medizin, Martin-Luther-Krankenhaus, Berlin, Deutschland
| | | | - B Niesler
- Abteilung Molekulare Humangenetik Institut für Humangenetik, Universitätsklinikum Heidelberg, Heidelberg, Deutschland
| | - C Pehl
- Medizinische Klinik, Krankenhaus Vilsbiburg, Vilsbiburg, Deutschland
| | - D Pohl
- Klinik für Gastroenterologie und Hepatologie, Universitätsspital Zürich, Zürich, Schweiz
| | - M Raithel
- Medizinische Klinik II m.S. Gastroenterologie und Onkologie, Waldkrankenhaus St. Marien, Erlangen, Deutschland
| | | | - M Schemann
- Lehrstuhl für Humanbiologie, TU München, Deutschland
| | - S Schmiedel
- I. Medizinische Klinik und Poliklinik Gastroenterologie, Universitätsklinikum Hamburg-Eppendorf, Deutschland
| | - J Schwille-Kiuntke
- Abteilung für Psychosomatische Medizin und Psychotherapie, Medizinische Universitätsklinik Tübingen, Tübingen, Deutschland.,Institut für Arbeitsmedizin, Sozialmedizin und Versorgungsforschung, Universitätsklinikum Tübingen, Tübingen, Deutschland
| | - M Storr
- Zentrum für Endoskopie, Gesundheitszentrum Starnberger See, Starnberg, Deutschland
| | - J C Preiß
- Klinik für Innere Medizin - Gastroenterologie, Diabetologie und Hepatologie, Vivantes Klinikum Neukölln, Berlin, Deutschland
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
81
|
Electroacupuncture Regulates TRPV1 through PAR2/PKC Pathway to Alleviate Visceral Hypersensitivity in FD Rats. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2021:1975228. [PMID: 34880917 PMCID: PMC8648456 DOI: 10.1155/2021/1975228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 08/17/2021] [Accepted: 10/28/2021] [Indexed: 11/22/2022]
Abstract
Visceral hypersensitivity (VH) is the predominant pathogenesis of functional dyspepsia (FD). Duodenal hypersensitivity along with nausea further reduces the comfort level in gastric balloon dilatation and inhibits gastric receptive relaxation. The potential mechanism behind electroacupuncture- (EA-) mediated alleviation of VH has not been elucidated. In an FD rat model with tail clamping stress, iodine acetamide (IA) induced VH. The rats were treated with EA with or without PAR2 antagonist FSLLRY-NH2, and the body weight, gastric sensitivity, compliance, and gastrointestinal motility were determined. Mast cells and activated degranulation were stained with toluidine blue (TB) staining and visualized under a transmission electron microscope (TEM). Immunofluorescence was used to detect the expression of PAR2, PKC, and TRPV1 in the duodenum and dorsal root ganglion (DRG) and that of CGRP, SP in DRG, and c-fos in the spinal cord. EA alone and EA + antagonist enhanced the gastrointestinal motility but diminished the expression of TRPV1, CGRP, SP, and c-fos-downstream of PAR2/PKC pathway and alleviated VH in FD rats. However, there was no obvious superposition effect between the antagonists and EA + antagonists. The effect of EA alone was better than that of antagonists and EA + antagonists 2 alone. EA-induced amelioration of VH in FD rats was mediated by TRPV1 regulation through PAR2/PKC pathway. This protective mechanism involved several pathways and included several targets.
Collapse
|
82
|
Lazebnik LB, Golovanova EV, Volel BA, Korochanskaya NV, Lyalyukova EA, Mokshina MV, Mekhtiev SN, Mekhtieva OA, Metsaeva ZV, Petelin DS, Simanenkov VI, Sitkin SI, Cheremushkin SV, Chernogorova MV, Khavkin АI. Functional gastrointestinal disorders. Overlap syndrome Clinical guidelines of the Russian Scientific Medical Society of Internal Medicine and Gastroenterological Scientific Society of Russia. EXPERIMENTAL AND CLINICAL GASTROENTEROLOGY 2021:5-117. [DOI: 10.31146/1682-8658-ecg-192-8-5-117] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/26/2023]
Affiliation(s)
- L. B. Lazebnik
- Federal State Budgetary Educational Institution of Higher Education “A. I. Yevdokimov Moscow State University of Medicine and Dentistry” of the Ministry of Healthcare of the Russion Federation
| | - E. V. Golovanova
- Federal State Budgetary Educational Institution of Higher Education “A. I. Yevdokimov Moscow State University of Medicine and Dentistry” of the Ministry of Healthcare of the Russion Federation
| | - B. A. Volel
- I. M. Sechenov First Moscow Medical State University
| | - N. V. Korochanskaya
- Federal State Budgetary Educational Institution of Higher Education “Kuban State Medical University” Health Ministry of Russian Federation; State Budgetary Institution of Health Care “Region Clinic Hospital Nr 2” Health Ministry of Krasnodar Region
| | - E. A. Lyalyukova
- FSBEI VO “Omsk State Medical University” of the Ministry of Health
| | - M. V. Mokshina
- Institute of therapy a. instrumental diagnostics of FSBEI VO “Pacifi c State Medical Unuversity”
| | | | | | - Z. V. Metsaeva
- Republican clinical hospital of Health Care Ministry of Northen Ossetia- Alania Republic
| | - D. S. Petelin
- I. M. Sechenov First Moscow Medical State University
| | - V. I. Simanenkov
- North- Western state medical University named after I. I. Mechnikov, Ministry of health of the Russian Federation
| | - S. I. Sitkin
- North- Western state medical University named after I. I. Mechnikov, Ministry of health of the Russian Federation
| | - S. V. Cheremushkin
- Federal State Budgetary Educational Institution of Higher Education “A. I. Yevdokimov Moscow State University of Medicine and Dentistry” of the Ministry of Healthcare of the Russion Federation
| | - M. V. Chernogorova
- Moscow regional research and clinical Institute of M. F. Vladimirsky; GBUZ MO “Podolsk City Clinical Hospital No. 3”
| | - А. I. Khavkin
- FSBAI HPE “N. I. Pirogov Russian National Research Medical University” of the Ministry of Health of the Russian Federation
| |
Collapse
|
83
|
Singh R, Zogg H, Ro S. Role of microRNAs in Disorders of Gut-Brain Interactions: Clinical Insights and Therapeutic Alternatives. J Pers Med 2021; 11:1021. [PMID: 34683162 PMCID: PMC8541612 DOI: 10.3390/jpm11101021] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 10/08/2021] [Accepted: 10/08/2021] [Indexed: 12/12/2022] Open
Abstract
Disorders of gut-brain interactions (DGBIs) are heterogeneous in nature and intertwine with diverse pathophysiological mechanisms. Regular functioning of the gut requires complex coordinated interplay between a variety of gastrointestinal (GI) cell types and their functions are regulated by multiple mechanisms at the transcriptional, post-transcriptional, translational, and post-translational levels. MicroRNAs (miRNAs) are small non-coding RNA molecules that post-transcriptionally regulate gene expression by binding to specific mRNA targets to repress their translation and/or promote the target mRNA degradation. Dysregulation of miRNAs might impair gut physiological functions leading to DGBIs and gut motility disorders. Studies have shown miRNAs regulate gut functions such as visceral sensation, gut immune response, GI barrier function, enteric neuronal development, and GI motility. These biological processes are highly relevant to the gut where neuroimmune interactions are key contributors in controlling gut homeostasis and functional defects lead to DGBIs. Although extensive research has explored the pathophysiology of DGBIs, further research is warranted to bolster the molecular mechanisms behind these disorders. The therapeutic targeting of miRNAs represents an attractive approach for the treatment of DGBIs because they offer new insights into disease mechanisms and have great potential to be used in the clinic as diagnostic markers and therapeutic targets. Here, we review recent advances regarding the regulation of miRNAs in GI pacemaking cells, immune cells, and enteric neurons modulating pathophysiological mechanisms of DGBIs. This review aims to assess the impacts of miRNAs on the pathophysiological mechanisms of DGBIs, including GI dysmotility, impaired intestinal barrier function, gut immune dysfunction, and visceral hypersensitivity. We also summarize the therapeutic alternatives for gut microbial dysbiosis in DGBIs, highlighting the clinical insights and areas for further exploration. We further discuss the challenges in miRNA therapeutics and promising emerging approaches.
Collapse
Affiliation(s)
| | | | - Seungil Ro
- Department of Physiology and Cell Biology, Reno School of Medicine, University of Nevada, 1664 North Virginia Street, Reno, NV 89557, USA; (R.S.); (H.Z.)
| |
Collapse
|
84
|
Shah S, Chougule MB, Kotha AK, Kashikar R, Godugu C, Raghuvanshi RS, Singh SB, Srivastava S. Nanomedicine based approaches for combating viral infections. J Control Release 2021; 338:80-104. [PMID: 34375690 PMCID: PMC8526416 DOI: 10.1016/j.jconrel.2021.08.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 08/04/2021] [Accepted: 08/05/2021] [Indexed: 12/12/2022]
Abstract
Millions of people die each year from viral infections across the globe. There is an urgent need to overcome the existing gap and pitfalls of the current antiviral therapy which include increased dose and dosing frequency, bioavailability challenges, non-specificity, incidences of resistance and so on. These stumbling blocks could be effectively managed by the advent of nanomedicine. Current review emphasizes over an enhanced understanding of how different lipid, polymer and elemental based nanoformulations could be potentially and precisely used to bridle the said drawbacks in antiviral therapy. The dawn of nanotechnology meeting vaccine delivery, role of RNAi therapeutics in antiviral treatment regimen, various regulatory concerns towards clinical translation of nanomedicine along with current trends and implications including unexplored research avenues for advancing the current drug delivery have been discussed in detail.
Collapse
Affiliation(s)
- Saurabh Shah
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Mahavir Bhupal Chougule
- Department of Pharmaceutics and Drug Delivery, School of Pharmacy, University of Mississippi, MS, USA; Department Pharmaceutical Sciences, College of Pharmacy, Mercer University, Atlanta, GA 30341, USA
| | - Arun K Kotha
- Department of Pharmaceutics and Drug Delivery, School of Pharmacy, University of Mississippi, MS, USA; Department Pharmaceutical Sciences, College of Pharmacy, Mercer University, Atlanta, GA 30341, USA
| | - Rama Kashikar
- Department of Pharmaceutics and Drug Delivery, School of Pharmacy, University of Mississippi, MS, USA; Department Pharmaceutical Sciences, College of Pharmacy, Mercer University, Atlanta, GA 30341, USA
| | - Chandraiah Godugu
- Department of Biological Sciences, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Rajeev Singh Raghuvanshi
- Indian Pharmacopoeia Commission, Ministry of Health & Family Welfare, Government of India, India
| | - Shashi Bala Singh
- Department of Biological Sciences, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Saurabh Srivastava
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India.
| |
Collapse
|
85
|
Shulpekova YO, Nechaev VM, Popova IR, Deeva TA, Kopylov AT, Malsagova KA, Kaysheva AL, Ivashkin VT. Food Intolerance: The Role of Histamine. Nutrients 2021; 13:3207. [PMID: 34579083 PMCID: PMC8469513 DOI: 10.3390/nu13093207] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 09/09/2021] [Accepted: 09/10/2021] [Indexed: 12/16/2022] Open
Abstract
Histamine is a natural amine derived from L-histidine. Although it seems that our knowledge about this molecule is wide and diverse, the importance of histamine in many regulatory processes is still enigmatic. The interplay between different types of histamine receptors and the compound may cause ample effects, including histamine intoxication and so-called histamine intolerance or non-allergic food intolerance, leading to disturbances in immune regulation, manifestation of gastroenterological symptoms, and neurological diseases. Most cases of clinical manifestations of histamine intolerance are non-specific due to tissue-specific distribution of different histamine receptors and the lack of reproducible and reliable diagnostic markers. The diagnosis of histamine intolerance is fraught with difficulties, in addition to challenges related to the selection of a proper treatment strategy, the regular course of recovery, and reduced amelioration of chronic symptoms due to inappropriate treatment prescription. Here, we reviewed a history of histamine uptake starting from the current knowledge about its degradation and the prevalence of histamine precursors in daily food, and continuing with the receptor interactions after entering and the impacts on the immune, central nervous, and gastrointestinal systems. The purpose of this review is to build an extraordinarily specific method of histamine cycle assessment in regard to non-allergic intolerance and its possible dire consequences that can be suffered.
Collapse
Affiliation(s)
- Yulia O. Shulpekova
- Department of Internal Diseases Propedeutics, Sechenov University, 119121 Moscow, Russia; (Y.O.S.); (V.M.N.); (I.R.P.); (V.T.I.)
| | - Vladimir M. Nechaev
- Department of Internal Diseases Propedeutics, Sechenov University, 119121 Moscow, Russia; (Y.O.S.); (V.M.N.); (I.R.P.); (V.T.I.)
| | - Irina R. Popova
- Department of Internal Diseases Propedeutics, Sechenov University, 119121 Moscow, Russia; (Y.O.S.); (V.M.N.); (I.R.P.); (V.T.I.)
| | - Tatiana A. Deeva
- Department of Biological Chemistry, Sechenov University, 119991 Moscow, Russia;
| | - Arthur T. Kopylov
- Biobanking Group, Branch of Institute of Biomedical Chemistry “Scientific and Education Center”, 123098 Moscow, Russia; (A.T.K.); (A.L.K.)
| | - Kristina A. Malsagova
- Biobanking Group, Branch of Institute of Biomedical Chemistry “Scientific and Education Center”, 123098 Moscow, Russia; (A.T.K.); (A.L.K.)
| | - Anna L. Kaysheva
- Biobanking Group, Branch of Institute of Biomedical Chemistry “Scientific and Education Center”, 123098 Moscow, Russia; (A.T.K.); (A.L.K.)
| | - Vladimir T. Ivashkin
- Department of Internal Diseases Propedeutics, Sechenov University, 119121 Moscow, Russia; (Y.O.S.); (V.M.N.); (I.R.P.); (V.T.I.)
| |
Collapse
|
86
|
Oliveira MP, Prates J, Gimenes AD, Correa SG, Oliani SM. Annexin A1 Mimetic Peptide Ac 2-26 Modulates the Function of Murine Colonic and Human Mast Cells. Front Immunol 2021; 12:689484. [PMID: 34557187 PMCID: PMC8452975 DOI: 10.3389/fimmu.2021.689484] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 08/19/2021] [Indexed: 12/17/2022] Open
Abstract
Mast cells (MCs) are main effector cells in allergic inflammation and after activation, they release stored (histamine, heparin, proteases) and newly synthesized (lipid mediators and cytokines) substances. In the gastrointestinal tract the largest MC population is located in the lamina propria and submucosa whereas several signals such as the cytokine IL-4, seem to increase the granule content and to stimulate a remarkable expansion of intestinal MCs. The broad range of MC-derived bioactive molecules may explain their involvement in many different allergic disorders of the gastrointestinal tract. Annexin A1 (AnxA1) is a 37 KDa glucocorticoid induced monomeric protein selectively distributed in certain tissues. Its activity can be reproduced by mimetic peptides of the N-terminal portion, such as Ac2-26, that share the same receptor FPR-L1. Although previous reports demonstrated that AnxA1 inhibits MC degranulation in murine models, the effects of exogenous peptide Ac2-26 on intestinal MCs or the biological functions of the Ac2-26/FPR2 system in human MCs have been poorly studied. To determine the effects of Ac2-26 on the function of MCs toward the possibility of AnxA1-based therapeutics, we treated WT and IL-4 knockout mice with peptide Ac2-26, and we examined the spontaneous and compound 48/80 stimulated colonic MC degranulation and cytokine production. Moreover, in vitro, using human mast cell line HMC-1 we demonstrated that exogenous AnxA1 peptide is capable of interfering with the HMC-1 degranulation in a direct pathway through formyl peptide receptors (FPRs). We envisage that our results can provide therapeutic strategies to reduce the release of MC mediators in inflammatory allergic processes.
Collapse
Affiliation(s)
- Marcia Pereira Oliveira
- Laboratory of Interdisciplinary Medical Research, Oswaldo Cruz Institute, Fiocruz, Rio de Janeiro, Brazil
| | - Janesly Prates
- Department of Biology, Institute of Bioscience, Humanities and Exact Science, São Paulo State University (Unesp), São José do Rio Preto, Brazil
| | | | - Silvia Graciela Correa
- Departamento de Bioquímica Clinica-Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI - CONICET) - Facultad de Ciencias Quimicas- Universidad Nacional de Córdoba (UNC), Córdoba, Argentina
| | - Sonia Maria Oliani
- Department of Biology, Institute of Bioscience, Humanities and Exact Science, São Paulo State University (Unesp), São José do Rio Preto, Brazil
- Advanced Research Center in Medicine, CEPAM –Unilago, São José do Rio Preto, Brazil
- Federal University of São Paulo, Post Graduate Program in Structural and Functional Biology, Escola Paulista de Medicina (Unifesp-EPM), São Paulo, Brazil
| |
Collapse
|
87
|
Rahman-Enyart A, Yang W, Yaggie RE, White BA, Welge M, Auvil L, Berry M, Bushell C, Rosen JM, Rudick CN, Schaeffer AJ, Klumpp DJ. Acyloxyacyl hydrolase is a host determinant of gut microbiome-mediated pelvic pain. Am J Physiol Regul Integr Comp Physiol 2021; 321:R396-R412. [PMID: 34318715 PMCID: PMC8530758 DOI: 10.1152/ajpregu.00106.2021] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 06/24/2021] [Accepted: 07/16/2021] [Indexed: 12/30/2022]
Abstract
Dysbiosis of gut microbiota is associated with many pathologies, yet host factors modulating microbiota remain unclear. Interstitial cystitis/bladder pain syndrome (IC/BPS) is a debilitating condition of chronic pelvic pain often with comorbid urinary dysfunction and anxiety/depression, and recent studies find fecal dysbiosis in patients with IC/BPS. We identified the locus encoding acyloxyacyl hydrolase, Aoah, as a modulator of pelvic pain severity in a murine IC/BPS model. AOAH-deficient mice spontaneously develop rodent correlates of pelvic pain, increased responses to induced pelvic pain models, voiding dysfunction, and anxious/depressive behaviors. Here, we report that AOAH-deficient mice exhibit dysbiosis of gastrointestinal (GI) microbiota. AOAH-deficient mice exhibit an enlarged cecum, a phenotype long associated with germ-free rodents, and a "leaky gut" phenotype. AOAH-deficient ceca showed altered gene expression consistent with inflammation, Wnt signaling, and urologic disease. 16S sequencing of stool revealed altered microbiota in AOAH-deficient mice, and GC-MS identified altered metabolomes. Cohousing AOAH-deficient mice with wild-type mice resulted in converged microbiota and altered predicted metagenomes. Cohousing also abrogated the pelvic pain phenotype of AOAH-deficient mice, which was corroborated by oral gavage of AOAH-deficient mice with stool slurry of wild-type mice. Converged microbiota also alleviated comorbid anxiety-like behavior in AOAH-deficient mice. Oral gavage of AOAH-deficient mice with anaerobes cultured from IC/BPS stool resulted in exacerbation of pelvic allodynia. Together, these data indicate that AOAH is a host determinant of normal gut microbiota, and dysbiosis associated with AOAH deficiency contributes to pelvic pain. These findings suggest that the gut microbiome is a potential therapeutic target for IC/BPS.
Collapse
Affiliation(s)
- Afrida Rahman-Enyart
- Department of Urology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Wenbin Yang
- Division of Thoracic Surgery, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Ryan E Yaggie
- Department of Urology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Bryan A White
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, Illinois
- National Center for Supercomputing Applications, University of Illinois at Urbana-Champaign, Urbana, Illinois
| | - Michael Welge
- National Center for Supercomputing Applications, University of Illinois at Urbana-Champaign, Urbana, Illinois
| | - Loretta Auvil
- National Center for Supercomputing Applications, University of Illinois at Urbana-Champaign, Urbana, Illinois
| | - Matthew Berry
- National Center for Supercomputing Applications, University of Illinois at Urbana-Champaign, Urbana, Illinois
| | - Colleen Bushell
- National Center for Supercomputing Applications, University of Illinois at Urbana-Champaign, Urbana, Illinois
| | - John M Rosen
- Department of Gastroenterology, Children's Mercy, Kansas City, Missouri
- Department of Pediatrics, University of Missouri, Kansas City, Missouri
| | - Charles N Rudick
- Clinical Pharmacology and Toxicology, Indiana University School of Medicine, Bloomington, Indiana
| | - Anthony J Schaeffer
- Department of Urology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - David J Klumpp
- Department of Urology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
- Department of Microbiology-Immunology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| |
Collapse
|
88
|
Wei L, Singh R, Ro S, Ghoshal UC. Gut microbiota dysbiosis in functional gastrointestinal disorders: Underpinning the symptoms and pathophysiology. JGH Open 2021; 5:976-987. [PMID: 34584964 PMCID: PMC8454481 DOI: 10.1002/jgh3.12528] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 03/08/2021] [Indexed: 02/06/2023]
Abstract
Functional gastrointestinal disorders (FGIDs), currently known as disorders of gut-brain interaction, are emerging microbiota-gut-brain abnormalities that are prevalent worldwide. The pathogenesis of FGIDs is heterogeneous and is intertwined with gut microbiota and its derived molecule-modulated mechanisms, including gut dysmotility, visceral hypersensitivity, gut immune abnormalities, abnormal secretion, and impaired barrier function. There has been phenomenal progress in understanding the role of gut microbiota in FGIDs by underpinning the species alternations between healthy and pathological conditions such as FGIDs. However, the precise gut microbiota-directed cellular and molecular pathogeneses of FGIDs are yet enigmatic. Determining the mechanistic link between the gut microbiota and gastrointestinal (GI) diseases has been difficult due to (i) the lack of robust animal models imitating the various aspects of human FGID pathophysiology; (ii) the absence of longitudinal human and/or animal studies to unveil the interaction of the gut microbiota with FGID-relevant pathogenesis; (iii) uncertainty about connections between human and animal studies; and (iv) insufficient data supporting a holistic view of disease-specific pathophysiological changes in FGID patients. These unidentified gaps open possibilities to explore pathological mechanisms directed through gut microbiota dysbiosis in FGIDs. The current treatment options for dysbiotic gut microbiota are limited; dietary interventions, antibiotics, probiotics, and fecal microbiota transplantation are the front-line clinical options. Here, we review the contribution of gut microbiota and its derived molecules in gut homeostasis and explore the possible pathophysiological mechanisms involved in FGIDs leading to potential therapeutics options.
Collapse
Affiliation(s)
- Lai Wei
- Department of Physiology and Cell BiologyUniversity of Nevada, Reno, School of MedicineRenoNevadaUSA
| | - Rajan Singh
- Department of Physiology and Cell BiologyUniversity of Nevada, Reno, School of MedicineRenoNevadaUSA
| | - Seungil Ro
- Department of Physiology and Cell BiologyUniversity of Nevada, Reno, School of MedicineRenoNevadaUSA
| | - Uday C Ghoshal
- Department of GastroenterologySanjay Gandhi Postgraduate Institute of Medical SciencesLucknowIndia
| |
Collapse
|
89
|
Galiazzo G, Tagliavia C, Giancola F, Rinnovati R, Sadeghinezhad J, Bombardi C, Grandis A, Pietra M, Chiocchetti R. Localisation of Cannabinoid and Cannabinoid-Related Receptors in the Horse Ileum. J Equine Vet Sci 2021; 104:103688. [PMID: 34416995 DOI: 10.1016/j.jevs.2021.103688] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 06/04/2021] [Accepted: 06/07/2021] [Indexed: 02/05/2023]
Abstract
Colic is a common digestive disorder in horses and one of the most urgent problems in equine medicine. A growing body of literature has indicated that the activation of cannabinoid receptors could exert beneficial effects on gastrointestinal inflammation and visceral hypersensitivity. The localisation of cannabinoid and cannabinoid-related receptors in the intestine of the horse has not yet been investigated. The purpose of this study was to immunohistochemically localise the cellular distribution of canonical and putative cannabinoid receptors in the ileum of healthy horses. Distal ileum specimens were collected from six horses at the slaughterhouse. The tissues were fixed and processed to obtain cryosections which were used to investigate the immunoreactivity of canonical cannabinoid receptors 1 (CB1R) and 2 (CB2R), and three putative cannabinoid-related receptors: nuclear peroxisome proliferator-activated receptor-alpha (PPARα), transient receptor potential ankyrin 1 and serotonin 5-HT1a receptor (5-HT1aR). Cannabinoid and cannabinoid-related receptors showed a wide distribution in the ileum of the horse. The epithelial cells showed immunoreactivity for CB1R, CB2R and 5-HT1aR. Lamina propria inflammatory cells showed immunoreactivity for CB2R and 5-HT1aR. The enteric neurons showed immunoreactivity for CB1R, transient receptor potential ankyrin 1 and PPARα. The enteric glial cells showed immunoreactivity for CB1R and PPARα. The smooth muscle cells of the tunica muscularis and the blood vessels showed immunoreactivity for PPARα. The present study represents a histological basis which could support additional studies regarding the distribution of cannabinoid receptors during gastrointestinal inflammatory diseases as well as studies assessing the effects of non-psychotic cannabis-derived molecules in horses for the management of intestinal diseases.
Collapse
Affiliation(s)
- Giorgia Galiazzo
- Department of Veterinary Medical Sciences (UNI EN ISO 9001:2008), University of Bologna, Italy
| | - Claudio Tagliavia
- Department of Veterinary Medical Sciences (UNI EN ISO 9001:2008), University of Bologna, Italy
| | - Fiorella Giancola
- Department of Veterinary Medical Sciences (UNI EN ISO 9001:2008), University of Bologna, Italy
| | - Riccardo Rinnovati
- Department of Veterinary Medical Sciences (UNI EN ISO 9001:2008), University of Bologna, Italy
| | - Javad Sadeghinezhad
- Department of Basic Sciences, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Cristiano Bombardi
- Department of Veterinary Medical Sciences (UNI EN ISO 9001:2008), University of Bologna, Italy
| | - Annamaria Grandis
- Department of Veterinary Medical Sciences (UNI EN ISO 9001:2008), University of Bologna, Italy
| | - Marco Pietra
- Department of Veterinary Medical Sciences (UNI EN ISO 9001:2008), University of Bologna, Italy
| | - Roberto Chiocchetti
- Department of Veterinary Medical Sciences (UNI EN ISO 9001:2008), University of Bologna, Italy.
| |
Collapse
|
90
|
Gong W, Liu P, Zheng T, Wu X, Zhao Y, Ren J. The ubiquitous role of spleen tyrosine kinase (Syk) in gut diseases: From mucosal immunity to targeted therapy. Int Rev Immunol 2021; 41:552-563. [PMID: 34355656 DOI: 10.1080/08830185.2021.1962860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Spleen tyrosine kinase (Syk) is a cytoplasmic non-receptor protein tyrosine kinase expressed in a variety of cells and play crucial roles in signal transduction. Syk mediates downstream signaling by recruiting to the dually phosphorylated immunoreceptor tyrosine-based activation motifs (ITAMs) of the transmembrane adaptor molecule or the receptor chain itself. In gut diseases, Syk is observed to be expressed in intestinal epithelial cells, monocytes/macrophages, dendritic cells and mast cells. Activation of Syk in these cells can modulate intestinal mucosal immune response by promoting inflammatory cytokines and chemokines production, thus regulating gut homeostasis. Due to the restriction of specificity and selectivity for the development of Syk inhibitors, only a few such inhibitors are available in gut diseases, including intestinal ischemia/reperfusion damage, infectious disease, inflammatory bowel disease, etc. The promising outcomes of Syk inhibitors from both preclinical and clinical studies have shown to attenuate the progression of gut diseases thereby indicating a great potential in the development of Syk targeted therapy for treatment of gut diseases. This review depicts the characterization of Syk, summarizes the signal pathways of Syk, and discusses its potential targeted therapy for gut diseases.
Collapse
Affiliation(s)
- Wenbin Gong
- School of Medicine, Research Institute of General Surgery, Southeast University, Jinling Hospital, Nanjing, P.R. China
| | - Peizhao Liu
- Research Institute of General Surgery, Jinling Hospital, Nanjing, P.R. China
| | - Tao Zheng
- Department of General Surgery, BenQ Medical Center, The Affiliated BenQ Hospital of Nanjing Medical University, Nanjing, P.R. China
| | - Xiuwen Wu
- Research Institute of General Surgery, Jinling Hospital, Nanjing, P.R. China
| | - Yun Zhao
- Department of General Surgery, BenQ Medical Center, The Affiliated BenQ Hospital of Nanjing Medical University, Nanjing, P.R. China
| | - Jianan Ren
- School of Medicine, Research Institute of General Surgery, Southeast University, Jinling Hospital, Nanjing, P.R. China.,Research Institute of General Surgery, Jinling Hospital, Nanjing, P.R. China
| |
Collapse
|
91
|
Zhao Q, Chen YY, Xu DQ, Yue SJ, Fu RJ, Yang J, Xing LM, Tang YP. Action Mode of Gut Motility, Fluid and Electrolyte Transport in Chronic Constipation. Front Pharmacol 2021; 12:630249. [PMID: 34385914 PMCID: PMC8353128 DOI: 10.3389/fphar.2021.630249] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 06/28/2021] [Indexed: 12/12/2022] Open
Abstract
Chronic constipation is a common gastrointestinal disorder, with a worldwide incidence of 14–30%. It negatively affects quality of life and is associated with a considerable economic burden. As a disease with multiple etiologies and risk factors, it is important to understand the pathophysiology of chronic constipation. The purpose of this review is to discuss latest findings on the roles of gut motility, fluid, and electrolyte transport that contribute to chronic constipation, and the main drugs available for treating patients. We conducted searches on PubMed and Google Scholar up to 9 February 2021. MeSH keywords “constipation”, “gastrointestinal motility”, “peristalsis”, “electrolytes”, “fluid”, “aquaporins”, and “medicine” were included. The reference lists of searched articles were reviewed to identify further eligible articles. Studies focusing on opioid-induced constipation, evaluation, and clinic management of constipation were excluded. The occurrence of constipation is inherently connected to disorders of gut motility as well as fluid and electrolyte transport, which involve the nervous system, endocrine signaling, the gastrointestinal microbiota, ion channels, and aquaporins. The mechanisms of action and application of the main drugs are summarized; a better understanding of ion channels and aquaporins may be helpful for new drug development. This review aims to provide a scientific basis that can guide future research on the etiology and treatment of constipation.
Collapse
Affiliation(s)
- Qi Zhao
- Key Laboratory of Shaanxi Administration of Traditional Chinese Medicine for TCM Compatibility, and State Key Laboratory of Research and Development of Characteristic Qin Medicine Resources (Cultivation), and Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, Shaanxi University of Chinese Medicine, Xi'an, China
| | - Yan-Yan Chen
- Key Laboratory of Shaanxi Administration of Traditional Chinese Medicine for TCM Compatibility, and State Key Laboratory of Research and Development of Characteristic Qin Medicine Resources (Cultivation), and Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, Shaanxi University of Chinese Medicine, Xi'an, China
| | - Ding-Qiao Xu
- Key Laboratory of Shaanxi Administration of Traditional Chinese Medicine for TCM Compatibility, and State Key Laboratory of Research and Development of Characteristic Qin Medicine Resources (Cultivation), and Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, Shaanxi University of Chinese Medicine, Xi'an, China
| | - Shi-Jun Yue
- Key Laboratory of Shaanxi Administration of Traditional Chinese Medicine for TCM Compatibility, and State Key Laboratory of Research and Development of Characteristic Qin Medicine Resources (Cultivation), and Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, Shaanxi University of Chinese Medicine, Xi'an, China
| | - Rui-Jia Fu
- Key Laboratory of Shaanxi Administration of Traditional Chinese Medicine for TCM Compatibility, and State Key Laboratory of Research and Development of Characteristic Qin Medicine Resources (Cultivation), and Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, Shaanxi University of Chinese Medicine, Xi'an, China
| | - Jie Yang
- Key Laboratory of Shaanxi Administration of Traditional Chinese Medicine for TCM Compatibility, and State Key Laboratory of Research and Development of Characteristic Qin Medicine Resources (Cultivation), and Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, Shaanxi University of Chinese Medicine, Xi'an, China
| | - Li-Ming Xing
- Key Laboratory of Shaanxi Administration of Traditional Chinese Medicine for TCM Compatibility, and State Key Laboratory of Research and Development of Characteristic Qin Medicine Resources (Cultivation), and Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, Shaanxi University of Chinese Medicine, Xi'an, China
| | - Yu-Ping Tang
- Key Laboratory of Shaanxi Administration of Traditional Chinese Medicine for TCM Compatibility, and State Key Laboratory of Research and Development of Characteristic Qin Medicine Resources (Cultivation), and Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, Shaanxi University of Chinese Medicine, Xi'an, China
| |
Collapse
|
92
|
Liu M, Lu J, Chen Y, Shi X, Li Y, Yang S, Yu J, Guan S. Sodium Sulfite-Induced Mast Cell Pyroptosis and Degranulation. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:7755-7764. [PMID: 34191510 DOI: 10.1021/acs.jafc.1c02436] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Sodium sulfite, a common food additive, has been proved to cause allergic reaction. Pyroptosis is an inflammatory form of programmed cell death with plasma membrane lysis. In this study, we found that sodium sulfite triggered pyroptosis, which depended on reactive oxygen species (ROS)/NOD-like receptor protein 3 (NLRP3) in RBL-2H3 mast cells. Sodium sulfite increased the generation of ROS and the expression of NLRP3, caspase-1, gasdermin D N-terminal (GSDMD-N), interleukin-1β (IL-1β), and interleukin-18 (IL-18). The ROS scavenger N-acetyl-L-carnosine (NAC) and the NLRP3 inhibitor MCC950 reversed these effects. Furthermore, using a lactate dehydrogenase kit, propidium iodide staining, scanning electron microscopy, colocalization of GSDMD-N with histamine, and neutral red staining, we found that sodium sulfite notably induced cell membrane rupture. Because β-Hexosaminidase and histamine play a key role in allergic reactions, we detected the release of β-Hexosaminidase and histamine. The data showed that the release of β-Hexosaminidase and histamine induced by sodium sulfite was increased with dose independence, which were inhibited after treatment with NAC or MCC950. Overall, evidence suggested that pyroptosis induced by sodium sulfite may rupture the cell membrane and result in degranulation of mast cells. Our study may provide new insights for the mechanism by which sodium sulfite induces mast cell death and sensitization.
Collapse
Affiliation(s)
- Meitong Liu
- College of Food science and Engineering, Jilin University, Changchun, Jilin 130062, People's Republic of China
| | - Jing Lu
- College of Food science and Engineering, Jilin University, Changchun, Jilin 130062, People's Republic of China
| | - Yuelin Chen
- College of Food science and Engineering, Jilin University, Changchun, Jilin 130062, People's Republic of China
| | - Xiaolei Shi
- College of Food science and Engineering, Jilin University, Changchun, Jilin 130062, People's Republic of China
| | - YaZhuo Li
- College of Food science and Engineering, Jilin University, Changchun, Jilin 130062, People's Republic of China
| | - Shuting Yang
- College of Food science and Engineering, Jilin University, Changchun, Jilin 130062, People's Republic of China
| | - Jing Yu
- College of Food science and Engineering, Jilin University, Changchun, Jilin 130062, People's Republic of China
| | - Shuang Guan
- College of Food science and Engineering, Jilin University, Changchun, Jilin 130062, People's Republic of China
- Key Laboratory of Zoonosis, Ministry of Education College of Veterinary Medicine, Jilin University, Changchun, Jilin 130062, People's Republic of China
| |
Collapse
|
93
|
Vasant DH, Paine PA, Black CJ, Houghton LA, Everitt HA, Corsetti M, Agrawal A, Aziz I, Farmer AD, Eugenicos MP, Moss-Morris R, Yiannakou Y, Ford AC. British Society of Gastroenterology guidelines on the management of irritable bowel syndrome. Gut 2021; 70:1214-1240. [PMID: 33903147 DOI: 10.1136/gutjnl-2021-324598] [Citation(s) in RCA: 256] [Impact Index Per Article: 64.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Revised: 03/30/2021] [Accepted: 04/06/2021] [Indexed: 12/11/2022]
Abstract
Irritable bowel syndrome (IBS) remains one of the most common gastrointestinal disorders seen by clinicians in both primary and secondary care. Since publication of the last British Society of Gastroenterology (BSG) guideline in 2007, substantial advances have been made in understanding its complex pathophysiology, resulting in its re-classification as a disorder of gut-brain interaction, rather than a functional gastrointestinal disorder. Moreover, there has been a considerable amount of new evidence published concerning the diagnosis, investigation and management of IBS. The primary aim of this guideline, commissioned by the BSG, is to review and summarise the current evidence to inform and guide clinical practice, by providing a practical framework for evidence-based management of patients. One of the strengths of this guideline is that the recommendations for treatment are based on evidence derived from a comprehensive search of the medical literature, which was used to inform an update of a series of trial-based and network meta-analyses assessing the efficacy of dietary, pharmacological and psychological therapies in treating IBS. Specific recommendations have been made according to the Grading of Recommendations Assessment, Development and Evaluation system, summarising both the strength of the recommendations and the overall quality of evidence. Finally, this guideline identifies novel treatments that are in development, as well as highlighting areas of unmet need for future research.
Collapse
Affiliation(s)
- Dipesh H Vasant
- Neurogastroenterology Unit, Gastroenterology, Wythenshawe Hospital, Manchester University NHS Foundation Trust, Manchester, UK.,Division of Diabetes, Endocrinology and Gastroenterology, University of Manchester, Manchester, UK
| | - Peter A Paine
- Division of Diabetes, Endocrinology and Gastroenterology, University of Manchester, Manchester, UK.,Gastroenterology, Salford Royal Foundation Trust, Salford, UK
| | - Christopher J Black
- Leeds Gastroenterology Institute, Leeds Teaching Hospitals NHS Trust, Leeds, UK.,Leeds Institute of Medical Research at St James's, University of Leeds, Leeds, UK
| | - Lesley A Houghton
- Leeds Institute of Medical Research at St James's, University of Leeds, Leeds, UK.,Gastroenterology and Hepatology, Mayo Clinic, Jacksonville, Florida, USA
| | - Hazel A Everitt
- Primary Care and Population Sciences, University of Southampton, Southampton, UK
| | - Maura Corsetti
- Nottingham Digestive Diseases Biomedical Research Unit, University of Nottingham, Nottingham, UK
| | - Anurag Agrawal
- Gastroenterology, Doncaster and Bassetlaw Hospitals NHS Trust, Armthorpe Road, Doncaster, UK
| | - Imran Aziz
- Academic Unit of Gastroenterology, Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, UK.,Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, UK
| | - Adam D Farmer
- Department of Gastroenterology, University Hospitals of North Midlands NHS Trust, Stoke-on-Trent, UK.,School of Medicine, Keele University, Keele, UK
| | - Maria P Eugenicos
- Department of Gastroenterology, University of Edinburgh, Western General Hospital, Edinburgh, UK
| | - Rona Moss-Morris
- Department of Psychology, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Yan Yiannakou
- Department of Gastroenterology, County Durham and Darlington NHS Foundation Trust, Durham, UK
| | - Alexander C Ford
- Leeds Gastroenterology Institute, Leeds Teaching Hospitals NHS Trust, Leeds, UK .,Leeds Institute of Medical Research at St James's, University of Leeds, Leeds, UK
| |
Collapse
|
94
|
Simon E, Călinoiu LF, Mitrea L, Vodnar DC. Probiotics, Prebiotics, and Synbiotics: Implications and Beneficial Effects against Irritable Bowel Syndrome. Nutrients 2021; 13:nu13062112. [PMID: 34203002 PMCID: PMC8233736 DOI: 10.3390/nu13062112] [Citation(s) in RCA: 88] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 06/05/2021] [Accepted: 06/16/2021] [Indexed: 12/12/2022] Open
Abstract
Irritable bowel syndrome (IBS) is still a common functional gastrointestinal disease that presents chronic abdominal symptoms but with a pathophysiology that is not yet fully elucidated. Moreover, the use of the synergistic combination of prebiotics and probiotics, known as synbiotics, for IBS therapy is still in the early stages. Advancements in technology led to determining the important role played by probiotics in IBS, whereas the present paper focuses on the detailed review of the various pathophysiologic mechanisms of action of probiotics, prebiotics, and synbiotics via multidisciplinary domains involving the gastroenterology (microbiota modulation, alteration of gut barrier function, visceral hypersensitivity, and gastrointestinal dysmotility) immunology (intestinal immunological modulation), and neurology (microbiota–gut–brain axis communication and co-morbidities) in mitigating the symptoms of IBS. In addition, this review synthesizes literature about the mechanisms involved in the beneficial effects of prebiotics and synbiotics for patients with IBS, discussing clinical studies testing the efficiency and outcomes of synbiotics used as therapy for IBS.
Collapse
Affiliation(s)
- Elemer Simon
- Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine, Calea Mănăştur 3–5, 400372 Cluj-Napoca, Romania; (E.S.); (L.F.C.)
| | - Lavinia Florina Călinoiu
- Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine, Calea Mănăştur 3–5, 400372 Cluj-Napoca, Romania; (E.S.); (L.F.C.)
- Institute of Life Sciences, University of Agricultural Sciences and Veterinary Medicine, Calea Mănăştur 3–5, 400372 Cluj-Napoca, Romania;
| | - Laura Mitrea
- Institute of Life Sciences, University of Agricultural Sciences and Veterinary Medicine, Calea Mănăştur 3–5, 400372 Cluj-Napoca, Romania;
| | - Dan Cristian Vodnar
- Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine, Calea Mănăştur 3–5, 400372 Cluj-Napoca, Romania; (E.S.); (L.F.C.)
- Institute of Life Sciences, University of Agricultural Sciences and Veterinary Medicine, Calea Mănăştur 3–5, 400372 Cluj-Napoca, Romania;
- Correspondence: ; Tel.: +40-747-341-881
| |
Collapse
|
95
|
Ivashkin V, Poluektov Y, Kogan E, Shifrin O, Sheptulin A, Kovaleva A, Kurbatova A, Krasnov G, Poluektova E. Disruption of the pro-inflammatory, anti-inflammatory cytokines and tight junction proteins expression, associated with changes of the composition of the gut microbiota in patients with irritable bowel syndrome. PLoS One 2021; 16:e0252930. [PMID: 34115808 PMCID: PMC8195381 DOI: 10.1371/journal.pone.0252930] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 05/25/2021] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Irritable bowel syndrome (IBS) is a pathologic condition characterized by changes in gut microbiome composition, low-grade inflammation, and disruption of intestinal wall permeability. The interaction between the gut microbiome and the disease manifestation remains unclear. The changing of tight junction proteins and cytokines expression throughout the gastrointestinal tract in IBS patients has not been studied yet. AIM OF THE STUDY To assess the changes of gut microbiome composition, tight junction proteins, and cytokines expression of intestinal mucosa from the duodenum to the distal part of the colon in IBS patients and healthy volunteers. METHODS In 31 IBS patients (16 patients with IBS-D; 15 patients with IBS-C) and 10 healthy volunteers the expression of CLD-2, CLD-3, CLD-5, IL-2, IL-10, and TNF-α in mucosal biopsy specimens was determined by morphological and immune-histochemical methods. The qualitative and quantitative composition of the intestinal microbiota was assessed based on 16S rRNA gene sequencing in both groups of patients. RESULTS The expression of IL-2 and TNF-α was significantly increased in IBS patients compared with the controls (p<0.001), with a gradual increase from the duodenum to the sigmoid colon. The expression of IL-10, CLD-3, and CLD-5 in mucosal biopsy specimens of these patients was lower than in the control group (p<0.001). Increased ratios of Bacteroidetes and decreased ratios of Firmicutes were noted in IBS patients compared to healthy volunteers (p<0.05). CONCLUSION IBS patients have impaired gut permeability and persisting low-grade inflammation throughout the gastrointestinal tract. Changes in the gut microbiota may support or exacerbate these changes.
Collapse
Affiliation(s)
- V. Ivashkin
- I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russian Federation
| | - Y. Poluektov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - E. Kogan
- I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russian Federation
| | - O. Shifrin
- I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russian Federation
| | - A. Sheptulin
- I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russian Federation
| | - A. Kovaleva
- I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russian Federation
| | - A. Kurbatova
- I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russian Federation
| | - G. Krasnov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - E. Poluektova
- I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russian Federation
| |
Collapse
|
96
|
Passaro AP, Lebos AL, Yao Y, Stice SL. Immune Response in Neurological Pathology: Emerging Role of Central and Peripheral Immune Crosstalk. Front Immunol 2021; 12:676621. [PMID: 34177918 PMCID: PMC8222736 DOI: 10.3389/fimmu.2021.676621] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 05/17/2021] [Indexed: 12/13/2022] Open
Abstract
Neuroinflammation is a key component of neurological disorders and is an important therapeutic target; however, immunotherapies have been largely unsuccessful. In cases where these therapies have succeeded, particularly multiple sclerosis, they have primarily focused on one aspect of the disease and leave room for improvement. More recently, the impact of the peripheral immune system is being recognized, since it has become evident that the central nervous system is not immune-privileged, as once thought. In this review, we highlight key interactions between central and peripheral immune cells in neurological disorders. While traditional approaches have examined these systems separately, the immune responses and processes in neurological disorders consist of substantial crosstalk between cells of the central and peripheral immune systems. Here, we provide an overview of major immune effector cells and the role of the blood-brain barrier in regard to neurological disorders and provide examples of this crosstalk in various disorders, including stroke and traumatic brain injury, multiple sclerosis, neurodegenerative diseases, and brain cancer. Finally, we propose targeting central-peripheral immune interactions as a potential improved therapeutic strategy to overcome failures in clinical translation.
Collapse
Affiliation(s)
- Austin P. Passaro
- Regenerative Bioscience Center, University of Georgia, Athens, GA, United States
- Division of Neuroscience, Biomedical Health and Sciences Institute, University of Georgia, Athens, GA, United States
| | - Abraham L. Lebos
- Regenerative Bioscience Center, University of Georgia, Athens, GA, United States
- Department of Biochemistry and Microbiology, University of Georgia, Athens, GA, United States
| | - Yao Yao
- Regenerative Bioscience Center, University of Georgia, Athens, GA, United States
- Department of Animal and Dairy Science, University of Georgia, Athens, GA, United States
| | - Steven L. Stice
- Regenerative Bioscience Center, University of Georgia, Athens, GA, United States
- Division of Neuroscience, Biomedical Health and Sciences Institute, University of Georgia, Athens, GA, United States
- Department of Animal and Dairy Science, University of Georgia, Athens, GA, United States
| |
Collapse
|
97
|
Li X, Liu Q, Yu J, Zhang R, Sun T, Jiang W, Hu N, Yang P, Luo L, Ren J, Wang Q, Wang Y, Yang Q. Costunolide ameliorates intestinal dysfunction and depressive behaviour in mice with stress-induced irritable bowel syndrome via colonic mast cell activation and central 5-hydroxytryptamine metabolism. Food Funct 2021; 12:4142-4151. [PMID: 33977961 DOI: 10.1039/d0fo03340e] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Irritable bowel syndrome (IBS) is a common chronic functional bowel disease, associated with a high risk of depression and anxiety. The brain-gut axis plays an important role in the pathophysiological changes involved in IBS; however, an effective treatment for the same is lacking. The natural compound costunolide (COS) has been shown to exert gastroprotective, enteroprotective, and neuroprotective effects, but its therapeutic effects in IBS are unclear. Our study explored the effect of COS on intestinal dysfunction and depressive behaviour in stress-induced IBS mice. Mice were subjected to chronic unpredictable mild stress to trigger IBS, and some were administered COS. Behavioural tests, histochemical assays, western blotting, and measurement of 5-hydroxytryptamine (5-HT) levels in the colon and hippocampus were applied to monitor the physiological and molecular consequences of COS treatment in IBS mice. COS administration relieved intestinal dysfunction and depression-like behaviours in IBS mice. Improvements in low-grade colon inflammation and intestinal mucosal permeability, inhibition of the activation of mast cells, upregulation of colonic Occludin expression, and downregulation of Claudin 2 expression were also observed. COS was also found to upregulate GluN2A, BDNF, p-ERK1/2, and p-CREB expression and 5-HT levels in hippocampal cells but inhibited 5-HT metabolism. Molecular docking showed that COS could form hydrogen bonds with the serotonin transporter (SERT) to affect the reuptake of 5-HT in the intercellular space. In conclusion, COS alleviates intestinal dysfunction and depressive behaviour in stress-induced IBS mice by inhibiting mast cell activation in the colon and regulating 5-HT metabolism in the central nervous system.
Collapse
Affiliation(s)
- Xi Li
- Precision Pharmacy & Drug Development Center, Department of Pharmacy, the Second Affiliated Hospital of Air Force Medical University, Xi'an 710038, China.
| | - Qingqing Liu
- Precision Pharmacy & Drug Development Center, Department of Pharmacy, the Second Affiliated Hospital of Air Force Medical University, Xi'an 710038, China.
| | - Jiaoyan Yu
- Precision Pharmacy & Drug Development Center, Department of Pharmacy, the Second Affiliated Hospital of Air Force Medical University, Xi'an 710038, China.
| | - Ruitao Zhang
- Precision Pharmacy & Drug Development Center, Department of Pharmacy, the Second Affiliated Hospital of Air Force Medical University, Xi'an 710038, China.
| | - Ting Sun
- Precision Pharmacy & Drug Development Center, Department of Pharmacy, the Second Affiliated Hospital of Air Force Medical University, Xi'an 710038, China.
| | - Wei Jiang
- Precision Pharmacy & Drug Development Center, Department of Pharmacy, the Second Affiliated Hospital of Air Force Medical University, Xi'an 710038, China.
| | - Na Hu
- Precision Pharmacy & Drug Development Center, Department of Pharmacy, the Second Affiliated Hospital of Air Force Medical University, Xi'an 710038, China.
| | - Peng Yang
- Precision Pharmacy & Drug Development Center, Department of Pharmacy, the Second Affiliated Hospital of Air Force Medical University, Xi'an 710038, China.
| | - Li Luo
- Precision Pharmacy & Drug Development Center, Department of Pharmacy, the Second Affiliated Hospital of Air Force Medical University, Xi'an 710038, China.
| | - Jing Ren
- Precision Pharmacy & Drug Development Center, Department of Pharmacy, the Second Affiliated Hospital of Air Force Medical University, Xi'an 710038, China.
| | - Qinhui Wang
- Precision Pharmacy & Drug Development Center, Department of Pharmacy, the Second Affiliated Hospital of Air Force Medical University, Xi'an 710038, China.
| | - Yan Wang
- Department of Gastroenterology and Endoscopy Center, No. 986 Hospital, Air Force Medical University, Xi'an, 710054 China
| | - Qi Yang
- Precision Pharmacy & Drug Development Center, Department of Pharmacy, the Second Affiliated Hospital of Air Force Medical University, Xi'an 710038, China.
| |
Collapse
|
98
|
Brizuela M, Castro J, Harrington AM, Brierley SM. Pruritogenic mechanisms and gut sensation: putting the "irritant" into irritable bowel syndrome. Am J Physiol Gastrointest Liver Physiol 2021; 320:G1131-G1141. [PMID: 33949199 DOI: 10.1152/ajpgi.00331.2020] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Chronic abdominal pain is a common clinical condition experienced by patients with irritable bowel syndrome (IBS). A general lack of suitable treatment options for the management of visceral pain is the major contributing factor to the debilitating nature of the disease. Understanding the underlying causes of chronic visceral pain is pivotal to identifying new effective therapies for IBS. This review provides the current evidence, demonstrating that mediators and receptors that induce itch in the skin also act as "gut irritants" in the gastrointestinal tract. Activation of these receptors triggers specific changes in the neuronal excitability of sensory pathways responsible for the transmission of nociceptive information from the periphery to the central nervous system leading to visceral hypersensitivity and visceral pain. Accumulating evidence points to significant roles of irritant mediators and their receptors in visceral hypersensitivity and thus constitutes potential targets for the development of more effective therapeutic options for IBS.
Collapse
Affiliation(s)
- Mariana Brizuela
- Visceral Pain Research Group, College of Medicine and Public Health, Flinders Health and Medical Research Institute, Flinders University, Adelaide, South Australia, Australia.,Hopwood Centre for Neurobiology, Lifelong Health Theme, South Australian Health and Medical Research Institute, Adelaide, South Australia, Australia
| | - Joel Castro
- Visceral Pain Research Group, College of Medicine and Public Health, Flinders Health and Medical Research Institute, Flinders University, Adelaide, South Australia, Australia.,Hopwood Centre for Neurobiology, Lifelong Health Theme, South Australian Health and Medical Research Institute, Adelaide, South Australia, Australia
| | - Andrea M Harrington
- Visceral Pain Research Group, College of Medicine and Public Health, Flinders Health and Medical Research Institute, Flinders University, Adelaide, South Australia, Australia.,Hopwood Centre for Neurobiology, Lifelong Health Theme, South Australian Health and Medical Research Institute, Adelaide, South Australia, Australia
| | - Stuart M Brierley
- Visceral Pain Research Group, College of Medicine and Public Health, Flinders Health and Medical Research Institute, Flinders University, Adelaide, South Australia, Australia.,Hopwood Centre for Neurobiology, Lifelong Health Theme, South Australian Health and Medical Research Institute, Adelaide, South Australia, Australia.,Discipline of Medicine, University of Adelaide, Adelaide, South Australia, Australia
| |
Collapse
|
99
|
Hou JJ, Wang X, Li Y, Su S, Wang YM, Wang BM. The relationship between gut microbiota and proteolytic activity in irritable bowel syndrome. Microb Pathog 2021; 157:104995. [PMID: 34048892 DOI: 10.1016/j.micpath.2021.104995] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 05/05/2021] [Accepted: 05/05/2021] [Indexed: 02/08/2023]
Abstract
Irritable bowel syndrome (IBS) is a common functional gastrointestinal disease that affects 3.8-9.2% of the world population. It affects the physiology and psychology of patients and increases the burden on families, the healthcare system, society, and economic development. Presently, a large number of studies have shown that compared to healthy individuals, the composition and diversity of gut microbiota in IBS patients have changed, and the proteolytic activity (PA) in fecal supernatant and colonic mucosa of IBS patients has also increased. These findings indicate that the imbalance of intestinal microecology and intestinal protein hydrolysis is closely related to IBS. Furthermore, the intestinal flora is a key substance that regulates the PA and is associated with IBS. The current review described the intestinal microecology and intestinal proteolytic activity of patients with IBS and also discussed the effect of intestinal flora on PA. In summary, this study proposed a pivotal role of gut microbiota and PA in IBS, respectively, and provided an in-depth insight into the diagnosis and treatment targets of IBS as well as the formulation of new treatment strategies for other digestive diseases and protease-related diseases.
Collapse
Affiliation(s)
- Jun-Jie Hou
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin, PR China.
| | - Xin Wang
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin, PR China.
| | - Ying Li
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin, PR China.
| | - Shuai Su
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin, PR China.
| | - Yu-Ming Wang
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin, PR China.
| | - Bang-Mao Wang
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin, PR China.
| |
Collapse
|
100
|
Alonso-Cotoner C, Abril-Gil M, Albert-Bayo M, Mall JPG, Expósito E, González-Castro AM, Lobo B, Santos J. The Role of Purported Mucoprotectants in Dealing with Irritable Bowel Syndrome, Functional Diarrhea, and Other Chronic Diarrheal Disorders in Adults. Adv Ther 2021; 38:2054-2076. [PMID: 33738725 PMCID: PMC7971407 DOI: 10.1007/s12325-021-01676-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 02/16/2021] [Indexed: 12/12/2022]
Abstract
Chronic diarrhea is a frequent presenting symptom, both in primary care medicine and in specialized gastroenterology units. It is estimated that more than 5% of the global population suffers from chronic diarrhea. and that about 40% of these subjects are older than 60 years. The clinician is frequently faced with the need to decide which is the best therapeutic approach for these patients. While the origin of chronic diarrhea is diverse, impairment of intestinal barrier function, dysbiosis. and mucosal micro-inflammation are being increasingly recognized as underlying phenomena characterizing a variety of chronic diarrheal diseases. In addition to current pharmacological therapies, there is growing interest in alternative products such as mucoprotectants, which form a mucoadhesive film over the epithelium to reduce and protect against the development of altered intestinal permeability, dysbiosis, and mucosal micro-inflammation. This manuscript focuses on chronic diarrhea in adults, and we will review recent evidence on the ability of these natural compounds to improve symptoms associated with chronic diarrhea and to exert protective effects for the intestinal barrier.
Collapse
Affiliation(s)
- Carmen Alonso-Cotoner
- Servei de Aparell Digestiu, Vall d'Hebron Hospital Universitari, Passeig Vall d'Hebron 119-129, 08035, Barcelona, Spain
- Grup de Neuro-Inmuno-Gastroenterología, Unitat de Fisiología I Fisiopatología Digestiva, Vall d'Hebron Institut de Recerca (VHIR), Barcelona, Spain
- Universitat Autònoma de Barcelona, Facultat de Medicina, Bellaterra, Barcelona, Spain
- CIBER de Enfermedades Hepaticas y Digestivas (CIBERHED), Instituto de Salud Carlos III, Madrid, Spain
| | - Mar Abril-Gil
- Grup de Neuro-Inmuno-Gastroenterología, Unitat de Fisiología I Fisiopatología Digestiva, Vall d'Hebron Institut de Recerca (VHIR), Barcelona, Spain
| | - Mercé Albert-Bayo
- Grup de Neuro-Inmuno-Gastroenterología, Unitat de Fisiología I Fisiopatología Digestiva, Vall d'Hebron Institut de Recerca (VHIR), Barcelona, Spain
| | - John-P Ganda Mall
- Grup de Neuro-Inmuno-Gastroenterología, Unitat de Fisiología I Fisiopatología Digestiva, Vall d'Hebron Institut de Recerca (VHIR), Barcelona, Spain
- Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Elba Expósito
- Grup de Neuro-Inmuno-Gastroenterología, Unitat de Fisiología I Fisiopatología Digestiva, Vall d'Hebron Institut de Recerca (VHIR), Barcelona, Spain
| | - Ana M González-Castro
- Grup de Neuro-Inmuno-Gastroenterología, Unitat de Fisiología I Fisiopatología Digestiva, Vall d'Hebron Institut de Recerca (VHIR), Barcelona, Spain
| | - Beatriz Lobo
- Servei de Aparell Digestiu, Vall d'Hebron Hospital Universitari, Passeig Vall d'Hebron 119-129, 08035, Barcelona, Spain.
- Grup de Neuro-Inmuno-Gastroenterología, Unitat de Fisiología I Fisiopatología Digestiva, Vall d'Hebron Institut de Recerca (VHIR), Barcelona, Spain.
- Universitat Autònoma de Barcelona, Facultat de Medicina, Bellaterra, Barcelona, Spain.
| | - Javier Santos
- Servei de Aparell Digestiu, Vall d'Hebron Hospital Universitari, Passeig Vall d'Hebron 119-129, 08035, Barcelona, Spain.
- Grup de Neuro-Inmuno-Gastroenterología, Unitat de Fisiología I Fisiopatología Digestiva, Vall d'Hebron Institut de Recerca (VHIR), Barcelona, Spain.
- Universitat Autònoma de Barcelona, Facultat de Medicina, Bellaterra, Barcelona, Spain.
- CIBER de Enfermedades Hepaticas y Digestivas (CIBERHED), Instituto de Salud Carlos III, Madrid, Spain.
| |
Collapse
|