51
|
Dugnani E, Pasquale V, Marra P, Liberati D, Canu T, Perani L, De Sanctis F, Ugel S, Invernizzi F, Citro A, Venturini M, Doglioni C, Esposito A, Piemonti L. Four-class tumor staging for early diagnosis and monitoring of murine pancreatic cancer using magnetic resonance and ultrasound. Carcinogenesis 2018; 39:1197-1206. [DOI: 10.1093/carcin/bgy094] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Accepted: 07/23/2018] [Indexed: 02/07/2023] Open
Affiliation(s)
- Erica Dugnani
- Division of Immunology, Transplantation and Infectious diseases, Diabetes Research Institute, Milan, Italy
| | - Valentina Pasquale
- Division of Immunology, Transplantation and Infectious diseases, Diabetes Research Institute, Milan, Italy
| | - Paolo Marra
- Experimental Imaging Center, IRCCS San Raffaele Scientific Institute, Via Olgettina, Milan, Italy
| | - Daniela Liberati
- Division of Genetics and Cell Biology, Genomic Unit for the diagnosis of human pathologies, IRCCS San Raffaele Scientific Institute, Via Olgettina, Milan, Italy
| | - Tamara Canu
- Experimental Imaging Center, IRCCS San Raffaele Scientific Institute, Via Olgettina, Milan, Italy
| | - Laura Perani
- Experimental Imaging Center, IRCCS San Raffaele Scientific Institute, Via Olgettina, Milan, Italy
| | - Francesco De Sanctis
- University Hospital and Department of Medicine, Immunology Section, Verona, Italy
| | - Stefano Ugel
- University Hospital and Department of Medicine, Immunology Section, Verona, Italy
| | - Francesca Invernizzi
- Department of Pathology, IRCCS San Raffaele Scientific Institute, Via Olgettina, Milan, Italy
| | - Antonio Citro
- Division of Immunology, Transplantation and Infectious diseases, Diabetes Research Institute, Milan, Italy
| | - Massimo Venturini
- Experimental Imaging Center, IRCCS San Raffaele Scientific Institute, Via Olgettina, Milan, Italy
| | - Claudio Doglioni
- Department of Pathology, IRCCS San Raffaele Scientific Institute, Via Olgettina, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
| | - Antonio Esposito
- Experimental Imaging Center, IRCCS San Raffaele Scientific Institute, Via Olgettina, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
| | - Lorenzo Piemonti
- Division of Immunology, Transplantation and Infectious diseases, Diabetes Research Institute, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
| |
Collapse
|
52
|
Zaccagna F, Grist JT, Deen SS, Woitek R, Lechermann LMT, McLean MA, Basu B, Gallagher FA. Hyperpolarized carbon-13 magnetic resonance spectroscopic imaging: a clinical tool for studying tumour metabolism. Br J Radiol 2018; 91:20170688. [PMID: 29293376 PMCID: PMC6190784 DOI: 10.1259/bjr.20170688] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Revised: 12/13/2017] [Accepted: 12/19/2017] [Indexed: 01/09/2023] Open
Abstract
Glucose metabolism in tumours is reprogrammed away from oxidative metabolism, even in the presence of oxygen. Non-invasive imaging techniques can probe these alterations in cancer metabolism providing tools to detect tumours and their response to therapy. Although Positron Emission Tomography with (18F)2-fluoro-2-deoxy-D-glucose (18F-FDG PET) is an established clinical tool to probe cancer metabolism, it has poor spatial resolution and soft tissue contrast, utilizes ionizing radiation and only probes glucose uptake and phosphorylation and not further downstream metabolism. Magnetic Resonance Spectroscopy (MRS) has the capability to non-invasively detect and distinguish molecules within tissue but has low sensitivity and can only detect selected nuclei. Dynamic Nuclear Polarization (DNP) is a technique which greatly increases the signal-to-noise ratio (SNR) achieved with MR by significantly increasing nuclear spin polarization and this method has now been translated into human imaging. This review provides a brief overview of this process, also termed Hyperpolarized Carbon-13 Magnetic Resonance Spectroscopic Imaging (HP 13C-MRSI), its applications in preclinical imaging, an outline of the current human trials that are ongoing, as well as future potential applications in oncology.
Collapse
Affiliation(s)
- Fulvio Zaccagna
- Department of Radiology, University of Cambridge, Cambridge, UK
| | - James T Grist
- Department of Radiology, University of Cambridge, Cambridge, UK
| | - Surrin S Deen
- Department of Radiology, University of Cambridge, Cambridge, UK
| | - Ramona Woitek
- Department of Radiology, University of Cambridge, Cambridge, UK
| | | | - Mary A McLean
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, UK
| | - Bristi Basu
- Department of Oncology, University of Cambridge, Cambridge, UK
| | | |
Collapse
|
53
|
Serrao E, Kettunen M, Rodrigues T, Lewis D, Gallagher F, Hu D, Brindle K. Analysis of 13 C and 14 C labeling in pyruvate and lactate in tumor and blood of lymphoma-bearing mice injected with 13 C- and 14 C-labeled pyruvate. NMR IN BIOMEDICINE 2018; 31:e3901. [PMID: 29457661 PMCID: PMC5947589 DOI: 10.1002/nbm.3901] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Revised: 12/01/2017] [Accepted: 01/04/2018] [Indexed: 05/08/2023]
Abstract
Measurements of hyperpolarized 13 C label exchange between injected [1-13 C]pyruvate and the endogenous tumor lactate pool can give an apparent first-order rate constant for the exchange. The determination of the isotope flux, however, requires an estimate of the labeled pyruvate concentration in the tumor. This was achieved here by measurement of the tumor uptake of [1-14 C]pyruvate, which showed that <2% of the injected pyruvate reached the tumor site. Multiplication of this estimated labeled pyruvate concentration in the tumor with the apparent first-order rate constant for hyperpolarized 13 C label exchange gave an isotope flux that showed good agreement with a flux determined directly by the injection of non-polarized [3-13 C]pyruvate, rapid excision of the tumor after 30 s and measurement of 13 C-labeled lactate concentrations in tumor extracts. The distribution of labeled lactate between intra- and extracellular compartments and the blood pool was investigated by imaging, by measurement of the labeled lactate concentration in blood and tumor, and by examination of the effects of a gadolinium contrast agent and a lactate transport inhibitor on the intensity of the hyperpolarized [1-13 C]lactate signal. These measurements showed that there was significant export of labeled lactate from the tumor, but that labeled lactate in the blood pool produced by the injection of hyperpolarized [1-13 C]pyruvate showed only relatively low levels of polarization. This study shows that measurements of hyperpolarized 13 C label exchange between pyruvate and lactate in a murine tumor model can provide an estimate of the true isotope flux if the concentration of labeled pyruvate that reaches the tumor can be determined.
Collapse
Affiliation(s)
- E.M. Serrao
- Cancer Research UK Cambridge InstituteUniversity of CambridgeCambridgeUK
- Department of BiochemistryUniversity of CambridgeCambridgeUK
- Department of RadiologyUniversity of CambridgeCambridgeUK
| | - M.I. Kettunen
- A. I. Virtanen Institute for Molecular SciencesUniversity of Eastern FinlandKuopioFinland
| | - T.B. Rodrigues
- Cancer Research UK Cambridge InstituteUniversity of CambridgeCambridgeUK
- Department of BiochemistryUniversity of CambridgeCambridgeUK
| | - D.Y. Lewis
- Cancer Research UK Beatson InstituteGlasgowUK
| | - F.A. Gallagher
- Department of RadiologyUniversity of CambridgeCambridgeUK
| | - D.E. Hu
- Cancer Research UK Cambridge InstituteUniversity of CambridgeCambridgeUK
- Department of BiochemistryUniversity of CambridgeCambridgeUK
| | - K.M. Brindle
- Cancer Research UK Cambridge InstituteUniversity of CambridgeCambridgeUK
- Department of BiochemistryUniversity of CambridgeCambridgeUK
| |
Collapse
|
54
|
Vennin C, Murphy KJ, Morton JP, Cox TR, Pajic M, Timpson P. Reshaping the Tumor Stroma for Treatment of Pancreatic Cancer. Gastroenterology 2018; 154:820-838. [PMID: 29287624 DOI: 10.1053/j.gastro.2017.11.280] [Citation(s) in RCA: 141] [Impact Index Per Article: 20.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Revised: 11/14/2017] [Accepted: 11/16/2017] [Indexed: 12/16/2022]
Abstract
Pancreatic cancer is accompanied by a fibrotic reaction that alters interactions between tumor cells and the stroma to promote tumor progression. Consequently, strategies to target the tumor stroma might be used to treat patients with pancreatic cancer. We review recently developed approaches for reshaping the pancreatic tumor stroma and discuss how these might improve patient outcomes. We also describe relationships between the pancreatic tumor extracellular matrix, the vasculature, the immune system, and metabolism, and discuss the implications for the development of stromal compartment-specific therapies.
Collapse
Affiliation(s)
- Claire Vennin
- The Garvan Institute of Medical Research, Sydney, New South Wales, Australia; The Kinghorn Cancer Center, Sydney, New South Wales, Australia; St Vincent's Clinical School, Faculty of Medicine, University of New South Wales, Sydney, New South Wales, Australia
| | - Kendelle J Murphy
- The Garvan Institute of Medical Research, Sydney, New South Wales, Australia; The Kinghorn Cancer Center, Sydney, New South Wales, Australia; St Vincent's Clinical School, Faculty of Medicine, University of New South Wales, Sydney, New South Wales, Australia
| | - Jennifer P Morton
- Cancer Research UK, The Beatson Institute for Cancer Research, Glasgow, Scotland, United Kingdom
| | - Thomas R Cox
- The Garvan Institute of Medical Research, Sydney, New South Wales, Australia; The Kinghorn Cancer Center, Sydney, New South Wales, Australia; St Vincent's Clinical School, Faculty of Medicine, University of New South Wales, Sydney, New South Wales, Australia
| | - Marina Pajic
- The Garvan Institute of Medical Research, Sydney, New South Wales, Australia; The Kinghorn Cancer Center, Sydney, New South Wales, Australia; St Vincent's Clinical School, Faculty of Medicine, University of New South Wales, Sydney, New South Wales, Australia.
| | - Paul Timpson
- The Garvan Institute of Medical Research, Sydney, New South Wales, Australia; The Kinghorn Cancer Center, Sydney, New South Wales, Australia; St Vincent's Clinical School, Faculty of Medicine, University of New South Wales, Sydney, New South Wales, Australia.
| |
Collapse
|
55
|
Wang J, Wright AJ, Hesketh RL, Hu D, Brindle KM. A referenceless Nyquist ghost correction workflow for echo planar imaging of hyperpolarized [1- 13 C]pyruvate and [1- 13 C]lactate. NMR IN BIOMEDICINE 2018; 31:e3866. [PMID: 29215773 PMCID: PMC5814908 DOI: 10.1002/nbm.3866] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Revised: 10/17/2017] [Accepted: 10/23/2017] [Indexed: 05/10/2023]
Abstract
Single-shot echo planar imaging (EPI), which allows an image to be acquired using a single excitation pulse, is used widely for imaging the metabolism of hyperpolarized 13 C-labelled metabolites in vivo as the technique is rapid and minimizes the depletion of the hyperpolarized signal. However, EPI suffers from Nyquist ghosting, which normally is corrected for by acquiring a reference scan. In a dynamic acquisition of a series of images, this results in the sacrifice of a time point if the reference scan involves a full readout train with no phase encoding. This time penalty is negligible if an integrated navigator echo is used, but at the cost of a lower signal-to-noise ratio (SNR) as a result of prolonged T2 * decay. We describe here a workflow for hyperpolarized 13 C EPI that requires no reference scan. This involves the selection of a ghost-containing background from a 13 C image of a single metabolite at a single time point, the identification of phase correction coefficients that minimize signal in the selected area, and the application of these coefficients to images acquired at all time points and from all metabolites. The workflow was compared in phantom experiments with phase correction using a 13 C reference scan, and yielded similar results in situations with a regular field of view (FOV), a restricted FOV and where there were multiple signal sources. When compared with alternative phase correction methods, the workflow showed an SNR benefit relative to integrated 13 C reference echoes (>15%) or better ghost removal relative to a 1 H reference scan. The residual ghosting in a slightly de-shimmed B0 field was 1.6% using the proposed workflow and 3.8% using a 1 H reference scan. The workflow was implemented with a series of dynamically acquired hyperpolarized [1-13 C]pyruvate and [1-13 C]lactate images in vivo, resulting in images with no observable ghosting and which were quantitatively similar to images corrected using a 13 C reference scan.
Collapse
Affiliation(s)
- Jiazheng Wang
- Cancer Research UK Cambridge InstituteUniversity of CambridgeLi Ka Shing CentreCambridgeUK
| | - Alan J. Wright
- Cancer Research UK Cambridge InstituteUniversity of CambridgeLi Ka Shing CentreCambridgeUK
| | - Richard L. Hesketh
- Cancer Research UK Cambridge InstituteUniversity of CambridgeLi Ka Shing CentreCambridgeUK
| | - De‐en Hu
- Cancer Research UK Cambridge InstituteUniversity of CambridgeLi Ka Shing CentreCambridgeUK
| | - Kevin M. Brindle
- Cancer Research UK Cambridge InstituteUniversity of CambridgeLi Ka Shing CentreCambridgeUK
- Department of BiochemistryUniversity of CambridgeCambridgeUK
| |
Collapse
|
56
|
Momcilovic M, Shackelford DB. Imaging Cancer Metabolism. Biomol Ther (Seoul) 2018; 26:81-92. [PMID: 29212309 PMCID: PMC5746040 DOI: 10.4062/biomolther.2017.220] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Revised: 11/11/2017] [Accepted: 11/13/2017] [Indexed: 12/23/2022] Open
Abstract
It is widely accepted that altered metabolism contributes to cancer growth and has been described as a hallmark of cancer. Our view and understanding of cancer metabolism has expanded at a rapid pace, however, there remains a need to study metabolic dependencies of human cancer in vivo. Recent studies have sought to utilize multi-modality imaging (MMI) techniques in order to build a more detailed and comprehensive understanding of cancer metabolism. MMI combines several in vivo techniques that can provide complementary information related to cancer metabolism. We describe several non-invasive imaging techniques that provide both anatomical and functional information related to tumor metabolism. These imaging modalities include: positron emission tomography (PET), computed tomography (CT), magnetic resonance imaging (MRI), magnetic resonance spectroscopy (MRS) that uses hyperpolarized probes and optical imaging utilizing bioluminescence and quantification of light emitted. We describe how these imaging modalities can be combined with mass spectrometry and quantitative immunochemistry to obtain more complete picture of cancer metabolism. In vivo studies of tumor metabolism are emerging in the field and represent an important component to our understanding of how metabolism shapes and defines cancer initiation, progression and response to treatment. In this review we describe in vivo based studies of cancer metabolism that have taken advantage of MMI in both pre-clinical and clinical studies. MMI promises to advance our understanding of cancer metabolism in both basic research and clinical settings with the ultimate goal of improving detection, diagnosis and treatment of cancer patients.
Collapse
Affiliation(s)
- Milica Momcilovic
- Division of Pulmonary and Critical Care Medicine, David Geffen School of Medicine, Los Angeles, CA, 90095, USA
| | - David B Shackelford
- Division of Pulmonary and Critical Care Medicine, David Geffen School of Medicine, Los Angeles, CA, 90095, USA
| |
Collapse
|
57
|
Penheiter AR, Deelchand DK, Kittelson E, Damgard SE, Murphy SJ, O'Brien DR, Bamlet WR, Passow MR, Smyrk TC, Couch FJ, Vasmatzis G, Port JD, Marjańska M, Carlson SK. Identification of a pyruvate-to-lactate signature in pancreatic intraductal papillary mucinous neoplasms. Pancreatology 2018; 18:46-53. [PMID: 29170050 PMCID: PMC6139027 DOI: 10.1016/j.pan.2017.11.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Revised: 11/03/2017] [Accepted: 11/13/2017] [Indexed: 12/11/2022]
Abstract
OBJECTIVE We used transcriptomic profiling and immunohistochemistry (IHC) to search for a functional imaging strategy to resolve common problems with morphological imaging of cystic neoplasms and benign cystic lesions of the pancreas. METHODS Resected pancreatic cancer (n = 21) and normal pancreas were laser-capture micro-dissected, and transcripts were quantified by RNAseq. Functional imaging targets were validated at the protein level by IHC on a pancreatic adenocarcinoma tissue microarray and a newly created tissue microarray of resected intraductal papillary mucinous neoplasms (IPMNs) and IPMN-associated adenocarcinomas. RESULTS Genes encoding proteins responsible for cellular import of pyruvate, export of lactate, and conversion of pyruvate to lactate were highly upregulated in pancreatic adenocarcinoma compared to normal pancreas. Strong expression of MCT4 and LDHA was observed by IHC in >90% of adenocarcinoma specimens. In IPMNs, the pyruvate-to-lactate signature was significantly elevated in high grade dysplasia (HGD) and IPMN-associated adenocarcinoma. Additionally, cores containing HGD and/or adenocarcinoma exhibited a higher number of peri-lesional stromal cells and a significant increase in peri-lesional stromal cell staining of LDHA and MCT4. Interestingly, the pyruvate-to-lactate signature was significantly upregulated in cores containing only low grade dysplasia (LGD) from patients with histologically confirmed IPMN-associated adenocarcinoma versus LGD cores from patients with non-invasive IPMNs. CONCLUSION Our results suggest prospective studies with hyperpolarized [1-13C]-pyruvate magnetic resonance spectroscopic imaging are warranted. If these IHC results translate to functional imaging findings, a positive pyruvate-to-lactate imaging signature might be a risk factor for invasion that would warrant resection of IPMNs in the absence of other worrisome features.
Collapse
Affiliation(s)
- Alan R Penheiter
- Department of Molecular Medicine, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA
| | - Dinesh K Deelchand
- Center for Magnetic Resonance Research and Department of Radiology, University of Minnesota, 2021 6th Street SE, Minneapolis, MN 55455, USA
| | - Emily Kittelson
- Center for Magnetic Resonance Research and Department of Radiology, University of Minnesota, 2021 6th Street SE, Minneapolis, MN 55455, USA
| | - Sibel Erdogan Damgard
- Department of Biochemistry and Molecular Biology, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA
| | - Stephen J Murphy
- Department of Molecular Medicine, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA
| | - Daniel R O'Brien
- Department of Health Science Research, Division of Biomedical Statistics and Informatics, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA
| | - William R Bamlet
- Department of Health Science Research, Division of Biomedical Statistics and Informatics, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA
| | - Marie R Passow
- Department of Laboratory Medicine and Pathology, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA
| | - Thomas C Smyrk
- Department of Laboratory Medicine and Pathology, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA
| | - Fergus J Couch
- Department of Laboratory Medicine and Pathology, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA
| | - George Vasmatzis
- Department of Molecular Medicine, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA
| | - John D Port
- Department of Radiology, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA
| | - Małgorzata Marjańska
- Center for Magnetic Resonance Research and Department of Radiology, University of Minnesota, 2021 6th Street SE, Minneapolis, MN 55455, USA
| | - Stephanie K Carlson
- Department of Molecular Medicine, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA; Department of Radiology, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA.
| |
Collapse
|
58
|
Silvers MA, Deja S, Singh N, Egnatchik RA, Sudderth J, Luo X, Beg MS, Burgess SC, DeBerardinis RJ, Boothman DA, Merritt ME. The NQO1 bioactivatable drug, β-lapachone, alters the redox state of NQO1+ pancreatic cancer cells, causing perturbation in central carbon metabolism. J Biol Chem 2017; 292:18203-18216. [PMID: 28916726 DOI: 10.1074/jbc.m117.813923] [Citation(s) in RCA: 74] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Revised: 09/13/2017] [Indexed: 12/21/2022] Open
Abstract
Many cancer treatments, such as those for managing recalcitrant tumors like pancreatic ductal adenocarcinoma, cause off-target toxicities in normal, healthy tissue, highlighting the need for more tumor-selective chemotherapies. β-Lapachone is bioactivated by NAD(P)H:quinone oxidoreductase 1 (NQO1). This enzyme exhibits elevated expression in most solid cancers and therefore is a potential cancer-specific target. β-Lapachone's therapeutic efficacy partially stems from the drug's induction of a futile NQO1-mediated redox cycle that causes high levels of superoxide and then peroxide formation, which damages DNA and causes hyperactivation of poly(ADP-ribose) polymerase, resulting in extensive NAD+/ATP depletion. However, the effects of this drug on energy metabolism due to NAD+ depletion were never described. The futile redox cycle rapidly consumes O2, rendering standard assays of Krebs cycle turnover unusable. In this study, a multimodal analysis, including metabolic imaging using hyperpolarized pyruvate, points to reduced oxidative flux due to NAD+ depletion after β-lapachone treatment of NQO1+ human pancreatic cancer cells. NAD+-sensitive pathways, such as glycolysis, flux through lactate dehydrogenase, and the citric acid cycle (as inferred by flux through pyruvate dehydrogenase), were down-regulated by β-lapachone treatment. Changes in flux through these pathways should generate biomarkers useful for in vivo dose responses of β-lapachone treatment in humans, avoiding toxic side effects. Targeting the enzymes in these pathways for therapeutic treatment may have the potential to synergize with β-lapachone treatment, creating unique NQO1-selective combinatorial therapies for specific cancers. These findings warrant future studies of intermediary metabolism in patients treated with β-lapachone.
Collapse
Affiliation(s)
- Molly A Silvers
- From the Departments of Pharmacology and Radiation Oncology, Simmons Comprehensive Cancer Center
| | - Stanislaw Deja
- Advanced Imaging Research Center (AIRC), Division of Metabolic Mechanisms of Disease
| | - Naveen Singh
- From the Departments of Pharmacology and Radiation Oncology, Simmons Comprehensive Cancer Center
| | - Robert A Egnatchik
- the Children's Medical Center Research Institute, Simmons Comprehensive Cancer Center
| | - Jessica Sudderth
- the Children's Medical Center Research Institute, Simmons Comprehensive Cancer Center
| | - Xiuquan Luo
- From the Departments of Pharmacology and Radiation Oncology, Simmons Comprehensive Cancer Center
| | | | - Shawn C Burgess
- Advanced Imaging Research Center (AIRC), Division of Metabolic Mechanisms of Disease
| | - Ralph J DeBerardinis
- the Children's Medical Center Research Institute, Simmons Comprehensive Cancer Center
| | - David A Boothman
- From the Departments of Pharmacology and Radiation Oncology, Simmons Comprehensive Cancer Center,
| | - Matthew E Merritt
- the AIRC, University of Texas Southwestern Medical Center, Dallas, Texas 75390 and .,the Department of Biochemistry and Molecular Biology, University of Florida, Gainesville, Florida 32610
| |
Collapse
|
59
|
PET-MRI of the Pancreas and Kidneys. CURRENT RADIOLOGY REPORTS 2017. [DOI: 10.1007/s40134-017-0229-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
60
|
Serrao EM, Brindle KM. Dynamic nuclear polarisation: The future of imaging in oncology? Porto Biomed J 2017; 2:71-75. [PMID: 32258590 PMCID: PMC6806983 DOI: 10.1016/j.pbj.2017.01.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2016] [Accepted: 01/02/2017] [Indexed: 12/19/2022] Open
Abstract
As clinical oncology evolves with new treatment options becoming available, there is an increasing demand on anatomic imaging for the assessment of patients at different stages. Imaging with hyperpolarized 13C-labelled cell substrates has the potential to become a powerful tool in many steps of clinical evaluation, offering a new metabolic metric and therefore a more personalised approach to treatment response. This articles explores the metabolic basis and potential for translation of hyperpolarised pyruvate as a dynamic nuclear polarisation probe in clinical oncology.
Collapse
Affiliation(s)
- Eva M Serrao
- Cancer Research UK Cambridge Institute, University of Cambridge, Li Ka Shing Centre, Cambridge, UK
- Department of Biochemistry, University of Cambridge, Cambridge, UK
| | - Kevin M Brindle
- Cancer Research UK Cambridge Institute, University of Cambridge, Li Ka Shing Centre, Cambridge, UK
- Department of Biochemistry, University of Cambridge, Cambridge, UK
| |
Collapse
|
61
|
Spira A, Yurgelun MB, Alexandrov L, Rao A, Bejar R, Polyak K, Giannakis M, Shilatifard A, Finn OJ, Dhodapkar M, Kay NE, Braggio E, Vilar E, Mazzilli SA, Rebbeck TR, Garber JE, Velculescu VE, Disis ML, Wallace DC, Lippman SM. Precancer Atlas to Drive Precision Prevention Trials. Cancer Res 2017; 77:1510-1541. [PMID: 28373404 PMCID: PMC6681830 DOI: 10.1158/0008-5472.can-16-2346] [Citation(s) in RCA: 100] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Revised: 01/20/2017] [Accepted: 01/20/2017] [Indexed: 02/07/2023]
Abstract
Cancer development is a complex process driven by inherited and acquired molecular and cellular alterations. Prevention is the holy grail of cancer elimination, but making this a reality will take a fundamental rethinking and deep understanding of premalignant biology. In this Perspective, we propose a national concerted effort to create a Precancer Atlas (PCA), integrating multi-omics and immunity - basic tenets of the neoplastic process. The biology of neoplasia caused by germline mutations has led to paradigm-changing precision prevention efforts, including: tumor testing for mismatch repair (MMR) deficiency in Lynch syndrome establishing a new paradigm, combinatorial chemoprevention efficacy in familial adenomatous polyposis (FAP), signal of benefit from imaging-based early detection research in high-germline risk for pancreatic neoplasia, elucidating early ontogeny in BRCA1-mutation carriers leading to an international breast cancer prevention trial, and insights into the intricate germline-somatic-immunity interaction landscape. Emerging genetic and pharmacologic (metformin) disruption of mitochondrial (mt) respiration increased autophagy to prevent cancer in a Li-Fraumeni mouse model (biology reproduced in clinical pilot) and revealed profound influences of subtle changes in mt DNA background variation on obesity, aging, and cancer risk. The elaborate communication between the immune system and neoplasia includes an increasingly complex cellular microenvironment and dynamic interactions between host genetics, environmental factors, and microbes in shaping the immune response. Cancer vaccines are in early murine and clinical precancer studies, building on the recent successes of immunotherapy and HPV vaccine immune prevention. Molecular monitoring in Barrett's esophagus to avoid overdiagnosis/treatment highlights an important PCA theme. Next generation sequencing (NGS) discovered age-related clonal hematopoiesis of indeterminate potential (CHIP). Ultra-deep NGS reports over the past year have redefined the premalignant landscape remarkably identifying tiny clones in the blood of up to 95% of women in their 50s, suggesting that potentially premalignant clones are ubiquitous. Similar data from eyelid skin and peritoneal and uterine lavage fluid provide unprecedented opportunities to dissect the earliest phases of stem/progenitor clonal (and microenvironment) evolution/diversity with new single-cell and liquid biopsy technologies. Cancer mutational signatures reflect exogenous or endogenous processes imprinted over time in precursors. Accelerating the prevention of cancer will require a large-scale, longitudinal effort, leveraging diverse disciplines (from genetics, biochemistry, and immunology to mathematics, computational biology, and engineering), initiatives, technologies, and models in developing an integrated multi-omics and immunity PCA - an immense national resource to interrogate, target, and intercept events that drive oncogenesis. Cancer Res; 77(7); 1510-41. ©2017 AACR.
Collapse
Affiliation(s)
- Avrum Spira
- Department of Medicine, Boston University School of Medicine, Boston, Massachusetts
- Department of Pathology and Bioinformatics, Boston University School of Medicine, Boston, Massachusetts
| | - Matthew B Yurgelun
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Ludmil Alexandrov
- Theoretical Division, Center for Nonlinear Studies, Los Alamos National Laboratory, Los Alamos, New Mexico
| | - Anjana Rao
- Division of Signaling and Gene Expression, La Jolla Institute for Allergy and Immunology, La Jolla, California
| | - Rafael Bejar
- Department of Medicine, Moores Cancer Center, University of California San Diego, La Jolla, California
| | - Kornelia Polyak
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Marios Giannakis
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Ali Shilatifard
- Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Olivera J Finn
- Department of Immunology, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Madhav Dhodapkar
- Department of Hematology and Immunology, Yale Cancer Center, New Haven, Connecticut
| | - Neil E Kay
- Department of Hematology, Mayo Clinic Hospital, Rochester, Minnesota
| | - Esteban Braggio
- Department of Hematology, Mayo Clinic Hospital, Phoenix, Arizona
| | - Eduardo Vilar
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Sarah A Mazzilli
- Department of Medicine, Boston University School of Medicine, Boston, Massachusetts
- Department of Pathology and Bioinformatics, Boston University School of Medicine, Boston, Massachusetts
| | - Timothy R Rebbeck
- Division of Hematology and Oncology, Dana-Farber Cancer Institute and Harvard T.H. Chan School of Public Health, Boston, Massachusetts
| | - Judy E Garber
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Victor E Velculescu
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, Maryland
- Department of Pathology, Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, Maryland
| | - Mary L Disis
- Department of Medicine, Center for Translational Medicine in Women's Health, University of Washington, Seattle, Washington
| | - Douglas C Wallace
- Center for Mitochondrial and Epigenomic Medicine, Children's Hospital of Philadelphia, University of Pennsylvania, Philadelphia, Pennsylvania
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Scott M Lippman
- Department of Medicine, Moores Cancer Center, University of California San Diego, La Jolla, California.
| |
Collapse
|
62
|
Petrelli F, Inno A, Barni S, Ghidini A, Labianca R, Falconi M, Reni M, Cascinu S. Borderline resectable pancreatic cancer: More than an anatomical concept. Dig Liver Dis 2017; 49:223-226. [PMID: 27931968 DOI: 10.1016/j.dld.2016.11.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Revised: 11/14/2016] [Accepted: 11/15/2016] [Indexed: 12/11/2022]
Abstract
Borderline resectable pancreatic cancer (BRPC) accounts for about 10-15% of newly diagnosed pancreatic cancer, and its management requires a skilled multidisciplinary team. The main definition of BRPC refers to resectability, but also a high risk of positive surgical margins and recurrence. This raises questions about the value of surgery and suggests an opportunity to utilize preoperative treatment in this subset of patients. Besides technical borderline resectable disease which is defined on anatomical and radiological criteria, there is also a biological borderline resectable disease which is defined on clinical and biological prognostic factors. Technical borderline resectable disease requires tumor shrinkage with aggressive therapy including modern drug combinations +/- radiotherapy to achieve radical surgery. Biological BRPC needs always an early systemic treatment in order to select the best candidates for subsequent radical surgery. It is important to distinguish between these different clinical scenarios, both in clinical practice and for clinical trials design.
Collapse
Affiliation(s)
| | - Alessandro Inno
- Medical Oncology Unit, Sacro Cuore Don Calabria Hospital, Verona, Italy
| | - Sandro Barni
- Medical Oncology Unit, ASST Bergamo Ovest, Bergamo, Italy
| | | | - Roberto Labianca
- Medical Oncology Unit, ASST Papa Giovanni XXIII Hospital, Bergamo, Italy
| | - Massimo Falconi
- Surgical Department of Pancreas, San Raffaele Hospital, IRCCS, Milano, Italy
| | - Michele Reni
- Medical Oncology Unit, San Raffaele Hospital, IRCCS, Milano, Italy
| | - Stefano Cascinu
- Department of Oncology and Hematology, University of Modena and Reggio Emilia, Modena, Italy
| | | |
Collapse
|
63
|
Laustsen C. Hyperpolarized 13C Magnetic Resonance Treatment Response Monitoring: A New Paradigm for Multiorgan Metabolic Assessment of Pharmacological Interventions? Diabetes 2016; 65:3529-3531. [PMID: 27879402 DOI: 10.2337/dbi16-0055] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Affiliation(s)
- Christoffer Laustsen
- MR Research Centre, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| |
Collapse
|
64
|
Timm KN, Kennedy BWC, Brindle KM. Imaging Tumor Metabolism to Assess Disease Progression and Treatment Response. Clin Cancer Res 2016; 22:5196-5203. [PMID: 27609841 PMCID: PMC5321522 DOI: 10.1158/1078-0432.ccr-16-0159] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Accepted: 08/09/2016] [Indexed: 12/26/2022]
Abstract
Changes in tumor metabolism may accompany disease progression and can occur following treatment, often before there are changes in tumor size. We focus here on imaging methods that can be used to image various aspects of tumor metabolism, with an emphasis on methods that can be used for tumor grading, assessing disease progression, and monitoring treatment response. Clin Cancer Res; 22(21); 5196-203. ©2016 AACR.
Collapse
Affiliation(s)
- Kerstin N Timm
- Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, United Kingdom
| | - Brett W C Kennedy
- Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, United Kingdom
| | - Kevin M Brindle
- Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom.
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
65
|
Sousa CM, Biancur DE, Wang X, Halbrook CJ, Sherman MH, Zhang L, Kremer D, Hwang RF, Witkiewicz AK, Ying H, Asara JM, Evans RM, Cantley LC, Lyssiotis CA, Kimmelman AC. Pancreatic stellate cells support tumour metabolism through autophagic alanine secretion. Nature 2016; 536:479-83. [PMID: 27509858 PMCID: PMC5228623 DOI: 10.1038/nature19084] [Citation(s) in RCA: 827] [Impact Index Per Article: 91.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Accepted: 07/07/2016] [Indexed: 12/17/2022]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is an aggressive disease characterized by an intense fibrotic stromal response and deregulated metabolism. The role of the stroma in PDAC biology is complex and it has been shown to play critical roles that differ depending on the biological context. The stromal reaction also impairs the vasculature, leading to a highly hypoxic, nutrient-poor environment. As such, these tumours must alter how they capture and use nutrients to support their metabolic needs. Here we show that stroma-associated pancreatic stellate cells (PSCs) are critical for PDAC metabolism through the secretion of non-essential amino acids (NEAA). Specifically, we uncover a previously undescribed role for alanine, which outcompetes glucose and glutamine-derived carbon in PDAC to fuel the tricarboxylic acid (TCA) cycle, and thus NEAA and lipid biosynthesis. This shift in fuel source decreases the tumour’s dependence on glucose and serum-derived nutrients, which are limited in the pancreatic tumour microenvironment. Moreover, we demonstrate that alanine secretion by PSCs is dependent on PSC autophagy, a process that is stimulated by cancer cells. Thus, our results demonstrate a novel metabolic interaction between PSCs and cancer cells, in which PSC-derived alanine acts as an alternative carbon source. This finding highlights a previously unappreciated metabolic network within pancreatic tumours in which diverse fuel sources are used to promote growth in an austere tumour microenvironment.
Collapse
|
66
|
Serrao EM, Rodrigues TB, Gallagher FA, Kettunen MI, Kennedy BWC, Vowler SL, Burling KA, Brindle KM. Effects of fasting on serial measurements of hyperpolarized [1-(13) C]pyruvate metabolism in tumors. NMR IN BIOMEDICINE 2016; 29:1048-55. [PMID: 27309986 PMCID: PMC4973679 DOI: 10.1002/nbm.3568] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Revised: 04/12/2016] [Accepted: 05/10/2016] [Indexed: 05/03/2023]
Abstract
Imaging of the metabolism of hyperpolarized [1-(13) C]pyruvate has shown considerable promise in preclinical studies in oncology, particularly for the assessment of early treatment response. The repeatability of measurements of (13) C label exchange between pyruvate and lactate was determined in a murine lymphoma model in fasted and non-fasted animals. The fasted state showed lower intra-individual variability, although the [1-(13) C]lactate/[1-(13) C]pyruvate signal ratio was significantly greater in fasted than in non-fasted mice, which may be explained by the higher tumor lactate concentrations in fasted animals. These results indicate that the fasted state may be preferable for the measurement of (13) C label exchange between pyruvate and lactate, as it reduces the variability and therefore should make it easier to detect the effects of therapy. © 2016 The Authors. NMR in Biomedicine published by John Wiley & Sons Ltd.
Collapse
Affiliation(s)
- Eva M Serrao
- Cancer Research UK Cambridge Institute, University of Cambridge, Li Ka Shing Centre, Cambridge, UK
- Department of Biochemistry, University of Cambridge, Cambridge, UK
| | - Tiago B Rodrigues
- Cancer Research UK Cambridge Institute, University of Cambridge, Li Ka Shing Centre, Cambridge, UK
- Department of Biochemistry, University of Cambridge, Cambridge, UK
| | - Ferdia A Gallagher
- Cancer Research UK Cambridge Institute, University of Cambridge, Li Ka Shing Centre, Cambridge, UK
- Department of Radiology, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK
| | - Mikko I Kettunen
- Cancer Research UK Cambridge Institute, University of Cambridge, Li Ka Shing Centre, Cambridge, UK
- Department of Biochemistry, University of Cambridge, Cambridge, UK
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Brett W C Kennedy
- Cancer Research UK Cambridge Institute, University of Cambridge, Li Ka Shing Centre, Cambridge, UK
- Department of Biochemistry, University of Cambridge, Cambridge, UK
| | - Sarah L Vowler
- Cancer Research UK Cambridge Institute, University of Cambridge, Li Ka Shing Centre, Cambridge, UK
| | - Keith A Burling
- Core Biochemical Assay Laboratory, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | - Kevin M Brindle
- Cancer Research UK Cambridge Institute, University of Cambridge, Li Ka Shing Centre, Cambridge, UK
- Department of Biochemistry, University of Cambridge, Cambridge, UK
| |
Collapse
|
67
|
Serrao EM, Brindle KM. Potential Clinical Roles for Metabolic Imaging with Hyperpolarized [1-(13)C]Pyruvate. Front Oncol 2016; 6:59. [PMID: 27014634 PMCID: PMC4786548 DOI: 10.3389/fonc.2016.00059] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Accepted: 02/28/2016] [Indexed: 01/06/2023] Open
Affiliation(s)
- Eva M. Serrao
- Li Ka Shing Centre, Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, UK
- Department of Biochemistry, University of Cambridge, Cambridge, UK
| | - Kevin M. Brindle
- Li Ka Shing Centre, Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, UK
- Department of Biochemistry, University of Cambridge, Cambridge, UK
| |
Collapse
|
68
|
Braren RF, Siveke JT. Next-generation metabolic imaging in pancreatic cancer. Gut 2016; 65:367-9. [PMID: 26464413 DOI: 10.1136/gutjnl-2015-310518] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2015] [Accepted: 09/22/2015] [Indexed: 12/28/2022]
Affiliation(s)
- Rickmer F Braren
- Institute of Diagnostic and Interventional Radiology, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - Jens T Siveke
- Division of Translational Solid Tumor Oncology, German Cancer Consortium (DKTK), Partner Site University Hospital Essen, Essen, Germany and German Cancer Research Center (DKFZ), Heidelberg, Germany Medizinische Klinik, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| |
Collapse
|