51
|
Systematic evaluation of antimicrobial food preservatives on glucose metabolism and gut microbiota in healthy mice. NPJ Sci Food 2022; 6:42. [PMID: 36100593 PMCID: PMC9470552 DOI: 10.1038/s41538-022-00158-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 08/31/2022] [Indexed: 11/25/2022] Open
Abstract
Certain antimicrobial preservatives (APs) have been shown to perturb gut microbiota. So far, it is not yet fully known that whether similar effects are observable for a more diverse set of APs. It also remains elusive if biogenic APs are superior to synthetic APs in terms of safety. To help fill these knowledge gaps, the effects of eleven commonly used synthetic and biogenic APs on the gut microbiota and glucose metabolism were evaluated in the wild-type healthy mice. Here, we found that APs induced glucose intolerance and perturbed gut microbiota, irrespective of their origin. In addition, biogenic APs are not always safer than synthetic ones. The biogenic AP nisin unexpectedly induced the most significant effects, which might be partially mediated by glucagon-like peptide 1 related glucoregulatory hormones secretion perturbation.
Collapse
|
52
|
Wang S, Li M, Lin H, Wang G, Xu Y, Zhao X, Hu C, Zhang Y, Zheng R, Hu R, Shi L, Du R, Su Q, Wang J, Chen Y, Yu X, Yan L, Wang T, Zhao Z, Liu R, Wang X, Li Q, Qin G, Wan Q, Chen G, Xu M, Dai M, Zhang D, Tang X, Gao Z, Shen F, Luo Z, Qin Y, Chen L, Huo Y, Li Q, Ye Z, Zhang Y, Liu C, Wang Y, Wu S, Yang T, Deng H, Zhao J, Lai S, Mu Y, Chen L, Li D, Xu G, Ning G, Wang W, Bi Y, Lu J. Amino acids, microbiota-related metabolites, and the risk of incident diabetes among normoglycemic Chinese adults: Findings from the 4C study. Cell Rep Med 2022; 3:100727. [PMID: 35998626 PMCID: PMC9512668 DOI: 10.1016/j.xcrm.2022.100727] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 06/16/2022] [Accepted: 07/22/2022] [Indexed: 11/26/2022]
|
53
|
Trimethylamine N-oxide facilitates the progression of atrial fibrillation in rats with type 2 diabetes by aggravating cardiac inflammation and connexin remodeling. J Physiol Biochem 2022; 78:855-867. [PMID: 35962903 DOI: 10.1007/s13105-022-00908-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 06/20/2022] [Indexed: 10/15/2022]
Abstract
Diabetes is an independent risk factor for atrial fibrillation (AF). This study aimed to elucidate the pathophysiology of diabetes-related AF from the perspective of the gut microbial metabolite trimethylamine N-oxide (TMAO). In the present study, male rats received either a normal diet to serve as the control group or a high-fat diet/streptozotocin to induce type 2 diabetes mellitus. Then, diabetic rats were divided into two groups based on the presence or absence of 3,3-dimethyl-1-butanol (DMB, a specific TMAO inhibitor) in drinking water: the diabetic cardiomyopathy (DCM) group and the DCM + DMB group. Eight weeks later, compared with control rats, rats in the DCM group exhibited gut microbiota dysbiosis and systemic TMAO elevation. The inflammatory cytokines IL-1β, IL-6, and TNF-α were markedly increased in the atria of rats in the DCM group. Downregulated expression of connexin 40 and lateralized distribution of connexin 43 were also observed in the atria of DCM rats. AF inducibility was significantly higher in DCM rats than in control rats. Furthermore, DMB treatment effectively ameliorated atrial inflammation and connexin remodeling while markedly reducing plasma TMAO levels. DMB treatment also decreased the vulnerability of diabetic rats to AF. In conclusion, TMAO might promote atrial inflammation and connexin remodeling in the development of diabetes, which may play a key role in mediating diabetes-related AF.
Collapse
|
54
|
Guo W, Zhang Z, Li L, Liang X, Wu Y, Wang X, Ma H, Cheng J, Zhang A, Tang P, Wang CZ, Wan JY, Yao H, Yuan CS. Gut microbiota induces DNA methylation via SCFAs predisposing obesity-prone individuals to diabetes. Pharmacol Res 2022; 182:106355. [PMID: 35842183 DOI: 10.1016/j.phrs.2022.106355] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 07/08/2022] [Accepted: 07/12/2022] [Indexed: 02/06/2023]
Abstract
Obesity-prone (OP) individuals have a significant predisposition to obesity and diabetes. Previously, we have found that OP individuals, despite being normal in weight and BMI, have already exhibited diabetes-related DNA methylation signatures. However, the underlying mechanisms remain obscure. Here we determined the effects of gut microbiota on DNA methylation and investigated the underlying mechanism from microbial-derived short-chain fatty acids (SCFAs). Diabetes-related DNA methylation loci were screened and validated in a new OP cohort. Moreover, the OP group was revealed to have distinct gut microbiota compositions, and fecal microbiota transplantation (FMT) demonstrated the role of gut microbiota in inducing diabetes-related DNA methylations and glucolipid disorders. UPLC-ESI-MS/MS analysis indicated a significantly lower level of total fecal SCFAs in the OP group. The gut microbiota from OP subjects yielded markedly decreased total SCFAs, while notably enriched propionate. Additionally, propionate was also identified by variable importance in projection (VIP) score as the most symbolic SCFAs of the OP group. Further cellular experiments verified that propionate could induce hypermethylation at locus cg26345888 and subsequently inhibit the expression of the target gene DAB1, which was crucially associated with clinical vitamin D deficiency and thus may affect the development and progression of diabetes. In conclusion, our study revealed that gut microbiota-derived propionate induces specific DNA methylation, thus predisposing OP individuals to diabetes. The findings partially illuminate the mechanisms of diabetes susceptibility in OP populations, implying gut microbiota and SCFAs may serve as promising targets both for clinical treatment and medication development of diabetes.
Collapse
Affiliation(s)
- Wenqian Guo
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China; National Institute of TCM Constitution and Preventive Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Zengliang Zhang
- Traditional Chinese Medicine College, Inner Mongolia Medical University, Inner Mongolia 010110, China
| | - Lingru Li
- National Institute of TCM Constitution and Preventive Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Xue Liang
- National Institute of TCM Constitution and Preventive Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Yuqi Wu
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China; National Institute of TCM Constitution and Preventive Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Xiaolu Wang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China; National Institute of TCM Constitution and Preventive Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Han Ma
- National Institute of TCM Constitution and Preventive Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Jinjun Cheng
- National Institute of TCM Constitution and Preventive Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Anqi Zhang
- National Institute of TCM Constitution and Preventive Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Ping Tang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China; National Institute of TCM Constitution and Preventive Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Chong-Zhi Wang
- Tang Center for Herbal Medicine Research, The University of Chicago, Chicago, IL 60637, USA; Department of Anesthesia and Critical Care, The University of Chicago, Chicago, IL 60637, USA
| | - Jin-Yi Wan
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China; National Institute of TCM Constitution and Preventive Medicine, Beijing University of Chinese Medicine, Beijing 100029, China.
| | - Haiqiang Yao
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China; National Institute of TCM Constitution and Preventive Medicine, Beijing University of Chinese Medicine, Beijing 100029, China.
| | - Chun-Su Yuan
- Tang Center for Herbal Medicine Research, The University of Chicago, Chicago, IL 60637, USA; Department of Anesthesia and Critical Care, The University of Chicago, Chicago, IL 60637, USA
| |
Collapse
|
55
|
Qi L. Nutrition for precision health: The time is now. Obesity (Silver Spring) 2022; 30:1335-1344. [PMID: 35785484 DOI: 10.1002/oby.23448] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 03/13/2022] [Accepted: 03/21/2022] [Indexed: 11/11/2022]
Abstract
Precision nutrition has emerged as a boiling area of nutrition research, with a particular focus on revealing the individual variability in response to diets that is determined mainly by the complex interactions of dietary factors with the multi-tiered "omics" makeups. Reproducible findings from the observational studies and diet intervention trials have lent preliminary but consistent evidence to support the fundamental role of gene-diet interactions in determining the individual variability in health outcomes including obesity and weight loss. Recent investigations suggest that the abundance and diversity of the gut microbiome may also modify the dietary effects; however, considerable instability in the results from the microbiome research has been noted. In addition, growing studies suggest that a complicated multiomics algorithm would be developed by incorporating the genome, epigenome, metabolome, proteome, and microbiome in predicting the individual variability in response to diets. Moreover, precision nutrition would also scrutinize the role of biological (circadian) rhythm in determining the individual variability of dietary effects. The evidence gathered from precision nutrition research will be the basis for constructing precision health dietary recommendations, which hold great promise to help individuals and their health care providers create precise and effective diet plans for precision health in the future.
Collapse
Affiliation(s)
- Lu Qi
- Department of Epidemiology, School of Public Health and Tropical Medicine, Tulane University, New Orleans, Louisiana, USA
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
| |
Collapse
|
56
|
Li P, Gao M, Song B, Liu Y, Yan S, Lei J, Zhao Y, Li G, Mahmood T, Lv Z, Hu Y, Guo Y. Fecal Microbiota Transplantation Reshapes the Physiological Function of the Intestine in Antibiotic-Treated Specific Pathogen-Free Birds. Front Immunol 2022; 13:884615. [PMID: 35812374 PMCID: PMC9261465 DOI: 10.3389/fimmu.2022.884615] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Accepted: 05/18/2022] [Indexed: 11/13/2022] Open
Abstract
The topic about the interactions between host and intestinal microbiota has already caught the attention of many scholars. However, there is still a lack of systematic reports on the relationship between the intestinal flora and intestinal physiology of birds. Thus, this study was designed to investigate it. Antibiotic-treated specific pathogen-free (SPF) bird were used to construct an intestinal bacteria-free bird (IBF) model, and then, the differences in intestinal absorption, barrier, immune, antioxidant and metabolic functions between IBF and bacteria-bearing birds were studied. To gain further insight, the whole intestinal flora of bacteria-bearing birds was transplanted into the intestines of IBF birds to study the remodeling effect of fecal microbiota transplantation (FMT) on the intestinal physiology of IBF birds. The results showed that compared with bacteria-bearing birds, IBF birds had a lighter body weight and weaker intestinal absorption, antioxidant, barrier, immune and metabolic functions. Interestingly, FMT contributed to reshaping the abovementioned physiological functions of the intestines of IBF birds. In conclusion, the intestinal flora plays an important role in regulating the physiological functions of the intestine.
Collapse
|
57
|
Jardon KM, Canfora EE, Goossens GH, Blaak EE. Dietary macronutrients and the gut microbiome: a precision nutrition approach to improve cardiometabolic health. Gut 2022; 71:1214-1226. [PMID: 35135841 PMCID: PMC9120404 DOI: 10.1136/gutjnl-2020-323715] [Citation(s) in RCA: 74] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Accepted: 01/17/2022] [Indexed: 12/12/2022]
Abstract
Accumulating evidence indicates that the gut microbiome is an important regulator of body weight, glucose and lipid metabolism, and inflammatory processes, and may thereby play a key role in the aetiology of obesity, insulin resistance and type 2 diabetes. Interindividual responsiveness to specific dietary interventions may be partially determined by differences in baseline gut microbiota composition and functionality between individuals with distinct metabolic phenotypes. However, the relationship between an individual's diet, gut microbiome and host metabolic phenotype is multidirectional and complex, yielding a challenge for practical implementation of targeted dietary guidelines. In this review, we discuss the latest research describing interactions between dietary composition, the gut microbiome and host metabolism. Furthermore, we describe how this knowledge can be integrated to develop precision-based nutritional strategies to improve bodyweight control and metabolic health in humans. Specifically, we will address that (1) insight in the role of the baseline gut microbial and metabolic phenotype in dietary intervention response may provide leads for precision-based nutritional strategies; that (2) the balance between carbohydrate and protein fermentation by the gut microbiota, as well as the site of fermentation in the colon, seems important determinants of host metabolism; and that (3) 'big data', including multiple omics and advanced modelling, are of undeniable importance in predicting (non-)response to dietary interventions. Clearly, detailed metabolic and microbial phenotyping in humans is necessary to better understand the link between diet, the gut microbiome and host metabolism, which is required to develop targeted dietary strategies and guidelines for different subgroups of the population.
Collapse
Affiliation(s)
- Kelly M Jardon
- Human Biology, School of Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht University Medical Center+, Maastricht, The Netherlands,TiFN, Wageningen, The Netherlands
| | - Emanuel E Canfora
- Human Biology, School of Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht University Medical Center+, Maastricht, The Netherlands
| | - Gijs H Goossens
- Human Biology, School of Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht University Medical Center+, Maastricht, The Netherlands
| | - Ellen E Blaak
- Human Biology, School of Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht University Medical Center+, Maastricht, The Netherlands .,TiFN, Wageningen, The Netherlands
| |
Collapse
|
58
|
Yao J, Chen Y, Xu M. The critical role of short-chain fatty acids in health and disease: A subtle focus on cardiovascular disease-NLRP3 inflammasome-angiogenesis axis. Clin Immunol 2022; 238:109013. [DOI: 10.1016/j.clim.2022.109013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 04/06/2022] [Accepted: 04/09/2022] [Indexed: 12/13/2022]
|
59
|
Li J, Li Y, Ivey KL, Wang DD, Wilkinson JE, Franke A, Lee KH, Chan AT, Huttenhower C, Hu FB, Rimm EB, Sun Q. Interplay between diet and gut microbiome, and circulating concentrations of trimethylamine N-oxide: findings from a longitudinal cohort of US men. Gut 2022; 71:724-733. [PMID: 33926968 PMCID: PMC8553812 DOI: 10.1136/gutjnl-2020-322473] [Citation(s) in RCA: 70] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 04/15/2021] [Accepted: 04/18/2021] [Indexed: 12/15/2022]
Abstract
OBJECTIVES Gut-produced trimethylamine N-oxide (TMAO) is postulated as a possible link between red meat intake and poor cardiometabolic health. We investigated whether gut microbiome could modify associations of dietary precursors with TMAO concentrations and cardiometabolic risk markers among free-living individuals. DESIGN We collected up to two pairs of faecal samples (n=925) and two blood samples (n=473), 6 months apart, from 307 healthy men in the Men's Lifestyle Validation Study. Diet was assessed repeatedly using food-frequency questionnaires and diet records. We profiled faecal metagenome and metatranscriptome using shotgun sequencing and identified microbial taxonomic and functional features. RESULTS TMAO concentrations were associated with the overall microbial compositions (permutational analysis of variance (PERMANOVA) test p=0.001). Multivariable taxa-wide association analysis identified 10 bacterial species whose abundance was significantly associated with plasma TMAO concentrations (false discovery rate <0.05). Higher habitual intake of red meat and choline was significantly associated with higher TMAO concentrations among participants who were microbial TMAO-producers (p<0.05), as characterised based on four abundant TMAO-predicting species, but not among other participants (for red meat, P-interaction=0.003; for choline, P-interaction=0.03). Among abundant TMAO-predicting species, Alistipes shahii significantly strengthened the positive association between red meat intake and HbA1c levels (P-interaction=0.01). Secondary analyses revealed that some functional features, including choline trimethylamine-lyase activating enzymes, were associated with TMAO concentrations. CONCLUSION We identified microbial taxa that were associated with TMAO concentrations and modified the associations of red meat intake with TMAO concentrations and cardiometabolic risk markers. Our data underscore the interplay between diet and gut microbiome in producing potentially bioactive metabolites that may modulate cardiometabolic health.
Collapse
Affiliation(s)
- Jun Li
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA,Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA
| | - Yanping Li
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA
| | - Kerry L. Ivey
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA,Microbiome and Host Health Program, South Australian Health and Medical Research Institute, North Terrace, Adelaide, SA 5000, Australia
| | - Dong D. Wang
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA
| | - Jeremy E. Wilkinson
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA
| | - Adrian Franke
- Analytical Biochemistry Shared Resource, University of Hawaii Cancer Center, Honolulu, HI
| | - Kyu Ha Lee
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA,Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA,Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA
| | - Andrew T. Chan
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA
| | - Curtis Huttenhower
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA,Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA,Broad Institute of MIT and Harvard, Cambridge, MA
| | - Frank B. Hu
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA,Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA,Channing Division of Network Medicine, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA
| | - Eric B. Rimm
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA,Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA,Channing Division of Network Medicine, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA
| | - Qi Sun
- Nutrition, Harvard University T H Chan School of Public Health, Boston, Massachusetts, USA .,Epidemiology, Harvard University T H Chan School of Public Health, Boston, Massachusetts, USA.,Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts, USA
| |
Collapse
|
60
|
Sowah SA, Milanese A, Schübel R, Wirbel J, Kartal E, Johnson TS, Hirche F, Grafetstätter M, Nonnenmacher T, Kirsten R, López-Nogueroles M, Lahoz A, Schwarz KV, Okun JG, Ulrich CM, Nattenmüller J, von Eckardstein A, Müller D, Stangl GI, Kaaks R, Kühn T, Zeller G. Calorie restriction improves metabolic state independently of gut microbiome composition: a randomized dietary intervention trial. Genome Med 2022; 14:30. [PMID: 35287713 PMCID: PMC8919571 DOI: 10.1186/s13073-022-01030-0] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 02/14/2022] [Indexed: 12/12/2022] Open
Abstract
Background The gut microbiota has been suggested to play a significant role in the development of overweight and obesity. However, the effects of calorie restriction on gut microbiota of overweight and obese adults, especially over longer durations, are largely unexplored. Methods Here, we longitudinally analyzed the effects of intermittent calorie restriction (ICR) operationalized as the 5:2 diet versus continuous calorie restriction (CCR) on fecal microbiota of 147 overweight or obese adults in a 50-week parallel-arm randomized controlled trial, the HELENA Trial. The primary outcome of the trial was the differential effects of ICR versus CCR on gene expression in subcutaneous adipose tissue. Changes in the gut microbiome, which are the focus of this publication, were defined as exploratory endpoint of the trial. The trial comprised a 12-week intervention period, a 12-week maintenance period, and a final follow-up period of 26 weeks. Results Both diets resulted in ~5% weight loss. However, except for Lactobacillales being enriched after ICR, post-intervention microbiome composition did not significantly differ between groups. Overall weight loss was associated with significant metabolic improvements, but not with changes in the gut microbiome. Nonetheless, the abundance of the Dorea genus at baseline was moderately predictive of subsequent weight loss (AUROC of 0.74 for distinguishing the highest versus lowest weight loss quartiles). Despite the lack of consistent intervention effects on microbiome composition, significant study group-independent co-variation between gut bacterial families and metabolic biomarkers, anthropometric measures, and dietary composition was detectable. Our analysis in particular revealed associations between insulin sensitivity (HOMA-IR) and Akkermansiaceae, Christensenellaceae, and Tanerellaceae. It also suggests the possibility of a beneficial modulation of the latter two intestinal taxa by a diet high in vegetables and fiber, and low in processed meat. Conclusions Overall, our results suggest that the gut microbiome remains stable and highly individual-specific under dietary calorie restriction. Trial registration The trial, including the present microbiome component, was prospectively registered at ClinicalTrials.govNCT02449148 on May 20, 2015. Supplementary Information The online version contains supplementary material available at 10.1186/s13073-022-01030-0.
Collapse
Affiliation(s)
- Solomon A Sowah
- German Cancer Research Center (DKFZ), Division of Cancer Epidemiology, Heidelberg, Germany.,Medical Faculty, Heidelberg University, Heidelberg, Germany.,European Molecular Biology Laboratory (EMBL), Structural and Computational Biology Unit, Heidelberg, Germany
| | - Alessio Milanese
- European Molecular Biology Laboratory (EMBL), Structural and Computational Biology Unit, Heidelberg, Germany
| | - Ruth Schübel
- German Cancer Research Center (DKFZ), Division of Cancer Epidemiology, Heidelberg, Germany
| | - Jakob Wirbel
- European Molecular Biology Laboratory (EMBL), Structural and Computational Biology Unit, Heidelberg, Germany
| | - Ece Kartal
- European Molecular Biology Laboratory (EMBL), Structural and Computational Biology Unit, Heidelberg, Germany.,Molecular Medicine Partnership Unit, Heidelberg, Germany
| | - Theron S Johnson
- German Cancer Research Center (DKFZ), Division of Cancer Epidemiology, Heidelberg, Germany
| | - Frank Hirche
- Institute of Agricultural and Nutritional Sciences, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Mirja Grafetstätter
- German Cancer Research Center (DKFZ), Division of Cancer Epidemiology, Heidelberg, Germany
| | - Tobias Nonnenmacher
- Heidelberg University Hospital, Diagnostic and Interventional Radiology, Heidelberg, Germany
| | - Romy Kirsten
- Biobank of the National Center for Tumor Diseases (NCT) Heidelberg, Heidelberg, Germany
| | - Marina López-Nogueroles
- Analytical Unit, Biomarkers and Precision Medicine Unit, Health Research Institute Hospital La Fe, Valencia, Spain
| | - Agustín Lahoz
- Analytical Unit, Biomarkers and Precision Medicine Unit, Health Research Institute Hospital La Fe, Valencia, Spain
| | - Kathrin V Schwarz
- Department of General Paediatrics, Division of Neuropediatrics and Metabolic Medicine, University Hospital Heidelberg, Dietmar-Hopp Metabolic Center, Heidelberg, Germany
| | - Jürgen G Okun
- Department of General Paediatrics, Division of Neuropediatrics and Metabolic Medicine, University Hospital Heidelberg, Dietmar-Hopp Metabolic Center, Heidelberg, Germany
| | - Cornelia M Ulrich
- Huntsman Cancer Institute and Department of Population Health Sciences, University of Utah, Salt Lake City, UT, USA
| | - Johanna Nattenmüller
- Heidelberg University Hospital, Diagnostic and Interventional Radiology, Heidelberg, Germany
| | | | - Daniel Müller
- Institute of Clinical Chemistry (IGFS), University Hospital Zurich, Zurich, Switzerland
| | - Gabriele I Stangl
- Institute of Agricultural and Nutritional Sciences, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Rudolf Kaaks
- German Cancer Research Center (DKFZ), Division of Cancer Epidemiology, Heidelberg, Germany
| | - Tilman Kühn
- German Cancer Research Center (DKFZ), Division of Cancer Epidemiology, Heidelberg, Germany. .,Institute for Global Food Security, Queen's University Belfast, Belfast, Northern Ireland, UK. .,Heidelberg Institute of Global Health (HIGH), Faculty of Medicine and University Hospital, Heidelberg, Germany.
| | - Georg Zeller
- European Molecular Biology Laboratory (EMBL), Structural and Computational Biology Unit, Heidelberg, Germany.
| |
Collapse
|
61
|
Kim HW, Lee DC, Rhee HI. Production of α-glucosidase inhibitor in the intestines by Bacillus licheniformis. Enzyme Microb Technol 2022; 158:110032. [DOI: 10.1016/j.enzmictec.2022.110032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 03/15/2022] [Accepted: 03/17/2022] [Indexed: 11/03/2022]
|
62
|
Ding Q, Hao Q, Zhang Q, Yang Y, Olsen RE, Ringø E, Ran C, Zhang Z, Zhou Z. DHA Suppresses Hepatic Lipid Accumulation via Cyclin D1 in Zebrafish. Front Nutr 2022; 8:797510. [PMID: 35145984 PMCID: PMC8823328 DOI: 10.3389/fnut.2021.797510] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 12/20/2021] [Indexed: 12/19/2022] Open
Abstract
With the widespread use of high-fat diets (HFDs) in aquaculture, fatty livers are frequently observed in many fish species. The aim of this study was to investigate if docosahexaenoic acid (DHA) could be used to reduce the fatty liver in zebrafish generated by a 16% soybean oil-HFD over 2 weeks of feeding. The DHA was added to iso-lipidic HFD at 0.5, 1.0, and 2.0% of diet. Supplementation of DHA reduced growth and feed efficiency in a dose dependent manner being lowest in the HFDHA2.0 group. Hepatic triglyceride (TG) in zebrafish fed 0.5% DHA-supplemented HFD (HFDHA0.5) was significantly lower than in the HFD control. Transcriptional analyses of hepatic genes showed that lipid synthesis was reduced, while fatty acid β-oxidation was increased in the HFDHA0.5 group. Furthermore, the expression of Cyclin D1 in liver of zebrafish fed HFDHA0.5 was significantly reduced compared to that in fish fed HFD. In zebrafish liver cells, Cyclin D1 knockdown and blocking of Cyclin D1-CDK4 signal led to inhibited lipid biosynthesis and elevated lipid β-oxidation. Besides, DHA-supplemented diet resulted in a rich of Proteobacteria and Actinobacteriota in gut microbiota, which promoted lipid β-oxidation but did not alter the expression of Cyclin D1 in germ-free zebrafish model. In conclusion, DHA not only inhibits hepatic lipid synthesis and promotes lipid β-oxidation via Cyclin D1 inhibition, but also facilitates lipid β-oxidation via gut microbiota. This study reveals the lipid-lowering effects of DHA and highlights the importance of fatty acid composition when formulating fish HFD.
Collapse
Affiliation(s)
- Qianwen Ding
- China-Norway Joint Lab on Fish Gastrointestinal Microbiota, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing, China
- Norway-China Joint Lab on Fish Gastrointestinal Microbiota, Institute of Biology, Norwegian University of Science and Technology, Trondheim, Norway
| | - Qiang Hao
- China-Norway Joint Lab on Fish Gastrointestinal Microbiota, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Qingshuang Zhang
- China-Norway Joint Lab on Fish Gastrointestinal Microbiota, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yalin Yang
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Rolf Erik Olsen
- Norway-China Joint Lab on Fish Gastrointestinal Microbiota, Institute of Biology, Norwegian University of Science and Technology, Trondheim, Norway
| | - Einar Ringø
- Norway-China Joint Lab on Fish Gastrointestinal Microbiota, Institute of Biology, Norwegian University of Science and Technology, Trondheim, Norway
| | - Chao Ran
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Zhen Zhang
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing, China
- *Correspondence: Zhen Zhang
| | - Zhigang Zhou
- China-Norway Joint Lab on Fish Gastrointestinal Microbiota, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing, China
- Zhigang Zhou
| |
Collapse
|
63
|
The Influence of Animal- or Plant-Based Diets on Blood and Urine Trimethylamine-N-Oxide (TMAO) Levels in Humans. Curr Nutr Rep 2022; 11:56-68. [PMID: 34990005 DOI: 10.1007/s13668-021-00387-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/30/2021] [Indexed: 10/19/2022]
Abstract
PURPOSE OF REVIEW The aim of the review was to evaluate which diets are associated with higher TMAO levels. RECENT FINDINGS Several studies have shown that plasma and urinary levels of trimethylamine N-oxide (TMAO) are a reliable indicator of cardiovascular disease risk. Diet certainly has a strong influence on TMAO levels, but there is still uncertainty about which diet is the most effective in reducing this risk factor. PubMed, Web of Science and Scopus were searched for studies that were published up until July 1, 2021 using specific keywords. In total, 447 studies were evaluated, of which papers on individual foods or supplements, or conducted in children, in vitro or in animal model studies were excluded. Twenty-five studies were included in this review. Three studies showed that caloric restriction and (visceral) weight loss improve TMAO levels. Six out of eight studies revealed beneficial effects of plant-based diets on plasma or urinary TMAO concentrations. Most of the studies demonstrated that a diet high in protein, particularly of animal origin, such as diets rich in fish or red meat, have negative effects on TMAO levels. Most studies that have evaluated the relationship between diet and plasma or urinary concentrations of TMAO seem to indicate that plant-based diets (Mediterranean, vegetarian and vegan) are effective in improving TMAO levels, while animal-based diets appear to have the opposite effect. Further long-term studies are needed to assess whether vegetarian or vegan diets are more effective than the Mediterranean diet in reducing TMAO levels.
Collapse
|
64
|
Liu D, Wang J, Zeng H, Zhou F, Wen B, Zhang X, Luo Y, Wu W, Huang J, Liu Z. The metabolic regulation of Fuzhuan brick tea in high-fat diet-induced obese mice and the potential contribution of gut microbiota. Food Funct 2022; 13:356-374. [PMID: 34904994 DOI: 10.1039/d1fo02181h] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
This study investigated the metabolic effects of Fuzhuan brick tea (FBT) in high-fat diet (HFD)-induced obese mice and the potential contribution of gut microbiota. The results showed that FBT ameliorated the HFD-induced glycerophospholipid metabolic aberrance, specifically increased the serum levels of phosphatidylcholines (PCs), lysophosphatidylcholines (LysoPCs), and the ratio of PC to phosphatidylethanolamines (PE). Besides, FBT increased the serum level of gut microbiota-derived aryl hydrocarbon receptor (AhR) ligand, 3-indole propionic acid, as well as the relative abundance of intestinal AhR-ligand producing bacteria such as Clostridiaceae, Bacteroidales_S24-7_group, and Lactobacillaceae. However, the metabolic benefits of FBT were weakened when the gut microbiota were depleted by antibiotic treatment, thereby suggesting that gut microbiota was required for FBT to regulate glycerophospholipid metabolism. Indeed, the metabolites regulated by FBT were significantly correlated with the AhR-ligand producing bacteria. The KEGG pathway enrichment analysis and expressions of AhR target genes indicated that FBT would improve the glycerophospholipid metabolism via the AhR-Pemt signal axis, in which the gut microbiota and their metabolites played pivotal mediators. Overall, FBT could be a functional beverage to improve HFD-induced metabolic disorders in a gut microbiota dependent manner.
Collapse
Affiliation(s)
- Dongmin Liu
- Changsha University of Science & Technology, Changsha 410114, China.,Key Laboratory of Ministry of Education for Tea Science, Hunan Agricultural University, Changsha 410128, China. .,National Research Center of Engineering Technology for Utilization of Botanical Functional Ingredients, Changsha 410128, China.
| | - Jianhui Wang
- Changsha University of Science & Technology, Changsha 410114, China
| | - Hongliang Zeng
- Research Institute of Chinese Medicine, Hunan Academy of Chinese Medicine, Changsha, Hunan 410013, China
| | - Fang Zhou
- Key Laboratory of Ministry of Education for Tea Science, Hunan Agricultural University, Changsha 410128, China. .,National Research Center of Engineering Technology for Utilization of Botanical Functional Ingredients, Changsha 410128, China.
| | - Beibei Wen
- Key Laboratory of Ministry of Education for Tea Science, Hunan Agricultural University, Changsha 410128, China. .,National Research Center of Engineering Technology for Utilization of Botanical Functional Ingredients, Changsha 410128, China.
| | - Xiangna Zhang
- Key Laboratory of Ministry of Education for Tea Science, Hunan Agricultural University, Changsha 410128, China. .,National Research Center of Engineering Technology for Utilization of Botanical Functional Ingredients, Changsha 410128, China.
| | - Yong Luo
- Key Laboratory of Ministry of Education for Tea Science, Hunan Agricultural University, Changsha 410128, China. .,National Research Center of Engineering Technology for Utilization of Botanical Functional Ingredients, Changsha 410128, China.
| | - Wenliang Wu
- Key Laboratory of Ministry of Education for Tea Science, Hunan Agricultural University, Changsha 410128, China. .,National Research Center of Engineering Technology for Utilization of Botanical Functional Ingredients, Changsha 410128, China.
| | - Jianan Huang
- Key Laboratory of Ministry of Education for Tea Science, Hunan Agricultural University, Changsha 410128, China. .,National Research Center of Engineering Technology for Utilization of Botanical Functional Ingredients, Changsha 410128, China.
| | - Zhonghua Liu
- Key Laboratory of Ministry of Education for Tea Science, Hunan Agricultural University, Changsha 410128, China. .,National Research Center of Engineering Technology for Utilization of Botanical Functional Ingredients, Changsha 410128, China.
| |
Collapse
|
65
|
Xu N, Wan J, Wang C, Liu J, Qian C, Tan H. Increased Serum Trimethylamine N-Oxide Level in Type 2 Diabetic Patients with Mild Cognitive Impairment. Diabetes Metab Syndr Obes 2022; 15:2197-2205. [PMID: 35923251 PMCID: PMC9343234 DOI: 10.2147/dmso.s370206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Accepted: 07/07/2022] [Indexed: 11/23/2022] Open
Abstract
PURPOSE Trimethylamine N-oxide (TMAO) is a metabolite of phosphatidylcholine in red meat and other diets, which is associated with cardiovascular and other diseases. The aim of this study is to evaluate the associations of serum TMAO with mild cognitive impairment (MCI) in the Chinese type 2 diabetes mellitus (T2DM) population. MATERIALS AND METHODS A total of 253 hospitalized T2DM patients and 150 healthy controls were included in this cross-sectional study. Montreal Cognitive Assessment (MoCA) assessed the cognition function, and the 253 T2DM patients were divided into 74 subjects with MCI and 179 with non-MCI. Demographic data and biochemical test results were evaluated. Serum TMAO level was measured by high-performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS). RESULTS A higher serum TMAO level was observed in T2DM patients compared with the healthy controls (P < 0.001). Among all T2DM patients, the MCI group (n = 74) showed higher serum TMAO levels than the non-MCI group. Spearman correlation test showed that TMAO levels were significantly positively correlated with age (r = 0.147, P = 0.019), body mass index (BMI) (r = 0.153, P = 0.015), diabetes duration (r = 0.160, P = 0.011), HbA1c (r = 0.138, P = 0.029), triglyceride (TG) (r = 0.138, P = 0.029), creatinine (r = 0.184, p = 0.003), hs-CRP (r = 0.243, P < 0.001), and were negatively correlated with HDL-C (r = -0.144, P = 0.022), BDNF (r = -0.165, p = 0.009), and MoCA (r = -0.386, P < 0.001) score (all P < 0.05). Multivariable Logistic regression identified high serum TMAO level as a significant independent factor of MCI in the T2DM patients (OR = 1.404, 95% CI = 1.255-1.571; P < 0.001). CONCLUSION Our study showed that T2DM patients with MCI have elevated serum TMAO levels.
Collapse
Affiliation(s)
- Nongzhang Xu
- Department of Pharmacy, Shanghai University of Medicine and Health Science Affiliated Zhoupu Hospital, Shanghai, People’s Republic of China
| | - Jianwei Wan
- Department of Pharmacy, Shanghai University of Medicine and Health Science Affiliated Zhoupu Hospital, Shanghai, People’s Republic of China
| | - Cuihong Wang
- Department of Pharmacy, Shanghai University of Medicine and Health Science Affiliated Zhoupu Hospital, Shanghai, People’s Republic of China
| | - Jiatao Liu
- Department of Oncology, the First Affiliated Hospital of Anhui Medical University, Hefei, People’s Republic of China
| | - Chenqai Qian
- Department of Pharmacy, Shanghai University of Medicine and Health Science Affiliated Zhoupu Hospital, Shanghai, People’s Republic of China
| | - Hongyang Tan
- Clinical Research Center for Mental Disorders, Chinese-German Institute of Mental Health Shanghai Pudong New Area Mental Health Center, School of Medicine, Tongji University, Shanghai, People’s Republic of China
- Correspondence: Hongyang Tan, Clinical Research Center for Mental Disorders, Chinese-German Institute of Mental Health, Shanghai Pudong New Area Mental Health Center, School of Medicine, Tongji University, Shanghai, People’s Republic of China, Tel +86-18321133996, Email
| |
Collapse
|
66
|
Liu L, Zhang J, Cheng Y, Zhu M, Xiao Z, Ruan G, Wei Y. Gut microbiota: A new target for T2DM prevention and treatment. Front Endocrinol (Lausanne) 2022; 13:958218. [PMID: 36034447 PMCID: PMC9402911 DOI: 10.3389/fendo.2022.958218] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 07/22/2022] [Indexed: 12/12/2022] Open
Abstract
Type 2 diabetes mellitus (T2DM), one of the fastest growing metabolic diseases, has been characterized by metabolic disorders including hyperglycemia, hyperlipidemia and insulin resistance (IR). In recent years, T2DM has become the fastest growing metabolic disease in the world. Studies have indicated that patients with T2DM are often associated with intestinal flora disorders and dysfunction involving multiple organs. Metabolites of the intestinal flora, such as bile acids (BAs), short-chain fatty acids (SCFAs) and amino acids (AAs)may influence to some extent the decreased insulin sensitivity associated with T2DM dysfunction and regulate metabolic as well as immune homeostasis. In this paper, we review the changes in the gut flora in T2DM and the mechanisms by which the gut microbiota modulates metabolites affecting T2DM, which may provide a basis for the early identification of T2DM-susceptible individuals and guide targeted interventions. Finally, we also highlight gut microecological therapeutic strategies focused on shaping the gut flora to inform the improvement of T2DM progression.
Collapse
Affiliation(s)
- Lulu Liu
- Department of Gastroenterology, Chongqing Key Laboratory of Digestive Malignancies, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, China
- Department of Plastic and Cosmetic Surgery, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Jiheng Zhang
- Department of Plastic and Cosmetic Surgery, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Yi Cheng
- Department of Gastroenterology, Chongqing Key Laboratory of Digestive Malignancies, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Meng Zhu
- Department of Plastic and Cosmetic Surgery, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Zhifeng Xiao
- Department of Gastroenterology, Chongqing Key Laboratory of Digestive Malignancies, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Guangcong Ruan
- Department of Gastroenterology, Chongqing Key Laboratory of Digestive Malignancies, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, China
- *Correspondence: Yanling Wei, ; Guangcong Ruan,
| | - Yanling Wei
- Department of Gastroenterology, Chongqing Key Laboratory of Digestive Malignancies, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, China
- *Correspondence: Yanling Wei, ; Guangcong Ruan,
| |
Collapse
|
67
|
Li S, Zhou L, Zhang Q, Yu M, Xiao X. Genistein improves glucose metabolism and promotes adipose tissue browning through modulating gut microbiota in mice. Food Funct 2022; 13:11715-11732. [DOI: 10.1039/d2fo01973f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Genistein improves glucose metabolism and promotes adipose tissue browning through modulating gut microbiota in mice.
Collapse
Affiliation(s)
- Shunhua Li
- Key Laboratory of Endocrinology, Ministry of Health, Department of Endocrinology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Liyuan Zhou
- Key Laboratory of Endocrinology, Ministry of Health, Department of Endocrinology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Qian Zhang
- Key Laboratory of Endocrinology, Ministry of Health, Department of Endocrinology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Miao Yu
- Key Laboratory of Endocrinology, Ministry of Health, Department of Endocrinology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Xinhua Xiao
- Key Laboratory of Endocrinology, Ministry of Health, Department of Endocrinology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
68
|
Zeng Q, Zhao M, Wang F, Li Y, Li H, Zheng J, Chen X, Zhao X, Ji L, Gao X, Liu C, Wang Y, Cheng S, Xu J, Pan B, Sun J, Li Y, Li D, He Y, Zheng L. Integrating Choline and Specific Intestinal Microbiota to Classify Type 2 Diabetes in Adults: A Machine Learning Based Metagenomics Study. Front Endocrinol (Lausanne) 2022; 13:906310. [PMID: 35832425 PMCID: PMC9271784 DOI: 10.3389/fendo.2022.906310] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 05/13/2022] [Indexed: 12/12/2022] Open
Abstract
Emerging evidence is examining the precise role of intestinal microbiota in the pathogenesis of type 2 diabetes. The aim of this study was to investigate the association of intestinal microbiota and microbiota-generated metabolites with glucose metabolism systematically in a large cross-sectional study in China. 1160 subjects were divided into three groups based on their glucose level: normal glucose group (n=504), prediabetes group (n=394), and diabetes group (n=262). Plasma concentrations of TMAO, choline, betaine, and carnitine were measured. Intestinal microbiota was measured in a subgroup of 161 controls, 144 prediabetes and 56 diabetes by using metagenomics sequencing. We identified that plasma choline [Per SD of log-transformed change: odds ratio 1.36 (95 confidence interval 1.16, 1.58)] was positively, while betaine [0.77 (0.66, 0.89)] was negatively associated with diabetes, independently of TMAO. Individuals with diabetes could be accurately distinguished from controls by integrating data on choline, and certain microbiota species, as well as traditional risk factors (AUC=0.971). KOs associated with the carbohydrate metabolism pathway were enhanced in individuals with high choline level. The functional shift in the carbohydrate metabolism pathway in high choline group was driven by species Ruminococcus lactaris, Coprococcus catus and Prevotella copri. We demonstrated the potential ability for classifying diabetic population by choline and specific species, and provided a novel insight of choline metabolism linking the microbiota to impaired glucose metabolism and diabetes.
Collapse
Affiliation(s)
- Qiang Zeng
- Health Management Institute, the Second Medical Center & National Clinical Research Center for Geriatric Diseases, Chinese People's Liberation Army General Hospital, Beijing, China
| | - Mingming Zhao
- China National Clinical Research Center for Neurological Diseases, Tiantan Hospital, Advanced Innovation Center for Human Brain Protection, The Capital Medical University, Beijing, China
- The Institute of Cardiovascular Sciences and Institute of Systems Biomedicine, School of Basic Medical Sciences, Peking University Health Science Center, Key Laboratory of Molecular Cardiovascular Science of Ministry of Education, Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides of Ministry of Health, Beijing Key Laboratory of Cardiovascular Receptors Research, Beijing, China
| | - Fei Wang
- Health Management Institute, the Second Medical Center & National Clinical Research Center for Geriatric Diseases, Chinese People's Liberation Army General Hospital, Beijing, China
| | - Yanping Li
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, China
| | - Huimin Li
- National Human Genetic Resources Center, Beijing, China, National Research Institute for Family Planning, Beijing, China
- Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Jianqiong Zheng
- Department of Obstetrics and Gynecology, The Third Clinical Institute Affiliated to Wenzhou Medical University, The Third Affiliated Hospital of Shanghai University, Wenzhou People’s Hospital, Wenzhou Maternal and Child Health Care Hospital, Wenzhou, China
| | - Xianyang Chen
- Bao Feng Key Laboratory of Genetics and Metabolism, Zhongyuan Biotechnology Holdings Group, Beijing, China
- Zhong Guan Cun Biological and Medical Big Data Center, Zhong Guan Cun Medical Engineering & Health Industry Base, Beijing, China
| | - Xiaolan Zhao
- Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Liang Ji
- The Institute of Cardiovascular Sciences and Institute of Systems Biomedicine, School of Basic Medical Sciences, Peking University Health Science Center, Key Laboratory of Molecular Cardiovascular Science of Ministry of Education, Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides of Ministry of Health, Beijing Key Laboratory of Cardiovascular Receptors Research, Beijing, China
| | - Xiangyang Gao
- Health Management Institute, the Second Medical Center & National Clinical Research Center for Geriatric Diseases, Chinese People's Liberation Army General Hospital, Beijing, China
| | - Changjie Liu
- The Institute of Cardiovascular Sciences and Institute of Systems Biomedicine, School of Basic Medical Sciences, Peking University Health Science Center, Key Laboratory of Molecular Cardiovascular Science of Ministry of Education, Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides of Ministry of Health, Beijing Key Laboratory of Cardiovascular Receptors Research, Beijing, China
| | - Yu Wang
- Health Management Center, The 910th Hospital of People's Liberation Army, Quanzhou, China
| | - Si Cheng
- China National Clinical Research Center for Neurological Diseases, Tiantan Hospital, Advanced Innovation Center for Human Brain Protection, The Capital Medical University, Beijing, China
| | - Jie Xu
- China National Clinical Research Center for Neurological Diseases, Tiantan Hospital, Advanced Innovation Center for Human Brain Protection, The Capital Medical University, Beijing, China
| | - Bing Pan
- The Institute of Cardiovascular Sciences and Institute of Systems Biomedicine, School of Basic Medical Sciences, Peking University Health Science Center, Key Laboratory of Molecular Cardiovascular Science of Ministry of Education, Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides of Ministry of Health, Beijing Key Laboratory of Cardiovascular Receptors Research, Beijing, China
| | - Jing Sun
- Health Management Center, The China-Japan Union Hospital of Jilin University, Changchun, China
| | - Yongli Li
- Department of Health Management, Henan Provincial People’s Hospital, Zhengzhou, China
| | - Dongfang Li
- Department of Microbial Research, WeHealthGene Institute, Shenzhen, Guangdong, China
- Institute of Statistics, NanKai University, Tianjin, China
| | - Yuan He
- National Human Genetic Resources Center, Beijing, China, National Research Institute for Family Planning, Beijing, China
- Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- *Correspondence: Yuan He, ; Lemin Zheng,
| | - Lemin Zheng
- China National Clinical Research Center for Neurological Diseases, Tiantan Hospital, Advanced Innovation Center for Human Brain Protection, The Capital Medical University, Beijing, China
- The Institute of Cardiovascular Sciences and Institute of Systems Biomedicine, School of Basic Medical Sciences, Peking University Health Science Center, Key Laboratory of Molecular Cardiovascular Science of Ministry of Education, Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides of Ministry of Health, Beijing Key Laboratory of Cardiovascular Receptors Research, Beijing, China
- *Correspondence: Yuan He, ; Lemin Zheng,
| |
Collapse
|
69
|
Chen W, Pang Y. Metabolic Syndrome and PCOS: Pathogenesis and the Role of Metabolites. Metabolites 2021; 11:metabo11120869. [PMID: 34940628 PMCID: PMC8709086 DOI: 10.3390/metabo11120869] [Citation(s) in RCA: 86] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 11/29/2021] [Accepted: 12/09/2021] [Indexed: 12/12/2022] Open
Abstract
Polycystic ovary syndrome (PCOS) is one of the most common endocrine diseases among women of reproductive age and is associated with many metabolic manifestations, such as obesity, insulin resistance (IR) and hyperandrogenism. The underlying pathogenesis of these metabolic symptoms has not yet been fully elucidated. With the application of metabolomics techniques, a variety of metabolite changes have been observed in the serum and follicular fluid (FF) of PCOS patients and animal models. Changes in metabolites result from the daily diet and occur during uncommon physiological routines. However, some of these metabolite changes may provide evidence to explain possible mechanisms and new approaches for prevention and therapy. This article reviews the pathogenesis of PCOS metabolic symptoms and the relationship between metabolites and the pathophysiology of PCOS. Furthermore, the potential clinical application of some specific metabolites will be discussed.
Collapse
Affiliation(s)
- Weixuan Chen
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing 100191, China;
- National Clinical Research Center for Obstetrics and Gynecology (Peking University Third Hospital), Beijing 100191, China
- Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing 100191, China
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing 100191, China
- Research Units of Comprehensive Diagnosis and Treatment of Oocyte Maturation Arrest, Chinese Academy of Medical Sciences, Beijing 100191, China
| | - Yanli Pang
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing 100191, China;
- National Clinical Research Center for Obstetrics and Gynecology (Peking University Third Hospital), Beijing 100191, China
- Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing 100191, China
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing 100191, China
- Research Units of Comprehensive Diagnosis and Treatment of Oocyte Maturation Arrest, Chinese Academy of Medical Sciences, Beijing 100191, China
- Correspondence:
| |
Collapse
|
70
|
Gut microbiota: A potential therapeutic target for management of diabetic retinopathy? Life Sci 2021; 286:120060. [PMID: 34666038 DOI: 10.1016/j.lfs.2021.120060] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 10/04/2021] [Accepted: 10/12/2021] [Indexed: 12/12/2022]
Abstract
Diabetic Retinopathy (DR) is one of the main complications of Diabetes Mellitus (DM), drastically impacting individuals of working age over the years, being one of the main causes of blindness in the world. The existing therapies for its treatment consist of measures that aim only to alleviate the existing clinical signs, associated with the microvasculature. These treatments are limited only to the advanced stages and not to the preclinical ones. In response to a treatment with little resolution and limited for many patients with DM, investigations of alternative therapies that make possible the improvement of the glycemic parameters and the quality of life of subjects with DR, become extremely necessary. Recent evidence has shown that deregulation of the microbiota (dysbiosis) can lead to low-grade, local and systemic inflammation, directly impacting the development of DM and its microvascular complications, including DR, in an axis called the intestine-retina. In this regard, the present review seeks to comprehensively describe the biochemical pathways involved in DR as well as the association of the modulation of these mechanisms by the intestinal microbiota, since direct changes in the microbiota can have a drastic impact on various physiological processes. Finally, emphasize the strong potential for modulation of the gut-retina axis, as therapeutic and prophylactic target for the treatment of DR.
Collapse
|
71
|
Changes in gut-microbiota-related metabolites and long-term improvements in lipoprotein subspecies in overweight and obese adults: the POUNDS lost trial. Int J Obes (Lond) 2021; 45:2600-2607. [PMID: 34426648 PMCID: PMC8608703 DOI: 10.1038/s41366-021-00939-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 07/23/2021] [Accepted: 08/11/2021] [Indexed: 02/07/2023]
Abstract
BACKGROUND/OBJECTIVES Alterations in gut microbiota have been linked to obesity and impaired lipid metabolism. Lipoproteins are heterogeneous, and lipoprotein subspecies containing apolipoprotein C-III (apoCIII) have adverse associations with obesity and related cardiometabolic abnormalities. We investigated associations of weight-loss diet-induced decreases in atherogenic gut-microbial metabolites, trimethylamine N-oxide (TMAO) and L-carnitine, with improvements in atherogenic lipoproteins containing apoCIII among patients with obesity. SUBJECTS/METHODS This study included overweight and obese adults who participated in a 2-year weight-loss dietary intervention, the POUNDS Lost trial. Blood levels of TMAO and L-carnitine were measured at baseline and 6 months after the intervention; 6-month changes in the metabolites were calculated. We evaluated 2-year changes in lipid profiles (n = 395) and cholesterol [Chol] in lipoprotein (very-low-density lipoprotein (VLDL), low-density lipoprotein (LDL), and high-density lipoprotein (HDL)) subfractions defined by the presence or absence of apoCIII (n = 277). RESULTS The initial (6-month) decrease in L-carnitine was significantly associated with long-term (2-year) reductions in non-HDL-Chol and LDL-Chol (p < 0.05). Also, the decrease in L-carnitine was significantly related to decreases in Chol in LDL with apoCIII (p = 0.034) and Chol in [LDL + VLDL] with apoCIII (p = 0.018). We found significant interactions between dietary fat and TMAO on changes in LDL-Chol (Pinteraction = 0.013) and Chol in [LDL + VLDL] with apoCIII (Pinteraction = 0.0048); a greater increase in TMAO was related to lesser improvements in the lipoprotein outcomes if participants consumed a high-fat compared to a low-fat diet. CONCLUSIONS Changes in TMAO and L-carnitine induced by weight-loss diets were associated with long-term improvements in atherogenic lipoproteins containing apoCIII, implicating that these metabolic changes might be predictive of an individual's response to the dietary treatment to modify the unfavorable lipid profiles in obese patients. Dietary fat intake might modify associations of TMAO changes with long-term improvements of atherogenic cholesterol metabolism in overweight and obese adults. CLINICALTRIALS. GOV IDENTIFIER NCT00072995.
Collapse
|
72
|
Will intestinal flora therapy become a new target in type-2 diabetes mellitus? A review based on 13 clinical trials. NUTR HOSP 2021; 39:425-433. [PMID: 34844413 DOI: 10.20960/nh.03866] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
Abstract
BACKGROUND diabetes mellitus (DM) is a chronic disease and its pathogenesis is still inconclusive. Current evidence suggests an association between intestinal flora and type-2 diabetes mellitus (T2DM). In this paper, we summarized the current research, determining whether intestinal flora may become a new method to treat T2DM, and providing a theoretical basis and literature references for the prevention of T2DM based on the regulation of intestinal flora. METHOD we carried out a review based on 13 published clinical trials to determine the correlation between T2DM and intestinal flora, and between changes in clinical outcomes and in intestinal flora in the development of T2DM; to assess the pathological mechanisms; and to discuss the treatment of diabetes based on intestinal flora. RESULTS we found that intestinal flora is involved in the occurrence and development of T2DM. Several pathological mechanisms may be involved in the process, including improving the gut barrier, alleviating inflammation, increasing glucagon-like peptide (GLP) 1 and GLP 2, increasing the production of short-chain fatty acids (SCFAs), and so on. Several measures based on intestinal flora, including exercise, food, specific diets, drugs and probiotics, would be used to treat and even prevent T2DM. CONCLUSIONS high-quality studies are required to better understand the clinical effects of intestinal flora in T2DM.
Collapse
|
73
|
Changes in Circulating Metabolites during Weight Loss and Weight Loss Maintenance in Relation to Cardiometabolic Risk. Nutrients 2021; 13:nu13124289. [PMID: 34959840 PMCID: PMC8708084 DOI: 10.3390/nu13124289] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 11/23/2021] [Accepted: 11/25/2021] [Indexed: 02/06/2023] Open
Abstract
(1) Background: There is a substantial lack of knowledge of the biochemical mechanisms by which weight loss and weight regain exert their beneficial and adverse effects, respectively, on cardiometabolic outcomes. We examined associations between changes in circulating metabolites and changes in cardiometabolic risk factors during diet-induced weight loss and weight loss maintenance. (2) Methods: This prospective analysis of data from the Satiety Innovation (SATIN) study involved adults living with overweight and obesity (mean age=47.5). One hundred sixty-two subjects achieving ≥8% weight loss during an initial 8-week low-calorie diet (LCD) were included in a 12-week weight loss maintenance period. Circulating metabolites (m=123) were profiled using a targeted multiplatform approach. Data were analyzed using multivariate linear regression models. (3) Results: Decreases in the concentrations of several phosphatidylcholines (PCs), sphingomyelins (SMs), and valine were consistently associated with decreases in total (TChol) and low-density lipoprotein cholesterol (LDL-C) levels during the LCD. Increases in PCs and SMs were significantly associated with increases in TChol and LDL-C during the weight loss maintenance period. Decreases and increases in PCs during LCD and maintenance period, respectively, were associated with decreases in the levels of triglycerides. (4) Conclusions: The results of this study suggest that decreases in circulating PCs and SMs during weight loss and the subsequent weight loss maintenance period may decrease the cardiovascular risk through impacting TChol and LDL-C.
Collapse
|
74
|
Study to Explore Plant-Derived Trimethylamine Lyase Enzyme Inhibitors to Address Gut Dysbiosis. Appl Biochem Biotechnol 2021; 194:99-123. [PMID: 34822060 DOI: 10.1007/s12010-021-03747-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 10/21/2021] [Indexed: 12/27/2022]
Abstract
Lifestyle complications are major health concerns around the globe and are recognized as a major factor for the development of various chronic diseases such as obesity, diabetes, inflammatory bowel diseases, cancer, and cardiac diseases. An unhealthy diet and poor lifestyle impose a serious threat to human health. Numerous studies have suggested the role of human microbiota in human health and diseases. Microbiota resides in the human body symbiotically and the composition of microorganisms is crucial for maintaining the healthy state of an individual. A dysbiotic gut microbiome is responsible for the release of toxic metabolites such as trimethylamine, lipopolysaccharides, bile acids, and uremic toxins and is associated with impaired organ functions. Dietary and herbal intervention of dysbiosis proposes a promising strategy to counteract gut alterations and repairing of the microbial ecosystem and health. The objective of the present comparative study was to observe the effect of therapeutic herbs in gut dysbiosis. In silico studies were performed to identify human microbiota associated with various diseases, ADME, and toxicity properties of phytoconstituents of "Tinospora cordifolia" and "Ocimum sanctum." Furthermore, co-interaction studies were performed to observe the affinity of selected phytochemicals against choline trimethylamine lyase, a critical enzyme involved in dysbiosis-induced human diseases. The antimicrobial potential of phytocompounds was done by the disc diffusion method. In conclusion, our work discusses the herbal intervention of gut dysbiosis and proposes a natural, safe, and effective herbal formulation to correct microbial dysbiosis and associated diseases.
Collapse
|
75
|
Ten-year changes in plasma L-carnitine levels and risk of coronary heart disease. Eur J Nutr 2021; 61:1353-1362. [PMID: 34799774 DOI: 10.1007/s00394-021-02713-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Accepted: 10/13/2021] [Indexed: 10/19/2022]
Abstract
PURPOSE L-Carnitine is abundant in animal source foods, particularly red meat, and circulating L-carnitine may be related to the incidence of coronary heart disease (CHD). We investigated whether long-term changes in plasma L-carnitine over 10 years were associated with the CHD incidence and also examined joint associations of carnitine-rich red meat consumption and L-carnitine changes on the subsequent risk of CHD. METHODS This prospective nested case-control study included 772 healthy women at baseline (386 incident CHD cases and 386 healthy controls). Plasma L-carnitine levels were measured both at the first (1989-90) and second blood collections (2000-02). Incident cases of CHD were prospectively followed from the date of the second blood collection through 2016. RESULTS Overall, a greater increase in L-carnitine from the first to the second time point was related to a higher risk of CHD, regardless of the initial L-carnitine levels (relative risk: 1.36 (95% CI 0.999, 1.84) per 1-SD increase). The 10-year changes in L-carnitine were positively associated with red meat consumption over time, and women with higher red meat intake (≥ 36 g/day) and with greater increases in L-carnitine had a 1.86 (95% CI 1.13, 3.09) times increased risk of CHD, as compared to those with lower red meat intake and lesser increases in L-carnitine. CONCLUSION Long-term increases in L-carnitine levels were associated with the subsequent incidence of CHD, especially among women with higher intake of red meat. Our results suggest the importance of atherogenic L-carnitine changes and dietary intakes over time in the prevention of CHD.
Collapse
|
76
|
Jang H, Lim H, Park KH, Park S, Lee HJ. Changes in Plasma Choline and the Betaine-to-Choline Ratio in Response to 6-Month Lifestyle Intervention Are Associated with the Changes of Lipid Profiles and Intestinal Microbiota: The ICAAN Study. Nutrients 2021; 13:nu13114006. [PMID: 34836260 PMCID: PMC8625635 DOI: 10.3390/nu13114006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 11/02/2021] [Accepted: 11/05/2021] [Indexed: 01/19/2023] Open
Abstract
Trimethylamine N-oxide (TMAO) and its precursors, including choline, betaine, and L-carnitine, are gut microbiota-related metabolites associated with the risk of obesity. We aimed (1) to comprehensively examine whether the changes in plasma TMAO and its precursors induced by lifestyle intervention are associated with the improvements in plasma metabolic parameters; and (2) to identify the fecal microbiome profiles and nutrient intakes associated with these metabolites and metabolic index. Data from 40 participants (obese children and adolescents) having the plasma metabolites data related to the changes in BMI z-scores after 6-month lifestyle intervention were analyzed. In this study, we observed that choline and the betaine-to-choline ratio (B/C) showed different patterns depending on the changes in BMI z-scores by the response to lifestyle intervention. During the 6 months, an increase in choline and a decrease in B/C were observed in non-responders. We also found that changes in choline and B/C were associated with the improvements in plasma lipid levels. Individuals who showed reduced choline or increased B/C from the baseline to 6 months had a significant decrease in LDL-cholesterol over 6 months compared to those with increased choline or decreased B/C, respectively. In addition, the increase in choline or decrease in B/C was associated with the increase in plasma triglycerides. The distribution of gut microbiota belonging to the Firmicutes, such as Clostridia, Clostridiales, Peptostreptococcaceae, Romboutsia, and Romboutsia timonensis was altered to be lower during the 6 months both as choline decreased and B/C increased. Moreover, the decrease in choline and the increase in B/C were associated with reduced fat intake and increased fiber intake after the 6-month intervention. Finally, lower abundance of Romboutsia showed the association with lower LDL-cholesterol and higher intake of fiber. In summary, we demonstrated that reduced choline and increased B/C by lifestyle intervention were associated with the improvements of LDL-cholesterol and triglycerides, low-fat and high-fiber intakes, and low abundance of Firmicutes. These indicate that changes to circulating choline and B/C could predict individuals' changes in metabolic compositions in response to the lifestyle intervention.
Collapse
Affiliation(s)
- HanByul Jang
- Division of Endocrine and Kidney Disease Research, Korea National Institute of Health, Cheongju 28159, Chungbuk, Korea; (H.J.); (S.P.)
| | - Hyunjung Lim
- Department of Medical Nutrition, Kyung Hee University, Yongin 17104, Gyeonggi-do, Korea;
| | - Kyung-Hee Park
- Department of Family Medicine, Hallym University Sacred Heart Hospital, Hallym University, Anyang 14068, Gyeonggi-do, Korea;
| | - SangIck Park
- Division of Endocrine and Kidney Disease Research, Korea National Institute of Health, Cheongju 28159, Chungbuk, Korea; (H.J.); (S.P.)
| | - Hye-Ja Lee
- Division of Endocrine and Kidney Disease Research, Korea National Institute of Health, Cheongju 28159, Chungbuk, Korea; (H.J.); (S.P.)
- Correspondence: ; Tel.: +82-043-719-8692; Fax: +82-043-719-8602
| |
Collapse
|
77
|
Ballan R, Saad SMI. Characteristics of the Gut Microbiota and Potential Effects of Probiotic Supplements in Individuals with Type 2 Diabetes mellitus. Foods 2021; 10:foods10112528. [PMID: 34828808 PMCID: PMC8622611 DOI: 10.3390/foods10112528] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 10/13/2021] [Accepted: 10/19/2021] [Indexed: 12/12/2022] Open
Abstract
The increasing prevalence of type 2 diabetes mellitus (T2DM) worldwide has become a burden to healthcare systems. In 2019, around 463 million adults were living with diabetes mellitus, and T2DM accounted for 90 to 95% of cases. The relationship between the gut microbiota and T2DM has been explored with the advent of metagenomic techniques. Genome-wide association studies evaluating the microbiota of these individuals have pointed to taxonomic, functional, and microbial metabolite imbalances and represent a potential intervention in T2DM management. Several microbial metabolites and components, such as imidazole propionate, trimethylamine, and lipopolysaccharides, appear to impair insulin signaling, while short-chain fatty acids, secondary bile acids, and tryptophan metabolites may improve it. In addition, the use of probiotics with the aim of transiently restoring the microbial balance or reducing the effects of microbial metabolites that impair insulin sensitivity has been explored. Herein, we critically review the available literature on the changes in the gut microbiota in T2DM together with potential adjuvant therapies that may improve the health status of this population.
Collapse
Affiliation(s)
- Rafael Ballan
- Department of Pharmaceutical and Biochemical Technology, School of Pharmaceutical Sciences, University of São Paulo, São Paulo 05508-000, SP, Brazil;
- Food Research Center, University of São Paulo, São Paulo 05508-080, SP, Brazil
| | - Susana Marta Isay Saad
- Department of Pharmaceutical and Biochemical Technology, School of Pharmaceutical Sciences, University of São Paulo, São Paulo 05508-000, SP, Brazil;
- Food Research Center, University of São Paulo, São Paulo 05508-080, SP, Brazil
- Correspondence: ; Tel.: +55-11-3091-2378
| |
Collapse
|
78
|
Zhou Y, Zhao R, Lyu Y, Shi H, Ye W, Tan Y, Li R, Xu Y. Serum and Amniotic Fluid Metabolic Profile Changes in Response to Gestational Diabetes Mellitus and the Association with Maternal-Fetal Outcomes. Nutrients 2021; 13:3644. [PMID: 34684645 PMCID: PMC8539410 DOI: 10.3390/nu13103644] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 10/15/2021] [Accepted: 10/15/2021] [Indexed: 11/25/2022] Open
Abstract
This study was designed to identify serum and amniotic fluid (AF) metabolic profile changes in response to gestational diabetes mellitus (GDM) and explore the association with maternal-fetal outcomes. We established the GDM rat models by combining a high-fat diet (HFD) with an injection of low-dose streptozotocin (STZ), detected the fasting plasma glucose (FPG) of pregnant rats in the second and third trimester, and collected AF and fetal rats by cesarean section on gestational day 19 (GD19), as well as measuring the weight and crown-rump length (CRL) of fetal rats. We applied liquid chromatography-tandem mass spectrometry (LC-MS/MS) for the untargeted metabolomics analyses of serum and AF samples and then explored their correlation with maternal-fetal outcomes via the co-occurrence network. The results showed that 91 and 68 metabolites were upregulated and 125 and 78 metabolites were downregulated in serum and AF samples exposed to GDM, respectively. In maternal serum, the obvious alterations emerged in lipids and lipid-like molecules, while there were great changes in carbohydrate and carbohydrate conjugates, followed by amino acids, peptides, and analogs in amniotic fluid. The altered pathways both in serum and AF samples were amino acid, lipid, nucleotide, and vitamin metabolism pathways. In response to GDM, changes in the steroid hormone metabolic pathway occurred in serum, and an altered carbohydrate metabolism pathway was found in AF samples. Among differential metabolites in two kinds of samples, there were 34 common biochemicals shared by serum and AF samples, and a mutual significant association existed. These shared differential metabolites were implicated in several metabolism pathways, including choline, tryptophan, histidine, and nicotinate and nicotinamide metabolism, and among them, N1-methyl-4-pyridone-3-carboxamide, 5'-methylthioadenosine, and kynurenic acid were significantly associated with both maternal FPG and fetal growth. In conclusion, serum and AF metabolic profiles were remarkably altered in response to GDM. N1-Methyl-4-pyridone-3-carboxamide, 5'-methylthioadenosine, and kynurenic acid have the potential to be taken as biomarkers for maternal-fetal health status of GDM. The common and inter-related differential metabolites both in the serum and AF implied the feasibility of predicting fetal health outcomes via detecting the metabolites in maternal serum exposed to GDM.
Collapse
Affiliation(s)
- Yalin Zhou
- Department of Nutrition and Food Hygiene, School of Public Health, Peking University, NO.38 Xueyuan Road, Beijing 100083, China; (Y.Z.); (R.Z.); (Y.L.); (H.S.); (W.Y.); (Y.T.); (R.L.)
- PKUHSC-China Feihe Joint Research Institute of Nutrition and Healthy Lifespan Development, NO.38 Xueyuan Road, Beijing 100083, China
| | - Runlong Zhao
- Department of Nutrition and Food Hygiene, School of Public Health, Peking University, NO.38 Xueyuan Road, Beijing 100083, China; (Y.Z.); (R.Z.); (Y.L.); (H.S.); (W.Y.); (Y.T.); (R.L.)
- PKUHSC-China Feihe Joint Research Institute of Nutrition and Healthy Lifespan Development, NO.38 Xueyuan Road, Beijing 100083, China
| | - Ying Lyu
- Department of Nutrition and Food Hygiene, School of Public Health, Peking University, NO.38 Xueyuan Road, Beijing 100083, China; (Y.Z.); (R.Z.); (Y.L.); (H.S.); (W.Y.); (Y.T.); (R.L.)
- PKUHSC-China Feihe Joint Research Institute of Nutrition and Healthy Lifespan Development, NO.38 Xueyuan Road, Beijing 100083, China
| | - Hanxu Shi
- Department of Nutrition and Food Hygiene, School of Public Health, Peking University, NO.38 Xueyuan Road, Beijing 100083, China; (Y.Z.); (R.Z.); (Y.L.); (H.S.); (W.Y.); (Y.T.); (R.L.)
- PKUHSC-China Feihe Joint Research Institute of Nutrition and Healthy Lifespan Development, NO.38 Xueyuan Road, Beijing 100083, China
| | - Wanyun Ye
- Department of Nutrition and Food Hygiene, School of Public Health, Peking University, NO.38 Xueyuan Road, Beijing 100083, China; (Y.Z.); (R.Z.); (Y.L.); (H.S.); (W.Y.); (Y.T.); (R.L.)
- PKUHSC-China Feihe Joint Research Institute of Nutrition and Healthy Lifespan Development, NO.38 Xueyuan Road, Beijing 100083, China
| | - Yuwei Tan
- Department of Nutrition and Food Hygiene, School of Public Health, Peking University, NO.38 Xueyuan Road, Beijing 100083, China; (Y.Z.); (R.Z.); (Y.L.); (H.S.); (W.Y.); (Y.T.); (R.L.)
- PKUHSC-China Feihe Joint Research Institute of Nutrition and Healthy Lifespan Development, NO.38 Xueyuan Road, Beijing 100083, China
| | - Rui Li
- Department of Nutrition and Food Hygiene, School of Public Health, Peking University, NO.38 Xueyuan Road, Beijing 100083, China; (Y.Z.); (R.Z.); (Y.L.); (H.S.); (W.Y.); (Y.T.); (R.L.)
- PKUHSC-China Feihe Joint Research Institute of Nutrition and Healthy Lifespan Development, NO.38 Xueyuan Road, Beijing 100083, China
| | - Yajun Xu
- Department of Nutrition and Food Hygiene, School of Public Health, Peking University, NO.38 Xueyuan Road, Beijing 100083, China; (Y.Z.); (R.Z.); (Y.L.); (H.S.); (W.Y.); (Y.T.); (R.L.)
- PKUHSC-China Feihe Joint Research Institute of Nutrition and Healthy Lifespan Development, NO.38 Xueyuan Road, Beijing 100083, China
- Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, Peking University, NO.38 Xueyuan Road, Beijing 100083, China
| |
Collapse
|
79
|
Zhou Z, Zheng Z, Xiong X, Chen X, Peng J, Yao H, Pu J, Chen Q, Zheng M. Gut Microbiota Composition and Fecal Metabolic Profiling in Patients With Diabetic Retinopathy. Front Cell Dev Biol 2021; 9:732204. [PMID: 34722512 PMCID: PMC8554156 DOI: 10.3389/fcell.2021.732204] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 09/06/2021] [Indexed: 12/24/2022] Open
Abstract
Recent evidence suggests there is a link between metabolic diseases and gut microbiota. To investigate the gut microbiota composition and fecal metabolic phenotype in diabetic retinopathy (DR) patients. DNA was extracted from 50 fecal samples (21 individuals with type 2 diabetes mellitus-associated retinopathy (DR), 14 with type 2 diabetes mellitus but without retinopathy (DM) and 15 sex- and age-matched healthy controls) and then sequenced by high-throughput 16S rDNA analysis. Liquid chromatography mass spectrometry (LC-MS)-based metabolomics was simultaneously performed on the samples. A significant difference in the gut microbiota composition was observed between the DR and healthy groups and between the DR and DM groups. At the genus level, Faecalibacterium, Roseburia, Lachnospira and Romboutsia were enriched in DR patients compared to healthy individuals, while Akkermansia was depleted. Compared to those in the DM patient group, five genera, including Prevotella, were enriched, and Bacillus, Veillonella, and Pantoea were depleted in DR patients. Fecal metabolites in DR patients significantly differed from those in the healthy population and DM patients. The levels of carnosine, succinate, nicotinic acid and niacinamide were significantly lower in DR patients than in healthy controls. Compared to those in DM patients, nine metabolites were enriched, and six were depleted in DR patients. KEGG annotation revealed 17 pathways with differentially abundant metabolites between DR patients and healthy controls, and only two pathways with differentially abundant metabolites were identified between DR and DM patients, namely, the arginine-proline and α-linolenic acid metabolic pathways. In a correlation analysis, armillaramide was found to be negatively associated with Prevotella and Subdoligranulum and positively associated with Bacillus. Traumatic acid was negatively correlated with Bacillus. Our study identified differential gut microbiota compositions and characteristic fecal metabolic phenotypes in DR patients compared with those in the healthy population and DM patients. Additionally, the gut microbiota composition and fecal metabolic phenotype were relevant. We speculated that the gut microbiota in DR patients may cause alterations in fecal metabolites, which may contribute to disease progression, providing a new direction for understanding DR.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Minming Zheng
- The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
80
|
Insulin Resistance and Cancer: In Search for a Causal Link. Int J Mol Sci 2021; 22:ijms222011137. [PMID: 34681797 PMCID: PMC8540232 DOI: 10.3390/ijms222011137] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 10/11/2021] [Accepted: 10/12/2021] [Indexed: 12/12/2022] Open
Abstract
Insulin resistance (IR) is a condition which refers to individuals whose cells and tissues become insensitive to the peptide hormone, insulin. Over the recent years, a wealth of data has made it clear that a synergistic relationship exists between IR, type 2 diabetes mellitus, and cancer. Although the underlying mechanism(s) for this association remain unclear, it is well established that hyperinsulinemia, a hallmark of IR, may play a role in tumorigenesis. On the other hand, IR is strongly associated with visceral adiposity dysfunction and systemic inflammation, two conditions which favor the establishment of a pro-tumorigenic environment. Similarly, epigenetic modifications, such as DNA methylation, histone modifications, and non-coding RNA, in IR states, have been often associated with tumorigenesis in numerous types of human cancer. In addition to these observations, it is also broadly accepted that gut microbiota may play an intriguing role in the development of IR-related diseases, including type 2 diabetes and cancer, whereas potential chemopreventive properties have been attributed to some of the most commonly used antidiabetic medications. Herein we provide a concise overview of the most recent literature in this field and discuss how different but interrelated molecular pathways may impact on tumor development.
Collapse
|
81
|
Chen J, Liu W. Altered Gut Microbiota Profile in Lin28a Transgenic Mice Can Improve Glucose Tolerance. Bull Exp Biol Med 2021; 171:644-650. [PMID: 34626282 DOI: 10.1007/s10517-021-05286-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Indexed: 01/28/2023]
Abstract
Recent studies showed that gut microbiota can be implicated in the control over glucose metabolism in the host organism. This study employed the Lin28a transgenic mice (Lin28a Tg) characterized by low fasting glucose levels and improved glucose tolerance test in comparison with the wild type species. 16S rDNA gene sequencing showed that the transgenic mice were distinguished by altered species richness of microbiota. Specifically, Lin28a Tg mice displayed higher abundance of Proteobacteria, Bacteroides, Parabacteroides, and lower abundance of Firmicutes known to be closely implicated in glucose metabolism. These data suggest that the peculiar profile of gut microbiota in Lin28a Tg mice can be directly involved in the control of glucose metabolism in the host organism.
Collapse
Affiliation(s)
- J Chen
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China.,Department of Obstetrics and Gynecology, Faculty of Li Kai Shing Medicine, University of Hong Kong, Hong Kong, China
| | - W Liu
- Department of Obstetrics and Gynecology, Faculty of Li Kai Shing Medicine, University of Hong Kong, Hong Kong, China.
| |
Collapse
|
82
|
Bi T, Feng R, Zhan L, Ren W, Lu X. ZiBuPiYin Recipe Prevented and Treated Cognitive Decline in ZDF Rats With Diabetes-Associated Cognitive Decline via Microbiota-Gut-Brain Axis Dialogue. Front Cell Dev Biol 2021; 9:651517. [PMID: 34485269 PMCID: PMC8416319 DOI: 10.3389/fcell.2021.651517] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Accepted: 07/07/2021] [Indexed: 11/13/2022] Open
Abstract
Gut microbiota is becoming one of the key determinants in human health and disease. Shifts in gut microbiota composition affect cognitive function and provide new insights for the prevention and treatment of neurological diseases. Diabetes-associated cognitive decline (DACD) is one of the central nervous system complications of type 2 diabetes mellitus (T2DM). ZiBuPiYin recipe (ZBPYR), a traditional Chinese medicine (TCM) formula, has long been used for the treatment of T2DM and prevention of DACD. However, the contribution of ZBPYR treatment to the interaction between the gut microbiota and metabolism for preventing and treating DACD remains to be clarified. Here, we investigate whether the gut microbiota plays a key role in ZBPYR-mediated prevention of DACD and treatment of T2DM via incorporating microbiomics and metabolomics, and investigate the links between the microbiota-gut-brain axis interaction and the efficacy of ZBPYR in ZDF rats. In the current study, we found that ZBPYR treatment produced lasting changes in gut microbiota community and metabolites and remotely affected hippocampus metabolic changes, thereby improving memory deficits and reversing β-amyloid deposition and insulin resistance in the brain of ZDF rats from T2DM to DACD. This may be related to a series of metabolic changes affected by gut microbiota, including alanine, aspartic acid, and glutamic acid metabolism; branched-chain amino acid metabolism; short-chain fatty acid metabolism; and linoleic acid/unsaturated fatty acid metabolism. In summary, this study demonstrates that prevention and treatment of DACD by ZBPYR partly depends on the gut microbiota, and the regulatory effects of bacteria-derived metabolites and microbiota-gut-brain axis are important protective mechanisms of ZBPYR.
Collapse
Affiliation(s)
- Tingting Bi
- School of Traditional Chinese Medicine and School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China.,Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing, China
| | - Ruiqi Feng
- School of Traditional Chinese Medicine and School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Libin Zhan
- School of Traditional Chinese Medicine and School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China.,Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing, China
| | - Weiming Ren
- School of Traditional Chinese Medicine and School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Xiaoguang Lu
- Department of Emergency Medicine, Zhongshan Hospital, Dalian University, Dalian, China
| |
Collapse
|
83
|
Qi L. Fried Foods, Gut Microbiota, and Glucose Metabolism. Diabetes Care 2021; 44:1907-1909. [PMID: 34417280 PMCID: PMC8740929 DOI: 10.2337/dci21-0033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Affiliation(s)
- Lu Qi
- Department of Epidemiology, School of Public Health and Tropical Medicine, Tulane University, New Orleans, LA, and Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA
| |
Collapse
|
84
|
Liu W, Ren C, Zhang W, Liu G, Lu P. Association between Dietary Choline Intake and Diabetic Retinopathy: National Health and Nutrition Examination Survey 2005-2008. Curr Eye Res 2021; 47:269-276. [PMID: 34328805 DOI: 10.1080/02713683.2021.1962361] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
PURPOSE To explore whether there is an association between dietary choline intake and odds of diabetic retinopathy (DR) in the US diabetic population. METHODS A cross-sectional study was conducted using the combined data of the National Health and Nutrition Examination Survey (NHANES) 2005-2008 of a complex, multistage, and probability-sampling design. Energy-adjusted choline intake was calculated separately for men and women using the residual method. Binary logistic regression adjusting for covariates was used to identify the variables associated with DR. RESULTS We included 644 male and 628 female diabetic subjects, which were equivalent to a weighted survey sample of 9,339,124 for males and 10,109,553 for females respectively. Female DR patients consumed more choline than non-DR patients (268.6 mg/d vs 250.9 mg/d; p = .046). The estimated prevalence of DR was 17.4%, 21.9%, and 29.7% across three levels of dietary choline intake in females, respectively. In multivariable logistic-regression models, the odds ratio (OR) of DR for female patients in the highest choline intake group was 2.14 (95% confidence interval [CI], 1.38-3.31; p = .001) compared with those in the lowest intake group. This association was positive but not statistically significant in males. CONCLUSION Higher intake of dietary choline is associated with increased odds of DR in females, but not in males. Further studies are warranted to investigate the direct role of choline in DR development and determine the recommended daily intake of choline for diabetic patients weighing the pros and cons of dietary choline consumption.
Collapse
Affiliation(s)
- Weiming Liu
- Department of Ophthalmology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Chi Ren
- Department of Ophthalmology, Peking University People's Hospital, Beijing, China
| | - Wenpeng Zhang
- Department of Ophthalmology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Gaoqin Liu
- Department of Ophthalmology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Peirong Lu
- Department of Ophthalmology, The First Affiliated Hospital of Soochow University, Suzhou, China
| |
Collapse
|
85
|
Tang L, Li L, Bu L, Guo S, He Y, Liu L, Xing Y, Lou F, Zhang F, Wang S, Lv J, Guo N, Tong J, Xu L, Tang S, Zhu C, Wang Z. Bigu-Style Fasting Affects Metabolic Health by Modulating Taurine, Glucose, and Cholesterol Homeostasis in Healthy Young Adults. J Nutr 2021; 151:2175-2187. [PMID: 33979839 DOI: 10.1093/jn/nxab123] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 01/20/2021] [Accepted: 04/06/2021] [Indexed: 01/16/2023] Open
Abstract
BACKGROUND Dynamic orchestration of metabolic pathways during continuous fasting remains unclear. OBJECTIVE We investigated the physiological effects of Bigu-style fasting and underlying metabolic reprogramming in healthy adults. METHODS We conducted a 5-d Bigu trial in 43 healthy subjects [age 23.2 ± 2.4 y; BMI (in kg/m2) 22.52 ± 1.79]. Physiological indicators and body composition were monitored daily during fasting day 1 (F1D) to F5D and after 10-d refeeding postfasting (R10D) and R30D. Blood samples were collected in the morning. Risk factors associated with inflammation, aging, cardiovascular diseases, malnutrition, and organ dysfunction were evaluated by biochemical measurements. Untargeted plasma metabolomics and gut microbial profiling were performed using plasma and fecal samples. Data were analyzed by repeated measures ANOVA with Greenhouse-Geisser correction. Correlation analyses for metabolite modules and taurine were analyzed by Spearman's rank and Pearson tests, respectively. RESULTS Heart rate was accelerated throughout the fasting period. Risk factors associated with inflammation and cardiovascular diseases were significantly lowered during or after Bigu (P < 0.05). Body composition measurement detected an overconsumption of fat starting from F3D till 1 mo after refeeding. Metabolomics unveiled a coupling between gluconeogenesis and cholesterol biosynthesis beyond F3D. Plasma taurine significantly increased at F3D by 31%-46% followed by a reduction to basal level at F5D (P < 0.001), a pattern inversely correlated with changes in glucose and de novo synthesized cholesterol (r = -0.407 and -0.296, respectively; P < 0.001). Gut microbial profiling showed an enrichment of taurine-utilizing bacteria at F5D, which was completely recovered at R10D. CONCLUSIONS Our data demonstrate that 5-d Bigu is potentially beneficial to health in young adults. A starvation threshold of 3-d fasting is necessary for maintaining glucose and cholesterol homeostasis via a taurine-microbiota regulatory loop. Our findings provide novel insights into the physiological and metabolic responses of the human body to continuous Bigu-style fasting. This trial was registered at http://www.chictr.org.cn as ChiCTR1900022917.
Collapse
Affiliation(s)
- Lixu Tang
- School of Martial Arts, Wuhan Sports University, Wuhan, China
| | - Lili Li
- Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, China
| | - Lihong Bu
- PET-CT/MRI Centre, Renmin Hospital of Wuhan University, Wuhan, China
| | - Shaoying Guo
- School of Martial Arts, Wuhan Sports University, Wuhan, China
| | - Yuan He
- Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, China
| | - Liying Liu
- Department of Physical Education, Hubei University of Education, Wuhan, China
| | - Yangqi Xing
- School of Martial Arts, Wuhan Sports University, Wuhan, China
| | - Fangxiao Lou
- School of Martial Arts, Wuhan Sports University, Wuhan, China
| | - Fengcheng Zhang
- School of Martial Arts, Wuhan Sports University, Wuhan, China
| | - Shun Wang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Jian Lv
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Ningning Guo
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Jingjing Tong
- School of Life Sciences, Central China Normal University, Wuhan, China
| | - Lijuan Xu
- Physical Examination Centre, Renmin Hospital of Wuhan University, Wuhan, China
| | - Shiqi Tang
- Physical Examination Centre, Renmin Hospital of Wuhan University, Wuhan, China
| | - Chengliang Zhu
- Department of Clinical Laboratory, Renmin Hospital of Wuhan University, Wuhan, China
| | - Zhihua Wang
- Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, China.,Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China.,Shenzhen Key Laboratory of Cardiovascular Disease, Fuwai Hospital Chinese Academy of Medical Sciences, Shenzhen, Shenzhen, China
| |
Collapse
|
86
|
Zakaria NF, Hamid M, Khayat ME. Amino Acid-Induced Impairment of Insulin Signaling and Involvement of G-Protein Coupling Receptor. Nutrients 2021; 13:nu13072229. [PMID: 34209599 PMCID: PMC8308393 DOI: 10.3390/nu13072229] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 06/18/2021] [Accepted: 06/24/2021] [Indexed: 12/12/2022] Open
Abstract
Amino acids are needed for general bodily function and well-being. Despite their importance, augmentation in their serum concentration is closely related to metabolic disorder, insulin resistance (IR), or worse, diabetes mellitus. Essential amino acids such as the branched-chain amino acids (BCAAs) have been heavily studied as a plausible biomarker or even a cause of IR. Although there is a long list of benefits, in subjects with abnormal amino acids profiles, some amino acids are correlated with a higher risk of IR. Metabolic dysfunction, upregulation of the mammalian target of the rapamycin (mTOR) pathway, the gut microbiome, 3-hydroxyisobutyrate, inflammation, and the collusion of G-protein coupled receptors (GPCRs) are among the indicators and causes of metabolic disorders generating from amino acids that contribute to IR and the onset of type 2 diabetes mellitus (T2DM). This review summarizes the current understanding of the true involvement of amino acids with IR. Additionally, the involvement of GPCRs in IR will be further discussed in this review.
Collapse
Affiliation(s)
- Nur Fatini Zakaria
- Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia;
| | - Muhajir Hamid
- Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia;
| | - Mohd Ezuan Khayat
- Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia;
- Correspondence:
| |
Collapse
|
87
|
Zhong X, Zhang F, Yin X, Cao H, Wang X, Liu D, Chen J, Chen X. Bone Homeostasis and Gut Microbial-Dependent Signaling Pathways. J Microbiol Biotechnol 2021; 31:765-774. [PMID: 34176870 PMCID: PMC9705830 DOI: 10.4014/jmb.2104.04016] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 05/27/2021] [Accepted: 06/13/2021] [Indexed: 12/15/2022]
Abstract
Although research on the osteal signaling pathway has progressed, understanding of gut microbial-dependent signaling pathways for metabolic and immune bone homeostasis remains elusive. In recent years, the study of gut microbiota has shed light on our understanding of bone homeostasis. Here, we review microbiota-mediated gut-bone crosstalk via bone morphogenetic protein/SMADs, Wnt and OPG/receptor activator of nuclear factor-kappa B ligand signaling pathways in direct (translocation) and indirect (metabolite) manners. The mechanisms underlying gut microbiota involvement in these signaling pathways are relevant in immune responses, secretion of hormones, fate of osteoblasts and osteoclasts and absorption of calcium. Collectively, we propose a signaling network for maintaining a dynamic homeostasis between the skeletal system and the gut ecosystem. Additionally, the role of gut microbial improvement by dietary intervention in osteal signaling pathways has also been elucidated. This review provides unique resources from the gut microbial perspective for the discovery of new strategies for further improving treatment of bone diseases by increasing the abundance of targeted gut microbiota.
Collapse
Affiliation(s)
- Xiaohui Zhong
- Wuxi School of Medicine, Jiangnan University, Wuxi 214122, P.R. China
| | - Feng Zhang
- Wuxi School of Medicine, Jiangnan University, Wuxi 214122, P.R. China,Clinical Assessment Center of Functional Food, Affiliated Hospital of Jiangnan University, Wuxi 214125, P.R. China,Nutritional Department, Affiliated Hospital of Jiangnan University, Wuxi 214125, P.R. China
| | - Xinyao Yin
- Wuxi School of Medicine, Jiangnan University, Wuxi 214122, P.R. China
| | - Hong Cao
- Clinical Assessment Center of Functional Food, Affiliated Hospital of Jiangnan University, Wuxi 214125, P.R. China,Department of Endocrinology, Affiliated Hospital of Jiangnan University, Wuxi 214125, P.R. China,Nutritional Department, Affiliated Hospital of Jiangnan University, Wuxi 214125, P.R. China
| | - Xuesong Wang
- Wuxi School of Medicine, Jiangnan University, Wuxi 214122, P.R. China,Department of Orthopedics, Affiliated Hospital of Jiangnan University, Wuxi 214125, P.R.China
| | - Dongsong Liu
- Department of Orthopedics, Affiliated Hospital of Jiangnan University, Wuxi 214125, P.R.China
| | - Jing Chen
- Department of Orthopedics, Affiliated Hospital of Jiangnan University, Wuxi 214125, P.R.China
| | - Xue Chen
- Wuxi School of Medicine, Jiangnan University, Wuxi 214122, P.R. China,Corresponding author Phone: +86-15861589177 E-mail:
| |
Collapse
|
88
|
Fang Q, Zheng B, Liu N, Liu J, Liu W, Huang X, Zeng X, Chen L, Li Z, Ouyang D. Trimethylamine N-Oxide Exacerbates Renal Inflammation and Fibrosis in Rats With Diabetic Kidney Disease. Front Physiol 2021; 12:682482. [PMID: 34220546 PMCID: PMC8243655 DOI: 10.3389/fphys.2021.682482] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Accepted: 05/24/2021] [Indexed: 12/25/2022] Open
Abstract
The gut microbiota plays a pivotal role in the onset and development of diabetes and its complications. Trimethylamine N-oxide (TMAO), a gut microbiota-dependent metabolite of certain nutrients, is associated with type 2 diabetes and its complications. Diabetic kidney disease (DKD) is one of the most serious microvascular complications. However, whether TMAO accelerates the development of DKD remains unclear. We tested the hypothesis that TMAO accelerates the development of DKD. A high-fat diet/low-dose streptozotocin-induced diabetes rat model was established, with or without TMAO in the rats’ drinking water. Compared to the normal rats, the DKD rats showed significantly higher plasma TMAO levels at the end of the study. TMAO treatment not only exacerbated the kidney dysfunction of the DKD rats, but also renal fibrosis. Furthermore, TMAO treatment activated the nucleotide-binding domain, leucine-rich-containing family, pyrin domain-containing-3 (NLRP3) inflammasome and resulted in the release of interleukin (IL)-1β and IL-18 to accelerate renal inflammation. These results suggested that TMAO aggravated renal inflammation and fibrosis in the DKD rats, which provides a new perspective to understand the pathogenesis of DKD and a potential novel target for preventing the progression of DKD.
Collapse
Affiliation(s)
- Qing Fang
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, China.,Hunan Key Laboratory of Pharmacogenetics, Institute of Clinical Pharmacology, Central South University, Changsha, China.,Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Changsha, China.,Hunan Key Laboratory for Bioanalysis of Complex Matrix Samples, Changsha Duxact Biotech Co., Ltd., Changsha, China
| | - Binjie Zheng
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, China.,Hunan Key Laboratory of Pharmacogenetics, Institute of Clinical Pharmacology, Central South University, Changsha, China.,Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Changsha, China.,Hunan Key Laboratory for Bioanalysis of Complex Matrix Samples, Changsha Duxact Biotech Co., Ltd., Changsha, China
| | - Na Liu
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, China.,Hunan Key Laboratory of Pharmacogenetics, Institute of Clinical Pharmacology, Central South University, Changsha, China.,Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Changsha, China.,Hunan Key Laboratory for Bioanalysis of Complex Matrix Samples, Changsha Duxact Biotech Co., Ltd., Changsha, China
| | - Jinfeng Liu
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, China.,Hunan Key Laboratory of Pharmacogenetics, Institute of Clinical Pharmacology, Central South University, Changsha, China.,Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Changsha, China.,Hunan Key Laboratory for Bioanalysis of Complex Matrix Samples, Changsha Duxact Biotech Co., Ltd., Changsha, China
| | - Wenhui Liu
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, China.,Hunan Key Laboratory of Pharmacogenetics, Institute of Clinical Pharmacology, Central South University, Changsha, China.,Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Changsha, China.,Hunan Key Laboratory for Bioanalysis of Complex Matrix Samples, Changsha Duxact Biotech Co., Ltd., Changsha, China
| | - Xinyi Huang
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, China.,Hunan Key Laboratory of Pharmacogenetics, Institute of Clinical Pharmacology, Central South University, Changsha, China.,Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Changsha, China.,Hunan Key Laboratory for Bioanalysis of Complex Matrix Samples, Changsha Duxact Biotech Co., Ltd., Changsha, China
| | - Xiangchang Zeng
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, China.,Hunan Key Laboratory of Pharmacogenetics, Institute of Clinical Pharmacology, Central South University, Changsha, China.,Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Changsha, China.,Hunan Key Laboratory for Bioanalysis of Complex Matrix Samples, Changsha Duxact Biotech Co., Ltd., Changsha, China
| | - Lulu Chen
- Hunan Key Laboratory for Bioanalysis of Complex Matrix Samples, Changsha Duxact Biotech Co., Ltd., Changsha, China
| | - Zhenyu Li
- Department of Geriatric Medicine, Xiangya Hospital, Central South University, Changsha, China
| | - Dongsheng Ouyang
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, China.,Hunan Key Laboratory of Pharmacogenetics, Institute of Clinical Pharmacology, Central South University, Changsha, China.,Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Changsha, China.,Hunan Key Laboratory for Bioanalysis of Complex Matrix Samples, Changsha Duxact Biotech Co., Ltd., Changsha, China
| |
Collapse
|
89
|
Abstract
PURPOSE OF REVIEW An increasing body of evidence suggests that the gut microbiome influences the pathogenesis of insulin resistance and type 2 diabetes (T2D). In this review, we will discuss the latest findings regarding the mechanisms linking the gut microbiome and microbial metabolites with T2D and therapeutic approaches based on the gut microbiota for the prevention and treatment of T2D. RECENT FINDINGS Alterations in the gut microbial composition are associated with the risk of T2D. The gut microbiota can metabolize dietary- and host-derived factors to produce numerous microbial metabolites, which are involved in metabolic processes modulating nutrition and energy harvest, gut barrier function, systemic inflammation, and glucose metabolism. Microbial metabolites are important mediators of microbial-host crosstalk impacting host glucose metabolism. Furthermore, microbiome-based interventions may have beneficial effects on glycemic control. Future research is required to develop personalized T2D therapy based on microbial composition and/or metabolites.
Collapse
|
90
|
Arrona Cardoza P, Spillane MB, Morales Marroquin E. Alzheimer's disease and gut microbiota: does trimethylamine N-oxide (TMAO) play a role? Nutr Rev 2021; 80:271-281. [PMID: 33942080 DOI: 10.1093/nutrit/nuab022] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Alzheimer's disease (AD) is a neurodegenerative disease that affects memory and cognitive function. Clinical evidence has put into question our current understanding of AD development, propelling researchers to look into further avenues. Gut microbiota has emerged as a potential player in AD pathophysiology. Lifestyle factors, such as diet, can have negative effects on the gut microbiota and thus host health. A Western-type diet has been highlighted as a risk factor for both gut microbiota alteration as well as AD development. The gut-derived trimethylamine N-oxide (TMAO) has been previously implied in the development of cardiovascular diseases with recent evidence suggesting a plausible role of TMAO in AD development. Therefore, the main goal of the present review is to provide the reader with potential mechanisms of action through which consumption of a Western-type diet could increase AD risk, by acting through microbiota-produced TMAO. Although a link between TMAO and AD is far from definitive, this review will serve as a call for research into this new area of research.
Collapse
Affiliation(s)
- Pablo Arrona Cardoza
- P. Arrona Cardoza is with the Tecnológico de Monterrey, School of Medicine and Health Science, Monterrey, Nuevo Leon, Mexico. M.B Spillane is with the H.C. Drew School of Health and Human Performance, McNeese State University, Lake Charles, Louisiana, USA. E. Morales Marroquin is with the School of Public Health, University of Texas Health Science Center at Houston, Houston, Texas, USA. E. Morales Marroquin is with the Center for Pediatric Population Health, UTHealth School of Public Health and Children's Health System of Texas, Dallas, Texas, USA
| | - Micheil B Spillane
- P. Arrona Cardoza is with the Tecnológico de Monterrey, School of Medicine and Health Science, Monterrey, Nuevo Leon, Mexico. M.B Spillane is with the H.C. Drew School of Health and Human Performance, McNeese State University, Lake Charles, Louisiana, USA. E. Morales Marroquin is with the School of Public Health, University of Texas Health Science Center at Houston, Houston, Texas, USA. E. Morales Marroquin is with the Center for Pediatric Population Health, UTHealth School of Public Health and Children's Health System of Texas, Dallas, Texas, USA
| | - Elisa Morales Marroquin
- P. Arrona Cardoza is with the Tecnológico de Monterrey, School of Medicine and Health Science, Monterrey, Nuevo Leon, Mexico. M.B Spillane is with the H.C. Drew School of Health and Human Performance, McNeese State University, Lake Charles, Louisiana, USA. E. Morales Marroquin is with the School of Public Health, University of Texas Health Science Center at Houston, Houston, Texas, USA. E. Morales Marroquin is with the Center for Pediatric Population Health, UTHealth School of Public Health and Children's Health System of Texas, Dallas, Texas, USA
| |
Collapse
|
91
|
Mosterd CM, Kanbay M, van den Born BJH, van Raalte DH, Rampanelli E. Intestinal microbiota and diabetic kidney diseases: the Role of microbiota and derived metabolites inmodulation of renal inflammation and disease progression. Best Pract Res Clin Endocrinol Metab 2021; 35:101484. [PMID: 33546983 DOI: 10.1016/j.beem.2021.101484] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Diabetic kidney disease (DKD) represents a growing public health burden and is the leading cause of end-stage kidney diseases. In recent years, host-gut microbiota interactions have emerged as an integral part for host homeostasis. In the context of nephropathies, mounting evidence supports a bidirectional microbiota-kidney crosstalk, which becomes particularly manifest during progressive kidney dysfunction. Indeed, in chronic kidney disease (CKD), the "healthy" microbiota structure is disrupted and intestinal microbes produce large quantities of uremic solutes responsible for renal damage; on the other hand, the uremic state, fueled by reduced renal clearance, causes shifts in microbial metabolism and composition, hence creating a vicious cycle in which dysbiosis and renal dysfunction are progressively worsened. In this review, we will summarize the evidence from clinical/experimental studies concerning the occurrence of gut dysbiosis in diabetic and non-diabetic CKD, discuss the functional consequences of dysbiosis for CKD progression and debate putative therapeutic interventions targeting the intestinal microbiome.
Collapse
Affiliation(s)
- C M Mosterd
- Department of Internal and Vascular Medicine, Amsterdam UMC, Location VUmc, Amsterdam Cardiovascular Sciences, Amsterdam, the Netherlands.
| | - M Kanbay
- Department of Medicine, Division of Nephrology, Koc University School of Medicine, Istanbul, Turkey
| | - B J H van den Born
- Department of Nephrology and Vascular Medicine, Amsterdam UMC, Location AMC, the Netherlands
| | - D H van Raalte
- Diabetes Center, Department of Internal Medicine, Amsterdam UMC, Location VUmc, Diabetes Center, Amsterdam, the Netherlands
| | - E Rampanelli
- Department of Experimental Vascular Medicine, Amsterdam UMC, Location AMC, Amsterdam Cardiovascular Sciences, Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam, the Netherlands.
| |
Collapse
|
92
|
Brennan L, de Roos B. Nutrigenomics: lessons learned and future perspectives. Am J Clin Nutr 2021; 113:503-516. [PMID: 33515029 DOI: 10.1093/ajcn/nqaa366] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 11/12/2020] [Indexed: 12/12/2022] Open
Abstract
The omics technologies of metabolomics, transcriptomics, proteomics, and metagenomics are playing an increasingly important role in nutrition science. With the emergence of the concept of precision nutrition and the need to understand individual responses to dietary interventions, it is an opportune time to examine the impact of these tools to date in human nutrition studies. Advances in our mechanistic understanding of dietary interventions were realized through incorporation of metabolomics, proteomics, and, more recently, metagenomics. A common observation across the studies was the low intra-individual variability of the omics measurements and the high inter-individual variation. Harnessing this data for use in the development of precision nutrition will be important. Metabolomics in particular has played a key role in the development of biomarkers of food intake in an effort to enhance the accuracy of dietary assessments. Further work is needed to realize the full potential of such biomarkers and to demonstrate integration with current strategies, with the goal of overcoming the well-established limitations of self-reported approaches. Although many of the nutrigenomic studies performed to date were labelled as proof-of-concept or pilot studies, there is ample evidence to support the use of these technologies in nutrition science. Incorporating omic technologies from the start of study designs will ensure that studies are sufficiently powered for such data. Furthermore, multi-disciplinary collaborations are likely to become even more important to aid analyses and interpretation of the data.
Collapse
Affiliation(s)
- Lorraine Brennan
- Institute of Food and Health and Conway Institute, University College Dublin (UCD) School of Agriculture and Food Science, UCD, Belfield, Dublin, Ireland
| | - Baukje de Roos
- The Rowett Institute, University of Aberdeen, Foresterhill, Aberdeen, United Kingdom
| |
Collapse
|
93
|
Mizera M, Wysocki M, Bartosiak K, Franczak P, Hady HR, Kalinowski P, Myśliwiec P, Orłowski M, Paluszkiewicz R, Piecuch J, Szeliga J, Walędziak M, Major P, Pędziwiatr M. Type 2 Diabetes Remission 5 Years After Laparoscopic Sleeve Gastrectomy: Multicenter Cohort Study. Obes Surg 2021; 31:980-986. [PMID: 33151518 PMCID: PMC7920883 DOI: 10.1007/s11695-020-05088-w] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 10/26/2020] [Accepted: 10/26/2020] [Indexed: 01/23/2023]
Abstract
PURPOSE Bariatric surgery is no longer considered only as a weight loss surgery but also a way of treating obesity-related comorbidities such as type 2 diabetes mellitus (T2DM). Short-term T2DM remissions in patients undergoing laparoscopic sleeve gastrectomy (LSG) have been shown, but there are very few reports on the mid-term results. We aimed to assess the remission rate of T2DM in obese patients after LSG throughout 5-year follow-up. MATERIALS AND METHODOLOGY We performed a retrospective multicenter cohort analysis of 240 patients who underwent LSG. We assessed the remission rate of T2DM 1 year and 5 years after surgery. RESULTS Forty-six percent of patients achieved T2DM remission 5 years after LSG. The remission group had better weight loss results (median% of total weight loss 5 years after: 30.1% (22.9-37.0) vs 23.0% (13.7-30.2), p < 0.001) and were significantly younger than the no remission group (43 (38-52) vs 52 (44-58) years, p < 0.001). Duration of T2DM was significantly shorter (2 (1-5) vs 5 (3-10) years, p < 0.001) with less insulin requirement and less diabetes-related complications (7.2% vs 19.8%, p < 0.001) and significantly lower median DiaRem score (4.0 (IQR 2.0-6.0) vs 12.0 (IQR 5.0-16.0), p < 0.001). Preoperative body mass index (BMI) had no effect on remission. CONCLUSIONS Our study suggests that diabetes remission after laparoscopic sleeve gastrectomy occurs frequently, and in the 5-year follow-up, it may remain at the level of 46%. We identified the age of patients, duration, and severity of T2DM as factors affecting mid-term diabetes remission. Nevertheless, further well-designed trials are needed to support our findings.
Collapse
Affiliation(s)
- Magdalena Mizera
- 2nd Department of General Surgery, Jagiellonian University Medical College, Jakubowskiego 2 Street, Building H 3rd floor, 30-688, Kraków, Poland
| | - Michał Wysocki
- 2nd Department of General Surgery, Jagiellonian University Medical College, Jakubowskiego 2 Street, Building H 3rd floor, 30-688, Kraków, Poland
| | - Katarzyna Bartosiak
- Department of General, Oncological, Metabolic and Thoracic Surgery, Military Institute of Medicine, Warsaw, Poland
| | - Paula Franczak
- Department of General and Oncological Surgery, Ceynowa Hospital, Wejherowo, Poland
| | - Hady Razak Hady
- 1st Department of General and Endocrin Surgery, Medical University of Białystok, Białystok, Poland
| | - Piotr Kalinowski
- Department of General, Transplant and Liver Surgery, Medical University of Warsaw, Warsaw, Poland
| | - Piotr Myśliwiec
- 1st Department of General and Endocrin Surgery, Medical University of Białystok, Białystok, Poland
| | - Michał Orłowski
- Department of General and Oncological Surgery, Ceynowa Hospital, Wejherowo, Poland
| | - Rafał Paluszkiewicz
- Department of General, Transplant and Liver Surgery, Medical University of Warsaw, Warsaw, Poland
| | - Jerzy Piecuch
- Department of General Surgery, Bariatric Surgery and Emergency Medicine Zabrze, Silesian Medical University, Katowice, Poland
| | - Jacek Szeliga
- Department of General, Gastroenterological and Oncological Surgery CM, Nicolaus Copernicus University, Toruń, Poland
| | - Maciej Walędziak
- Department of General, Oncological, Metabolic and Thoracic Surgery, Military Institute of Medicine, Warsaw, Poland
| | - Piotr Major
- 2nd Department of General Surgery, Jagiellonian University Medical College, Jakubowskiego 2 Street, Building H 3rd floor, 30-688, Kraków, Poland
| | - Michał Pędziwiatr
- 2nd Department of General Surgery, Jagiellonian University Medical College, Jakubowskiego 2 Street, Building H 3rd floor, 30-688, Kraków, Poland.
| |
Collapse
|
94
|
Abstract
Gut dysbiosis in diabetes mellitus is associated with decreased short-chain fatty acids and epithelial barrier disruption. Microbial-derived toxins move across the "leaky gut" and incur systemic inflammation and insulin resistance. In children, gut dysbiosis has been associated with risk of developing type 1 diabetes mellitus. In animal models, the obesity phenotype is transferable via microbiota transplantation. Plant-based low protein diets and certain anti-diabetic drugs have been associated with positive microbiome effects. Clinical trials with prebiotics and probiotics have yielded mixed results. Further investigations are needed to evaluate the gut microbiome as a potential therapeutic target for diabetes prevention and management.
Collapse
Affiliation(s)
- Wei Ling Lau
- Division of Nephrology, University of California, Irvine School of Medicine, Orange, CA.
| | - Tiffany Tran
- Division of Nephrology, University of California, Irvine School of Medicine, Orange, CA
| | - Connie M Rhee
- Harold Simmons Center for Kidney Disease Research and Epidemiology, Division of Nephrology, University of California, Irvine School of Medicine, Orange, CA
| | - Kamyar Kalantar-Zadeh
- Harold Simmons Center for Kidney Disease Research and Epidemiology, Division of Nephrology, University of California, Irvine School of Medicine, Orange, CA
| | - Nosratola D Vaziri
- Division of Nephrology, University of California, Irvine School of Medicine, Orange, CA
| |
Collapse
|
95
|
Helicobacter pylori infection worsens impaired glucose regulation in high-fat diet mice in association with an altered gut microbiome and metabolome. Appl Microbiol Biotechnol 2021; 105:2081-2095. [PMID: 33576881 DOI: 10.1007/s00253-021-11165-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 01/23/2021] [Accepted: 02/03/2021] [Indexed: 12/18/2022]
Abstract
Emerging evidence suggests that Helicobacter pylori infection is associated with metabolic disorders, although the underlying mechanisms are poorly defined. This study aimed to investigate the interaction among H. pylori, a high-fat diet (HFD), and the gut microbiota with glucose regulation and alterations in microbial metabolites. Mice were randomly allocated to H. pylori-infected and noninfected groups fed a chow diet or an HFD. After 4 weeks, two of the HFD groups were given antibiotic cocktails for 8 weeks to eliminate the gut microbiota. The results showed that an HFD significantly promoted increases in body weight, insulin resistance, and glucose intolerance, which were alleviated to normal after antibiotic treatment. H. pylori infection aggravated HFD-induced hyperglycemia, which could not be restored by antibiotics. The perturbation of the gut microbiota was greater in the mice cotreated with H. pylori and an HFD (HFDHp) compared to those administered either H. pylori or an HFD alone, with a loss of diversity, higher abundance of Helicobacter, and lower abundance of Lactobacillus. Furthermore, compared to that of the HFD alone group, the gut microbiota of the HFDHp group was much more susceptible to antibiotic destruction, with extremely lower diversity and dominance of Klebsiella. Fecal metabolome analyses demonstrated that the combination of H. pylori infection and an HFD altered metabolic composition and function, which were linked to glucose dysregulation. H. pylori infection may exacerbate the dysbiosis of the gut microenvironment induced by an HFD, including alterations in the microbiota and metabolites, which weakens the restorative effect of antibiotics and results in the persistence of glucose disorders. KEY POINTS: • The interplay of Hp, HFD, and antibiotics on glucose metabolism was firstly explored. • Hp infection impaired the effect of antibiotics on HFD-induced glucose dysregulation. • Hp infection altered gut microbiota and metabolites which aggravated by HFD.
Collapse
|
96
|
Liu W, Wang C, Xia Y, Xia W, Liu G, Ren C, Gu Y, Li X, Lu P. Elevated plasma trimethylamine-N-oxide levels are associated with diabetic retinopathy. Acta Diabetol 2021; 58:221-229. [PMID: 33064205 PMCID: PMC7889550 DOI: 10.1007/s00592-020-01610-9] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 09/23/2020] [Indexed: 01/11/2023]
Abstract
AIMS To determine the relationship between plasma levels of trimethylamine-N-oxide (TMAO) and odds of diabetic retinopathy (DR). METHODS A cross-sectional study was conducted. Blood samples were obtained from 122 type 2 diabetes mellitus (T2DM) patients with or without DR. Multivariable logistic regression analyses were performed to identify the association between plasma TMAO and DR. The diagnostic value of plasma TMAO was assessed by the area under the receiver operating characteristic curve (AUROC) and integrated discrimination improvement (IDI). RESULTS In the T2DM patients, plasma levels of TMAO were significantly higher in patients with DR compared with those without DR (P = 0.001). As logarithmic (ln) transformation of TMAO increased per standard deviation (SD), there was higher probability to have DR [odds ratio (OR) = 2.31; P = 0.005]. As ln-transformed TMAO increased per SD, the severity of DR was more likely to get worse (OR = 2.05; P = 0.004). In the diagnostic model, the addition of TMAO contributed to the improvement in AUROC from 0.646 to 0.734 (P = 0.043), and the IDI was 10.7% (P < 0.001). CONCLUSION Elevated levels of plasma TMAO were associated with higher odds and worse severity of DR in T2DM patients, and further investigation is required for the causality of this association.
Collapse
Affiliation(s)
- Weiming Liu
- Department of Ophthalmology, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, 215006, People's Republic of China
| | - Chunmin Wang
- Suzhou Center for Disease Control and Prevention, 72 Sanxiang Road, Suzhou, 215004, People's Republic of China
| | - Yu Xia
- Suzhou Center for Disease Control and Prevention, 72 Sanxiang Road, Suzhou, 215004, People's Republic of China
| | - Wei Xia
- Department of Ophthalmology, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, 215006, People's Republic of China
| | - Gaoqin Liu
- Department of Ophthalmology, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, 215006, People's Republic of China
- Jiangsu Key Laboratory of Clinical Immunology, Soochow University, 708 Renmin Road, Suzhou, 215006, People's Republic of China
| | - Chi Ren
- Department of Ophthalmology, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, 215006, People's Republic of China
| | - Yu Gu
- Department of Ophthalmology, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, 215006, People's Republic of China
| | - Xin Li
- Department of Ophthalmology, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, 215006, People's Republic of China
| | - Peirong Lu
- Department of Ophthalmology, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, 215006, People's Republic of China.
- Jiangsu Key Laboratory of Clinical Immunology, Soochow University, 708 Renmin Road, Suzhou, 215006, People's Republic of China.
| |
Collapse
|
97
|
Ding Y, Xu T, Mao G, Chen Y, Qiu X, Yang L, Zhao T, Xu X, Feng W, Wu X. Di-(2-ethylhexyl) phthalate-induced hepatotoxicity exacerbated type 2 diabetes mellitus (T2DM) in female pubertal T2DM mice. Food Chem Toxicol 2021; 149:112003. [PMID: 33484791 DOI: 10.1016/j.fct.2021.112003] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Revised: 01/10/2021] [Accepted: 01/14/2021] [Indexed: 12/25/2022]
Abstract
Di-(2-ethylhexyl) phthalate (DEHP), one of the most common plasticizers, is closely associated with a high prevalence of pubertal type 2 diabetes mellitus (T2DM). Numerous studies have indicated that DEHP-induced metabolic toxicity exhibits sex differences. In this study, the sex differences in the effect of DEHP on pubertal T2DM (P-T2DM) mice, the susceptibility of female P-T2DM mice to DEHP-induced metabolic toxicity, and the underlying mechanisms were investigated. DEHP exposure exacerbated metabolic disorders in female P-T2DM mice. Factorial analysis showed that female P-T2DM mice were more sensitive to DEHP exposure than female normal mice and male P-T2DM mice. It was determined by integrated biomarker response results that female P-T2DM mice had higher risks of developing T2DM, metabolic disorders, cardiovascular events and hepatotoxicity than male P-T2DM mice. Moreover, hepatic transcriptome analysis emphasized the effects of DEHP on the expression of oxidative injury- and metabolic function-related genes. Western blotting indicated that DEHP activated Jun-N-terminal kinase (JNK) and impaired insulin sensitivity in the liver, which were the main causes of DEHP-exacerbated metabolic abnormalities in P-T2DM mice. Our study revealed that compared with normal mice and male P-T2DM mice, female P-T2DM mice tend to suffer from increased DEHP-induced metabolic toxicity, which was primarily attributed to hepatotoxicity.
Collapse
Affiliation(s)
- Yangyang Ding
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Tong Xu
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Guanghua Mao
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Yao Chen
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, Jiangsu, China; Institute of Environmental health and Ecological Security, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Xuchun Qiu
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, Jiangsu, China; Institute of Environmental health and Ecological Security, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Liuqing Yang
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Ting Zhao
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Xiaoxiao Xu
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Weiwei Feng
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, Jiangsu, China; Institute of Environmental health and Ecological Security, Jiangsu University, Zhenjiang, Jiangsu, China.
| | - Xiangyang Wu
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, Jiangsu, China; Institute of Environmental health and Ecological Security, Jiangsu University, Zhenjiang, Jiangsu, China.
| |
Collapse
|
98
|
Wu T, Shen M, Yu Q, Chen Y, Chen X, Yang J, Huang L, Guo X, Xie J. Cyclocarya paliurus polysaccharide improves metabolic function of gut microbiota by regulating short-chain fatty acids and gut microbiota composition. Food Res Int 2021; 141:110119. [PMID: 33641986 DOI: 10.1016/j.foodres.2021.110119] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 01/03/2021] [Accepted: 01/03/2021] [Indexed: 01/16/2023]
Abstract
The purpose of this paper was to investigate the effects of Cyclocarya paliurus polysaccharide (CP) on gut microbiota composition and predict metabolic function in healthy mice. Healthy Kunming mice were continuously gavaged with CP for 20 days, and mouse feces were collected for analysis. The results showed that CP could remarkably increase the short-chain fatty acids (SCFAs; acetic acid, propionic acid, butyric acid, and valeric acid) in the feces of healthy mice in a dose-dependent matter. 16S rRNA showed that 200 mg/kg body weight CP was effective in increasing diversity of the gut microbiota in healthy mice and affected the relative abundance of specific bacteria. Lachnospiraceae, Clostridiales, and Clostridia were identified as the phenotypic biomarkers of the CP-H group compared with the normal control group. In addition, PICRUSt2 showed that starch and sucrose metabolism, amino acid metabolism, glycerolipid metabolism, pantothenate and CoA biosynthesis, biosynthesis of unsaturated fatty acids, and C5-branched dibasic acid metabolism are the primary enriched phenotypic KEGG pathways in the CP-H group. These findings suggested that early CP intervention could enhance the metabolic function of gut microbiota by increasing the release of SCFAs and altering the composition of gut microbiota.
Collapse
Affiliation(s)
- Ting Wu
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
| | - Mingyue Shen
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China.
| | - Qiang Yu
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
| | - Yi Chen
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
| | - Xianxiang Chen
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
| | - Jun Yang
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
| | - Lixin Huang
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
| | - Xiaomei Guo
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
| | - Jianhua Xie
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China.
| |
Collapse
|
99
|
Gut Microbiota-Derived Metabolites in the Development of Diseases. ACTA ACUST UNITED AC 2021; 2021:6658674. [PMID: 33505541 PMCID: PMC7815404 DOI: 10.1155/2021/6658674] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 12/12/2020] [Accepted: 12/30/2020] [Indexed: 02/08/2023]
Abstract
Gut microbiota is increasingly recognized as a metabolic organ essential for human health. Compelling evidences show a variety set of links between diets and gut microbial homeostasis. Changes in gut microbial flora would probably contribute to the development of certain diseases such as diabetes, heart disease, allergy, and psychiatric diseases. In addition to the composition of gut microbiota, the metabolites derived from gut microbiota have emerged as a pivotal regulator in diseases development. Since high-fat and high-protein diets substantially affect the gut microbial ecology and human health, the current review summarizes the gut microbiota-derived metabolites such as short-chain fatty acids (SCFAs), amino acids, and their derivatives and highlights the mechanisms underlying the host responses to these bioactive substances.
Collapse
|
100
|
Gao X, Du L, Randell E, Zhang H, Li K, Li D. Effect of different phosphatidylcholines on high fat diet-induced insulin resistance in mice. Food Funct 2021; 12:1516-1528. [DOI: 10.1039/d0fo02632h] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
In this study, we systematically investigated the effect of different phosphatidylcholines on high fat diet-induced insulin resistance in mice.
Collapse
Affiliation(s)
- Xiang Gao
- College of Life Sciences
- Qingdao University
- Qingdao 266071
- China
- Institute of Nutrition & Health
| | - Lei Du
- Department of Nutrition and Food Hygiene
- School of Public Health
- Cheeloo College of Medicine
- Shandong University
- No. 44 Wenhuaxi Road, Jinan
| | - Edward Randell
- Faculty of Medicine
- Memorial University
- 300 Prince Philip Drive
- St. John’s A1B3V6
- Canada
| | - Huijun Zhang
- Institute of Nutrition & Health
- College of Public Health
- Qingdao University
- No. 308 Ningxia Road
- China
| | - Kelei Li
- Institute of Nutrition & Health
- College of Public Health
- Qingdao University
- No. 308 Ningxia Road
- China
| | - Duo Li
- Institute of Nutrition & Health
- College of Public Health
- Qingdao University
- No. 308 Ningxia Road
- China
| |
Collapse
|