51
|
Žilionytė K, Bagdzevičiūtė U, Mlynska A, Urbštaitė E, Paberalė E, Dobrovolskienė N, Krasko JA, Pašukonienė V. Functional antigen processing and presentation mechanism as a prerequisite factor of response to treatment with dendritic cell vaccines and anti-PD-1 in preclinical murine LLC1 and GL261 tumor models. Cancer Immunol Immunother 2022; 71:2691-2700. [PMID: 35364740 DOI: 10.1007/s00262-022-03190-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 03/14/2022] [Indexed: 12/15/2022]
Abstract
Low efficacy of cancer immunotherapy encourages the search for possible resistance mechanisms and biomarkers that would predict the outcome of immunotherapy in oncology patients. Most cancer immunotherapies act on T lymphocytes, which can specifically recognize and kill tumor cells. However, for immunotherapy-activated T lymphocytes to be able to perform these functions, proper tumor Ag processing and surface presentation by MHC-I molecule is important. Knowing the significance of Ag processing and presentation mechanism (APM) in anti-tumor immune response, we sought to evaluate how the functionality of APM affects tumor immune microenvironment and response to dendritic cell vaccines (DCV) and anti-PD-1. By comparing murine Lewis lung carcinoma LLC1 and glioma GL261 models a decreased expression of APM-related genes, such as Psmb8, Psmb9, Psmb10, Tap1, Tap2, Erap1, B2m, and low expression of surface MHC-I molecule were found in LLC1 cells. Changes in APM-related gene expression affected the ability of T lymphocytes to recognize and kill LLC1 cells, resulting in the absence of cytotoxic immune response and resistance to DCV and anti-PD-1. An emerging cytotoxic immune reaction and sensitivity to DCV and anti-PD-1 were observed in GL261 tumors where APM remained functional. This study demonstrates that one of the possible mechanisms of tumor resistance to immunotherapy is a dysfunctional APM and reveals a predictive potential of APM-related gene set expression for the personalization of dendritic cell vaccine and anti-PD-1 therapies in murine pre-treated tumors.
Collapse
Affiliation(s)
- Karolina Žilionytė
- Laboratory of Immunology, National Cancer Institute, Vilnius, Lithuania. .,Life Sciences Center, Vilnius University, Vilnius, Lithuania.
| | - Ugnė Bagdzevičiūtė
- Laboratory of Immunology, National Cancer Institute, Vilnius, Lithuania.,Department of Chemistry and Bioengineering, Vilnius Gediminas Technical University, Vilnius, Lithuania
| | - Agata Mlynska
- Laboratory of Immunology, National Cancer Institute, Vilnius, Lithuania.,Department of Chemistry and Bioengineering, Vilnius Gediminas Technical University, Vilnius, Lithuania
| | | | - Emilija Paberalė
- Laboratory of Immunology, National Cancer Institute, Vilnius, Lithuania.,Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | | | - Jan Aleksander Krasko
- Laboratory of Immunology, National Cancer Institute, Vilnius, Lithuania.,Department of Chemistry and Bioengineering, Vilnius Gediminas Technical University, Vilnius, Lithuania
| | - Vita Pašukonienė
- Laboratory of Immunology, National Cancer Institute, Vilnius, Lithuania.,Department of Chemistry and Bioengineering, Vilnius Gediminas Technical University, Vilnius, Lithuania
| |
Collapse
|
52
|
Chen R, Zhang H, Wu W, Li S, Wang Z, Dai Z, Liu Z, Zhang J, Luo P, Xia Z, Cheng Q. Antigen Presentation Machinery Signature-Derived CALR Mediates Migration, Polarization of Macrophages in Glioma and Predicts Immunotherapy Response. Front Immunol 2022; 13:833792. [PMID: 35418980 PMCID: PMC8995475 DOI: 10.3389/fimmu.2022.833792] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Accepted: 02/17/2022] [Indexed: 11/13/2022] Open
Abstract
Immunogenicity, influenced by tumor antigenicity and antigen presenting efficiency, critically determines the effectiveness of immune checkpoint inhibitors. The role of immunogenicity has not been fully elucidated in gliomas. In this study, a large-scale bioinformatics analysis was performed to analyze the prognostic value and predictive value of antigen presentation machinery (APM) signature in gliomas. ssGSEA algorithm was used for development of APM signature and LASSO regression analysis was used for construction of APM signature-based risk score. APM signature and risk score showed favorable performance in stratifying survival and predicting tumorigenic factors of glioma patients. APM signature and risk score were also associated with different genomic features in both training cohort TCGA and validating cohort CGGA. Furthermore, APM signature-based risk score was independently validated in three external cohorts and managed to predict immunotherapy response. A prognostic nomogram was constructed based on risk score. Risk score-derived CALR was found to mediate the invasion and polarization of macrophages based on the coculture of HMC3 and U251 cells. CALR could significantly predict immunotherapy response. In conclusion, APM signature and APM signature-based risk score could help promote the clinical management of gliomas.
Collapse
Affiliation(s)
- Rui Chen
- Department of Neurosurgery, Affiliated Nanhua Hospital, University of South China, Hengyang, China
| | - Hao Zhang
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Wantao Wu
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, China
| | - Shuyu Li
- Department of Thyroid and Breast Surgery, Tongji Hospital, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, China
| | - Zeyu Wang
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Ziyu Dai
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Zaoqu Liu
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Jian Zhang
- Department of Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Peng Luo
- Department of Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Zhiwei Xia
- Department of Neurology, Hunan Aerospace Hospital, Changsa, China
| | - Quan Cheng
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
53
|
de Nonneville A, Finetti P, Picard M, Monneur A, Pantaleo MA, Astolfi A, Ostrowski J, Birnbaum D, Mamessier E, Bertucci F. CSPG4 Expression in GIST Is Associated with Better Prognosis and Strong Cytotoxic Immune Response. Cancers (Basel) 2022; 14:cancers14051306. [PMID: 35267618 PMCID: PMC8909029 DOI: 10.3390/cancers14051306] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 02/28/2022] [Accepted: 03/02/2022] [Indexed: 12/12/2022] Open
Abstract
Simple Summary Gastrointestinal stromal tumors (GIST) are the most frequent sarcomas of the gastrointestinal tract. Identification of novel prognostic and/or therapeutic targets is a major issue to overcome tyrosine kinase inhibitors resistances. CSPG4, a cell surface proteoglycan, emerged as a potential therapeutic target for immune therapy in different cancers, including sarcomas. CSPG4 expression has never been studied in GIST. In this work we analyzed CSPG4 mRNA expression in a large series of clinical GIST samples given the scarcity of disease (n = 309 patients). We find that high CSPG4 expression is independently associated with disease-free survival, and with an immune landscape favorable to induce strong cytotoxic immune response after NK cell stimulation. Our results suggest the potential value of CSPG4-specific chimeric antigen receptor-redirected cytokine-induced killer lymphocytes treatment in GIST, notably “CSPG4-high” tumors, and calls for preclinical validation, drug testing in vivo, then in clinical trials. Abstract The treatment of gastrointestinal stromal tumors (GIST) must be improved through the development of more reliable prognostic factors and of therapies able to overcome imatinib resistance. The immune system represents an attractive tool. CSPG4, a cell surface proteoglycan, emerged as a potential therapeutic target for immune therapy in different cancers, including cell therapy based on CSPG4-specific chimeric antigen receptor (CAR)-redirected cytokine-induced killer lymphocytes (CSPG4-CAR.CIKs) in sarcomas. CSPG4 expression has never been studied in GIST. We analyzed CSPG4 mRNA expression data of 309 clinical GIST samples profiled using DNA microarrays and searched for correlations with clinicopathological and immune features. CSPG4 expression, higher in tumors than normal digestive tissues, was heterogeneous across tumors. High expression was associated with AFIP low-risk, gastric site, and localized stage, and independently with longer postoperative disease-free survival (DFS) in localized stage. The correlations between CSPG4 expression and immune signatures highlighted a higher anti-tumor immune response in “CSPG4-high” tumors, relying on both the adaptive and innate immune system, in which the boost of NK cells by CSPG4-CAR.CIKs might be instrumental, eventually combined with immune checkpoint inhibitors. In conclusion, high CSPG4 expression in GIST is associated with better DFS and offers an immune environment favorable to a vulnerability to CAR.CIKs.
Collapse
Affiliation(s)
- Alexandre de Nonneville
- Predictive Oncology Laboratory, Equipe Labellisée Ligue Nationale Contre Le Cancer, Centre de Recherche en Cancérologie de Marseille (CRCM), Institut Paoli-Calmettes, Inserm UMR1068, CNRS UMR7258, Aix-Marseille University, 13009 Marseille, France; (A.d.N.); (P.F.); (M.P.); (D.B.); (E.M.)
- Department of Medical Oncology, Institut Paoli-Calmettes, Aix-Marseille University, CNRS, INSERM, 13009 Marseille, France;
| | - Pascal Finetti
- Predictive Oncology Laboratory, Equipe Labellisée Ligue Nationale Contre Le Cancer, Centre de Recherche en Cancérologie de Marseille (CRCM), Institut Paoli-Calmettes, Inserm UMR1068, CNRS UMR7258, Aix-Marseille University, 13009 Marseille, France; (A.d.N.); (P.F.); (M.P.); (D.B.); (E.M.)
| | - Maelle Picard
- Predictive Oncology Laboratory, Equipe Labellisée Ligue Nationale Contre Le Cancer, Centre de Recherche en Cancérologie de Marseille (CRCM), Institut Paoli-Calmettes, Inserm UMR1068, CNRS UMR7258, Aix-Marseille University, 13009 Marseille, France; (A.d.N.); (P.F.); (M.P.); (D.B.); (E.M.)
| | - Audrey Monneur
- Department of Medical Oncology, Institut Paoli-Calmettes, Aix-Marseille University, CNRS, INSERM, 13009 Marseille, France;
| | - Maria Abbondanza Pantaleo
- Department of Specialized, Experimental and Diagnostic Medicine, Sant’Orsola-Malpighi Hospital, University of Bologna, 40138 Bologna, Italy; (M.A.P.); (A.A.)
| | - Annalisa Astolfi
- Department of Specialized, Experimental and Diagnostic Medicine, Sant’Orsola-Malpighi Hospital, University of Bologna, 40138 Bologna, Italy; (M.A.P.); (A.A.)
| | - Jerzy Ostrowski
- Department of Gastroenterology, Hepatology and Clinical Oncology, Medical Center of Postgraduate Education, 01-813 Warsaw, Poland;
- Department of Genetics, Maria Sklodowska-Curie National Institute of Oncology, 02-781 Warsaw, Poland
| | - Daniel Birnbaum
- Predictive Oncology Laboratory, Equipe Labellisée Ligue Nationale Contre Le Cancer, Centre de Recherche en Cancérologie de Marseille (CRCM), Institut Paoli-Calmettes, Inserm UMR1068, CNRS UMR7258, Aix-Marseille University, 13009 Marseille, France; (A.d.N.); (P.F.); (M.P.); (D.B.); (E.M.)
| | - Emilie Mamessier
- Predictive Oncology Laboratory, Equipe Labellisée Ligue Nationale Contre Le Cancer, Centre de Recherche en Cancérologie de Marseille (CRCM), Institut Paoli-Calmettes, Inserm UMR1068, CNRS UMR7258, Aix-Marseille University, 13009 Marseille, France; (A.d.N.); (P.F.); (M.P.); (D.B.); (E.M.)
| | - François Bertucci
- Predictive Oncology Laboratory, Equipe Labellisée Ligue Nationale Contre Le Cancer, Centre de Recherche en Cancérologie de Marseille (CRCM), Institut Paoli-Calmettes, Inserm UMR1068, CNRS UMR7258, Aix-Marseille University, 13009 Marseille, France; (A.d.N.); (P.F.); (M.P.); (D.B.); (E.M.)
- Department of Medical Oncology, Institut Paoli-Calmettes, Aix-Marseille University, CNRS, INSERM, 13009 Marseille, France;
- Correspondence: ; Tel.: +33-4-91-22-35-37; Fax: +33-4-91-22-36-70
| |
Collapse
|
54
|
Shum B, Larkin J, Turajlic S. Predictive biomarkers for response to immune checkpoint inhibition. Semin Cancer Biol 2022; 79:4-17. [PMID: 33819567 DOI: 10.1016/j.semcancer.2021.03.036] [Citation(s) in RCA: 70] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 03/21/2021] [Accepted: 03/29/2021] [Indexed: 02/08/2023]
Abstract
Immune checkpoint inhibitors have transformed the prognosis and treatment paradigm of many cancer types, through the potential for durable responses. However, the majority of patients still do not benefit. Response to checkpoint inhibition is determined by dynamic host, tumour and tumour microenvironment factors that display spatial and temporal variability, but our understanding of these interactions is incomplete. Through investigating biomarkers of resistance and response, opportunities arise to discover new therapeutic targets and shape personalised treatment strategies. Here we review approved and emerging biomarkers of response to immune checkpoint inhibitors, in particular the recent rapid progress in host and tumour genomics. It is unlikely that a single biomarker will precisely predict response, but multivariate multiomic markers may provide a balanced assessment of these factors and more accurately identify patients who will benefit. Further efforts are required to translate these groundbreaking discoveries into novel therapeutics and biomarker driven clinical trials, to provide durable treatment response to a greater population of patients.
Collapse
Affiliation(s)
- Benjamin Shum
- Renal and Skin Units, The Royal Marsden Hospital, London SW3 6JJ, UK; Cancer Dynamics Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - James Larkin
- Renal and Skin Units, The Royal Marsden Hospital, London SW3 6JJ, UK
| | - Samra Turajlic
- Renal and Skin Units, The Royal Marsden Hospital, London SW3 6JJ, UK; Cancer Dynamics Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK.
| |
Collapse
|
55
|
Bertucci F, Niziers V, de Nonneville A, Finetti P, Mescam L, Mir O, Italiano A, Le Cesne A, Blay JY, Ceccarelli M, Bedognetti D, Birnbaum D, Mamessier E. Immunologic constant of rejection signature is prognostic in soft-tissue sarcoma and refines the CINSARC signature. J Immunother Cancer 2022; 10:jitc-2021-003687. [PMID: 35017155 PMCID: PMC8753443 DOI: 10.1136/jitc-2021-003687] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/01/2021] [Indexed: 02/01/2023] Open
Abstract
BACKGROUND Soft-tissue sarcomas (STSs) are heterogeneous and aggressive tumors, with high metastatic risk. The immunologic constant of rejection (ICR) 20-gene signature is a signature of cytotoxic immune response. We hypothesized that ICR might improve the prognostic assessment of early-stage STS. METHODS We retrospectively applied ICR to 1455 non-metastatic STS and searched for correlations between ICR classes and clinicopathological and biological variables, including metastasis-free survival (MFS). RESULTS Thirty-four per cent of tumors were classified as ICR1, 27% ICR2, 24% ICR3, and 15% ICR4. These classes were associated with patients' age, pathological type, and tumor depth, and an enrichment from ICR1 to ICR4 of quantitative/qualitative scores of immune response. ICR1 class was associated with a 59% increased risk of metastatic relapse when compared with ICR2-4 class. In multivariate analysis, ICR classification remained associated with MFS, as well as pathological type and Complexity Index in Sarcomas (CINSARC) classification, suggesting independent prognostic value. A prognostic clinicogenomic model, including the three variables, was built in a learning set (n=339) and validated in an independent set (n=339), showing greater prognostic precision than each variable alone or in doublet. Finally, connectivity mapping analysis identified drug classes potentially able to reverse the expression profile of poor-prognosis tumors, such as chemotherapy and targeted therapies. CONCLUSION ICR signature is independently associated with postoperative MFS in early-stage STS, independently from other prognostic features, including CINSARC. We built a robust prognostic clinicogenomic model integrating ICR, CINSARC, and pathological type, and suggested differential vulnerability of each prognostic group to different systemic therapies.
Collapse
Affiliation(s)
- Francois Bertucci
- Laboratory of Predictive Oncology, Centre de Recherche en Cancérologie de Marseille (CRCM), Institut Paoli-Calmettes, Aix-Marseille Université, INSERM UMR1068, CNRS UMR725, Marseille, France .,Department of Medical Oncology, Institut Paoli-Calmettes, Marseille, France.,French Sarcoma Group, Lyon, France
| | - Vincent Niziers
- Laboratory of Predictive Oncology, Centre de Recherche en Cancérologie de Marseille (CRCM), Institut Paoli-Calmettes, Aix-Marseille Université, INSERM UMR1068, CNRS UMR725, Marseille, France.,Department of Surgery, Institut Paoli-Calmettes, Marseille, France
| | - Alexandre de Nonneville
- Laboratory of Predictive Oncology, Centre de Recherche en Cancérologie de Marseille (CRCM), Institut Paoli-Calmettes, Aix-Marseille Université, INSERM UMR1068, CNRS UMR725, Marseille, France.,Department of Medical Oncology, Institut Paoli-Calmettes, Marseille, France
| | - Pascal Finetti
- Laboratory of Predictive Oncology, Centre de Recherche en Cancérologie de Marseille (CRCM), Institut Paoli-Calmettes, Aix-Marseille Université, INSERM UMR1068, CNRS UMR725, Marseille, France
| | - Léna Mescam
- French Sarcoma Group, Lyon, France.,Department of Pathology, Institut Paoli-Calmettes, Marseille, France
| | - Olivier Mir
- French Sarcoma Group, Lyon, France.,Department of Medical Oncology, Gustave Roussy, Villejuif, France
| | - Antoine Italiano
- French Sarcoma Group, Lyon, France.,Department of Medical Oncology, Institut Bergonie, Bordeaux, France
| | - Axel Le Cesne
- French Sarcoma Group, Lyon, France.,Department of Medical Oncology, Gustave Roussy, Villejuif, France
| | - Jean-Yves Blay
- French Sarcoma Group, Lyon, France.,Department of Medical Oncology, Centre Leon Berard, Lyon, France
| | - Michele Ceccarelli
- DIETI, University of Naples Federico II Faculty of Engineering, Naples, Italy
| | - Davide Bedognetti
- Cancer Research, Sidra Medicine, Doha, Qatar.,Department of Internal Medicine and Medical Specialties, University of Genova, Genova, Italy
| | - Daniel Birnbaum
- Laboratory of Predictive Oncology, Centre de Recherche en Cancérologie de Marseille (CRCM), Institut Paoli-Calmettes, Aix-Marseille Université, INSERM UMR1068, CNRS UMR725, Marseille, France
| | - Emilie Mamessier
- Laboratory of Predictive Oncology, Centre de Recherche en Cancérologie de Marseille (CRCM), Institut Paoli-Calmettes, Aix-Marseille Université, INSERM UMR1068, CNRS UMR725, Marseille, France
| |
Collapse
|
56
|
Deboever N, McGrail DJ, Lee Y, Tran HT, Mitchell KG, Antonoff MB, Hofstetter WL, Mehran RJ, Rice DC, Roth JA, Swisher SG, Vaporciyan AA, Walsh GL, Bernatchez C, Vailati Negrao M, Zhang J, Wistuba II, Heymach JV, Cascone T, Gibbons DL, Haymaker CL, Sepesi B. Surgical approach does not influence changes in circulating immune cell populations following lung cancer resection. Lung Cancer 2022; 164:69-75. [PMID: 35038676 DOI: 10.1016/j.lungcan.2022.01.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 12/27/2021] [Accepted: 01/02/2022] [Indexed: 10/19/2022]
Abstract
INTRODUCTION The multimodal management of operable non-small cell lung cancer (NSCLC) continues to evolve rapidly. The immune milieu allowing for immunotherapeutic benefit can be affected by multiple parameters including clinicopathologic and genetic. Surgery induced physiological changes has received attention for modulating and affecting post-operative oncotaxis and immunosuppression. Here, we sought to investigate how surgical stress influences phenotype of peripheral blood mononuclear cells (PBMCs) in patients with NSCLC who underwent lobectomy. METHODS Blood was prospectively collected from patients with Stage IA-IIIA NSCLC undergoing lung resection between 2016 and 2018. Samples were obtained pre-operatively, 24 h and 4 weeks after surgery. PBMCs were isolated and subject to high-dimensional flow cytometry, analyzing a total of 115 cell populations with a focus on myeloid cells, T cell activation, and T cell trafficking. We further evaluated how surgical approach influenced post-operative PBMC changes, whether the operation was conducted in an open fashion with thoracotomy, or with minimally invasive Video Assisted Thoracoscopic Surgery (VATS). RESULTS A total of 76 patients met the inclusion criteria (Open n = 55, VATS n = 21). Surgical resection coincided with a decrease in T lymphocyte populations, including total CD3+ T cells, CD8+ T cells, and T effector memory cells, as well as an increase in monocytic myeloid-derived suppressor cells (mMDSC). Post-operative changes in PBMC populations were resolved after 4 weeks. Surgical-induced changes in immune populations were equivalent in patients undergoing open thoracotomy and VATS. DISCUSSION Surgical stress resulted in transient reduction in T cells and T effector memory cells, and increase of mMDSC following resection in NSCLC patients. The immune profile modulation was similar regardless of surgical approach. These findings suggest that surgical approach does not seem to affect mononuclear cell lines obtained from peripheral blood. Thus, the decision regarding surgical approach should be patient centered, rather than based on post-operative treatment response optimization.
Collapse
Affiliation(s)
- Nathaniel Deboever
- Department of Thoracic and Cardiovascular Surgery, University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Daniel J McGrail
- Department of Bioinformatics and Computational Biology, University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Younghee Lee
- Department of Translational Molecular Pathology, University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Hai T Tran
- Department of Thoracic/Head and Neck Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Kyle G Mitchell
- Department of Thoracic and Cardiovascular Surgery, University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Mara B Antonoff
- Department of Thoracic and Cardiovascular Surgery, University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Wayne L Hofstetter
- Department of Thoracic and Cardiovascular Surgery, University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Reza J Mehran
- Department of Thoracic and Cardiovascular Surgery, University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - David C Rice
- Department of Thoracic and Cardiovascular Surgery, University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Jack A Roth
- Department of Thoracic and Cardiovascular Surgery, University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Stephen G Swisher
- Department of Thoracic and Cardiovascular Surgery, University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Ara A Vaporciyan
- Department of Thoracic and Cardiovascular Surgery, University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Garrett L Walsh
- Department of Thoracic and Cardiovascular Surgery, University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Chantale Bernatchez
- Department of Melanoma Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Marcelo Vailati Negrao
- Department of Thoracic/Head and Neck Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Jianjun Zhang
- Department of Thoracic/Head and Neck Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Ignacio I Wistuba
- Department of Translational Molecular Pathology, University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - John V Heymach
- Department of Thoracic/Head and Neck Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Tina Cascone
- Department of Thoracic/Head and Neck Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Don L Gibbons
- Department of Thoracic/Head and Neck Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, United States; Department of Molecular and Cellular Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Cara L Haymaker
- Department of Translational Molecular Pathology, University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Boris Sepesi
- Department of Thoracic and Cardiovascular Surgery, University of Texas MD Anderson Cancer Center, Houston, TX, United States
| |
Collapse
|
57
|
Li Z, Chen Y, Zulipikaer M, Xu C, Fu J, Deng T, Hao LB, Chen JY. Identification of PSMB9 and CXCL13 as Immune-related Diagnostic Markers for Rheumatoid Arthritis by Machine Learning. Curr Pharm Des 2022; 28:2842-2854. [PMID: 36045515 DOI: 10.2174/1381612828666220831085608] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 07/28/2022] [Indexed: 11/22/2022]
Abstract
BACKGROUND Rheumatoid arthritis (RA) is a chronic inflammatory disease that causes significant physical and psychological damage. Although researchers have gained a better understanding of the mechanisms of RA, there are still difficulties in diagnosing and treating RA. We applied a data mining approach based on machine learning algorithms to explore new RA biomarkers and local immune cell status. METHODS We extracted six RA synovial microarray datasets from the GEO database and used bioinformatics to obtain differentially expressed genes (DEGs) and associated functional enrichment pathways. In addition, we identified potential RA diagnostic markers by machine learning strategies and validated their diagnostic ability for early RA and established RA, respectively. Next, CIBERSORT and ssGSEA analyses explored alterations in synovium-infiltrating immune cell subpopulations and immune cell functions in the RA synovium. Moreover, we examined the correlation between biomarkers and immune cells to understand their immune-related molecular mechanisms in the pathogenesis of RA. RESULTS We obtained 373 DEGs (232 upregulated and 141 downregulated genes) between RA and healthy controls. Enrichment analysis revealed a robust correlation between RA and immune response. Comprehensive analysis indicated PSMB9, CXCL13, and LRRC15 were possible potential markers. PSMB9 (AUC: 0.908, 95% CI: 0.853-0.954) and CXCL13 (AUC: 0.890, 95% CI: 0.836-0.937) also showed great diagnostic ability in validation dataset. Infiltrations of 16 kinds of the immune cell were changed, with macrophages being the predominant infiltrating cell type. Most proinflammatory pathways in immune cell function were activated in RA. The correlation analysis found the strongest positive correlation between CXCL13 and plasma cells, PSMB9, and macrophage M1. CONCLUSION There is a robust correlation between RA and local immune response. The immune-related CXCL13 and PSMB9 were identified as potential diagnostic markers for RA based on a machine learning approach. Further in-depth exploration of the target genes and associated immune cells can deepen the understanding of RA pathophysiological processes and provide new insights into diagnosing and treating RA.
Collapse
Affiliation(s)
- Zhuo Li
- School of Medicine, Nankai University, Tianjin, China
- Department of Orthopedic Surgery, Chinese PLA General Hospital, Beijing 100853, China
| | - Yue Chen
- Department of Orthopedic Surgery, Chinese PLA General Hospital, Beijing 100853, China
| | - Maimaiti Zulipikaer
- Department of Orthopedic Surgery, Chinese PLA General Hospital, Beijing 100853, China
| | - Chi Xu
- Department of Orthopedic Surgery, Chinese PLA General Hospital, Beijing 100853, China
| | - Jun Fu
- Department of Orthopedic Surgery, Chinese PLA General Hospital, Beijing 100853, China
| | - Tao Deng
- Department of Orthopedic Surgery, Chinese PLA General Hospital, Beijing 100853, China
| | - Li-Bo Hao
- Department of Orthopedic Surgery, Chinese PLA General Hospital, Beijing 100853, China
| | - Ji-Ying Chen
- Department of Orthopedic Surgery, Chinese PLA General Hospital, Beijing 100853, China
| |
Collapse
|
58
|
Tripathi SC, Vedpathak D, Ostrin EJ. The Functional and Mechanistic Roles of Immunoproteasome Subunits in Cancer. Cells 2021; 10:cells10123587. [PMID: 34944095 PMCID: PMC8700164 DOI: 10.3390/cells10123587] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Revised: 12/09/2021] [Accepted: 12/13/2021] [Indexed: 12/15/2022] Open
Abstract
Cell-mediated immunity is driven by antigenic peptide presentation on major histocompatibility complex (MHC) molecules. Specialized proteasome complexes called immunoproteasomes process viral, bacterial, and tumor antigens for presentation on MHC class I molecules, which can induce CD8 T cells to mount effective immune responses. Immunoproteasomes are distinguished by three subunits that alter the catalytic activity of the proteasome and are inducible by inflammatory stimuli such as interferon-γ (IFN-γ). This inducible activity places them in central roles in cancer, autoimmunity, and inflammation. While accelerated proteasomal degradation is an important tumorigenic mechanism deployed by several cancers, there is some ambiguity regarding the role of immunoproteasome induction in neoplastic transformation. Understanding the mechanistic and functional relevance of the immunoproteasome provides essential insights into developing targeted therapies, including overcoming resistance to standard proteasome inhibition and immunomodulation of the tumor microenvironment. In this review, we discuss the roles of the immunoproteasome in different cancers.
Collapse
Affiliation(s)
- Satyendra Chandra Tripathi
- Department of Biochemistry, All India Institute of Medical Sciences Nagpur, Nagpur 441108, MH, India;
- Correspondence: (S.C.T.); (E.J.O.)
| | - Disha Vedpathak
- Department of Biochemistry, All India Institute of Medical Sciences Nagpur, Nagpur 441108, MH, India;
| | - Edwin Justin Ostrin
- Department of General Internal Medicine, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
- Correspondence: (S.C.T.); (E.J.O.)
| |
Collapse
|
59
|
Chen H, Yang A, Wu C, Lin J, Wang X, Peng M, Li D, Zhang T, Zhao Q, He X. Identification of a detection panel for post-transplant virus infection through integrated analysis of non-coding RNAs in peripheral blood. ARTIFICIAL CELLS, NANOMEDICINE, AND BIOTECHNOLOGY 2021; 49:691-698. [PMID: 34882040 DOI: 10.1080/21691401.2021.2011304] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Viral infection seriously affects the survival and life quality of transplanted patients without an accurate diagnosis during the early stage. Herein, we aimed to develop a novel diagnostic method based on non-coding RNAs expression in peripheral blood. An immunosuppressive mouse model of viral infection after transplantation was established. Differentially expressed non-coding RNAs were distinguished by microarray analyses in the virus-infected group. After homology analysis, 46 miRNAs and 24 lncRNAs were further verified by qRT-PCR in the peripheral blood samples of transplanted patients. Compared with normal transplanted patients, miR-29b, miR-185, and NR_073415.2 were significantly downregulated in the PBMC of post-transplant patients with viral infection. Based on the expression of the above three RNAs, principal component analysis (PCA) identified a slight overlap between the two groups. A 3-non-coding-RNA detection panel was constructed by the support vector machine analysis (SVM), whose loss rate was 14.71%. The area under the curve of it was 0.909. With the optimal cut-off value (Y = 0.328), the sensitivity was 0.929 and the specificity was 0.781. Therefore, based on non-coding RNAs expressions, a detection panel for viral infection after organ transplantation was formed with high diagnostic specificity and sensitivity.
Collapse
Affiliation(s)
- Huadi Chen
- Organ Transplant Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, P. R. China.,Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, Guangzhou, P. R. China.,Guangdong Provincial International Cooperation Base of Science and Technology (Organ Transplantation), Guangzhou, P. R. China
| | - Anli Yang
- Organ Transplant Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, P. R. China.,Department of Breast Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, P. R. China
| | - Chenglin Wu
- Organ Transplant Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, P. R. China.,Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, Guangzhou, P. R. China.,Guangdong Provincial International Cooperation Base of Science and Technology (Organ Transplantation), Guangzhou, P. R. China
| | - Jianwei Lin
- Department of Hepatobiliary and Pancreas Surgery, Shenzhen People's Hospital, Shenzhen, P. R. China
| | - Xiaoping Wang
- Organ Transplant Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, P. R. China.,Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, Guangzhou, P. R. China.,Guangdong Provincial International Cooperation Base of Science and Technology (Organ Transplantation), Guangzhou, P. R. China
| | - Mengran Peng
- Dermatology Department, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, P. R. China
| | - Dian Li
- Department of Data Science, Dana Farber Cancer Institute, Harvard School of Public Health, Boston, MA, USA
| | - Tao Zhang
- Organ Transplant Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, P. R. China.,Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, Guangzhou, P. R. China.,Guangdong Provincial International Cooperation Base of Science and Technology (Organ Transplantation), Guangzhou, P. R. China
| | - Qiang Zhao
- Organ Transplant Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, P. R. China.,Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, Guangzhou, P. R. China.,Guangdong Provincial International Cooperation Base of Science and Technology (Organ Transplantation), Guangzhou, P. R. China
| | - Xiaoshun He
- Organ Transplant Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, P. R. China.,Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, Guangzhou, P. R. China.,Guangdong Provincial International Cooperation Base of Science and Technology (Organ Transplantation), Guangzhou, P. R. China
| |
Collapse
|
60
|
Yang Y, Zhou T, Chen X, Li J, Pan J, He X, Lin L, Shi YR, Feng W, Xiong J, Yang K, Yu Q, Zhang Q, Hu D, Sun Y, Hu G, Li P, Shen L, Lin Q, Zhang B, Qu X, Zou J, Zhang L, Fang W, Zhao Y. Efficacy, safety, and biomarker analysis of Camrelizumab in Previously Treated Recurrent or Metastatic Nasopharyngeal Carcinoma (CAPTAIN study). J Immunother Cancer 2021; 9:e003790. [PMID: 34933967 PMCID: PMC8693086 DOI: 10.1136/jitc-2021-003790] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/16/2021] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND This study aimed to evaluate the antitumor activity of camrelizumab, an antiprogrammed cell death-1 antibody, in pretreated recurrent or metastatic nasopharyngeal carcinoma (NPC) and to explore predictive biomarkers. METHODS Patients with recurrent (not amenable to locally curative treatment) or metastatic NPC who had failed at least two lines of chemotherapy were eligible to receive camrelizumab (200 mg intravenously every 2 weeks) for 2 years or until disease progression, intolerable adverse events, withdrawal of consents, or investigator decision. The primary endpoint was objective response rate (ORR) assessed by an independent review committee (IRC). Programmed cell death-ligand 1 (PD-L1) expression was assessed by immunohistochemistry. Other immune-related biomarkers including major histocompatibility complex class I and major histocompatibility complex class II (MHC-II) were assessed by multiplex immunofluorescence staining. RESULTS Between August 14, 2018, and December 30, 2019, a total of 156 patients were enrolled. The IRC-assessed ORR was 28.2% (95% CI 21.3% to 36.0%). The median progression-free survival was 3.7 months (95% CI 2.0 to 4.1) per IRC, and the median overall survival was 17.4 months (95% CI 15.2 to 21.9). The ORRs were 35.2% (95% CI 25.3% to 46.1%) vs 19.4% (95% CI 10.4% to 31.4%) in patients with tumor PD-L1 expression of ≥10% and<10%, respectively. Patients with durable clinical benefit (DCB), which was defined as complete response, partial response or stable disease of ≥18 weeks, had higher density of MHC-II+ cell in stroma than patients without DCB (median 868.1 (IQR 413.4-2854.0) cells/mm2 vs median 552.4 (IQR 258.4 to 1242.1) cells/mm2). MHC-II+ cell density did not correlate with PD-L1 expression, and a composite of high stromal MHC-II+ cell density and tumor PD-L1 expression further enriched patients who could benefit from camrelizumab. CONCLUSIONS Camrelizumab had clinically meaningful antitumor activity in patients with recurrent or metastatic NPC. The composition of both MHC-II+ cell density and PD-L1 expression could result in better patient selection.
Collapse
Affiliation(s)
- Yunpeng Yang
- Department of Oncology, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Ting Zhou
- Department of Oncology, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Xiaozhong Chen
- Department of Radiology, Zhejiang Cancer Hospital, Hangzhou, China
| | - Jingao Li
- Department of Head and Neck Radiotherapy, Jiangxi Cancer Hospital of Nanchang University, Nanchang, China
| | - Jianji Pan
- Department of Head and Neck Radiation Oncology, Fujian Cancer Hospital, Fuzhou, China
| | - Xiaohui He
- Department of Oncology, Cancer Hospital Chinese Academy of Medical Sciences, Beijing, China
| | - Lizhu Lin
- Department of Oncology, The First Affiliated Hospital of Guangzhou University of Traditional Chinese Medicine, Guangzhou, China
| | - Ying-Rui Shi
- Department of Radiation Oncology, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
| | - Weineng Feng
- Department of Head, Neck and Thoracic Oncology, Foshan First People's Hospital, Foshan, China
| | - Jianping Xiong
- Department of Oncology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Kunyu Yang
- Department of Head and Neck Oncology, Union Hospital Tongji Medical College Huazhong University of Science and Technology, Wuhan, China
| | - Qitao Yu
- Department of Respiratory Oncology, Guangxi Medical University Affiliated Tumor Hospital, Nanning, China
| | - Qunling Zhang
- Department of Oncology, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Desheng Hu
- Department of Head and Neck Tumor Radiotherapy, Hubei Cancer Hospital, Wuhan, China
| | - Yan Sun
- Department of Radiotherapy, Beijing Cancer Hospital, Beijing, China
| | - Guangyuan Hu
- Department of Comprehensive Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ping Li
- Department of Head and Neck Oncology, West China School of Medicine, West China Hospital of Sichuan University, Chengdu, China
| | - Liangfang Shen
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, China
| | - Qin Lin
- Department of Radiation Oncology, The First Affiliated Hospital of Xiamen University, Xiamen, China
| | - Ben Zhang
- Clinical Research & Development, Jiangsu Hengrui Pharmaceuticals Co., Ltd, Shanghai, China
| | - Xiao Qu
- Clinical Research & Development, Jiangsu Hengrui Pharmaceuticals Co., Ltd, Shanghai, China
| | - Jianjun Zou
- Clinical Research & Development, Jiangsu Hengrui Pharmaceuticals Co., Ltd, Shanghai, China
| | - Li Zhang
- Department of Oncology, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Wenfeng Fang
- Department of Oncology, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Yuanyuan Zhao
- Department of Oncology, Sun Yat-sen University Cancer Center, Guangzhou, China
| |
Collapse
|
61
|
Meng L, Xu J, Ye Y, Wang Y, Luo S, Gong X. The Combination of Radiotherapy With Immunotherapy and Potential Predictive Biomarkers for Treatment of Non-Small Cell Lung Cancer Patients. Front Immunol 2021; 12:723609. [PMID: 34621270 PMCID: PMC8490639 DOI: 10.3389/fimmu.2021.723609] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 09/03/2021] [Indexed: 12/12/2022] Open
Abstract
Radiotherapy is an effective local treatment modality of NSCLC. Its capabilities of eliminating tumor cells by inducing double strand DNA (dsDNA) damage and modulating anti-tumor immune response in irradiated and nonirradiated sites have been elucidated. The novel ICIs therapy has brought hope to patients resistant to traditional treatment methods, including radiotherapy. The integration of radiotherapy with immunotherapy has shown improved efficacy to control tumor progression and prolong survival in NSCLC. In this context, biomarkers that help choose the most effective treatment modality for individuals and avoid unnecessary toxicities caused by ineffective treatment are urgently needed. This article summarized the effects of radiation in the tumor immune microenvironment and the mechanisms involved. Outcomes of multiple clinical trials investigating immuno-radiotherapy were also discussed here. Furthermore, we outlined the emerging biomarkers for the efficacy of PD-1/PD-L1 blockades and radiation therapy and discussed their predictive value in NSCLC.
Collapse
Affiliation(s)
- Lu Meng
- Department of Radiation Oncology, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Jianfang Xu
- Department of Oncology, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Ying Ye
- Department of Radiation Oncology, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Yingying Wang
- Department of Radiation Oncology, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Shilan Luo
- Department of Radiation Oncology, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Xiaomei Gong
- Department of Radiation Oncology, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| |
Collapse
|
62
|
Brasó-Maristany F, Sansó M, Chic N, Martínez D, González-Farré B, Sanfeliu E, Ghiglione L, Carcelero E, Garcia-Corbacho J, Sánchez M, Soy D, Jares P, Peg V, Saura C, Muñoz M, Prat A, Vivancos A. Case Report: A Case Study Documenting the Activity of Atezolizumab in a PD-L1-Negative Triple-Negative Breast Cancer. Front Oncol 2021; 11:710596. [PMID: 34616675 PMCID: PMC8489403 DOI: 10.3389/fonc.2021.710596] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Accepted: 08/31/2021] [Indexed: 12/02/2022] Open
Abstract
The immune checkpoint inhibitor atezolizumab is approved for PD-L1-positive triple-negative breast cancer (TNBC). However, no activity of atezolizumab in PD-L1-negative TNBC has been reported to date. Here, we present the case study of a woman with TNBC with low tumor infiltrating lymphocytes and PD-L1-negative disease, which achieved a significant response to atezolizumab monotherapy and durable response after the combination of atezolizumab and nab-paclitaxel. The comprehensive genomic analysis that we performed in her tumor and plasma samples revealed high tumor mutational burden (TMB), presence of the APOBEC genetic signatures, high expression of the tumor inflammation signature, and a HER2-enriched subtype by the PAM50 assay. Some of these biomarkers have been shown to independently predict response to immunotherapy in other tumors and may explain the durable response in our patient. Our work warrants further translational studies to identify biomarkers of response to immune checkpoint inhibitors in TNBC beyond PD-L1 expression and to better select patients that will benefit from immunotherapy.
Collapse
Affiliation(s)
- Fara Brasó-Maristany
- Translational Genomics and Targeted Therapies in Solid Tumors, August Pi i Sunyer Biomedical Research Institute (IDIBAPS), Barcelona, Spain.,Department of Medical Oncology, Hospital Clínic of Barcelona, Barcelona, Spain
| | - Miriam Sansó
- Cancer Genomics Group, Vall d'Hebron Institute of Oncology, Barcelona, Spain.,Department of Oncology and Hematology, Health Research Institute of the Balearic Islands (IdISBa), Palma de Mallorca, Spain
| | - Nuria Chic
- Translational Genomics and Targeted Therapies in Solid Tumors, August Pi i Sunyer Biomedical Research Institute (IDIBAPS), Barcelona, Spain.,Department of Medical Oncology, Hospital Clínic of Barcelona, Barcelona, Spain
| | - Débora Martínez
- Translational Genomics and Targeted Therapies in Solid Tumors, August Pi i Sunyer Biomedical Research Institute (IDIBAPS), Barcelona, Spain.,Department of Medical Oncology, Hospital Clínic of Barcelona, Barcelona, Spain
| | - Blanca González-Farré
- Translational Genomics and Targeted Therapies in Solid Tumors, August Pi i Sunyer Biomedical Research Institute (IDIBAPS), Barcelona, Spain.,Department of Pathology, Hospital Clínic de Barcelona, Barcelona, Spain
| | - Esther Sanfeliu
- Translational Genomics and Targeted Therapies in Solid Tumors, August Pi i Sunyer Biomedical Research Institute (IDIBAPS), Barcelona, Spain.,Department of Pathology, Hospital Clínic de Barcelona, Barcelona, Spain
| | - Lucio Ghiglione
- Department of Medical Oncology, Hospital Clínic of Barcelona, Barcelona, Spain
| | - Esther Carcelero
- Department of Pharmacy, Hospital Clínic of Barcelona, Barcelona, Spain
| | - Javier Garcia-Corbacho
- Translational Genomics and Targeted Therapies in Solid Tumors, August Pi i Sunyer Biomedical Research Institute (IDIBAPS), Barcelona, Spain.,Department of Medical Oncology, Hospital Clínic of Barcelona, Barcelona, Spain
| | - Marcelo Sánchez
- Department of Radiology, Hospital Clínic of Barcelona, Barcelona, Spain
| | - Dolors Soy
- Department of Pharmacy, Hospital Clínic of Barcelona, Barcelona, Spain
| | - Pedro Jares
- Molecular Biology Core, Hospital Clinic of Barcelona, Barcelona, Spain
| | - Vicente Peg
- Vall d'Hebron University Hospital and Vall d'Hebron Institute of Oncology (VHIO), Medical Oncology Service, Barcelona, Spain
| | - Cristina Saura
- Vall d'Hebron University Hospital and Vall d'Hebron Institute of Oncology (VHIO), Medical Oncology Service, Barcelona, Spain.,SOLTI Cooperative Group, Barcelona, Spain.,Department of Oncology, Institut Oncològic Baselga (IOB) Institute of Oncology, Quironsalud Group, Barcelona, Spain
| | - Montserrat Muñoz
- Translational Genomics and Targeted Therapies in Solid Tumors, August Pi i Sunyer Biomedical Research Institute (IDIBAPS), Barcelona, Spain.,Department of Medical Oncology, Hospital Clínic of Barcelona, Barcelona, Spain
| | - Aleix Prat
- Translational Genomics and Targeted Therapies in Solid Tumors, August Pi i Sunyer Biomedical Research Institute (IDIBAPS), Barcelona, Spain.,Department of Medical Oncology, Hospital Clínic of Barcelona, Barcelona, Spain.,Cancer Genomics Group, Vall d'Hebron Institute of Oncology, Barcelona, Spain.,SOLTI Cooperative Group, Barcelona, Spain.,Department of Oncology, Institut Oncològic Baselga (IOB) Institute of Oncology, Quironsalud Group, Barcelona, Spain.,Department of Medicine, University of Barcelona, Barcelona, Spain
| | - Ana Vivancos
- Cancer Genomics Group, Vall d'Hebron Institute of Oncology, Barcelona, Spain
| |
Collapse
|
63
|
Reverted exhaustion phenotype of circulating lymphocytes as immune correlate of anti-PD1 first-line treatment in Hodgkin lymphoma. Leukemia 2021; 36:760-771. [PMID: 34584203 PMCID: PMC8885413 DOI: 10.1038/s41375-021-01421-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2021] [Revised: 09/06/2021] [Accepted: 09/08/2021] [Indexed: 12/17/2022]
Abstract
While classical Hodgkin lymphoma (HL) is highly susceptible to anti-programmed death protein 1 (PD1) antibodies, the exact modes of action remain controversial. To elucidate the circulating lymphocyte phenotype and systemic effects during anti-PD1 1st-line HL treatment we applied multicolor flow cytometry, FluoroSpot and NanoString to sequential samples of 81 HL patients from the NIVAHL trial (NCT03004833) compared to healthy controls. HL patients showed a decreased CD4 T-cell fraction, a higher percentage of effector-memory T cells and higher expression of activation markers at baseline. Strikingly, and in contrast to solid cancers, expression for 10 out of 16 analyzed co-inhibitory molecules on T cells (e.g., PD1, LAG3, Tim3) was higher in HL. Overall, we observed a sustained decrease of the exhausted T-cell phenotype during anti-PD1 treatment. FluoroSpot of 42.3% of patients revealed T-cell responses against ≥1 of five analyzed tumor-associated antigens. Importantly, these responses were more frequently observed in samples from patients with early excellent response to anti-PD1 therapy. In summary, an initially exhausted lymphocyte phenotype rapidly reverted during anti-PD1 1st-line treatment. The frequently observed IFN-y responses against shared tumor-associated antigens indicate T-cell-mediated cytotoxicity and could represent an important resource for immune monitoring and cellular therapy of HL.
Collapse
|
64
|
Hu K, Yao L, Yan Y, Zhou L, Li J. Comprehensive Analysis of YTH Domain Family in Lung Adenocarcinoma: Expression Profile, Association with Prognostic Value, and Immune Infiltration. DISEASE MARKERS 2021; 2021:2789481. [PMID: 34497675 PMCID: PMC8420974 DOI: 10.1155/2021/2789481] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 08/13/2021] [Indexed: 02/07/2023]
Abstract
BACKGROUND All YTH domain family members are m6A reader proteins accounting for the methylation modulation involved in the process of tumorgenesis and tumor progression. However, the expression profiles and roles of the YTH domain family in lung adenocarcinoma (LUAD) remain to be further illustrated. METHODS GEPIA2 and TNMplot databases were used to generate the expression profiles of the YTH family. Kaplan-Meier plotter database was employed to analysis the prognostic value of the YTH family. Coexpression profiles and genetic alterations analysis of the YTH family were undertaken using the cBioPortal database. YTH family protein-associated protein-protein interaction (PPI) network was identified by using STRING. Functional enrichment analysis was performed with the help of the WebGestalt database. The correlation analysis between the YTH family and immune cell infiltration in LUAD was administrated by using the TIMER2.0 database. RESULTS mRNA expression of YTHDC1 and YTHDC2 was significantly lower in LUAD, whereas YTHDF1, YTHDF2, and YTHDF3 with apparently higher expression. YTHDF2 expression was observed to be the highest in the nonsmoker subgroup, and its expression gradually decreased with the increased severity of smoking habit. LUAD patients with low expression of YTHDC2, YTHDF1, and YTHDF2 were correlated with a better overall survival (OS) time. The YTHDF1 genetic alteration rate was 26%, which was the highest in the YTH family. The major cancer-associated functions of YTH family pointed in the direction of immunomodulation, especially antigen processing and presentation. Most of the YTH family members were significantly correlated with the infiltration of CD4+ T cells, CD8+ T cells, macrophages, and neutrophils, indicating the deep involvement of the YTH domain family in the immune cell infiltration in LUAD. CONCLUSION The molecular and expression profiles of the YTH family were dysregulated in LUAD. YTH family members (especially YTHDC2) were promising biomarkers and potential therapeutic targets that may bring benefit for the patients with LUAD.
Collapse
Affiliation(s)
- Kuan Hu
- Department of Hepatobiliary Surgery, Xiangya Hospital, Central South University, Changsha, 410008 Hunan, China
| | - Lei Yao
- Department of Hepatobiliary Surgery, Xiangya Hospital, Central South University, Changsha, 410008 Hunan, China
| | - Yuanliang Yan
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, 410008 Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008 Hunan, China
| | - Lei Zhou
- Department of Anesthesiology, Third Xiangya Hospital of Central South University, Changsha, 410008 Hunan, China
| | - Juanni Li
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, 410008 Hunan, China
| |
Collapse
|
65
|
Barthel H, Darne C, Gaté L, Visvikis A, Seidel C. Continuous Long-Term Exposure to Low Concentrations of MWCNTs Induces an Epithelial-Mesenchymal Transition in BEAS-2B Cells. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:1742. [PMID: 34361127 PMCID: PMC8308165 DOI: 10.3390/nano11071742] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 06/23/2021] [Accepted: 06/28/2021] [Indexed: 11/16/2022]
Abstract
In the field of nanotechnology, the use of multi-walled carbon nanotubes (MWCNTs) is growing. Pulmonary exposure during their production, use, and handling is raising concerns about their potential adverse health effects. The purpose of this study is to assess how the physical characteristics of MWCNTs, such as diameter and/or length, can play a role in cellular toxicity. Our experimental design is based on the treatment of human bronchial epithelial cells (BEAS-2B) for six weeks with low concentrations (0.125-1 µg/cm2) of MWCNTs having opposite characteristics: NM-403 and Mitsui-7. Following treatment with both MWCNTs, we observed an increase in mitotic abnormalities and micronucleus-positive cells. The cytotoxic effect was delayed in cells treated with NM-403 compared to Mitsui-7. After 4-6 weeks of treatment, a clear cellular morphological change from epithelial to fibroblast-like phenotype was noted, together with a change in the cell population composition. BEAS-2B cells underwent a conversion from the epithelial to mesenchymal state as we observed a decrease in the epithelial marker E-cadherin and an increased expression of mesenchymal markers N-cadherin, Vimentin, and Fibronectin. After four weeks of recovery, we showed that the induced epithelial-mesenchymal transition is reversible, and that the degree of reversibility depends on the MWCNT.
Collapse
Affiliation(s)
- Hélène Barthel
- Institut National de Recherche et de Sécurité, CEDEX, F-54519 Vandœuvre-lès-Nancy, France; (H.B.); (C.D.); (L.G.)
- Ingénierie Moléculaire et Physiopathologie Articulaire (IMoPA), Biopôle, Campus Biologie Santé, UMR 7365 CNRS-Université de Lorraine, CEDEX, F-54000 Vandœuvre-lès-Nancy, France;
| | - Christian Darne
- Institut National de Recherche et de Sécurité, CEDEX, F-54519 Vandœuvre-lès-Nancy, France; (H.B.); (C.D.); (L.G.)
| | - Laurent Gaté
- Institut National de Recherche et de Sécurité, CEDEX, F-54519 Vandœuvre-lès-Nancy, France; (H.B.); (C.D.); (L.G.)
| | - Athanase Visvikis
- Ingénierie Moléculaire et Physiopathologie Articulaire (IMoPA), Biopôle, Campus Biologie Santé, UMR 7365 CNRS-Université de Lorraine, CEDEX, F-54000 Vandœuvre-lès-Nancy, France;
| | - Carole Seidel
- Institut National de Recherche et de Sécurité, CEDEX, F-54519 Vandœuvre-lès-Nancy, France; (H.B.); (C.D.); (L.G.)
| |
Collapse
|
66
|
Beta2-microglobulin(B2M) in cancer immunotherapies: Biological function, resistance and remedy. Cancer Lett 2021; 517:96-104. [PMID: 34129878 DOI: 10.1016/j.canlet.2021.06.008] [Citation(s) in RCA: 101] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Revised: 05/31/2021] [Accepted: 06/09/2021] [Indexed: 12/30/2022]
Abstract
Cancer immunotherapies have made much headway during the past decades. Techniques including the immune checkpoint inhibition (ICI) and adoptive cell therapy (ACT) have harvested impressive efficacy and provided far-reaching tools for treating cancer patients. However, due to inadequate priming of the immune system, a certain subgroup of patients remains resistant to cancer immunotherapies during or after the treatment. β2-microglobulin (B2M) is an important subunit of major histocompatibility complex (MHC) class I which exerts substantive biological functions in tumorigenesis and immune control. Accumulating evidence has shown that alterations of B2M gene and B2M proteins contribute to poor reaction to cancer immunotherapies by dampening antigen presentation. Here, we discuss the basic biological functions of B2M, its distribution in a spectrum of cancers, and current understanding of its role in ICI, cancer vaccines and chimeric antigen receptor T cell (CAR-T) therapies. Furthermore, we summarize some promising therapeutic strategies to improve the efficacy inhibited by B2M defects.
Collapse
|
67
|
Zhao Y, Cao Y, Chen Y, Wu L, Hang H, Jiang C, Zhou X. B2M gene expression shapes the immune landscape of lung adenocarcinoma and determines the response to immunotherapy. Immunology 2021; 164:507-523. [PMID: 34115389 DOI: 10.1111/imm.13384] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 05/20/2021] [Accepted: 06/06/2021] [Indexed: 01/19/2023] Open
Abstract
Loss of the B2M gene is associated with tumour immune escape and resistance to immunotherapy. However, genetic alterations of the B2M gene are rare. We performed an integrative analysis of the mutational and transcriptional profiles of large cohorts of non-small-cell lung cancer (NSCLC) patients and found that epigenetic downregulation of B2M is common. B2M-low tumours exhibit a suppressive immune microenvironment characterized by reduced infiltration of immune cells of various lineages; in B2M-high tumours, more T and natural killer cells are present, but their activities are constrained by immune checkpoint molecules, indicating the diverse mechanisms of immune evasion. High levels of B2M mRNA, but not PD-L1, are correlated with an enhanced response to PD-1-based immunotherapy, suggesting its value for immunotherapy response prediction in solid tumours. Notably, a high tumour mutation burden (TMB) is associated with low B2M expression, which may explain the poor predictive value of the TMB in some situations. In syngeneic mouse models, genetic ablation of B2M in tumour cells causes resistance to PD-1-based immunotherapy, and B2M knockdown also diminishes the therapeutic efficacy. Moreover, forced expression of B2M in tumour models improves the response to immunotherapy, suggesting that B2M levels have significant impacts on treatment outcomes. Finally, we provide insight into the roles of transcription factors and KRAS mutations in B2M expression and the anticancer immune response. In conclusion, genetic and epigenetic regulation of B2M fundamentally shapes the NSCLC immune microenvironment and may determine the response to checkpoint blockade-based immunotherapy.
Collapse
Affiliation(s)
- Yu Zhao
- Department of Immunology, School of Medicine, Nantong University, Nantong, China
| | - Yuejiao Cao
- School of Medicine, Nantong University, Nantong, China
| | - Yiqi Chen
- Department of Immunology, School of Medicine, Nantong University, Nantong, China
| | - Lei Wu
- Department of Immunology, School of Medicine, Nantong University, Nantong, China
| | - Hua Hang
- Department of Pathology, The Affiliated Hospital of Nantong University, Nantong, China
| | - Chenxia Jiang
- Department of Pathology, The Affiliated Hospital of Nantong University, Nantong, China
| | - Xiaorong Zhou
- Department of Immunology, School of Medicine, Nantong University, Nantong, China.,Nantong Key Laboratory of Translational Medicine in Cardiothoracic Diseases, and Research Institution of Translational Medicine in Cardiothoracic Diseases in Affiliated Hospital of Nantong University, Jiangsu, China
| |
Collapse
|
68
|
Niu M, Yi M, Li N, Luo S, Wu K. Predictive biomarkers of anti-PD-1/PD-L1 therapy in NSCLC. Exp Hematol Oncol 2021; 10:18. [PMID: 33653420 PMCID: PMC7923338 DOI: 10.1186/s40164-021-00211-8] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 02/15/2021] [Indexed: 02/07/2023] Open
Abstract
Immunotherapy, especially anti-programmed cell death protein 1/programmed cell death ligand 1 (PD-1/PD-L1) treatment has significantly improved the survival of non-small cell lung cancer (NSCLC) patients. However, the overall response rate remains unsatisfactory. Many factors affect the outcome of anti-PD-1/PD-L1 treatment, such as PD-L1 expression level, tumor-infiltrating lymphocytes (TILs), tumor mutation burden (TMB), neoantigens, and driver gene mutations. Further exploration of biomarkers would be favorable for the best selection of patients and precisely predict the efficacy of anti-PD-1/PD-L1 treatment. In this review, we summarized the latest advances in this field, and discussed the potential applications of these laboratory findings in the clinic.
Collapse
Affiliation(s)
- Mengke Niu
- Department of Medical Oncology, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, 450008, China.,Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Ming Yi
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Ning Li
- Department of Medical Oncology, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, 450008, China
| | - Suxia Luo
- Department of Medical Oncology, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, 450008, China.
| | - Kongming Wu
- Department of Medical Oncology, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, 450008, China. .,Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| |
Collapse
|