51
|
HopA1 Effector from Pseudomonas syringae pv syringae Strain 61 Affects NMD Processes and Elicits Effector-Triggered Immunity. Int J Mol Sci 2021; 22:ijms22147440. [PMID: 34299060 PMCID: PMC8306789 DOI: 10.3390/ijms22147440] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 06/29/2021] [Accepted: 06/30/2021] [Indexed: 01/25/2023] Open
Abstract
Pseudomonas syringae-secreted HopA1 effectors are important determinants in host range expansion and increased pathogenicity. Their recent acquisitions via horizontal gene transfer in several non-pathogenic Pseudomonas strains worldwide have caused alarming increase in their virulence capabilities. In Arabidopsis thaliana, RESISTANCE TO PSEUDOMONAS SYRINGAE 6 (RPS6) gene confers effector-triggered immunity (ETI) against HopA1pss derived from P. syringae pv. syringae strain 61. Surprisingly, a closely related HopA1pst from the tomato pathovar evades immune detection. These responsive differences in planta between the two HopA1s represents a unique system to study pathogen adaptation skills and host-jumps. However, molecular understanding of HopA1′s contribution to overall virulence remain undeciphered. Here, we show that immune-suppressive functions of HopA1pst are more potent than HopA1pss. In the resistance-compromised ENHANCED DISEASE SUSCEPTIBILITY 1 (EDS1) null-mutant, transcriptomic changes associated with HopA1pss-elicited ETI are still induced and carry resemblance to PAMP-triggered immunity (PTI) signatures. Enrichment of HopA1pss interactome identifies proteins with regulatory roles in post-transcriptional and translational processes. With our demonstration here that both HopA1 suppress reporter-gene translations in vitro imply that the above effector-associations with plant target carry inhibitory consequences. Overall, with our results here we unravel possible virulence role(s) of HopA1 in suppressing PTI and provide newer insights into its detection in resistant plants.
Collapse
|
52
|
Shao D, Smith DL, Kabbage M, Roth MG. Effectors of Plant Necrotrophic Fungi. FRONTIERS IN PLANT SCIENCE 2021; 12:687713. [PMID: 34149788 PMCID: PMC8213389 DOI: 10.3389/fpls.2021.687713] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 05/03/2021] [Indexed: 05/20/2023]
Abstract
Plant diseases caused by necrotrophic fungal pathogens result in large economic losses in field crop production worldwide. Effectors are important players of plant-pathogen interaction and deployed by pathogens to facilitate plant colonization and nutrient acquisition. Compared to biotrophic and hemibiotrophic fungal pathogens, effector biology is poorly understood for necrotrophic fungal pathogens. Recent bioinformatics advances have accelerated the prediction and discovery of effectors from necrotrophic fungi, and their functional context is currently being clarified. In this review we examine effectors utilized by necrotrophic fungi and hemibiotrophic fungi in the latter stages of disease development, including plant cell death manipulation. We define "effectors" as secreted proteins and other molecules that affect plant physiology in ways that contribute to disease establishment and progression. Studying and understanding the mechanisms of necrotrophic effectors is critical for identifying avenues of genetic intervention that could lead to improved resistance to these pathogens in plants.
Collapse
Affiliation(s)
| | | | | | - Mitchell G. Roth
- Department of Plant Pathology, University of Wisconsin – Madison, Madison, WI, United States
| |
Collapse
|
53
|
Li Y, Jiao M, Li Y, Zhong Y, Li X, Chen Z, Chen S, Wang J. Penicillium chrysogenum polypeptide extract protects tobacco plants from tobacco mosaic virus infection through modulation of ABA biosynthesis and callose priming. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:3526-3539. [PMID: 33687058 PMCID: PMC8096601 DOI: 10.1093/jxb/erab102] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Accepted: 03/02/2021] [Indexed: 05/26/2023]
Abstract
The polypeptide extract of the dry mycelium of Penicillium chrysogenum (PDMP) can protect tobacco plants from tobacco mosaic virus (TMV), although the mechanism underlying PDMP-mediated TMV resistance remains unknown. In our study, we analysed a potential mechanism via RNA sequencing (RNA-seq) and found that the abscisic acid (ABA) biosynthetic pathway and β-1,3-glucanase, a callose-degrading enzyme, might play an important role in PDMP-induced priming of resistance to TMV. To test our hypothesis, we successfully generated a Nicotiana benthamiana ABA biosynthesis mutant and evaluated the role of the ABA pathway in PDMP-induced callose deposition during resistance to TMV infection. Our results suggested that PDMP can induce callose priming to defend against TMV movement. PDMP inhibited TMV movement by increasing callose deposition around plasmodesmata, but this phenomenon did not occur in the ABA biosynthesis mutant; moreover, these effects of PDMP on callose deposition could be rescued by treatment with exogenous ABA. Our results suggested that callose deposition around plasmodesmata in wild-type plants is mainly responsible for the restriction of TMV movement during the PDMP-induced defensive response to TMV infection, and that ABA biosynthesis apparently plays a crucial role in PDMP-induced callose priming for enhancing defence against TMV.
Collapse
Affiliation(s)
- Yu Li
- Biocontrol Engineering Research Center of Crop Disease & Pest of Yunnan Province, School of Life Science, Yunnan University, Kunming, China
- Biocontrol Engineering Research Center of Plant Disease & Pest, School of Life Science, Yunnan University, Kunming, China
| | - Mengting Jiao
- Biocontrol Engineering Research Center of Crop Disease & Pest of Yunnan Province, School of Life Science, Yunnan University, Kunming, China
- Biocontrol Engineering Research Center of Plant Disease & Pest, School of Life Science, Yunnan University, Kunming, China
| | - Yingjuan Li
- Biocontrol Engineering Research Center of Crop Disease & Pest of Yunnan Province, School of Life Science, Yunnan University, Kunming, China
- Biocontrol Engineering Research Center of Plant Disease & Pest, School of Life Science, Yunnan University, Kunming, China
| | - Yu Zhong
- Biocontrol Engineering Research Center of Crop Disease & Pest of Yunnan Province, School of Life Science, Yunnan University, Kunming, China
- Biocontrol Engineering Research Center of Plant Disease & Pest, School of Life Science, Yunnan University, Kunming, China
| | - Xiaoqin Li
- Biocontrol Engineering Research Center of Crop Disease & Pest of Yunnan Province, School of Life Science, Yunnan University, Kunming, China
- Biocontrol Engineering Research Center of Plant Disease & Pest, School of Life Science, Yunnan University, Kunming, China
| | - Zhuangzhuang Chen
- Biocontrol Engineering Research Center of Crop Disease & Pest of Yunnan Province, School of Life Science, Yunnan University, Kunming, China
- Biocontrol Engineering Research Center of Plant Disease & Pest, School of Life Science, Yunnan University, Kunming, China
| | - Suiyun Chen
- Biocontrol Engineering Research Center of Crop Disease & Pest of Yunnan Province, School of Life Science, Yunnan University, Kunming, China
- Biocontrol Engineering Research Center of Plant Disease & Pest, School of Life Science, Yunnan University, Kunming, China
| | - Jianguang Wang
- Biocontrol Engineering Research Center of Crop Disease & Pest of Yunnan Province, School of Life Science, Yunnan University, Kunming, China
- Biocontrol Engineering Research Center of Plant Disease & Pest, School of Life Science, Yunnan University, Kunming, China
| |
Collapse
|
54
|
Babilonia K, Wang P, Liu Z, Jamieson P, Mormile B, Rodrigues O, Zhang L, Lin W, Danmaigona Clement C, Menezes de Moura S, Alves-Ferreira M, Finlayson SA, Loring Nichols R, Wheeler TA, Dever JK, Shan L, He P. A nonproteinaceous Fusarium cell wall extract triggers receptor-like protein-dependent immune responses in Arabidopsis and cotton. THE NEW PHYTOLOGIST 2021; 230:275-289. [PMID: 33314087 DOI: 10.1111/nph.17146] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 12/03/2020] [Indexed: 06/12/2023]
Abstract
Fusarium wilt caused by the ascomycete fungus Fusarium oxysporum is a devastating disease of many economically important crops. The mechanisms underlying plant responses to F. oxysporum infections remain largely unknown. We demonstrate here that a water-soluble, heat-resistant and nonproteinaceous F. oxysporum cell wall extract (FoCWE) component from multiple F. oxysporum isolates functions as a race-nonspecific elicitor, also termed pathogen-associated molecular pattern (PAMP). FoCWE triggers several demonstrated immune responses, including mitogen-activated protein (MAP) kinase phosphorylation, reactive oxygen species (ROS) burst, ethylene production, and stomatal closure, in cotton and Arabidopsis. Pretreated FoCWE protects cotton seeds against infections by virulent F. oxysporum f. sp. vasinfectum (Fov), and Arabidopsis plants against the virulent bacterium, Pseudomonas syringae, suggesting the potential application of FoCWEs in crop protection. Host-mediated responses to FoCWE do not appear to require LYKs/CERK1, BAK1 or SOBIR1, which are commonly involved in PAMP perception and/or signalling. However, FoCWE responses and Fusarium resistance in cotton partially require two receptor-like proteins, GhRLP20 and GhRLP31. Transcriptome analysis suggests that FoCWE preferentially activates cell wall-mediated defence, and Fov has evolved virulence mechanisms to suppress FoCWE-induced defence. These findings suggest that FoCWE is a classical PAMP that is potentially recognised by a novel pattern-recognition receptor to regulate cotton resistance to Fusarium infections.
Collapse
Affiliation(s)
- Kevin Babilonia
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX, 77843, USA
- Molecular and Environmental Plant Sciences, Texas A&M University, College Station, TX, 77843, USA
| | - Ping Wang
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX, 77843, USA
- Department of Plant Pathology and Microbiology, Texas A&M University, College Station, TX, 77843, USA
| | - Zunyong Liu
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX, 77843, USA
| | - Pierce Jamieson
- Department of Plant Pathology and Microbiology, Texas A&M University, College Station, TX, 77843, USA
| | - Brendan Mormile
- Department of Plant Pathology and Microbiology, Texas A&M University, College Station, TX, 77843, USA
| | - Olivier Rodrigues
- Department of Plant Pathology and Microbiology, Texas A&M University, College Station, TX, 77843, USA
| | - Lin Zhang
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX, 77843, USA
| | - Wenwei Lin
- Department of Plant Pathology and Microbiology, Texas A&M University, College Station, TX, 77843, USA
| | | | - Stéfanie Menezes de Moura
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX, 77843, USA
- Department of Genetics, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, R.J. 21941, Brazil
| | - Marcio Alves-Ferreira
- Department of Genetics, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, R.J. 21941, Brazil
| | - Scott A Finlayson
- Molecular and Environmental Plant Sciences, Texas A&M University, College Station, TX, 77843, USA
- Department of Soil and Crop Sciences, Texas A&M University, College Station, TX, 77843, USA
| | - Robert Loring Nichols
- Agricultural and Environmental Sciences, Cotton Incorporated, 6399 Weston Parkway, Cary, NC, 27513, USA
| | - Terry A Wheeler
- Department of Plant Pathology and Microbiology, Texas A&M University, College Station, TX, 77843, USA
- Texas A&M AgriLife Research, 1102 East Drew St., Lubbock, TX, 79403, USA
| | - Jane K Dever
- Department of Soil and Crop Sciences, Texas A&M University, College Station, TX, 77843, USA
- Texas A&M AgriLife Research, 1102 East Drew St., Lubbock, TX, 79403, USA
| | - Libo Shan
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX, 77843, USA
- Molecular and Environmental Plant Sciences, Texas A&M University, College Station, TX, 77843, USA
- Department of Plant Pathology and Microbiology, Texas A&M University, College Station, TX, 77843, USA
| | - Ping He
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX, 77843, USA
- Molecular and Environmental Plant Sciences, Texas A&M University, College Station, TX, 77843, USA
| |
Collapse
|
55
|
Marti L, Savatin DV, Gigli-Bisceglia N, de Turris V, Cervone F, De Lorenzo G. The intracellular ROS accumulation in elicitor-induced immunity requires the multiple organelle-targeted Arabidopsis NPK1-related protein kinases. PLANT, CELL & ENVIRONMENT 2021; 44:931-947. [PMID: 33314180 DOI: 10.1111/pce.13978] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 11/30/2020] [Accepted: 12/03/2020] [Indexed: 05/22/2023]
Abstract
Recognition at the plasma membrane of danger signals (elicitors) belonging to the classes of the microbe/pathogen- and damage-associated molecular patterns is a key event in pathogen sensing by plants and is associated with a rapid activation of immune responses. Different cellular compartments, including plasma membrane, chloroplasts, nuclei and mitochondria, are involved in the immune cellular program. However, how pathogen sensing is transmitted throughout the cell remains largely to be uncovered. Arabidopsis NPK1-related Proteins (ANPs) are mitogen-activated protein kinase kinase kinases previously shown to have a role in immunity. In this article, we studied the in vivo intracellular dynamics of ANP1- and ANP3-GFP fusions and found that under basal physiological conditions both proteins are present in the cytosol, while ANP3 is also localized in mitochondria. After elicitor perception, both proteins are present also in the plastids and nuclei, revealing a localization pattern that is so far unique. The N-terminal region of the protein kinases is responsible for their localization in mitochondria and plastids. Moreover, we found that the localization of ANPs coincides with the sites of elicitor-induced ROS accumulation and that plants lacking ANP function do not accumulate intracellular ROS.
Collapse
Affiliation(s)
- Lucia Marti
- Department of Biology and Biotechnology "Charles Darwin", Sapienza University, Rome, Italy
| | | | - Nora Gigli-Bisceglia
- Department of Biology and Biotechnology "Charles Darwin", Sapienza University, Rome, Italy
| | | | - Felice Cervone
- Department of Biology and Biotechnology "Charles Darwin", Sapienza University, Rome, Italy
| | - Giulia De Lorenzo
- Department of Biology and Biotechnology "Charles Darwin", Sapienza University, Rome, Italy
| |
Collapse
|
56
|
Ramos RN, Martin GB, Pombo MA, Rosli HG. WRKY22 and WRKY25 transcription factors are positive regulators of defense responses in Nicotiana benthamiana. PLANT MOLECULAR BIOLOGY 2021; 105:65-82. [PMID: 32909182 DOI: 10.1007/s11103-020-01069-w] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Accepted: 09/02/2020] [Indexed: 06/11/2023]
Abstract
KEY MESSAGE NbWRKY22 and NbWRKY25 are required for full activation of bacteria-associated pattern- and effector-triggered immunity as well as for the response to other non-bacterial defense elicitors. Plants defend themselves against pathogens using a two-layered immune system. Pattern-triggered immunity (PTI) can be activated upon recognition of epitopes from flagellin including flg22. Pseudomonas syringae pv. tomato (Pst) delivers effector proteins into the plant cell to promote host susceptibility. However, some plants express resistance (R) proteins that recognize specific effectors leading to the activation of effector-triggered immunity (ETI). Resistant tomato lines such as Rio Grande-PtoR (RG-PtoR) recognize two Pst effectors, AvrPto and AvrPtoB, and activate ETI through the Pto/Prf protein complex. Using RNA-seq, we identified two tomato WRKY transcription factor genes, SlWRKY22 and SlWRKY25, whose expression is increased during Pst-induced ETI. Silencing of the WRKY25/22 orthologous genes in Nicotiana benthamiana led to a delay in programmed cell death normally associated with AvrPto recognition or several non-bacterial effector/R protein pairs. An increase in disease symptoms was observed in silenced plants infiltrated with Pseudomonas syringae pv. tabaci expressing AvrPto or HopQ1-1. Expression of both tomato WRKY genes is also induced upon treatment with flg22 and callose deposition and cell death suppression assays in WRKY25/22-silenced N. benthamiana plants supported their involvement in PTI. Our results reveal an important role for two WRKYs as positive regulators of plant immunity against bacterial and potentially non-bacterial pathogens.
Collapse
Affiliation(s)
- Romina N Ramos
- INFIVE, Instituto de Fisiología Vegetal, Universidad Nacional de La Plata, CONICET, La Plata, Buenos Aires, Argentina
- Facultad de Ciencias Exactas, Universidad Nacional de La Plata, La Plata, Buenos Aires, Argentina
| | - Gregory B Martin
- Boyce Thompson Institute for Plant Research, 533 Tower Road, Ithaca, NY, 14853, USA
- Section of Plant Pathology and Plant-Microbe Biology, School of Integrative Plant Science, Cornell University, Ithaca, NY, 14853, USA
| | - Marina A Pombo
- INFIVE, Instituto de Fisiología Vegetal, Universidad Nacional de La Plata, CONICET, La Plata, Buenos Aires, Argentina.
| | - Hernan G Rosli
- INFIVE, Instituto de Fisiología Vegetal, Universidad Nacional de La Plata, CONICET, La Plata, Buenos Aires, Argentina
| |
Collapse
|
57
|
Liu Q, Shen Y, Yin K. Optimised production of protein elicitor AMEP412 by Bacillus subtilis BU412 through response surface methodology. BIOTECHNOL BIOTEC EQ 2021. [DOI: 10.1080/13102818.2021.1953402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
Affiliation(s)
- Quan Liu
- Department of Biotechnology, College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing, PR China
| | - Yongrui Shen
- Department of Biotechnology, College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing, PR China
| | - Kuide Yin
- Department of Environmental Science, College of Agronomy, Heilongjiang Bayi Agricultural University, Daqing, PR China
| |
Collapse
|
58
|
Wang W, Nie J, Lv L, Gong W, Wang S, Yang M, Xu L, Li M, Du H, Huang L. A Valsa mali Effector Protein 1 Targets Apple ( Malus domestica) Pathogenesis-Related 10 Protein to Promote Virulence. FRONTIERS IN PLANT SCIENCE 2021; 12:741342. [PMID: 34691119 PMCID: PMC8528966 DOI: 10.3389/fpls.2021.741342] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 09/13/2021] [Indexed: 05/14/2023]
Abstract
To successfully colonize the plants, the pathogenic microbes secrete a mass of effector proteins which manipulate host immunity. Apple valsa canker is a destructive disease caused by the weakly parasitic fungus Valsa mali. A previous study indicated that the V. mali effector protein 1 (VmEP1) is an essential virulence factor. However, the pathogenic mechanism of VmEP1 in V. mali remains poorly understood. In this study, we found that the apple (Malus domestica) pathogenesis-related 10 proteins (MdPR10) are the virulence target of VmEP1 using a yeast two-hybrid screening. By bimolecular fluorescence (BiFC) and coimmunoprecipitation (Co-IP), we confirmed that the VmEP1 interacts with MdPR10 in vivo. Silencing of MdPR10 notably enhanced the V. mali infection, and overexpression of MdPR10 markedly reduced its infection, which corroborates its positive role in plant immunity against V. mali. Furthermore, we showed that the co-expression of VmEP1 with MdPR10 compromised the MdPR10-mediated resistance to V. mali. Taken together, our results revealed a mechanism by which a V. mali effector protein suppresses the host immune responses by interfering with the MdPR10-mediated resistance to V. mali during the infection.
Collapse
Affiliation(s)
- Weidong Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, Yangling, China
- College of Plant Protection, Northwest A&F University, Yangling, China
| | - Jiajun Nie
- State Key Laboratory of Crop Stress Biology for Arid Areas, Yangling, China
- College of Plant Protection, Northwest A&F University, Yangling, China
| | - Luqiong Lv
- State Key Laboratory of Crop Stress Biology for Arid Areas, Yangling, China
- College of Plant Protection, Northwest A&F University, Yangling, China
| | - Wan Gong
- State Key Laboratory of Crop Stress Biology for Arid Areas, Yangling, China
- College of Plant Protection, Northwest A&F University, Yangling, China
| | - Shuaile Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, Yangling, China
- College of Plant Protection, Northwest A&F University, Yangling, China
| | - Mingming Yang
- State Key Laboratory of Crop Stress Biology for Arid Areas, Yangling, China
- College of Plant Protection, Northwest A&F University, Yangling, China
| | - Liangsheng Xu
- State Key Laboratory of Crop Stress Biology for Arid Areas, Yangling, China
- College of Plant Protection, Northwest A&F University, Yangling, China
| | - Mingjun Li
- State Key Laboratory of Crop Stress Biology for Arid Areas, Yangling, China
- College of Horticulture, Northwest A&F University, Yangling, China
| | - Hongxia Du
- State Key Laboratory of Crop Stress Biology for Arid Areas, Yangling, China
- College of Plant Protection, Northwest A&F University, Yangling, China
| | - Lili Huang
- State Key Laboratory of Crop Stress Biology for Arid Areas, Yangling, China
- College of Plant Protection, Northwest A&F University, Yangling, China
- *Correspondence: Lili Huang,
| |
Collapse
|
59
|
Xiang Q, Lott AA, Assmann SM, Chen S. Advances and perspectives in the metabolomics of stomatal movement and the disease triangle. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2021; 302:110697. [PMID: 33288010 DOI: 10.1016/j.plantsci.2020.110697] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 09/26/2020] [Accepted: 09/28/2020] [Indexed: 05/20/2023]
Abstract
Crops are continuously exposed to microbial pathogens that cause tremendous yield losses worldwide. Stomatal pores formed by pairs of specialized guard cells in the leaf epidermis represent a major route of pathogen entry. Guard cells have an essential role as a first line of defense against pathogens. Metabolomics is an indispensable systems biology tool that has facilitated discovery and functional studies of metabolites that regulate stomatal movement in response to pathogens and other environmental factors. Guard cells, pathogens and environmental factors constitute the "stomatal disease triangle". The aim of this review is to highlight recent advances toward understanding the stomatal disease triangle in the context of newly discovered signaling molecules, hormone crosstalk, and consequent molecular changes that integrate pathogens and environmental sensing into stomatal immune responses. Future perspectives on emerging single-cell studies, multiomics and molecular imaging in the context of stomatal defense are discussed. Advances in this important area of plant biology will inform rational crop engineering and breeding for enhanced stomatal defense without disruption of other pathways that impact crop yield.
Collapse
Affiliation(s)
- Qingyuan Xiang
- Department of Biology, University of Florida Genetics Institute, Gainesville, FL, USA
| | - Aneirin A Lott
- Department of Biology, University of Florida Genetics Institute, Gainesville, FL, USA; Plant Molecular and Cellular Biology Program, University of Florida, FL, USA
| | - Sarah M Assmann
- Department of Biology, Pennsylvania State University, State College, PA, USA
| | - Sixue Chen
- Department of Biology, University of Florida Genetics Institute, Gainesville, FL, USA; Plant Molecular and Cellular Biology Program, University of Florida, FL, USA; Proteomics and Mass Spectrometry Facility, University of Florida, FL, USA.
| |
Collapse
|
60
|
Ma P, Wu L, Xu Y, Xu H, Zhang X, Wang W, Liu C, Wang B. Bulked Segregant RNA-Seq Provides Distinctive Expression Profile Against Powdery Mildew in the Wheat Genotype YD588. FRONTIERS IN PLANT SCIENCE 2021; 12:764978. [PMID: 34925412 PMCID: PMC8677838 DOI: 10.3389/fpls.2021.764978] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 11/03/2021] [Indexed: 05/07/2023]
Abstract
Wheat powdery mildew, caused by the fungal pathogen Blumeria graminis f. sp. tritici (Bgt), is a destructive disease leading to huge yield losses in production. Host resistance can greatly contribute to the control of the disease. To explore potential genes related to the powdery mildew (Pm) resistance, in this study, we used a resistant genotype YD588 to investigate the potential resistance components and profiled its expression in response to powdery mildew infection. Genetic analysis showed that a single dominant gene, tentatively designated PmYD588, conferred resistance to powdery mildew in YD588. Using bulked segregant RNA-Seq (BSR-Seq) and single nucleotide polymorphism (SNP) association analysis, two high-confidence candidate regions were detected in the chromosome arm 2B, spanning 453,752,054-506,356,791 and 584,117,809-664,221,850 bp, respectively. To confirm the candidate region, molecular markers were developed using the BSR-Seq data and mapped PmYD588 to an interval of 4.2 cM by using the markers YTU588-004 and YTU588-008. The physical position was subsequently locked into the interval of 647.1-656.0 Mb, which was different from those of Pm6, Pm33, Pm51, Pm52, Pm63, Pm64, PmQ, PmKN0816, MlZec1, and MlAB10 on the same chromosome arm in its position, suggesting that it is most likely a new Pm gene. To explore the potential regulatory genes of the R gene, 2,973 differentially expressed genes (DEGs) between the parents and bulks were analyzed using gene ontology (GO), clusters of orthologous group (COG), and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis. Based on the data, we selected 23 potential regulated genes in the enriched pathway of plant-pathogen interaction and detected their temporal expression patterns using an additional set of wheat samples and time-course analysis postinoculation with Bgt. As a result, six disease-related genes showed distinctive expression profiles after Bgt invasion and can serve as key candidates for the dissection of resistance mechanisms and improvement of durable resistance to wheat powdery mildew.
Collapse
Affiliation(s)
- Pengtao Ma
- School of Life Sciences, Yantai University, Yantai, China
- *Correspondence: Pengtao Ma,
| | - Liru Wu
- School of Life Sciences, Yantai University, Yantai, China
| | - Yufei Xu
- School of Life Sciences, Yantai University, Yantai, China
| | - Hongxing Xu
- School of Life Sciences, Henan University, Kaifeng, China
| | - Xu Zhang
- School of Life Sciences, Yantai University, Yantai, China
- School of Life Sciences, Henan University, Kaifeng, China
| | - Wenrui Wang
- School of Life Sciences, Yantai University, Yantai, China
| | - Cheng Liu
- Crop Research Institute, Shandong Academy of Agricultural Sciences, Jinan, China
- Cheng Liu,
| | - Bo Wang
- School of Life Sciences, Yantai University, Yantai, China
- Bo Wang,
| |
Collapse
|
61
|
Ku YS, Cheng SS, Gerhardt A, Cheung MY, Contador CA, Poon LYW, Lam HM. Secretory Peptides as Bullets: Effector Peptides from Pathogens against Antimicrobial Peptides from Soybean. Int J Mol Sci 2020; 21:E9294. [PMID: 33291499 PMCID: PMC7730307 DOI: 10.3390/ijms21239294] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 11/24/2020] [Accepted: 12/03/2020] [Indexed: 12/24/2022] Open
Abstract
Soybean is an important crop as both human food and animal feed. However, the yield of soybean is heavily impacted by biotic stresses including insect attack and pathogen infection. Insect bites usually make the plants vulnerable to pathogen infection, which causes diseases. Fungi, oomycetes, bacteria, viruses, and nematodes are major soybean pathogens. The infection by pathogens and the defenses mounted by soybean are an interactive and dynamic process. Using fungi, oomycetes, and bacteria as examples, we will discuss the recognition of pathogens by soybean at the molecular level. In this review, we will discuss both the secretory peptides for soybean plant infection and those for pathogen inhibition. Pathogenic secretory peptides and peptides secreted by soybean and its associated microbes will be included. We will also explore the possible use of externally applied antimicrobial peptides identical to those secreted by soybean and its associated microbes as biopesticides.
Collapse
Affiliation(s)
- Yee-Shan Ku
- Centre for Soybean Research of the State Key Laboratory of Agrobiotechnology and School of Life Sciences, The Chinese University of Hong Kong, Hong Kong; (Y.-S.K.); (S.-S.C.); (A.G.); (M.-Y.C.); (C.A.C.); (L.-Y.W.P.)
| | - Sau-Shan Cheng
- Centre for Soybean Research of the State Key Laboratory of Agrobiotechnology and School of Life Sciences, The Chinese University of Hong Kong, Hong Kong; (Y.-S.K.); (S.-S.C.); (A.G.); (M.-Y.C.); (C.A.C.); (L.-Y.W.P.)
| | - Aisha Gerhardt
- Centre for Soybean Research of the State Key Laboratory of Agrobiotechnology and School of Life Sciences, The Chinese University of Hong Kong, Hong Kong; (Y.-S.K.); (S.-S.C.); (A.G.); (M.-Y.C.); (C.A.C.); (L.-Y.W.P.)
- Centre for Organismal Studies (COS), Heidelberg University, Im Neuenheimer Feld 230, 69120 Heidelberg, Germany
| | - Ming-Yan Cheung
- Centre for Soybean Research of the State Key Laboratory of Agrobiotechnology and School of Life Sciences, The Chinese University of Hong Kong, Hong Kong; (Y.-S.K.); (S.-S.C.); (A.G.); (M.-Y.C.); (C.A.C.); (L.-Y.W.P.)
| | - Carolina A. Contador
- Centre for Soybean Research of the State Key Laboratory of Agrobiotechnology and School of Life Sciences, The Chinese University of Hong Kong, Hong Kong; (Y.-S.K.); (S.-S.C.); (A.G.); (M.-Y.C.); (C.A.C.); (L.-Y.W.P.)
| | - Lok-Yiu Winnie Poon
- Centre for Soybean Research of the State Key Laboratory of Agrobiotechnology and School of Life Sciences, The Chinese University of Hong Kong, Hong Kong; (Y.-S.K.); (S.-S.C.); (A.G.); (M.-Y.C.); (C.A.C.); (L.-Y.W.P.)
| | - Hon-Ming Lam
- Centre for Soybean Research of the State Key Laboratory of Agrobiotechnology and School of Life Sciences, The Chinese University of Hong Kong, Hong Kong; (Y.-S.K.); (S.-S.C.); (A.G.); (M.-Y.C.); (C.A.C.); (L.-Y.W.P.)
| |
Collapse
|
62
|
Identification and Molecular Mechanisms of Key Nucleotides Causing Attenuation in Pathogenicity of Dahlia Isolate of Potato Spindle Tuber Viroid. Int J Mol Sci 2020; 21:ijms21197352. [PMID: 33027943 PMCID: PMC7583970 DOI: 10.3390/ijms21197352] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Revised: 09/18/2020] [Accepted: 10/01/2020] [Indexed: 12/12/2022] Open
Abstract
While the potato spindle tuber viroid (PSTVd) variant, PSTVd-Dahlia (PSTVd-D or PSTVd-Dwt) induces very mild symptoms in tomato cultivar 'Rutgers', PSTVd-Intermediate (PSTVd-I or PSTVd-Iwt) induces severe symptoms. These two variants differ by nine nucleotides, of which six mutations are located in the terminal left (TL) to the pathogenicity (P) domains. To evaluate the importance of mutations located in the TL to the P domains, ten types of point mutants were created by swapping the nucleotides between the two viroid variants. Bioassay in tomato plants demonstrated that two mutants created on PSTVd-Iwt at positions 42 and 64 resulted in symptom attenuation. Phenotypic and RT-qPCR analysis revealed that mutation at position 42 of PSTVd-Iwt significantly reduced disease severity and accumulation of the viroid, whereas mutation at position 64 showed a significant reduction in stunting when compared to the PSTVd-Iwt infected plant. RT-qPCR analysis on pathogenesis-related protein 1b1 and chalcone synthase genes showed a direct correlation with symptom severity whereas the expansin genes were down-regulated irrespective of the symptom severity. These results indicate that the nucleotides at positions 42 and 64 are in concert with the ones at positions 43, 310, and 311/312, which determines the slower and stable accumulation of PSTVd-D without eliciting excessive host defense responses thus contributing in the attenuation of disease symptom.
Collapse
|
63
|
Sahaka M, Amara S, Wattanakul J, Gedi MA, Aldai N, Parsiegla G, Lecomte J, Christeller JT, Gray D, Gontero B, Villeneuve P, Carrière F. The digestion of galactolipids and its ubiquitous function in Nature for the uptake of the essential α-linolenic acid. Food Funct 2020; 11:6710-6744. [PMID: 32687132 DOI: 10.1039/d0fo01040e] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Galactolipids, mainly monogalactosyl diglycerides and digalactosyl diglycerides are the main lipids found in the membranes of plants, algae and photosynthetic microorganisms like microalgae and cyanobacteria. As such, they are the main lipids present at the surface of earth. They may represent up to 80% of the fatty acid stocks, including a large proportion of polyunsaturated fatty acids mainly α-linolenic acid (ALA). Nevertheless, the interest in these lipids for nutrition and other applications remains overlooked, probably because they are dispersed in the biomass and are not as easy to extract as vegetable oils from oleaginous fruit and oil seeds. Another reason is that galactolipids only represent a small fraction of the acylglycerolipids present in modern human diet. In herbivores such as horses, fish and folivorous insects, galactolipids may however represent the main source of dietary fatty acids due to their dietary habits and digestion physiology. The development of galactolipase assays has led to the identification and characterization of the enzymes involved in the digestion of galactolipids in the gastrointestinal tract, as well as by microorganisms. Pancreatic lipase-related protein 2 (PLRP2) has been identified as an important factor of galactolipid digestion in humans, together with pancreatic carboxyl ester hydrolase (CEH). The levels of PLRP2 are particularly high in monogastric herbivores thus highlighting the peculiar role of PLRP2 in the digestion of plant lipids. Similarly, pancreatic lipase homologs are found to be expressed in the midgut of folivorous insects, in which a high galactolipase activity can be measured. In fish, however, CEH is the main galactolipase involved. This review discusses the origins and fatty acid composition of galactolipids and the physiological contribution of galactolipid digestion in various species. This overlooked aspect of lipid digestion ensures not only the intake of ALA from its main natural source, but also the main lipid source of energy for growth of some herbivorous species.
Collapse
Affiliation(s)
- Moulay Sahaka
- Aix Marseille Univ, CNRS, UMR7281 Bioénergétique et Ingénierie des Protéines, 31 Chemin Joseph Aiguier, 13009 Marseille, France.
| | - Sawsan Amara
- Lipolytech, Zone Luminy Biotech, 163 avenue de Luminy, 13288 Marseille Cedex 09, France
| | - Jutarat Wattanakul
- Division of Food, Nutrition and Dietetics, School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, Leicestershire, LE12 5RD, UK
| | - Mohamed A Gedi
- Division of Food, Nutrition and Dietetics, School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, Leicestershire, LE12 5RD, UK
| | - Noelia Aldai
- Lactiker Research Group, Department of Pharmacy & Food Sciences, University of the Basque Country (UPV/EHU), 01006 Vitoria-Gasteiz, Spain
| | - Goetz Parsiegla
- Aix Marseille Univ, CNRS, UMR7281 Bioénergétique et Ingénierie des Protéines, 31 Chemin Joseph Aiguier, 13009 Marseille, France.
| | | | - John T Christeller
- The New Zealand Institute for Plant and Food Research Ltd (Plant & Food Research), Palmerston North Research Centre, Palmerston North, New Zealand
| | - David Gray
- Division of Food, Nutrition and Dietetics, School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, Leicestershire, LE12 5RD, UK
| | - Brigitte Gontero
- Aix Marseille Univ, CNRS, UMR7281 Bioénergétique et Ingénierie des Protéines, 31 Chemin Joseph Aiguier, 13009 Marseille, France.
| | | | - Frédéric Carrière
- Aix Marseille Univ, CNRS, UMR7281 Bioénergétique et Ingénierie des Protéines, 31 Chemin Joseph Aiguier, 13009 Marseille, France.
| |
Collapse
|
64
|
Zheng H, Zhang Y, Li J, He L, Wang F, Bi Y, Gao J. Comparative transcriptome analysis between a resistant and a susceptible Chinese cabbage in response to Hyaloperonospora brassicae. PLANT SIGNALING & BEHAVIOR 2020; 15:1777373. [PMID: 32538253 PMCID: PMC8570763 DOI: 10.1080/15592324.2020.1777373] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 04/30/2020] [Accepted: 05/02/2020] [Indexed: 06/01/2023]
Abstract
Downy mildew caused by Hyaloperonosporabrassicae (H. brassicae) leads to up to 90% of the crop yield loss in Chinese cabbage in China. A transcriptome analysis was carried out between a resistant line (13-13, R) and a susceptible line (15-14, S) of Chinese cabbage in response to H. brassicae. The NOISeq method was used to find differentially expressed genes (DEGs) between these two groups and GO and KEGG were carried out to find R genes related to downy mildew response of Chinese cabbage. qRT-PCR was carried out to verify the reliability of RNA-seq expression data. A total of 3,055 DEGs were screened out from 41,020 genes and clustered into 6 groups with distinct expression patterns. A total of 87 candidate DEGs were identified by functional annotation based on GO and KEGG analysis. These candidate genes are involved in plant-pathogen interaction pathway, among which 54 and 33 DEGs were categorized into plant-pathogen interaction proteins and transcription factors, respectively. Proteins encoded by these genes have been reported to play an important role in the pattern-triggered immunity (PTI) and effector-triggered immunity (ETI) processes of disease responses in some model plants, such as Arabidopsis, rice, tobacco, and tomato. However, little is known about the mechanisms of these genes in resistance to downy mildew in Chinese cabbage. Our findings are useful for further characterization of these candidate genes and helpful in breeding resistant strains.
Collapse
Affiliation(s)
- Han Zheng
- College of Life Science, Shandong Normal University, Jinan, China
| | - Yihui Zhang
- College of Life Science, Shandong Normal University, Jinan, China
- Shandong Branch of National Vegetable Improvement Center, Institute of Vegetables and Flowers, Shandong Academy of Agricultural Science, Jinan, China
| | - Jingjuan Li
- College of Life Science, Shandong Normal University, Jinan, China
- Shandong Branch of National Vegetable Improvement Center, Institute of Vegetables and Flowers, Shandong Academy of Agricultural Science, Jinan, China
| | - Lilong He
- Shandong Branch of National Vegetable Improvement Center, Institute of Vegetables and Flowers, Shandong Academy of Agricultural Science, Jinan, China
| | - Fengde Wang
- College of Life Science, Shandong Normal University, Jinan, China
- Shandong Branch of National Vegetable Improvement Center, Institute of Vegetables and Flowers, Shandong Academy of Agricultural Science, Jinan, China
| | - Yuping Bi
- College of Life Science, Shandong Normal University, Jinan, China
- Shandong Branch of National Vegetable Improvement Center, Institute of Vegetables and Flowers, Shandong Academy of Agricultural Science, Jinan, China
| | - Jianwei Gao
- College of Life Science, Shandong Normal University, Jinan, China
- Shandong Branch of National Vegetable Improvement Center, Institute of Vegetables and Flowers, Shandong Academy of Agricultural Science, Jinan, China
| |
Collapse
|
65
|
Gene co-expression network analysis provides a novel insight into the dynamic response of wheat to powdery mildew stress. J Genet 2020. [DOI: 10.1007/s12041-020-01206-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
66
|
Peng C, Zhang A, Wang Q, Song Y, Zhang M, Ding X, Li Y, Geng Q, Zhu C. Ultrahigh-activity immune inducer from Endophytic Fungi induces tobacco resistance to virus by SA pathway and RNA silencing. BMC PLANT BIOLOGY 2020; 20:169. [PMID: 32293278 PMCID: PMC7160901 DOI: 10.1186/s12870-020-02386-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2019] [Accepted: 04/05/2020] [Indexed: 05/07/2023]
Abstract
BACKGROUND Plant viruses cause severe economic losses in agricultural production. An ultrahigh activity plant immune inducer (i.e., ZhiNengCong, ZNC) was extracted from endophytic fungi, and it could promote plant growth and enhance resistance to bacteria. However, the antiviral function has not been studied. Our study aims to evaluate the antiviral molecular mechanisms of ZNC in tobacco. RESULTS Here, we used Potato X virus (PVX), wild-type tobacco and NahG transgenic tobacco as materials to study the resistance of ZNC to virus. ZNC exhibited a high activity in enhancing resistance to viruses and showed optimal use concentration at 100-150 ng/mL. ZNC also induced reactive oxygen species accumulation, increased salicylic acid (SA) content by upregulating the expression of phenylalanine ammonia lyase (PAL) gene and activated SA signaling pathway. We generated transcriptome profiles from ZNC-treated seedlings using RNA sequencing. The first GO term in biological process was positive regulation of post-transcriptional gene silencing, and the subsequent results showed that ZNC promoted RNA silencing. ZNC-sprayed wild-type leaves showed decreased infection areas, whereas ZNC failed to induce a protective effect against PVX in NahG leaves. CONCLUSION All results indicate that ZNC is an ultrahigh-activity immune inducer, and it could enhance tobacco resistance to PVX at low concentration by positively regulating the RNA silencing via SA pathway. The antiviral mechanism of ZNC was first revealed in this study, and this study provides a new antiviral bioagent.
Collapse
Affiliation(s)
- Chune Peng
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, Shandong, 271018, P.R. China
| | - Ailing Zhang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, Shandong, 271018, P.R. China
| | - Qingbin Wang
- Shandong Pengbo Biotechnology Co., LTD, Tai'an, Shandong, 271018, P.R. China
- National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources; National Engineering & Technology Research Center for Slow and Controlled Release Fertilizers, College of Resources and Environment, Shandong Agricultural University, Tai'an, Shandong, 271018, P.R. China
| | - Yunzhi Song
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, Shandong, 271018, P.R. China
| | - Min Zhang
- National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources; National Engineering & Technology Research Center for Slow and Controlled Release Fertilizers, College of Resources and Environment, Shandong Agricultural University, Tai'an, Shandong, 271018, P.R. China
| | - Xinhua Ding
- State Key Laboratory of Crop Biology, College of Plant Protection, Shandong Agricultural University, Tai'an, Shandong, 271018, P.R. China
| | - Yang Li
- Shandong Pengbo Biotechnology Co., LTD, Tai'an, Shandong, 271018, P.R. China
| | - Quanzheng Geng
- Shandong Pengbo Biotechnology Co., LTD, Tai'an, Shandong, 271018, P.R. China
| | - Changxiang Zhu
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, Shandong, 271018, P.R. China.
| |
Collapse
|
67
|
Lin PA, Felton GW. Oral cues are not enough: induction of defensive proteins in Nicotiana tabacum upon feeding by caterpillars. PLANTA 2020; 251:89. [PMID: 32232572 DOI: 10.1007/s00425-020-03385-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Accepted: 03/25/2020] [Indexed: 06/10/2023]
Abstract
MAIN CONCLUSION The study challenges the general belief that plants are highly sensitive to oral cues of herbivores and reveals the role of the damage level on the magnitude of defense induction. Many leaf-feeding caterpillars share similar feeding behaviors involving repeated removal of previously wounded leaf tissue (semicircle feeding pattern). We hypothesized that this behavior is a strategy to attenuate plant-induced defenses by removing both the oral cues and tissues that detect it. Using tobacco (Nicotiana tabacum) and the tobacco hornworm (Manduca sexta), we found that tobacco increased defensive responses during herbivory compared to mechanical wounding at moderate damage levels (30%). However, tobacco did not differentiate between mechanical wounding and herbivory when the level of leaf tissue loss was either small (4%) or severe (100%, whole leaf removal). Higher amounts of oral cues did not induce higher defenses when damage was small. Severe damage led to the highest level of systemic defense proteins compared to other levels of leaf tissue loss with or without oral cues. In conclusion, we did not find clear evidence that semicircle feeding behavior compromises plant defense induction. In addition, the level of leaf tissue loss and oral cues interact to determine the level of induced defensive responses in tobacco. Although oral cues play an important role in inducing defensive proteins, the level of induction depends more on the level of leaf tissue loss in tobacco.
Collapse
Affiliation(s)
- Po-An Lin
- Department of Entomology, Pennsylvania State University, State College, PA, USA.
| | - Gary W Felton
- Department of Entomology, Pennsylvania State University, State College, PA, USA
| |
Collapse
|
68
|
Natural Compounds as Elicitors of Plant Resistance Against Diseases and New Biocontrol Strategies. AGRONOMY-BASEL 2020. [DOI: 10.3390/agronomy10020173] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The goal of sustainable and organic agriculture is to optimize the health and productivity of interdependent communities of soil life, plants, animals, and people. Organic plant production uses natural products and natural self-regulation processes occurring in the ecosystem. The availability of innovative applications and molecular techniques opens up new possibilities in the approach to plant protection for sustainable and organic agriculture. New strategies not only directly protect plants against pathogens but can also induce enhanced immunity that permanently protects against pathogenic strains. This review focuses on the bioactive properties of selected natural compounds (of plant and animal origin), their action on pathogens, and their roles in the mechanism of inducing plant resistance. The author presents selected activities of organic bioactive compounds, such as allicin, naringin, terpenes, laminarin, carrageenans, chitin and chitosan, and outlines the possibilities for their application in protecting crop plants against diseases. In addition, this mini review describes the mechanism of action of the above compounds as elicitors of defense reactions in the plant and the possibility of their utilization in the production of biological preparations as elements of a new plant protection strategy.
Collapse
|
69
|
Li B, Ferreira MA, Huang M, Camargos LF, Yu X, Teixeira RM, Carpinetti PA, Mendes GC, Gouveia-Mageste BC, Liu C, Pontes CSL, Brustolini OJB, Martins LGC, Melo BP, Duarte CEM, Shan L, He P, Fontes EPB. The receptor-like kinase NIK1 targets FLS2/BAK1 immune complex and inversely modulates antiviral and antibacterial immunity. Nat Commun 2019; 10:4996. [PMID: 31676803 PMCID: PMC6825196 DOI: 10.1038/s41467-019-12847-6] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Accepted: 10/04/2019] [Indexed: 01/23/2023] Open
Abstract
Plants deploy various immune receptors to recognize pathogens and defend themselves. Crosstalk may happen among receptor-mediated signal transduction pathways in the same host during simultaneous infection of different pathogens. However, the related function of the receptor-like kinases (RLKs) in thwarting different pathogens remains elusive. Here, we report that NIK1, which positively regulates plant antiviral immunity, acts as an important negative regulator of antibacterial immunity. nik1 plants exhibit dwarfed morphology, enhanced disease resistance to bacteria and increased PAMP-triggered immunity (PTI) responses, which are restored by NIK1 reintroduction. Additionally, NIK1 negatively regulates the formation of the FLS2/BAK1 complex. The interaction between NIK1 and FLS2/BAK1 is enhanced upon flg22 perception, revealing a novel PTI regulatory mechanism by an RLK. Furthermore, flg22 perception induces NIK1 and RPL10A phosphorylation in vivo, activating antiviral signalling. The NIK1-mediated inverse modulation of antiviral and antibacterial immunity may allow bacteria and viruses to activate host immune responses against each other. Plants deploy numerous receptor-like kinases (RLKs) to respond to pathogens. Here the authors show that NIK1, an RLK that positively regulates antiviral immunity, negatively regulates the response to bacteria by modulating FLS2/BAK1 complex formation, suggesting crosstalk between bacterial and viral immunity.
Collapse
Affiliation(s)
- Bo Li
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei, 430070, China. .,The Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, China.
| | - Marco Aurélio Ferreira
- National Institute of Science and Technology in Plant-Pest Interactions, Bioagro, Viçosa, MG, 36570.900, Brazil.,Department of Biochemistry and Molecular Biology, Universidade Federal de Viçosa, Viçosa, MG, 36570.900, Brazil
| | - Mengling Huang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei, 430070, China.,The Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Luiz Fernando Camargos
- National Institute of Science and Technology in Plant-Pest Interactions, Bioagro, Viçosa, MG, 36570.900, Brazil.,Department of Biochemistry and Molecular Biology, Universidade Federal de Viçosa, Viçosa, MG, 36570.900, Brazil.,Federal Institute of Education from Goias, Science and Technology, Urutaí, GO, 75790-000, Brazil
| | - Xiao Yu
- Department of Plant Pathology and Microbiology, Institute for Plant Genomics and Biotechnology, Texas A&M University, College Station, TX, 77843, USA
| | - Ruan M Teixeira
- National Institute of Science and Technology in Plant-Pest Interactions, Bioagro, Viçosa, MG, 36570.900, Brazil.,Department of Biochemistry and Molecular Biology, Universidade Federal de Viçosa, Viçosa, MG, 36570.900, Brazil
| | - Paola A Carpinetti
- Department of Biochemistry and Molecular Biology, Universidade Federal de Viçosa, Viçosa, MG, 36570.900, Brazil
| | - Giselle C Mendes
- National Institute of Science and Technology in Plant-Pest Interactions, Bioagro, Viçosa, MG, 36570.900, Brazil.,Department of Biochemistry and Molecular Biology, Universidade Federal de Viçosa, Viçosa, MG, 36570.900, Brazil.,Instituto Federal de Educação, Ciência e Tecnologia Catarinense, Rio do Sul, SC, 89163-356, Brazil
| | - Bianca C Gouveia-Mageste
- National Institute of Science and Technology in Plant-Pest Interactions, Bioagro, Viçosa, MG, 36570.900, Brazil
| | - Chenglong Liu
- Department of Plant Pathology and Microbiology, Institute for Plant Genomics and Biotechnology, Texas A&M University, College Station, TX, 77843, USA
| | - Claudia S L Pontes
- National Institute of Science and Technology in Plant-Pest Interactions, Bioagro, Viçosa, MG, 36570.900, Brazil
| | - Otávio J B Brustolini
- National Institute of Science and Technology in Plant-Pest Interactions, Bioagro, Viçosa, MG, 36570.900, Brazil.,Laboratório Nacional de Computação Cientifica (LNCC), Petrópolis, RJ, Brazil
| | - Laura G C Martins
- National Institute of Science and Technology in Plant-Pest Interactions, Bioagro, Viçosa, MG, 36570.900, Brazil.,Department of Biochemistry and Molecular Biology, Universidade Federal de Viçosa, Viçosa, MG, 36570.900, Brazil
| | - Bruno P Melo
- National Institute of Science and Technology in Plant-Pest Interactions, Bioagro, Viçosa, MG, 36570.900, Brazil.,Department of Biochemistry and Molecular Biology, Universidade Federal de Viçosa, Viçosa, MG, 36570.900, Brazil
| | - Christiane E M Duarte
- National Institute of Science and Technology in Plant-Pest Interactions, Bioagro, Viçosa, MG, 36570.900, Brazil.,Department of Biochemistry and Molecular Biology, Universidade Federal de Viçosa, Viçosa, MG, 36570.900, Brazil
| | - Libo Shan
- Department of Plant Pathology and Microbiology, Institute for Plant Genomics and Biotechnology, Texas A&M University, College Station, TX, 77843, USA
| | - Ping He
- Department of Biochemistry and Biophysics, Institute for Plant Genomics and Biotechnology, Texas A&M University, College Station, TX, 77843, USA
| | - Elizabeth P B Fontes
- National Institute of Science and Technology in Plant-Pest Interactions, Bioagro, Viçosa, MG, 36570.900, Brazil. .,Department of Biochemistry and Molecular Biology, Universidade Federal de Viçosa, Viçosa, MG, 36570.900, Brazil.
| |
Collapse
|
70
|
Zhang H, Mao R, Wang Y, Zhang L, Wang C, Lv S, Liu X, Wang Y, Ji W. Transcriptome-wide alternative splicing modulation during plant-pathogen interactions in wheat. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2019; 288:110160. [PMID: 31521219 DOI: 10.1016/j.plantsci.2019.05.023] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2018] [Revised: 03/11/2019] [Accepted: 05/29/2019] [Indexed: 05/07/2023]
Abstract
Alternative splicing (AS) enhances the diversities of both transcripts and proteins in eukaryotes, which contribute to stress adaptation. To catalog wheat (Triticum aestivum L.) AS genes, we characterized 45 RNA-seq libraries from wheat seedlings infected by powdery mildew, Blumeria graminis f. sp. tritici (Bgt) or stripe rust fungus, Puccinia striiformis f. sp. tritici (Pst). We discovered that 11.2% and 10.4% of the multiexon genes had AS transcripts during Bgt and Pst infections, respectively. In response to fungal infection, wheat modulated AS not only in disease resistance proteins, but also in splicing related factors. Apart from the stress induced or activated splicing variants by pathogen, the differential expression profiles were fold increased through changing the ratio of full spliced transcripts versus intron retention (IR) transcripts. Comparing AS transcripts produced by the same gene in Bgt with Pst stress, the spliced terminal exons and the stranded introns are independent and different. This demonstrated that differential induction of specific splice variants were activated against two fungal pathogens. The specific induced AS genes in the Pst-resistant plants were enriched in improving the membrane permeability and protein modification ability, whereas gene expression involved in protein translation and transport were strengthened in Pst-susceptible plants.
Collapse
Affiliation(s)
- Hong Zhang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, 712100, Shaanxi, PR China
| | - Rui Mao
- College of Information Engineering, Northwest A&F University, Yangling, 712100, Shaanxi, PR China
| | - Yanzhen Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, 712100, Shaanxi, PR China
| | - Lu Zhang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, 712100, Shaanxi, PR China
| | - Changyou Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, 712100, Shaanxi, PR China
| | - Shikai Lv
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, 712100, Shaanxi, PR China
| | - Xinlun Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, 712100, Shaanxi, PR China
| | - Yajuan Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, 712100, Shaanxi, PR China
| | - Wanquan Ji
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, 712100, Shaanxi, PR China.
| |
Collapse
|
71
|
Function of miR825 and miR825* as Negative Regulators in Bacillus cereus AR156-elicited Systemic Resistance to Botrytis cinerea in Arabidopsis thaliana. Int J Mol Sci 2019; 20:ijms20205032. [PMID: 31614458 PMCID: PMC6829492 DOI: 10.3390/ijms20205032] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Revised: 10/04/2019] [Accepted: 10/09/2019] [Indexed: 01/18/2023] Open
Abstract
Small RNAs function to regulate plant defense responses to pathogens. We previously showed that miR825 and miR825* downregulate Bacillus cereus AR156 (AR156)-triggered systemic resistance to Pseudomonassyringae pv. tomato DC3000 in Arabidopsis thaliana (Arabidopsis). Here, Northern blotting revealed that miR825 and miR825* were more strongly downregulated in wild type Arabidopsis Col-0 (Col-0) plants pretreated with AR156 than in nontreated plants upon Botrytis cinerea (B. cinerea) B1301 infection. Furthermore, compared with Col-0, transgenic plants with attenuated miR825 and miR825* expression were more resistant to B. cinerea B1301, yet miR825- and miR825*-overexpressing (OE) plants were more susceptible to the pathogen. With AR156 pretreatment, the transcription of four defense-related genes (PR1, PR2, PR5, and PDF1.2) and cellular defense responses (hydrogen peroxide production and callose deposition) were faster and stronger in miR825 and miR825* knockdown lines but weaker in their OE plants than in Col-0 plants upon pathogen attack. Also, AR156 pretreatment caused stronger phosphorylation of MPK3 and MPK6 and expression of FRK1 and WRKY53 genes upon B. cinerea B1301 inoculation in miR825 and miR825* knockdown plants than in Col-0 plants. Additionally, the assay of agrobacterium-mediated transient co-expression in Nicotiana benthamiana confirmed that AT5G40910, AT5G38850, AT3G04220, and AT5G44940 are target genes of miR825 or miR825*. Compared with Col-0, the target mutant lines showed higher susceptibility to B. cinerea B1301, while still expressing AR156-triggered induced systemic resistance (ISR). The two-way analysis of variance (ANOVA) revealed a significant (P < 0.01) interactive effect of treatment and genotype on the defense responses. Hence, miR825 and miR825*act as negative regulators of AR156-mediated systemic resistance to B. cinerea B1301 in Arabidopsis.
Collapse
|
72
|
Engineering Bacillus velezensis with high production of acetoin primes strong induced systemic resistance in Arabidopsis thaliana. Microbiol Res 2019; 227:126297. [DOI: 10.1016/j.micres.2019.126297] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 07/02/2019] [Accepted: 07/12/2019] [Indexed: 11/18/2022]
|
73
|
Cale JA, Klutsch JG, Dykstra CB, Peters B, Erbilgin N. Pathophysiological responses of pine defensive metabolites largely lack differences between pine species but vary with eliciting ophiostomatoid fungal species. TREE PHYSIOLOGY 2019; 39:1121-1135. [PMID: 30877758 DOI: 10.1093/treephys/tpz012] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Revised: 01/18/2019] [Accepted: 01/29/2019] [Indexed: 06/09/2023]
Abstract
Phytopathogenic ophiostomatoid fungi are common associates of bark beetles and contribute to beetle-associated mortality of trees. Mountain pine beetle outbreaks in Canada are facilitating novel associations between its vectored fungi (Grosmannia clavigera, Leptographium longiclavatum and Ophiostoma montium) and jack pine. How the induced defense-related metabolite responses of jack and lodgepole pines vary in response to the fungi is unknown. Understanding this variation is important to clarifying pine susceptibility to and the physiological impacts of infection. We used a comparative metabolite profiling approach to investigate the defense-related signaling, carbon utilization/mobilization, and synthesis responses of both pines to the fungi. Both pine species largely exhibited similar metabolite responses to the fungi. The magnitude of pine metabolite responses positively reflected pathogen virulence. Our findings indicate that pines can recognize and metabolomically respond to novel pathogens, likely due to signals common between the novel fungi and fungi coevolved with the pine. Thus, jack pine is likely as susceptible as lodgepole pine to infections by each of the MPB-vectored fungi. Furthermore, the magnitude of the metabolite responses of both pines varied by the eliciting fungal species, with the most virulent pathogen causing the greatest reduction in carbohydrates and the highest accumulation of defensive terpenes.
Collapse
Affiliation(s)
- Jonathan A Cale
- Department of Renewable Resources, University of Alberta, 442 Earth Sciences Building, Edmonton, Alberta, Canada
| | - Jennifer G Klutsch
- Department of Renewable Resources, University of Alberta, 442 Earth Sciences Building, Edmonton, Alberta, Canada
| | - Christien B Dykstra
- Department of Renewable Resources, University of Alberta, 442 Earth Sciences Building, Edmonton, Alberta, Canada
| | - Brosnon Peters
- Department of Renewable Resources, University of Alberta, 442 Earth Sciences Building, Edmonton, Alberta, Canada
| | - Nadir Erbilgin
- Department of Renewable Resources, University of Alberta, 442 Earth Sciences Building, Edmonton, Alberta, Canada
| |
Collapse
|
74
|
The Respiratory Burst Oxidase Homolog D (RbohD) Cell and Tissue Distribution in Potato-Potato Virus Y (PVY NTN) Hypersensitive and Susceptible Reactions. Int J Mol Sci 2019; 20:ijms20112741. [PMID: 31167403 PMCID: PMC6600368 DOI: 10.3390/ijms20112741] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Revised: 05/21/2019] [Accepted: 06/02/2019] [Indexed: 12/12/2022] Open
Abstract
The respiratory burst oxidase homolog D (RbohD) acts as a central driving force of reactive oxygen species signaling in plant cells by integrating many different signal transduction pathways in plants, including incompatible interactions with pathogens. This study demonstrated the localization and distribution of RbohD in two types of potato–potato virus Y (PVY) interactions: Compatible and incompatible (resistant). The results indicated a statistically significant induction of the RbohD antigen signal in both interaction types. In the hypersensitive response (resistant reaction) of potato with a high level of resistance to the potato tuber necrotic strain of PVY (PVYNTN), RbohD localization followed by hydrogen peroxide (H2O2) detection was concentrated in the apoplast. In contrast, in the hypersensitive response of potato with a low resistance level to PVYNTN, the distribution of RbohD was concentrated more in the plant cell organelles than in the apoplast, resulting in the virus particles being present outside the inoculation area. Moreover, when compared to mock-inoculated plants and to the hypersensitive response, the PVYNTN-compatible potato interaction triggered high induction in the RbohD distribution, which was associated with necrotization. Our findings indicated that RbohD and hydrogen peroxide deposition was associated with the hypersensitive response, and both were detected in the vascular tissues and chloroplasts. These results suggest that the RbohD distribution is actively dependent on different types of PVY NTN-potato plant interactions. Additionally, the RbohD may be involved in the PVYNTN tissue limitation during the hypersensitive response, and it could be an active component of the systemic signal transduction in the susceptible host reaction.
Collapse
|
75
|
Liu S, Wang J, Jiang S, Wang H, Gao Y, Zhang H, Li D, Song F. Tomato SlSAP3, a member of the stress-associated protein family, is a positive regulator of immunity against Pseudomonas syringae pv. tomato DC3000. MOLECULAR PLANT PATHOLOGY 2019; 20:815-830. [PMID: 30907488 PMCID: PMC6637894 DOI: 10.1111/mpp.12793] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Tomato stress-associated proteins (SAPs) belong to A20/AN1 zinc finger protein family, some of which have been shown to play important roles in plant stress responses. However, little is known about the functions and underlying molecular mechanisms of SAPs in plant immune responses. In the present study, we reported the function of tomato SlSAP3 in immunity to Pseudomonas syringae pv. tomato (Pst) DC3000. Silencing of SlSAP3 attenuated while overexpression of SlSAP3 in transgenic tomato increased immunity to Pst DC3000, accompanied with reduced and increased Pst DC3000-induced expression of SA signalling and defence genes, respectively. Flg22-induced reactive oxygen species (ROS) burst and expression of PAMP-triggered immunity (PTI) marker genes SlPTI5 and SlLRR22 were strengthened in SlSAP3-OE plants but were weakened in SlSAP3-silenced plants. SlSAP3 interacted with two SlBOBs and the A20 domain in SlSAP3 is critical for the SlSAP3-SlBOB1 interaction. Silencing of SlBOB1 and co-silencing of all three SlBOB genes conferred increased resistance to Pst DC3000, accompanied with increased Pst DC3000-induced expression of SA signalling and defence genes. These data demonstrate that SlSAP3 acts as a positive regulator of immunity against Pst DC3000 in tomato through the SA signalling and that SlSAP3 may exert its function in immunity by interacting with other proteins such as SlBOBs, which act as negative regulators of immunity against Pst DC3000 in tomato.
Collapse
Affiliation(s)
- Shixia Liu
- National Key Laboratory for Rice Biology, Institute of BiotechnologyZhejiang UniversityHangzhouZhejiang310058China
| | - Jiali Wang
- National Key Laboratory for Rice Biology, Institute of BiotechnologyZhejiang UniversityHangzhouZhejiang310058China
| | - Siyu Jiang
- National Key Laboratory for Rice Biology, Institute of BiotechnologyZhejiang UniversityHangzhouZhejiang310058China
| | - Hui Wang
- National Key Laboratory for Rice Biology, Institute of BiotechnologyZhejiang UniversityHangzhouZhejiang310058China
| | - Yizhou Gao
- National Key Laboratory for Rice Biology, Institute of BiotechnologyZhejiang UniversityHangzhouZhejiang310058China
| | - Huijuan Zhang
- National Key Laboratory for Rice Biology, Institute of BiotechnologyZhejiang UniversityHangzhouZhejiang310058China
- College of Life ScienceTaizhou UniversityTaizhouZhejiang318000China
| | - Dayong Li
- National Key Laboratory for Rice Biology, Institute of BiotechnologyZhejiang UniversityHangzhouZhejiang310058China
| | - Fengming Song
- National Key Laboratory for Rice Biology, Institute of BiotechnologyZhejiang UniversityHangzhouZhejiang310058China
| |
Collapse
|
76
|
Liu S, Yuan X, Wang Y, Wang H, Wang J, Shen Z, Gao Y, Cai J, Li D, Song F. Tomato Stress-Associated Protein 4 Contributes Positively to Immunity Against Necrotrophic Fungus Botrytis cinerea. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2019; 32:566-582. [PMID: 30589365 DOI: 10.1094/mpmi-04-18-0097-r] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Stress-associated proteins (SAPs) are A20 and AN1 domain-containing proteins, some of which play important roles in plant stress signaling. Here, we report the involvement of tomato SlSAP family in immunity. SlSAPs responded with different expression patterns to Botrytis cinerea and defense signaling hormones. Virus-induced gene silencing of each of the SlSAP genes and disease assays revealed that SlSAP4 and SlSAP10 play roles in immunity against B. cinerea. Silencing of SlSAP4 resulted in attenuated immunity to B. cinerea, accompanying increased accumulation of reactive oxygen species and downregulated expression of jasmonate and ethylene (JA/ET) signaling-responsive defense genes. Transient expression of SlSAP4 in Nicotiana benthamiana led to enhanced resistance to B. cinerea. Exogenous application of methyl jasmonate partially restored the resistance of the SlSAP4-silenced plants against B. cinerea. SlSAP4 interacted with three of four SlRAD23 proteins. The A20 domain in SlSAP4 and the Ub-associated domains in SlRAD23d are critical for SlSAP4-SlRAD23d interaction. Silencing of SlRAD23d led to decreased resistance to B. cinerea, but silencing of each of other SlRAD23s did not affect immunity against B. cinerea. Furthermore, silencing of SlSAP4 and each of the SlRAD23s did not affect immunity to Pseudomonas syringae pv. tomato DC3000. These data suggest that SlSAP4 contributes positively to tomato immunity against B. cinereal through affecting JA/ET signaling and may be involved in the substrate ubiquitination process via interacting with SlRAD23d.
Collapse
Affiliation(s)
- Shixia Liu
- National Key Laboratory for Rice Biology and Key Laboratory of Crop Diseases and Insect Pests of Ministry of Agriculture, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, P. R. China
| | - Xi Yuan
- National Key Laboratory for Rice Biology and Key Laboratory of Crop Diseases and Insect Pests of Ministry of Agriculture, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, P. R. China
| | - Yuyan Wang
- National Key Laboratory for Rice Biology and Key Laboratory of Crop Diseases and Insect Pests of Ministry of Agriculture, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, P. R. China
| | - Hui Wang
- National Key Laboratory for Rice Biology and Key Laboratory of Crop Diseases and Insect Pests of Ministry of Agriculture, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, P. R. China
| | - Jiali Wang
- National Key Laboratory for Rice Biology and Key Laboratory of Crop Diseases and Insect Pests of Ministry of Agriculture, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, P. R. China
| | - Zhihui Shen
- National Key Laboratory for Rice Biology and Key Laboratory of Crop Diseases and Insect Pests of Ministry of Agriculture, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, P. R. China
| | - Yizhou Gao
- National Key Laboratory for Rice Biology and Key Laboratory of Crop Diseases and Insect Pests of Ministry of Agriculture, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, P. R. China
| | - Jiating Cai
- National Key Laboratory for Rice Biology and Key Laboratory of Crop Diseases and Insect Pests of Ministry of Agriculture, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, P. R. China
| | - Dayong Li
- National Key Laboratory for Rice Biology and Key Laboratory of Crop Diseases and Insect Pests of Ministry of Agriculture, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, P. R. China
| | - Fengming Song
- National Key Laboratory for Rice Biology and Key Laboratory of Crop Diseases and Insect Pests of Ministry of Agriculture, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, P. R. China
| |
Collapse
|
77
|
Pattern recognition receptors and their interactions with bacterial type III effectors in plants. Genes Genomics 2019; 41:499-506. [DOI: 10.1007/s13258-019-00801-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Accepted: 02/19/2019] [Indexed: 01/29/2023]
|
78
|
Pombo MA, Ramos RN, Zheng Y, Fei Z, Martin GB, Rosli HG. Transcriptome-based identification and validation of reference genes for plant-bacteria interaction studies using Nicotiana benthamiana. Sci Rep 2019; 9:1632. [PMID: 30733563 PMCID: PMC6367355 DOI: 10.1038/s41598-018-38247-2] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Accepted: 12/20/2018] [Indexed: 12/17/2022] Open
Abstract
RT-qPCR is a widely used technique for the analysis of gene expression. Accurate estimation of transcript abundance relies strongly on a normalization that requires the use of reference genes that are stably expressed in the conditions analyzed. Initially, they were adopted from those used in Northern blot experiments, but an increasing number of publications highlight the need to find and validate alternative reference genes for the particular system under study. The development of high-throughput sequencing techniques has facilitated the identification of such stably expressed genes. Nicotiana benthamiana has been extensively used as a model in the plant research field. In spite of this, there is scarce information regarding suitable RT-qPCR reference genes for this species. Employing RNA-seq data previously generated from tomato plants, combined with newly generated data from N. benthamiana leaves infiltrated with Pseudomonas fluorescens, we identified and tested a set of 9 candidate reference genes. Using three different algorithms, we found that NbUbe35, NbNQO and NbErpA exhibit less variable gene expression in our pathosystem than previously used genes. Furthermore, the combined use of the first two is sufficient for robust gene expression analysis. We encourage employing these novel reference genes in future RT-qPCR experiments involving N. benthamiana and Pseudomonas spp.
Collapse
Affiliation(s)
- Marina A Pombo
- Instituto de Fisiología Vegetal, INFIVE, Universidad Nacional de La Plata, CONICET, La Plata, Buenos Aires, Argentina
| | - Romina N Ramos
- Instituto de Fisiología Vegetal, INFIVE, Universidad Nacional de La Plata, CONICET, La Plata, Buenos Aires, Argentina
| | - Yi Zheng
- Boyce Thompson Institute for Plant Research, 533 Tower Road, Ithaca, NY, 14853, USA
| | - Zhangjun Fei
- Boyce Thompson Institute for Plant Research, 533 Tower Road, Ithaca, NY, 14853, USA
- USDA-ARS Robert W. Holley Center for Agriculture and Health, Ithaca, NY, 14853, USA
| | - Gregory B Martin
- Boyce Thompson Institute for Plant Research, 533 Tower Road, Ithaca, NY, 14853, USA
- Section of Plant Pathology and Plant-Microbe Biology, School of Integrative Plant Science, Cornell University, Ithaca, NY, 14853, USA
| | - Hernan G Rosli
- Instituto de Fisiología Vegetal, INFIVE, Universidad Nacional de La Plata, CONICET, La Plata, Buenos Aires, Argentina.
| |
Collapse
|
79
|
Huang PY, Zhang J, Jiang B, Chan C, Yu JH, Lu YP, Chung K, Zimmerli L. NINJA-associated ERF19 negatively regulates Arabidopsis pattern-triggered immunity. JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:1033-1047. [PMID: 30462256 PMCID: PMC6363091 DOI: 10.1093/jxb/ery414] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2018] [Accepted: 11/19/2018] [Indexed: 05/07/2023]
Abstract
Recognition of microbe-associated molecular patterns (MAMPs) derived from invading pathogens by plant pattern recognition receptors (PRRs) initiates a subset of defense responses known as pattern-triggered immunity (PTI). Transcription factors (TFs) orchestrate the onset of PTI through complex signaling networks. Here, we characterized the function of ERF19, a member of the Arabidopsis thaliana ethylene response factor (ERF) family. ERF19 was found to act as a negative regulator of PTI against Botrytis cinerea and Pseudomonas syringae. Notably, overexpression of ERF19 increased plant susceptibility to these pathogens and repressed MAMP-induced PTI outputs. In contrast, expression of the chimeric dominant repressor ERF19-SRDX boosted PTI activation, conferred increased resistance to the fungus B. cinerea, and enhanced elf18-triggered immunity against bacteria. Consistent with a negative role for ERF19 in PTI, MAMP-mediated growth inhibition was weakened or augmented in lines overexpressing ERF19 or expressing ERF19-SRDX, respectively. Using biochemical and genetic approaches, we show that the transcriptional co-repressor Novel INteractor of JAZ (NINJA) associates with and represses the function of ERF19. Our work reveals ERF19 as a novel player in the mitigation of PTI, and highlights a potential role for NINJA in fine-tuning ERF19-mediated regulation of Arabidopsis innate immunity.
Collapse
Affiliation(s)
- Pin-Yao Huang
- Department of Life Science and Institute of Plant Biology, National Taiwan University, Taipei, Taiwan
- Howard Hughes Medical Institute, New York University Langone School of Medicine, New York, NY, USA
- Department of Biochemistry and Molecular Pharmacology, New York University Langone School of Medicine, New York, NY, USA
| | - Jingsong Zhang
- Department of Life Science and Institute of Plant Biology, National Taiwan University, Taipei, Taiwan
| | - Beier Jiang
- Department of Life Science and Institute of Plant Biology, National Taiwan University, Taipei, Taiwan
| | - Ching Chan
- Department of Life Science and Institute of Plant Biology, National Taiwan University, Taipei, Taiwan
| | - Jhong-He Yu
- Department of Life Science and Institute of Plant Biology, National Taiwan University, Taipei, Taiwan
| | - Yu-Pin Lu
- Department of Life Science and Institute of Plant Biology, National Taiwan University, Taipei, Taiwan
| | - KwiMi Chung
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology, Higashi, Tsukuba, Ibaraki, Japan
| | - Laurent Zimmerli
- Department of Life Science and Institute of Plant Biology, National Taiwan University, Taipei, Taiwan
- Correspondence:
| |
Collapse
|
80
|
Jarad M, Mariappan K, Almeida-Trapp M, Mette MF, Mithöfer A, Rayapuram N, Hirt H. The Lamin-Like LITTLE NUCLEI 1 (LINC1) Regulates Pattern-Triggered Immunity and Jasmonic Acid Signaling. FRONTIERS IN PLANT SCIENCE 2019; 10:1639. [PMID: 31998332 PMCID: PMC6963418 DOI: 10.3389/fpls.2019.01639] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Accepted: 11/20/2019] [Indexed: 05/19/2023]
Abstract
Pathogen-associated molecular pattern (PAMP) recognition occurs by plasma membrane located receptors that induce among other processes nuclear gene expression. However, signaling to the nuclear compartment is restricted by the nuclear envelope and nuclear pore complexes. We show here that among the four Arabidopsis lamin homologs LITTLE NUCLEI/CROWDED NUCLEI (LINC/CRWN), LINC1 plays an important role in PTI and jasmonic acid (JA) signaling. We show that linc1 knock out mutants affect PAMP-triggered MAPK activation and growth inhibition, but not reactive oxygen species or callose accumulation. We also demonstrate that linc1 mutants are compromised in regulating PAMP-triggered pathogen-related genes, in particular encoding factors involved in JA signaling and responses. Expression of a number of JAZ domain proteins, the key JA-related transcription factor MYC2 as well as key MYB transcription factors and biosynthesis genes of both the indole and aliphatic glucosinolate pathways are changed in linc1 mutants. Moreover, PAMP triggers JA and JA-Ile accumulation in linc1 mutants, whereas salicylic acid levels are unchanged. Despite impairment in PAMP-triggered immunity, linc1 mutants still show basal immunity towards Pseudomonas syringae DC3000 strains. High JA levels usually render plants resistant to necrotrophic pathogen. Thus, linc1 mutants show enhanced resistance to Botrytis cinerea infection. In accordance with a general role of LINC1 in JA signaling, linc1 mutants are hypersensitive to growth inhibition to external JA. In summary, our findings show that the lamin-like LINC1 protein plays a key role in JA signaling and regulation of PTI responses in Arabidopsis.
Collapse
Affiliation(s)
- Mai Jarad
- DARWIN21, Biological and Environmental Sciences and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Kiruthiga Mariappan
- DARWIN21, Biological and Environmental Sciences and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Marilia Almeida-Trapp
- DARWIN21, Biological and Environmental Sciences and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Michael Florian Mette
- DARWIN21, Biological and Environmental Sciences and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Axel Mithöfer
- Research Group Plant Defense Physiology, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Naganand Rayapuram
- DARWIN21, Biological and Environmental Sciences and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Heribert Hirt
- DARWIN21, Biological and Environmental Sciences and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
- *Correspondence: Heribert Hirt,
| |
Collapse
|
81
|
Arraño-Salinas P, Domínguez-Figueroa J, Herrera-Vásquez A, Zavala D, Medina J, Vicente-Carbajosa J, Meneses C, Canessa P, Moreno AA, Blanco-Herrera F. WRKY7, -11 and -17 transcription factors are modulators of the bZIP28 branch of the unfolded protein response during PAMP-triggered immunity in Arabidopsis thaliana. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2018; 277:242-250. [PMID: 30466590 DOI: 10.1016/j.plantsci.2018.09.019] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Revised: 08/14/2018] [Accepted: 09/21/2018] [Indexed: 06/09/2023]
Abstract
Plants must defend themselves against pathogens. The defense response requires greater protein synthesis, which generates endoplasmic reticulum (ER) stress, yet failure to attenuate this stress has detrimental effects. WRKY7/11/17 transcription factors (TFs) are negative regulators of immunity since mutants are more resistant to Pseudomonas syringae pv tomato (Pst) infection. Here, we reveal a connection between ER-stress and the molecular mechanisms underlying the wrky mutant phenotype. The bZIP28 TF upregulates ER-chaperone expression (BiP1/2, ERdj3B, and SDF2) upon exposure of Arabidopsis to a bacterial defense elicitor, flagellin 22 (Flg22). Also, the activation of ER-chaperones is more sustained in double and triple wrky mutants treated with Flg22, suggesting that WRKY7/11/17 TFs downregulate these genes. Moreover, wrky mutants accumulate more bZIP28 transcripts in response to Flg22, indicating that WRKY7/11/17 transcriptionally repress this TF. Using Arabidopsis protoplasts, we also demonstrate that WRKYs bind to the bZIP28 promoter via W-box elements. Additionally, triple wrky mutants are more resistant, whilst bzip28 mutants are more susceptible, to Pst infection. Finally, we postulate a model of PAMP-Triggered Immunity regulation, where Flg22 activates bZIP28-signaling inducing the expression of ER-stress genes, as well as WRKY7/11/17 expression, which in turn inhibits PTI by downregulating bZIP28, controlling physiological responses in the Arabidopsis-Pst interaction.
Collapse
Affiliation(s)
- Paulina Arraño-Salinas
- Centro de Biotecnología Vegetal, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, RM 837-0146, Chile
| | - José Domínguez-Figueroa
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM) - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Campus de Montegancedo, Autopista M40 (km 38), 28223 Madrid, Spain
| | - Ariel Herrera-Vásquez
- Centro de Biotecnología Vegetal, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, RM 837-0146, Chile; Millennium Institute for Integrative Systems and Synthetic Biology (MIISSB), Santiago, Chile
| | - Diego Zavala
- Centro de Biotecnología Vegetal, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, RM 837-0146, Chile
| | - Joaquin Medina
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM) - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Campus de Montegancedo, Autopista M40 (km 38), 28223 Madrid, Spain
| | - Jesús Vicente-Carbajosa
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM) - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Campus de Montegancedo, Autopista M40 (km 38), 28223 Madrid, Spain
| | - Claudio Meneses
- Centro de Biotecnología Vegetal, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, RM 837-0146, Chile; FONDAP Center for Genome Regulation, Centro de Biotecnología Vegetal, Facultad de Ciencias de la Vida, Universidad Andres Bello, Avenida República 217, Santiago, RM 837-0146, Chile
| | - Paulo Canessa
- Centro de Biotecnología Vegetal, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, RM 837-0146, Chile; Millennium Institute for Integrative Systems and Synthetic Biology (MIISSB), Santiago, Chile
| | - Adrián A Moreno
- Centro de Biotecnología Vegetal, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, RM 837-0146, Chile.
| | - Francisca Blanco-Herrera
- Centro de Biotecnología Vegetal, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, RM 837-0146, Chile; Millennium Institute for Integrative Systems and Synthetic Biology (MIISSB), Santiago, Chile.
| |
Collapse
|
82
|
Sugano S, Maeda S, Hayashi N, Kajiwara H, Inoue H, Jiang CJ, Takatsuji H, Mori M. Tyrosine phosphorylation of a receptor-like cytoplasmic kinase, BSR1, plays a crucial role in resistance to multiple pathogens in rice. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2018; 96:1137-1147. [PMID: 30222251 DOI: 10.1111/tpj.14093] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Revised: 08/29/2018] [Accepted: 09/06/2018] [Indexed: 06/08/2023]
Abstract
Plants have evolved many receptor-like cytoplasmic kinases (RLCKs) to modulate their growth, development, and innate immunity. Broad-Spectrum Resistance 1 (BSR1) encodes a rice RLCK, whose overexpression confers resistance to multiple diseases, including fungal rice blast and bacterial leaf blight. However, the mechanisms underlying resistance remain largely unknown. In the present study, we report that BSR1 is a functional protein kinase that autophosphorylates and transphosphorylates an artificial substrate in vitro. Although BSR1 is classified as a serine/threonine kinase, it was shown to autophosphorylate on tyrosine as well as on serine/threonine residues when expressed in bacteria, demonstrating that it is a dual-specificity kinase. Protein kinase activity was found to be indispensable for resistance to rice blast and leaf blight in BSR1-overexpressing plants. Importantly, tyrosine phosphorylation of BSR1 was critical for proper localization of BSR1 in rice cells and played a crucial role in BSR1-mediated resistance to multiple diseases, as evidenced by compromised disease resistance in transgenic plants overexpressing a mutant BSR1 in which Tyr-63 was substituted with Ala. Overall, our data indicate that BSR1 is a non-receptor dual-specificity kinase and that both tyrosine and serine/threonine kinase activities are critical for the normal functioning of BSR1 in the resistance to multiple pathogens. Our results support the notion that tyrosine phosphorylation plays a major regulatory role in the transduction of defense signals from cell-surface receptor complexes to downstream signaling components in plants.
Collapse
Affiliation(s)
- Shoji Sugano
- Plant Function Research Unit, Division of Plant and Microbial Sciences, Institute of Agrobiological Sciences, National Agriculture and Food Research Organization (NARO), Kannondai 2-1-2, Tsukuba, Ibaraki, 305-8602, Japan
| | - Satoru Maeda
- Plant Function Research Unit, Division of Plant and Microbial Sciences, Institute of Agrobiological Sciences, National Agriculture and Food Research Organization (NARO), Kannondai 2-1-2, Tsukuba, Ibaraki, 305-8602, Japan
| | - Nagao Hayashi
- Plant Function Research Unit, Division of Plant and Microbial Sciences, Institute of Agrobiological Sciences, National Agriculture and Food Research Organization (NARO), Kannondai 2-1-2, Tsukuba, Ibaraki, 305-8602, Japan
| | - Hideyuki Kajiwara
- Advanced Analysis Center (NAAC), NARO, Kannondai 2-1-2, Tsukuba, Ibaraki, 305-8602, Japan
| | - Haruhiko Inoue
- Plant Function Research Unit, Division of Plant and Microbial Sciences, Institute of Agrobiological Sciences, National Agriculture and Food Research Organization (NARO), Kannondai 2-1-2, Tsukuba, Ibaraki, 305-8602, Japan
| | - Chang-Jie Jiang
- Plant Function Research Unit, Division of Plant and Microbial Sciences, Institute of Agrobiological Sciences, National Agriculture and Food Research Organization (NARO), Kannondai 2-1-2, Tsukuba, Ibaraki, 305-8602, Japan
| | - Hiroshi Takatsuji
- Plant Function Research Unit, Division of Plant and Microbial Sciences, Institute of Agrobiological Sciences, National Agriculture and Food Research Organization (NARO), Kannondai 2-1-2, Tsukuba, Ibaraki, 305-8602, Japan
| | - Masaki Mori
- Plant Function Research Unit, Division of Plant and Microbial Sciences, Institute of Agrobiological Sciences, National Agriculture and Food Research Organization (NARO), Kannondai 2-1-2, Tsukuba, Ibaraki, 305-8602, Japan
| |
Collapse
|
83
|
Zhou M, Wang W. Recent Advances in Synthetic Chemical Inducers of Plant Immunity. FRONTIERS IN PLANT SCIENCE 2018; 9:1613. [PMID: 30459795 PMCID: PMC6232518 DOI: 10.3389/fpls.2018.01613] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2018] [Accepted: 10/17/2018] [Indexed: 05/20/2023]
Abstract
Different from the conventional biocidal agrochemicals, synthetic chemical inducers of plant immunity activate, bolster, or prime plant defense machineries rather than directly acting on the pathogens. Advances in combinatorial synthesis and high-throughput screening methods have led to the discovery of various synthetic plant immune activators as well as priming agents. The availability of their structures and recent progress in the mechanistic understanding of plant immune responses have opened up the possibility of identifying new or more potent chemical inducers through rational design. In this review, we first summarize the chemical inducers identified through large-scale screening and then discuss the emerging trends in the identification and development of novel plant immune inducers including natural elicitor based chemical derivation, bifunctional combination, and computer-aided design.
Collapse
Affiliation(s)
- Mian Zhou
- Department of Plant Pathology and Microbiology, Iowa State University, Ames, IA, United States
| | - Wei Wang
- School of Life Sciences, Peking University, Beijing, China
- Peking University – Tsinghua University Joint Center for Life Sciences, Beijing, China
| |
Collapse
|
84
|
Abou-Saleh RH, Hernandez-Gomez MC, Amsbury S, Paniagua C, Bourdon M, Miyashima S, Helariutta Y, Fuller M, Budtova T, Connell SD, Ries ME, Benitez-Alfonso Y. Interactions between callose and cellulose revealed through the analysis of biopolymer mixtures. Nat Commun 2018; 9:4538. [PMID: 30382102 PMCID: PMC6208431 DOI: 10.1038/s41467-018-06820-y] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2017] [Accepted: 09/21/2018] [Indexed: 01/28/2023] Open
Abstract
The properties of (1,3)-β-glucans (i.e., callose) remain largely unknown despite their importance in plant development and defence. Here we use mixtures of (1,3)-β-glucan and cellulose, in ionic liquid solution and hydrogels, as proxies to understand the physico-mechanical properties of callose. We show that after callose addition the stiffness of cellulose hydrogels is reduced at a greater extent than predicted from the ideal mixing rule (i.e., the weighted average of the individual components’ properties). In contrast, yield behaviour after the elastic limit is more ductile in cellulose-callose hydrogels compared with sudden failure in 100% cellulose hydrogels. The viscoelastic behaviour and the diffusion of the ions in mixed ionic liquid solutions strongly indicate interactions between the polymers. Fourier-transform infrared analysis suggests that these interactions impact cellulose organisation in hydrogels and cell walls. We conclude that polymer interactions alter the properties of callose-cellulose mixtures beyond what it is expected by ideal mixing. Despite their importance in plant development and defence the properties of (1,3)-β-glucan remain largely unknown. Here, the authors find that addition of (1,3)-β-glucans increases the flexibility of cellulose and its resilience to high strain, an effect originating in molecular level interactions.
Collapse
Affiliation(s)
- Radwa H Abou-Saleh
- Centre for Plant Science, School of Biology, University of Leeds, Leeds, LS2 9JT, UK.,Faculty of Science, Biophysics Division, Department of Physics, Mansoura University, Mansoura, Egypt
| | | | - Sam Amsbury
- Centre for Plant Science, School of Biology, University of Leeds, Leeds, LS2 9JT, UK
| | - Candelas Paniagua
- Centre for Plant Science, School of Biology, University of Leeds, Leeds, LS2 9JT, UK
| | - Matthieu Bourdon
- The Sainsbury Laboratory, University of Cambridge, Bateman Street, Cambridge, CB2 1LR, UK
| | - Shunsuke Miyashima
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara, 630-0192, Japan
| | - Ykä Helariutta
- The Sainsbury Laboratory, University of Cambridge, Bateman Street, Cambridge, CB2 1LR, UK
| | - Martin Fuller
- Centre for Plant Science, School of Biology, University of Leeds, Leeds, LS2 9JT, UK
| | - Tatiana Budtova
- MINES ParisTech, Centre for Material Forming (CEMEF), PSL Research University, UMR CNRS 7635, CS 10207, 06904, Sophia Antipolis, France
| | - Simon D Connell
- Molecular and Nanoscale Physics Group, School of Physics and Astronomy, University of Leeds, Leeds, LS2 9JT, UK
| | - Michael E Ries
- Soft Matter Physics Research Group, School of Physics and Astronomy, University of Leeds, Leeds, LS2 9JT, UK.
| | | |
Collapse
|
85
|
Liu X, Cao X, Shi S, Zhao N, Li D, Fang P, Chen X, Qi W, Zhang Z. Comparative RNA-Seq analysis reveals a critical role for brassinosteroids in rose (Rosa hybrida) petal defense against Botrytis cinerea infection. BMC Genet 2018; 19:62. [PMID: 30126371 PMCID: PMC6102922 DOI: 10.1186/s12863-018-0668-x] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Accepted: 08/10/2018] [Indexed: 12/31/2022] Open
Abstract
Background One of the most popular ornamental plants worldwide, roses (Rosa sp.), are very susceptible to Botrytis gray mold disease. The necrotrophic infection of rose petals by B. cinerea causes the collapse and death of these tissues in both the growth and post-harvest stages, resulting in serious economic losses. To understand the molecular basis of rose resistance against B. cinerea, we profiled the petal transcriptome using RNA-Seq technology. Results We identified differentially transcribed genes (DTGs) in petals during B. cinerea infection at 30 h post inoculation (hpi) and/or 48 hpi. Gene ontology term enrichment and pathway analyses revealed that metabolic, secondary metabolite biosynthesis, plant-pathogen interaction, and plant hormone signal transduction pathways were involved. The expression of 370 cell-surface immune receptors was upregulated during infection. In addition, 188 genes encoding transcription factors were upregulated, particularly in the ERF, WRKY, bHLH, MYB, and NAC families, implying their involvement in resistance against B. cinerea. We further identified 325 upregulated DTGs in the hormone signal transduction pathways. Among them, the brassinosteroid (BR)-related genes were the most significantly enriched. To confirm the role of BR in Botrytis resistance, exogenous BR was applied to rose flowers before the inoculation of B. cinerea, which enhanced the defense response in these petals. Conclusions Our global transcriptome profiling provides insights into the complex gene regulatory networks mediating the rose petal response to B. cinerea. We further demonstrated the role of the phytohormone BR in the resistance of petals to necrotrophic fungal pathogens. Electronic supplementary material The online version of this article (10.1186/s12863-018-0668-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Xintong Liu
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, College of Horticulture, China Agricultural University, Yuanmingyuan Xilu 2, Beijing, 100193, China
| | - Xiaoqian Cao
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, College of Horticulture, China Agricultural University, Yuanmingyuan Xilu 2, Beijing, 100193, China
| | - Shaochuan Shi
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, College of Horticulture, China Agricultural University, Yuanmingyuan Xilu 2, Beijing, 100193, China
| | - Na Zhao
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, College of Horticulture, China Agricultural University, Yuanmingyuan Xilu 2, Beijing, 100193, China
| | - Dandan Li
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, College of Horticulture, China Agricultural University, Yuanmingyuan Xilu 2, Beijing, 100193, China
| | - Peihong Fang
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, College of Horticulture, China Agricultural University, Yuanmingyuan Xilu 2, Beijing, 100193, China
| | - Xi Chen
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Weicong Qi
- Institute of Biotechnology, Provincial Key Laboratory of Agrobiology, Jiangsu Academy of Agricultural Sciences, Zhonglingjie 50, Nanjing, 210014, China.
| | - Zhao Zhang
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, College of Horticulture, China Agricultural University, Yuanmingyuan Xilu 2, Beijing, 100193, China.
| |
Collapse
|
86
|
Lv Z, Huang Y, Ma B, Xiang Z, He N. LysM1 in MmLYK2 is a motif required for the interaction of MmLYP1 and MmLYK2 in the chitin signaling. PLANT CELL REPORTS 2018; 37:1101-1112. [PMID: 29846768 DOI: 10.1007/s00299-018-2295-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Accepted: 05/12/2018] [Indexed: 05/27/2023]
Abstract
Two LysM-containing proteins, namely, MmLYP1 and MmLYK2, were identified in mulberry. These proteins might be involved in chitin signaling. The LysM1 of MmLYK2 is critical for their interactions. Chitin is a major component of fungal cell walls and acts as an elicitor in plant innate immunity. Lysin motif (LysM)-containing proteins are essential for chitin recognition. However, related studies have been rarely reported in woody plants. In this study, in mulberry, the expression of a LysM-containing protein, MmLYP1, was significantly up-regulated after treatment with chitin and pathogenic fungi. In addition, MmLYP1 has an affinity for insoluble chitin polymers. Thus, MmLYP1 might function in chitin signaling. Since MmLYP1 lacks an intracellular domain, additional protein kinases are required for this signaling. An LysM-containing kinase, MmLYK2, was then identified. Expression of the MmLYK2 did not change significantly after chitin treatment, and the affinity of MmLYK2 for insoluble chitin was not high. The structure of MmLYP1 is similar to that of the chitin elicitor-binding proteins in rice and Arabidopsis. However, MmLYK2 has two LysM motifs, while the chitin elicitor receptor kinase 1 proteins in rice and Arabidopsis have one and three LysM motifs, respectively. The LysM1 of MmLYK2 interacted with all four LysM motifs in MmLYP1 and MmLYK2 in yeast. The chimera lacking the LysM1 of MmLYK2 did not interact with MmLYP1 and MmLYK2 in yeast and Nicotiana benthamiana cells. The LysM1 in MmLYK2 is the key motif in the interaction between MmLYP1 and MmLYK2, which may be involved in chitin signaling.
Collapse
Affiliation(s)
- Zhiyuan Lv
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
| | - Yan Huang
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
| | - Bi Ma
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
| | - Zhonghuai Xiang
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
| | - Ningjia He
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China.
| |
Collapse
|
87
|
Cui Y, Jiang J, Yang H, Zhao T, Xu X, Li J. Virus-induced gene silencing (VIGS) of the NBS-LRR gene SLNLC1 compromises Sm-mediated disease resistance to Stemphylium lycopersici in tomato. Biochem Biophys Res Commun 2018; 503:1524-1529. [PMID: 30037434 DOI: 10.1016/j.bbrc.2018.07.074] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2018] [Accepted: 07/16/2018] [Indexed: 01/16/2023]
Abstract
In a previous study, when resistant tomato plants (cv. Motelle) carrying the Sm gene were challenged with S. lycopersici, the SLNLC1 gene was significantly upregulated. In this study, to verify the function of the SLNLC1 gene response to disease resistance against S. lycopersici, virus-induced gene silencing (VIGS) was used to downregulate the expression level of the SLNLC1 gene in resistant tomato plants inoculated with S. lycopersici. After inoculation with S. lycopersici, a susceptible phenotype was observed in the silenced SLNLC1-resistant plants. Through microscopy, impaired hypersensitive response (HR) and decreased ROS accumulation were also observed in the silenced SLNLC1 plants. In addition, the production of lignin and callose were decreased in the silenced SLNLC1 plants. Taken together, these results indicated that silencing the SLNLC1 gene attenuated the resistance of tomato plants resistant to S. lycopersici.
Collapse
Affiliation(s)
- Yanan Cui
- School of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, 150030, China.
| | - Jingbin Jiang
- School of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, 150030, China.
| | - Huanhuan Yang
- School of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, 150030, China.
| | - Tingting Zhao
- School of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, 150030, China.
| | - Xiangyang Xu
- School of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, 150030, China.
| | - Jingfu Li
- School of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, 150030, China.
| |
Collapse
|
88
|
Wang M, Rui L, Yan H, Shi H, Zhao W, Lin JE, Zhang K, Blakeslee JJ, Mackey D, Tang D, Wei Z, Wang G. The major leaf ferredoxin Fd2 regulates plant innate immunity in Arabidopsis. MOLECULAR PLANT PATHOLOGY 2018; 19:1377-1390. [PMID: 28976113 PMCID: PMC6637997 DOI: 10.1111/mpp.12621] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Revised: 08/30/2017] [Accepted: 09/29/2017] [Indexed: 05/06/2023]
Abstract
Ferredoxins, the major distributors for electrons to various acceptor systems in plastids, contribute to redox regulation and antioxidant defence in plants. However, their function in plant immunity is not fully understood. In this study, we show that the expression of the major leaf ferredoxin gene Fd2 is suppressed by Pseudomonas syringae pv. tomato (Pst) DC3000 infection, and that knockout of Fd2 (Fd2-KO) in Arabidopsis increases the plant's susceptibility to both Pst DC3000 and Golovinomyces cichoracearum. On Pst DC3000 infection, the Fd2-KO mutant accumulates increased levels of jasmonic acid and displays compromised salicylic acid-related immune responses. Fd2-KO also shows defects in the accumulation of reactive oxygen species induced by pathogen-associated molecular pattern-triggered immunity. However, Fd2-KO shows enhanced R-protein-mediated resistance to Pst DC3000/AvrRpt2 infection, suggesting that Fd2 plays a negative role in effector-triggered immunity. Furthermore, Fd2 interacts with FIBRILLIN4 (FIB4), a harpin-binding protein localized in chloroplasts. Interestingly, Fd2, but not FIB4, localizes to stromules that extend from chloroplasts. Taken together, our results demonstrate that Fd2 plays an important role in plant immunity.
Collapse
Affiliation(s)
- Mo Wang
- Department of Plant PathologyOhio State UniversityColumbusOH 43210USA
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of CropsPlant Immunity Center, Fujian Agriculture and Forestry UniversityFuzhou 350002China
- Fujian University Key Laboratory for Plant–Microbe InteractionFujian Agriculture and Forestry UniversityFuzhou 350002China
| | - Lu Rui
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of CropsPlant Immunity Center, Fujian Agriculture and Forestry UniversityFuzhou 350002China
- State Key Laboratory of Ecological Control of Fujian‐Taiwan Crop PestsFujian Agriculture and Forestry UniversityFuzhou 350002China
| | - Haojie Yan
- State Key Laboratory of Plant Cell and Chromosome EngineeringInstitute of Genetics and Developmental Biology, Chinese Academy of SciencesBeijing 100101China
| | - Hua Shi
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of CropsPlant Immunity Center, Fujian Agriculture and Forestry UniversityFuzhou 350002China
- State Key Laboratory of Ecological Control of Fujian‐Taiwan Crop PestsFujian Agriculture and Forestry UniversityFuzhou 350002China
| | - Wanying Zhao
- Department of Horticulture and Crop ScienceOhio State University, Columbus/WoosterOH 43210USA
| | - Jinshan Ella Lin
- Department of Horticulture and Crop ScienceOhio State University, Columbus/WoosterOH 43210USA
- Department of Horticulture and Crop SciencesOARDC Metabolite Analysis Cluster (OMAC)WoosterOH 44691USA
| | - Kai Zhang
- Department of Plant PathologyOhio State UniversityColumbusOH 43210USA
- State Key Laboratory for Biology of Plant Diseases and Insect PestsInstitute of Plant Protection, Chinese Academy of Agricultural SciencesBeijing 100193China
| | - Joshua J. Blakeslee
- Department of Horticulture and Crop ScienceOhio State University, Columbus/WoosterOH 43210USA
- Department of Horticulture and Crop SciencesOARDC Metabolite Analysis Cluster (OMAC)WoosterOH 44691USA
| | - David Mackey
- Department of Horticulture and Crop ScienceOhio State University, Columbus/WoosterOH 43210USA
| | - Dingzhong Tang
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of CropsPlant Immunity Center, Fujian Agriculture and Forestry UniversityFuzhou 350002China
- State Key Laboratory of Ecological Control of Fujian‐Taiwan Crop PestsFujian Agriculture and Forestry UniversityFuzhou 350002China
| | | | - Guo‐Liang Wang
- Department of Plant PathologyOhio State UniversityColumbusOH 43210USA
- State Key Laboratory for Biology of Plant Diseases and Insect PestsInstitute of Plant Protection, Chinese Academy of Agricultural SciencesBeijing 100193China
| |
Collapse
|
89
|
Expressing OsMPK4 Impairs Plant Growth but Enhances the Resistance of Rice to the Striped Stem Borer Chilo suppressalis. Int J Mol Sci 2018; 19:ijms19041182. [PMID: 29652796 PMCID: PMC5979284 DOI: 10.3390/ijms19041182] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2018] [Revised: 03/25/2018] [Accepted: 04/10/2018] [Indexed: 12/26/2022] Open
Abstract
Mitogen-activated protein kinases (MPKs) play a central role not only in plant growth and development, but also in plant responses to abiotic and biotic stresses, including pathogens. Yet, their role in herbivore-induced plant defenses and their underlying mechanisms remain largely unknown. Here, we cloned a rice MPK gene, OsMPK4, whose expression was induced by mechanical wounding, infestation of the striped stem borer (SSB) Chilo suppressalis, and treatment with jasmonic acid (JA), but not by treatment with salicylic acid (SA). The overexpression of OsMPK4 (oe-MPK4) enhanced constitutive and/or SSB-induced levels of JA, jasmonoyl-l-isoleucine (JA-Ile), ethylene (ET), and SA, as well as the activity of elicited trypsin proteinase inhibitors (TrypPIs), and reduced SSB performance. On the other hand, compared to wild-type plants, oe-MPK4 lines in the greenhouse showed growth retardation. These findings suggest that OsMPK4, by regulating JA-, ET-, and SA-mediated signaling pathways, functions as a positive regulator of rice resistance to the SSB and a negative regulator of rice growth.
Collapse
|
90
|
Singh PK, Nag A, Arya P, Kapoor R, Singh A, Jaswal R, Sharma TR. Prospects of Understanding the Molecular Biology of Disease Resistance in Rice. Int J Mol Sci 2018; 19:E1141. [PMID: 29642631 PMCID: PMC5979409 DOI: 10.3390/ijms19041141] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Revised: 03/03/2018] [Accepted: 03/05/2018] [Indexed: 12/11/2022] Open
Abstract
Rice is one of the important crops grown worldwide and is considered as an important crop for global food security. Rice is being affected by various fungal, bacterial and viral diseases resulting in huge yield losses every year. Deployment of resistance genes in various crops is one of the important methods of disease management. However, identification, cloning and characterization of disease resistance genes is a very tedious effort. To increase the life span of resistant cultivars, it is important to understand the molecular basis of plant host-pathogen interaction. With the advancement in rice genetics and genomics, several rice varieties resistant to fungal, bacterial and viral pathogens have been developed. However, resistance response of these varieties break down very frequently because of the emergence of more virulent races of the pathogen in nature. To increase the durability of resistance genes under field conditions, understanding the mechanismof resistance response and its molecular basis should be well understood. Some emerging concepts like interspecies transfer of pattern recognition receptors (PRRs) and transgenerational plant immunitycan be employed to develop sustainable broad spectrum resistant varieties of rice.
Collapse
Affiliation(s)
- Pankaj Kumar Singh
- National Agri-Food Biotechnology Institute, Mohali 140 306, Punjab, India.
| | - Akshay Nag
- National Agri-Food Biotechnology Institute, Mohali 140 306, Punjab, India.
| | - Preeti Arya
- National Agri-Food Biotechnology Institute, Mohali 140 306, Punjab, India.
| | - Ritu Kapoor
- National Agri-Food Biotechnology Institute, Mohali 140 306, Punjab, India.
| | - Akshay Singh
- National Agri-Food Biotechnology Institute, Mohali 140 306, Punjab, India.
| | - Rajdeep Jaswal
- National Agri-Food Biotechnology Institute, Mohali 140 306, Punjab, India.
| | - Tilak Raj Sharma
- National Agri-Food Biotechnology Institute, Mohali 140 306, Punjab, India.
| |
Collapse
|
91
|
Otulak-Kozieł K, Kozieł E, Lockhart BEL. Plant Cell Wall Dynamics in Compatible and Incompatible Potato Response to Infection Caused by Potato Virus Y (PVY NTN). Int J Mol Sci 2018; 19:ijms19030862. [PMID: 29543714 PMCID: PMC5877723 DOI: 10.3390/ijms19030862] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Revised: 03/12/2018] [Accepted: 03/13/2018] [Indexed: 02/04/2023] Open
Abstract
The cell wall provides the structure of the plant, and also acts as a barier against biotic stress. The vein necrosis strain of Potato virus Y (PVYNTN) induces necrotic disease symptoms that affect both plant growth and yield. Virus infection triggers a number of inducible basal defense responses, including defense proteins, especially those involved in cell wall metabolism. This study investigates the comparison of cell wall host dynamics induced in a compatible (potato cv. Irys) and incompatible (potato cv. Sárpo Mira with hypersensitive reaction gene Ny-Smira) PVYNTN–host–plant interaction. Ultrastructural analyses revealed numerous cell wall changes induced by virus infection. Furthermore, the localization of essential defensive wall-associated proteins in susceptible and resistant potato host to PVYNTN infection were investigated. The data revealed a higher level of detection of pathogenesis-related protein 2 (PR-2) in a compatible compared to an incompatible (HR) interaction. Immunofluorescence analyses indicated that hydroxyproline-rich glycoproteins (HRGP) (extensin) synthesis was induced, whereas that of cellulose synthase catalytic subunits (CesA4) decreased as a result of PVYNTN infection. The highest level of extensin localization was found in HR potato plants. Proteins involved in cell wall metabolism play a crucial role in the interaction because they affect the spread of the virus. Analysis of CesA4, PR-2 and HRGP deposition within the apoplast and symplast confirmed the active trafficking of these proteins as a step-in potato cell wall remodeling in response to PVYNTN infection. Therefore, cell wall reorganization may be regarded as an element of “signWALLing”—involving apoplast and symplast activation as a specific response to viruses.
Collapse
Affiliation(s)
- Katarzyna Otulak-Kozieł
- Department of Botany, Faculty of Agriculture and Biology, Warsaw University of Life Sciences-SGGW, 159 Nowoursynowska St., 02-776 Warsaw, Poland.
| | - Edmund Kozieł
- Department of Botany, Faculty of Agriculture and Biology, Warsaw University of Life Sciences-SGGW, 159 Nowoursynowska St., 02-776 Warsaw, Poland.
| | - Benham E L Lockhart
- Department of Plant Pathology, University of Minnesota, St. Paul, MN 55108, USA.
| |
Collapse
|
92
|
Wang M, Zhu Y, Han R, Yin W, Guo C, Li Z, Wang X. Expression of Vitis amurensis VaERF20 in Arabidopsis thaliana Improves Resistance to Botrytis cinerea and Pseudomonas syringae pv. Tomato DC3000. Int J Mol Sci 2018; 19:E696. [PMID: 29494485 PMCID: PMC5877557 DOI: 10.3390/ijms19030696] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Revised: 02/02/2018] [Accepted: 02/06/2018] [Indexed: 12/01/2022] Open
Abstract
Ethylene response factor (ERF) transcription factors play important roles in regulating immune responses in plants. In our study, we characterized a member of the ERF transcription factor family, VaERF20, from the Chinese wild Vitis genotype, V. amurensis Rupr "Shuangyou". Phylogenetic analysis indicated that VaERF20 belongs to group IXc of the ERF family, in which many members are known to contribute to fighting pathogen infection. Consistent with this, expression of VaERF20 was induced by treatment with the necrotrophic fungal pathogen Botrytis cinerea (B. cinerea) in "Shuangyou" and V. vinifera "Red Globe". Arabidopsis thaliana plants over-expressing VaERF20 displayed enhanced resistance to B. cinerea and the bacterium Pseudomonas syringae pv. tomato (Pst) DC3000. Patterns of pathogen-induced reactive oxygen species (ROS) accumulation were entirely distinct in B. cinerea and PstDC3000 inoculated plants. Examples of both salicylic acid (SA) and jasmonic acid/ethylene (JA/ET) responsive defense genes were up-regulated after B. cinerea and PstDC3000 inoculation of the VaERF20-overexpressing transgenic A. thaliana plants. Evidence of pattern-triggered immunity (PTI), callose accumulation and stomatal defense, together with increased expression of PTI genes, was also greater in the transgenic lines. These data indicate that VaERF20 participates in various signal transduction pathways and acts as an inducer of immune responses.
Collapse
Affiliation(s)
- Mengnan Wang
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F University, Yangling 712100, China.
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Yangling 712100, China.
| | - Yanxun Zhu
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F University, Yangling 712100, China.
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Yangling 712100, China.
| | - Rui Han
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F University, Yangling 712100, China.
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Yangling 712100, China.
| | - Wuchen Yin
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F University, Yangling 712100, China.
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Yangling 712100, China.
| | - Chunlei Guo
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F University, Yangling 712100, China.
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Yangling 712100, China.
| | - Zhi Li
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F University, Yangling 712100, China.
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Yangling 712100, China.
| | - Xiping Wang
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F University, Yangling 712100, China.
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Yangling 712100, China.
| |
Collapse
|
93
|
Schnabel J, Hombach P, Waksman T, Giuriani G, Petersen J, Christie JM. A chemical genetic approach to engineer phototropin kinases for substrate labeling. J Biol Chem 2018; 293:5613-5623. [PMID: 29475950 DOI: 10.1074/jbc.ra118.001834] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Revised: 02/05/2018] [Indexed: 12/18/2022] Open
Abstract
Protein kinases (PKs) control many aspects of plant physiology by regulating signaling networks through protein phosphorylation. Phototropins (phots) are plasma membrane-associated serine/threonine PKs that control a range of physiological processes that collectively serve to optimize photosynthetic efficiency in plants. These include phototropism, leaf positioning and flattening, chloroplast movement, and stomatal opening. Despite their identification over two decades ago, only a handful of substrates have been identified for these PKs. Progress in this area has been hampered by the lack of a convenient means to confirm the identity of potential substrate candidates. Here we demonstrate that the kinase domain of Arabidopsis phot1 and phot2 can be successfully engineered to accommodate non-natural ATP analogues by substituting the bulky gatekeeper residue threonine for glycine. This approach circumvents the need for radioactivity to track phot kinase activity and follow light-induced receptor autophosphorylation in vitro by incorporating thiophosphate from N6-benzyl-ATPγS. Consequently, thiophosphorylation of phot substrate candidates can be readily monitored when added or co-expressed with phots in vitro Furthermore, gatekeeper-modified phot1 retained its functionality and its ability to accommodate N6-benzyl-ATPγS as a phosphodonor when expressed in Arabidopsis We therefore anticipate that this chemical genetic approach will provide new opportunities for labeling and identifying substrates for phots and other related AGC kinases under in vitro and near-native in vivo conditions.
Collapse
Affiliation(s)
- Jonathan Schnabel
- From the Institute of Molecular, Cell, and Systems Biology, College of Medical, Veterinary, and Life Sciences, Bower Building, University of Glasgow, Glasgow G12 8QQ, United Kingdom and
| | - Peter Hombach
- From the Institute of Molecular, Cell, and Systems Biology, College of Medical, Veterinary, and Life Sciences, Bower Building, University of Glasgow, Glasgow G12 8QQ, United Kingdom and.,RNA Biology and Molecular Physiology, Faculty of Biology, Bielefeld University, 33615 Bielefeld, Germany
| | - Thomas Waksman
- From the Institute of Molecular, Cell, and Systems Biology, College of Medical, Veterinary, and Life Sciences, Bower Building, University of Glasgow, Glasgow G12 8QQ, United Kingdom and
| | - Giovanni Giuriani
- From the Institute of Molecular, Cell, and Systems Biology, College of Medical, Veterinary, and Life Sciences, Bower Building, University of Glasgow, Glasgow G12 8QQ, United Kingdom and
| | - Jan Petersen
- From the Institute of Molecular, Cell, and Systems Biology, College of Medical, Veterinary, and Life Sciences, Bower Building, University of Glasgow, Glasgow G12 8QQ, United Kingdom and
| | - John M Christie
- From the Institute of Molecular, Cell, and Systems Biology, College of Medical, Veterinary, and Life Sciences, Bower Building, University of Glasgow, Glasgow G12 8QQ, United Kingdom and
| |
Collapse
|
94
|
Wang Y, Xu Y, Sun Y, Wang H, Qi J, Wan B, Ye W, Lin Y, Shao Y, Dong S, Tyler BM, Wang Y. Leucine-rich repeat receptor-like gene screen reveals that Nicotiana RXEG1 regulates glycoside hydrolase 12 MAMP detection. Nat Commun 2018; 9:594. [PMID: 29426870 PMCID: PMC5807360 DOI: 10.1038/s41467-018-03010-8] [Citation(s) in RCA: 119] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2017] [Accepted: 01/12/2018] [Indexed: 12/30/2022] Open
Abstract
Activation of innate immunity by membrane-localized receptors is conserved across eukaryotes. Plant genomes contain hundreds of such receptor-like genes and those encoding proteins with an extracellular leucine-rich repeat (LRR) domain represent the largest family. Here, we develop a high-throughput approach to study LRR receptor-like genes on a genome-wide scale. In total, 257 tobacco rattle virus-based constructs are generated to target 386 of the 403 identified LRR receptor-like genes in Nicotiana benthamiana for silencing. Using this toolkit, we identify the LRR receptor-like protein Response to XEG1 (RXEG1) that specifically recognizes the glycoside hydrolase 12 protein XEG1. RXEG1 associates with XEG1 via the LRR domain in the apoplast and forms a complex with the LRR receptor-like kinases BAK1 and SOBIR1 to transduce the XEG1-induced defense signal. Thus, this genome-wide silencing assay is demonstrated to be an efficient toolkit to pinpoint new immune receptors, which will contribute to developing durable disease resistance.
Collapse
Affiliation(s)
- Yan Wang
- Department of Plant Pathology, Nanjing Agricultural University, 210095, Nanjing, China
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), 210095, Nanjing, China
| | - Yuanpeng Xu
- Department of Plant Pathology, Nanjing Agricultural University, 210095, Nanjing, China
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), 210095, Nanjing, China
| | - Yujing Sun
- Department of Plant Pathology, Nanjing Agricultural University, 210095, Nanjing, China
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), 210095, Nanjing, China
| | - Huibin Wang
- Department of Plant Pathology, Nanjing Agricultural University, 210095, Nanjing, China
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), 210095, Nanjing, China
| | - Jiaming Qi
- Department of Plant Pathology, Nanjing Agricultural University, 210095, Nanjing, China
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), 210095, Nanjing, China
| | - Bowen Wan
- Department of Plant Pathology, Nanjing Agricultural University, 210095, Nanjing, China
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), 210095, Nanjing, China
| | - Wenwu Ye
- Department of Plant Pathology, Nanjing Agricultural University, 210095, Nanjing, China
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), 210095, Nanjing, China
| | - Yachun Lin
- Department of Plant Pathology, Nanjing Agricultural University, 210095, Nanjing, China
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), 210095, Nanjing, China
| | - Yuanyuan Shao
- Department of Plant Pathology, Nanjing Agricultural University, 210095, Nanjing, China
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), 210095, Nanjing, China
| | - Suomeng Dong
- Department of Plant Pathology, Nanjing Agricultural University, 210095, Nanjing, China
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), 210095, Nanjing, China
| | - Brett M Tyler
- Center for Genome Research and Biocomputing and Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR, 97331, USA
| | - Yuanchao Wang
- Department of Plant Pathology, Nanjing Agricultural University, 210095, Nanjing, China.
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), 210095, Nanjing, China.
| |
Collapse
|
95
|
Su J, Spears BJ, Kim SH, Gassmann W. Constant vigilance: plant functions guarded by resistance proteins. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2018; 93:637-650. [PMID: 29232015 DOI: 10.1111/tpj.13798] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Revised: 11/27/2017] [Accepted: 11/30/2017] [Indexed: 05/09/2023]
Abstract
Unlike animals, plants do not have an adaptive immune system and have instead evolved sophisticated and multi-layered innate immune mechanisms. To overcome plant immunity, pathogens secrete a diverse array of effectors into the apoplast and virtually all cellular compartments to dampen immune signaling and interfere with plant functions. Here we describe the scope of the arms race throughout the cell and summarize various strategies used by both plants and pathogens. Through studying the ongoing evolutionary battle between plants and key pathogens, we may yet uncover potential ways to achieve the ultimate goal of engineering broad-spectrum resistant crops without affecting food quality or productivity.
Collapse
Affiliation(s)
- Jianbin Su
- Division of Plant Sciences, C.S. Bond Life Sciences Center and Interdisciplinary Plant Group, University of Missouri, Columbia, MO, 65211, USA
| | - Benjamin J Spears
- Division of Plant Sciences, C.S. Bond Life Sciences Center and Interdisciplinary Plant Group, University of Missouri, Columbia, MO, 65211, USA
| | - Sang Hee Kim
- Division of Applied Life Science (BK 21 Plus Program), Plant Molecular Biology and Biotechnology Research Center, Division of Life Science, Gyeongsang National University, Jinju, 52828, Korea
| | - Walter Gassmann
- Division of Plant Sciences, C.S. Bond Life Sciences Center and Interdisciplinary Plant Group, University of Missouri, Columbia, MO, 65211, USA
| |
Collapse
|
96
|
Bacete L, Mélida H, Miedes E, Molina A. Plant cell wall-mediated immunity: cell wall changes trigger disease resistance responses. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2018; 93:614-636. [PMID: 29266460 DOI: 10.1111/tpj.13807] [Citation(s) in RCA: 320] [Impact Index Per Article: 45.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Revised: 12/07/2017] [Accepted: 12/14/2017] [Indexed: 05/18/2023]
Abstract
Plants have evolved a repertoire of monitoring systems to sense plant morphogenesis and to face environmental changes and threats caused by different attackers. These systems integrate different signals into overreaching triggering pathways which coordinate developmental and defence-associated responses. The plant cell wall, a dynamic and complex structure surrounding every plant cell, has emerged recently as an essential component of plant monitoring systems, thus expanding its function as a passive defensive barrier. Plants have a dedicated mechanism for maintaining cell wall integrity (CWI) which comprises a diverse set of plasma membrane-resident sensors and pattern recognition receptors (PRRs). The PRRs perceive plant-derived ligands, such as peptides or wall glycans, known as damage-associated molecular patterns (DAMPs). These DAMPs function as 'danger' alert signals activating DAMP-triggered immunity (DTI), which shares signalling components and responses with the immune pathways triggered by non-self microbe-associated molecular patterns that mediate disease resistance. Alteration of CWI by impairment of the expression or activity of proteins involved in cell wall biosynthesis and/or remodelling, as occurs in some plant cell wall mutants, or by wall damage due to colonization by pathogens/pests, activates specific defensive and growth responses. Our current understanding of how these alterations of CWI are perceived by the wall monitoring systems is scarce and few plant sensors/PRRs and DAMPs have been characterized. The identification of these CWI sensors and PRR-DAMP pairs will help us to understand the immune functions of the wall monitoring system, and might allow the breeding of crop varieties and the design of agricultural strategies that would enhance crop disease resistance.
Collapse
Affiliation(s)
- Laura Bacete
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM) - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Campus de Montegancedo UPM, 28223, Pozuelo de Alarcón, Madrid, Spain
- Departamento de Biotecnología-Biología Vegetal, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaría y de Biosistemas, UPM, 28040, Madrid, Spain
| | - Hugo Mélida
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM) - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Campus de Montegancedo UPM, 28223, Pozuelo de Alarcón, Madrid, Spain
| | - Eva Miedes
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM) - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Campus de Montegancedo UPM, 28223, Pozuelo de Alarcón, Madrid, Spain
- Departamento de Biotecnología-Biología Vegetal, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaría y de Biosistemas, UPM, 28040, Madrid, Spain
| | - Antonio Molina
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM) - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Campus de Montegancedo UPM, 28223, Pozuelo de Alarcón, Madrid, Spain
- Departamento de Biotecnología-Biología Vegetal, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaría y de Biosistemas, UPM, 28040, Madrid, Spain
| |
Collapse
|
97
|
Büttner D. Behind the lines-actions of bacterial type III effector proteins in plant cells. FEMS Microbiol Rev 2018; 40:894-937. [PMID: 28201715 PMCID: PMC5091034 DOI: 10.1093/femsre/fuw026] [Citation(s) in RCA: 187] [Impact Index Per Article: 26.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Revised: 03/31/2016] [Accepted: 07/03/2016] [Indexed: 01/30/2023] Open
Abstract
Pathogenicity of most Gram-negative plant-pathogenic bacteria depends on the type III secretion (T3S) system, which translocates bacterial effector proteins into plant cells. Type III effectors modulate plant cellular pathways to the benefit of the pathogen and promote bacterial multiplication. One major virulence function of type III effectors is the suppression of plant innate immunity, which is triggered upon recognition of pathogen-derived molecular patterns by plant receptor proteins. Type III effectors also interfere with additional plant cellular processes including proteasome-dependent protein degradation, phytohormone signaling, the formation of the cytoskeleton, vesicle transport and gene expression. This review summarizes our current knowledge on the molecular functions of type III effector proteins with known plant target molecules. Furthermore, plant defense strategies for the detection of effector protein activities or effector-triggered alterations in plant targets are discussed.
Collapse
Affiliation(s)
- Daniela Büttner
- Genetics Department, Institute of Biology, Martin-Luther University Halle-Wittenberg, Halle (Saale), Germany
| |
Collapse
|
98
|
Zhao CZ, Huang J, Gyaneshwar P, Zhao D. Rhizobium sp. IRBG74 Alters Arabidopsis Root Development by Affecting Auxin Signaling. Front Microbiol 2018; 8:2556. [PMID: 29354099 PMCID: PMC5759036 DOI: 10.3389/fmicb.2017.02556] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Accepted: 12/08/2017] [Indexed: 01/13/2023] Open
Abstract
Rhizobium sp. IRBG74 not only nodulates Sesbania cannabina but also can enhance rice growth; however, the underlying molecular mechanisms are not clear. Here, we show that Rhizobium sp. IRBG74 colonizes the roots of Arabidopsis thaliana, which leads to inhibition in the growth of main root but enhancement in the formation of lateral roots. The promotion of lateral root formation by Rhizobium sp. IRBG74 in the fls2-1 mutant, which is insensitive to flagellin, is similar to the wild-type plant, while the auxin response deficient mutant tir1-1 is significantly less sensitive to Rhizobium sp. IRBG74 than the wild type in terms of the inhibition of main root elongation and the promotion of lateral root formation. Further transcriptome analysis of Arabidopsis roots inoculated with Rhizobium sp. IRBG74 revealed differential expression of 50 and 211 genes at 24 and 48 h, respectively, and a majority of these genes are involved in auxin signaling. Consistent with the transcriptome analysis results, Rhizobium sp. IRBG74 treatment induces expression of the auxin responsive reporter DR5:GUS in roots. Our results suggest that in Arabidopsis Rhizobium sp. IRBG74 colonizes roots and promotes the lateral root formation likely through modulating auxin signaling. Our work provides insight into the molecular mechanisms of interactions between legume-nodulating rhizobia and non-legume plants.
Collapse
Affiliation(s)
| | - Jian Huang
- Department of Biological Sciences, University of Wisconsin-Milwaukee, Milwaukee, WI, United States
| | - Prasad Gyaneshwar
- Department of Biological Sciences, University of Wisconsin-Milwaukee, Milwaukee, WI, United States
| | - Dazhong Zhao
- Department of Biological Sciences, University of Wisconsin-Milwaukee, Milwaukee, WI, United States.,College of Life Science, Shandong Normal University, Jinan, China
| |
Collapse
|
99
|
De Vleesschauwer D, Filipe O, Hoffman G, Seifi HS, Haeck A, Canlas P, Van Bockhaven J, De Waele E, Demeestere K, Ronald P, Hofte M. Target of rapamycin signaling orchestrates growth-defense trade-offs in plants. THE NEW PHYTOLOGIST 2018; 217:305-319. [PMID: 28905991 PMCID: PMC5711548 DOI: 10.1111/nph.14785] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Accepted: 08/09/2017] [Indexed: 05/18/2023]
Abstract
Plant defense to microbial pathogens is often accompanied by significant growth inhibition. How plants merge immune system function with normal growth and development is still poorly understood. Here, we investigated the role of target of rapamycin (TOR), an evolutionary conserved serine/threonine kinase, in the plant defense response. We used rice as a model system and applied a combination of chemical, genetic, genomic and cell-based analyses. We demonstrate that ectopic expression of TOR and Raptor (regulatory-associated protein of mTOR), a protein previously demonstrated to interact with TOR in Arabidopsis, positively regulates growth and development in rice. Transcriptome analysis of rice cells treated with the TOR-specific inhibitor rapamycin revealed that TOR not only dictates transcriptional reprogramming of extensive gene sets involved in central and secondary metabolism, cell cycle and transcription, but also suppresses many defense-related genes. TOR overexpression lines displayed increased susceptibility to both bacterial and fungal pathogens, whereas plants with reduced TOR signaling displayed enhanced resistance. Finally, we found that TOR antagonizes the action of the classic defense hormones salicylic acid and jasmonic acid. Together, these results indicate that TOR acts as a molecular switch for the activation of cell proliferation and plant growth at the expense of cellular immunity.
Collapse
Affiliation(s)
- David De Vleesschauwer
- Laboratory of Phytopathology, Department of Crop Protection, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000, Ghent, Belgium
| | - Osvaldo Filipe
- Laboratory of Phytopathology, Department of Crop Protection, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000, Ghent, Belgium
| | - Gena Hoffman
- Department of Plant Pathology and the Genome Center, University of California, Davis, CA, 95616, USA
| | - Hamed Soren Seifi
- Laboratory of Phytopathology, Department of Crop Protection, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000, Ghent, Belgium
| | - Ashley Haeck
- Research Group EnVOC, Department of Sustainable Organic Chemistry and Technology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000, Ghent, Belgium
| | - Patrick Canlas
- Department of Plant Pathology and the Genome Center, University of California, Davis, CA, 95616, USA
| | - Jonas Van Bockhaven
- Laboratory of Phytopathology, Department of Crop Protection, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000, Ghent, Belgium
| | - Evelien De Waele
- Laboratory of Phytopathology, Department of Crop Protection, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000, Ghent, Belgium
| | - Kristof Demeestere
- Research Group EnVOC, Department of Sustainable Organic Chemistry and Technology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000, Ghent, Belgium
| | - Pamela Ronald
- Department of Plant Pathology and the Genome Center, University of California, Davis, CA, 95616, USA
- Joint Bioenergy Institute, Emeryville, CA, 94608, USA
| | - Monica Hofte
- Laboratory of Phytopathology, Department of Crop Protection, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000, Ghent, Belgium
| |
Collapse
|
100
|
Buendia L, Girardin A, Wang T, Cottret L, Lefebvre B. LysM Receptor-Like Kinase and LysM Receptor-Like Protein Families: An Update on Phylogeny and Functional Characterization. FRONTIERS IN PLANT SCIENCE 2018; 9:1531. [PMID: 30405668 PMCID: PMC6207691 DOI: 10.3389/fpls.2018.01531] [Citation(s) in RCA: 84] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Accepted: 09/28/2018] [Indexed: 05/18/2023]
Abstract
Members of plant specific families of receptor-like kinases (RLKs) and receptor-like proteins (RLPs), containing 3 extracellular LysMs have been shown to directly bind and/or to be involved in perception of lipo-chitooligosaccharides (LCO), chitooligosaccharides (CO), and peptidoglycan (PGN), three types of GlcNAc-containing molecules produced by microorganisms. These receptors are involved in microorganism perception by plants and can activate different plant responses leading either to symbiosis establishment or to defense responses against pathogens. LysM-RLK/Ps belong to multigenic families. Here, we provide a phylogeny of these families in eight plant species, including dicotyledons and monocotyledons, and we discuss known or putative biological roles of the members in each of the identified phylogenetic groups. We also report and discuss known biochemical properties of the LysM-RLK/Ps.
Collapse
|