51
|
Gao R, Lu R, Qiu X, Wang L, Zhang K, Wu S. Detection of Putative Mutation I873S in the Sodium Channel of Megalurothrips usitatus (Bagnall) Which May Be Associated with Pyrethroid Resistance. INSECTS 2023; 14:388. [PMID: 37103203 PMCID: PMC10143160 DOI: 10.3390/insects14040388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Revised: 04/14/2023] [Accepted: 04/15/2023] [Indexed: 06/19/2023]
Abstract
Pyrethroid resistance of thrips has been reported in many countries, and knockdown resistance (kdr) has been identified as a main mechanism against pyrethroids in many insects. To characterize pyrethroid resistance in Megalurothrips usitatus from the Hainan Province of China, we conducted a biological assay and sequenced the voltage-gated sodium channel gene domain II from M. usitatus field populations. It showed high resistance to the pyrethroids for 2019 and 2020, in which LC50 to lambda-cyhalothrin of M. usitatus was 1683.521 mg/L from Sanya in 2020. The LC50 value of deltamethrin was lower in Haikou than in other locations, which mean the south of Hainan has higher resistance than the north of Hainan. Two mutations of I873S and V1015M were detected in the domain II region of the sodium channel in M. usitatus; however, the mutation frequency of V1015M was only 3.33% and that of I873S was 100%. One is homozygous and the other is a heterozygous mutant type. The three thrips-sensitive strains of sodium channel 873 are highly conserved in amino acids (isoleucine), while the M. usitatus pyrethroid-resistant strains are all serine, so I873S may be related to the resistance of M. usitatus to pyrethroids. The present study will contribute to the understanding of the evolution of pyrethroids resistance and contribute to the development of resistance management of M. usitatus in Hainan.
Collapse
Affiliation(s)
- Ruibo Gao
- Sanya Nanfan Research Institute, Hainan University, Yazhou, Sanya 572024, China; (R.G.); (R.L.); (X.Q.); (L.W.)
- College of Plant Protection, Hainan University, Haikou 570228, China
- Yazhou Bay Science and Technology City, Yazhou, Sanya 572024, China
| | - Rongcai Lu
- Sanya Nanfan Research Institute, Hainan University, Yazhou, Sanya 572024, China; (R.G.); (R.L.); (X.Q.); (L.W.)
- College of Plant Protection, Hainan University, Haikou 570228, China
- Yazhou Bay Science and Technology City, Yazhou, Sanya 572024, China
| | - Xinyao Qiu
- Sanya Nanfan Research Institute, Hainan University, Yazhou, Sanya 572024, China; (R.G.); (R.L.); (X.Q.); (L.W.)
- College of Plant Protection, Hainan University, Haikou 570228, China
- Yazhou Bay Science and Technology City, Yazhou, Sanya 572024, China
| | - Likui Wang
- Sanya Nanfan Research Institute, Hainan University, Yazhou, Sanya 572024, China; (R.G.); (R.L.); (X.Q.); (L.W.)
- College of Plant Protection, Hainan University, Haikou 570228, China
- Yazhou Bay Science and Technology City, Yazhou, Sanya 572024, China
| | - Kun Zhang
- Sanya Nanfan Research Institute, Hainan University, Yazhou, Sanya 572024, China; (R.G.); (R.L.); (X.Q.); (L.W.)
- College of Plant Protection, Hainan University, Haikou 570228, China
- Yazhou Bay Science and Technology City, Yazhou, Sanya 572024, China
| | - Shaoying Wu
- Sanya Nanfan Research Institute, Hainan University, Yazhou, Sanya 572024, China; (R.G.); (R.L.); (X.Q.); (L.W.)
- College of Plant Protection, Hainan University, Haikou 570228, China
- Yazhou Bay Science and Technology City, Yazhou, Sanya 572024, China
| |
Collapse
|
52
|
Shen XJ, Chen JC, Cao LJ, Ma ZZ, Sun LN, Gao YF, Ma LJ, Wang JX, Ren YJ, Cao HQ, Gong YJ, Hoffmann AA, Wei SJ. Interspecific and intraspecific variation in susceptibility of two co-occurring pest thrips, Frankliniella occidentalis and Thrips palmi, to nine insecticides. PEST MANAGEMENT SCIENCE 2023. [PMID: 37042232 DOI: 10.1002/ps.7502] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 03/19/2023] [Accepted: 04/12/2023] [Indexed: 06/19/2023]
Abstract
BACKGROUND Field control of pest thrips mainly relies on insecticides, but the toxicity of insecticides can vary among thrips species and populations. In this study, we examined the susceptibility of multiple field populations of two thrips pests, Frankliniella occidentalis, and Thrips palmi, that often co-occur on vegetables, to nine insecticides belonging to seven subgroups. RESULTS The highest level of variation in susceptibility among F. occidentalis populations was for spinetoram (73.92 fold difference between most resistant and most susceptible population), followed by three neonicotinoids (8.06-15.99 fold), while among T. palmi populations, it was also for spinetoram (257.19 fold), followed by emamectin benzoate, sulfoxaflor, and acetamiprid (23.64-45.50 fold). These findings suggest evolved resistance to these insecticides in some populations of the two thrips. One population of F. occidentalis had a particularly high level of resistance overall, being the most resistant for five of the nine insecticides tested. Likewise, a population of T. palmi had high resistance to all nine insecticides, again suggesting the evolution of resistance to multiple chemicals. For F. occidentalis, the LC95 values of most populations were higher than the field-recommended dosage for all insecticides except chlorfenapyr and emamectin benzoate. For several T. palmi populations, the LC95 values also tended to be higher than recommended dosages, except in the case of emamectin benzoate and spinetoram. CONCLUSIONS Our study found interspecific and intraspecific variations in the susceptibility of two thrips to nine insecticides and multiple resistance in some populations, highlighting the need for ongoing monitoring and resistance management. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Xiu-Jing Shen
- Institute of Plant Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Jin-Cui Chen
- Institute of Plant Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Li-Jun Cao
- Institute of Plant Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Zhong-Zheng Ma
- Institute of Plant Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Li-Na Sun
- Institute of Plant Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Yong-Fu Gao
- Institute of Plant Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Li-Jun Ma
- Institute of Plant Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Jia-Xu Wang
- Institute of Plant Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Ya-Jing Ren
- Institute of Plant Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Hua-Qian Cao
- Institute of Plant Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Ya-Jun Gong
- Institute of Plant Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Anthony Ary Hoffmann
- Bio21 Institute, School of BioSciences, University of Melbourne, Parkville, Australia
| | - Shu-Jun Wei
- Institute of Plant Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| |
Collapse
|
53
|
Khan F, Kim K, Sung J, Lim H, Kim SG, Choi MY, Kim Y. A novel physiological function of pheromone biosynthesis-activating neuropeptide in production of aggregation pheromone. Sci Rep 2023; 13:5551. [PMID: 37019976 PMCID: PMC10076286 DOI: 10.1038/s41598-023-32833-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 04/03/2023] [Indexed: 04/07/2023] Open
Abstract
The western flower thrips, Frankliniella occidentalis, is an insect pest, and its aggregation pheromone (AP) plays a crucial role in the recruitment of both sexes. A novel pheromone biosynthesis-activating neuropeptide (PBAN)-like gene is encoded in F. occidentalis genome, but its physiological function has yet to be elucidated. This study hypothesized the physiological role played by PBAN in mediating AP production. AP has been known to be produced only by male adults in F. occidentalis. Surprisingly, our extraction of headspace volatiles contained two AP components in females as well as in males with similar composition. PBAN injection elevated the AP production whereas RNA interference (RNAi) of the gene expression suppressed the AP production in both sexes. A biosynthetic pathway to produce AP components were predicted and the enzymes catalyzing the main steps were confirmed in their expressions. Individual RNAi treatments of these genes significantly suppressed AP production. RNAi of PBAN gene downregulated the expressions of these biosynthesis-associated genes in both sexes. These results suggest that the novel neuropeptide acts as PBAN mediating AP production through stimulating its biosynthetic machinery in F. occidentalis.
Collapse
Affiliation(s)
- Falguni Khan
- Department of Plant Medicals, College of Life Sciences, Andong National University, Andong, 36720, Korea
| | - Keono Kim
- Department of Food Life Science, College of Life Sciences, Andong National University, Andong, 36720, Korea
| | - Jeehye Sung
- Department of Food Life Science, College of Life Sciences, Andong National University, Andong, 36720, Korea
| | - Hangah Lim
- Department of Biological Sciences, KAIST, Daejon, 34141, Korea
| | - Sang-Gyu Kim
- Department of Biological Sciences, KAIST, Daejon, 34141, Korea
| | - Man-Yeon Choi
- Horticultural Crops Research Unit, USADA-ARS, Corvalis, OR, 97330, USA
| | - Yonggyun Kim
- Department of Plant Medicals, College of Life Sciences, Andong National University, Andong, 36720, Korea.
| |
Collapse
|
54
|
Khan F, Kim M, Kim Y. Greenhouse test of spraying dsRNA to control the western flower thrips, Frankliniella occidentalis, infesting hot peppers. BMC Biotechnol 2023; 23:10. [PMID: 37016358 PMCID: PMC10074877 DOI: 10.1186/s12896-023-00780-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 03/29/2023] [Indexed: 04/06/2023] Open
Abstract
BACKGROUND The western flower thrips Frankliniella occidentalis is an insect pest that damages various crops, including hot peppers. It is a vector of a plant pathogen, tomato spotted wilt virus. To control this pest, chemical insecticides have been used in the past, but the control efficacy is unsatisfactory owing to rapid resistance development by F. occidentalis. METHODOLOGY This study reports a novel control technology against this insect pest using RNA interference (RNAi) of the vacuolar-type ATPase (vATPase) expression. Eight subunit genes (vATPase-A ∼ vATPase-H) of vATPase were obtained from the F. occidentalis genome and confirmed for their expressions at all developmental stages. RESULTS Double-stranded RNAs (dsRNAs) specific to the eight subunit genes were fed to larvae and adults, which significantly suppressed the corresponding gene expressions after 24-h feeding treatment. These RNAi treatments resulted in significant mortalities, in which the dsRNA treatments at ∼2,000 ppm specific to vATPase-A or vATPase-B allowed complete control efficacy near 100% mortality in 7 days after treatment. To prevent dsRNA degradation by the digestive proteases during oral feeding, dsRNAs were formulated in a liposome and led to an enhanced mortality of the larvae and adults of F. occidentalis. The dsRNAs were then sprayed at 2,000 ppm on F. occidentalis infesting hot peppers in a greenhouse, which resulted in 53.5-55.9% control efficacy in 7 days after treatment. Even though the vATPases are conserved in different organisms, the dsRNA treatment was relatively safe for non-target insects owing to the presence of mismatch sequences compared to the dsRNA region of F. occidentalis. CONCLUSION These results demonstrate the practical feasibility of spraying dsRNA to control F. occidentalis infesting crops.
Collapse
Affiliation(s)
- Falguni Khan
- Department of Plant Medicals, College of Life Sciences, Andong National University, Andong, 36729, Korea
| | | | - Yonggyun Kim
- Department of Plant Medicals, College of Life Sciences, Andong National University, Andong, 36729, Korea.
| |
Collapse
|
55
|
Mavridis K, Ilias A, Papapostolou KM, Varikou K, Michaelidou K, Tsagkarakou A, Vontas J. Molecular diagnostics for monitoring insecticide resistance in the western flower thrips Frankliniella occidentalis. PEST MANAGEMENT SCIENCE 2023; 79:1615-1622. [PMID: 36562265 DOI: 10.1002/ps.7336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 12/16/2022] [Accepted: 12/23/2022] [Indexed: 06/17/2023]
Abstract
BACKGROUND Insecticide resistance has emerged in various western flower thrips (WFT) populations across the world, threatening the efficiency of chemical control applications. Elucidation of insecticide resistance mechanisms at the molecular level provides markers for the development of diagnostics to monitor the trait and support evidence-based resistance management. RESULTS TaqMan and Droplet Digital polymerase chain reaction (ddPCR) diagnostics were developed and validated, against Sanger sequencing, in individual and pooled WFT samples respectively, for the G275E mutation (nicotinic acetylcholine receptor α6 gene, nAChR α6) associated with resistance to nAChR allosteric modulators, site I (spinosyns); L1014F, T929I, T929C and T292V mutations (voltage-gated sodium channel gene, vgsc) linked with pyrethroid resistance; and I1017M (chitin synthase 1 gene, chs1) conferring resistance to growth inhibitors affecting CHS1 (benzoylureas). The detection limits of ddPCR assays for mutant allelic frequencies (MAF) were in the range of 0.1%-0.2%. The assays were applied in nine WFT field populations from Crete, Greece. The G275E (MAF = 29.66%-100.0%), T929I and T929V (combined MAF = 100%), L1014F (MAF = 11.01%-37.29%), and I1017M (MAF = 17.74%-51.07%) mutations were present in all populations. CONCLUSION The molecular diagnostics panel that was developed in this study can facilitate the quick and sensitive resistance monitoring of WFT populations at the molecular level, to support evidence-based insecticide resistance management strategies. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Konstantinos Mavridis
- Foundation for Research and Technology-Hellas, Institute of Molecular Biology and Biotechnology, Heraklion, Greece
| | - Aris Ilias
- Foundation for Research and Technology-Hellas, Institute of Molecular Biology and Biotechnology, Heraklion, Greece
- Hellenic Agricultural Organization "DIMITRA", Institute of Olive Tree, Subtropical Crops and Viticulture, Heraklion, Greece
| | - Kyriaki Maria Papapostolou
- Foundation for Research and Technology-Hellas, Institute of Molecular Biology and Biotechnology, Heraklion, Greece
| | - Kyriaki Varikou
- Hellenic Agricultural Organization "DIMITRA", Institute of Olive Tree, Subtropical Crops and Viticulture, Heraklion, Greece
| | - Kleita Michaelidou
- Laboratory of Translational Oncology, School of Medicine, University of Crete, Heraklion, Greece
| | - Anastasia Tsagkarakou
- Hellenic Agricultural Organization "DIMITRA", Institute of Olive Tree, Subtropical Crops and Viticulture, Heraklion, Greece
| | - John Vontas
- Foundation for Research and Technology-Hellas, Institute of Molecular Biology and Biotechnology, Heraklion, Greece
- Pesticide Science Laboratory, Department of Crop Science, Agricultural University of Athens, Athens, Greece
| |
Collapse
|
56
|
Pei TH, Zhao YJ, Wang SY, Li XF, Sun CQ, Shi SS, Xu ML, Gao Y. Preliminary Study on Insecticidal Potential and Chemical Composition of Five Rutaceae Essential Oils against Thrips flavus (Thysanoptera: Thripidae). Molecules 2023; 28:molecules28072998. [PMID: 37049761 PMCID: PMC10095842 DOI: 10.3390/molecules28072998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 03/22/2023] [Accepted: 03/25/2023] [Indexed: 03/30/2023] Open
Abstract
To meet the demand for novel pest management strategies to combat the development of insecticide resistance, plant essential oils may be a promising alternative source. This study investigated the insecticidal activity of five essential oils from the Rutaceae plant family against Thrips flavus Schrank (Thysanoptera: Thripidae) under laboratory conditions. The plant essential oils were citrus oil (Citrus reticulata Blanco), Chuan-shan pepper oil (Zanthoxylum piasezkii Maxim.), zanthoxylum oil (Zanthoxylum bungeanum Maxim.), pomelo peel oil (Citrus maxima (Burm.) Merr.) and orange leaf oil (Citrus sinensis (L.) Osbeck). Among the essential oils evaluated, orange leaf oil (LC50 = 0.26 g/L), zanthoxylum oil (LC50 = 0.27 g/L), and pomelo peel oil (LC50 = 0.44 g/L) resulted in a higher gastric toxicity under laboratory conditions. The results of the pot experiment also showed that orange leaf oil (93.06 ± 3.67% at 540.00 g a.i.·hm−2, 97.22 ± 1.39% at 720 g a.i.·hm−2, 100.00% at 900.00 g a.i.·hm−2) zanthoxylum oil (98.73 ± 1.27% at 900 g a.i.·hm−2), and pomelo peel oil (100.00% at 900 g a.i.·hm−2) exhibited a higher control efficacy, being the most effective against T. flavus after 7 days of treatment. The essential oil components were then identified by gas chromatography–mass spectrometry (GC–MS). The insecticidal activity of orange leaf oil, pomelo peel oil, and zanthoxylum oil could be attributed to their main constituents, such as methyl jasmonate (50.92%), D-limonene (76.96%), and linalool (52.32%), respectively. In the olfactory test, adult T. flavus were attracted by zanthoxylum oil and Chuan-shan pepper oil. We speculated that linalool might be the key signaling compound that attracts T. flavus. These results showed that orange leaf oil, zanthoxylum oil, and pomelo peel oil exhibited insecticidal activities under controlled conditions. They can be implemented as effective and low-toxicity botanical insecticides and synergistic agents against T. flavus.
Collapse
Affiliation(s)
- Tian-Hao Pei
- College of Plant Protection/Key Laboratory of Soybean Disease and Pest Control (Ministry of Agriculture and Rural Affairs), Jilin Agricultural University, Changchun 130118, China
| | - Yi-Jin Zhao
- College of Plant Protection/Key Laboratory of Soybean Disease and Pest Control (Ministry of Agriculture and Rural Affairs), Jilin Agricultural University, Changchun 130118, China
| | | | - Xiao-Feng Li
- College of Plant Protection/Key Laboratory of Soybean Disease and Pest Control (Ministry of Agriculture and Rural Affairs), Jilin Agricultural University, Changchun 130118, China
| | - Chen-Qi Sun
- College of Plant Protection/Key Laboratory of Soybean Disease and Pest Control (Ministry of Agriculture and Rural Affairs), Jilin Agricultural University, Changchun 130118, China
| | - Shu-Sen Shi
- College of Plant Protection/Key Laboratory of Soybean Disease and Pest Control (Ministry of Agriculture and Rural Affairs), Jilin Agricultural University, Changchun 130118, China
| | - Meng-Lei Xu
- College of Food Science and Engineering, Jilin University, Changchun 130062, China
- Correspondence: (M.-L.X.); (Y.G.)
| | - Yu Gao
- College of Plant Protection/Key Laboratory of Soybean Disease and Pest Control (Ministry of Agriculture and Rural Affairs), Jilin Agricultural University, Changchun 130118, China
- Correspondence: (M.-L.X.); (Y.G.)
| |
Collapse
|
57
|
Liu Y, Luo Y, Du L, Ban L. Antennal Transcriptome Analysis of Olfactory Genes and Characterization of Odorant Binding Proteins in Odontothrips loti (Thysanoptera: Thripidae). Int J Mol Sci 2023; 24:ijms24065284. [PMID: 36982358 PMCID: PMC10048907 DOI: 10.3390/ijms24065284] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 02/21/2023] [Accepted: 03/02/2023] [Indexed: 03/12/2023] Open
Abstract
To identify odors in complex environments accurately, insects have evolved multiple olfactory proteins. In our study, various olfactory proteins of Odontothrips loti Haliday, an oligophagous pest that primarily affects Medicago sativa (alfalfa), were explored. Specifically, 47 putative olfactory candidate genes were identified in the antennae transcriptome of O. loti, including seven odorant-binding proteins (OBPs), nine chemosensory proteins (CSPs), seven sensory neuron membrane proteins (SNMPs), eight odorant receptors (ORs), and sixteen ionotropic receptors (IRs). PCR analysis further confirmed that 43 out of 47 genes existed in O. loti adults, and O.lotOBP1, O.lotOBP4, and O.lotOBP6 were specifically expressed in the antennae with a male-biased expression pattern. In addition, both the fluorescence competitive binding assay and molecular docking showed that p-Menth-8-en-2-one, a component of the volatiles of the host, had strong binding ability to the O.lotOBP6 protein. Behavioral experiments showed that this component has a significant attraction to both female and male adults, indicating that O.lotOBP6 plays a role in host location. Furthermore, molecular docking reveals potential active sites in O.lotOBP6 that interact with most of the tested volatiles. Our results provide insights into the mechanism of O. loti odor-evoked behavior and the development of a highly specific and sustainable approach for thrip management.
Collapse
Affiliation(s)
- Yanqi Liu
- College of Grassland Science and Technology, China Agricultural University, Beijing 100193, China
| | - Yingning Luo
- College of Grassland Science and Technology, China Agricultural University, Beijing 100193, China
| | - Lixiao Du
- Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100091, China
| | - Liping Ban
- College of Grassland Science and Technology, China Agricultural University, Beijing 100193, China
- Correspondence:
| |
Collapse
|
58
|
Whitten MMA, Xue Q, Taning CNT, James R, Smagghe G, del Sol R, Hitchings M, Dyson P. A narrow host-range and lack of persistence in two non-target insect species of a bacterial symbiont exploited to deliver insecticidal RNAi in Western Flower Thrips. FRONTIERS IN INSECT SCIENCE 2023; 3:1093970. [PMID: 38469480 PMCID: PMC10926499 DOI: 10.3389/finsc.2023.1093970] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 01/31/2023] [Indexed: 03/13/2024]
Abstract
Introduction Insecticidal RNAi is a targeted pest insect population control measure. The specificity of insecticidal RNAi can theoretically be enhanced by using symbiotic bacteria with a narrow host range to deliver RNAi, an approach termed symbiont-mediated RNAi (SMR), a technology we have previously demonstrated in the globally-invasive pest species Western Flower Thrips (WFT). Methods Here we examine distribution of the two predominant bacterial symbionts of WFT, BFo1 and BFo2, among genome-sequenced insects. Moreover, we have challenged two non-target insect species with both bacterial species, namely the pollinating European bumblebee, Bombus terrestris, and an insect predator of WFT, the pirate bug Orius laevigatus. Results Our data indicate a very limited distribution of either symbiont among insects other than WFT. Moreover, whereas BFo1 could establish itself in both bees and pirate bugs, albeit with no significant effects on insect fitness, BFo2 was unable to persist in either species. Discussion In terms of biosafety, these data, together with its more specific growth requirements, vindicate the choice of BFo2 for delivery of RNAi and precision pest management of WFT.
Collapse
Affiliation(s)
- Miranda M. A. Whitten
- Institute of Life Science, Swansea University Medical School, Singleton Park, Swansea, United Kingdom
| | - Qi Xue
- Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Clauvis Nji Tizi Taning
- Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Reuben James
- Institute of Life Science, Swansea University Medical School, Singleton Park, Swansea, United Kingdom
| | - Guy Smagghe
- Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Ricardo del Sol
- Institute of Life Science, Swansea University Medical School, Singleton Park, Swansea, United Kingdom
| | - Matthew Hitchings
- Institute of Life Science, Swansea University Medical School, Singleton Park, Swansea, United Kingdom
| | - Paul Dyson
- Institute of Life Science, Swansea University Medical School, Singleton Park, Swansea, United Kingdom
| |
Collapse
|
59
|
Pieterse Z, Buitenhuis R, Liu J, Fefer M, Teshler I. Efficacy of Oil and Photosensitizer against Frankliniella occidentalis in Greenhouse Sweet Pepper. Antibiotics (Basel) 2023; 12:antibiotics12030495. [PMID: 36978362 PMCID: PMC10044506 DOI: 10.3390/antibiotics12030495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 02/23/2023] [Accepted: 02/28/2023] [Indexed: 03/06/2023] Open
Abstract
Many common insect pests have developed resistance against the pesticides currently available, to the point where pest and disease management has become extremely difficult and expensive, increasing pressure on agriculture and food production. There is an urgent need to explore and utilize alternatives. Due to their unique mode of action, photosensitizers may be able to control insect pests effectively, especially in combination with oil-based products, without the risk of resistance build-up. In this study, the efficacy of a mineral oil-based horticultural spray oil, PureSpray™ Green (PSG), and a sodium magnesium chlorophyllin photosensitizer formulation, SUN-D-06 PS, were evaluated and compared to a registered cyantraniliprole insecticide (as positive control) and a negative control against western flower thrips (WFT), Frankliniella occidentalis. In detached leaf ingestion assays, PSG at high concentration was more effective than low concentration, causing >70% WFT mortality, whilst SUN-D-06 PS + PSG caused higher mortality than cyantraniliprole after five days of feeding. The same combination was as effective as cyantraniliprole in the contact assay. In greenhouse pepper, the photosensitizer decreased the WFT more than mineral oil applied alone, whilst a combination treatment of SUN-D-06 PS + PSG was most effective, decreasing the WFT population to fewer than four WFT per plant. SUN-D-06 PS + PSG shows promise as a sustainable, economical way of controlling WFT, with the potential to be incorporated into existing integrated pest (and disease) management (IPM) programs with ease.
Collapse
Affiliation(s)
- Zelda Pieterse
- University of Guelph, 4890 Victoria Avenue North, Vineland Station, ON L2R 2E0, Canada
- Correspondence: (Z.P.); (R.B.)
| | - Rosemarie Buitenhuis
- Vineland Research and Innovation Centre, 4890 Victoria Avenue North, Vineland Station, ON L2R 2E0, Canada
- Correspondence: (Z.P.); (R.B.)
| | - Jun Liu
- Suncor AgroScience, 2489 North Sheridan Way, Mississauga, ON L5K 1A8, Canada
| | - Michael Fefer
- Suncor AgroScience, 2489 North Sheridan Way, Mississauga, ON L5K 1A8, Canada
| | - Inna Teshler
- Suncor AgroScience, 2489 North Sheridan Way, Mississauga, ON L5K 1A8, Canada
| |
Collapse
|
60
|
Yue WB, Zhou D, Li DY, Zhi JR, Fang XL, Qiu XY. Multigenerational variation in the nutrients and digestion of western flower thrips (Frankliniella occidentalis) depends on the nutritive quality of different foods. JOURNAL OF INSECT SCIENCE (ONLINE) 2023; 23:12. [PMID: 37052364 PMCID: PMC10099749 DOI: 10.1093/jisesa/iead020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 03/15/2023] [Accepted: 03/27/2023] [Indexed: 06/19/2023]
Abstract
Western flower thrips (WFTs), Frankliniella occidentalis (Thysanoptera, Thripidae), is one of the most serious pests that attack rose flowers. Little is known about the effect of different parts of the rose flower on nutritional contents and digestive enzyme activities in thrips. This study assessed variations in the nutritional contents and digestive enzyme activities in the second-instar larvae and adults WFTs fed on 3 food types (rose petals, rose flowers, and honey solution + kidney bean pods) for multiple generations. The highest contents of soluble sugar (in 10% honey solution + kidney bean pods), amino acid (in rose flowers), and protein (in rose flowers) were observed, respectively. Soluble sugar and protein contents in the second-instar larvae and adults fed on rose petals decreased in the F1 generation but increased in the F2 generation and remained at higher levels until the F7 generation. Feeding of thrips with 3 food types increased the lipid content in the F1 generation, which peaked in the F2 generation and remained high until the F7 generation. In most cases, α-amylase and trypsin activities significantly decreased in the F1 generation after feeding on rose petals and then prominently increased in the F2 generation. In contrast, chymotrypsin activity remarkably increased and peaked in the F1 generation after second-instar larvae thrips fed on rose petals. There were correlations among the contents of 3 nutrient related positively with the activities of α-amylase and trypsin in WFTs second-instar larvae and adults, respectively. Overall, variations in the nutrient properties of the 3 food types caused changes in nutrient contents and digestive enzyme activities in thrips.
Collapse
Affiliation(s)
- Wen Bo Yue
- Institute of Entomology, Guizhou University, Guizhou Key Laboratory for Agricultural Pest Management of the Mountainous Region, Guiyang 550025, China
| | - Dan Zhou
- Institute of Entomology, Guizhou University, Guizhou Key Laboratory for Agricultural Pest Management of the Mountainous Region, Guiyang 550025, China
- Qingzhen City Agricultural and Rural Bureau, Guiyang, Guizhou 551400, China
| | - Ding Yin Li
- Institute of Entomology, Guizhou University, Guizhou Key Laboratory for Agricultural Pest Management of the Mountainous Region, Guiyang 550025, China
| | | | - Xin Lei Fang
- Institute of Entomology, Guizhou University, Guizhou Key Laboratory for Agricultural Pest Management of the Mountainous Region, Guiyang 550025, China
| | - Xin Yue Qiu
- Institute of Entomology, Guizhou University, Guizhou Key Laboratory for Agricultural Pest Management of the Mountainous Region, Guiyang 550025, China
| |
Collapse
|
61
|
A push-pull strategy to control the western flower thrips, Frankliniella occidentalis, using alarm and aggregation pheromones. PLoS One 2023; 18:e0279646. [PMID: 36827422 PMCID: PMC9956899 DOI: 10.1371/journal.pone.0279646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 12/12/2022] [Indexed: 02/26/2023] Open
Abstract
Since the first report in 1993 in Korea, the western flower thrips, Frankliniella occidentalis, has been found in various crops throughout the country. Although more than 20 different chemical insecticides are registered to control this insect pest, its outbreaks seriously damage crop yields, especially in greenhouses. This study developed a non-chemical technique to control F. occidentalis infesting hot peppers cultivated in greenhouses. The method was based on behavioral control using an alarm pheromone ("Push") to prevent the entry of the thrips into greenhouses and an aggregation pheromone ("Pull") for mass trapping inside the greenhouses. The greenhouse fences were treated with a wax formulation of the alarm pheromone and a yellow CAN trap covered with sticky material containing the aggregation pheromone was constructed and deployed inside the greenhouses. Field assay demonstrated the efficacy of the push-pull tactics by reducing thrips density in flowers of the hot peppers as well as in the monitoring traps. Especially, the enhanced mass trapping to the CAN trap compared to the conventional yellow sticky trap led to significant reduction in the thrips population. This novel push-pull technique would be applicable to effectively control F. occidentalis in field conditions.
Collapse
|
62
|
Temporal decline of genetic differentiation among populations of western flower thrips across an invaded range. Biol Invasions 2023. [DOI: 10.1007/s10530-023-03024-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
|
63
|
Hua D, Li X, Yuan J, Tao M, Zhang K, Zheng X, Wan Y, Gui L, Zhang Y, Wu Q. Fitness cost of spinosad resistance related to vitellogenin in Frankliniella occidentalis (Pergande). PEST MANAGEMENT SCIENCE 2023; 79:771-780. [PMID: 36264641 DOI: 10.1002/ps.7253] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 09/20/2022] [Accepted: 10/20/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND The western flower thrips Frankliniella occidentalis, a worldwide agricultural pest, has developed resistance to an array of insecticides. Spinosad resistance confers an apparent fitness cost in F. occidentalis. In the present study, we compared the reproductive capacities, ovary development, and the expression of the vitellogenin (Vg) gene in spinosad-susceptible (Ivf03) and -resistant (NIL-R) near isogenetic lines of F. occidentalis in order to clarify the reason for the fitness cost in spinosad resistance. RESULTS The NIL-R strain exhibited a 17.9% decrease in fecundity (eggs laid per female) as compared to the Ivf03 strain, and the ovariole was significantly shortened by 2.8% in the NIL-R strain relative to the Ivf03 strain. Compared to the Ivf03 strain, the expression levels of Vg mRNA and protein were downregulated by 33.7% and 32.9% in the NIL-R strain, respectively. Moreover, interference with the Vg gene significantly reduced the expression levels of Vg mRNA and protein, and decreased ovariole length, survival rates and the fecundity of both strains. CONCLUSION The results indicate that the downregulated expression of Vg may contribute to the reduction of ovariole length and consequently to a fitness cost in spinosad-resistant F. occidentalis. The results not only increase our understanding of the evolution of insecticide resistance, but also could contribute to the formulation of control strategy of F. occidentalis. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Dengke Hua
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
- Institute of Agricultural Quality Standards and Testing Technology Research, Hubei Academy of Agricultural Sciences/Hubei Key Laboratory of Nutritional Quality and Safety of Agro Products, Wuhan, China
| | - Xiaoyu Li
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
- Hubei Biopesticide Engineering Research Centre, Wuhan, China
| | - Jiangjiang Yuan
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Min Tao
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Kun Zhang
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xiaobin Zheng
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yanran Wan
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Lianyou Gui
- Department of Entomology, College of Agriculture, Yangtze University, Jingzhou, China
| | - Youjun Zhang
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
- Department of Entomology, College of Agriculture, Yangtze University, Jingzhou, China
| | - Qingjun Wu
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
64
|
Li DY, Zhou D, Zhi JR, Yue WB, Li SX. Effects of Different Parts of the Rose Flower on the Development, Fecundity, and Life Parameters of Frankliniella occidentalis (Pergande) (Thysanoptera: Thripidae). INSECTS 2023; 14:88. [PMID: 36662015 PMCID: PMC9861374 DOI: 10.3390/insects14010088] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Revised: 01/08/2023] [Accepted: 01/12/2023] [Indexed: 06/17/2023]
Abstract
Frankliniella occidentalis (Pergande) is an important horticultural pest that causes serious damage to rose plants, which is one of its preferred foods. In this study, rose petals, rose flowers, and 10% honey solution + kidney bean pods were chosen as foods to assess their influence on the growth, development and fecundity of F. occidentalis. The results showed that developmental time of immature F. occidentalis with the following trend: rose flowers <10% honey solution + kidney bean pods < rose petals < kidney bean pods. The longevities of both female and male adults were lowest when feeding on the rose petals and were highest when feeding on rose flowers. The fecundity was in the following order: rose flowers >10% honey solution + kidney bean pods > rose petals > kidney bean pods. The net reproductive rate (R0), intrinsic rate of increase (r), and finite rate of increase (λ) of F. occidentalis feeding on rose petals and kidney bean pods were lower than those feeding on rose flowers and 10% honey solution + kidney bean pods. The development, longevity, fecundity, and parameters have significantly changed since F1 generation after feeding with the three food types. The results indicated that different parts of rose flowers had a significant effect on the development of thrips, and nectar and pollen had a positive effect on thrips population increase and reproduction.
Collapse
Affiliation(s)
- Ding-Yin Li
- Institute of Entomology, Guizhou Provincial Key Laboratory for Agricultural Pest Management of the Mountainous Region, Guizhou University, Guiyang 550025, China
| | - Dan Zhou
- Institute of Entomology, Guizhou Provincial Key Laboratory for Agricultural Pest Management of the Mountainous Region, Guizhou University, Guiyang 550025, China
- Qingzhen City Agricultural and Rural Bureau, Guiyang 551400, China
| | - Jun-Rui Zhi
- Institute of Entomology, Guizhou Provincial Key Laboratory for Agricultural Pest Management of the Mountainous Region, Guizhou University, Guiyang 550025, China
| | - Wen-Bo Yue
- Institute of Entomology, Guizhou Provincial Key Laboratory for Agricultural Pest Management of the Mountainous Region, Guizhou University, Guiyang 550025, China
| | - Shun-Xin Li
- Institute of Entomology, Guizhou Provincial Key Laboratory for Agricultural Pest Management of the Mountainous Region, Guizhou University, Guiyang 550025, China
| |
Collapse
|
65
|
Yang CH, Qiao FJ, Lu Z, Li CY, Liu TX, Gao YL, Zhang B. Interspecific Competitions between Frankliniella intonsa and Frankliniella occidentalis on Fresh Lentil Bean Pods and Pepper Plants. INSECTS 2022; 14:1. [PMID: 36661930 PMCID: PMC9866065 DOI: 10.3390/insects14010001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 11/30/2022] [Accepted: 12/03/2022] [Indexed: 06/17/2023]
Abstract
BACKGROUND Flower thrips (Frankliniella intonsa, IFT) and west flower thrips (Frankliniella occidentalis, WFT) are often found together on the host plant in China. WFT is an important invasive species that seems to outcompete the native IFT. In order to clarify the interspecific competitions between the two thrips, this study measured the population development of IFT and WFT under sexual and parthenogenetic reproductive modes on two hosts (fresh lentil bean pods with/without honey and pepper plants at seedling/flowering stages) in the laboratory. RESULTS When reared on fresh lentil bean pods (with/without honey), WFT population size was lower in mixed species populations compared to single species populations but the presence of WFT had nor negative effect on IFT population size. These results were dependent of the reproductive mode. When honey was supplied, the ratio of female-to-male in the progeny of WFT produced under sexual reproductive mode increased significantly in the presence of IFT. On pepper seedlings, mixed populations were more favorable to the population development of IFT at the seedling stage, but more favorable to WFT at the flowering stage. CONCLUSIONS In the early stage of WFT invasion and colonization, the emergence of flowering and honey (nectar) sources may have a positive effect on the population development of WFT.
Collapse
Affiliation(s)
- Chun-Hong Yang
- Key Laboratory of Integrated Crop Pest Management of Shandong Province, College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao 266109, China
| | - Feng-Jiao Qiao
- Key Laboratory of Integrated Crop Pest Management of Shandong Province, College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao 266109, China
| | - Zhaozhi Lu
- Key Laboratory of Integrated Crop Pest Management of Shandong Province, College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao 266109, China
| | - Chang-You Li
- Key Laboratory of Integrated Crop Pest Management of Shandong Province, College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao 266109, China
| | - Tong-Xian Liu
- Key Laboratory of Integrated Crop Pest Management of Shandong Province, College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao 266109, China
| | - Yu-Lin Gao
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Bin Zhang
- Key Laboratory of Integrated Crop Pest Management of Shandong Province, College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao 266109, China
| |
Collapse
|
66
|
Ren X, Li X, Huang J, Zhang Z, Hafeez M, Zhang J, Chen L, Zhou S, Zhang L, Lu Y. Linking life table and predation rate for evaluating temperature effects on Orius strigicollis for the biological control of Frankliniella occidentalis. FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2022. [DOI: 10.3389/fsufs.2022.1026115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
IntroductionOrius spp. are generalist predators released in horticultural and agricultural systems to control thrips. Understanding the effects of temperature on the development, predation rate, and population dynamics of Orius is essential for identifying the optimal timing of Orius release for establishing an adequate population to facilitate synchrony with thrips population growth and to prevent thrips outbreaks. The biological control efficiency of natural enemies as well as predator–prey relationships can be precisely described by integrating life table parameters and the predation rate.MethodsIn this study, the demographic features of Orius strigicollis fed on 2nd instar nymphs of western flower thrips (WFT), Frankliniella occidentalis, were compared at 18.5, 23.5, 27, and 33°C using the TWOSEX-MSChart program. The CONSUME-MSChart program was used to examine predation rates under different temperatures (18.5, 23.5, and 27°C).ResultsThe results showed no significant difference in fecundity among those reared at 18.5, 23.5, and 27°C, but fecundity at these temperatures was significantly higher than that at 33°C. The intrinsic rate of increase (r), finite rate of increase (λ), and net reproduction rate (R0) were the highest at 27°C. The net predation rate (C0) and transformation rate (Qp) were significantly higher at 18.5°C (C0 = 168.39 prey/predator, Qp = 8.22) and 23.5°C (C0 = 140.49 prey/predator, Qp = 6.03) than at 27°C (C0 = 138.39 prey/predator, Qp= 3.81); however, the finite predation rate (ω) showed the opposite trend. In addition to temperature, the stage of O. strigicollis at release can affect population dynamics.DiscussionOur study showed that temperature influenced the demographic traits and predation rates of O. strigicollis. When planning a release, the stage of O. strigicollis and temperature should be taken into account to establish an adequate population for the control of WFT.
Collapse
|
67
|
Chen JC, Cao LJ, Sun LN, Gao YF, Cao HQ, Ma ZZ, Ma LJ, Shen XJ, Wang JX, Gong YJ, Hoffmann AA, Wei SJ. Variation in the toxicity of a novel meta-diamide insecticide, broflanilide, among thrips pest species and developmental stages. PEST MANAGEMENT SCIENCE 2022; 78:5090-5096. [PMID: 36102347 DOI: 10.1002/ps.7124] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 07/26/2022] [Accepted: 08/11/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Thrips pests cause increasing damage to crops around the world. Widespread usage of some insecticides against thrips has now led to the evolution of resistance to several active ingredients, and new insecticides are required. This study examined the toxicity of the novel insecticide broflanilide to multiple populations of several thrips pests. RESULTS Bioassays showed that thrips populations had LC50 values ranging from 0.5 to almost 300 mg·L-1 . A population of Frankliniella occidentalis had the highest LC50 value at 290.63 mg·L-1 , while a population of Echinothrips americanus had the lowest LC50 value at 0.51 mg L-1 . LC50 values among seven populations of Thrips palmi ranged from 2.5689 to 23.6754 mg·L-1 , indicating intraspecific variation in toxicity. In this species, the toxicity of broflanilide was relatively higher in adults than in larvae. More than 90% of eggs of T. palmi could not develop into larvae when treated with 5-50 mg L-1 broflanilide. Compared to five commonly used insecticides, broflanilide showed relatively high toxicity to T. palmi. Field control tests with T. palmi showed that control efficacy (from 90.44% to 93.14%) was maintained from day three to day 14 after treatment with 22.5 and 45 ga.i hm-1 broflanilide. CONCLUSION Broflanilide is potentially a useful insecticide for controlling Thrips hawaiiensis, Frankliniella intonsa, Megalurothrips usitatus. E. americanus, and some populations of T. palmi. However, the variation in toxicity of this insecticide to different species, populations, and developmental stages indicates that target species and life stages may need to be carefully considered. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Jin-Cui Chen
- Institute of Plant Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Li-Jun Cao
- Institute of Plant Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Li-Na Sun
- Institute of Plant Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | | | - Hua-Qian Cao
- Institute of Plant Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Zhong-Zheng Ma
- Institute of Plant Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Li-Jun Ma
- Institute of Plant Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Xiu-Jing Shen
- Institute of Plant Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Jia-Xu Wang
- Institute of Plant Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Ya-Jun Gong
- Institute of Plant Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Anthony Ary Hoffmann
- School of BioSciences, Bio21 Institute, University of Melbourne, Parkville, Australia
| | - Shu-Jun Wei
- Institute of Plant Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| |
Collapse
|
68
|
Comparison and Functional Analysis of Odorant-Binding Proteins and Chemosensory Proteins in Two Closely Related Thrips Species, Frankliniella occidentalis and Frankliniella intonsa (Thysanoptera: Thripidae) Based on Antennal Transcriptome Analysis. Int J Mol Sci 2022; 23:ijms232213900. [PMID: 36430376 PMCID: PMC9692942 DOI: 10.3390/ijms232213900] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 10/26/2022] [Accepted: 10/31/2022] [Indexed: 11/16/2022] Open
Abstract
Two closely related thrips species, Frankliniella occidentalis and Frankliniella intonsa, are important pests on agricultural and horticultural crops. They have several similarities, including occurrence patterns, host range, and aggregation pheromone compounds. However, there are very few reports about the chemosensory genes and olfactory mechanisms in these two species. To expand our knowledge of the thrips chemosensory system, we conducted antennal transcriptome analysis of two thrips species, and identified seven odorant-binding proteins (OBPs) and eight chemosensory proteins (CSPs) in F. occidentalis, as well as six OBPs and six CSPs in F. intonsa. OBPs and CSPs showed high sequence identity between the two thrips species. The RT-qPCR results showed that the orthologous genes FoccOBP1/3/4/5/6, FintOBP1/3/4/6, FoccCSP1/2/3, and FintCSP1/2 were highly expressed in male adults. Molecular docking results suggested that orthologous pairs FoccOBP4/FintOBP4, FoccOBP6/FintOBP6, and FoccCSP2/FintCSP2 might be involved in transporting the major aggregation pheromone compound neryl (S)-2-methylbutanoate, while orthologous pairs FoccOBP6/FintOBP6, FoccCSP2/FintCSP2, and FoccCSP3/FintCSP3 might be involved in transporting the minor aggregation pheromone compound (R)-lavandulyl acetate. These results will provide a fundamental basis for understanding the molecular mechanisms of pheromone reception in the two thrips species.
Collapse
|
69
|
An D, Song L, Li Y, Shen L, Miao P, Wang Y, Liu D, Jiang L, Wang F, Yang J. Comprehensive analysis of lysine lactylation in Frankliniella occidentalis. Front Genet 2022; 13:1014225. [PMID: 36386791 PMCID: PMC9663987 DOI: 10.3389/fgene.2022.1014225] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 10/17/2022] [Indexed: 11/06/2022] Open
Abstract
Western flower thrips (Frankliniella occidentalis) are among the most important pests globally that transmit destructive plant viruses and infest multiple commercial crops. Lysine lactylation (Klac) is a recently discovered novel post-translational modification (PTM). We used liquid chromatography-mass spectrometry to identify the global lactylated proteome of F. occidentalis, and further enriched the identified lactylated proteins using Kyoto Encyclopedia of Genes and Genomes (KEGG) and Gene Ontology (GO). In the present study, we identified 1,458 Klac sites in 469 proteins from F. occidentalis. Bioinformatics analysis showed that Klac was widely distributed in F. occidentalis proteins, and these Klac modified proteins participated in multiple biological processes. GO and KEGG enrichment analysis revealed that Klac proteins were significantly enriched in multiple cellular compartments and metabolic pathways, such as the ribosome and carbon metabolism pathways. Two Klac proteins were found to be involved in the regulation of the TSWV (Tomato spotted wilt virus) transmission in F. occidentalis. This study provides a systematic report and a rich dataset of lactylation in F. occidentalis proteome for potential studies on the Klac protein of this notorious pest.
Collapse
Affiliation(s)
- Dong An
- Key Laboratory of Tobacco Pest Monitoring, Controlling and Integrated Management, Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao, China
| | - Liyun Song
- Key Laboratory of Tobacco Pest Monitoring, Controlling and Integrated Management, Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao, China
| | - Ying Li
- Key Laboratory of Tobacco Pest Monitoring, Controlling and Integrated Management, Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao, China
| | - Lili Shen
- Key Laboratory of Tobacco Pest Monitoring, Controlling and Integrated Management, Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao, China
| | - Pu Miao
- Luoyang City Company of Henan Province Tobacco Company, Luoyang, China
| | - Yujie Wang
- Luoyang City Company of Henan Province Tobacco Company, Luoyang, China
| | - Dongyang Liu
- Liangshan State Company of Sichuan Province Tobacco Company, Mile, China
| | - Lianqiang Jiang
- Liangshan State Company of Sichuan Province Tobacco Company, Mile, China
| | - Fenglong Wang
- Key Laboratory of Tobacco Pest Monitoring, Controlling and Integrated Management, Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao, China
- *Correspondence: Fenglong Wang, ; Jinguang Yang,
| | - Jinguang Yang
- Key Laboratory of Tobacco Pest Monitoring, Controlling and Integrated Management, Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao, China
- *Correspondence: Fenglong Wang, ; Jinguang Yang,
| |
Collapse
|
70
|
Lopez-Reyes K, Armstrong KF, van Tol RWHM, Teulon DAJ, Bok MJ. Colour vision in thrips (Thysanoptera). Philos Trans R Soc Lond B Biol Sci 2022; 377:20210282. [PMID: 36058245 PMCID: PMC9441234 DOI: 10.1098/rstb.2021.0282] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 04/12/2022] [Indexed: 02/01/2023] Open
Abstract
Insects are an astonishingly successful and diverse group, occupying the gamut of habitats and lifestyle niches. They represent the vast majority of described species and total terrestrial animal biomass on the planet. Their success is in part owed to their sophisticated visual systems, including colour vision, which drive a variety of complex behaviours. However, the majority of research on insect vision has focused on only a few model organisms including flies, honeybees and butterflies. Especially understudied are phytophagous insects, such as diminutive thrips (Thysanoptera), in spite of their damage to agriculture. Thrips display robust yet variable colour-specific responses despite their miniaturized eyes, but little is known about the physiological and ecological basis of their visual systems. Here, we review the known visual behavioural information about thrips and the few physiological studies regarding their eyes. Eye structure, spectral sensitivity, opsin genes and the presence of putative colour filters in certain ommatidia strongly imply dynamic visual capabilities. Finally, we discuss the major gaps in knowledge that remain for a better understanding of the visual system of thrips and why bridging these gaps is important for expanding new possibilities for applied pest management strategies for these tiny insects. This article is part of the theme issue 'Understanding colour vision: molecular, physiological, neuronal and behavioural studies in arthropods'.
Collapse
Affiliation(s)
- Karla Lopez-Reyes
- Bio-Protection Research Centre, Lincoln University, Lincoln, New Zealand
| | - Karen F. Armstrong
- Bio-Protection Research Centre, Lincoln University, Lincoln, New Zealand
- Better Border Biosecurity (B3, B3nz.org.nz), New Zealand
| | - Robert W. H. M. van Tol
- Biointeractions and Plant Health (BIONT), Wageningen University and Research, Wageningen, The Netherlands
- BugResearch Consultancy, TheNetherlands
| | - David A. J. Teulon
- Better Border Biosecurity (B3, B3nz.org.nz), New Zealand
- The New Zealand Institute for Plant and Food Research Limited, Auckland, New Zealand
| | - Michael J. Bok
- Lund Vision Group, Department of Biology, Lund University, Lund, Sweden
| |
Collapse
|
71
|
Mwando NL, Ndlela S, Subramanian S, Mohamed SA, Meyhöfer R. Efficacy of hot water treatment for postharvest control of western flower thrips, Frankliniella occidentalis, in French beans. PEST MANAGEMENT SCIENCE 2022; 78:4324-4332. [PMID: 35730382 DOI: 10.1002/ps.7051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 05/15/2022] [Accepted: 06/22/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND The western flower thrips, Frankliniella occidentalis, is a quarantine pest of French beans that requires phytosanitary treatment to meet quarantine requirements for strict lucrative markets. In this study, the efficacy of hot water treatment against F. occidentalis eggs and its effects on the postharvest physicochemical quality parameters of French beans was evaluated. RESULTS The immersion time of 8.01 min (95% critical limits CL 7.77-8.24) was predicted by the probit model as the minimum time required to achieve a 99.9968% control level. Confirmatory tests with a large number of F. occidentalis eggs were performed to validate the estimated time to achieve probit-9 control level, and there were no survivors from the 50 103 eggs treated. Likewise, none of the 55 364 eggs exposed to 45 ± 0.2 °C for 7 min (observational time) survived. The effect of the treatment schedule on French beans quality parameters was assessed and there were no differences in weight loss, moisture content, total soluble solids, titratable acidity, pH, and reducing sugars between treated and untreated samples. CONCLUSION Our results indicate that hot water treatment (at 45 ± 0.2 °C for a duration of 8.01 min is an effective phytosanitary treatment for the control of Frankliniella occidentalis on French beans, with no significant impact on pods quality. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Nelson L Mwando
- Plant Health division, International Centre of Insect Physiology and Ecology (icipe), Nairobi, Kenya
- Institute of Horticultural Production Systems, Section Phytomedicine, Applied Entomology, Leibniz Universität Hannover, Hannover, Germany
| | - Shepard Ndlela
- Plant Health division, International Centre of Insect Physiology and Ecology (icipe), Nairobi, Kenya
| | - Sevgan Subramanian
- Plant Health division, International Centre of Insect Physiology and Ecology (icipe), Nairobi, Kenya
| | - Samira A Mohamed
- Plant Health division, International Centre of Insect Physiology and Ecology (icipe), Nairobi, Kenya
| | - Rainer Meyhöfer
- Institute of Horticultural Production Systems, Section Phytomedicine, Applied Entomology, Leibniz Universität Hannover, Hannover, Germany
| |
Collapse
|
72
|
Rajarapu SP, Ben-Mahmoud S, Benoit JB, Ullman DE, Whitfield AE, Rotenberg D. Sex-biased proteomic response to tomato spotted wilt virus infection of the salivary glands of Frankliniella occidentalis, the western flower thrips. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2022; 149:103843. [PMID: 36113709 DOI: 10.1016/j.ibmb.2022.103843] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 09/07/2022] [Accepted: 09/08/2022] [Indexed: 06/15/2023]
Abstract
Successful transmission of tomato spotted wilt virus (TSWV) by Frankliniella occidentalis requires robust infection of the salivary glands (SGs) and virus delivery to plants during salivation. Feeding behavior and transmission efficiency are sexually-dimorphic traits of this thrips vector species. Proteins secreted from male and female SG tissues, and the effect of TSWV infection on the thrips SG proteome are unknown. To begin to discern thrips factors that facilitate virus infection of SGs and transmission by F. occidentalis, we used gel- and label-free quantitative and qualitative proteomics to address two hypotheses: (i) TSWV infection modifies the composition and/or abundance of SG-expressed proteins in adults; and (ii) TSWV has a differential effect on the male and female SG proteome and secreted saliva. Our study revealed a sex-biased SG proteome for F. occidentalis, and TSWV infection modulated the SG proteome in a sex-dependent manner as evident by the number, differential abundance, identities and generalized roles of the proteins. Male SGs exhibited a larger proteomic response to the virus than female SGs. Intracellular processes modulated by TSWV in males indicated perturbation of SG cytoskeletal networks and cell-cell interactions, i.e., basement membrane (BM) and extracellular matrix (ECM) proteins, and subcellular processes consistent with a metabolic slow-down under infection. Several differentially-abundant proteins in infected male SGs play critical roles in viral life cycles of other host-virus pathosystems. In females, TSWV modulated processes consistent with tissue integrity and active translational and transcriptional regulation. A core set of proteins known for their roles in plant cell-wall degradation and protein metabolism were identified in saliva of both sexes, regardless of virus infection status. Saliva proteins secreted by TSWV-infected adults indicated energy generation, consumption and protein turnover, with an enrichment of cytoskeletal/BM/ECM proteins and tricarboxylic acid cycle proteins in male and female saliva, respectively. The nonstructural TSWV protein NSs - a multifunctional viral effector protein reported to target plant defenses against TSWV and thrips - was identified in female saliva. This study represents the first description of the SG proteome and secretome of a thysanopteran and provides many candidate proteins to further unravel the complex interplay between the virus, insect vector, and plant host.
Collapse
Affiliation(s)
- Swapna Priya Rajarapu
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC, 27695, USA
| | - Sulley Ben-Mahmoud
- Department of Entomology and Nematology, University of California, Davis, Davis, CA, 95616, USA
| | - Joshua B Benoit
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH, 45221, USA
| | - Diane E Ullman
- Department of Entomology and Nematology, University of California, Davis, Davis, CA, 95616, USA
| | - Anna E Whitfield
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC, 27695, USA
| | - Dorith Rotenberg
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC, 27695, USA.
| |
Collapse
|
73
|
Induced Resistance Combined with RNA Interference Attenuates the Counteradaptation of the Western Flower Thrips. Int J Mol Sci 2022; 23:ijms231810886. [PMID: 36142802 PMCID: PMC9500759 DOI: 10.3390/ijms231810886] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Accepted: 09/14/2022] [Indexed: 11/30/2022] Open
Abstract
The western flower thrips, Frankliniella occidentalis Pergande, is an invasive pest that damages agricultural and horticultural crops. The induction of plant defenses and RNA interference (RNAi) technology are potent pest control strategies. This study investigated whether the anti-adaptive ability of F. occidentalis to jasmonic acid (JA)- and methyl jasmonate (MeJA)-induced defenses in kidney bean plants was attenuated after glutathione S-transferase (GST) gene knockdown. The expression of four GSTs in thrips fed JA- and MeJA-induced leaves was analyzed, and FoGSTd1 and FoGSTs1 were upregulated. Exogenous JA- and MeJA-induced defenses led to increases in defensive secondary metabolites (tannins, alkaloids, total phenols, flavonoids, and lignin) in leaves. Metabolome analysis indicated that the JA-induced treatment of leaves led to significant upregulation of defensive metabolites. The activity of GSTs increased in second-instar thrips larvae fed JA- and MeJA-induced leaves. Co-silencing with RNAi simultaneously knocked down FoGSTd1 and FoGSTs1 transcripts and GST activity, and the area damaged by second-instar larvae feeding on JA- and MeJA-induced leaves decreased by 62.22% and 55.24%, respectively. The pupation rate of second-instar larvae also decreased by 39.68% and 39.89%, respectively. Thus, RNAi downregulation of FoGSTd1 and FoGSTs1 reduced the anti-adaptive ability of F. occidentalis to JA- or MeJA-induced defenses in kidney bean plants.
Collapse
|
74
|
Yuan JW, Song HX, Chang YW, Yang F, Du YZ. Transcriptome analysis and screening of putative sex-determining genes in the invasive pest, Frankliniella occidentalis (Thysanoptera: Thripidae). COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART D, GENOMICS & PROTEOMICS 2022; 43:101008. [PMID: 35752128 DOI: 10.1016/j.cbd.2022.101008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Revised: 05/11/2022] [Accepted: 06/08/2022] [Indexed: 06/15/2023]
Abstract
The invasive insect pest, Frankliniella occidentalis, is a well-known vector that transmits a variety of ornamental and vegetable viruses. The mechanistic basis of sex determination in F. occidentalis is not well understood, and this hinders our ability to deploy sterile insect technology as an integrated pest management strategy. In this study, six cDNA libraries from female and male adults of F. occidentalis (three biological replicates each) were constructed and transcriptomes were sequenced. A total of 6000 differentially-expressed genes were identified in the two sexes including 2355 up- and 3645 down-regulated genes. A total of 149 sex-related genes were identified based on GO enrichment data and included transformer-2 (tra2), fruitless (fru), male-specific lethal (msl) and sex lethal (sxl); several of these exhibited sex-specific and/or sex-biased expression in F. occidentalis. This study contributes to our understanding of the sex-determined cascade in F. occidentalis and other members of the Thysanoptera.
Collapse
Affiliation(s)
- Jia-Wen Yuan
- College of Horticulture and Plant Protection, Institute of Applied Entomology, Yangzhou University, Yangzhou 225009, China
| | - Hai-Xia Song
- College of Horticulture and Plant Protection, Institute of Applied Entomology, Yangzhou University, Yangzhou 225009, China
| | - Ya-Wen Chang
- College of Horticulture and Plant Protection, Institute of Applied Entomology, Yangzhou University, Yangzhou 225009, China
| | - Fei Yang
- Department of Entomology, Texas A&M University, College Station, TX, USA
| | - Yu-Zhou Du
- College of Horticulture and Plant Protection, Institute of Applied Entomology, Yangzhou University, Yangzhou 225009, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education, Yangzhou University, Yangzhou, China.
| |
Collapse
|
75
|
Zhang T, Liu L, Zhi JR, Jia YL, Yue WB, Zeng G, Li DY. Copper Chaperone for Superoxide Dismutase FoCCS1 in Frankliniella occidentalis May Be Associated with Feeding Adaptation after Host Shifting. INSECTS 2022; 13:782. [PMID: 36135483 PMCID: PMC9501208 DOI: 10.3390/insects13090782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 08/12/2022] [Accepted: 08/18/2022] [Indexed: 06/16/2023]
Abstract
Western flower thrips (Frankliniella occidentalis) pose a serious threat to the global vegetable and flower crop production. The regulatory mechanism for superoxide dismutase (SOD) in the feeding adaptation of F. occidentalis after host shifting remains unclear. In this study, the copper chaperone for SOD (CCS) and manganese SOD (MnSOD) genes in F. occidentalis were cloned, and their expression levels at different developmental stages was determined. The mRNA expression of FoCCS1 and FoMnSOD2 in F. occidentalis second-instar larvae and adult females of F1, F2, and F3 generations was analyzed after shifting the thrips to kidney bean and broad bean plants, respectively. The F2 and F3 second-instar larvae and F2 adult females showed significantly upregulated FoCCS1 mRNA expression after shifting to kidney bean plants. The F1 second-instar larvae and F2 adult females showed significantly upregulated FoCCS1 mRNA expression after shifting to broad bean plants. The RNA interference significantly downregulated the FoCCS1 mRNA expression levels and adult females showed significantly inhibited SOD activity after shifting to kidney bean and broad bean plants. F. occidentalis adult females subjected to RNA interference and released on kidney bean and broad bean leaves for rearing, respectively, significantly reduced the survival rate and fecundity. These findings suggest that FoCCS1 plays an active role in regulating the feeding adaptation ability of F. occidentalis after host shifting.
Collapse
Affiliation(s)
- Tao Zhang
- Institute of Entomology, Guizhou University, Guiyang 550025, China
- Guizhou Provincial Key Laboratory for Agricultural Pest Management in the Mountainous Region, Guiyang 550025, China
| | - Li Liu
- Institute of Entomology, Guizhou University, Guiyang 550025, China
- Guizhou Provincial Key Laboratory for Agricultural Pest Management in the Mountainous Region, Guiyang 550025, China
| | - Jun-Rui Zhi
- Institute of Entomology, Guizhou University, Guiyang 550025, China
- Guizhou Provincial Key Laboratory for Agricultural Pest Management in the Mountainous Region, Guiyang 550025, China
| | - Yu-Lian Jia
- Institute of Entomology, Guizhou University, Guiyang 550025, China
- Guizhou Provincial Key Laboratory for Agricultural Pest Management in the Mountainous Region, Guiyang 550025, China
| | - Wen-Bo Yue
- Institute of Entomology, Guizhou University, Guiyang 550025, China
- Guizhou Provincial Key Laboratory for Agricultural Pest Management in the Mountainous Region, Guiyang 550025, China
| | - Guang Zeng
- Institute of Entomology, Guizhou University, Guiyang 550025, China
- Guizhou Provincial Key Laboratory for Agricultural Pest Management in the Mountainous Region, Guiyang 550025, China
| | - Ding-Yin Li
- Institute of Entomology, Guizhou University, Guiyang 550025, China
- Guizhou Provincial Key Laboratory for Agricultural Pest Management in the Mountainous Region, Guiyang 550025, China
| |
Collapse
|
76
|
Ding C, Song L, Li Y, Shen L, Liu D, Wang F, Lin Z, Yang J. Proteome-wide analysis of lysine 2-hydroxyisobutyrylation in Frankliniella occidentalis. BMC Genomics 2022; 23:621. [PMID: 36038823 PMCID: PMC9422105 DOI: 10.1186/s12864-022-08841-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 08/12/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Lysine 2-hydroxyisobutyrylation (Khib) is a novel and conserved post-translational modification (PTM). Frankliniella occidentalis are economically important agricultural pests globally and also notorious for vectoring destructive plant viruses. To better study the disease transmission mechanism of F. occidentalis, it is necessary to conduct in-depth analysis of it. So far, no Khib modification of insects has been reported. RESULTS In this study, a proteome-wide analysis of Khib modifications in F. occidentalis was analyzed for the first time through the combination of high performance liquid chromatography fractionation technology and 2-hydroxyisobutyrylated peptide enrichment and other advanced technologies, 4093 Khib sites were identified on 1125 modified proteins. Bioinformatics and functional enrichment analyses showed that Khib-modified proteins were significantly enriched in many cell compartments and pathways, especially related to various cellular components and biological processes, and were more concentrated in ribosomes and proteasome subunits, involved in energy metabolism, protein synthesis and degradation, compared to the other nine species including Japonica rice, Homo sapiens, P. patens, Botrytis, Ustilaginoidea virens, Saccharomyces cerevisiae, T. gondii, C. albicans, and F. oxysporum. And Khib sites on virus-interacting insect proteins were discovered for the first time, such as cyclophilin and endoCP-GN. CONCLUSIONS After three repeated experiments, we found a total of 4093 Khib sites on 1125 proteins. These modified proteins are mainly concentrated in ribosomes and proteasome subunits, and are widely involved in a variety of critical biological activities and metabolic processes of F. occidentalis. In addition, for the first time, Khib modification sites are found on the proteome of F. occidentalis, and these sites could be acted as for the virus interaction, including cyclophilin and endoCP-GN. The global map of 2-hydroxyisobutyrylation in thrips is an invaluable resource to better understand the biological processes of thrips and provide new means for disease control and mitigation of pest damage to crops.
Collapse
Affiliation(s)
- Chengying Ding
- Key Laboratory of Tobacco Pest Monitoring, Controlling and Integrated Management, Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao, 266101, China
| | - Liyun Song
- Key Laboratory of Tobacco Pest Monitoring, Controlling and Integrated Management, Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao, 266101, China
| | - Ying Li
- Key Laboratory of Tobacco Pest Monitoring, Controlling and Integrated Management, Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao, 266101, China
| | - Lili Shen
- Key Laboratory of Tobacco Pest Monitoring, Controlling and Integrated Management, Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao, 266101, China
| | - Dongyang Liu
- Liangshan State Company of Sichuan Province Tobacco Company, Liangshan, 615000, China
| | - Fenglong Wang
- Key Laboratory of Tobacco Pest Monitoring, Controlling and Integrated Management, Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao, 266101, China
| | - Zhonglong Lin
- Country Yunnan Province Company of China Tobacco Corporation, Kunming, 650001, China.
| | - Jinguang Yang
- Key Laboratory of Tobacco Pest Monitoring, Controlling and Integrated Management, Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao, 266101, China.
| |
Collapse
|
77
|
Vangansbeke D, Duarte MVA, Pijnakker J, Pekas A, Wäckers F. Egg Predation by Phytoseiid Predatory Mites: Is There Intraguild Predation Towards Predatory Bug Eggs? JOURNAL OF ECONOMIC ENTOMOLOGY 2022; 115:1087-1094. [PMID: 35707949 DOI: 10.1093/jee/toac092] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Indexed: 06/15/2023]
Abstract
Phytoseiid predatory mites are efficient biocontrol agents of important thrips pests, such as the western flower thrips, Frankliniella occidentalis Pergande (Thysanoptera: Thripidae). Until recently, it was believed that first instars, and to a lesser extent second instars, were the most vulnerable developmental stages of thrips to be attacked by phytoseiids. However, recent evidence showed that some phytoseiids can detect and prey upon thrips eggs inserted in the leaf tissue. As phytoseiid predatory mites often co-occur with other beneficial insects, such as mirid and anthocorid predatory bugs which also insert their eggs inside leaf material, this raises the question whether phytoseiid predatory mites may also feed on predatory bug eggs. Here we first tested the potential of Amblyseius swirskii Athias-Henriot, Transeius montdorensis Schicha, and Amblydromalus limonicus Garman and McGregor (Acari: Phytoseiidae) to kill eggs of F. occidentalis in leaf tissue. Secondly, we tested whether those phytoseiids were capable of killing eggs of Orius laevigatus Fieber (Hemiptera: Anthocoridae), Macrolophus pygmaeus Rambur and Nesidiocoris tenuis (Reuter) (Hemiptera: Miridae), three biocontrol agents that also insert their eggs inside plant tissue. Our results showed that A. swirskii and A. limonicus could kill thrips eggs, whereas T. montdorensis could not. Furthermore, we show that the presence of phytoseiid predatory mites does not affect the hatch rate of predatory bugs that insert their eggs inside leaves.
Collapse
Affiliation(s)
| | | | | | | | - Felix Wäckers
- Biobest N.V., Ilse Velden 18, B-2260 Westerlo, Belgium
| |
Collapse
|
78
|
Choi DY, Kim Y. Transcriptome analysis of female western flower thrips, Frankliniella occidentalis, exhibiting neo-panoistic ovarian development. PLoS One 2022; 17:e0272399. [PMID: 35913957 PMCID: PMC9342723 DOI: 10.1371/journal.pone.0272399] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 07/19/2022] [Indexed: 11/18/2022] Open
Abstract
The western flower thrips, Frankliniella occidentalis, is one of the most devastating insect pests with explosive reproductive potential. However, its reproductive physiological processes are not well understood. This study reports the ovarian development and associated transcriptomes of F. occidentalis. Each ovary consisted of four ovarioles, each of which contained a maximum of nine follicles in the vitellarium. The germarium consisted of several dividing cells forming a germ cell cluster, presumably consisting of oocytes and nurse cells. The nurse cells were restricted to the germarium while the subsequent follicles did not possess nurse cells or a nutritive cord, supporting the neo-panoistic ovariole usually found in thysanopteran insects. Oocyte development was completed 72 h after adult emergence (AAE). Transcriptome analysis was performed at mid (36 h AAE) and late (60 h AAE) ovarian developmental stages using RNA sequencing (RNASeq) technology. More than 120 million reads per replication were matched to ≈ 15,000 F. occidentalis genes. Almost 500 genes were differentially expressed at each of the mid and late ovarian developmental stages. Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis showed that these differentially expressed genes (DEGs) were associated with metabolic pathways along with protein and nucleic acid biosynthesis. In both ovarian developmental stages, vitellogenin, mucin, and chorion genes were highly (> 8-fold) expressed. Endocrine signals associated with ovarian development were further investigated from the DEGs. Insulin and juvenile hormone signals were upregulated only at 36 h AAE, whereas the ecdysteroid signal was highly maintained at 60 h AAE. This study reports the transcriptome associated with the ovarian development of F. occidentalis, which possesses a neo-panoistic ovariole.
Collapse
Affiliation(s)
- Du-Yeol Choi
- Department of Plant Medicals, College of Life Sciences, Andong National University, Andong, Korea
| | - Yonggyun Kim
- Department of Plant Medicals, College of Life Sciences, Andong National University, Andong, Korea
- * E-mail:
| |
Collapse
|
79
|
Andongma AA, Whitten MMA, Sol RD, Hitchings M, Dyson PJ. Bacterial Competition Influences the Ability of Symbiotic Bacteria to Colonize Western Flower Thrips. Front Microbiol 2022; 13:883891. [PMID: 35875566 PMCID: PMC9301076 DOI: 10.3389/fmicb.2022.883891] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 06/13/2022] [Indexed: 01/01/2023] Open
Abstract
Symbiont mediated RNAi (SMR) is a promising method for precision control of pest insect species such as Western Flower Thrips (WFT). Two species of bacteria are known to be dominant symbiotic bacteria in WFT, namely BFo1 and BFo2 (Bacteria from Frankliniella occidentalis 1 and 2), as we here confirm by analysis of next-generation sequence data derived to obtain a reference WFT genome sequence. Our first demonstration of SMR in WFT used BFo2, related to Pantoea, isolated from a domesticated Dutch thrips population. However, for successful use of SMR as a thrips control measure, these bacteria need to successfully colonize different environmental thrips populations. Here, we describe a United Kingdom thrips population that does not harbour BFo2, but does contain BFo1, a species related to Erwinia. Attempts to introduce BFo2 indicate that this bacterium is unable to establish itself in the United Kingdom thrips, in contrast to successful colonization by a strain of BFo1 expressing green fluorescent protein. Fluorescence microscopy indicates that BFo1 occupies similar regions of the thrips posterior midgut and hindgut as BFo2. Bacterial competition assays revealed that a barrier to BFo2 establishing itself in thrips is the identity of the resident BFo1; BFo1 isolated from the United Kingdom thrips suppresses growth of BFo2 to a greater extent than BFo1 from the Dutch thrips that is permissive for BFo2 colonization. The ability of the latter strain of BFo1 to colonize the United Kingdom thrips is also likely attributable to its ability to out-compete the resident BFo1. Lastly, we observed that United Kingdom thrips pre-exposed to the Dutch BFo1 could then be successfully colonized by BFo2. These results indicate, for the first time, that microbial competition and strain differences can have a large influence on how symbiotic bacteria can colonize different populations of an insect species.
Collapse
|
80
|
Fu B, Tao M, Xue H, Jin H, Liu K, Qiu H, Yang S, Yang X, Gui L, Zhang Y, Gao Y. Spinetoram resistance drives interspecific competition between Megalurothrips usitatus and Frankliniella intonsa. PEST MANAGEMENT SCIENCE 2022; 78:2129-2140. [PMID: 35170208 DOI: 10.1002/ps.6839] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 02/08/2022] [Accepted: 02/16/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Species displacement by the outcome of interspecific competition is of particular importance to pest management. Over the past decade, spinetoram has been extensively applied in control of the two closely related thrips Megalurothrips usitatus and Frankliniella intonsa worldwide, while whether its resistance is implicated in mediating interspecific interplay of the two thrips remains elusive to date. RESULTS Field population dynamics (from 2017 to 2019) demonstrated a trend toward displacement of F. intonsa by M. usitatus on cowpea crops, supporting an existing interspecific competition. Following exposure to spinetoram, M. usitatus became the predominate species, which suggests the use of spinetoram appears to be responsible for mediating interspecific interactions of the two thrips. Further annual and seasonal analysis (from 2016 to 2020) of field-evolved resistance dynamics revealed that M. usitatus developed remarkably higher resistance to spinetoram compared to that of F. intonsa, implying a close relationship between evolution of spinetoram resistance and their competitive interactions. After 12 generations of laboratory selection, resistance to spinetoram in M. usitatus and F. intonsa increased up to 64.50-fold and 28.33-fold, and the average realized heritability (h2 ) of resistance was calculated as 0.2550 and 0.1602, respectively. Interestingly, two-sex life table analysis showed that the spinetoram-resistant strain of F. intonsa exhibited existing fitness costs, but not the M. usitatus. These indicate that a rapid development of spinetoram resistance and the lack of associated fitness costs may be the mechanism underlying recent dominance of M. usitatus over F. intonsa. CONCLUSION Collectively, our results uncover the involvement of insecticide resistance in conferring displacement mechanism behind interspecific competition, providing a framework for understanding the significance of the evolutionary relationships among insects under ongoing changing environments. These findings also can be invaluable in proposing the most appropriate strategies for sustainable thrips control programs. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Buli Fu
- Hubei Engineering Technology for Pest Forewarning and Management, College of Agriculture, Yangtze University, Jingzhou, China
- The Ministry of Agriculture and Rural Affairs Key Laboratory of Integrated Pest Management of Tropical Crops, Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Min Tao
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Hu Xue
- Hubei Engineering Technology for Pest Forewarning and Management, College of Agriculture, Yangtze University, Jingzhou, China
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | | | - Kui Liu
- The Ministry of Agriculture and Rural Affairs Key Laboratory of Integrated Pest Management of Tropical Crops, Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Haiyan Qiu
- The Ministry of Agriculture and Rural Affairs Key Laboratory of Integrated Pest Management of Tropical Crops, Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | | | - Xin Yang
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Lianyou Gui
- Hubei Engineering Technology for Pest Forewarning and Management, College of Agriculture, Yangtze University, Jingzhou, China
| | - Youjun Zhang
- Hubei Engineering Technology for Pest Forewarning and Management, College of Agriculture, Yangtze University, Jingzhou, China
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yulin Gao
- State Key Laboratory for Biology of Plant Diseases and Insect Pest, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
81
|
Wu M, Dong Y, Zhang Q, Li S, Chang L, Loiacono FV, Ruf S, Zhang J, Bock R. Efficient control of western flower thrips by plastid-mediated RNA interference. Proc Natl Acad Sci U S A 2022; 119:e2120081119. [PMID: 35380896 PMCID: PMC9169809 DOI: 10.1073/pnas.2120081119] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 03/07/2022] [Indexed: 11/24/2022] Open
Abstract
Plastid-mediated RNA interference (PM-RNAi) has emerged as a promising strategy for pest control. Expression from the plastid genome of stable double-stranded RNAs (dsRNAs) targeted against essential insect genes can effectively control some herbivorous beetles, but little is known about the efficacy of the transplastomic approach in other groups of pest insects, especially nonchewing insects that do not consume large amounts of leaf material. Here we have investigated the susceptibility of the western flower thrip (WFT, Frankliniella occidentalis), a notorious pest in greenhouses and open fields, to PM-RNAi. We show that WFTs ingest chloroplasts and take up plastid-expressed dsRNAs. We generated a series of transplastomic tobacco plants expressing dsRNAs and hairpin RNAs (hpRNAs) targeted against four essential WFT genes. Unexpectedly, we discovered plastid genome instability in transplastomic plants expressing hpRNAs, suggesting that dsRNA cassettes are preferable over hpRNA cassettes when designing PM-RNAi strategies. Feeding studies revealed that, unlike nuclear transgenic plants, transplastomic plants induced a potent RNAi response in WFTs, causing efficient suppression of the targeted genes and high insect mortality. Our study extends the application range of PM-RNAi technology to an important group of nonchewing insects, reveals design principles for the construction of dsRNA-expressing transplastomic plants, and provides an efficient approach to control one of the toughest insect pests in agriculture and horticulture.
Collapse
Affiliation(s)
- Mengting Wu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan 430062, China
- Max Planck Institut für Molekulare Pflanzenphysiologie, Department III, D-14476 Potsdam-Golm, Germany
| | - Yi Dong
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan 430062, China
| | - Qi Zhang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan 430062, China
| | - Shengchun Li
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan 430062, China
| | - Ling Chang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan 430062, China
| | - F. Vanessa Loiacono
- Max Planck Institut für Molekulare Pflanzenphysiologie, Department III, D-14476 Potsdam-Golm, Germany
| | - Stephanie Ruf
- Max Planck Institut für Molekulare Pflanzenphysiologie, Department III, D-14476 Potsdam-Golm, Germany
| | - Jiang Zhang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan 430062, China
| | - Ralph Bock
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan 430062, China
- Max Planck Institut für Molekulare Pflanzenphysiologie, Department III, D-14476 Potsdam-Golm, Germany
| |
Collapse
|
82
|
Increasing Frequency of G275E Mutation in the Nicotinic Acetylcholine Receptor α6 Subunit Conferring Spinetoram Resistance in Invading Populations of Western Flower Thrips in China. INSECTS 2022; 13:insects13040331. [PMID: 35447773 PMCID: PMC9029678 DOI: 10.3390/insects13040331] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Revised: 03/19/2022] [Accepted: 03/25/2022] [Indexed: 12/04/2022]
Abstract
Simple Summary The western flower thrips (WFT) Frankliniella occidentalis (Pergande) (Thysanoptera: Thripidae) is an important invasive pest in agriculture and forestry. It has developed resistance to a frequently used pesticide spinetoram world widely, including the invading area of China. However, the mechanism of resistance to spinetoram is unclear in China. In this study, we found the presence of the G275E mutation in the nicotinic acetylcholine receptor Foα6 in the early invading populations, which has now increased to a high frequency in China. There was a correlation between the frequency of the G275E mutation and resistance to spinetoram as characterized by median lethal concentration. Our results showed that G275E mutation is one of the mechanisms conferring spinetoram resistance in invading populations in China, as in many other countries. Our study highlights the rapid spread of the G275E mutation in China in the 2009–2021 period. Abstract The western flower thrips Frankliniella occidentalis (Pergande) (Thysanoptera: Thripidae) is an important invasive pest worldwide. Field-evolved resistance to the pesticide spinetoram is an increasing problem in the chemical control of this pest. Here, we examined changes in the frequency of a genetic mutation associated with spinetoram resistance, the G275E mutation in the acetylcholine receptor Foα6, in 62 field populations collected from 2009 to 2021 across areas of China invaded by this pest. We found a low frequency of the G275E mutation in populations collected at the early invasion stage, in contrast to a high frequency in native USA populations. However, the frequency of the G275E mutation has increased to a high level in recently collected populations, with the mutation becoming fixed in some populations. There was a correlation between the frequency of the G275E mutation and resistance to spinetoram as characterized by median lethal concentration, although two populations were outliers. These results showed that G275E mutation is one of the mechanisms conferring spinetoram resistance in many invading populations in China. Ongoing dispersal of the WFT may have facilitated a rapid increase in the G275E mutation across China. Our study highlights the rapid evolution of pesticide resistance in an invasive species and points to a useful marker for molecular diagnostics of spinetoram resistance.
Collapse
|
83
|
Barroso G, Pazini JB, Iost Filho FH, Barbosa DPL, de Paiva ACR, Matioli TF, Yamamoto PT. Are Pesticides Used to Control Thrips Harmonious with Soil-Dwelling Predatory Mite Cosmolaelaps sabelis (Mesostigmata: Laelapidae)? JOURNAL OF ECONOMIC ENTOMOLOGY 2022; 115:151-159. [PMID: 34791336 DOI: 10.1093/jee/toab219] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Indexed: 06/13/2023]
Abstract
Edaphic predatory mites could be introduced in pest management programs of pests that live, or spend part of their life cycle, in the soil. Some mesostigmatic mites have been widely used for the management of different species of thrips (Thysanoptera), especially in protected cultivation. The edaphic predator Cosmolaelaps sabelis (Mesostigmata: Laelapidae) was a model species in this study, being exposed to the most applied insecticides for the control of thrips in Brazil. After lethal, sublethal and transgenerational effects were evaluated. The pesticides acephate, acetamiprid + etofenprox, azadirachtin, spinetoram, formetanate hydrochloride, and imidacloprid were classified according to the IOBC/WPRS (International Organization for Biological Control-West Paleartic Regional Section) recommendation, considering the acute toxicity and the effects on adult females' reproduction, in the maternal and first generation. The pesticides acetamiprid + etofenprox and azadirachtin were classified as slightly harmful (Class 2), while spinetoram was classified as moderately harmful (Class 3). Acephate and formetanate hydrochloride were classified as harmful (Class 4). Only imidacloprid didn't cause negative effects on the females. Regarding effects on the first generation, acetamiprid + etofenprox, azadirachtin, and spinetoram caused reduction in the oviposition rates. Therefore, we suggest that complimentary bioassays should be done under semi-field and field conditions using the pesticides that were considered harmful in this study, to assess their effects on this predator in other environments prior to recommending not to use them in integrated programs to manage soil-based pests using chemical and biological tools.
Collapse
Affiliation(s)
- G Barroso
- Department of Entomology and Acarology, University of São Paulo, Piracicaba, São Paulo, Brazil
| | - J B Pazini
- Department of Entomology and Acarology, University of São Paulo, Piracicaba, São Paulo, Brazil
| | - F H Iost Filho
- Department of Entomology and Acarology, University of São Paulo, Piracicaba, São Paulo, Brazil
| | - D P L Barbosa
- Department of Entomology and Acarology, University of São Paulo, Piracicaba, São Paulo, Brazil
| | - A C R de Paiva
- Department of Entomology and Acarology, University of São Paulo, Piracicaba, São Paulo, Brazil
| | - T F Matioli
- Department of Entomology and Acarology, University of São Paulo, Piracicaba, São Paulo, Brazil
| | - P T Yamamoto
- Department of Entomology and Acarology, University of São Paulo, Piracicaba, São Paulo, Brazil
| |
Collapse
|
84
|
Problems with the Concept of "Pest" among the Diversity of Pestiferous Thrips. INSECTS 2022; 13:insects13010061. [PMID: 35055903 PMCID: PMC8780980 DOI: 10.3390/insects13010061] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 12/30/2021] [Accepted: 12/30/2021] [Indexed: 11/17/2022]
Abstract
Almost all of the thrips species that are considered pests are members of a single subfamily of Thripidae, the Thripinae, a group that represents less than 30% of the species in the insect Order Thysanoptera. Three of the five major Families of Thysanoptera (Aeolothripidae, Heterothripidae, Melanthripidae) are not known to include any pest species. The Phlaeothripidae that includes more than 50% of the 6300 thrips species listed includes very few that are considered to be pests. Within the Thripidae, the members of the three smaller subfamilies, Panchaetothripinae, Dendrothripinae and Sericothripinae, include remarkably few species that result in serious crop losses. It is only in the subfamily Thripinae, and particularly among species of the Frankliniella genus-group and the Thrips genus-group that the major thrips species are found, including all but one of the vectors of Orthotospovirus infections. It is argued that the concept of pest is a socio-economic problem, with the pest status of any particular species being dependent on geographical area, cultivation practices, and market expectations as much as the intrinsic biology of any thrips species.
Collapse
|
85
|
Fan Z, Qian L, Chen Y, Fan R, He S, Gao Y, Gui F. Effects of elevated CO 2 on activities of protective and detoxifying enzymes in Frankliniella occidentalis and F. intonsa under spinetoram stress. PEST MANAGEMENT SCIENCE 2022; 78:274-286. [PMID: 34480397 DOI: 10.1002/ps.6630] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Revised: 08/15/2021] [Accepted: 09/04/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Elevated CO2 can directly affect the toxicity of insecticides to insects and the physiological response of insects to insecticides. Frankliniella occidentalis and F. intonsa are highly destructive pests that target horticultural crops. Spinetoram is an effective pesticide against thrips. This study sought to explore the effect of elevated CO2 on efficacy of spinetoram against F. occidentalis and F. intonsa and effect of the spinetoram on activities of protective and detoxifying enzymes under elevated CO2 . Notably, these enzymes can be exploited in further studies to develop interventions for thrips resistance management. RESULTS Toxicity bioassay showed that the LC50 values of F. occidentalis and F. intonsa exposed to spinetoram at elevated CO2 (800 μL L-1 concentration) for 48 h was 0.08 and 0.006 mg L-1 , respectively, which is 0.62 and 0.75 times of the values at ambient CO2 (400 μL L-1 concentration). The findings showed that elevated CO2 decreased activities of the superoxide dismutase and acetylcholinesterase in thrips, while increasing the activities of carboxylesterase and glutathione S-transferase. However, spinetoram increased activities of protective and detoxifying enzymes in both thrips under the two CO2 levels. Elevated CO2 and spinetoram affect the physiological enzyme activity in thrips synergistically, and the activities of analyzed enzymes were generally higher in F. occidentalis than in F. intonsa. CONCLUSION Elevated CO2 amplifies the efficacy of spinetoram on thrips, F. intonsa is more susceptibility to spinetoram than F. occidentalis and the latter showed better adaptation to adverse conditions than the former. © 2021 Society of Chemical Industry.
Collapse
Affiliation(s)
- Zongfang Fan
- State Key Laboratory of Conservation and Utilization of Biological Resources of Yunnan, College of Plant Protection, Yunnan Agricultural University, Kunming, China
| | - Lei Qian
- Institute of Leisure Agriculture, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Yaping Chen
- State Key Laboratory of Conservation and Utilization of Biological Resources of Yunnan, College of Plant Protection, Yunnan Agricultural University, Kunming, China
| | - Rui Fan
- State Key Laboratory of Conservation and Utilization of Biological Resources of Yunnan, College of Plant Protection, Yunnan Agricultural University, Kunming, China
| | - Shuqi He
- State Key Laboratory of Conservation and Utilization of Biological Resources of Yunnan, College of Plant Protection, Yunnan Agricultural University, Kunming, China
| | - Yulin Gao
- State Key Laboratory for Biology of Plant Diseases and Insect Pest, Institute of Plant Protection, Chinese Academy of Agricultural Science, Beijing, China
| | - Furong Gui
- State Key Laboratory of Conservation and Utilization of Biological Resources of Yunnan, College of Plant Protection, Yunnan Agricultural University, Kunming, China
| |
Collapse
|
86
|
Zhang Z, Chen Q, Tan Y, Shuang S, Dai R, Jiang X, Temuer B. Combined Transcriptome and Metabolome Analysis of Alfalfa Response to Thrips Infection. Genes (Basel) 2021; 12:genes12121967. [PMID: 34946916 PMCID: PMC8701657 DOI: 10.3390/genes12121967] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 12/07/2021] [Accepted: 12/07/2021] [Indexed: 11/22/2022] Open
Abstract
Thrips (Thysanoptera: Thripidae) is a major insect pest for alfalfa which can result in decreased plant nutrients, low yields, and even plant death. To identify the differentially expressed genes and metabolites in response to thrips in alfalfa, a combination of metabolomics and transcriptomics was employed using alfalfa (Caoyuan No. 2) with and without thrips infestation. The results showed that the flavonoid biosynthesis and isoflavonoid biosynthesis pathways were the most significantly enriched pathways in response to thrips infection, as shown by the combined transcriptome and metabolome analysis. The transcriptome results showed that SA and JA signal transduction and PAPM-triggered immunity and the MAPK signaling pathway–plant pathways played a crucial role in thrips-induced plant resistance in alfalfa. In addition, we found that thrips infestation could also induce numerous changes in plant primary metabolism, such as carbohydrate and amino acid metabolism as compared to the control. Overall, our results described here should improve fundamental knowledge of molecular responses to herbivore-inducible plant defenses and contribute to the design of strategies against thrips in alfalfa.
Collapse
Affiliation(s)
- Zhiqiang Zhang
- Key Laboratory of Grassland Resources of the Ministry of Education, Technology Engineering Center of Drought and Cold-Resistant Grass Breeding in North of the National Forestry and Grassland Administration, College of Grassland, Resources and Environment, Inner Mongolia Agricultural University, Hohhot 010011, China; (Z.Z.); (Q.C.); (S.S.); (X.J.)
- Key Laboratory of Grassland Resources of the Ministry of Education, College of Grassland, Resources and Environment, Inner Mongolia Agricultural University, Hohhot 010011, China;
| | - Qi Chen
- Key Laboratory of Grassland Resources of the Ministry of Education, Technology Engineering Center of Drought and Cold-Resistant Grass Breeding in North of the National Forestry and Grassland Administration, College of Grassland, Resources and Environment, Inner Mongolia Agricultural University, Hohhot 010011, China; (Z.Z.); (Q.C.); (S.S.); (X.J.)
| | - Yao Tan
- College of Horticulture and Plant Protection, Inner Mongolia Agricultural University, Hohhot 010011, China;
| | - Shuang Shuang
- Key Laboratory of Grassland Resources of the Ministry of Education, Technology Engineering Center of Drought and Cold-Resistant Grass Breeding in North of the National Forestry and Grassland Administration, College of Grassland, Resources and Environment, Inner Mongolia Agricultural University, Hohhot 010011, China; (Z.Z.); (Q.C.); (S.S.); (X.J.)
| | - Rui Dai
- Key Laboratory of Grassland Resources of the Ministry of Education, College of Grassland, Resources and Environment, Inner Mongolia Agricultural University, Hohhot 010011, China;
| | - Xiaohong Jiang
- Key Laboratory of Grassland Resources of the Ministry of Education, Technology Engineering Center of Drought and Cold-Resistant Grass Breeding in North of the National Forestry and Grassland Administration, College of Grassland, Resources and Environment, Inner Mongolia Agricultural University, Hohhot 010011, China; (Z.Z.); (Q.C.); (S.S.); (X.J.)
| | - Buhe Temuer
- Key Laboratory of Grassland Resources of the Ministry of Education, Technology Engineering Center of Drought and Cold-Resistant Grass Breeding in North of the National Forestry and Grassland Administration, College of Grassland, Resources and Environment, Inner Mongolia Agricultural University, Hohhot 010011, China; (Z.Z.); (Q.C.); (S.S.); (X.J.)
- Key Laboratory of Grassland Resources of the Ministry of Education, College of Grassland, Resources and Environment, Inner Mongolia Agricultural University, Hohhot 010011, China;
- Correspondence: ; Tel.: +86-0471-4316259
| |
Collapse
|
87
|
Life Table and Preference Choice of Frankliniella occidentalis (Thysanoptera: Thripidae) for Kidney Bean Plants Treated by Exogenous Calcium. INSECTS 2021; 12:insects12090838. [PMID: 34564278 PMCID: PMC8471031 DOI: 10.3390/insects12090838] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 09/04/2021] [Accepted: 09/13/2021] [Indexed: 12/02/2022]
Abstract
Simple Summary Western flower thrips, Frankliniella occidentalis, is an invasive key pest that damages vegetables and ornamentals worldwide. The activation of induced resistance by chemicals may provide a simple and feasible way of achieving improvement of resistance to stress in crop plants, which is an important technology for the development of sustainable agriculture. Calcium (Ca) is an essential element for plants; numerous studies have shown that Ca can confer crop plants with resistance to abiotic and biotic stresses. For the first time, we report the negative effects of exogenous Ca on kidney bean plants in relation to the performance of F. occidentalis, including a reduced preference of thrips. Therefore, Ca could potentially be used to control F. occidentalis. Abstract Exogenous calcium (Ca) has been used to induce host plant resistance in response to abiotic and biotic stresses, including from thrips attack. The aim of this study was to determine whether exogenously applied Ca affects the performance of Frankliniella occidentalis. We assessed the development time, total longevity, reproduction, and population parameters of F. occidentalis, and its preference choice on Ca-treated or untreated control kidney bean plants under laboratory conditions. The results showed that F. occidentalis fed on Ca-treated leaves had a longer developmental time but lower longevity (female and male) and fecundity than F. occidentalis fed on control leaves. Population parameters, including the intrinsic rate of increase (r), finite rate of increase (λ), and net reproductive rate (R0), were all found higher in control leaves than in Ca-treated leaves, and the mean generation time (T) was shorter. In preference choices, the number of thrips on control plants was higher than the number of thrips on Ca-treated kidney bean plants. Overall, our results indicated that exogenous Ca pretreatment on kidney bean plants affected the life history and preference choice of F. occidentalis, suggesting Ca might be used as a promising elicitor of inducible plant defense against thrips.
Collapse
|
88
|
Complexity and local specificity of the virome associated with tospovirus-transmitting thrips species. J Virol 2021; 95:e0059721. [PMID: 34232724 PMCID: PMC8513489 DOI: 10.1128/jvi.00597-21] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Frankliniella occidentalis (western flower thrips=WFT) and Thrips tabaci (onion thrips=OT) are insect species that greatly impact horticultural crops through direct damage and their efficient vectoring of tomato spotted wilt virus and iris yellow spot virus. In this study we collected thrips of these species from 12 field populations in various regions in Italy. We also included one field population of Neohydatothrips variabilis (soybean thrips=ST) from the U.S.A. Total RNAseq from high-throughput sequencing (HTS) was used to assemble the virome and then we assigned putative viral contigs to each thrips sample by qRT-PCR. Excluding plant and fungal viruses, we were able to identify 61 viral segments, corresponding to 41 viruses: 14 were assigned to WFT, 17 to OT, one from ST and 9 viruses could not be assigned to any species based on our stringent criteria. All these viruses are putative representative of new species (with only the exception of a sobemo-like virus that is 100% identical to a virus recently characterized in ST) and some belong to new higher-ranking taxa. These additions to the viral phylogeny suggest previously undescribed evolutionary niches. Most of the Baltimore's classes of RNA viruses were present (positive- and minus- strand and dsRNA viruses), but only one DNA virus was identified in our collection. Repeated sampling in a subset of locations in 2019 and 2020 and further virus characterization in a subset of four thrips populations maintained in laboratory allowed us to provide evidence of a locally persistent thrips core virome that characterizes each population. IMPORTANCE Harnessing the insect microbiome can result in new approaches to contain their populations or the damage they cause vectoring viruses of medical, veterinary, or agricultural importance. Persistent insect viruses are a neglected component of their microbiota. Here for the first time, we characterize the virome associated with the two model systems for tospovirus-transmitting thrips species, of utmost importance for the direct and indirect damage they cause to a number of different crops. The thrips virome here characterized includes several novel viruses, that in some cases reveal previously undescribed clades. More importantly, some of the viruses we describe are part of a core virome that is specific and consistently present in distinct geographical locations monitored over the years, hinting at a possible mutualistic symbiotic relationship with their host.
Collapse
|
89
|
Wahyuni DSC, Choi YH, Leiss KA, Klinkhamer PGL. Morphological and Chemical Factors Related to Western Flower Thrips Resistance in the Ornamental Gladiolus. PLANTS (BASEL, SWITZERLAND) 2021; 10:1384. [PMID: 34371587 PMCID: PMC8309351 DOI: 10.3390/plants10071384] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 05/27/2021] [Accepted: 05/28/2021] [Indexed: 11/17/2022]
Abstract
Understanding the mechanisms involved in host plant resistance opens the way for improved resistance breeding programs by using the traits involved as markers. Pest management is a major problem in cultivation of ornamentals. Gladiolus (Gladiolus hybridus L.) is an economically important ornamental in the Netherlands. Gladiolus is especially sensitive to attack by western flower thrips (Frankliniella occidentalis (Pergande) (Thysanoptera:Thripidae)). The objective of this study was, therefore, to investigate morphological and chemical markers for resistance breeding to western flower thrips in Gladiolus varieties. We measured thrips damage of 14 Gladiolus varieties in a whole-plant thrips bioassay and related this to morphological traits with a focus on papillae density. Moreover, we studied chemical host plant resistance to using an eco-metabolomic approach comparing the 1H NMR profiles of thrips resistant and susceptible varieties representing a broad range of papillae densities. Thrips damage varied strongly among varieties: the most susceptible variety showed 130 times more damage than the most resistant one. Varieties with low thrips damage had shorter mesophylls and epidermal cells, as well as a higher density of epicuticular papillae. All three traits related to thrips damage were highly correlated with each other. We observed a number of metabolites related to resistance against thrips: two unidentified triterpenoid saponins and the amino acids alanine and threonine. All these compounds were highly correlated amongst each other as well as to the density of papillae. These correlations suggest that papillae are involved in resistance to thrips by producing and/or storing compounds causing thrips resistance. Although it is not possible to distinguish the individual effects of morphological and chemical traits statistically, our results show that papillae density is an easy marker in Gladiolus-breeding programs targeted at increased resistance to thrips.
Collapse
Affiliation(s)
- Dinar S. C. Wahyuni
- Plant Science and Natural Products, Institute of Biology (IBL), Leiden University, Sylviusweg 72, 2333BE Leiden, The Netherlands;
- Pharmacy Department, Faculty Mathematics and Natural Sciences, Universitas Sebelas Maret, Jl. Ir. Sutami 36A, Surakarta 57126, Indonesia
| | - Young Hae Choi
- Natural Products Laboratory, Institute of Biology, Leiden University, Sylviusweg 72, 2333BE Leiden, The Netherlands;
- College of Pharmacy, Kyung Hee University, Seoul 02447, Korea
| | - Kirsten A. Leiss
- Business Unit Horticulture, Wageningen University and Research Center, Postbus 20, 2665ZG Bleiswijk, The Netherlands;
| | - Peter G. L. Klinkhamer
- Plant Science and Natural Products, Institute of Biology (IBL), Leiden University, Sylviusweg 72, 2333BE Leiden, The Netherlands;
| |
Collapse
|
90
|
Mouden S, Leiss KA. Host plant resistance to thrips (Thysanoptera: Thripidae) - current state of art and future research avenues. CURRENT OPINION IN INSECT SCIENCE 2021; 45:28-34. [PMID: 33278641 DOI: 10.1016/j.cois.2020.11.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 11/19/2020] [Accepted: 11/24/2020] [Indexed: 05/27/2023]
Abstract
Integrated Pest Management (IPM) is endorsed as the future standard for crop protection worldwide. This holistic concept integrates preventative and curative measures amongst which host plant resistance (HPR) plays an essential role. Up to now HPR has been a somewhat under-utilized tool in pest management due to widespread use of pesticides and technological hindrance. Thrips are key pests in agriculture and horticulture worldwide. Here we provide an overview on the current status of research on constitutive and induced HPR including thrips-host relationships and thrips as virus vectors. We stress modulation of plant defense responses by abiotic and biotic elicitors to increase HPR and provide an outlook on the increasing potential of HPR inspired by the fast advancement of -omics techniques.
Collapse
Affiliation(s)
- Sanae Mouden
- Wageningen University & Research, Business Unit Horticulture, Violierenweg 1, 2665 MV Bleiswijk, The Netherlands
| | - Kirsten A Leiss
- Wageningen University & Research, Business Unit Horticulture, Violierenweg 1, 2665 MV Bleiswijk, The Netherlands.
| |
Collapse
|
91
|
Gao Y, Zhao Y, Wang D, Yang J, Ding N, Shi S. Effect of Different Plants on the Growth and Reproduction of Thrips flavus (Thysanoptera: Thripidae). INSECTS 2021; 12:insects12060502. [PMID: 34071657 PMCID: PMC8228280 DOI: 10.3390/insects12060502] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Revised: 05/24/2021] [Accepted: 05/26/2021] [Indexed: 11/26/2022]
Abstract
Simple Summary Thrips flavus Schrank (Thysanoptera: Thripidae) is a worldwide phytophagous pest in Palearctic Asian and European countries. T. flavus feeds on a wide spectrum of host plants. Thus, understanding its host plant preferences is important for pest control. We tested the development duration, population parameters, and population growth of T. flavus on five species of plants. The intrinsic rate of increase and fecundity was the highest on Cucumis sativus, followed by Glycine max and Capsicum annuum. However, Solanum melongena and Brassica rapa var. glabra were not suitable host plants. These results help to improve our understanding of the population dynamics of T. flavus and should lead to positive measures to control thrips in the field. Abstract Host plants play an important role in affecting insect development and reproduction. Understanding the host plant preferences is important for pest control. Thrips flavus Schrank (Thysanoptera: Thripidae) is a worldwide phytophagous pest in Palearctic Asian and European countries. We used a life table analysis to study the development duration, population parameters, and population growth of T. flavus on five plant species, including Solanum melongena (Solanaceae), Capsicum annuum (Solanaceae), Glycine max (Leguminosae), Brassica rapa var. glabra (Cruciferae), and Cucumis sativus (Cucurbitaceae). The results showed that T. flavus can survive and reproduce on Cu. sativus and G. max, which were two potentially suitable host plants. T. flavus preferred to oviposit on Cu. sativus with a shorter duration of development (17.8 days) at 25 °C. Therefore, the host plant was an important factor influencing the development and fecundity of T. flavus populations. These results will improve our understanding of the population dynamics of T. flavus and facilitate the development of more scientific and efficient measures to control thrips.
Collapse
Affiliation(s)
- Yu Gao
- College of Plant Protection, Jilin Agricultural University, Changchun 130118, China; (Y.Z.); (D.W.); (N.D.)
- Correspondence: (Y.G.); (S.S.)
| | - Yijin Zhao
- College of Plant Protection, Jilin Agricultural University, Changchun 130118, China; (Y.Z.); (D.W.); (N.D.)
| | - Di Wang
- College of Plant Protection, Jilin Agricultural University, Changchun 130118, China; (Y.Z.); (D.W.); (N.D.)
| | - Jing Yang
- College of Bio-Resource Science, Dankook University, Cheonan 31116, Korea;
| | - Ning Ding
- College of Plant Protection, Jilin Agricultural University, Changchun 130118, China; (Y.Z.); (D.W.); (N.D.)
| | - Shusen Shi
- College of Plant Protection, Jilin Agricultural University, Changchun 130118, China; (Y.Z.); (D.W.); (N.D.)
- Correspondence: (Y.G.); (S.S.)
| |
Collapse
|
92
|
Zeng G, Zhi JR, Zhang CR, Zhang T, Ye JQ, Zhou L, Hu CX, Ye M. Orius similis (Hemiptera: Anthocoridae): A Promising Candidate Predator of Spodoptera frugiperda (Lepidoptera: Noctuidae). JOURNAL OF ECONOMIC ENTOMOLOGY 2021; 114:582-589. [PMID: 33576425 DOI: 10.1093/jee/toaa318] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Indexed: 06/12/2023]
Abstract
The bug Orius similis Zheng is a native generalist predator of insect pests in southern China. The fall armyworm (FAW), Spodoptera frugiperda (J.E. Smith), is a notorious defoliator that is now an economically important insect pest throughout China. To investigate the ability of O. similis to control FAW, we evaluated the predatory capacity, behavior, and functional response of O. similis with respect to FAW and their olfactory response. Both females and males successfully preyed on FAW eggs and first-instar larvae but not on second-instar or older larvae. Adult O. similis only attacked and killed one egg or one larva at a time before sucking the prey, and similar predatory behavior was also observed with regard to FAW egg masses. Both female and male O. similis exhibited type II functional response when preying on FAW eggs and first-instar larvae. Maximum estimated prey consumed per day was 23.7 eggs and 26.2 larvae for adult females and 22.5 eggs and 19.6 larvae for adult males. Moreover, in a Y-tube olfactometer experiment, both female and male O. similis exhibited a significant preference for maize (Zea mays L.) seedlings damaged by FAW over clean air, healthy seedlings, FAW feces, and FAW, suggesting that seedlings damaged by FAW may releases specific volatiles attracting the predator. Collectively, the results of the study suggest that O. similis is a promising candidate for the biological control of FAW eggs and first-instar larvae, particularly given its attraction to FAW-damaged leaves, which may enable it to locate the target prey rapidly.
Collapse
Affiliation(s)
- Guang Zeng
- The Provincial Key Laboratory for Agricultural Pest Management of the Mountainous Region, Institute of Entomology, Guizhou University, Guiyang, Guizhou Province, China
| | - Jun-Rui Zhi
- The Provincial Key Laboratory for Agricultural Pest Management of the Mountainous Region, Institute of Entomology, Guizhou University, Guiyang, Guizhou Province, China
| | - Chang-Rong Zhang
- Institute of Plant Protection, Guizhou Academy of Agricultural Sciences, Guiyang, Guizhou Province, China
| | - Tao Zhang
- The Provincial Key Laboratory for Agricultural Pest Management of the Mountainous Region, Institute of Entomology, Guizhou University, Guiyang, Guizhou Province, China
| | - Jia-Qin Ye
- The Provincial Key Laboratory for Agricultural Pest Management of the Mountainous Region, Institute of Entomology, Guizhou University, Guiyang, Guizhou Province, China
| | - Lei Zhou
- Guizhou Qinnongyuan Agriculture Exploitation Limited Company, Guiyang, Guizhou Province, China
| | - Chao-Xing Hu
- The Provincial Key Laboratory for Agricultural Pest Management of the Mountainous Region, Institute of Entomology, Guizhou University, Guiyang, Guizhou Province, China
| | - Mao Ye
- The Provincial Key Laboratory for Agricultural Pest Management of the Mountainous Region, Institute of Entomology, Guizhou University, Guiyang, Guizhou Province, China
| |
Collapse
|
93
|
Strzyzewski IL, Funderburk JE, Renkema JM, Smith HA. Characterization of Frankliniella occidentalis and Frankliniella bispinosa (Thysanoptera: Thripidae) Injury to Strawberry. JOURNAL OF ECONOMIC ENTOMOLOGY 2021; 114:794-800. [PMID: 33479778 DOI: 10.1093/jee/toaa311] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Indexed: 05/27/2023]
Abstract
Frankliniella flower thrips are pests of numerous fruit and vegetable crops as they feed and reproduce in the flowers and fruits. The invasive Frankliniella occidentalis (Pergande) from the Southwestern United States, an economic pest in Florida since 2005, and the native Frankliniella bispinosa Morgan are both found in Florida strawberries. The objective of this research was to characterize injury to strawberry fruit from these species. Densities of 0, 2, 4, 8, 16, or 32 adult females of each species were caged on a strawberry plant with one flower. The cages were removed after 2, 5, or 10 d, and the number of surviving adults and the number of larvae determined. Injury was quantified on the mature fruit 21 d after thrips were introduced onto the experimental plant. Initial densities as low as two adult F. occidentalis females per flower decreased fruit set and increased cat-facing on the fruits that developed. There were no significant effects on fruit set and cat-facing by any initial density of F. bispinosa. Feeding by thrips on the small, green fruit affected the size and shape of the mature fruit: the diameters were decreased as a linear function of increased feeding by F. bispinosa, and the weights were decreased as a linear function of increased feeding by F. occidentalis. Overall, results showed that F. occidentalis was more damaging to strawberry than F. bispinosa. The differences in pest status between these common flower thrips species in Florida presents challenges to management programs.
Collapse
Affiliation(s)
- Iris L Strzyzewski
- North Florida Research and Education Center, University of Florida, Quincy, FL, USA
| | - Joe E Funderburk
- North Florida Research and Education Center, University of Florida, Quincy, FL, USA
| | - Justin M Renkema
- Gulf Coast Research and Education Center, University of Florida, Wimauma, FL, USA
| | - Hugh A Smith
- Gulf Coast Research and Education Center, University of Florida, Wimauma, FL, USA
| |
Collapse
|
94
|
Nielsen H, Sigsgaard L, Kobro S, Jensen NL, Jacobsen SK. Species Composition of Thrips (Thysanoptera: Thripidae) in Strawberry High Tunnels in Denmark. INSECTS 2021; 12:208. [PMID: 33801241 PMCID: PMC8001524 DOI: 10.3390/insects12030208] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 02/23/2021] [Accepted: 02/24/2021] [Indexed: 11/17/2022]
Abstract
Thrips are a major pest in protected strawberry production. Knowledge of thrips species composition could be instrumental for improved thrips management, but very little is known about which species are present in strawberries grown in high-tunnels in Denmark. Thrips (adults and larvae) were sampled in two strawberry tunnels of the cultivars Murano and Furore from May to August 2018, in the middle and in the edges of the tunnels. The most abundant thrips species found in the tunnels were Frankliniella intonsa and Thrips tabaci adults. Frankliniella intonsa were also the most frequently found species of the immatures sampled, followed by T. tabaci larvae, and other species. The number of thrips differed between the two cultivars, sampling times and location in the tunnel. Frankliniella intonsa was more abundant in the middle of the tunnels, while T. tabaci was more abundant in the edge of the tunnels adjacent to the field margins. The number of thrips peaked by the end of July. Both chemical and biological control should consider species composition and occurrence; hence, a fundamental first step for thrips management is to identify the species present on the target crop.
Collapse
Affiliation(s)
- Helene Nielsen
- Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg C, Denmark; (H.N.); (L.S.)
| | - Lene Sigsgaard
- Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg C, Denmark; (H.N.); (L.S.)
| | - Sverre Kobro
- Norwegian Institute of Bioeconomy, Høgskoleveien 7, 1433 Ås, Norway;
| | | | - Stine K. Jacobsen
- Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg C, Denmark; (H.N.); (L.S.)
| |
Collapse
|
95
|
Li XW, Zhang ZJ, Hafeez M, Huang J, Zhang JM, Wang LK, Lu YB. Rosmarinus officinialis L. (Lamiales: Lamiaceae), a Promising Repellent Plant for Thrips Management. JOURNAL OF ECONOMIC ENTOMOLOGY 2021; 114:131-141. [PMID: 33346361 DOI: 10.1093/jee/toaa288] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Indexed: 05/14/2023]
Abstract
A number of thrips species are among the most significant agricultural pests globally. Use of repellent intercrop plants is one of the key components in plant-based 'push-pull' strategies to manage pest populations. In this study, the behavioral responses of three thrips species, Frankliniella occidentalis (Pergande), Frankliniella intonsa (Trybom), and Thrips palmi Karny (Thysanoptera: Thripidae) to Rosmarinus officinalis were investigated in Y-tube olfactometer bioassays and cage experiments. In addition, the major volatile compounds from rosemary were identified and the effect of the individual compounds on thrips behavior was evaluated. Females and males of the three thrips species were significantly repelled by the volatiles from cut rosemary leaves. The presence of rosemary plants significantly reduced settlement of females of the three thrips species and eggs laid by F. occidentalis females on target host plants. In total, 47 compounds were identified in the volatiles collected from the cut leaves of rosemary plants. The responses of the three thrips species to 10 major volatile compounds showed significant differences. However, α-pinene, the most abundant volatile, was repellent to F. occidentalis and F. intonsa. Eucalyptol, the second most abundant volatile, showed significant repellent activity to all the three thrips species. Our findings showed that rosemary is a promising repellent plant against the three thrips pests we tested, which could be a good candidate for 'push' plants in plant-based 'push-pull' strategies. The identified volatile compounds that accounted for the repellent activity could be developed as repellents for sustainable thrips management.
Collapse
Affiliation(s)
- Xiao-Wei Li
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Zhi-Jun Zhang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Muhammad Hafeez
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Jun Huang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Jin-Ming Zhang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Li-Kun Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | | |
Collapse
|
96
|
Shi P, Guo SK, Gao YF, Chen JC, Gong YJ, Tang MQ, Cao LJ, Li H, Hoffmann AA, Wei SJ. Association Between Susceptibility of Thrips palmi to Spinetoram and Frequency of G275E Mutation Provides Basis for Molecular Quantification of Field-Evolved Resistance. JOURNAL OF ECONOMIC ENTOMOLOGY 2021; 114:339-347. [PMID: 33399196 DOI: 10.1093/jee/toaa314] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Indexed: 06/12/2023]
Abstract
Putative mechanisms underlying spinosyn resistance have been identified in controlled studies on many species; however, mechanisms underlying field-evolved resistance and the development of a molecular diagnostic method for monitoring field resistance have lagged behind. Here, we examined levels of resistance of melon thrips, Thrips palmi Karny (Thysanoptera:Thripidae), to spinetoram as well as target site mutations in field populations across China to identify potential mechanisms and useful molecular markers for diagnostic and quantifying purposes. In resistant populations, we identified the G275E mutation, which has previously been linked to spinosyns resistance, and F314V mutation, both located in the α6 subunit of the nicotinic acetylcholine receptor. There was a strong correlation between levels of spinetoram resistance and allele frequency of G275E mutation in field-collected populations (r2 = 0.84) and those reared under laboratory conditions for two to five generations (r2 = 0.91). LC50 ranged from 0.12 to 0.66 mg/liter in populations without G275E mutation, whereas it ranged from 33.12 to 39.91 mg/liter in most populations with a G275E mutation frequency more than 90%. Our results indicate that the field-evolved resistance of T. palmi to spinetoram in China is mainly conferred by the G275E mutation. The frequency of the G275E mutation provides a useful diagnostic for quantifying resistance levels in field populations of T. palmi.
Collapse
Affiliation(s)
- Pan Shi
- Institute of Plant and Environmental Protection, Beijing Academy of Agricultural and Forestry Sciences, Haidian District, Beijing, China
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, China
| | - Shao-Kun Guo
- Institute of Plant and Environmental Protection, Beijing Academy of Agricultural and Forestry Sciences, Haidian District, Beijing, China
| | - Yong-Fu Gao
- Institute of Plant and Environmental Protection, Beijing Academy of Agricultural and Forestry Sciences, Haidian District, Beijing, China
| | - Jin-Cui Chen
- Institute of Plant and Environmental Protection, Beijing Academy of Agricultural and Forestry Sciences, Haidian District, Beijing, China
| | - Ya-Jun Gong
- Institute of Plant and Environmental Protection, Beijing Academy of Agricultural and Forestry Sciences, Haidian District, Beijing, China
| | - Meng-Qing Tang
- Institute of Plant and Environmental Protection, Beijing Academy of Agricultural and Forestry Sciences, Haidian District, Beijing, China
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, China
| | - Li-Jun Cao
- Institute of Plant and Environmental Protection, Beijing Academy of Agricultural and Forestry Sciences, Haidian District, Beijing, China
| | - Hu Li
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, China
| | - Ary Anthony Hoffmann
- Pest and Environmental Adaptation Research Group, School of BioSciences, Bio21 Institute, University of Melbourne, Parkville, VIC, Australia
| | - Shu-Jun Wei
- Institute of Plant and Environmental Protection, Beijing Academy of Agricultural and Forestry Sciences, Haidian District, Beijing, China
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, China
| |
Collapse
|
97
|
Li XW, Lu XX, Zhang ZJ, Huang J, Zhang JM, Wang LK, Hafeez M, Fernández-Grandon GM, Lu YB. Intercropping Rosemary ( Rosmarinus officinalis) with Sweet Pepper ( Capsicum annum) Reduces Major Pest Population Densities without Impacting Natural Enemy Populations. INSECTS 2021; 12:insects12010074. [PMID: 33467491 PMCID: PMC7830198 DOI: 10.3390/insects12010074] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 01/08/2021] [Accepted: 01/13/2021] [Indexed: 11/16/2022]
Abstract
Intercropping of aromatic plants provides an environmentally benign route to reducing pest damage in agroecosystems. However, the effect of intercropping on natural enemies, another element which may be vital to the success of an integrated pest management approach, varies in different intercropping systems. Rosemary, Rosmarinus officinalis L. (Lamiaceae), has been reported to be repellent to many insect species. In this study, the impact of sweet pepper/rosemary intercropping on pest population suppression was evaluated under greenhouse conditions and the effect of rosemary intercropping on natural enemy population dynamics was investigated. The results showed that intercropping rosemary with sweet pepper significantly reduced the population densities of three major pest species on sweet pepper, Frankliniella intonsa, Myzus persicae, and Bemisia tabaci, but did not affect the population densities of their natural enemies, the predatory bug, Orius sauteri, or parasitoid, Encarsia formosa. Significant pest population suppression with no adverse effect on released natural enemy populations in the sweet pepper/rosemary intercropping system suggests this could be an approach for integrated pest management of greenhouse-cultivated sweet pepper. Our results highlight the potential of the integration of alternative pest control strategies to optimize sustainable pest control.
Collapse
Affiliation(s)
- Xiao-wei Li
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (X.-w.L.); (X.-x.L.); (Z.-j.Z.); (J.H.); (J.-m.Z.); (L.-k.W.); (M.H.)
| | - Xin-xin Lu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (X.-w.L.); (X.-x.L.); (Z.-j.Z.); (J.H.); (J.-m.Z.); (L.-k.W.); (M.H.)
| | - Zhi-jun Zhang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (X.-w.L.); (X.-x.L.); (Z.-j.Z.); (J.H.); (J.-m.Z.); (L.-k.W.); (M.H.)
| | - Jun Huang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (X.-w.L.); (X.-x.L.); (Z.-j.Z.); (J.H.); (J.-m.Z.); (L.-k.W.); (M.H.)
| | - Jin-ming Zhang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (X.-w.L.); (X.-x.L.); (Z.-j.Z.); (J.H.); (J.-m.Z.); (L.-k.W.); (M.H.)
| | - Li-kun Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (X.-w.L.); (X.-x.L.); (Z.-j.Z.); (J.H.); (J.-m.Z.); (L.-k.W.); (M.H.)
| | - Muhammad Hafeez
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (X.-w.L.); (X.-x.L.); (Z.-j.Z.); (J.H.); (J.-m.Z.); (L.-k.W.); (M.H.)
| | | | - Yao-bin Lu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (X.-w.L.); (X.-x.L.); (Z.-j.Z.); (J.H.); (J.-m.Z.); (L.-k.W.); (M.H.)
- Correspondence: ; Tel./Fax: +86-517-8640-4225
| |
Collapse
|
98
|
Kirk WDJ, de Kogel WJ, Koschier EH, Teulon DAJ. Semiochemicals for Thrips and Their Use in Pest Management. ANNUAL REVIEW OF ENTOMOLOGY 2021; 66:101-119. [PMID: 33417819 DOI: 10.1146/annurev-ento-022020-081531] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Thrips (Thysanoptera) are small insects that can cause huge problems in agriculture, horticulture, and forestry through feeding and the transmission of plant viruses. They produce a rich chemical diversity of pheromones and allomones and also respond to a broad range of semiochemicals from plants. These semiochemicals offer many opportunities to develop new approaches to pest management. Aggregation pheromones and plant-derived semiochemicals are already available in commercial products. We review these semiochemicals and consider how we can move away from using them mainly for monitoring to using them for control. We still know very little about the behavioral responses of thrips to semiochemicals, and we show that research in this area is needed to improve the use of semiochemicals in pest management. We also propose that thrips should be used as a model system for semiochemically mediated behaviors of small insects that have limited ability to fly upwind.
Collapse
Affiliation(s)
- William D J Kirk
- Centre for Applied Entomology and Parasitology, School of Life Sciences, Keele University, Newcastle-under-Lyme, Staffordshire ST5 5BG, United Kingdom;
| | | | - Elisabeth H Koschier
- Department of Crop Sciences, University of Natural Resources and Life Sciences, 1180 Vienna, Austria;
| | - David A J Teulon
- New Zealand Institute for Plant & Food Research, Ltd., Christchurch 8140, New Zealand;
| |
Collapse
|
99
|
Mouden S, Bac-Molenaar JA, Kappers IF, Beerling EAM, Leiss KA. Elicitor Application in Strawberry Results in Long-Term Increase of Plant Resilience Without Yield Loss. FRONTIERS IN PLANT SCIENCE 2021; 12:695908. [PMID: 34276745 PMCID: PMC8282209 DOI: 10.3389/fpls.2021.695908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 06/07/2021] [Indexed: 05/13/2023]
Abstract
For a first step integrating elicitor applications into the current IPM strategy increasing plant resilience against pests, we investigated repeated elicitor treatments in a strawberry everbearer nursery and cropping cycle under glass. During nursery methyl-jasmonate (MeJA), testing induction of defenses with plant bioassays was applied every 3 weeks. Thrips damage and reproduction by spider mites, whitefly and aphids were strongly reduced upon elicitor treatment. Subsequently, we applied MeJA every 3 weeks or based on scouting pests during a whole cropping cycle. Thrips leaf bioassays and LC-MS leaf metabolomics were applied to investigate the induction of defenses. Leaf damage by thrips was lower for both MeJA application schemes compared to the control except for the last weeks. While elicitor treatments after scouting also reduced damage, its effect did not last. Thrips damage decreased from vegetative to mature plants during the cropping cycle. At the end of the nursery phase, plants in the elicitor treatment were smaller. Surprisingly, growth during production was not affected by MeJA application, as were fruit yield and quality. LC-MS leaf metabolomics showed strong induction of vegetative plants decreasing during the maturation of plants toward the end of cultivation. Concurrently, no increase in the JA-inducible marker PPO was observed when measured toward the end of cultivation. Mostly flavonoid and phenolic glycosides known as plant defense compounds were induced upon MeJA application. While induced defense decreased with the maturation of plants, constitutive defense increased as measured in the leaf metabolome of control plants. Our data propose that young, relatively small plant stages lack constitutive defense necessitating an active JA defense response. As plants, mature constitutive defense metabolites seem to accumulate, providing a higher level of basal resistance. Our results have important implications for but are not limited to strawberry cultivation. We demonstrated that repeated elicitor application could be deployed as part of an integrated approach for sustainable crop protection by vertical integration with other management tactics and horizontal integration to control multiple pests concurrently. This approach forms a promising potential for long-term crop protection in greenhouses.
Collapse
Affiliation(s)
- Sanae Mouden
- Plant Health Team, Business Unit Greenhouse Horticulture, Plant Science Group, Wageningen University and Research, Wageningen, Netherlands
| | - Johanna A. Bac-Molenaar
- Plant Health Team, Business Unit Greenhouse Horticulture, Plant Science Group, Wageningen University and Research, Wageningen, Netherlands
- *Correspondence: Johanna A. Bac-Molenaar
| | - Iris F. Kappers
- Laboratory of Plant Physiology, Plant Science Group, Wageningen University, Wageningen, Netherlands
| | - Ellen A. M. Beerling
- Plant Health Team, Business Unit Greenhouse Horticulture, Plant Science Group, Wageningen University and Research, Wageningen, Netherlands
| | - Kirsten A. Leiss
- Plant Health Team, Business Unit Greenhouse Horticulture, Plant Science Group, Wageningen University and Research, Wageningen, Netherlands
| |
Collapse
|
100
|
Lucia A, Guzmán E. Emulsions containing essential oils, their components or volatile semiochemicals as promising tools for insect pest and pathogen management. Adv Colloid Interface Sci 2021; 287:102330. [PMID: 33302055 DOI: 10.1016/j.cis.2020.102330] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Revised: 11/20/2020] [Accepted: 11/21/2020] [Indexed: 12/18/2022]
Abstract
Most of the traditional strategies used for facing the management of insect pest and diseases have started to fail due to different toxicological issues such as the resistance of target organism and the impact on environment and human health. This has made mandatory to seek new effective strategies, which minimize the risks and hazards without compromising the effectiveness of the products. The use of essential oils, their components and semiochemicals (pheromones and allelochemicals) has become a promising safe and eco-sustainable alternative for controlling insect pest and pathogens. However, the practical applications of this type of molecules remain rather limited because their high volatility, poor solubility in water and low chemical stability. Therefore, it is required to design strategies enabling their use without any alteration of their biological and chemical properties. Oil-in-water nano/microemulsions are currently considered as promising tools for taking advantage of the bioactivity of essential oils and their components against insects and other pathogens. Furthermore, these colloidal systems also allows the encapsulation and controlled release of semiochemicals, which enables their use in traps for monitoring, trapping or mating disruption of insects, and in push-pull strategies for their behavioral manipulation. This has been possible because the use of nano/microemulsions allows combining the protection provided by the hydrophobic environment created within the droplets with the enhanced dispersion of the molecules in an aqueous environment, which favors the handling of the bioactive molecules, and limits their degradation, without any detrimental effect over their biological activity. This review analyzes some of the most recent advances on the use of emulsion-like dispersions as a tool for controlling insect pest and pathogens. It is worth noting that even though the current physico-chemical knowledge about these systems is relatively poor, a deeper study of the physico-chemical aspects of nanoemulsions/microemulsions containing essential oils, their components or semiochemicals, may help for developing most effective formulations, enabling the generalization of their use.
Collapse
|