51
|
Scott DC, Hammill JT, Min J, Rhee DY, Connelly M, Sviderskiy VO, Bhasin D, Chen Y, Ong SS, Chai SC, Goktug AN, Huang G, Monda JK, Low J, Kim HS, Paulo JA, Cannon JR, Shelat AA, Chen T, Kelsall IR, Alpi AF, Pagala V, Wang X, Peng J, Singh B, Harper JW, Schulman BA, Guy RK. Blocking an N-terminal acetylation-dependent protein interaction inhibits an E3 ligase. Nat Chem Biol 2017; 13:850-857. [PMID: 28581483 PMCID: PMC5577376 DOI: 10.1038/nchembio.2386] [Citation(s) in RCA: 79] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Accepted: 04/07/2017] [Indexed: 12/25/2022]
Abstract
N-terminal acetylation is an abundant modification influencing protein functions. Since ≈80% of mammalian cytosolic proteins are N-terminally acetylated, this potentially represents an untapped target for chemical control of their functions. Structural studies have revealed that, like lysine acetylation, N-terminal acetylation converts a positively charged amine into a hydrophobic handle that mediates protein interactions, suggesting it may be a druggable target. We report the development of chemical probes targeting the N-terminal acetylation-dependent interaction between an E2 conjugating enzyme (UBE2M, aka UBC12) and DCN1 (aka DCUN1D1), a subunit of a multiprotein E3 ligase for the ubiquitin-like protein NEDD8. The inhibitors are highly selective with respect to other protein acetyl amide binding sites, inhibit NEDD8 ligation in vitro and in cells, and suppress the anchorage-independent growth of a cell line harboring DCN1 amplification. Overall, the data demonstrate that N-terminal acetyl-dependent protein interactions are druggable targets, and provide insights into targeting multiprotein E2–E3 ligases.
Collapse
Affiliation(s)
- Daniel C Scott
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, Tennessee, USA.,Howard Hughes Medical Institute, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Jared T Hammill
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Jaeki Min
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - David Y Rhee
- Department of Cell Biology, Harvard Medical School, Boston, Massachusetts, USA
| | - Michele Connelly
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Vladislav O Sviderskiy
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Deepak Bhasin
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Yizhe Chen
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Su-Sien Ong
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Sergio C Chai
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Asli N Goktug
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Guochang Huang
- Laboratory of Epithelial Cancer Biology, Memorial Sloan-Kettering Cancer Center, New York, New York, USA
| | - Julie K Monda
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Jonathan Low
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Ho Shin Kim
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Joao A Paulo
- Department of Cell Biology, Harvard Medical School, Boston, Massachusetts, USA
| | - Joe R Cannon
- Department of Cell Biology, Harvard Medical School, Boston, Massachusetts, USA
| | - Anang A Shelat
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Taosheng Chen
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Ian R Kelsall
- MRC Protein Phosphorylation and Ubiquitylation Unit, University of Dundee, Dundee, UK
| | - Arno F Alpi
- Department of Molecular Machines and Signaling, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Vishwajeeth Pagala
- St. Jude Proteomics Facility, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Xusheng Wang
- St. Jude Proteomics Facility, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Junmin Peng
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, Tennessee, USA.,St. Jude Proteomics Facility, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Bhuvanesh Singh
- Laboratory of Epithelial Cancer Biology, Memorial Sloan-Kettering Cancer Center, New York, New York, USA
| | - J Wade Harper
- Department of Cell Biology, Harvard Medical School, Boston, Massachusetts, USA
| | - Brenda A Schulman
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, Tennessee, USA.,Howard Hughes Medical Institute, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - R Kip Guy
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| |
Collapse
|
52
|
Spillman NJ, Beck JR, Ganesan SM, Niles JC, Goldberg DE. The chaperonin TRiC forms an oligomeric complex in the malaria parasite cytosol. Cell Microbiol 2017; 19. [PMID: 28067475 DOI: 10.1111/cmi.12719] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Revised: 12/21/2016] [Accepted: 01/04/2017] [Indexed: 02/06/2023]
Abstract
The malaria parasite exports numerous proteins into its host red blood cell (RBC). The trafficking of these exported effectors is complex. Proteins are first routed through the secretory system, into the parasitophorous vacuole (PV), a membranous compartment enclosing the parasite. Proteins are then translocated across the PV membrane in a process requiring ATP and unfolding. Once in the RBC compartment the exported proteins are then refolded and further trafficked to their final localizations. Chaperones are important in the unfolding and refolding processes. Recently, it was suggested that the parasite TRiC chaperonin complex is exported, and that it is involved in trafficking of exported effectors. Using a parasite-specific antibody and epitope-tagged transgenic parasites we could observe no export of Plasmodium TRiC into the RBC. We tested the importance of the parasite TRiC by creating a regulatable knockdown line of the TRiC-θ subunit. Loss of the parasite TRiC-θ led to a severe growth defect in asexual development, but did not alter protein export into the RBC. These observations indicate that the TRiC proteins play a critical role in parasite biology, though their function, within the parasite, appears unrelated to protein trafficking in the RBC compartment.
Collapse
Affiliation(s)
- Natalie J Spillman
- Departments of Medicine and Molecular Microbiology, Washington University School of Medicine, Saint Louis, Missouri, 63110, USA
| | - Josh R Beck
- Departments of Medicine and Molecular Microbiology, Washington University School of Medicine, Saint Louis, Missouri, 63110, USA
| | - Suresh M Ganesan
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, 02139, USA
| | - Jacquin C Niles
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, 02139, USA
| | - Daniel E Goldberg
- Departments of Medicine and Molecular Microbiology, Washington University School of Medicine, Saint Louis, Missouri, 63110, USA
| |
Collapse
|
53
|
Malaria: Biology and Disease. Cell 2016; 167:610-624. [PMID: 27768886 DOI: 10.1016/j.cell.2016.07.055] [Citation(s) in RCA: 501] [Impact Index Per Article: 55.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Revised: 07/17/2016] [Accepted: 07/29/2016] [Indexed: 11/22/2022]
Abstract
Malaria has been a major global health problem of humans through history and is a leading cause of death and disease across many tropical and subtropical countries. Over the last fifteen years renewed efforts at control have reduced the prevalence of malaria by over half, raising the prospect that elimination and perhaps eradication may be a long-term possibility. Achievement of this goal requires the development of new tools including novel antimalarial drugs and more efficacious vaccines as well as an increased understanding of the disease and biology of the parasite. This has catalyzed a major effort resulting in development and regulatory approval of the first vaccine against malaria (RTS,S/AS01) as well as identification of novel drug targets and antimalarial compounds, some of which are in human clinical trials.
Collapse
|
54
|
Chan JA, Howell KB, Langer C, Maier AG, Hasang W, Rogerson SJ, Petter M, Chesson J, Stanisic DI, Duffy MF, Cooke BM, Siba PM, Mueller I, Bull PC, Marsh K, Fowkes FJI, Beeson JG. A single point in protein trafficking by Plasmodium falciparum determines the expression of major antigens on the surface of infected erythrocytes targeted by human antibodies. Cell Mol Life Sci 2016; 73:4141-58. [PMID: 27193441 PMCID: PMC5042999 DOI: 10.1007/s00018-016-2267-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Revised: 04/22/2016] [Accepted: 05/06/2016] [Indexed: 11/30/2022]
Abstract
Antibodies to blood-stage antigens of Plasmodium falciparum play a pivotal role in human immunity to malaria. During parasite development, multiple proteins are trafficked from the intracellular parasite to the surface of P. falciparum-infected erythrocytes (IEs). However, the relative importance of different proteins as targets of acquired antibodies, and key pathways involved in trafficking major antigens remain to be clearly defined. We quantified antibodies to surface antigens among children, adults, and pregnant women from different malaria-exposed regions. We quantified the importance of antigens as antibody targets using genetically engineered P. falciparum with modified surface antigen expression. Genetic deletion of the trafficking protein skeleton-binding protein-1 (SBP1), which is involved in trafficking the surface antigen PfEMP1, led to a dramatic reduction in antibody recognition of IEs and the ability of human antibodies to promote opsonic phagocytosis of IEs, a key mechanism of parasite clearance. The great majority of antibody epitopes on the IE surface were SBP1-dependent. This was demonstrated using parasite isolates with different genetic or phenotypic backgrounds, and among antibodies from children, adults, and pregnant women in different populations. Comparisons of antibody reactivity to parasite isolates with SBP1 deletion or inhibited PfEMP1 expression suggest that PfEMP1 is the dominant target of acquired human antibodies, and that other P. falciparum IE surface proteins are minor targets. These results establish SBP1 as part of a critical pathway for the trafficking of major surface antigens targeted by human immunity, and have key implications for vaccine development, and quantifying immunity in populations.
Collapse
Affiliation(s)
- Jo-Anne Chan
- Burnet Institute for Medical Research and Public Health, 85 Commercial Road, Melbourne, VIC, 3001, Australia
- Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
- Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia
| | - Katherine B Howell
- Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
| | - Christine Langer
- Burnet Institute for Medical Research and Public Health, 85 Commercial Road, Melbourne, VIC, 3001, Australia
| | - Alexander G Maier
- Research School of Biology, Australian National University, Canberra, ACT, Australia
| | - Wina Hasang
- Department of Medicine, University of Melbourne, Parkville, VIC, Australia
| | - Stephen J Rogerson
- Department of Medicine, University of Melbourne, Parkville, VIC, Australia
| | - Michaela Petter
- Department of Medicine, University of Melbourne, Parkville, VIC, Australia
| | - Joanne Chesson
- Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
| | | | - Michael F Duffy
- Department of Medicine, University of Melbourne, Parkville, VIC, Australia
| | - Brian M Cooke
- Programs in Infection and Immunity and Cardiovascular Disease, Monash Biomedicine Discovery Institute, Monash University, Melbourne, VIC, Australia
- Department of Microbiology, Monash University, Melbourne, VIC, Australia
| | - Peter M Siba
- Papua New Guinea Institute of Medical Research, Madang, Papua New Guinea
| | - Ivo Mueller
- Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
| | - Peter C Bull
- Centre for Geographic Medicine Research, Coast, Kenya Medical Research Institute, Kilifi, Kenya
| | - Kevin Marsh
- Centre for Geographic Medicine Research, Coast, Kenya Medical Research Institute, Kilifi, Kenya
| | - Freya J I Fowkes
- Burnet Institute for Medical Research and Public Health, 85 Commercial Road, Melbourne, VIC, 3001, Australia
- Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
- Melbourne School of Public Health, University of Melbourne, Parkville, VIC, Australia
- Department of Epidemiology and Preventive Medicine and Department of Infectious Diseases, Monash University, Melbourne, VIC, Australia
| | - James G Beeson
- Burnet Institute for Medical Research and Public Health, 85 Commercial Road, Melbourne, VIC, 3001, Australia.
- Department of Medicine, University of Melbourne, Parkville, VIC, Australia.
- Department of Microbiology, Monash University, Melbourne, VIC, Australia.
| |
Collapse
|
55
|
Davies HM, Thalassinos K, Osborne AR. Expansion of Lysine-rich Repeats in Plasmodium Proteins Generates Novel Localization Sequences That Target the Periphery of the Host Erythrocyte. J Biol Chem 2016; 291:26188-26207. [PMID: 27777305 PMCID: PMC5207086 DOI: 10.1074/jbc.m116.761213] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2016] [Indexed: 01/05/2023] Open
Abstract
Repetitive low complexity sequences, mostly assumed to have no function, are common in proteins that are exported by the malaria parasite into its host erythrocyte. We identify a group of exported proteins containing short lysine-rich tandemly repeated sequences that are sufficient to localize to the erythrocyte periphery, where key virulence-related modifications to the plasma membrane and the underlying cytoskeleton are known to occur. Efficiency of targeting is dependent on repeat number, indicating that novel targeting modules could evolve by expansion of short lysine-rich sequences. Indeed, analysis of fragments of GARP from different species shows that two novel targeting sequences have arisen via the process of repeat expansion in this protein. In the protein Hyp12, the targeting function of a lysine-rich sequence is masked by a neighboring repetitive acidic sequence, further highlighting the importance of repetitive low complexity sequences. We show that sequences capable of targeting the erythrocyte periphery are present in at least nine proteins from Plasmodium falciparum and one from Plasmodium knowlesi. We find these sequences in proteins known to be involved in erythrocyte rigidification and cytoadhesion as well as in previously uncharacterized exported proteins. Together, these data suggest that expansion and contraction of lysine-rich repeats could generate targeting sequences de novo as well as modulate protein targeting efficiency and function in response to selective pressure.
Collapse
Affiliation(s)
- Heledd M Davies
- From the Institute of Structural and Molecular Biology, Department of Biological Sciences, Birkbeck and University College London, London WC1E 6BT, United Kingdom
| | - Konstantinos Thalassinos
- From the Institute of Structural and Molecular Biology, Department of Biological Sciences, Birkbeck and University College London, London WC1E 6BT, United Kingdom
| | - Andrew R Osborne
- From the Institute of Structural and Molecular Biology, Department of Biological Sciences, Birkbeck and University College London, London WC1E 6BT, United Kingdom
| |
Collapse
|
56
|
Exported Epoxide Hydrolases Modulate Erythrocyte Vasoactive Lipids during Plasmodium falciparum Infection. mBio 2016; 7:mBio.01538-16. [PMID: 27795395 PMCID: PMC5082902 DOI: 10.1128/mbio.01538-16] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Erythrocytes are reservoirs of important epoxide-containing lipid signaling molecules, including epoxyeicosatrienoic acids (EETs). EETs function as vasodilators and anti-inflammatory modulators in the bloodstream. Bioactive EETs are hydrolyzed to less active diols (dihydroxyeicosatrienoic acids) by epoxide hydrolases (EHs). The malaria parasite Plasmodium falciparum infects host red blood cells (RBCs) and exports hundreds of proteins into the RBC compartment. In this study, we show that two parasite epoxide hydrolases, P. falciparum epoxide hydrolases 1 (PfEH1) and 2 (PfEH2), both with noncanonical serine nucleophiles, are exported to the periphery of infected RBCs. PfEH1 and PfEH2 were successfully expressed in Escherichia coli, and they hydrolyzed physiologically relevant erythrocyte EETs. Mutations in active site residues of PfEH1 ablated the ability of the enzyme to hydrolyze an epoxide substrate. Overexpression of PfEH1 or PfEH2 in parasite-infected RBCs resulted in a significant alteration in the epoxide fatty acids stored in RBC phospholipids. We hypothesize that the parasite disruption of epoxide-containing signaling lipids leads to perturbed vascular function, creating favorable conditions for binding and sequestration of infected RBCs to the microvascular endothelium. The malaria parasite exports hundreds of proteins into the erythrocyte compartment. However, for most of these proteins, their physiological function is unknown. In this study, we investigate two “hypothetical” proteins of the α/β-hydrolase fold family that share sequence similarity with epoxide hydrolases (EHs)—enzymes that destroy bioactive epoxides. Altering EH expression in parasite-infected erythrocytes resulted in a significant change in the epoxide fatty acids stored in the host cell. We propose that these EH enzymes may help the parasite to manipulate host blood vessel opening and inflame the vessel walls as they pass through the circulation system. Understanding how the malaria parasite interacts with its host RBCs will aid in our ability to combat this deadly disease.
Collapse
|
57
|
Plasmodium Helical Interspersed Subtelomeric (PHIST) Proteins, at the Center of Host Cell Remodeling. Microbiol Mol Biol Rev 2016; 80:905-27. [PMID: 27582258 DOI: 10.1128/mmbr.00014-16] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
During the asexual cycle, Plasmodium falciparum extensively remodels the human erythrocyte to make it a suitable host cell. A large number of exported proteins facilitate this remodeling process, which causes erythrocytes to become more rigid, cytoadherent, and permeable for nutrients and metabolic products. Among the exported proteins, a family of 89 proteins, called the Plasmodium helical interspersed subtelomeric (PHIST) protein family, has been identified. While also found in other Plasmodium species, the PHIST family is greatly expanded in P. falciparum. Although a decade has passed since their first description, to date, most PHIST proteins remain uncharacterized and are of unknown function and localization within the host cell, and there are few data on their interactions with other host or parasite proteins. However, over the past few years, PHIST proteins have been mentioned in the literature at an increasing rate owing to their presence at various localizations within the infected erythrocyte. Expression of PHIST proteins has been implicated in molecular and cellular processes such as the surface display of PfEMP1, gametocytogenesis, changes in cell rigidity, and also cerebral and pregnancy-associated malaria. Thus, we conclude that PHIST proteins are central to host cell remodeling, but despite their obvious importance in pathology, PHIST proteins seem to be understudied. Here we review current knowledge, shed light on the definition of PHIST proteins, and discuss these proteins with respect to their localization and probable function. We take into consideration interaction studies, microarray analyses, or data from blood samples from naturally infected patients to combine all available information on this protein family.
Collapse
|
58
|
Understanding the structural basis of substrate recognition by Plasmodium falciparum plasmepsin V to aid in the design of potent inhibitors. Sci Rep 2016; 6:31420. [PMID: 27531685 PMCID: PMC4987639 DOI: 10.1038/srep31420] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Accepted: 07/20/2016] [Indexed: 11/16/2022] Open
Abstract
Plasmodium falciparum plasmepsin V (PfPMV) is an essential aspartic protease required for parasite survival, thus, considered as a potential drug target. This study reports the first detailed structural analysis and molecular dynamics simulation of PfPMV as an apoenzyme and its complexes with the substrate PEXEL as well as with the inhibitor saquinavir. The presence of pro-peptide in PfPMV may not structurally hinder the formation of a functionally competent catalytic active site. The structure of PfPMV-PEXEL complex shows that the unique positions of Glu179 and Gln222 are responsible for providing the specificity of PEXEL substrate with arginine at P3 position. The structural analysis also reveals that the S4 binding pocket in PfPMV is occupied by Ile94, Ala98, Phe370 and Tyr472, and therefore, does not allow binding of pepstatin, a potent inhibitor of most pepsin-like aspartic proteases. Among the screened inhibitors, the HIV-1 protease inhibitors and KNI compounds have higher binding affinities for PfPMV with saquinavir having the highest value. The presence of a flexible group at P2 and a bulky hydrophobic group at P3 position of the inhibitor is preferred in the PfPMV substrate binding pocket. Results from the present study will aid in the design of potent inhibitors of PMV.
Collapse
|
59
|
Gilson PR, Chisholm SA, Crabb BS, de Koning-Ward TF. Host cell remodelling in malaria parasites: a new pool of potential drug targets. Int J Parasitol 2016; 47:119-127. [PMID: 27368610 DOI: 10.1016/j.ijpara.2016.06.001] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Revised: 06/02/2016] [Accepted: 06/04/2016] [Indexed: 12/01/2022]
Abstract
When in their human hosts, malaria parasites spend most of their time housed within vacuoles inside erythrocytes and hepatocytes. The parasites extensively modify their host cells to obtain nutrients, prevent host cell breakdown and avoid the immune system. To perform these modifications, malaria parasites export hundreds of effector proteins into their host cells and this process is best understood in the most lethal species to infect humans, Plasmodium falciparum. The effector proteins are synthesized within the parasite and following a proteolytic cleavage event in the endoplasmic reticulum and sorting of mature proteins into the correct vesicular trafficking pathway, they are transported to the parasite surface and released into the vacuole. The effector proteins are then unfolded before extrusion across the vacuole membrane by a unique translocon complex called Plasmodium translocon of exported proteins. After gaining access to the erythrocyte cytoplasm many effector proteins continue their journey to the erythrocyte surface by utilising various membranous structures established by the parasite. This complex trafficking pathway and a large number of the effector proteins are unique to Plasmodium parasites. This pathway could, therefore, be developed as new drug targets given that protein export and the functional role of these proteins are essential for parasite survival. This review explores known and potential drug targetable steps in the protein export pathway and strategies for discovering novel drug targets.
Collapse
Affiliation(s)
- Paul R Gilson
- Burnet Institute, Melbourne, Victoria, Australia; Monash University, Melbourne, Victoria, Australia.
| | | | - Brendan S Crabb
- Burnet Institute, Melbourne, Victoria, Australia; Monash University, Melbourne, Victoria, Australia; University of Melbourne, Melbourne, Victoria, Australia
| | | |
Collapse
|
60
|
Mesén-Ramírez P, Reinsch F, Blancke Soares A, Bergmann B, Ullrich AK, Tenzer S, Spielmann T. Stable Translocation Intermediates Jam Global Protein Export in Plasmodium falciparum Parasites and Link the PTEX Component EXP2 with Translocation Activity. PLoS Pathog 2016; 12:e1005618. [PMID: 27168322 PMCID: PMC4864081 DOI: 10.1371/journal.ppat.1005618] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2015] [Accepted: 04/17/2016] [Indexed: 11/25/2022] Open
Abstract
Protein export is central for the survival and virulence of intracellular P. falciparum blood stage parasites. To reach the host cell, exported proteins cross the parasite plasma membrane (PPM) and the parasite-enclosing parasitophorous vacuole membrane (PVM), a process that requires unfolding, suggestive of protein translocation. Components of a proposed translocon at the PVM termed PTEX are essential in this phase of export but translocation activity has not been shown for the complex and questions have been raised about its proposed membrane pore component EXP2 for which no functional data is available in P. falciparum. It is also unclear how PTEX mediates trafficking of both, soluble as well as transmembrane proteins. Taking advantage of conditionally foldable domains, we here dissected the translocation events in the parasite periphery, showing that two successive translocation steps are needed for the export of transmembrane proteins, one at the PPM and one at the PVM. Our data provide evidence that, depending on the length of the C-terminus of the exported substrate, these steps occur by transient interaction of the PPM and PVM translocon, similar to the situation for protein transport across the mitochondrial membranes. Remarkably, we obtained constructs of exported proteins that remained arrested in the process of being translocated across the PVM. This clogged the translocation pore, prevented the export of all types of exported proteins and, as a result, inhibited parasite growth. The substrates stuck in translocation were found in a complex with the proposed PTEX membrane pore component EXP2, suggesting a role of this protein in translocation. These data for the first time provide evidence for EXP2 to be part of a translocating entity, suggesting that PTEX has translocation activity and provide a mechanistic framework for the transport of soluble as well as transmembrane proteins from the parasite boundary into the host cell. P. falciparum parasites, the deadliest agent of human malaria, develop within erythrocytes where they are surrounded by a parasitophorous vacuolar membrane (PVM). To ensure intracellular survival, the parasite exports a large repertoire of proteins into the host cell. Exported proteins require unfolding for trafficking across the membrane boundaries separating the parasite from the erythrocyte, typical for transport by protein translocating membrane channels. Here, we dissected the sequence of translocation events at the parasite boundary using substrates that can be conditionally arrested at translocation steps. We for the first time obtained exported proteins arrested in the process of being translocated across the PVM. This jammed the translocons for all other types of exported proteins and inhibited parasite growth. The constructs stuck in translocation were in a complex with EXP2, a component of a complex known to be essential for protein export that is termed PTEX. Our work links the need for unfolding and the function of this complex in export, giving experimental evidence that PTEX indeed is a translocon. Conditionally unfoldable domains have been instrumental in unravelling transport processes across membranes and here resolve the transport steps the different kinds of exported proteins require to reach the P. falciparum-infected host cell.
Collapse
Affiliation(s)
- Paolo Mesén-Ramírez
- Bernhard Nocht Institute for Tropical Medicine, Parasitology section, Hamburg, Germany
| | - Ferdinand Reinsch
- Bernhard Nocht Institute for Tropical Medicine, Parasitology section, Hamburg, Germany
| | | | - Bärbel Bergmann
- Bernhard Nocht Institute for Tropical Medicine, Parasitology section, Hamburg, Germany
| | - Ann-Katrin Ullrich
- Bernhard Nocht Institute for Tropical Medicine, Parasitology section, Hamburg, Germany
| | - Stefan Tenzer
- Institute for Immunology, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Tobias Spielmann
- Bernhard Nocht Institute for Tropical Medicine, Parasitology section, Hamburg, Germany
- * E-mail:
| |
Collapse
|
61
|
Moreira CK, Naissant B, Coppi A, Bennett BL, Aime E, Franke-Fayard B, Janse CJ, Coppens I, Sinnis P, Templeton TJ. The Plasmodium PHIST and RESA-Like Protein Families of Human and Rodent Malaria Parasites. PLoS One 2016; 11:e0152510. [PMID: 27022937 PMCID: PMC4811531 DOI: 10.1371/journal.pone.0152510] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2014] [Accepted: 03/15/2016] [Indexed: 11/19/2022] Open
Abstract
The phist gene family has members identified across the Plasmodium genus, defined by the presence of a domain of roughly 150 amino acids having conserved aromatic residues and an all alpha-helical structure. The family is highly amplified in P. falciparum, with 65 predicted genes in the genome of the 3D7 isolate. In contrast, in the rodent malaria parasite P. berghei 3 genes are identified, one of which is an apparent pseudogene. Transcripts of the P. berghei phist genes are predominant in schizonts, whereas in P. falciparum transcript profiles span different asexual blood stages and gametocytes. We pursued targeted disruption of P. berghei phist genes in order to characterize a simplistic model for the expanded phist gene repertoire in P. falciparum. Unsuccessful attempts to disrupt P. berghei PBANKA_114540 suggest that this phist gene is essential, while knockout of phist PBANKA_122900 shows an apparent normal progression and non-essential function throughout the life cycle. Epitope-tagging of P. falciparum and P. berghei phist genes confirmed protein export to the erythrocyte cytoplasm and localization with a punctate pattern. Three P. berghei PEXEL/HT-positive exported proteins exhibit at least partial co-localization, in support of a common vesicular compartment in the cytoplasm of erythrocytes infected with rodent malaria parasites.
Collapse
Affiliation(s)
- Cristina K. Moreira
- Department of Microbiology and Immunology, Weill Cornell Medical College, New York, NY 10021, United States of America
| | - Bernina Naissant
- Department of Microbiology and Immunology, Weill Cornell Medical College, New York, NY 10021, United States of America
| | - Alida Coppi
- Department of Medical Parasitology, NYU School of Medicine, New York, NY, 10010, United States of America
| | - Brandy L. Bennett
- Department of Medical Parasitology, NYU School of Medicine, New York, NY, 10010, United States of America
| | - Elena Aime
- Leiden Malaria Research Group, Department of Parasitology, Leiden University Medical Centre, Leiden, The Netherlands
| | - Blandine Franke-Fayard
- Leiden Malaria Research Group, Department of Parasitology, Leiden University Medical Centre, Leiden, The Netherlands
| | - Chris J. Janse
- Leiden Malaria Research Group, Department of Parasitology, Leiden University Medical Centre, Leiden, The Netherlands
| | - Isabelle Coppens
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, 21205, United States of America
| | - Photini Sinnis
- Department of Medical Parasitology, NYU School of Medicine, New York, NY, 10010, United States of America
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, 21205, United States of America
| | - Thomas J. Templeton
- Department of Microbiology and Immunology, Weill Cornell Medical College, New York, NY 10021, United States of America
- Department of Protozoology, Institute of Tropical Medicine (NEKKEN), Nagasaki 852-8523, Japan
- * E-mail:
| |
Collapse
|
62
|
Mata-Cantero L, Azkargorta M, Aillet F, Xolalpa W, LaFuente MJ, Elortza F, Carvalho AS, Martin-Plaza J, Matthiesen R, Rodriguez MS. New insights into host-parasite ubiquitin proteome dynamics in P. falciparum infected red blood cells using a TUBEs-MS approach. J Proteomics 2016; 139:45-59. [PMID: 26972027 DOI: 10.1016/j.jprot.2016.03.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Revised: 02/11/2016] [Accepted: 03/02/2016] [Indexed: 02/06/2023]
Abstract
UNLABELLED Malaria, caused by Plasmodium falciparum (P. falciparum), ranks as one of the most baleful infectious diseases worldwide. New antimalarial treatments are needed to face existing or emerging drug resistant strains. Protein degradation appears to play a significant role during the asexual intraerythrocytic developmental cycle (IDC) of P. falciparum. Inhibition of the ubiquitin proteasome system (UPS), a major intracellular proteolytic pathway, effectively reduces infection and parasite replication. P. falciparum and erythrocyte UPS coexist during IDC but the nature of their relationship is largely unknown. We used an approach based on Tandem Ubiquitin-Binding Entities (TUBEs) and 1D gel electrophoresis followed by mass spectrometry to identify major components of the TUBEs-associated ubiquitin proteome of both host and parasite during ring, trophozoite and schizont stages. Ring-exported protein (REX1), a P. falciparum protein located in Maurer's clefts and important for parasite nutrient import, was found to reach a maximum level of ubiquitylation in trophozoites stage. The Homo sapiens (H. sapiens) TUBEs associated ubiquitin proteome decreased during the infection, whereas the equivalent P. falciparum TUBEs-associated ubiquitin proteome counterpart increased. Major cellular processes such as DNA repair, replication, stress response, vesicular transport and catabolic events appear to be regulated by ubiquitylation along the IDC P. falciparum infection. BIOLOGICAL SIGNIFICANCE In this work we analyze for the first time the interconnection between Plasmodium and human red blood cells ubiquitin-regulated proteins in the context of infection. We identified a number of human and Plasmodium proteins whose ubiquitylation pattern changes during the asexual infective stage. We demonstrate that ubiquitylation of REX1, a P. falciparum protein located in Maurer's clefts and important for parasite nutrient import, peaks in trophozoites stage. The ubiquitin-proteome from P. falciparum infected red blood cells (iRBCs) revealed a significant host-parasite crosstalk, underlining the importance of ubiquitin-regulated proteolytic activities during the intraerythrocytic developmental cycle (IDC) of P. falciparum. Major cellular processes defined from gene ontology such as DNA repair, replication, stress response, vesicular transport and catabolic events appear to be regulated by ubiquitylation along the IDC P. falciparum infection. Given the importance of ubiquitylation in the development of infectious diseases, this work provides a number of potential drug-target candidates that should be further explored.
Collapse
Affiliation(s)
- Lydia Mata-Cantero
- Medicines Development Campus, Diseases of the Developing World, GlaxoSmithKline Tres Cantos, Madrid, Spain; Proteomics Platform CICbioGUNE, CIBERehd, ProteoRed-ISCIII, Parque Tecnologico de Bizkaia, Derio, Spain; Ubiquitylation and Cancer Molecular Biology, Inbiomed, San Sebastian, Spain
| | - Mikel Azkargorta
- Proteomics Platform CICbioGUNE, CIBERehd, ProteoRed-ISCIII, Parque Tecnologico de Bizkaia, Derio, Spain
| | - Fabienne Aillet
- Ubiquitylation and Cancer Molecular Biology, Inbiomed, San Sebastian, Spain
| | - Wendy Xolalpa
- Proteomics Platform CICbioGUNE, CIBERehd, ProteoRed-ISCIII, Parque Tecnologico de Bizkaia, Derio, Spain
| | - Maria J LaFuente
- Medicines Development Campus, Diseases of the Developing World, GlaxoSmithKline Tres Cantos, Madrid, Spain
| | - Felix Elortza
- Proteomics Platform CICbioGUNE, CIBERehd, ProteoRed-ISCIII, Parque Tecnologico de Bizkaia, Derio, Spain
| | - Ana Sofia Carvalho
- Computational and Experimental Biology Group, Health Promotion and Chronic Diseases Department, National Institute of Health Dr Ricardo Jorge, Lisbon, Portugal
| | - Julio Martin-Plaza
- Centro de Investigación Básica, GlaxoSmithKline, Tres Cantos, Madrid, Spain
| | - Rune Matthiesen
- Computational and Experimental Biology Group, Health Promotion and Chronic Diseases Department, National Institute of Health Dr Ricardo Jorge, Lisbon, Portugal.
| | - Manuel S Rodriguez
- Proteomics Platform CICbioGUNE, CIBERehd, ProteoRed-ISCIII, Parque Tecnologico de Bizkaia, Derio, Spain; Ubiquitylation and Cancer Molecular Biology, Inbiomed, San Sebastian, Spain; Institut des Technologies Avancées en sciences du Vivant (ITAV), Université de Toulouse, CNRS, UPS, France; University of Toulouse III-Paul Sabatier, 31077 Toulouse, France; Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS, UPS, France.
| |
Collapse
|
63
|
Chisholm SA, McHugh E, Lundie R, Dixon MWA, Ghosh S, O’Keefe M, Tilley L, Kalanon M, de Koning-Ward TF. Contrasting Inducible Knockdown of the Auxiliary PTEX Component PTEX88 in P. falciparum and P. berghei Unmasks a Role in Parasite Virulence. PLoS One 2016; 11:e0149296. [PMID: 26886275 PMCID: PMC4757573 DOI: 10.1371/journal.pone.0149296] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Accepted: 01/29/2016] [Indexed: 12/21/2022] Open
Abstract
Pathogenesis of malaria infections is linked to remodeling of erythrocytes, a process dependent on the trafficking of hundreds of parasite-derived proteins into the host erythrocyte. Recent studies have demonstrated that the Plasmodium translocon of exported proteins (PTEX) serves as the central gateway for trafficking of these proteins, as inducible knockdown of the core PTEX constituents blocked the trafficking of all classes of cargo into the erythrocyte. However, the role of the auxiliary component PTEX88 in protein export remains less clear. Here we have used inducible knockdown technologies in P. falciparum and P. berghei to assess the role of PTEX88 in parasite development and protein export, which reveal that the in vivo growth of PTEX88-deficient parasites is hindered. Interestingly, we were unable to link this observation to a general defect in export of a variety of known parasite proteins, suggesting that PTEX88 functions in a different fashion to the core PTEX components. Strikingly, PTEX88-deficient P. berghei were incapable of causing cerebral malaria despite a robust pro-inflammatory response from the host. These parasites also exhibited a reduced ability to sequester in peripheral tissues and were removed more readily from the circulation by the spleen. In keeping with these findings, PTEX88-deficient P. falciparum-infected erythrocytes displayed reduced binding to the endothelial cell receptor, CD36. This suggests that PTEX88 likely plays a specific direct or indirect role in mediating parasite sequestration rather than making a universal contribution to the trafficking of all exported proteins.
Collapse
Affiliation(s)
- Scott A. Chisholm
- School of Medicine, Deakin University, Waurn Ponds, Victoria, Australia
| | - Emma McHugh
- Department of Biochemistry and Molecular Biology, Bio21 Institute, Melbourne, Victoria, Australia
| | - Rachel Lundie
- The Burnet Institute, Melbourne, Victoria, Australia
| | - Matthew W. A. Dixon
- Department of Biochemistry and Molecular Biology, Bio21 Institute, Melbourne, Victoria, Australia
| | - Sreejoyee Ghosh
- School of Medicine, Deakin University, Waurn Ponds, Victoria, Australia
| | | | - Leann Tilley
- Department of Biochemistry and Molecular Biology, Bio21 Institute, Melbourne, Victoria, Australia
| | - Ming Kalanon
- School of Medicine, Deakin University, Waurn Ponds, Victoria, Australia
| | | |
Collapse
|
64
|
Export of malaria proteins requires co-translational processing of the PEXEL motif independent of phosphatidylinositol-3-phosphate binding. Nat Commun 2016; 7:10470. [PMID: 26832821 PMCID: PMC4740378 DOI: 10.1038/ncomms10470] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2015] [Accepted: 12/09/2015] [Indexed: 11/08/2022] Open
Abstract
Plasmodium falciparum exports proteins into erythrocytes using the Plasmodium export element (PEXEL) motif, which is cleaved in the endoplasmic reticulum (ER) by plasmepsin V (PMV). A recent study reported that phosphatidylinositol-3-phosphate (PI(3)P) concentrated in the ER binds to PEXEL motifs and is required for export independent of PMV, and that PEXEL motifs are functionally interchangeable with RxLR motifs of oomycete effectors. Here we show that the PEXEL does not bind PI(3)P, and that this lipid is not concentrated in the ER. We find that RxLR motifs cannot mediate export in P. falciparum. Parasites expressing a mutated version of KAHRP, with the PEXEL motif repositioned near the signal sequence, prevented PMV cleavage. This mutant possessed the putative PI(3)P-binding residues but is not exported. Reinstatement of PEXEL to its original location restores processing by PMV and export. These results challenge the PI(3)P hypothesis and provide evidence that PEXEL position is conserved for co-translational processing and export.
Collapse
|
65
|
Sappakhaw K, Takasila R, Sittikul P, Wattana-Amorn P, Assavalapsakul W, Boonyalai N. Biochemical characterization of plasmepsin V from Plasmodium vivax Thailand isolates: Substrate specificity and enzyme inhibition. Mol Biochem Parasitol 2016; 204:51-63. [PMID: 26795263 DOI: 10.1016/j.molbiopara.2016.01.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2015] [Revised: 01/05/2016] [Accepted: 01/08/2016] [Indexed: 12/19/2022]
Abstract
Plasmepsin V (PMV) is a Plasmodium aspartic protease responsible for the cleavage of the Plasmodium export element (PEXEL) motif, which is an essential step for export of PEXEL containing proteins and crucial for parasite viability. Here we describe the genetic polymorphism of Plasmodium vivax PMV (PvPMV) Thailand isolates, followed by cloning, expression, purification and characterization of PvPMV-Thai, presenting the pro- and mature-form of PvPMV-Thai. With our refolding and purification method, approximately 1mg of PvPMV-Thai was obtained from 1g of washed inclusion bodies. Unlike PvPMV-Ind and PvPMV-Sal-1, PvPMV-Thai contains a four-amino acid insertion (SVSE) at residues 246-249. We have confirmed that this insertion did not interfere with the catalytic activity as it is located in the long loop (R241-E272) pointing away from the substrate-binding pocket. PvPMV-Thai exhibited similar activity to PfPMV counterparts in which PfEMP2 could be hydrolyzed more efficiently than HRPII. Substrate specificity studies at P1' showed that replacing Ser by Val or Glu of the PfEMP2 peptide markedly reduced the enzyme activity of PvPMV similar to that of PfPMV whereas replacing His by Val or Ser of the HRPII peptide increased the cleavage activity. However, the substitution of amino acids at the P2 position with Glu dramatically reduced the cleavage efficiency by 80% in PvPMV in contrast to 30% in PfPMV, indicating subtle differences around the S2 binding pocket of both PfPMV and PvPMV. Four inhibitors were also evaluated for PvPMV-Thai activity including PMSF, pepstatin A, nelfinavir, and menisporopsin A-a macrocyclic polylactone. We are the first to show that menisporopsin A partially inhibits the PvPMV-Thai activity at high concentration. Taken together, these findings provide insights into recombinant production, substrate specificity and inhibition of PvPMV-Thai.
Collapse
Affiliation(s)
- Khomkrit Sappakhaw
- Department of Biochemistry, Special Research Unit for Protein Engineering and Protein Bioinformatics, Faculty of Science, Kasetsart University, 50 Ngam Wong Wan Road, Lat Yao, Chatuchak, Bangkok 10900, Thailand
| | - Ratchaneekorn Takasila
- Department of Biochemistry, Special Research Unit for Protein Engineering and Protein Bioinformatics, Faculty of Science, Kasetsart University, 50 Ngam Wong Wan Road, Lat Yao, Chatuchak, Bangkok 10900, Thailand
| | - Pichamon Sittikul
- Department of Biochemistry, Special Research Unit for Protein Engineering and Protein Bioinformatics, Faculty of Science, Kasetsart University, 50 Ngam Wong Wan Road, Lat Yao, Chatuchak, Bangkok 10900, Thailand
| | - Pakorn Wattana-Amorn
- Center of Excellence for Innovation in Chemistry, Faculty of Science, Kasetsart University, 50 Ngam Wong Wan Road, Lat Yao, Chatuchak, Bangkok 10900, Thailand; Department of Chemistry, Faculty of Science, Kasetsart University, 50 Ngam Wong Wan Road, Lat Yao, Chatuchak, Bangkok 10900, Thailand
| | - Wanchai Assavalapsakul
- Department of Microbiology, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Nonlawat Boonyalai
- Department of Biochemistry, Special Research Unit for Protein Engineering and Protein Bioinformatics, Faculty of Science, Kasetsart University, 50 Ngam Wong Wan Road, Lat Yao, Chatuchak, Bangkok 10900, Thailand; Center of Excellence for Innovation in Chemistry, Faculty of Science, Kasetsart University, 50 Ngam Wong Wan Road, Lat Yao, Chatuchak, Bangkok 10900, Thailand.
| |
Collapse
|
66
|
Cobbold SA, Llinás M, Kirk K. Sequestration and metabolism of host cell arginine by the intraerythrocytic malaria parasite Plasmodium falciparum. Cell Microbiol 2016; 18:820-30. [PMID: 26633083 DOI: 10.1111/cmi.12552] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Revised: 11/14/2015] [Accepted: 11/26/2015] [Indexed: 11/26/2022]
Abstract
Human erythrocytes have an active nitric oxide synthase, which converts arginine into citrulline and nitric oxide (NO). NO serves several important functions, including the maintenance of normal erythrocyte deformability, thereby ensuring efficient passage of the red blood cell through narrow microcapillaries. Here, we show that following invasion by the malaria parasite Plasmodium falciparum the arginine pool in the host erythrocyte compartment is sequestered and metabolized by the parasite. Arginine from the extracellular medium enters the infected cell via endogenous host cell transporters and is taken up by the intracellular parasite by a high-affinity cationic amino acid transporter at the parasite surface. Within the parasite arginine is metabolized into citrulline and ornithine. The uptake and metabolism of arginine by the parasite deprive the erythrocyte of the substrate required for NO production and may contribute to the decreased deformability of infected erythrocytes.
Collapse
Affiliation(s)
- Simon A Cobbold
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, 08544, USA.,Research School of Biology, The Australian National University, Canberra, ACT, 2601, Australia
| | - Manuel Llinás
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, 08544, USA.,Department of Molecular Biology, Princeton University, Princeton, NJ, 08544, USA
| | - Kiaran Kirk
- Research School of Biology, The Australian National University, Canberra, ACT, 2601, Australia
| |
Collapse
|
67
|
Kumar B, Bhalla V, Singh Bhadoriya RP, Suri CR, Varshney GC. Label-free electrochemical detection of malaria-infected red blood cells. RSC Adv 2016. [DOI: 10.1039/c6ra07665c] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
The precise and rapid diagnosis of malaria is key to prevent indiscriminate use of antimalarial drugs and help in timely treatment and management of the disease.
Collapse
Affiliation(s)
- Binod Kumar
- CSIR-Institute of Microbial Technology
- Chandigarh-160036
- India
| | | | | | - C. Raman Suri
- CSIR-Institute of Microbial Technology
- Chandigarh-160036
- India
| | | |
Collapse
|
68
|
Malaria Parasite Proteins and Their Role in Alteration of the Structure and Function of Red Blood Cells. ADVANCES IN PARASITOLOGY 2015; 91:1-86. [PMID: 27015947 DOI: 10.1016/bs.apar.2015.09.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Malaria, caused by Plasmodium spp., continues to be a major threat to human health and a significant cause of socioeconomic hardship in many countries. Almost half of the world's population live in malaria-endemic regions and many of them suffer one or more, often life-threatening episodes of malaria every year, the symptoms of which are attributable to replication of the parasite within red blood cells (RBCs). In the case of Plasmodium falciparum, the species responsible for most malaria-related deaths, parasite replication within RBCs is accompanied by striking alterations to the morphological, biochemical and biophysical properties of the host cell that are essential for the parasites' survival. To achieve this, the parasite establishes a unique and extensive protein export network in the infected RBC, dedicating at least 6% of its genome to the process. Understanding the full gamut of proteins involved in this process and the mechanisms by which P. falciparum alters the structure and function of RBCs is important both for a more complete understanding of the pathogenesis of malaria and for development of new therapeutic strategies to prevent or treat this devastating disease. This review focuses on what is currently known about exported parasite proteins, their interactions with the RBC and their likely pathophysiological consequences.
Collapse
|
69
|
Deroost K, Pham TT, Opdenakker G, Van den Steen PE. The immunological balance between host and parasite in malaria. FEMS Microbiol Rev 2015; 40:208-57. [PMID: 26657789 DOI: 10.1093/femsre/fuv046] [Citation(s) in RCA: 92] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/04/2015] [Indexed: 12/16/2022] Open
Abstract
Coevolution of humans and malaria parasites has generated an intricate balance between the immune system of the host and virulence factors of the parasite, equilibrating maximal parasite transmission with limited host damage. Focusing on the blood stage of the disease, we discuss how the balance between anti-parasite immunity versus immunomodulatory and evasion mechanisms of the parasite may result in parasite clearance or chronic infection without major symptoms, whereas imbalances characterized by excessive parasite growth, exaggerated immune reactions or a combination of both cause severe pathology and death, which is detrimental for both parasite and host. A thorough understanding of the immunological balance of malaria and its relation to other physiological balances in the body is of crucial importance for developing effective interventions to reduce malaria-related morbidity and to diminish fatal outcomes due to severe complications. Therefore, we discuss in this review the detailed mechanisms of anti-malarial immunity, parasite virulence factors including immune evasion mechanisms and pathogenesis. Furthermore, we propose a comprehensive classification of malaria complications according to the different types of imbalances.
Collapse
Affiliation(s)
- Katrien Deroost
- Laboratory of Immunobiology, Rega Institute for Medical Research, KU Leuven - University of Leuven, 3000 Leuven, Belgium The Francis Crick Institute, Mill Hill Laboratory, London, NW71AA, UK
| | - Thao-Thy Pham
- Laboratory of Immunobiology, Rega Institute for Medical Research, KU Leuven - University of Leuven, 3000 Leuven, Belgium
| | - Ghislain Opdenakker
- Laboratory of Immunobiology, Rega Institute for Medical Research, KU Leuven - University of Leuven, 3000 Leuven, Belgium
| | - Philippe E Van den Steen
- Laboratory of Immunobiology, Rega Institute for Medical Research, KU Leuven - University of Leuven, 3000 Leuven, Belgium
| |
Collapse
|
70
|
Kalanon M, Bargieri D, Sturm A, Matthews K, Ghosh S, Goodman CD, Thiberge S, Mollard V, McFadden GI, Ménard R, Koning‐Ward TF. The
Plasmodium
translocon of exported proteins component EXP2 is critical for establishing a patent malaria infection in mice. Cell Microbiol 2015; 18:399-412. [DOI: 10.1111/cmi.12520] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Revised: 08/26/2015] [Accepted: 08/31/2015] [Indexed: 12/12/2022]
Affiliation(s)
- Ming Kalanon
- Molecular and Medical Research Unit, School of MedicineDeakin University Waurn Ponds Geelong Victoria 3216 Australia
| | - Daniel Bargieri
- Unité de Biologie et Génétique du PaludismeInstitut Pasteur Paris France
- Department of Parasitology, Institute of Biomedical SciencesUniversity of São Paulo São Paulo SP Brazil
| | - Angelika Sturm
- School of BioSciencesThe University of Melbourne Parkville Victoria 3010 Australia
| | - Kathryn Matthews
- Molecular and Medical Research Unit, School of MedicineDeakin University Waurn Ponds Geelong Victoria 3216 Australia
| | - Sreejoyee Ghosh
- Molecular and Medical Research Unit, School of MedicineDeakin University Waurn Ponds Geelong Victoria 3216 Australia
| | | | - Sabine Thiberge
- Unité de Biologie et Génétique du PaludismeInstitut Pasteur Paris France
| | - Vanessa Mollard
- School of BioSciencesThe University of Melbourne Parkville Victoria 3010 Australia
| | - Geoffrey I. McFadden
- School of BioSciencesThe University of Melbourne Parkville Victoria 3010 Australia
| | - Robert Ménard
- Unité de Biologie et Génétique du PaludismeInstitut Pasteur Paris France
| | - Tania F. Koning‐Ward
- Molecular and Medical Research Unit, School of MedicineDeakin University Waurn Ponds Geelong Victoria 3216 Australia
| |
Collapse
|
71
|
Curt-Varesano A, Braun L, Ranquet C, Hakimi MA, Bougdour A. The aspartyl protease TgASP5 mediates the export of the Toxoplasma GRA16 and GRA24 effectors into host cells. Cell Microbiol 2015; 18:151-67. [PMID: 26270241 DOI: 10.1111/cmi.12498] [Citation(s) in RCA: 74] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2015] [Revised: 07/22/2015] [Accepted: 07/27/2015] [Indexed: 12/21/2022]
Abstract
Toxoplasma gondii and Plasmodium species are obligatory intracellular parasites that export proteins into the infected cells in order to interfere with host-signalling pathways, acquire nutrients or evade host defense mechanisms. With regard to export mechanism, a wealth of information in Plasmodium spp. is available, while the mechanisms operating in T. gondii remain uncertain. The recent discovery of exported proteins in T. gondii, mainly represented by dense granule resident proteins, might explain this discrepancy and offers a unique opportunity to study the export mechanism in T. gondii. Here, we report that GRA16 export is mediated by two protein elements present in its N-terminal region. Because the first element contains a putative Plasmodium export element linear motif (RRLAE), we hypothesized that GRA16 export depended on a maturation process involving protein cleavage. Using both N- and C-terminal epitope tags, we provide evidence for protein proteolysis occurring in the N-terminus of GRA16. We show that TgASP5, the T. gondii homolog of Plasmodium plasmepsin V, is essential for GRA16 export and is directly responsible for its maturation in a Plasmodium export element-dependent manner. Interestingly, TgASP5 is also involved in GRA24 export, although the GRA24 maturation mechanism is TgASP5-independent. Our data reveal different modus operandi for protein export, in which TgASP5 should play multiple functions.
Collapse
Affiliation(s)
- Aurélie Curt-Varesano
- Laboratoire Adaptation et Pathogénie des Microorganismes, Centre National de la Recherche Scientifique, UMR5163, F-38041, Grenoble, France.,Université Joseph Fourier, F-38000, Grenoble Cedex 09, France
| | - Laurence Braun
- Laboratoire Adaptation et Pathogénie des Microorganismes, Centre National de la Recherche Scientifique, UMR5163, F-38041, Grenoble, France.,Université Joseph Fourier, F-38000, Grenoble Cedex 09, France
| | - Caroline Ranquet
- Bâtiment B - Biologie, BGene Genetics SAS, 2280 rue de la Piscine, 38400, Saint Martin d'Hères, France
| | - Mohamed-Ali Hakimi
- Laboratoire Adaptation et Pathogénie des Microorganismes, Centre National de la Recherche Scientifique, UMR5163, F-38041, Grenoble, France.,Université Joseph Fourier, F-38000, Grenoble Cedex 09, France
| | - Alexandre Bougdour
- Laboratoire Adaptation et Pathogénie des Microorganismes, Centre National de la Recherche Scientifique, UMR5163, F-38041, Grenoble, France.,Université Joseph Fourier, F-38000, Grenoble Cedex 09, France
| |
Collapse
|
72
|
The Plasmodium berghei translocon of exported proteins reveals spatiotemporal dynamics of tubular extensions. Sci Rep 2015. [PMID: 26219962 PMCID: PMC4518229 DOI: 10.1038/srep12532] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The erythrocyte is an extraordinary host cell for intracellular pathogens and requires extensive remodelling to become permissive for infection. Malaria parasites modify their host red blood cells through protein export to acquire nutrients and evade immune responses. Endogenous fluorescent tagging of three signature proteins of the Plasmodium berghei translocon of exported proteins (PTEX), heat shock protein 101, exported protein 2 (EXP2), and PTEX88, revealed motile, tubular extensions of the parasitophorous vacuole that protrude from the parasite far into the red blood cell. EXP2 displays a more prominent presence at the periphery of the parasite, consistent with its proposed role in pore formation. The tubular compartment is most prominent during trophozoite growth. Distinct spatiotemporal expression of individual PTEX components during sporogony and liver-stage development indicates additional functions and tight regulation of the PTEX translocon during parasite life cycle progression. Together, live cell imaging and correlative light and electron microscopy permitted previously unrecognized spatiotemporal and subcellular resolution of PTEX-containing tubules in murine malaria parasites. These findings further refine current models for Plasmodium-induced erythrocyte makeover.
Collapse
|
73
|
Structural basis for plasmepsin V inhibition that blocks export of malaria proteins to human erythrocytes. Nat Struct Mol Biol 2015. [PMID: 26214367 DOI: 10.1038/nsmb.3061] [Citation(s) in RCA: 75] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Plasmepsin V, an essential aspartyl protease of malaria parasites, has a key role in the export of effector proteins to parasite-infected erythrocytes. Consequently, it is an important drug target for the two most virulent malaria parasites of humans, Plasmodium falciparum and Plasmodium vivax. We developed a potent inhibitor of plasmepsin V, called WEHI-842, which directly mimics the Plasmodium export element (PEXEL). WEHI-842 inhibits recombinant plasmepsin V with a half-maximal inhibitory concentration of 0.2 nM, efficiently blocks protein export and inhibits parasite growth. We obtained the structure of P. vivax plasmepsin V in complex with WEHI-842 to 2.4-Å resolution, which provides an explanation for the strict requirements for substrate and inhibitor binding. The structure characterizes both a plant-like fold and a malaria-specific helix-turn-helix motif that are likely to be important in cleavage of effector substrates for export.
Collapse
|
74
|
Dumoulin PC, Trop SA, Ma J, Zhang H, Sherman MA, Levitskaya J. Flow Cytometry Based Detection and Isolation of Plasmodium falciparum Liver Stages In Vitro. PLoS One 2015; 10:e0129623. [PMID: 26070149 PMCID: PMC4466555 DOI: 10.1371/journal.pone.0129623] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2014] [Accepted: 05/11/2015] [Indexed: 11/19/2022] Open
Abstract
Malaria, the disease caused by Plasmodium parasites, remains a major global health burden. The liver stage of Plasmodium falciparum infection is a leading target for immunological and pharmacological interventions. Therefore, novel approaches providing specific detection and isolation of live P. falciparum exoerythrocytic forms (EEFs) are warranted. Utilizing a recently generated parasite strain expressing green fluorescent protein (GFP) we established a method which, allows for detection and isolation of developing live P. falciparum liver stages by flow cytometry. Using this technique we compared the susceptibility of five immortalized human hepatocyte cell lines and primary hepatocyte cultures from three donors to infection by P. falciparum sporozoites. Here, we show that EEFs can be detected and isolated from in vitro infected cultures of the HC-04 cell line and primary human hepatocytes. We confirmed the presence of developing parasites in sorted live human hepatocytes and characterized their morphology by fluorescence microscopy. Finally, we validated the practical applications of our approach by re-examining the importance of host ligand CD81 for hepatocyte infection by P. falciparum sporozoites in vitro and assessment of the inhibitory activity of anti-sporozoite antibodies. This methodology provides us with the tools to study both, the basic biology of the P. falciparum liver stage and the effects of host-derived factors on the development of P. falciparum EEFs.
Collapse
Affiliation(s)
- Peter C. Dumoulin
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, 21205, United States of America
| | - Stefanie A. Trop
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, 21205, United States of America
| | - Jinxia Ma
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, 21205, United States of America
| | - Hao Zhang
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, 21205, United States of America
| | - Matthew A. Sherman
- Triangle Research Labs, 6 Davis Drive, Durham, NC, 27709, United States of America
| | - Jelena Levitskaya
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, 21205, United States of America
- * E-mail:
| |
Collapse
|
75
|
Subudhi AK, Boopathi PA, Pandey I, Kohli R, Karwa R, Middha S, Acharya J, Kochar SK, Kochar DK, Das A. Plasmodium falciparum complicated malaria: Modulation and connectivity between exportome and variant surface antigen gene families. Mol Biochem Parasitol 2015; 201:31-46. [PMID: 26022315 DOI: 10.1016/j.molbiopara.2015.05.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2014] [Revised: 05/20/2015] [Accepted: 05/21/2015] [Indexed: 12/27/2022]
Abstract
In temperate and sub-tropical regions of Asia and Latin America, complicated malaria manifested as hepatic dysfunction or renal dysfunction is seen in all age groups. There has been a concerted focus on understanding the patho-physiological and molecular basis of complicated malaria in children, much less is known about it in adults. We report here, the analysis of data from a custom, cross strain microarray (Agilent Platform) using material from adult patient samples, showing hepatic dysfunction or renal failure. These are the most common manifestations seen in adults along with cerebral malaria. The data has been analyzed with reference to variant surface antigens, encoded by the var, rifin and stevor gene families. The differential regulation profiles of key genes (comparison between Plasmodium falciparum complicated and uncomplicated isolates) have been observed. The exportome has been analyzed using similar parameters. Gene ontology term based functional enrichment of differentially regulated genes identified, up-regulated genes statistically enriched (P<0.05) to critical biological processes like generation of precursor metabolite and energy, chromosome organization and electron transport chain. Systems network based functional enrichment of overall differentially regulated genes yielded a similar result. We are reporting here, up-regulation of var group B and C genes whose proteins are predicted to interact with CD36 receptor in the host, the up-regulation of domain cassette 13 (DC13) containing var group A, as also the up-regulation of group A rifins and many of the stevors. This is contrary to most other reports from pediatric patients, with cerebral malaria where the up-regulation of mostly var A group genes have been seen. A protein-protein interaction based network has been created and analysis performed. This co-expression and text mining based network has shown overall connectivity between the variant surface antigens (VSA) and the exportome. The up-regulation of var group B and C genes encoding PfEMP1 with different domain architecture would be important for deciding strategies for disease prevention.
Collapse
Affiliation(s)
- Amit Kumar Subudhi
- Department of Biological Sciences, Birla Institute of Technology and Science (BITS), Pilani, Rajasthan, India.
| | - P A Boopathi
- Department of Biological Sciences, Birla Institute of Technology and Science (BITS), Pilani, Rajasthan, India.
| | - Isha Pandey
- Department of Biological Sciences, Birla Institute of Technology and Science (BITS), Pilani, Rajasthan, India.
| | - Ramandeep Kohli
- Department of Biological Sciences, Birla Institute of Technology and Science (BITS), Pilani, Rajasthan, India.
| | - Rohan Karwa
- Department of Biological Sciences, Birla Institute of Technology and Science (BITS), Pilani, Rajasthan, India.
| | - Sheetal Middha
- Department of Medicine, S.P. Medical College, Bikaner, Rajasthan, India.
| | - Jyoti Acharya
- Department of Medicine, S.P. Medical College, Bikaner, Rajasthan, India.
| | - Sanjay K Kochar
- Department of Medicine, S.P. Medical College, Bikaner, Rajasthan, India.
| | - Dhanpat K Kochar
- Rajasthan University of Health Sciences, Jaipur, Rajasthan, India.
| | - Ashis Das
- Department of Biological Sciences, Birla Institute of Technology and Science (BITS), Pilani, Rajasthan, India.
| |
Collapse
|
76
|
Boonyalai N, Sittikul P, Yuvaniyama J. Plasmodium falciparum Plasmepsin V ( Pf PMV): Insights into recombinant expression, substrate specificity and active site structure. Mol Biochem Parasitol 2015; 201:5-15. [DOI: 10.1016/j.molbiopara.2015.05.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2014] [Revised: 04/02/2015] [Accepted: 05/11/2015] [Indexed: 10/23/2022]
|
77
|
Hviid L, Jensen ATR. PfEMP1 - A Parasite Protein Family of Key Importance in Plasmodium falciparum Malaria Immunity and Pathogenesis. ADVANCES IN PARASITOLOGY 2015; 88:51-84. [PMID: 25911365 DOI: 10.1016/bs.apar.2015.02.004] [Citation(s) in RCA: 120] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Plasmodium falciparum causes the most severe form of malaria and is responsible for essentially all malaria-related deaths. The accumulation in various tissues of erythrocytes infected by mature P. falciparum parasites can lead to circulatory disturbances and inflammation, and is thought to be a central element in the pathogenesis of the disease. It is mediated by the interaction of parasite ligands on the erythrocyte surface and a range of host receptor molecules in many organs and tissues. Among several proteins and protein families implicated in this process, the P. falciparum erythrocyte membrane protein 1 (PfEMP1) family of high-molecular weight and highly variable antigens appears to be the most prominent. In this chapter, we aim to provide a systematic overview of the current knowledge about these proteins, their structure, their function, how they are presented on the erythrocyte surface, and how the var genes encoding them are regulated. The role of PfEMP1 in the pathogenesis of malaria, PfEMP1-specific immune responses, and the prospect of PfEMP1-specific vaccination against malaria are also covered briefly.
Collapse
Affiliation(s)
- Lars Hviid
- Centre for Medical Parasitology, University of Copenhagen and Copenhagen University Hospital (Rigshospitalet), Copenhagen, Denmark
| | - Anja T R Jensen
- Centre for Medical Parasitology, University of Copenhagen and Copenhagen University Hospital (Rigshospitalet), Copenhagen, Denmark
| |
Collapse
|
78
|
In Vivo Function of PTEX88 in Malaria Parasite Sequestration and Virulence. EUKARYOTIC CELL 2015; 14:528-34. [PMID: 25820521 DOI: 10.1128/ec.00276-14] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2014] [Accepted: 03/25/2015] [Indexed: 01/07/2023]
Abstract
Malaria pathology is linked to remodeling of red blood cells by eukaryotic Plasmodium parasites. Central to host cell refurbishment is the trafficking of parasite-encoded virulence factors through the Plasmodium translocon of exported proteins (PTEX). Much of our understanding of its function is based on experimental work with cultured Plasmodium falciparum, yet direct consequences of PTEX impairment during an infection remain poorly defined. Using the murine malaria model parasite Plasmodium berghei, it is shown here that efficient sequestration to the pulmonary, adipose, and brain tissue vasculature is dependent on the PTEX components thioredoxin 2 (TRX2) and PTEX88. While TRX2-deficient parasites remain virulent, PTEX88-deficient parasites no longer sequester in the brain, correlating with abolishment of cerebral complications in infected mice. However, an apparent trade-off for virulence attenuation was spleen enlargement, which correlates with a strongly reduced schizont-to-ring-stage transition. Strikingly, general protein export is unaffected in PTEX88-deficient mutants that mature normally in vitro. Thus, PTEX88 is pivotal for tissue sequestration in vivo, parasite virulence, and preventing exacerbation of spleen pathology, but these functions do not correlate with general protein export to the host erythrocyte. The presented data suggest that the protein export machinery of Plasmodium parasites and their underlying mechanistic features are considerably more complex than previously anticipated and indicate challenges for targeted intervention strategies.
Collapse
|
79
|
Spillman NJ, Beck JR, Goldberg DE. Protein export into malaria parasite-infected erythrocytes: mechanisms and functional consequences. Annu Rev Biochem 2015; 84:813-41. [PMID: 25621510 DOI: 10.1146/annurev-biochem-060614-034157] [Citation(s) in RCA: 76] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Phylum Apicomplexa comprises a large group of obligate intracellular parasites of high medical and veterinary importance. These organisms succeed intracellularly by effecting remarkable changes in a broad range of diverse host cells. The transformation of the host erythrocyte is particularly striking in the case of the malaria parasite Plasmodium falciparum. P. falciparum exports hundreds of proteins that mediate a complex cellular renovation marked by changes in the permeability, rigidity, and cytoadherence properties of the host erythrocyte. The past decade has seen enormous progress in understanding the identity and function of these exported effectors, as well as the mechanisms by which they are trafficked into the host cell. Here we review these advances, place them in the context of host manipulation by related apicomplexans, and propose key directions for future research.
Collapse
|
80
|
Gazdik M, O'Neill MT, Lopaticki S, Lowes KN, Smith BJ, Cowman AF, Boddey JA, Sleebs BE. The effect of N-methylation on transition state mimetic inhibitors of the Plasmodium protease, plasmepsin V. MEDCHEMCOMM 2015. [DOI: 10.1039/c4md00409d] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
An N-methylation strategy has been applied to transition state mimetics that are potent inhibitors of plasmepsin V to improve their physical characteristics and their ability to reduce the viability of Plasmodium parasites in culture.
Collapse
Affiliation(s)
- Michelle Gazdik
- The Walter and Eliza Hall Institute of Medical Research
- Parkville
- Australia
- Department of Medical Biology
- The University of Melbourne
| | - Matthew T. O'Neill
- The Walter and Eliza Hall Institute of Medical Research
- Parkville
- Australia
- Department of Medical Biology
- The University of Melbourne
| | - Sash Lopaticki
- The Walter and Eliza Hall Institute of Medical Research
- Parkville
- Australia
- Department of Medical Biology
- The University of Melbourne
| | - Kym N. Lowes
- The Walter and Eliza Hall Institute of Medical Research
- Parkville
- Australia
- Department of Medical Biology
- The University of Melbourne
| | | | - Alan F. Cowman
- The Walter and Eliza Hall Institute of Medical Research
- Parkville
- Australia
- Department of Medical Biology
- The University of Melbourne
| | - Justin A. Boddey
- The Walter and Eliza Hall Institute of Medical Research
- Parkville
- Australia
- Department of Medical Biology
- The University of Melbourne
| | - Brad E. Sleebs
- The Walter and Eliza Hall Institute of Medical Research
- Parkville
- Australia
- Department of Medical Biology
- The University of Melbourne
| |
Collapse
|
81
|
Tarr SJ, Moon RW, Hardege I, Osborne AR. A conserved domain targets exported PHISTb family proteins to the periphery of Plasmodium infected erythrocytes. Mol Biochem Parasitol 2014; 196:29-40. [PMID: 25106850 PMCID: PMC4165601 DOI: 10.1016/j.molbiopara.2014.07.011] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2014] [Revised: 07/24/2014] [Accepted: 07/28/2014] [Indexed: 11/19/2022]
Abstract
Multiple P. falciparum PHISTb proteins localise to the erythrocyte periphery. Solubility profiling indicates that these proteins associate with the red cell cytoskeleton. The PRESAN domain and a preceding N-terminal sequence is a novel targeting domain. A protein targeted to the red cell periphery is essential for parasite survival. P. knowlesi and P. vivax homologous domains also confer similar localisation.
During blood-stage infection, malaria parasites export numerous proteins to the host erythrocyte. The Poly-Helical Interspersed Sub-Telomeric (PHIST) proteins are an exported family that share a common ‘PRESAN’ domain, and include numerous members in Plasmodium falciparum, Plasmodium vivax and Plasmodium knowlesi. In P. falciparum, PHIST proteins have been implicated in protein trafficking and intercellular communication. A number of PHIST proteins are essential for parasite survival. Here, we identify nine members of the PHISTb sub-class of PHIST proteins, including one protein known to be essential for parasite survival, that localise to the erythrocyte periphery. These proteins have solubility characteristics consistent with their association with the erythrocyte cytoskeleton. Together, an extended PRESAN domain, comprising the PRESAN domain and preceding sequence, form a novel targeting-domain that is sufficient to localise a protein to the erythrocyte periphery. We validate the role of this domain in RESA, thus identifying a cytoskeleton-binding domain in RESA that functions independently of its known spectrin-binding domain. Our data suggest that some PHISTb proteins may act as cross-linkers of the erythrocyte cytoskeleton. We also show for the first time that peripherally-localised PHISTb proteins are encoded in genomes of P. knowlesi and vivax indicating a conserved role for the extended PRESAN domain of these proteins in targeting to the erythrocyte periphery.
Collapse
Affiliation(s)
- Sarah J Tarr
- Institute of Structural and Molecular Biology, Division of Biosciences, Birkbeck and University College London, London, UK
| | - Robert W Moon
- Division of Parasitology, MRC National Institute for Medical Research, London, UK
| | - Iris Hardege
- Institute of Structural and Molecular Biology, Division of Biosciences, Birkbeck and University College London, London, UK
| | - Andrew R Osborne
- Institute of Structural and Molecular Biology, Division of Biosciences, Birkbeck and University College London, London, UK.
| |
Collapse
|
82
|
Beck JR, Muralidharan V, Oksman A, Goldberg DE. PTEX component HSP101 mediates export of diverse malaria effectors into host erythrocytes. Nature 2014; 511:592-5. [PMID: 25043010 PMCID: PMC4130291 DOI: 10.1038/nature13574] [Citation(s) in RCA: 201] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2014] [Accepted: 06/11/2014] [Indexed: 12/02/2022]
Affiliation(s)
- Josh R Beck
- 1] Department of Molecular Microbiology, Washington University School of Medicine, St Louis, Missouri 63110, USA [2]
| | - Vasant Muralidharan
- 1] Department of Medicine, Washington University School of Medicine, St Louis, Missouri 63110, USA [2] Howard Hughes Medical Institute, Washington University School of Medicine, St Louis, Missouri 63110, USA [3] [4] Center for Tropical and Emerging Global Diseases and Department of Cellular Biology, University of Georgia, Athens, Georgia 30602, USA
| | - Anna Oksman
- 1] Department of Molecular Microbiology, Washington University School of Medicine, St Louis, Missouri 63110, USA [2] Department of Medicine, Washington University School of Medicine, St Louis, Missouri 63110, USA [3] Howard Hughes Medical Institute, Washington University School of Medicine, St Louis, Missouri 63110, USA
| | - Daniel E Goldberg
- 1] Department of Molecular Microbiology, Washington University School of Medicine, St Louis, Missouri 63110, USA [2] Department of Medicine, Washington University School of Medicine, St Louis, Missouri 63110, USA [3] Howard Hughes Medical Institute, Washington University School of Medicine, St Louis, Missouri 63110, USA
| |
Collapse
|
83
|
Elsworth B, Matthews K, Nie CQ, Kalanon M, Charnaud SC, Sanders PR, Chisholm SA, Counihan NA, Shaw PJ, Pino P, Chan JA, Azevedo MF, Rogerson SJ, Beeson JG, Crabb BS, Gilson PR, de Koning-Ward TF. PTEX is an essential nexus for protein export in malaria parasites. Nature 2014; 511:587-91. [DOI: 10.1038/nature13555] [Citation(s) in RCA: 195] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2014] [Accepted: 05/30/2014] [Indexed: 11/09/2022]
|
84
|
Inhibition of Plasmepsin V activity demonstrates its essential role in protein export, PfEMP1 display, and survival of malaria parasites. PLoS Biol 2014; 12:e1001897. [PMID: 24983235 PMCID: PMC4077696 DOI: 10.1371/journal.pbio.1001897] [Citation(s) in RCA: 99] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2014] [Accepted: 05/22/2014] [Indexed: 11/19/2022] Open
Abstract
The malaria parasite Plasmodium falciparum exports several hundred proteins into the infected erythrocyte that are involved in cellular remodeling and severe virulence. The export mechanism involves the Plasmodium export element (PEXEL), which is a cleavage site for the parasite protease, Plasmepsin V (PMV). The PMV gene is refractory to deletion, suggesting it is essential, but definitive proof is lacking. Here, we generated a PEXEL-mimetic inhibitor that potently blocks the activity of PMV isolated from P. falciparum and Plasmodium vivax. Assessment of PMV activity in P. falciparum revealed PEXEL cleavage occurs cotranslationaly, similar to signal peptidase. Treatment of P. falciparum-infected erythrocytes with the inhibitor caused dose-dependent inhibition of PEXEL processing as well as protein export, including impaired display of the major virulence adhesin, PfEMP1, on the erythrocyte surface, and cytoadherence. The inhibitor killed parasites at the trophozoite stage and knockdown of PMV enhanced sensitivity to the inhibitor, while overexpression of PMV increased resistance. This provides the first direct evidence that PMV activity is essential for protein export in Plasmodium spp. and for parasite survival in human erythrocytes and validates PMV as an antimalarial drug target.
Collapse
|
85
|
Chan JA, Fowkes FJI, Beeson JG. Surface antigens of Plasmodium falciparum-infected erythrocytes as immune targets and malaria vaccine candidates. Cell Mol Life Sci 2014; 71:3633-57. [PMID: 24691798 PMCID: PMC4160571 DOI: 10.1007/s00018-014-1614-3] [Citation(s) in RCA: 112] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2013] [Revised: 03/04/2014] [Accepted: 03/17/2014] [Indexed: 12/19/2022]
Abstract
Understanding the targets and mechanisms of human immunity to malaria caused by Plasmodium falciparum is crucial for advancing effective vaccines and developing tools for measuring immunity and exposure in populations. Acquired immunity to malaria predominantly targets the blood stage of infection when merozoites of Plasmodium spp. infect erythrocytes and replicate within them. During the intra-erythrocytic development of P. falciparum, numerous parasite-derived antigens are expressed on the surface of infected erythrocytes (IEs). These antigens enable P. falciparum-IEs to adhere in the vasculature and accumulate in multiple organs, which is a key process in the pathogenesis of disease. IE surface antigens, often referred to as variant surface antigens, are important targets of acquired protective immunity and include PfEMP1, RIFIN, STEVOR and SURFIN. These antigens are highly polymorphic and encoded by multigene families, which generate substantial antigenic diversity to mediate immune evasion. The most important immune target appears to be PfEMP1, which is a major ligand for vascular adhesion and sequestration of IEs. Studies are beginning to identify specific variants of PfEMP1 linked to disease pathogenesis that may be suitable for vaccine development, but overcoming antigenic diversity in PfEMP1 remains a major challenge. Much less is known about other surface antigens, or antigens on the surface of gametocyte-IEs, the effector mechanisms that mediate immunity, and how immunity is acquired and maintained over time; these are important topics for future research.
Collapse
|
86
|
Bougdour A, Tardieux I, Hakimi MA. Toxoplasmaexports dense granule proteins beyond the vacuole to the host cell nucleus and rewires the host genome expression. Cell Microbiol 2014; 16:334-43. [DOI: 10.1111/cmi.12255] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2013] [Revised: 12/17/2013] [Accepted: 12/18/2013] [Indexed: 12/21/2022]
Affiliation(s)
- Alexandre Bougdour
- CNRS; UMR5163; LAPM; Grenoble 38041 France
- Université Joseph Fourier; Grenoble 38000 France
| | - Isabelle Tardieux
- Institut Cochin; INSERM U1016; CNRS UMR 8104; Université Paris Descartes; Paris 75014 France
| | - Mohamed-Ali Hakimi
- CNRS; UMR5163; LAPM; Grenoble 38041 France
- Université Joseph Fourier; Grenoble 38000 France
| |
Collapse
|
87
|
Macrae JI, Lopaticki S, Maier AG, Rupasinghe T, Nahid A, Cowman AF, McConville MJ. Plasmodium falciparum is dependent on de novo myo-inositol biosynthesis for assembly of GPI glycolipids and infectivity. Mol Microbiol 2014; 91:762-76. [PMID: 24350823 DOI: 10.1111/mmi.12496] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/15/2013] [Indexed: 12/27/2022]
Abstract
Intra-erythrocytic stages of the malaria parasite, Plasmodium falciparum, are thought to be dependent on de novo synthesis of phosphatidylinositol, as red blood cells (RBC) lack the capacity to synthesize this phospholipid. The myo-inositol headgroup of PI can either be synthesized de novo or scavenged from the RBC. An untargeted metabolite profiling of P. falciparum infected RBC showed that trophozoite and schizont stages accumulate high levels of myo-inositol-3-phosphate, indicating increased de novo biosynthesis of myo-inositol from glucose 6-phosphate. Metabolic labelling studies with (13) C-U-glucose in the presence and absence of exogenous inositol confirmed that de novo myo-inositol synthesis occurs in parallel with myo-inositol salvage pathways. Unexpectedly, while both endogenous and scavenged myo-inositol was used to synthesize bulk PI, only de novo-synthesized myo-inositol was incorporated into GPI glycolipids. Moreover, gene disruption studies suggested that the INO1 gene, encoding myo-inositol 3-phosphate synthase, is essential in asexual parasite stages. Together these findings suggest that P. falciparum asexual stages are critically dependent on de novo myo-inositol biosynthesis for assembly of a sub-pool of PI species and GPI biosynthesis. These findings highlight unexpected complexity in phospholipid biosynthesis in P. falciparum and a lack of redundancy in some nutrient salvage versus endogenous biosynthesis pathways.
Collapse
Affiliation(s)
- James I Macrae
- Department of Biochemistry and Molecular Biology, Bio21 Institute of Molecular Science and Biotechnology, 30 Flemington Road, Melbourne, Vic., 3010, Australia
| | | | | | | | | | | | | |
Collapse
|
88
|
Matz JM, Matuschewski K, Kooij TW. Two putative protein export regulators promote Plasmodium blood stage development in vivo. Mol Biochem Parasitol 2013; 191:44-52. [DOI: 10.1016/j.molbiopara.2013.09.003] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2013] [Revised: 09/13/2013] [Accepted: 09/16/2013] [Indexed: 11/17/2022]
|